WO2015181489A1 - Platine d'etancheite a fonction de fusible - Google Patents

Platine d'etancheite a fonction de fusible Download PDF

Info

Publication number
WO2015181489A1
WO2015181489A1 PCT/FR2015/051386 FR2015051386W WO2015181489A1 WO 2015181489 A1 WO2015181489 A1 WO 2015181489A1 FR 2015051386 W FR2015051386 W FR 2015051386W WO 2015181489 A1 WO2015181489 A1 WO 2015181489A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
end portion
bend
axis
elbow
Prior art date
Application number
PCT/FR2015/051386
Other languages
English (en)
Inventor
Miguel Raymond PALAZUELOS
Clélia Antoinette BARBIER-NEVEU
Devradj Marie-Guy GUSTAVE
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/313,521 priority Critical patent/US10047621B2/en
Priority to EP15732804.8A priority patent/EP3149286B1/fr
Priority to BR112016027482-2A priority patent/BR112016027482B1/pt
Priority to CN201580027804.3A priority patent/CN106460539B/zh
Priority to CA2950263A priority patent/CA2950263C/fr
Priority to RU2016151409A priority patent/RU2675165C2/ru
Publication of WO2015181489A1 publication Critical patent/WO2015181489A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/003Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • F01D25/305Exhaust heads, chambers, or the like with fluid, e.g. liquid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/56Brush seals

