WO2015180229A1 - 一种非正交六杆动中通伺服系统及控制方法 - Google Patents

一种非正交六杆动中通伺服系统及控制方法 Download PDF

Info

Publication number
WO2015180229A1
WO2015180229A1 PCT/CN2014/081146 CN2014081146W WO2015180229A1 WO 2015180229 A1 WO2015180229 A1 WO 2015180229A1 CN 2014081146 W CN2014081146 W CN 2014081146W WO 2015180229 A1 WO2015180229 A1 WO 2015180229A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
angle information
push rod
electric push
azimuth
Prior art date
Application number
PCT/CN2014/081146
Other languages
English (en)
French (fr)
Inventor
史军良
赵书伦
门吉卓
辛毅
陈远航
冯瑞鑫
徐毅
Original Assignee
北京航天控制仪器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天控制仪器研究所 filed Critical 北京航天控制仪器研究所
Priority to EP14892970.6A priority Critical patent/EP3088981B1/en
Priority to US15/108,776 priority patent/US9541913B2/en
Publication of WO2015180229A1 publication Critical patent/WO2015180229A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/041Function-oriented details
    • G05B19/0415Function-oriented details adapting phase duration according to measured parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33218Motor encoders, resolvers on common bus with drives, servo controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40242End effector with motor to provide a yaw, roll and pitch motion

Definitions

  • the invention relates to a non-orthogonal six-pole dynamic medium-pass servo system and a control method thereof, and belongs to the field of a dynamic servo system.
  • the traditional dynamic servo system is realized by two-axis or three-axis orthogonal or offset.
  • the rotating mechanism uses multiple shafting structures.
  • the servo control method uses multiple motor driving methods based on PID classical control theory. .
  • the characteristics of the servo system are that the system is simple and reliable, and the response speed is fast, but the control accuracy is not high. ⁇ Using orthogonal or offset shaft structure to realize the moving-pass servo system, its structure is more complicated, it requires high processing, installation and adjustment accuracy, and due to the characteristics of the shaft structure itself, it is small in the moving servo system. In the design and lightweight design, the shafting structure brings natural obstacles, making it difficult to miniaturize and reduce the weight of the moving system.
  • the gear transmission especially the three spatially orthogonal axes, are geared, which will increase the space size, complex structure, reliability and maintainability of the servo system. It will generate vibration, shock and noise during operation. It also generates dynamic load and has no protection when overloaded; belt drive or chain drive requires large installation space, easy to wear or vibrate during work, and slow response; therefore, these kinds of dynamic servo systems
  • the structure of the shafting system has certain limitations, especially when it is necessary to carry out miniaturization and lightweight design, there will be many unavoidable interferences and contradictions.
  • the control method corresponding to the shafting structure of the servo system is more than a multi-motor drive.
  • the existing servo control system mainly includes a control unit, a driving unit and a measurement feedback unit, wherein the control unit is mainly composed of an industrial computer or an ACU, a strapdown inertia group or a motion control unit, and the driving unit is composed of a servo motor. And the driver is composed, the measurement feedback unit is composed of a rate gyro, an encoder and the like.
  • the structure of the servo control method is complex, with many intermediate links, long control links and low integration. It increases the complexity of the structure of the servo system and is not conducive to the simplification and reliable design of the control system. It is also not conducive to the system debugging and fault diagnosis, positioning and elimination, which is not conducive to the miniaturization and weight reduction of the system.
  • the technical solution of the present invention solves the problem of: providing a non-orthogonal six-pole dynamic transmission servo system and a control method according to the deficiencies of the prior art, the mechanical structure is simple, the servo control system has high integration degree, and the four-axis linkage can be realized. Miniaturization and lightweight.
  • a non-orthogonal six-pole motion-through servo system includes: a measurement feedback unit, a control unit, a driving unit, and a servo antenna; wherein the measurement feedback unit further includes an azimuth angle encoder, a tilt position encoder, a roll position encoder, Polarization angle encoder, data acquisition card; control unit includes centralized control unit ACU, strapdown inertia group, six-axis motion control and drive module; drive unit includes linear motor, azimuth worm, polarized worm, electric The push rod, the linear motor further includes a first linear motor and a second linear motor, and the electric push rod further includes a first electric push rod, a second electric push rod, a third electric push rod, and a fourth electric push rod;
  • the ACU receives the azimuth angle information, the tilt position information, the roll position information, and the polarization angle information collected by the data collection card in real time, and converts the pitch position information and the roll position information into pitch angle information and roll angle information. Then azimuth angle information, pitch angle information, roll angle information, pole The angle information is used for user monitoring; the ACU is used to supply power to the strapdown group, and the system posture information sent by the strapdown group is read by data interaction to judge whether the strapdown group is working normally; The ACU is used to issue a control command to the strapdown inertial group, including the name of the satellite, the longitude parameter, the polarization mode, the beacon frequency, the star time, the star mode (static star or dynamic star); The cooperative group is used to measure the attitude information in real time, and coordinate the measured attitude information, and simultaneously receive the azimuth angle information, the tilt position information, the roll position information, and the polarization angle information collected by the data collection card in real time.
  • the pitch position information and the roll position information are converted into pitch angle information and roll angle information, and then the azimuth angle information, the pitch angle information, the roll angle information, the polarization angle information are compared with the coordinate transformed posture information, At the same time, the name, longitude parameter, polarization mode, beacon of the satellite in the control command issued by the ACU according to the ACU
  • the frequency search needs to be aligned with the satellite, and the comparison result is converted into a pulse signal according to the star method issued by the ACU in a predetermined star time to be sent to the six-axis motion control and driving module for performing the star;
  • the six-axis motion control and drive module performs star-to-star according to the pulse signal sent by the strapdown inertial group.
