WO2016034804A1 - Ensemble rotatif muni d'un dispositif de calage - Google Patents

Ensemble rotatif muni d'un dispositif de calage Download PDF

Info

Publication number
WO2016034804A1
WO2016034804A1 PCT/FR2015/052307 FR2015052307W WO2016034804A1 WO 2016034804 A1 WO2016034804 A1 WO 2016034804A1 FR 2015052307 W FR2015052307 W FR 2015052307W WO 2016034804 A1 WO2016034804 A1 WO 2016034804A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator ring
outer casing
rotary assembly
ring
bladed wheel
Prior art date
Application number
PCT/FR2015/052307
Other languages
English (en)
Inventor
Jean-François PERRONNET
Guilhem VERRON
Original Assignee
Turbomeca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbomeca filed Critical Turbomeca
Publication of WO2016034804A1 publication Critical patent/WO2016034804A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present disclosure relates to a rotary assembly for a turbomachine. It is particularly applicable to helicopter turboshaft turbines, but may relate more generally to all rotating assemblies, including compressors, which have problems of deformations in operation, including thermal expansion, and control of games.
  • the free turbine that drives the rotor generally comprises a bladed wheel rotating within a stator ring defining the vein of the working fluid.
  • the bladed wheel is mounted in this ring with very small clearance between the blade heads and the inner surface of the ring to minimize the bypassing of the bladed wheel by the working fluid at the top of the blades and therefore of increase the efficiency of the turbine: it is generally for this purpose games less than 0.5 mm.
  • the turbine ring 90 has at its downstream end a radial flange 91 extending outwards and adapted to be pressed against a radial flange 92 of the outer casing 93 isolating the turbine from the outside environment.
  • the flange 91 of the ring comprises in several places around the axis A pins 94 engaging in corresponding bores 95 formed in the flange 92 of the outer casing 93. These bores 95 extend strictly radially and the pins 94 are all located at the same distance from the axis A so that the ring 90 is automatically centered on the axis A when the pins 94 are engaged in the bores 95.
  • the turbine ring 90 badly resists the phenomenon of differential expansion which appears between the upstream of the ring, located at the turbine wheel, so in a very hot zone, and the downstream of the ring, at which the working fluid is less hot.
  • this differential expansion tends to deform the turbine ring which then takes a flared shape, which, on the one hand, increases the clearances at the tips of the blades 99 and thus reduces the efficiency of the turbine and, of on the other hand, generates mechanical bending stresses at the junction with the radial flange 91 and thus penalizes the service life of the part.
  • the present disclosure relates to a rotary assembly for a turbomachine, comprising a rotor comprising at least one bladed wheel, a stator ring, surrounding the bladed wheel and at least partially defining a vein for a working fluid, an outer casing concentrically surrounding the ring. stator, and a wedging device having at least one wedge provided between the stator ring and the outer casing to restrict the deformation of the stator ring during operation of the rotary assembly.
  • the terms “axial”, “radial”, “tangential”, “interior”, “exterior” and their derivatives are defined with respect to the main axis of the turbomachine; the term “axial plane” a plane passing through the main axis of the turbomachine and “radial plane” a plane perpendicular to this main axis.
  • the terms “upstream” and “downstream” are defined with respect to the flow of air in the turbomachine.
  • the stator ring bears against the outer casing via the wedging device.
  • the outer casing since the outer casing is located at a distance from the fluid stream, its temperature remains low so that it does not expand substantially during operation of the engine. Therefore, the dilation of the stator ring is blocked at the leveling device, which restricts or completely prevents its deformation in operation.
  • this better control of the deformations of the stator ring makes it possible to ensure at least locally greater control of the games with the bladed wheel and / or control of certain particularly harmful mechanical stresses such as bending stresses or those appearing at the interface between pieces or between portions of pieces having different geometries.
  • Such a rotating assembly therefore has a significant yield that does not degrade or little during its operation; it also has a longer life thanks to a stator ring that is damaged less quickly.
  • this setting device also makes it possible to ensure the centering of the stator ring with respect to the outer casing, and therefore with respect to the axis of the rotary assembly, and to maintain this centering while at the same time. along the operation of the rotary assembly.
  • At least one wedge of the wedging device is provided in a radial plane intermediate between the plane of the bladed wheel and an end plane of the stator ring.
  • intermediate plane means a plane lying at a distance from one of the reference planes between 20% and 80% of the total length separating the two reference planes.
  • At least one wedge of the wedging device is provided opposite the bladed wheel. In this way, it ensures a precise control of the games between the stator ring and the blades of the bladed wheel directly at the latter.
  • At least one wedge of the wedging device is provided at a distance from an axial end of the stator ring, preferably away from the downstream end of the stator ring.
  • the stator ring has a radial flange configured to be applied against a bearing surface of the outer casing. This radial flange makes it possible to axially wedge the stator ring with respect to the outer casing. It is preferably provided at the downstream end of the stator ring.
  • the bearing surface of the outer casing is a radial flange.
  • the radial flange of the stator ring is devoid of a device for centering the stator ring relative to the outer casing. In this case, the centering function is performed by the wedging device.
  • the radial flange of the stator ring is provided with a centering device for centering the stator ring relative to the outer casing.
  • a centering device for centering the stator ring relative to the outer casing.
  • These may be devices known to those skilled in the art such as a centering implementing pins engaging in radial bores, or forks, provided on a radial flange of the outer casing.
  • At least one wedge of the wedging device is provided at a distance from the stator ring flange.
  • At least one wedge of the wedging device is provided in a radial plane intermediate the plane of the bladed wheel and the plane of the flange of the stator ring. In this way, the shape of the ring is maintained effectively close to the junction with the radial flange: the bending stresses which are then exerted on this angular zone are reduced, which relieves the workpiece and therefore increases its duration. of life.
  • the outer casing has, at least vis-à-vis the bladed wheel, a thickness greater than 5 mm, preferably greater than 8 mm. In this way, the outer casing is able to withstand the stresses exerted by the stator ring via the wedging device during the operation of the rotary assembly. Thus, the outer casing does not deform or little, which ensures the control of the deformations of the ring. It also avoids a risk of matting or rupture of the outer casing when the stator ring presses the latter via the wedging device.
  • the outer casing has reinforcements locally carrying its thickness to more than 5 mm, preferably more than 8 mm.
  • These reinforcements may in particular take the form of reliefs such as longitudinal or annular ribs.
  • This large thickness or these reinforcements may be provided over the entire length of the outer casing facing the stator ring or only in the area opposite the bladed wheel.
  • the thickness and / or the reinforcements of the outer casing may also be progressive between this zone vis-à-vis the bladed wheel and the downstream zone: for example the thickness may be greater than 5 or 8 mm at the level of the bladed wheel then decrease to less than 4 or 3 mm at the downstream end of the stator ring.
  • the outer casing is intended to form an outer casing of the turbomachine, the outer face of the outer casing being configured to be exposed to the outside environment of the turbomachine.
  • the outer casing is therefore directly cooled by the outside air and therefore does not expand substantially.