Definitions

  • the field of the invention is that of turbomachine sealing plates, and turbomachines comprising such plates.
  • a turbomachine T conventionally comprises a high-pressure turbine 2 and a low-pressure turbine 3.
  • the low-pressure turbine comprises several turbine stages, among which at least one rotor stage 4, that is to say mobile vane, and a stator stage 5, that is to say vane fixed distribution of the flow of air flowing in the turbine.
  • the last stage of the turbine is a rotor stage, which is followed downstream with respect to the air flow in the turbomachine by a fixed blade called exhaust casing 6, which rectifies the flow of air before being discharged into the turbine. atmosphere by the nozzles.
  • the flow of gas is from upstream to downstream, it is from left to right in Figures 1a and 1b.
  • the exhaust casing 6 comprises a spoiler 60 extending upstream of the casing relative to the flow of air into the vein.
  • This spoiler cooperates with a sectorized downstream spoiler assembly 40 of the last rotor stage 4 to form a dynamic seal, preventing air flowing in the vein of the turbine from flowing towards the space under the spoilers and vice versa.
  • the seal is achieved by the natural recoil of the last rotor stage in operation, which causes the spoiler downstream of the rotor to be superimposed on the upstream spoiler of the exhaust casing in the direction of the axis of revolution of the turbomachine.
  • the downstream spoiler 40 is a set of sectored parts juxtaposed 360 ° and the spoiler 60 is a single piece, both are considered as two pieces of revolution around this axis, and this results in a recovery not only axial but also circumferential of the two spoilers 40, 60.
  • the recoil of this stage may be greater than its normal recoil and cause contact between the upstream spoiler of the exhaust casing and the rotor stage.
  • the invention aims to overcome the disadvantages of the prior art, by providing an element for sealing between the exhaust casing and a rotor stage, while having a fuse function.
  • the subject of the invention is an assembly comprising:
  • an exhaust casing said casing being of revolution about a turbomachine motor axis, and comprising a bracket fixing flange, and
  • said portions forming between them an angle of between 80 and 100 degrees, and the radially outer end portion having a length in an axial direction of between 15 and 35% of the height of the plate measured in the radial direction around the axis of revolution, and the end portion radially external device extending substantially parallel to said axis, and in that said elbow is angularly open downstream in the axial direction relative to the air flow in the turbomachine.
  • the end portions of the plate form between them an angle of 90 degrees, the radially inner end portion extending substantially radially with respect to the axis of revolution of the plate,
  • the plate further comprises an intermediate portion, the elbow interconnecting the radially outer end portion and the intermediate portion the plate further comprising a second elbow interconnecting the intermediate portion and the radially inner end portion,
  • the radially inner end portion of the plate has a length between 25 and 45% of the height of the plate measured in the radial direction about the axis of revolution
  • the radially outer end portion of the plate has a midpoint substantially aligned with the radially inner end portion
  • the intermediate portion of the plate comprises a radially inner portion, a radially outer portion, and a bend forming a third bend of the plate, said bend interconnecting the inner and outer portions, the first and second bend being open towards the same side of the plate with respect to the axis, and the third bend being open towards the opposite side,
  • the first elbow of the plate forms an angle, between the outer end portion and the outer portion of the intermediate portion, between 5 and 15 degrees
  • the third elbow forms an angle between the two portions of the intermediate portion, between 60 and 80 degrees
  • the first bend and the third bend of the turntable correspond to ends in the axial direction of the turntable, and the distance, measured in the axial direction, between the first bend and the radially inner end portion, substantially corresponds to a quarter of the distance, measured in the axial direction, between the first and the third elbow.
  • the casing comprises a protruding spoiler extending parallel to the axis, upstream of the casing relative to the air flow, and the third elbow of the plate is downstream of the spoiler relative to the air flow
  • the assembly further comprises a housing support, the housing being fixed to the housing support by the fixing flange, and the plate of revolution being fixed between the flange and the housing support, and
  • the height of the plate is between 15 and 35% of the distance between the axis of revolution (Y-Y) and the radially outer end portion of the plate.
  • the invention also proposes a turbomachine comprising an assembly as described above.
  • the sealing plate according to the invention has a geometry for both sealing between the exhaust casing and a turbine stage, and a fuse role.
  • the first elbow of the plate provides an outer end portion having a superposition in the axial direction with both the upstream spoiler of the exhaust casing, and the downstream spoiler of the rotor stage.
  • This geometry also confers a flexibility to the plate, allowing it to retreat downstream relative to the flow of air in the turbomachine, in case of too great a retreat of the rotor, while preserving the housing. It thus acts as a fuse.
  • the second bend makes it possible to readjust geometrically the external part of the plate with respect to the clamping place.
  • the third bend makes it possible, by stiffening the plate, to modify its own frequencies of vibration to separate them from the operating frequencies of the turbomachine.
  • a sheet with three elbows is indeed more rigid than a sheet comprising only two elbows.
  • FIG. 1 already described, schematically represents an example of a turbomachine
  • FIG. 1b already described also, shows a partial sectional view of a turbomachine at an exhaust casing.
  • FIGS. 2a and 2b show a radial sectional view of two embodiments of a plate
  • Figures 3a and 3b show a radial sectional view of a turbomachine assembly comprising an exhaust casing and a plate, respectively according to the embodiments of Figures 2a and 2b.
  • FIG. 3c represents the deformation of the plate of the embodiment of FIGS. 2b and 3b in the event of maximum retraction of the rotor stage placed upstream.
  • the gases flow from upstream to downstream through a turbomachine, from left to right in the representations of the present application.
  • FIGS. 3a and 3b there is shown a turbomachine assembly 1 comprising a low-pressure turbine rotor stage 10 (visible in FIG. 3b) and an exhaust casing 20, these two parts being of revolution around each other.
  • an axis XX of the turbomachine shown schematically to illustrate the directions with respect to this axis, the exhaust casing being placed downstream of the rotor stage relative to the air flow in the turbomachine.
  • the turbomachine assembly also comprises a sealing plate 30, which is attached to the exhaust casing.
  • This plate is a piece in one piece, of revolution about a Y-Y axis which, when the plate is mounted in the assembly, coincides with the X-X axis of revolution of the turbomachine.
  • the plate can be made by turning or stamping. It is advantageously made of Hastelloy® X.
  • Figures 2a and 2b there is shown a radial sectional view of such a plate, according to two embodiments, the second embodiment being preferred.
  • the plate has an identical radial section over its entire circumference.
  • the radial section of the plate comprises a radially inner end portion 32, and a radially outer end portion 34, these two parts forming between them an angle of between 80 and 100 degrees, and preferably equal to 90 degrees.