  • the specific method of star-to-star is as follows: Six-axis motion control and drive module output six-way control and drive signals, first control and drive signal output To the first linear motor, the first linear motor pushes the azimuth worm to rotate azimuth to push the servo antenna to rotate azimuth; the second and third control and drive signals are output to the first electric pusher and the second electric push The first electric push rod and the second electric push rod push the servo antenna to perform pitch rotation according to a certain angle; the fourth and fifth road control and drive signals are output to the third electric push rod and the fourth electric push rod, the third The electric push rod and the fourth electric push rod push the servo antenna to make a horizontal rotation according to a certain angle; the sixth control and drive signal are output to the second linear motor, and the second linear motor pushes the polarized worm to perform polarization rotation at a certain angle
  • Azimuth angle encoder, pitch position encoder, roll position encoder, polarization angle encoder obtain azimuth angle information, pitch position information, roll position information when azimuth rotation, pitch rotation, roll rotation and polarization rotation are acquired in real time. , polarization angle information.
  • the strapdown group uses a laser or a fiber-optic strapdown group.
  • the six-axis motion control and drive module outputs six-way control and drive signal control and drive linear motor, electric push rod, azimuth worm, polarized worm start, stop, rotational motion, and position, velocity and torque position changes.
  • the first electric push rod and the second electric push rod are fixed on two sides of the antenna; the third electric push rod and the fourth electric push rod are symmetrically fixed on the other sides of the antenna, the first electric push rod and the second
  • the moving plane formed by the electric push rod is perpendicular to the plane of motion formed by the third electric push rod and the fourth electric push rod.
  • the principle of comparing the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information of the strapdown inertial group after the posture information and the data collection and collection is as follows: determining the azimuth angle information included in the posture information, The polarization angle information, the pitch angle information, the roll angle information, and the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information after the conversion of the data set card set are consistent, and if the angle is the same, the angle compensation is not performed. If the angle compensation is performed inconsistent, the angle compensation is used as the comparison result.
  • a control method based on a motion-through servo system includes the following steps:
  • Azimuth angle encoder, pitch position encoder, roll position encoder, and polarization angle encoder obtain azimuth angle information, pitch position information, and cross direction when azimuth rotation, pitch rotation, roll rotation, and polarization rotation are acquired in real time. Rolling position information, polarization angle information;
  • the ACU receives the azimuth angle information, the tilt position information, the roll position information, the polarization angle information collected by the data collection card in real time, and converts the pitch position information and the roll position information into pitch angle information and roll Angle information, and then using azimuth angle information, pitch angle information, roll angle information, and polarization angle information for user monitoring;
  • the ACU issues a control command to the Strapdown Customs Group, including the name of the satellite, the longitude parameter, the polarization mode, the beacon frequency, the star time, and the star mode; and the ACU reads the strapdown through data interaction.
  • the system posture information sent by the used group is used to judge the working state of the strapdown inertial group;
  • the strapdown inertial group measures the attitude information in real time, and performs coordinate transformation on the measured attitude information, and simultaneously receives the azimuth angle information, the tilt position information, the roll position information, and the polarization angle of the data collection card in real time. Information, and converting the pitch position information and the roll position information into pitch angle information and roll angle information;
  • the strapdown inertial group compares the azimuth angle information, the pitch angle information, the roll angle information, and the polarization angle information obtained in step (5) with the coordinate information after the coordinate transformation in step (5), and determines the posture
  • the azimuth angle information, the polarization angle information, the pitch angle information, the roll angle information, and the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information included in the information are included in the information. If the angle compensation is not performed and the step (9) is entered, if the angle is not satisfied, the angle compensation is used as the comparison result;
  • the Strapdown Customs Group searches for the position of the satellite to be steered according to the satellite name, longitude parameter, polarization mode, and beacon frequency in the control command issued by the ACU, and in accordance with the star method issued by the ACU.
  • the comparison result of the angle compensation in step (6) is converted into a pulse signal and sent to the six-axis motion control and driving module for performing the star;
  • the six-axis motion control and drive module completes the star-to-star and star-to-star according to the pulse signal sent by the strapdown inertial group.
  • the six-axis motion control and the drive module output six-way control and drive signals, the first control and The driving signal is output to the first linear motor, the first linear motor pushes the azimuth worm to rotate the azimuth to push the servo antenna to rotate, and the second and third control and drive signals are output to the first electric push rod and the first Two electric push rods, the first electric push rod and the second electric push rod push the servo antenna to perform pitch rotation according to a certain angle; the fourth and fifth road control and drive signals are output to the third electric push rod and the fourth electric push rod The third electric push rod and the fourth electric push rod push the servo antenna to make a horizontal rotation according to a certain angle; the sixth control and drive signal are output to the second linear motor, and the second linear motor pushes the polarized worm to a certain angle Polarization rotation; the azimuth rotation
  • the invention realizes a non-orthogonal six-bar movement with simple structure and convenient operation by using the system structure composed of ACU, strapdown inertial group and six-axis motion control and driving module.
  • the servo control system has high integration degree; at the same time, the invention has lower cost, high control efficiency and high reliability compared with the traditional mobile communication system, and conforms to the development trend of miniaturization, light weight and low cost of the mobile communication system.
  • the invention realizes azimuth rotation, pitch rotation, roll rotation and polarization rotation four-axis linkage and four degrees of freedom motion by using a non-orthogonal six-bar structure, which increases the environmental adaptability of the system, and simultaneously
  • the mechanical structure is simple and easy to implement, providing the possibility and operability for miniaturization and weight reduction of the servo system.
  • the invention realizes motor drive by means of integrated motion control card and driver, reduces intermediate links and links, increases system reliability and maintainability, and has simple control process; the invention selects a straight line with deceleration function
  • the motor converts electrical energy directly into linear motion mechanical energy without any intermediate conversion mechanism and has a simple structure.
  • FIG. 1 is a block diagram showing the principle of the system of the present invention.