  • At least one wedge of the wedging device is an annular collar provided between the stator ring and the outer housing and extending in a radial plane all around the stator ring.
  • Such a collar thus makes it possible to ensure a setting of the stator ring 360 ° around the axis of the rotary assembly.
  • the stresses and deformations therefore remain isotropic in each radial plane: this avoids a daisy-ring of the stator ring, that is to say a deformation of the cylindrical or frustoconical geometry of the stator ring towards a multilobed geometry.
  • the wedging device comprises at least one set of wedging pads provided between the stator ring and the outer casing and evenly spaced in a radial plane all around the stator ring.
  • a discontinuous wedge limits the importance of heat transfer to the outer casing; it also makes it possible to provide a circulation of cooling fluid between the stator ring and the outer casing, this cooling fluid being able to circulate between the wedging pads.
  • such a discontinuous configuration prevents the appearance of tangential stresses in the wedge.
  • the regular spacing of the locking studs makes it possible for it to automatically center the stator ring relative to the outer casing.
  • the wedging pads of the wedging assembly are all spaced apart by an angle of between 5 and 24 °, preferably between 15 and 20 °. This frequency is sufficient to limit the phenomenon of daisying below an acceptable ceiling.
  • At least one wedge of the wedging device is made of the same material as the stator ring.
  • a clearance of less than 0.5 mm is left between the top of the blades of the bladed wheel and the inner face of the stator ring, at least during operation of the rotating assembly.
  • the rotating assembly is a turbine, preferably a free turbine, turbomachine. It could however be a compressor.
  • the present disclosure also relates to a turbomachine comprising a rotary assembly according to any one of the preceding embodiments.
  • FIG 1 is a sectional plane of a turbomachine according to the invention.
  • FIG 2 is an axial sectional view of a first example of a rotary assembly.
  • FIG 3 is an axial sectional view of a second example of a rotary assembly.
  • FIG 4 is an axial sectional view of a third example of a rotating assembly.
  • FIG 5 is a radial sectional view of a fourth example of a rotary assembly.
  • FIGS. 6A and 6B are views in axial section of a rotary assembly according to the prior art when stopped and in operation.
  • FIG 1 shows, in section along a vertical plane passing through its main axis A, a turbine engine 1 helicopter according to the invention. It comprises, from upstream to downstream according to the circulation of the air flow, a low-pressure compressor 2, a high-pressure compressor 3 of the centrifugal compressor type, a combustion chamber 4, a high-pressure linked turbine 5, a low-linked turbine pressure 6 and a free turbine 7 connected to the rotor of the helicopter via a transmission shaft 8 and a gearbox not shown.
  • This free turbine 7 constitutes a rotary assembly comprising a rotor rotating within a stator.
  • the rotor comprises a wheel 11 provided with a plurality of blades 12; the wheel 11 is coupled to the transmission shaft 8.
  • the stator comprises, for its part, a turbine ring 21 comprising an axially and substantially cylindrical portion of groove 22 of revolution or frustoconical, and a radial flange 23 extending towards the outside. outside of the downstream end of the vein portion 22.
  • This vein portion 22 delimits the space occupied by the hot air stream from the combustion chamber 4 via the linked turbines 5 and 6.
  • the stator also comprises an outer casing 25, coaxial with the turbine ring 21, forming an outer wall of the turbomachine 1 and thus isolating the free turbine 7 from the external environment.
  • the outer casing 25 also includes a main portion 26, axial and substantially cylindrical in revolution or frustoconical, and a radial flange 27 extending outwardly from the downstream end of the main portion 26.
  • the thickness of the main portion 26 of the outer casing 25 is here constant and is about 10 mm.
  • the outer casing 25 and the bladed wheel 11 are, by construction, centered on the main axis A of the turbomachine 1.
  • the turbine ring 21 is in turn set up within the outer casing 25 on the one hand by plating its radial flange 23 against the radial flange 27 of housing 25, thus ensuring the axial positioning of the ring 21, and secondly by inserting a wedging device 30 around the turbine ring 21, between the latter and the housing 25, thus ensuring the radial positioning of the ring 21.
  • the wedging device 30 comprises an annular clamping collar 31 arranged around the turbine ring 21 substantially in the median plane of the bladed wheel 11; in other words, the clamping collar 31 is located vis-à-vis the blades 12, substantially axially centered on the top thereof.
  • the wedging device 30, which is in contact with, or at least in contact with, simultaneously with the outer face of the turbine ring 21 and the inner face of the outer casing 25 during the operation of the turbomachine, thus makes it possible to center the turbine ring 21 on the main axis A of the turbine 7 and therefore around the bladed wheel 11. In this way, the clearance e left between the top of the blades 12 and the turbine ring 21 is constant and less than 0, 5 mm at any point of the ring 21.
  • the upstream of the ring 21 is therefore subjected to a higher temperature than the downstream of the ring 21. Therefore, the upstream portion of the ring 21 should expand more significantly than its downstream portion and therefore deform by flaring in the manner illustrated in FIG. 6B, thereby causing an increase in clearance between the blade heads and the turbine ring.
  • FIG. 3 A second example of turbine 107 is illustrated in FIG. 3.
  • the wedging device 130 also takes the form of a clamping collar 132 similar to that of the first example but which is placed further downstream, in a position intermediate between the plane of the bladed wheel 111 and the plane of the radial flange 123 of the turbine ring 120.
  • a space is in particular left axially between the clamping collar 132 and the radial flange 123.
  • Such a wedging device 130 disposed at this point attaches more specifically to controlling the deformation of the turbine ring 121 near the junction between its axial portion 122, and its flange 123, radial.
  • this right-angle junction is a zone of weakness, in particular because of its angular point, which does not withstand the bending forces that appear in the deformed configuration of the state of the art shown in FIG. 6B.
  • the clamping collar 132 maintains the shape of the ring 121 at least at this junction with the radial flange 123 in order to avoid the appearance of bending stresses in this zone. .
  • FIG 4 illustrates a third example of turbine 207 in which the wedging device 230 comprises a first clamping collar 231 arranged in a similar manner to the first example and a second clamping collar 232 arranged in a similar manner to the second example.
  • FIG 5 illustrates a fourth example of turbine 307.
  • the wedging device 330 does not include a clamping collar but a discontinuous set of wedging pads 333.
  • These studs 333 are provided in the same radial plane and are spaced apart. in a regular manner all around the turbine ring 321.
  • the set of pads comprises sixteen pads arranged angularly every 22.5 °. Naturally, this number will depend on the size of the engine to avoid that the turbine ring 321 does not deform radially between two consecutive pads and takes a daisy shape.
  • the radial plane in which these wedging pads are arranged can be chosen freely: it can therefore be the planes described in the first and second examples relating to FIGS. 2 and 3.
  • a first wedge can be made in the form of a collar while a second wedge can be made in the form of a discontinuous set of studs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Ensemble rotatif pour turbomachine, notamment turbine de turbomoteur d'hélicoptère, comprenant un rotor comportant au moins une roue aubagée (11), un anneau de stator (21), entourant la roue aubagée (11) et définissant au moins partiellement une veine pour un fluide de travail, un carter externe (25) entourant concentriquement l'anneau de stator (21), et un dispositif de calage (30) comportant au moins une cale (31) prévue entre l'anneau de stator (21) et le carter externe (25) pour restreindre la déformation de l'anneau de stator (21) lors du fonctionnement de l'ensemble rotatif (7).