  • the radially inner end portion 32 extends substantially radially with respect to the axis of revolution of the plate, and the radially outer end portion 34 extends substantially parallel to this axis. This allows, as described below, when the plate is fixed in an assembly 1, that the outer end portion 34 of the plate extends parallel to the axis of rotation XX of the turbomachine and that it can be superimposed on an upstream spoiler of the exhaust casing.
  • the plate also comprises a first elbow 31 extending between the two end portions.
  • the radially outer end portion 34 has a length L 34 between 15 and 35% of the height H of the plate, measured in the radial direction relative to the axis of revolution.
  • the length in the axial direction L 34 of the portion 34 is between 18 and 25%, for example of the order of 20% of the height of the plate.
  • the plate also has a small thickness, allowing it to easily deform to ensure its fuse function.
  • the thickness e of the plate is less than 0.5 mm, preferably between 0.3 and 2 mm.
  • the plate 30 further comprises an intermediate portion 36 and a second bend 33.
  • the intermediate portion 36 is disposed between the end portions 32, 34, and the first bend 33 connects the intermediate portion 36 to the radially outer end portion 34, and the second bend 33 connects the intermediate portion 36 to the portion of the intermediate portion 36. radially inner end 32.
  • This second elbow 33 makes it possible to readjust geometrically the external part of the plate 30 with respect to the clamping place by compensating the offsets. Axial.
  • the plate 30 could thus be provided with a radial part devoid of elbow 33, which would give it a general shape in L.
  • the radially inner end portion 32 then has, between the end and the second bend 33, a length in the radial direction L 32 of between 25 and 45% of the total height H of the plate 30 measured in the radial direction, and advantageously of the order of 30 to 35%.
  • the two elbows 31, 33 of the plate 20 are open towards opposite sides with respect to the radial direction about the axis of revolution of the plate, that is to say that the centers of curvature of the plate at the two elbows lie on either side of a radial direction around the axis.
  • the plate is shaped so that the radially outer end portion 34 has a midpoint substantially aligned with the radially inner end portion 32, the alignment being in a direction radial to the axis.
  • the extension in the radial direction of portion 32 intersects portion 34 at a point such that the length L 34 in the axial direction is distributed at 47% upstream and 53% downstream.
  • the angle ⁇ of the first elbow 31, measured as in FIG. 2a between the radially outer end portion 34 and the intermediate portion 36, is between 80 and 100 °
  • the angle ⁇ of the second bend 33 measured between the intermediate portion 36 and the radial direction relative to the axis, is between 0 and 20 °.
  • the intermediate portion 36 of the plate 30 comprises a radially inner portion 36a and a radially outer portion 36b, and a bend 35 connecting these two portions, this elbow forming a third bend 35 for the platinum 30.
  • first and second elbows 31, 33 are open to one side with respect to the radial direction relative to the axis, and the third elbow 35 is open to the opposite side.
  • the first elbow 31 then forms an angle ⁇ ', measured as in Figure 2b between the radially outer end portion 34 and the outer portion 36b of the intermediate portion, between 5 and 15 degrees, preferably equal to 10 °.
  • the second bend 33 forms an angle ⁇ ', measured between the radial direction and the inner portion 36a of the intermediate portion 36, between 10 and 40 degrees, preferably 30 degrees.
  • the third bend 35 forms an angle ⁇ , measured between the two portions 36a, 36b of the intermediate portion 36, between 60 and 80 °, preferably equal to 70 °.
  • the plate is shaped so that the radially outer end portion 34 always has a midpoint aligned with the radially inner end portion 32.
  • the extension in the radial direction of portion 32 intersects the portion 34 at a point such that the length L 34 in the axial direction is distributed 47% upstream and 53% downstream.
  • the plate 30 has, in the axial direction, two ends respectively corresponding to the first and third elbow 31, 35.
  • the distance di measured in the axial direction, between the first bend 31 and the end portion radially inner 32, corresponds substantially to a quarter of the distance D, measured in the axial direction, between the first 31 and the third elbow 33. Therefore the distance d 2 , measured in the axial direction, between the radially inner end portion 32 and the third bend 35 corresponds to three quarters of the distance between the first 31 and the third bend.
  • the di / D and d 2 / D ratios defined above have a margin of about 20%, ie 0.2 ⁇ di ⁇ 0.3 and 0.7 ⁇ d 2 / D ⁇ 0.8, given that
  • This assembly comprises an exhaust casing 20, comprising a plurality of fixed blades mounted on a support ring 21.
  • the housing further comprises a circumferential spoiler 22 extending upstream of the ring and blades relative to the air flow in the turbomachine.
  • the assembly further comprises a movable blade 10, forming a rotor stage of the turbomachine.
  • This blading comprises a plurality of blades mounted on a support ring January 1.
  • This blading further comprises a set of sectored spoilers (a spoiler per blade) forming a spoiler 12 extending downstream of the ring and blades relative to the direction of the air flow in the turbomachine.
  • the assembly also comprises an exhaust casing support 42.
  • the exhaust casing comprises a fastening flange 23, through which the casing is mounted on the support 42 by bolting.
  • the assembly comprises a plate 30, which is attached to the housing at the mounting flange.
  • the plate is advantageously mounted by being clamped between the flange and the support 42.
  • the height H (taken in the radial direction relative to the axis XX) of the plate is between 15 and 35% of the distance D x between the axis of revolution XX and the end portion radially outer of the plate.
  • the sealing plate for sealing the vein the spoiler of the housing does not need to have a significant axial extension to be superimposed on the downstream spoiler of the rotor during operation thereof. Consequently, the upstream spoiler of the housing can have an axial extension reduced by up to 50% compared to the prior art.
  • the first elbow 31 of the plate is angularly open downstream with respect to the air flow in the turbomachine, and the plate is dimensioned so that, in the radial direction, the upstream spoiler 22 of the casing 20 is located radially. internally relative to the radially outer end portion 34 of the plate 30, and advantageously facing the first bend in the axial direction. This allows the plate 30 to back towards the exhaust casing 20 in case of contact of the rotor stage, without coming into contact with the housing.
  • the second elbow 33 is then angularly open upstream relative to the air flow.
  • the radially outer end portion seals the vein of the rotor because, in operation, it is superimposed axially and circumferentially to a downstream rotor spoiler and the upstream rotor spoiler,
  • the flexibility of the plate allows it to ensure a fuse role in case of overspeed of the rotor causing excessive movement of the latter.
  • this bend is angularly open upstream relative to the flow, while the second bend 33 is open downstream.
  • the third bend 35 is advantageously positioned, as in FIG. 3b, radially inwardly with respect to the upstream spoiler 22 of the exhaust casing 20, that is to say, with reference to FIG. 3b, under the spoiler (turned towards the axis XX) in a radial direction, and downstream of the spoiler 22 relative to the air flow.
  • the third bend 35 stiffens the plate 30, which allows its own frequencies to be modified to deviate from the operating frequencies of the motor. This avoids excessive vibrations of the platen during operation of the turbomachine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)