  • a non-orthogonal six-pole dynamic transmission servo system includes: a measurement feedback unit, a control unit, a driving unit, and a servo antenna; wherein the measurement feedback unit further includes an azimuth angle encoder, a tilt position encoder, The roll position encoder, the polarization angle encoder and the data set card; the control unit further comprises a centralized control unit ACU, a strapdown inertial group, a six-axis motion control and a drive module; the drive unit further comprises a linear motor, an azimuth worm, The polarized worm and the electric push rod further comprise a first linear motor and a second linear motor, and the electric push rod further comprises a first electric push rod, a second electric push rod, a third electric push rod, and a fourth electric unit Putt
  • the angle encoder collects azimuth angle information, pitch position information, roll position information, polarization angle information, and sends the above information to the ACU and the strapdown group;
  • the ACU receives the azimuth angle information, the tilt position information, the roll position information, and the polarization angle information collected by the data collection card in real time, and converts the pitch position information and the roll position information into pitch angle information and roll angle information. Then, the azimuth angle information, the pitch angle information, the roll angle information, and the polarization angle information are used for user monitoring; the ACU reads the system posture information sent by the strapdown group by data interaction for the working state of the strapdown group The ACU is used to supply power to the strapdown group, and to issue a control command to the strapdown group, the control command includes the name of the satellite, the longitude parameter, the polarization mode, the beacon frequency, the star time, and the star mode. (static star or dynamic star);
  • the strapdown inertial group is used to measure the attitude information in real time, and coordinate the measured attitude information, and simultaneously receive the azimuth angle information, the tilt position information, the roll position information, and the polarization angle information collected by the data collection card in real time. And converting the pitch position information and the roll position information into the pitch angle information and the roll angle information, and then comparing the azimuth angle information, the pitch angle information, the roll angle information, the polarization angle information, and the coordinate transformed posture information At the same time, the Strapdown Customs Group finds the position of the satellite to be aligned according to the satellite name, longitude parameter, polarization mode, and beacon frequency in the control command issued by the ACU, and according to the star method of the ACU. The comparison result is converted into a pulse signal and sent to a six-axis motion control and driving module for performing a star;
  • the six-axis motion control and drive module performs star-to-star according to the pulse signal sent by the strapdown inertial group.
  • the specific method of star-to-star is as follows: Six-axis motion control and drive module output six-way control and drive signals, first control and drive signal output To the first linear motor, the first linear motor pushes the azimuth worm to rotate azimuth to push the servo antenna to rotate azimuth; the second and third control and drive signals are output to the first electric pusher and the second electric push The first electric push rod and the second electric push rod push the servo antenna to perform pitch rotation according to a certain angle; the fourth and fifth road control and drive signals are output to the third electric push rod and the fourth electric push rod, the third The electric push rod and the fourth electric push rod push the servo antenna to make a horizontal rotation according to a certain angle; the sixth control and drive signal are output to the second linear motor, and the second linear motor pushes the polarized worm to perform polarization rotation at a certain angle
  • Azimuth angle encoder, pitch position encoder, roll position encoder, polarization angle encoder obtain azimuth angle information, pitch position information, roll position information when azimuth rotation, pitch rotation, roll rotation and polarization rotation are acquired in real time. , polarization angle information.
  • the strapdown group uses a laser or a fiber-optic strapdown group.
  • the six-axis motion control and drive module outputs six-way control and drive signals to control and drive linear motors, electric actuators, azimuth worms, polarized worms for starting, stopping, rotating, and position, velocity, and torque position changes.
  • the first electric push rod and the second electric push rod are fixed on two sides of the antenna; the third electric push rod and the fourth electric push rod are symmetrically fixed on the other sides of the antenna, the first electric push rod and the second
  • the moving plane formed by the electric push rod is perpendicular to the plane of motion formed by the third electric push rod and the fourth electric push rod.
  • the principle of comparing the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information of the strapdown inertial group after the posture information and the data collection and collection is as follows: determining the azimuth angle information included in the posture information, The polarization angle information, the pitch angle information, the roll angle information, and the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information after the conversion of the data set card set are consistent, and if the angle is the same, the angle compensation is not performed. If the angle compensation is performed inconsistent, the angle compensation is used as the comparison result.
  • a control method based on the dynamic servo system includes the following steps: (1) Azimuth angle encoder, pitch position encoder, roll position encoder, and polarization angle encoder obtain azimuth rotation in real time. Azimuth angle information, pitch position information, roll position information, polarization angle information when pitch rotation, roll rotation, and polarization rotation;
  • the ACU receives the azimuth angle information, the tilt position information, the roll position information, the polarization angle information collected by the data collection card in real time, and converts the tilt position information and the roll position information into pitch Angle information and roll angle information, and then use azimuth angle information, pitch angle information, roll angle information, and polarization angle information for user monitoring;
  • the ACU reads the system posture information sent by the strapdown group by data interaction to judge the working state of the strapdown group, and the ACU sends a control command to the strapdown group, the control command includes the name of the satellite. Longitude parameter, polarization mode, beacon frequency, star time, and star mode;
  • the strapdown inertial group measures the attitude information in real time, and performs coordinate transformation on the measured attitude information, and simultaneously receives the azimuth angle information, the tilt position information, the roll position information, and the polarization angle of the data collection card in real time. Information, and converting the pitch position information and the roll position information into pitch angle information and roll angle information;
  • the strapdown inertial group compares the azimuth angle information, the pitch angle information, the roll angle information, and the polarization angle information obtained in step (5) with the coordinate information after the coordinate transformation in step (5), and determines the posture
  • the azimuth angle information, the polarization angle information, the pitch angle information, the roll angle information, and the azimuth angle information, the polarization angle information, the pitch angle information, and the roll angle information included in the information are included in the information. If the angle is not consistent, go to step (9), if not, perform angle compensation.
  • the Strapdown Customs Group searches for the position of the satellite to be steered according to the satellite name, longitude parameter, polarization mode, and beacon frequency in the control command issued by the ACU, and in accordance with the star method issued by the ACU.