Description

ENSEMBLE ROTATIF MUNI D'UN DISPOSITIF DE CALAGE
DOMAINE DE L'INVENTION
Le présent exposé concerne un ensemble rotatif pour turbomachine. Il s'applique particulièrement aux turbines de turbomoteur d'hélicoptère mais peut concerner plus généralement tous les ensembles rotatifs, compresseurs compris, qui connaissent des problématiques de déformations en fonctionnement, notamment de dilatation thermique, et de maîtrise de jeux.
ETAT DE LA TECHNIQUE ANTERIEURE
Dans un turbomoteur d'hélicoptère, la turbine libre qui permet l'entraînement du rotor comprend généralement une roue aubagée tournant au sein d'un anneau de stator définissant la veine du fluide de travail. La roue aubagée est montée dans cet anneau avec des jeux très réduits entre la tête des aubes et la surface interne de l'anneau afin de réduire au maximum le contournement de la roue aubagée par le fluide de travail au sommet des aubes et donc d'augmenter l'efficacité de la turbine : on vise pour cela en général des jeux inférieurs à 0,5 mm.
Compte tenu de ces jeux très faibles, un centrage rigoureux de l'anneau de turbine sur l'axe principal A de la turbine est nécessaire pour que les aubes ne touchent pas localement sur l'anneau. Un tel centrage est en général réalisé par le dispositif de centrage représenté à la FIG. 6A. L'anneau de turbine 90 comporte à son extrémité aval une bride radiale 91 s'étendant vers l'extérieur et adaptée pour être plaquée contre une bride radiale 92 du carter extérieur 93 isolant la turbine du milieu extérieur. La bride 91 de l'anneau comporte en plusieurs endroits autour de l'axe A des pions 94 s'engageant dans des alésages 95 correspondants pratiqués dans la bride 92 du carter extérieur 93. Ces alésages 95 s'étendent strictement radialement et les pions 94 sont tous situés à la même distance de l'axe A de telle sorte que l'anneau 90 est automatiquement centré sur l'axe A lorsque les pions 94 sont engagés dans les alésages 95.
Toutefois, dans une telle configuration connue, l'anneau de turbine 90 résiste mal au phénomène de dilatation différentielle qui apparaît entre l'amont de l'anneau, situé au niveau de la roue de turbine donc dans une zone très chaude, et l'aval de l'anneau, au niveau duquel le fluide de travail est moins chaud. Comme cela est représenté à la FIG. 6B, cette dilatation différentielle tend en effet à déformer l'anneau de turbine qui prend alors une forme évasée, ce qui, d'une part, augmente les jeux au sommet des aubes 99 et donc réduit le rendement de la turbine et, d'autre part, engendre des contraintes mécaniques de flexion au niveau de la jonction avec la bride radiale 91 et pénalise ainsi la durée de vie de la pièce.
Il existe donc un réel besoin d'avoir un ensemble rotatif pour turbomachine qui soit dépourvu, au moins en partie, des inconvénients inhérents aux configurations connues précitées.
PRESENTATION DE L'INVENTION
Le présent exposé concerne un ensemble rotatif pour turbomachine, comprenant un rotor comportant au moins une roue aubagée, un anneau de stator, entourant la roue aubagée et définissant au moins partiellement une veine pour un fluide de travail, un carter externe entourant concentriquement l'anneau de stator, et un dispositif de calage comportant au moins une cale prévue entre l'anneau de stator et le carter extérieur pour restreindre la déformation de l'anneau de stator lors du fonctionnement de l'ensemble rotatif.
Dans le présent exposé, les termes « axial », « radial », « tangentiel », « intérieur », « extérieur » et leurs dérivés sont définis par rapport à l'axe principal de la turbomachine ; on entend par « plan axial » un plan passant par l'axe principal de la turbomachine et par « plan radial » un plan perpendiculaire à cet axe principal. Les termes « amont » et « aval » sont définis par rapport à la circulation de l'air dans la turbomachine. En outre, dans le présent exposé, lorsque l'on indique qu'un élément est prévu entre deux pièces, on entend que cet élément est en contact simultanément avec chacune de ces pièces au moins durant le fonctionnement de l'ensemble rotatif.
Grâce à un tel dispositif de calage, l'anneau de stator est en appui contre le carter extérieur via le dispositif de calage. Or, puisque le carter extérieur est situé à distance de la veine de fluide, sa température reste faible de telle sorte qu'il ne se dilate pratiquement pas au cours du fonctionnement du moteur. Dès lors, la dilatation de l'anneau de stator est bloquée au niveau du dispositif de calage, ce qui restreint ou empêche complètement sa déformation en fonctionnement.
Dès lors, ce meilleur contrôle des déformations de l'anneau de stator permet d'assurer au moins localement une maîtrise plus importantes des jeux avec la roue aubagée et/ou une maîtrise de certaines contraintes mécaniques particulièrement néfastes telles les contraintes de flexion ou celles apparaissant à l'interface entre pièces ou entre portions de pièces ayant des géométries différentes.
Un tel ensemble rotatif possède dès lors un rendement important qui ne se dégrade pas ou peu au cours de son fonctionnement ; il bénéficie en outre d'une durée de vie plus longue grâce à un anneau de stator s'endommageant moins rapidement.