Abstract

L'invention propose un ensemble (1) comprenant: -un carter d'échappement (20), de révolution autour d'un axe (X-X), comprenant une bride de fixation (23) à un support(42), -une platine d'étanchéité (30)de révolution autour de l'axe, la platine étant rapportée sur la bride de fixation du carter et présentant une section radiale comprenant: o une partie d'extrémité radialement interne(32), o une partie d'extrémité radialement externe(34), et o un coude (31) s'étendant entre les deux parties d'extrémité, lesdites parties formant entre elles un angle compris entre 80 et 100 degrés, la partie d'extrémité externe présentant une longueur dans une direction axiale (L34) comprise entre 15 et 35% de la hauteur (H)de la platine mesurée dans la direction radiale autour de l'axe de révolution, la partie d'extrémité externe s'étendant parallèlement audit axe, et leditcoude étant ouvert vers l'aval par rapport au flux d'air.

Description

PLATINE D'ETANCHEITE A FONCTION DE FUSIBLE
DOMAINE DE L'INVENTION
Le domaine de l'invention est celui des platines d'étanchéité de turbomachine, et des turbomachines comprenant de telles platines.
ETAT DE LA TECHNIQUE
En référence à la figure 1 a, une turbomachine T comprend classiquement une turbine haute-pression 2 et une turbine basse-pression 3.
La turbine basse-pression comprend plusieurs étages de turbine, parmi lesquels au moins un étage de rotor 4, c'est-à-dire d'aubage mobile, et un étage de stator 5, c'est-à-dire d'aubage fixe de distribution du flux d'air s'écoulant dans la turbine.
Le dernier étage de la turbine est un étage de rotor, qui est suivi en aval par rapport au flux d'air dans la turbomachine par un aubage fixe appelé carter d'échappement 6, qui redresse le flux d'air avant son évacuation dans l'atmosphère par les tuyères. La circulation des gaz s'effectue d'amont en aval, c'est de gauche à droite sur les figures 1 a et 1 b.
Pour assurer les performances aéronautiques de la turbomachine, et comme visible sur la figure 1 b, le carter d'échappement 6 comprend un becquet 60 s'étendant vers l'amont du carter par rapport au flux d'air dans la veine.
Ce becquet coopère avec un ensemble becquet aval 40 sectorisé du dernier étage de rotor 4 pour former un joint d'étanchéité dynamique, empêchant l'air s'écoulant dans la veine de la turbine de s'écouler vers l'espace situé sous les becquets, et inversement.
L'étanchéité est réalisée grâce au recul naturel du dernier étage de rotor en fonctionnement, qui amène le becquet aval du rotor à être superposé au becquet amont du carter d'échappement dans la direction de l'axe de révolution de la turbomachine. Comme le becquet aval 40 est un ensemble de pièces sectorisées juxtaposées sur 360° et que le becquet 60 est une pièce monobloc, toutes deux sont considérées comme deux pièces de révolution autour de cet axe, et il en résulte un recouvrement non seulement axial mais aussi circonférentiel des deux becquets 40, 60. En cas de survitesse du dernier étage de rotor de la turbine, le recul de cet étage peut être supérieur à son recul normal et entraîner un contact entre le becquet amont du carter d'échappement et l'étage de rotor.
Pour préserver au maximum l'intégrité de la turbomachine dans un tel cas, il est prévu une hiérarchie de rupture des pièces, prévoyant notamment que le becquet amont du carter d'échappement ne doit pas opposer de résistance à l'étage de rotor et rompre ou se plier au plus vite en cas de contact avec le rotor.
Cette capacité à rompre ou plier en premier en cas de contact est qualifiée de fonction de « fusible » de la pièce.
Or, comme visible sur la figure 1 b, la géométrie actuelle du becquet amont du carter d'échappement ne lui permet pas d'assurer cette fonction de fusible car ce becquet est trop robuste pour plier en cas de contact pour le rotor.
Cette géométrie n'est donc pas satisfaisante du point de vue de la sécurité d'utilisation de la turbomachine.
PRESENTATION DE L'INVENTION
L'invention a pour but de pallier aux inconvénients de l'art antérieur, en proposant un élément permettant d'assurer l'étanchéité entre le carter d'échappement et un étage de rotor, tout en ayant une fonction fusible.
A cet égard, l'invention a pour objet un ensemble comprenant :
un carter d'échappement, ledit carter étant de révolution autour d'un axe moteur de turbomachine, et comprenant une bride de fixation à un support, et
- une platine d'étanchéité de révolution autour de l'axe,
caractérisé en ce que la platine est rapportée sur la bride de fixation du carter d'échappement et présente une section radiale comprenant :
une partie d'extrémité radialement interne,
une partie d'extrémité radialement externe, et
- un coude s'étendant entre les deux parties d'extrémité,
lesdites parties formant entre elles un angle compris entre 80 et 100 degrés, et la partie d'extrémité radialement externe présentant une longueur dans une direction axiale comprise entre 15 et 35% de la hauteur de la platine mesurée dans la direction radiale autour de l'axe de révolution, et la partie d'extrémité radialement externe s'étendant sensiblement parallèlement audit axe, et en ce que ledit coude est angulairement ouvert vers l'aval dans la direction axiale par rapport au flux d'air dans la turbomachine.
Certaines caractéristiques préférées mais non limitatives de l'ensemble décrit ci-dessus sont les suivantes :
les parties d'extrémités de la platine forment entre elles un angle de 90 degrés, la partie d'extrémité radialement interne s'étendant sensiblement radialement par rapport à l'axe de révolution de la platine,
la platine comprend en outre une partie intermédiaire, le coude reliant entre elles la partie d'extrémité radialement externe et la partie intermédiaire la platine comprenant en outre un deuxième coude reliant entre elles la partie intermédiaire et la partie d'extrémité radialement interne,
et la partie d'extrémité radialement interne de la platine présente une longueur comprise entre 25 et 45% de la hauteur de la platine mesurée dans la direction radiale autour de l'axe de révolution,
la partie d'extrémité radialement externe de la platine présente un point milieu sensiblement aligné avec la partie d'extrémité radialement interne,
la partie intermédiaire de la platine comprend une portion radialement interne, une portion radialement externe, et un coude formant un troisième coude de la platine, ledit coude reliant entre elles les portions interne et externe, le premier et le deuxième coude étant ouverts vers un même côté de la platine par rapport à l'axe, et le troisième coude étant ouvert vers le côté opposé,
le premier coude de la platine forme un angle, entre la partie d'extrémité externe et la portion externe de la partie intermédiaire, compris entre 5 et 15 degrés, et le troisième coude forme un angle, entre les deux portions de la partie intermédiaire, compris entre 60 et 80 degrés,
le premier coude et le troisième coude de la platine correspondent à des extrémités dans la direction axiale de la platine, et la distance, mesurée dans la direction axiale, entre le premier coude et la partie d'extrémité radialement interne, correspond sensiblement au quart de la distance, mesurée dans la direction axiale, entre le premier et le troisième coude.