  • the comparison result of the angle compensation in step (6) is converted into a pulse signal and sent to the six-axis motion control and driving module for performing the star;
  • the six-axis motion control and drive module completes the star-to-star and star-to-star according to the pulse signal sent by the strapdown inertial group.
  • the six-axis motion control and the drive module output six-way control and drive signals, the first control and The driving signal is output to the first linear motor, and the first linear motor pushes the azimuth worm to rotate 360° in the azimuth direction to push the servo antenna to rotate 360°; the second and third control signals are output to the first electric motor.
  • the first electric push rod and the second electric push rod push the servo antenna to perform pitch (15 - 105.) rotation according to a certain angle
  • the fourth and fifth path control and drive signal output to a third electric push rod and a fourth electric push rod, a third electric push rod and a fourth electric push rod Push the servo antenna to roll at a certain angle (15. -1 05.)
  • the sixth control and drive signal are output to the second linear motor, and the second linear motor pushes the polarized worm to polarize at a certain angle (180) ° or 360°) rotation
  • the azimuth rotation, pitch rotation, roll rotation and polarization rotation are independent of each other, forming 4 degrees of freedom in space;
  • the invention has been evaluated by an expert, and the corresponding mobile satellite model actually applied has achieved good technical effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种非正交六杆动中通伺服系统及控制方法,包括测量反馈单元、控制单元、驱动单元、伺服天线,其中测量反馈单元又包括方位角度编码器、俯仰位置编码器、横滚位置编码器、极化角度编码器、数据采集卡;控制单元又包括 ACU、捷联惯组、六轴运动控制及驱动模块;驱动单元又包括直线电机、方位涡轮蜗杆、极化涡轮蜗杆、电动推杆,直线电机又包括第一直线电机、第二直线电机,电动推杆又包括第一电动推杆、第二电动推杆、第三电动推杆、第四电动推杆。本发明机械结构简单,伺服控制系统集成度高,能实现四轴联动以及小型化和轻量化。

Description

一种非正交六杆动中通伺服系统及控制方法
本申请要求于 2014年 5月 27日提交中国专利局的申请号为 20140228509.1、 发明名称为 "一种非正交六杆动中通伺服系统及控制方法" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种非正交六杆动中通伺服系统及控制方法, 属于动中通伺服 系统领域。
背景技术
传统的动中通伺服系统, 多釆用双轴或三轴正交或者偏置的方式实现, 转 动机构多釆用轴系结构, 伺服控制方法多釆用基于 PID经典控制理论的多电机 驱动方式。
动中通伺服系统的特点是要求系统简单可靠、 响应速度快, 但对控制精度 要求不高。 釆用正交或者偏置的轴系结构实现动中通伺服系统, 其结构比较复 杂, 对加工、 安装及调整精度要求高, 而且由于轴系结构自身的特点, 在动中 通伺服系统进行小型化和轻量化设计时, 轴系结构会带来天然的障碍, 使动中 通系统小型化和轻量化变得困难。
动中通伺服系统的轴系结构中, 釆用齿轮传动的结构型式较多, 还有一些 系统釆用带传动或者链传动。 齿轮传动, 尤其是三个空间正交的轴都通过齿轮 传动, 会使动中通伺服系统的空间尺寸增大、 结构复杂、 可靠性和维护性降低, 在运转中会产生振动、 冲击和噪声并产生动载荷, 而且在过载荷时没有保护作 用; 带传动或者链传动, 需要的安装空间大, 工作中容易磨损或者产生振动脱 落, 而且响应速度慢; 因此, 这几种动中通伺服系统的轴系结构方式都有一定 的局限性, 尤其是需要进行小型化和轻量化设计时会产生许多不可避免的干涉 和矛盾。 与动中通伺服系统轴系结构相对应的控制方法,多釆用多电机驱动的方式。 一般来说, 现有的动中通伺服控制系统主要包括控制单元、 驱动单元和测量反 馈单元,其中控制单元主要由工控机或 ACU、捷联惯组或者运动控制单元组成, 驱动单元由伺服电机和驱动器组成, 测量反馈单元由速率陀螺、编码器等组成。 这种动中通伺服控制方式结构较为复杂, 中间环节较多, 控制链路较长, 集成 度低, 在增加了动中通伺服系统结构复杂程度的同时, 不利于控制系统的简化 和可靠设计, 也不利于系统的调试和故障的判断、 定位和排除, 更不利于系统 的小型化和轻量化。
发明内容
本发明的技术解决问题是: 针对现有技术的不足, 提供了一种非正交六杆 动中通伺服系统及控制方法, 机械结构简单, 伺服控制系统集成度高, 能实现 四轴联动以及小型化和轻量化。
本发明的技术解决方案是:
一种非正交六杆动中通伺服系统包括: 测量反馈单元、 控制单元、 驱动单 元、 伺服天线; 其中, 测量反馈单元又包括方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器、 数据釆集卡; 控制单元又包括集中控制单 元 ACU、 捷联惯组、 六轴运动控制及驱动模块; 驱动单元又包括直线电机、 方 位涡轮蜗杆、 极化涡轮蜗杆、 电动推杆, 直线电机又包括第一直线电机、 第二 直线电机, 电动推杆又包括第一电动推杆、 第二电动推杆、 第三电动推杆、 第 四电动推才干;
数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化 角度编码器釆集方位角度信息、俯仰位置信息、横滚位置信息、极化角度信息, 并将上述信息发送至 ACU和捷联惯组;