En outre, convenablement disposé, ce dispositif de calage permet également d'assurer le centrage de l'anneau de stator par rapport au carter externe, et donc par rapport à l'axe de l'ensemble rotatif, et de maintenir ce centrage tout au long du fonctionnement de l'ensemble rotatif.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est prévue dans un plan radial intermédiaire entre le plan de la roue aubagée et un plan d'extrémité de l'anneau de stator. De préférence, par plan intermédiaire, on entend un plan se situant à une distance de l'un des plans de référence comprise entre 20% et 80% de la longueur totale séparant les deux plans de référence.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est prévue en vis-à-vis de la roue aubagée. De cette manière, on assure un contrôle précis des jeux entre l'anneau de stator et les aubes de la roue aubagée directement au niveau de ces dernières.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est prévue à distance d'une extrémité axiale de l'anneau de stator, de préférence à distance de l'extrémité aval de l'anneau de stator.
Dans certains modes de réalisation, l'anneau de stator comporte une bride radiale configurée pour être appliquée contre une surface d'appui du carter externe. Cette bride radiale permet de caler axialement l'anneau de stator par rapport au carter externe. Elle est de préférence prévue à l'extrémité aval de l'anneau de stator. Dans certains modes de réalisation, la surface d'appui du carter externe est une bride radiale.
Dans certains modes de réalisation, la bride radiale de l'anneau de stator est dépourvue d'un dispositif de centrage de l'anneau de stator par rapport au carter externe. Dans ce cas, la fonction de centrage est réalisée par le dispositif de calage.
Toutefois, dans d'autres modes de réalisation, la bride radiale de l'anneau de stator est munie d'un dispositif de centrage permettant de centrer l'anneau de stator par rapport au carter externe. Il peut s'agir de dispositifs connus de l'homme du métier tels qu'un centrage mettant en œuvre des pions s'engageant dans des alésages radiaux, ou des fourches, prévus sur une bride radiale du carter externe.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est prévue à distance de la bride de l'anneau de stator.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est prévue dans un plan radial intermédiaire entre le plan de la roue aubagée et le plan de la bride de l'anneau de stator. De cette manière, on maintient efficacement la forme de l'anneau à proximité de la jonction avec la bride radiale : les contraintes de flexion qui s'exercent alors sur cette zone anguleuse sont réduites, ce qui soulage la pièce et augment dès lors sa durée de vie.
Dans certains modes de réalisation, le carter externe possède, au moins en vis-à-vis de la roue aubagée, une épaisseur supérieure à 5 mm, de préférence supérieure à 8 mm. De cette manière, le carter externe est capable de résister aux contraintes exercées par l'anneau de stator via le dispositif de calage au cours du fonctionnement de l'ensemble rotatif. Ainsi, le carter externe ne se déforme pas ou peu, ce qui assure le contrôle des déformations de l'anneau. On évite en outre un risque de matage ou de rupture du carter externe lorsque l'anneau de stator appuie sur ce dernier via le dispositif de calage.
Dans d'autres modes de réalisation, le carter externe possède des renforts portant localement son épaisseur à plus de 5 mm, de préférence à plus de 8 mm. De cette manière, on réalise la fonction de résistance mécanique évoquée ci-dessus tout en limitant la masse du carter externe. Ces renforts peuvent notamment prendre la forme de reliefs telles des côtes longitudinales ou annulaires. Cette forte épaisseur ou ces renforts peuvent être prévus sur toute la longueur du carter externe faisant face à l'anneau de stator ou bien uniquement dans la zone située en vis-à-vis de la roue aubagée. L'épaisseur et/ou les renforts du carter externe peuvent également être évolutifs entre cette zone en vis-à-vis de la roue aubagée et la zone en aval : par exemple l'épaisseur peut être supérieure à 5 ou 8 mm au niveau de la roue aubagée puis décroître jusqu'à moins de 4 ou 3 mm au niveau de l'extrémité aval de l'anneau de stator.
Dans certains modes de réalisation, le carter externe est destiné à former un carter extérieur de la turbomachine, la face externe du carter externe étant configurée pour être exposée au milieu extérieur de la turbomachine. Dans de tels modes de réalisation, le carter externe est donc directement refroidi par l'air extérieur et ne se dilate donc quasiment pas.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est un collier annulaire prévu entre l'anneau de stator et le carter externe et s'étendant dans un plan radial tout autour de l'anneau de stator. Un tel collier permet ainsi d'assurer un calage de l'anneau du stator à 360° autour de l'axe de l'ensemble rotatif. Les contraintes et les déformations restent donc isotropes dans chaque plan radial : on évite ainsi une mise en marguerite de l'anneau de stator, c'est-à-dire une déformation de la géométrie cylindrique ou tronconique de l'anneau de stator vers une géométrie multilobée.