le carter comprend un becquet en saillie s'étendant parallèlement à l'axe, vers l'amont du carter par rapport au flux d'air, et le troisième coude de la platine se trouve en aval du becquet par rapport au flux d'air, l'ensemble comprend en outre un support de carter, le carter étant fixé au support de carter par la bride de fixation, et la platine de révolution étant fixée entre la bride et le support de carter, et
la hauteur de la platine est comprise entre 15 et 35% de la distance entre l'axe de révolution (Y-Y) et la partie d'extrémité radialement externe de la platine.
Selon un deuxième aspect, l'invention propose également une turbomachine comprenant un ensemble comme décrit ci-dessus. La platine d'étanchéité selon l'invention présente une géométrie permettant à la fois de réaliser une étanchéité entre le carter d'échappement et un étage de turbine, et un rôle de fusible.
En effet, le premier coude de la platine permet d'obtenir une portion d'extrémité externe présentant une superposition dans la direction axiale avec à la fois le becquet amont du carter d'échappement, et le becquet aval de l'étage de rotor.
Cette géométrie confrère également une flexibilité à la platine, lui permettant de reculer vers l'aval par rapport à l'écoulement de l'air dans la turbomachine, en cas de recul trop important du rotor, tout en préservant le carter. Elle assure ainsi un rôle de fusible.
Le deuxième coude permet de réajuster géométriquement la partie externe de la platine par rapport au lieu de bridage.
Enfin, le troisième coude permet, en rigidifiant la platine, de modifier ses fréquences propres de vibration pour les écarter des fréquences de fonctionnement de la turbomachine. Une tôle avec trois coudes est en effet plus rigide qu'une tôle ne comprenant que deux coudes.
DESCRIPTION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
La figure 1 a, déjà décrite, représente schématiquement un exemple de turbomachine, La figure 1 b, déjà décrite également, représente une vue en coupe partielle d'une turbomachine au niveau d'un carter d'échappement, Les figures 2a et 2b représentent une vue en coupe radiale de deux modes de réalisation d'une platine,
Les figures 3a et 3b représentent une vue en coupe radiale d'un ensemble de turbomachine comprenant un carter d'échappement et une platine, respectivement selon les modes de réalisation des figures 2a et 2b.
La figure 3c représente la déformation de la platine du mode de réalisation des figures 2b et 3b en cas de recul maximal de l'étage de rotor placé en amont.
DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION DE L'INVENTION
Conventionnellement, les gaz s'écoulent d'amont en aval à travers une turbomachine, soit de gauche à droite dans les représentations de la présente demande.
Sur les figures 3a et 3b, on a représenté un ensemble de turbomachine 1 comprenant un étage de rotor de turbine basse-pression 10 (visible sur la figure 3b) et un carter d'échappement 20, ces deux pièces étant de révolution autour d'un axe X-X de la turbomachine, représenté schématiquement pour illustrer les directions par rapport à cet axe, le carter d'échappement étant placé en aval de l'étage de rotor par rapport au flux d'air dans la turbomachine.
Pour assurer l'étanchéité de la veine de l'étage de rotor, par un composant assurant également une fonction de fusible, l'ensemble de turbomachine comprend également une platine d'étanchéité 30, qui est rapportée sur le carter d'échappement.
Cette platine est une pièce d'un seul tenant, de révolution autour d'un axe Y- Y qui, lorsque la platine est montée dans l'ensemble, est confondu avec l'axe X-X de révolution de la turbomachine.
La platine peut être réalisée par tournage ou par emboutissage. Elle est avantageusement réalisée en Hastelloy® X. Sur les figures 2a et 2b, on a représenté une vue en coupe radiale d'une telle platine, selon deux modes de réalisation, le second mode de réalisation étant préféré.
La platine comporte une section radiale identique sur toute sa circonférence. La section radiale de la platine comprend une partie d'extrémité radialement interne 32, et une partie d'extrémité radialement externe 34, ces deux parties formant entre elles un angle compris entre 80 et 100 degrés, et avantageusement égal à 90 degrés.
Selon un mode de réalisation préféré, la partie d'extrémité radialement interne 32 s'étend sensiblement radialement par rapport à l'axe de révolution de la platine, et la partie d'extrémité radialement externe 34 s'étend sensiblement parallèlement à cet axe. Ceci permet, comme décrit dans la suite, lorsque la platine est fixée dans un ensemble 1 , que la partie d'extrémité externe 34 de la platine s'étend parallèlement à l'axe de rotation X-X de la turbomachine et qu'elle puisse être superposée à un becquet amont du carter d'échappement.
De retour aux figures 2a et 2b, la platine comprend également un premier coude 31 s'étendant entre les deux parties d'extrémités.
La partie d'extrémité radialement externe 34 présente une longueur L34 comprise entre 15 et 35% de la hauteur H de la platine, mesurée dans la direction radiale par rapport à l'axe de révolution. Avantageusement, la longueur dans la direction axiale L34 de la partie 34 est comprise entre 18 et 25%, par exemple de l'ordre de 20% de la hauteur de la platine.
La platine présente en outre une faible épaisseur, lui permettant de se déformer facilement pour assurer sa fonction de fusible. Avantageusement, l'épaisseur e de la platine est inférieure à 0,5 mm, de préférence comprise entre 0,3 et 2 mm.
Avantageusement, comme visible sur les figures 2a et 2b, la platine 30 comprend en outre une partie intermédiaire 36, et un deuxième coude 33.
La partie intermédiaire 36 est disposée entre les parties d'extrémités 32, 34, et le premier coude 33 relie la partie intermédiaire 36 à la partie d'extrémité radialement externe 34, et le deuxième coude 33 relie la partie intermédiaire 36 à la partie d'extrémité radialement interne 32.
Ce deuxième coude 33 permet de réajuster géométriquement la partie externe de la platine 30 par rapport au lieu de bridage en compensant les décalages axiaux. En variante, la platine 30 pourrait donc être munie d'une partie radiale dépourvue de coude 33, ce qui lui conférerait une forme générale en L.
La partie d'extrémité radialement interne 32 présente alors, entre l'extrémité et le deuxième coude 33, une longueur suivant la direction radiale L32 comprise entre 25 et 45% de la hauteur totale H de la platine 30 mesurée dans la direction radiale, et avantageusement de l'ordre de 30 à 35%.
Les deux coudes 31 , 33 de la platine 20 sont ouverts vers des côtés opposés par rapport à la direction radiale autour de l'axe de révolution de la platine, c'est-à-dire que les centres de courbure de la platine au niveau des deux coudes se trouvent de part et d'autre d'une direction radiale autour de l'axe.
De préférence, la platine est conformée de sorte que la partie d'extrémité radialement externe 34 présente un point milieu sensiblement aligné avec la partie d'extrémité radialement interne 32, l'alignement étant donc selon une direction radiale par rapport à l'axe. Dans un exemple de réalisation, le prolongement en direction radiale de partie 32 coupe la partie 34 en un point tel que la longueur L34 dans la direction axiale est répartit à 47% en amont et 53% en aval.