ACU实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、横滚位 置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信 息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极 化角度信息用于进行用户监控; ACU用于向捷联惯组供电, 并通过数据交互读 取捷联惯组发送的系统姿态信息用于对捷联惯组的是否正常工作的状态进行判 断; ACU用于向捷联惯组发出控制指令, 所述控制指令包括卫星的名称、 经度 参数、 极化方式、 信标频率、 对星时间、 对星方式(静态对星或者动态对星); 捷联惯组用于实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极化角 度信息与坐标变换后的姿态信息进行比较, 同时捷联惯组根据 ACU 发出的控 制指令中的卫星的名称、 经度参数、 极化方式、 信标频率找寻需要对准卫星的 位置, 并按照 ACU 发出的对星方式在规定的对星时间内将比较结果转换为脉 冲信号发送至六轴运动控制及驱动模块用于进行对星;
六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号进行对星, 进行对 星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第一 路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做方 位旋转进而推动伺服天线做方位旋转; 第二路和第三路控制和驱动信号输出到 第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推动伺服天线按 照一定角度做俯仰旋转; 第四路和第五路控制和驱动信号输出到第三电动推杆 和第四电动推杆, 第三电动推杆和第四电动推杆推动伺服天线按照一定角度做 横滚旋转; 第六路控制和驱动信号输出到第二直线电机, 第二直线电机推动极 化涡轮蜗杆按一定角度做极化旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转和 极化旋转相互独立, 在空间形成 4个自由度;
方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器实 时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯仰位 置信息、 横滚位置信息、 极化角度信息。
所述捷联惯组釆用激光或者光纤捷联惯组。 所述六轴运动控制及驱动模块输出六路控制和驱动信号控制和驱动直线电 机、 电动推杆、 方位涡轮蜗杆、 极化涡轮蜗杆的起动、 停止、 转动动作以及位 置、 速度和扭矩位置变化。
所述第一电动推杆和第二电动推杆固定在天线的对称两侧; 第三电动推杆 和第四电动推杆对称地固定在天线的另外两侧, 第一电动推杆和第二电动推杆 形成的运动平面与第三电动推杆和第四电动推杆形成的运动平面垂直正交。
捷联惯组进行姿态信息和数据釆集卡釆集转化后的方位角度信息、 极化角 度信息、 俯仰角度信息、 横滚角度信息进行比较的原则如下: 判断姿态信息中 包含的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信息和数据釆 集卡釆集转化后的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信 息是否一致, 若一致时不进行角度补偿, 若不一致时进行角度补偿, 角度补偿 作为比较结果。
一种基于动中通伺服系统的控制方法, 包括步骤如下:
( 1 )方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码 器实时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯 仰位置信息、 横滚位置信息、 极化角度信息;
( 2 )数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器釆集方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度 信息, 并将上述信息发送至 ACU和捷联惯组;
( 3 ) ACU 实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰 角度信息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信 息、 极化角度信息用于进行用户监控;
( 4 ) ACU 向捷联惯组发出控制指令, 所述控制指令包括卫星的名称、 经 度参数、 极化方式、 信标频率、 对星时间、 对星方式; 同时 ACU 通过数据交 互读取捷联惯组发送的系统姿态信息用于对捷联惯组的工作状态进行判断; ( 5 )捷联惯组实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息;
( 6 )捷联惯组将步骤(5 ) 中得到的方位角度信息、 俯仰角度信息、 横滚 角度信息、 极化角度信息, 与步骤(5 )中坐标变换后的姿态信息进行比较, 判 断姿态信息中包含的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度 信息和数据釆集卡釆集转化后的方位角度信息、极化角度信息、俯仰角度信息、 横滚角度信息是否一致, 若一致时不进行角度补偿并进入步骤(9 ), 若不一致 时进行角度补偿, 角度补偿作为比较结果;
( 7 )捷联惯组根据 ACU发出的控制指令中的卫星的名称、 经度参数、 极 化方式、 信标频率找寻需要对准卫星的位置, 并按照 ACU 发出的对星方式在 规定的对星时间内将步骤( 6 )中角度补偿的比较结果转换为脉冲信号发送至六 轴运动控制及驱动模块用于进行对星;
( 8 )六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号完成对星,行 对星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第 一路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做 方位旋转进而推动伺服天线做方位旋转; 第二路和第三路控制和驱动信号输出 到第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推动伺服天线 按照一定角度做俯仰旋转; 第四路和第五路控制和驱动信号输出到第三电动推 杆和第四电动推杆, 第三电动推杆和第四电动推杆推动伺服天线按照一定角度 做横滚旋转; 第六路控制和驱动信号输出到第二直线电机, 第二直线电机推动 极化涡轮蜗杆按一定角度做极化旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转 和极化旋转相互独立, 在空间形成 4个自由度;
( 9 )对星结束。
本发明的实现方法与现有技术相比的优点在于: ( 1 )相对于传统动中通轴系结构, 本发明釆用 ACU、 捷联惯组和六轴运 动控制及驱动模块组成的系统结构实现了结构简单和操作方便的非正交六杆动 中通伺服系统, 伺服控制系统集成度高; 同时本发明相对于传统动中通系统成 本较低、 控制效率高、 可靠性强, 符合动中通系统小型化、 轻量化和低成本的 发展趋势。
( 2 )本发明釆用非正交六杆的结构形式实现了方位旋转、俯仰旋转、横滚 旋转和极化旋转四轴联动和四个自由度的运动, 增加了系统的环境适应性, 同 时机械结构简单, 易于实现, 为动中通伺服系统的小型化和轻量化提供了可能 性和可操作性。
( 3 )本发明釆用运动控制卡和驱动器集成的方式实现电机驱动,减少了中 间链路和环节, 增加了系统的可靠性和可维护性, 控制过程简单; 本发明选用 具有减速功能的直线电机, 将电能直接转换成直线运动机械能, 不需要任何中 间转换机构, 结构简单。
附图说明
图 1为本发明系统组成原理框图;
图 2为本发明系统控制流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图 1所示, 一种非正交六杆动中通伺服系统包括: 测量反馈单元、 控制 单元、 驱动单元、 伺服天线; 其中, 测量反馈单元又包括方位角度编码器、 俯 仰位置编码器、 横滚位置编码器、 极化角度编码器、 数据釆集卡; 控制单元又 包括集中控制单元 ACU、 捷联惯组、 六轴运动控制及驱动模块; 驱动单元又包 括直线电机、 方位涡轮蜗杆、 极化涡轮蜗杆、 电动推杆, 直线电机又包括第一 直线电机、 第二直线电机, 电动推杆又包括第一电动推杆、 第二电动推杆、 第 三电动推杆、 第四电动推杆;