Dans certains modes de réalisation, le dispositif de calage comporte au moins un ensemble de plots de calage prévus entre l'anneau de stator et le carter externe et régulièrement espacés dans un plan radial tout autour de l'anneau de stator. Une telle cale discontinue permet de limiter l'importance du transfert thermique vers le carter externe ; il permet en outre de prévoir une circulation de fluide de refroidissement entre l'anneau de stator et le carter externe, ce fluide de refroidissement étant capable de circuler entre les plots de calage. De plus, une telle configuration discontinue empêche l'apparition de contraintes tangentielles dans la cale. L'espacement régulier des plots de calage permet quant à lui de centrer automatiquement l'anneau de stator par rapport au carter externe. Dans certains modes de réalisation, les plots de calage de l'ensemble de calage sont tous espacés d'un angle compris entre 5 et 24°, de préférence entre 15 et 20°. Cette fréquence est suffisante pour limiter le phénomène de mise en marguerite en dessous d'un plafond acceptable.
Dans certains modes de réalisation, au moins une cale du dispositif de calage est réalisée dans le même matériau que l'anneau de stator.
Dans certains modes de réalisation, un jeu inférieur à 0,5 mm est laissé entre le sommet des aubes de la roue aubagée et la face interne de l'anneau de stator, au moins durant le fonctionnement de l'ensemble rotatif.
Dans certains modes de réalisation, l'ensemble rotatif est une turbine, de préférence une turbine libre, de turbomachine. Il pourrait toutefois s'agir d'un compresseur.
Le présent exposé concerne également une turbomachine comprenant un ensemble rotatif selon l'un quelconque des modes de réalisation précédents.
Les caractéristiques et avantages précités, ainsi que d'autres, apparaîtront à la lecture de la description détaillée qui suit, d'exemples de réalisation de l'ensemble rotatif proposé. Cette description détaillée fait référence aux dessins annexés.
BREVE DESCRIPTION DES DESSINS
Les dessins annexés sont schématiques et visent avant tout à illustrer les principes de l'invention.
Sur ces dessins, d'une figure (FIG) à l'autre, des éléments (ou parties d'élément) identiques sont repérés par les mêmes signes de référence. En outre, des éléments (ou parties d'élément) appartenant à des exemples de réalisation différents mais ayant une fonction analogue sont repérés sur les figures par des références numériques incrémentées de 100, 200, etc.
La FIG 1 est un plan en coupe d'une turbomachine selon l'invention. La FIG 2 est une vue en coupe axiale d'un premier exemple d'ensemble rotatif.
La FIG 3 est une vue en coupe axiale d'un deuxième exemple d'ensemble rotatif. La FIG 4 est une vue en coupe axiale d'un troisième exemple d'ensemble rotatif.
La FIG 5 est une vue en coupe radiale d'un quatrième exemple d'ensemble rotatif.
Les FIG 6A et 6B sont des vues en coupe axiale d'un ensemble rotatif selon l'art antérieur à l'arrêt et en fonctionnement.
DESCRIPTION DETAILLEE D'EXEMPLE(S) DE REALISATION
Afin de rendre plus concrète l'invention, des exemples d'ensembles rotatifs sont décrits en détail ci-après, en référence aux dessins annexés. Il est rappelé que l'invention ne se limite pas à ces exemples.
La FIG 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turbomoteur 1 d'hélicoptère selon l'invention. Il comporte, d'amont en aval selon la circulation du flux d'air, un compresseur basse pression 2, un compresseur haute pression 3 du type compresseur centrifuge, une chambre de combustion 4, une turbine liée haute pression 5, une turbine liée basse pression 6 et une turbine libre 7 connectée au rotor de l'hélicoptère via un arbre de transmission 8 et une boîte d'engrenages non représentée.
La zone notée II dans la FIG 1 est représentée de manière plus détaillée à la FIG 2. Cette turbine libre 7 constitue un ensemble rotatif comprenant un rotor tournant au sein d'un stator. Le rotor comprend une roue 11 munie d'une pluralité d'aubes 12 ; la roue 11 est accouplée à l'arbre de transmission 8. Le stator comprend quant à lui un anneau de turbine 21 comportant une partie de veine 22, axiale et sensiblement cylindrique de révolution ou tronconique, et une bride radiale 23 s'étendant vers l'extérieur depuis l'extrémité aval de la partie de veine 22. Cette partie de veine 22 délimite l'espace occupée par la veine d'air chaud provenant de la chambre de combustion 4 via les turbines liées 5 et 6.
Le stator comprend également un carter extérieur 25, coaxial à l'anneau de turbine 21, formant une paroi extérieure de la turbomachine 1 et isolant ainsi la turbine libre 7 du milieu extérieur. Le carter extérieur 25 comprend lui aussi une partie principale 26, axiale et sensiblement cylindrique de révolution ou tronconique, et une bride radiale 27 s'étendant vers l'extérieur depuis l'extrémité aval de la partie principale 26. L'épaisseur de la partie principale 26 du carter extérieur 25 est ici constante et vaut environ 10 mm.
Le carter extérieur 25 et la roue aubagée 11 sont par construction centrés sur l'axe principal A de la turbomachine 1. L'anneau de turbine 21 est quant à lui mis en place au sein du carter extérieur 25 d'une part en plaquant sa bride radiale 23 contre la bride radiale 27 de carter 25, assurant ainsi le positionnement axial de l'anneau 21, et d'autre part en insérant un dispositif de calage 30 autour de l'anneau de turbine 21, entre ce dernier et le carter extérieur 25, assurant ainsi le positionnement radial de l'anneau 21.
Dans ce premier exemple, le dispositif de calage 30 comprend un collier de calage 31, annulaire, disposé autour de l'anneau de turbine 21 sensiblement dans le plan médian de la roue aubagée 11 ; autrement dit, le collier de calage 31 se situe en vis-à-vis des aubes 12, sensiblement centré axialement sur le sommet de ces dernières.