Ceci est obtenu par exemple pour des valeurs d'angles comme suit :
l'angle a du premier coude 31 , mesuré comme sur la figure 2a entre la partie d'extrémité radialement externe 34 et la partie intermédiaire 36, est compris entre 80 et 100°, et
l'angle β du deuxième coude 33, mesuré entre la partie intermédiaire 36 et la direction radiale par rapport à l'axe, est compris entre 0 et 20°.
Selon un mode de réalisation alternatif représenté en figure 2b, la partie intermédiaire 36 de la platine 30 comprend une portion radialement interne 36a et une portion radialement externe 36b, et un coude 35 reliant ces deux portions, ce coude formant un troisième coude 35 pour la platine 30.
Dans ce mode de réalisation, les premier et deuxième coudes 31 , 33 sont ouverts vers un même côté par rapport à la direction radiale par rapport à l'axe, et le troisième coude 35 est ouvert vers le côté opposé.
Le premier coude 31 forme alors un angle α', mesuré comme sur la figure 2b entre la partie d'extrémité radialement externe 34 et la portion externe 36b de la partie intermédiaire, compris entre 5 et 15 degrés, de préférence égal à 10°. Le deuxième coude 33 forme un angle β', mesuré entre la direction radiale et la portion interne 36a de la partie intermédiaire 36, compris entre 10 et 40 degrés, de préférence de 30 degrés.
Le troisième coude 35 forme un angle γ, mesuré entre les deux portions 36a, 36b de la partie intermédiaire 36, compris entre 60 et 80°, de préférence égal à 70°.
Avantageusement, la platine est conformée pour que la partie d'extrémité radialement externe 34 présente toujours un point milieu aligné avec la partie d'extrémité radialement interne 32. Dans un exemple de réalisation, le prolongement en direction radiale de partie 32 coupe la partie 34 en un point tel que la longueur L34 dans la direction axiale est répartie à 47% en amont et 53% en aval.
De plus, la platine 30 présente, dans la direction axiale, deux extrémités correspondant respectivement au premier et au troisième coude 31 , 35. Avantageusement, la distance di, mesurée dans la direction axiale, entre le premier coude 31 et la partie d'extrémité radialement interne 32, correspond sensiblement au quart de la distance D, mesurée dans la direction axiale, entre le premier 31 et le troisième coude 33. Par conséquent la distance d2, mesurée dans la direction axiale, entre la partie d'extrémité radialement interne 32 et le troisième coude 35 correspond aux trois-quarts de la distance entre le premier 31 et le troisième 35 coude. Les rapports di/D et d2/D définis précédemment s'entendent avec une marge de l'ordre de 20%, soit 0.2 < di < 0.3 et 0.7 < d2/D < 0.8, sachant que
Figure imgf000010_0001
En référence aux figures 3a et 3b, on va maintenant décrire un ensemble 1 de turbomachine T comprenant une telle platine 30.
Cet ensemble comprend un carter d'échappement 20, comprenant une pluralité d'aubes fixes montées sur une couronne de support 21 . Le carter comprend en outre un becquet circonférentiel 22 s'étendant en amont de la couronne et des aubes par rapport au flux d'air dans la turbomachine.
L'ensemble comprend en outre un aubage mobile 10, formant un étage de rotor de la turbomachine. Cet aubage comprend une pluralité d'aubes montées sur une couronne de support 1 1 .
Cet aubage comporte en outre un ensemble de becquets sectorisés (un becquet par aube) formant un becquet 12 s'étendant en aval de la couronne et des aubes par rapport à la direction du flux d'air dans la turbomachine. L'ensemble comprend également un support de carter d'échappement 42. Le carter d'échappement comprend une bride de fixation 23, par laquelle le carter est monté sur le support 42 par boulonnage.
Enfin, l'ensemble comporte une platine 30, qui est rapportée sur le carter au niveau de la bride de fixation. Le fait que la platine présente une extension radiale importante et soit liée au carter au niveau de la bride de fixation lui confère une flexibilité importante.
Avantageusement, pour limiter le nombre de perçages dans la bride de fixation, la platine est avantageusement montée en étant serrée entre la bride et le support 42.
Une fois en place, la hauteur H (pris selon la direction radiale par rapport à l'axe X-X) de la platine est comprise entre 15 et 35 % de la distance Dx entre l'axe de révolution X-X et la partie d'extrémité radialement externe de la platine.
La platine d'étanchéité permettant de réaliser l'étanchéité de la veine, le becquet du carter n'a pas besoin de présenter une extension axiale importante pour être superposé au becquet aval du rotor lors du fonctionnement de celui-ci. Par conséquent, le becquet amont du carter peut présenter une extension axiale réduite jusqu'à 50 % par rapport à l'art antérieur. Enfin, le premier coude 31 de la platine est angulairement ouverte vers l'aval par rapport au flux d'air dans la turbomachine, et la platine est dimensionnée pour que, dans la direction radiale, le becquet amont 22 du carter 20 soit situé radialement intérieurement par rapport à la partie d'extrémité radialement externe 34 de la platine 30, et avantageusement en regard du premier coude dans la direction axiale. Ceci permet à la platine 30 de reculer vers le carter d'échappement 20 en cas de contact de l'étage de rotor, sans pour autant entrer en contact avec le carter.
Dans le mode de réalisation où la platine comprend deux coudes 31 , 33 (figure 2a), le deuxième coude 33 est alors angulairement ouvert vers l'amont par rapport au flux d'air.
On constate donc que la géométrie de la platine est avantageuse lors du fonctionnement de la turbomachine, pour les aspects suivants :
la partie d'extrémité radialement externe assure l'étanchéité de la veine du rotor car, en fonctionnement, elle est superposée axialement et circonférentiellement à un becquet aval de rotor et au becquet amont de rotor,
la flexibilité de la platine lui permet d'assurer un rôle fusible en cas de survitesse du rotor suscitant un déplacement trop important de ce dernier.
Dans le mode de réalisation où la platine comprend un troisième coude 35 (figure 2b), ce coude est angulairement ouvert vers l'amont par rapport au flux,, tandis que le deuxième coude 33 est ouvert vers l'aval. Le troisième coude 35 est avantageusement positionné, comme sur la figure 3b, radialement intérieurement par rapport au becquet amont 22 du carter d'échappement 20, c'est-à-dire, en se référant à la figure 3b, sous le becquet (tournée vers l'axe X-X) dans une direction radiale, et en aval du becquet 22 par rapport au flux d'air.
Le troisième coude 35 rigidifie la platine 30, ce qui permet de modifier ses fréquences propres pour les écarter des fréquences de fonctionnement du moteur. Ainsi on évite des vibrations trop importantes de la platine lors du fonctionnement de la turbomachine.
En référence à la figure 3c, on a représenté la déformation de la platine 30 en cas de survitesse du rotor causant un déplacement anormal de ce dernier. On constate que la platine n'entre pas en contact avec le carter d'échappement grâce à sa géométrie détaillée ci-avant.