数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化 角度编码器釆集方位角度信息、俯仰位置信息、横滚位置信息、极化角度信息, 并将上述信息发送至 ACU和捷联惯组;
ACU实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、横滚位 置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信 息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极 化角度信息用于进行用户监控; ACU通过数据交互读取捷联惯组发送的系统姿 态信息用于对捷联惯组的工作状态进行判断; ACU用于向捷联惯组供电, 以及 向捷联惯组发出控制指令, 所述控制指令包括卫星的名称、 经度参数、 极化方 式、 信标频率、 对星时间、 对星方式(静态对星或者动态对星);
捷联惯组用于实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极化角 度信息与坐标变换后的姿态信息进行比较, 同时捷联惯组根据 ACU 发出的控 制指令中的卫星的名称、 经度参数、 极化方式、 信标频率找寻需要对准卫星的 位置, 并按照 ACU 发出的对星方式在规定的对星时间内将比较结果转换为脉 冲信号发送至六轴运动控制及驱动模块用于进行对星;
六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号进行对星, 进行对 星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第一 路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做方 位旋转进而推动伺服天线做方位旋转; 第二路和第三路控制和驱动信号输出到 第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推动伺服天线按 照一定角度做俯仰旋转; 第四路和第五路控制和驱动信号输出到第三电动推杆 和第四电动推杆, 第三电动推杆和第四电动推杆推动伺服天线按照一定角度做 横滚旋转; 第六路控制和驱动信号输出到第二直线电机, 第二直线电机推动极 化涡轮蜗杆按一定角度做极化旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转和 极化旋转相互独立, 在空间形成 4个自由度;
方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器实 时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯仰位 置信息、 横滚位置信息、 极化角度信息。
所述捷联惯组釆用激光或者光纤捷联惯组。
所述六轴运动控制及驱动模块输出六路控制和驱动信号控制和驱动直线电 机、 电动推杆、 方位涡轮蜗杆、 极化涡轮蜗杆的起动、 停止、 转动动作以及位 置、 速度和扭矩位置变化。
所述第一电动推杆和第二电动推杆固定在天线的对称两侧; 第三电动推杆 和第四电动推杆对称地固定在天线的另外两侧, 第一电动推杆和第二电动推杆 形成的运动平面与第三电动推杆和第四电动推杆形成的运动平面垂直正交。
捷联惯组进行姿态信息和数据釆集卡釆集转化后的方位角度信息、 极化角 度信息、 俯仰角度信息、 横滚角度信息进行比较的原则如下: 判断姿态信息中 包含的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信息和数据釆 集卡釆集转化后的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信 息是否一致, 若一致时不进行角度补偿, 若不一致时进行角度补偿, 角度补偿 作为比较结果。
如图 2所示, 一种基于动中通伺服系统的控制方法, 包括步骤如下: ( 1 )方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码 器实时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯 仰位置信息、 横滚位置信息、 极化角度信息;
( 2 )数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器釆集方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度 信息, 并将上述信息发送至 ACU和捷联惯组;
( 3 ) ACU 实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰 角度信息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信 息、 极化角度信息用于进行用户监控;
( 4 ) ACU通过数据交互读取捷联惯组发送的系统姿态信息用于对捷联惯 组的工作状态进行判断, 同时 ACU 向捷联惯组发出控制指令, 所述控制指令 包括卫星的名称、 经度参数、 极化方式、 信标频率、 对星时间、 对星方式;
( 5 )捷联惯组实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息;
( 6 )捷联惯组将步骤(5 ) 中得到的方位角度信息、 俯仰角度信息、 横滚 角度信息、 极化角度信息, 与步骤(5 )中坐标变换后的姿态信息进行比较, 判 断姿态信息中包含的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度 信息和数据釆集卡釆集转化后的方位角度信息、极化角度信息、俯仰角度信息、 横滚角度信息是否一致, 若一致时不进行角度补偿并进入步骤(9 ), 若不一致 时进行角度补偿;
( 7 )捷联惯组根据 ACU发出的控制指令中的卫星的名称、 经度参数、 极 化方式、 信标频率找寻需要对准卫星的位置, 并按照 ACU 发出的对星方式在 规定的对星时间内将步骤( 6 )中角度补偿的比较结果转换为脉冲信号发送至六 轴运动控制及驱动模块用于进行对星;
( 8 )六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号完成对星,行 对星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第 一路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做 方位 360°旋转进而推动伺服天线做方位 360°旋转; 第二路和第三路控制和驱 动信号输出到第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推 动伺服天线按照一定角度做俯仰 ( 15。 -105。 )旋转; 第四路和第五路控制和 驱动信号输出到第三电动推杆和第四电动推杆, 第三电动推杆和第四电动推杆 推动伺服天线按照一定角度做横滚( 15。 -1 05。 )旋转; 第六路控制和驱动信 号输出到第二直线电机, 第二直线电机推动极化涡轮蜗杆按一定角度做极化 ( 180° 或者 360° )旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转和极化旋转 相互独立, 在空间形成 4个自由度;
( 9 )对星结束。
本发明已经经过专家评定, 且实际应用于的相应的移动卫星型号, 取得了 良好的技术效果。
本发明未详细阐述部分属于本领域公知技术。

Claims

权 利 要 求 书