Le dispositif de calage 30, qui est en appui, ou au moins au contact, simultanément avec la face externe de l'anneau de turbine 21 et la face interne du carter extérieur 25 durant le fonctionnement de la turbomachine, permet ainsi de centrer l'anneau de turbine 21 sur l'axe principal A de la turbine 7 donc autour de la roue aubagée 11. De cette manière, le jeu e laissé entre le sommet des aubes 12 et l'anneau de turbine 21 est constant et inférieur à 0,5 mm en tout point de l'anneau 21.
En fonctionnement, de l'air est comprimé par les compresseurs 2 et 3 puis admis dans la chambre de combustion 4 au sein de laquelle un carburant est enflammé afin de chauffer fortement l'air admis ; ce dernier est alors libéré à très haute température et cède une partie de son énergie dans les turbines 5 et 6 : il arrive alors à haute température à la turbine libre 7 où il cède encore une fraction de son énergie à la roue aubagée, se refroidissant encore à cette occasion. Un gradient de température ΔΤ règne donc d'amont en aval dans l'espace délimité par l'anneau de turbine 21.
L'amont de l'anneau 21 est donc soumis à une température plus élevée que l'aval de l'anneau 21. Dès lors, la partie amont de l'anneau 21 devrait se dilater de manière plus importante que sa partie aval et donc se déformer en s'évasant de la manière illustrée à la FIG 6B, entraînant ainsi une augmentation du jeu entre les têtes d'aubes et l'anneau de turbine. Toutefois, le dispositif de calage 30, situé en vis-à-vis des aubes 12, empêche une telle déformation et permet de conserver la maîtrise du jeu e durant le fonctionnement de la turbomachine.
Un deuxième exemple de turbine 107 est illustré à la FIG 3. Dans cet exemple, le dispositif de calage 130 prend également la forme d'un collier de calage 132 analogue à celui du premier exemple mais qui est placé plus en aval, dans une position intermédiaire entre le plan de la roue aubagée 111 et le plan de la bride radiale 123 de l'anneau de turbine 120. Un espace est notamment laissé axialement entre le collier de calage 132 et la bride radiale 123.
Un tel dispositif de calage 130 disposé à cet endroit s'attache plus spécifiquement à contrôler la déformation de l'anneau de turbine 121 à proximité de la jonction entre sa partie de veine 122, axiale, et sa bride 123, radiale. En effet, cette jonction à angle droit est une zone de faiblesse, en raison notamment de son point anguleux, qui résiste mal aux efforts de flexion qui apparaissent dans la configuration déformée de l'état de l'art représentée à la FIG 6B. Au contraire, dans la configuration de la FIG 3, le collier de calage 132 maintient la forme de l'anneau 121 au moins au niveau de cette jonction avec la bride radiale 123 afin d'éviter l'apparition de contraintes de flexion dans cette zone.
La FIG 4 illustre un troisième exemple de turbine 207 dans lequel le dispositif de calage 230 comprend un premier collier de calage 231 disposé de manière analogue au premier exemple et un deuxième collier de calage 232 disposé de manière analogue au deuxième exemple.
Dès lors, on assure de manière très efficace à la fois le contrôle de jeu e et le contrôle des contraintes de flexion au niveau de la jonction de la partie de veine 222 avec la bride radiale 223 de l'anneau de turbine 221.
La FIG 5 illustre un quatrième exemple de turbine 307. Dans cet exemple, le dispositif de calage 330 ne comprend pas de collier de calage mais un ensemble discontinu de plots de calage 333. Ces plots 333 sont prévus dans un même plan radial et sont espacés de manière régulière tout autour de l'anneau de turbine 321. Dans cet exemple, l'ensemble de plots comprend seize plots disposés angulairement tous les 22,5°. Naturellement, ce nombre dépendra de la taille du moteur afin d'éviter que l'anneau de turbine 321 ne se déforme radialement entre deux plots consécutifs et ne prenne une forme en marguerite.
Le plan radial dans lequel sont disposés ces plots de calage peut être choisi librement : il peut donc s'agir des plans décrits dans les premier et deuxième exemples relatifs aux FIG 2 et 3. De manière analogue au troisième exemple relatif à la FIG 4, il est également possible de prévoir un premier ensemble de plots 333 dans un premier plan et un deuxième ensemble de plots 333 dans un deuxième plan. Dans d'autres exemples, une première cale peut être réalisée sous la forme d'un collier tandis qu'une deuxième cale peut être réalisée sous la forme d'un ensemble discontinu de plots. Lorsque plusieurs ensembles de plots sont prévus dans des plans distincts, ils peuvent être déphasés les uns par rapports aux autres tant que chaque ensemble reste équilibré.
Les modes ou exemples de réalisation décrits dans le présent exposé sont donnés à titre illustratif et non limitatif, une personne du métier pouvant facilement, au vu de cet exposé, modifier ces modes ou exemples de réalisation, ou en envisager d'autres, tout en restant dans la portée de l'invention.
De plus, les différentes caractéristiques de ces modes ou exemples de réalisation peuvent être utilisées seules ou être combinées entre elles. Lorsqu'elles sont combinées, ces caractéristiques peuvent l'être comme décrit ci-dessus ou différemment, l'invention ne se limitant pas aux combinaisons spécifiques décrites dans le présent exposé. En particulier, sauf précision contraire, une caractéristique décrite en relation avec un mode ou exemple de réalisation peut être appliquée de manière analogue à un autre mode ou exemple de réalisation.