Claims

REVENDICATIONS
1 . Ensemble (1 ) comprenant :
un carter d'échappement (20), ledit carter étant de révolution autour d'un axe moteur (X-X) de turbomachine, et comprenant une bride de fixation (23) à un support (42), et
une platine d'étanchéité (30) de révolution autour de l'axe (X-X),
caractérisé en ce que la platine est rapportée sur la bride de fixation (23) du carter d'échappement, et présente une section radiale comprenant :
- une partie d'extrémité radialement interne (32),
une partie d'extrémité radialement externe (34), et
un coude (31 ) s'étendant entre les deux parties d'extrémité,
lesdites parties formant entre elles un angle compris entre 80 et 100 degrés, et la partie d'extrémité radialement externe (34) présentant une longueur dans une direction axiale (L34) comprise entre 15 et 35% de la hauteur (H) de la platine mesurée dans la direction radiale autour de l'axe de révolution, et la partie d'extrémité radialement externe s'étendant sensiblement parallèlement audit axe, et en ce que ledit coude (31 ) est angulairement ouvert vers l'aval dans la direction axiale par rapport au flux d'air dans la turbomachine.
2. Ensemble (1 ) selon la revendication 1 , dans lequel les parties d'extrémités (32, 34) de la platine (30) forment entre elles un angle de 90 degrés, la partie d'extrémité radialement interne s'étendant sensiblement radialement par rapport à l'axe de révolution (Y-Y) de la platine.
3. Ensemble (1 ) selon l'une des revendications 1 ou 2, dans lequel la platine comprend en outre une partie intermédiaire (36), le coude (31 ) reliant entre elles la partie d'extrémité radialement externe (34) et la partie intermédiaire (36), et un deuxième coude (33) reliant entre elles la partie intermédiaire (36) et la partie d'extrémité radialement interne (32),
et la partie d'extrémité radialement interne présente une longueur (L32) comprise entre 25 et 45% de la hauteur (H) de la platine mesurée dans la direction radiale autour de l'axe de révolution.
4. Ensemble (10)selon la revendication 3, dans lequel la partie d'extrémité radialement externe (34) de la platine (30) présente un point milieu sensiblement aligné avec la partie d'extrémité radialement interne (32).
5. Ensemble (10) selon l'une des revendications 3 ou 4, dans lequel la partie intermédiaire (36) de la platine (30) comprend :
une portion radialement interne (36a),
une portion radialement externe (36b), et
un coude (35) formant un troisième coude de la platine, ledit coude reliant entre elles les portions interne (36a) et externe (36b), le premier et le deuxième coude étant ouverts vers un même côté de la platine par rapport à l'axe, et le troisième coude étant ouvert vers le côté opposé,
dans lequel le premier coude forme un angle (a), entre la partie d'extrémité externe (34) et la portion externe de la partie intermédiaire (36b), compris entre 5 et 15 degrés, et le troisième coude (35) forme un angle (γ), entre les deux portions (36a, 36b) de la partie intermédiaire (36), compris entre 60 et 80 degrés.
6. Ensemble (10) selon la revendication 5, dans lequel le premier coude (31 ) et le troisième coude (35) de la platine (30) correspondent à des extrémités dans la direction axiale de la platine, et la distance (di), mesurée dans la direction axiale, entre le premier coude (31 ) et la partie d'extrémité radialement interne, correspond sensiblement au quart de la distance (D), mesurée dans la direction axiale, entre le premier (31 ) et le troisième coude (35).
7. Ensemble selon l'une des revendications 5 ou 6, dans lequel le carter (20) comprend un becquet (22) en saillie s'étendant parallèlement à l'axe (X-X), vers l'amont du carter (20) par rapport au flux d'air, et le troisième coude (35) de la platine se trouve en aval du becquet par rapport au flux d'air.
8. Ensemble selon l'une des revendications précédentes, comprenant en outre un support de carter (42), le carter (20) étant fixé au support (42) de carter par la bride (23) de fixation, et la platine de révolution (30) étant fixée entre la bride et le support de carter (42).
9. Ensemble selon l'une des revendications précédentes, dans lequel la hauteur (H) de la platine (30) est comprise entre 15 et 35% de la distance (Dx) entre l'axe de révolution (Y-Y) et la partie d'extrémité radialement externe (34) de la platine.
10. Turbomachine, comprenant un ensemble selon l'une des revendications précédentes.
PCT/FR2015/051386 2014-05-27 2015-05-26 Platine d'etancheite a fonction de fusible WO2015181489A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/313,521 US10047621B2 (en) 2014-05-27 2015-05-26 Sealing plate with fuse function
EP15732804.8A EP3149286B1 (fr) 2014-05-27 2015-05-26 Platine d'étanchéité à fonction de fusible
BR112016027482-2A BR112016027482B1 (pt) 2014-05-27 2015-05-26 Conjunto para vedação e motor de turbina
CN201580027804.3A CN106460539B (zh) 2014-05-27 2015-05-26 具有保险功能的密封板
CA2950263A CA2950263C (fr) 2014-05-27 2015-05-26 Platine d'etancheite a fonction de fusible
RU2016151409A RU2675165C2 (ru) 2014-05-27 2015-05-26 Уплотнительная пластина с функцией предохранителя

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454802 2014-05-27
FR1454802A FR3021692B1 (fr) 2014-05-27 2014-05-27 Platine d'etancheite a fonction de fusible

Publications (1)

Publication Number Publication Date
WO2015181489A1 true WO2015181489A1 (fr) 2015-12-03

Family

ID=51298826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051386 WO2015181489A1 (fr) 2014-05-27 2015-05-26 Platine d'etancheite a fonction de fusible

Country Status (8)

Country Link
US (1) US10047621B2 (fr)
EP (1) EP3149286B1 (fr)
CN (1) CN106460539B (fr)
BR (1) BR112016027482B1 (fr)
CA (1) CA2950263C (fr)
FR (1) FR3021692B1 (fr)
RU (1) RU2675165C2 (fr)
WO (1) WO2015181489A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082550A1 (fr) * 2018-06-13 2019-12-20 Safran Aircraft Engines Ensemble de turbomachine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224739B2 (ja) * 2018-05-21 2023-02-20 イーグル工業株式会社 シール装置
FR3107318B1 (fr) 2020-02-17 2022-01-14 Safran Aircraft Engines Turbomachine d’aéronef à double flux équipée d’un dispositif d’arrêt en survitesse du rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143292A (en) * 1991-05-09 1992-09-01 General Electric Company Cooled leaf seal
US20080061515A1 (en) * 2006-09-08 2008-03-13 Eric Durocher Rim seal for a gas turbine engine
US20120027584A1 (en) * 2010-08-02 2012-02-02 General Electric Company Turbine seal system
US20130230386A1 (en) * 2012-03-01 2013-09-05 Pratt & Whitney Diffuser Seal for Geared Turbofan or Turboprop Engines