1、 一种非正交六杆动中通伺服系统, 其特征在于包括: 测量反馈单元、 控 制单元、 驱动单元、 伺服天线; 其中, 测量反馈单元又包括方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器、 数据釆集卡; 控制单元 又包括集中控制单元 ACU、 捷联惯组、 六轴运动控制及驱动模块; 驱动单元又 包括直线电机、 方位涡轮蜗杆、 极化涡轮蜗杆、 电动推杆, 直线电机又包括第 一直线电机、 第二直线电机, 电动推杆又包括第一电动推杆、 第二电动推杆、 第三电动推杆、 第四电动推杆;
数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化 角度编码器釆集方位角度信息、俯仰位置信息、横滚位置信息、极化角度信息, 并将上述信息发送至 ACU和捷联惯组;
ACU实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、横滚位 置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信 息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极 化角度信息用于进行用户监控; ACU 用于向捷联惯组供电, 以及向捷联惯组 发出控制指令, 所述控制指令包括卫星的名称、 经度参数、 极化方式、 信标频 率、 对星时间、 对星方式; ACU 通过数据交互读取捷联惯组发送的系统姿态 信息用于对捷联惯组的是否正常工作的状态进行判断;
捷联惯组用于实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信息、 极化角 度信息与坐标变换后的姿态信息进行比较, 捷联惯组根据 ACU 发出的控制指 令中的卫星的名称、 经度参数、 极化方式、 信标频率找寻需要对准卫星的位置, 并按照 ACU 发出的对星方式在规定的对星时间内将角度的比较结果转换为脉 冲信号发送至六轴运动控制及驱动模块用于进行对星; 六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号进行对星, 进行对 星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第一 路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做方 位旋转进而推动伺服天线做方位旋转; 第二路和第三路控制和驱动信号输出到 第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推动伺服天线按 照一定角度做俯仰旋转; 第四路和第五路控制和驱动信号输出到第三电动推杆 和第四电动推杆, 第三电动推杆和第四电动推杆推动伺服天线按照一定角度做 横滚旋转; 第六路控制和驱动信号输出到第二直线电机, 第二直线电机推动极 化涡轮蜗杆按一定角度做极化旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转和 极化旋转相互独立, 在空间形成 4个自由度;
方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器实 时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯仰位 置信息、 横滚位置信息、 极化角度信息。
2、 根据权利要求 1所述的一种非正交六杆动中通伺服系统, 其特征在于: 所述捷联惯组釆用激光或者光纤捷联惯组。
3、 根据权利要求 1所述的一种非正交六杆动中通伺服系统, 其特征在于: 所述六轴运动控制及驱动模块输出六路控制和驱动信号控制和驱动直线电机、 电动推杆、 方位涡轮蜗杆、 极化涡轮蜗杆的起动、 停止、 转动动作以及位置、 速度和扭矩位置变化。
4、 根据权利要求 1所述的一种非正交六杆动中通伺服系统, 其特征在于: 所述第一电动推杆和第二电动推杆固定在天线的对称两侧; 第三电动推杆和第 四电动推杆对称地固定在天线的另外两侧, 第一电动推杆和第二电动推杆形成 的运动平面与第三电动推杆和第四电动推杆形成的运动平面垂直正交。
5、 根据权利要求 1所述的一种非正交六杆动中通伺服系统, 其特征在于: 捷联惯组进行姿态信息和数据釆集卡釆集转化后的方位角度信息、 极化角度信 息、 俯仰角度信息、 横滚角度信息进行比较的方法如下: 判断姿态信息中包含 的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信息和数据釆集卡 釆集转化后的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度信息是 否一致, 若一致时不进行角度补偿, 若不一致时进行角度补偿, 角度补偿作为 比较结果。
6、 一种基于权利要求 1 所述的动中通伺服系统的控制方法, 其特征在于 步骤如下:
( 1 )方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码 器实时获取方位旋转、 俯仰旋转、 横滚旋转和极化旋转时的方位角度信息、 俯 仰位置信息、 横滚位置信息、 极化角度信息;
( 2 )数据釆集卡从方位角度编码器、 俯仰位置编码器、 横滚位置编码器、 极化角度编码器釆集方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度 信息, 并将上述信息发送至 ACU和捷联惯组;
( 3 ) ACU 实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰 角度信息和横滚角度信息, 然后将方位角度信息、 俯仰角度信息、 横滚角度信 息、 极化角度信息用于进行用户监控;
( 4 ) ACU通过数据交互读取捷联惯组发送的系统姿态信息用于对捷联惯 组的工作状态进行判断, 同时 ACU 向捷联惯组发出控制指令, 所述控制指令 包括卫星的名称、 经度参数、 极化方式、 信标频率、 对星时间、 对星方式;
( 5 )捷联惯组实时测量姿态信息,并将测量得到的姿态信息进行坐标变换, 同时实时接收数据釆集卡釆集到的方位角度信息、 俯仰位置信息、 横滚位置信 息、 极化角度信息, 并将俯仰位置信息和横滚位置信息转换为俯仰角度信息和 横滚角度信息;
( 6 )捷联惯组将步骤(5 ) 中得到的方位角度信息、 俯仰角度信息、 横滚 角度信息、 极化角度信息, 与步骤(5 )中坐标变换后的姿态信息进行比较, 判 断姿态信息中包含的方位角度信息、 极化角度信息、 俯仰角度信息、 横滚角度 信息和数据釆集卡釆集转化后的方位角度信息、极化角度信息、俯仰角度信息、 横滚角度信息是否一致, 若一致时不进行角度补偿并进入步骤(9 ), 若不一致 时进行角度补偿;
( 7 )捷联惯组根据 ACU发出的控制指令中的卫星的名称、 经度参数、 极 化方式、 信标频率找寻需要对准卫星的位置, 并按照 ACU 发出的对星方式在 规定的对星时间内将步骤( 6 )中角度补偿的比较结果转换为脉冲信号发送至六 轴运动控制及驱动模块用于进行对星;
( 8 )六轴运动控制及驱动模块根据捷联惯组发送的脉冲信号完成对星,对 星的具体方式如下: 六轴运动控制及驱动模块输出六路控制和驱动信号, 第一 路控制和驱动信号输出到第一直线电机, 第一直线电机推动方位涡轮蜗杆做方 位旋转进而推动伺服天线做方位旋转; 第二路和第三路控制和驱动信号输出到 第一电动推杆和第二电动推杆, 第一电动推杆和第二电动推杆推动伺服天线按 照一定角度做俯仰旋转; 第四路和第五路控制和驱动信号输出到第三电动推杆 和第四电动推杆, 第三电动推杆和第四电动推杆推动伺服天线按照一定角度做 横滚旋转; 第六路控制和驱动信号输出到第二直线电机, 第二直线电机推动极 化涡轮蜗杆按一定角度做极化旋转; 所述的方位旋转、 俯仰旋转、 横滚旋转和 极化旋转相互独立, 在空间形成 4个自由度;
( 9 )对星结束。
PCT/CN2014/081146 2014-05-27 2014-06-30 一种非正交六杆动中通伺服系统及控制方法 WO2015180229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14892970.6A EP3088981B1 (en) 2014-05-27 2014-06-30 Non-orthogonal six-rod satellite communication in motion servo system and control method