Claims

REVENDICATIONS
1. Ensemble rotatif pour turbomachine, comprenant
un rotor comportant au moins une roue aubagée (11),
un anneau de stator (21), entourant la roue aubagée (11), définissant au moins partiellement une veine pour un fluide de travail, et comportant une bride radiale (23) configurée pour être appliquée contre une surface d'appui (27) du carter externe (25),
un carter externe (25) entourant concentriquement l'anneau de stator (21), et
un dispositif de calage (30) comportant au moins une cale (31) prévue entre l'anneau de stator (21) et le carter externe (25) pour restreindre la déformation de l'anneau de stator (21) lors du fonctionnement de l'ensemble rotatif (7).
2. Ensemble rotatif selon la revendication 1, dans lequel au moins une cale (31) du dispositif de calage (30) est prévue en vis-à-vis de la roue aubagée (11).
3. Ensemble rotatif selon la revendication 1 ou 2, dans lequel au moins une cale (132) du dispositif de calage (130) est prévue dans un plan radial intermédiaire entre le plan de la roue aubagée (111) et un plan d'extrémité de l'anneau de stator (121).
4. Ensemble rotatif selon l'une quelconque des revendications 1 à
3, dans lequel la bride radiale de l'anneau de stator est prévue en aval et à distance de la roue aubagée.
5. Ensemble rotatif selon l'une quelconque des revendications 1 à
4, dans lequel au moins une cale (31) du dispositif de calage (30) est prévue à distance de la bride (23) de l'anneau de stator (21).
6. Ensemble rotatif selon l'une quelconque des revendications 1 à
5, dans lequel le carter externe (25) possède, au moins en vis-à-vis de la roue aubagée (11), une épaisseur supérieure à 5 mm, de préférence supérieure à 8 mm, ou des renforts portant localement son épaisseur à plus de 5 mm, de préférence à plus de 8 mm.
7. Ensemble rotatif selon l'une quelconque des revendications 1 à
6, dans lequel le carter externe (25) est destiné à former un carter extérieur de la turbomachine, la face externe du carter externe (25) étant configurée pour être exposée au milieu extérieur de la turbomachine.
8. Ensemble rotatif selon l'une quelconque des revendications 1 à
7, dans lequel au moins une cale du dispositif de calage (30) est un collier annulaire (31) prévu entre l'anneau de stator (21) et le carter externe (25) et s'étendant dans un plan radial tout autour de l'anneau de stator (21).
9. Ensemble rotatif selon l'une quelconque des revendications 1 à
8, dans lequel le dispositif de calage (330) comporte au moins un ensemble de plots de calage (333) prévus entre l'anneau de stator (321) et le carter externe (325) et régulièrement espacés dans un plan radial tout autour de l'anneau de stator (321).
10. Turbomachine comprenant un ensemble rotatif (7) selon l'une quelconque des revendications précédentes.
PCT/FR2015/052307 2014-09-03 2015-09-01 Ensemble rotatif muni d'un dispositif de calage WO2016034804A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458233A FR3025261B1 (fr) 2014-09-03 2014-09-03 Ensemble rotatif muni d'un dispositif de calage
FR1458233 2014-09-03