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730832A (en) * 1985-09-13 1988-03-15 Solar Turbines Incorporated Sealed telescopic joint and method of assembly
US6287091B1 (en) * 2000-05-10 2001-09-11 General Motors Corporation Turbocharger with nozzle ring coupling
US6916154B2 (en) * 2003-04-29 2005-07-12 Pratt & Whitney Canada Corp. Diametrically energized piston ring
EP1515003A1 (fr) * 2003-09-11 2005-03-16 Siemens Aktiengesellschaft Turbine à gaz et dispositif d'étanchéité pour une turbine à gaz
DE60313514T2 (de) * 2003-10-24 2008-01-10 Honeywell International Inc. Dünnwandiges turbinengehäuse eines abgasturboladers mit klemmringbefestigung
US7870742B2 (en) * 2006-11-10 2011-01-18 General Electric Company Interstage cooled turbine engine
US7926289B2 (en) * 2006-11-10 2011-04-19 General Electric Company Dual interstage cooled engine
FR2925119A1 (fr) * 2007-12-14 2009-06-19 Snecma Sa Etancheite d'une cavite de moyeu d'un carter d'echappement dans une turbomachine
US8221062B2 (en) * 2009-01-14 2012-07-17 General Electric Company Device and system for reducing secondary air flow in a gas turbine
EP2236759A1 (fr) * 2009-03-27 2010-10-06 Siemens Aktiengesellschaft Système d'aube
US8820045B2 (en) * 2010-07-30 2014-09-02 United Technologies Corporation Auxiliary power unit fire enclosure drain seal
US9115585B2 (en) * 2011-06-06 2015-08-25 General Electric Company Seal assembly for gas turbine
CN202266301U (zh) * 2011-08-24 2012-06-06 中国航空动力机械研究所 涡轮机和具有该涡轮机的涡轮发动机
US9206705B2 (en) * 2012-03-07 2015-12-08 Mitsubishi Hitachi Power Systems, Ltd. Sealing device and gas turbine having the same
US9771818B2 (en) * 2012-12-29 2017-09-26 United Technologies Corporation Seals for a circumferential stop ring in a turbine exhaust case
US9845695B2 (en) * 2012-12-29 2017-12-19 United Technologies Corporation Gas turbine seal assembly and seal support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143292A (en) * 1991-05-09 1992-09-01 General Electric Company Cooled leaf seal
US20080061515A1 (en) * 2006-09-08 2008-03-13 Eric Durocher Rim seal for a gas turbine engine
US20120027584A1 (en) * 2010-08-02 2012-02-02 General Electric Company Turbine seal system
US20130230386A1 (en) * 2012-03-01 2013-09-05 Pratt & Whitney Diffuser Seal for Geared Turbofan or Turboprop Engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082550A1 (fr) * 2018-06-13 2019-12-20 Safran Aircraft Engines Ensemble de turbomachine

Also Published As

Publication number Publication date
FR3021692B1 (fr) 2016-05-13
US20170138210A1 (en) 2017-05-18
EP3149286A1 (fr) 2017-04-05
BR112016027482B1 (pt) 2022-11-08
BR112016027482A2 (pt) 2017-08-15
RU2675165C2 (ru) 2018-12-17
EP3149286B1 (fr) 2018-12-19
CA2950263C (fr) 2017-07-11
US10047621B2 (en) 2018-08-14
FR3021692A1 (fr) 2015-12-04
CN106460539A (zh) 2017-02-22
BR112016027482A8 (pt) 2021-06-29
RU2016151409A (ru) 2018-06-28
CA2950263A1 (fr) 2015-12-03
RU2016151409A3 (fr) 2018-11-29
CN106460539B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
EP2060750B1 (fr) Etage de turbine ou de compresseur, en particulier de turbomachine
EP1811131B1 (fr) Ensemble de redresseurs fixes sectorise pour un compresseur de turbomachine
CA2802821C (fr) Secteur angulaire de redresseur pour compresseur de turbomachine
CA2885650C (fr) Carter et roue a aubes de turbomachine
CA2647057C (fr) Distributeur sectorise pour une turbomachine
FR2997444A1 (fr) Moyeu de carter pour une turbomachine
CA2858797C (fr) Redresseur de compresseur pour turbomachine
CA2644326C (fr) Etage de turbine ou de compresseur d&#39;un turboreacteur
WO2013150224A1 (fr) Redresseur a calage variable pour compresseur de turbomachine comprenant deux anneaux internes
EP3149286B1 (fr) Platine d&#39;étanchéité à fonction de fusible
EP2788589B1 (fr) Dispositif deverrouillable d&#39;arret axial d&#39;une couronne d&#39;etancheite contactee par une roue mobile de module de turbomachine d&#39;aeronef
FR2951494A1 (fr) Clinquant pour aube de turbomachine.
FR2942638A1 (fr) Secteur angulaire de redresseur pour compresseur de turbomachine
FR2965291A1 (fr) Ensemble unitaire de disques de rotor pour une turbomachine
EP2060744A1 (fr) Etage de turbine ou de compresseur de turbomachine
EP3724454B1 (fr) Aube multipale de rotor de turbomachine et rotor la comprenant
FR3094028A1 (fr) Turbine comprenant un anneau d’etancheite rivete
CA3029071A1 (fr) Anneau de carenage de moyeu de roue a aubes de turbine a gaz, ledit anneau etant plastiquement deformable
WO2016034804A1 (fr) Ensemble rotatif muni d&#39;un dispositif de calage
FR3013072A1 (fr) Element annulaire de carter de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313521

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2950263

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027482

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015732804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015732804

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016151409

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016027482

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161123