Publications (1)

Publication Number Publication Date
WO2016034804A1 true WO2016034804A1 (fr) 2016-03-10

Family

ID=52423799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052307 WO2016034804A1 (fr) 2014-09-03 2015-09-01 Ensemble rotatif muni d'un dispositif de calage

Country Status (2)

Country Link
FR (1) FR3025261B1 (fr)
WO (1) WO2016034804A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456576A (en) * 1994-08-31 1995-10-10 United Technologies Corporation Dynamic control of tip clearance
GB2422407A (en) * 2005-01-21 2006-07-26 Rolls Royce Plc Blade containment casing for a gas turbine engine
EP2495399A1 (fr) * 2011-03-03 2012-09-05 Techspace Aero S.A. Virole externe segmentée apte à compenser un désalignement du rotor par rapport au stator
DE102012005771A1 (de) * 2011-03-25 2012-09-27 Alstom Technology Ltd. Dichtvorrichtung für drehende Turbinenschaufeln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456576A (en) * 1994-08-31 1995-10-10 United Technologies Corporation Dynamic control of tip clearance
GB2422407A (en) * 2005-01-21 2006-07-26 Rolls Royce Plc Blade containment casing for a gas turbine engine
EP2495399A1 (fr) * 2011-03-03 2012-09-05 Techspace Aero S.A. Virole externe segmentée apte à compenser un désalignement du rotor par rapport au stator
DE102012005771A1 (de) * 2011-03-25 2012-09-27 Alstom Technology Ltd. Dichtvorrichtung für drehende Turbinenschaufeln

Also Published As

Publication number Publication date
FR3025261B1 (fr) 2020-02-21
FR3025261A1 (fr) 2016-03-04

Similar Documents

Publication Publication Date Title
EP3207221B1 (fr) Ensemble rotatif pour turbomachine et turbomachine
EP2901021B2 (fr) Carter et roue a aubes de turbomachine
CA2650771A1 (fr) Centrage d'une piece a l'interieur d'un arbre
EP1703084A1 (fr) Dispositif de variation de la section de col d'un distributeur de turbine
FR3027341A1 (fr) Ensemble rotatif pour turbomachine comprenant une virole de rotor auto-portee
WO2015092281A1 (fr) Virole de compresseur comprenant une lechette d'etancheite equipee d'une structure d'entrainement et de deviation d'air de fuite
FR2971022A1 (fr) Etage redresseur de compresseur pour une turbomachine
FR2978793A1 (fr) Rotor de turbine pour une turbomachine
EP2601009B1 (fr) Procédé de fabrication d'un tambour de turbomachine et tambour de turbomachine
EP3149286B1 (fr) Platine d'étanchéité à fonction de fusible
FR3070183B1 (fr) Turbine pour turbomachine
FR3066533B1 (fr) Ensemble d'etancheite pour une turbomachine
WO2016034804A1 (fr) Ensemble rotatif muni d'un dispositif de calage
FR2994453A1 (fr) Ensemble a faible usure pour couronne aubagee de stator de turbomachine d'aeronef
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor
FR2948737A1 (fr) Secteur de virole exterieure pour couronne aubagee de stator de turbomachine d'aeronef, comprenant des cales amortisseuses de vibrations
FR3057907B1 (fr) Ensemble a effet anti-usure pour turboreacteur
EP3068979A1 (fr) Element annulaire de carter de turbomachine
FR3102152A1 (fr) fixation améliorée d’aubages de turbine contrarotative
FR3116305A1 (fr) Arbre de liaison d’un corps haute pression d’une turbomachine
WO2022180330A1 (fr) Anneau d'etancheite de turbine
FR3026794A1 (fr) Ensemble rotatif pour turbomachine et pion de fixation, pour cet ensemble
FR3095472A1 (fr) Elément de rotor de turbomachine
FR3107924A1 (fr) Anneau mobile pour turbine de turbomachine, comprenant une extrémité axiale d’appui pourvue de rainures de refroidissement différentiel
FR3126447A1 (fr) Roue mobile de turbomachine comprenant une pièce de butée axiale pour amortisseur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15763964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15763964

Country of ref document: EP

Kind code of ref document: A1