US15/108,776 US9541913B2 (en) 2014-05-27 2014-06-30 Non-orthogonal six-rod satellite communication in motion servo system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410228509.1A CN104133432B (zh) 2014-05-27 2014-05-27 一种非正交六杆动中通伺服系统及控制方法
CN201410228509.1 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015180229A1 true WO2015180229A1 (zh) 2015-12-03

Family

ID=51806151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081146 WO2015180229A1 (zh) 2014-05-27 2014-06-30 一种非正交六杆动中通伺服系统及控制方法

Country Status (4)

Country Link
US (1) US9541913B2 (zh)
EP (1) EP3088981B1 (zh)
CN (1) CN104133432B (zh)
WO (1) WO2015180229A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310645A (zh) * 2020-11-06 2021-02-02 中国电子科技集团公司第五十四研究所 一种3rsr并联机构天线的工作空间闭环控制方法
CN113300106A (zh) * 2021-06-08 2021-08-24 中国电子科技集团公司第五十四研究所 一种两轴天线过顶方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760825B2 (ja) * 2016-11-11 2020-09-23 三菱重工業株式会社 レーダ装置及び航空機
CN108448257A (zh) * 2018-04-17 2018-08-24 北京星网卫通科技开发有限公司 机械式极化切换装置
US11320509B2 (en) * 2018-04-17 2022-05-03 Apple Inc. Electronic devices with motion sensing and angle of arrival detection circuitry
CN108980586A (zh) * 2018-09-14 2018-12-11 桂林飞宇科技股份有限公司 一种非正交稳定器结构
CN110672130B (zh) * 2019-11-19 2021-09-07 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ekf对准方法
CN110672131B (zh) * 2019-11-19 2021-08-10 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ukf对准方法
CN112635996A (zh) * 2020-11-06 2021-04-09 广州辰创科技发展有限公司 一种ka波段天线指向控制执行方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860296A (zh) * 2010-04-29 2010-10-13 北京航天控制仪器研究所 一种基于浮点dsp的伺服运动控制装置
US20110093250A1 (en) * 2009-10-15 2011-04-21 American Gnc Corporation Gyrocompass modeling and simulation system (GMSS) and method thereof
CN102608912A (zh) * 2012-03-23 2012-07-25 中北大学 主动式半捷联惯性测量装置驱动系统的精确控制方法
CN202452059U (zh) * 2012-01-12 2012-09-26 西安市瑞特测控技术有限责任公司 陀螺稳定云台
CN103414376A (zh) * 2013-07-25 2013-11-27 北京航天控制仪器研究所 内置角度传感器一体化超声电机伺服控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305672A (en) * 1962-12-27 1967-02-21 United Aircraft Corp System for bounding the radius coordinate of an orbiting vehicle
US4197548A (en) * 1976-06-01 1980-04-08 B. E. Industries, Inc. Antenna stabilization system
US5202695A (en) * 1990-09-27 1993-04-13 Sperry Marine Inc. Orientation stabilization by software simulated stabilized platform
CA2076894C (en) * 1991-11-27 1998-11-03 John F. Yocum Three axis thruster modulation
US5610820A (en) * 1995-03-23 1997-03-11 Martin Marietta Corp. Minimum propellant, zero momentum spacecraft attitude control system
US6052647A (en) * 1997-06-20 2000-04-18 Stanford University Method and system for automatic control of vehicles based on carrier phase differential GPS
US6198452B1 (en) * 1999-05-07 2001-03-06 Rockwell Collins, Inc. Antenna configuration
US6285928B1 (en) * 2000-01-06 2001-09-04 Space Systems/Loral, Inc. Onboard attitude control using reaction wheels
CN102868029B (zh) * 2012-10-08 2014-11-05 中国电子科技集团公司第五十四研究所 一种用于动中通散射的天线对准方法
CN103022692B (zh) * 2012-11-14 2014-09-17 广东隆伏通讯设备有限公司 一种“动中通”卫星指向、捕获与跟踪方法及其系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110093250A1 (en) * 2009-10-15 2011-04-21 American Gnc Corporation Gyrocompass modeling and simulation system (GMSS) and method thereof
CN101860296A (zh) * 2010-04-29 2010-10-13 北京航天控制仪器研究所 一种基于浮点dsp的伺服运动控制装置
CN202452059U (zh) * 2012-01-12 2012-09-26 西安市瑞特测控技术有限责任公司 陀螺稳定云台
CN102608912A (zh) * 2012-03-23 2012-07-25 中北大学 主动式半捷联惯性测量装置驱动系统的精确控制方法
CN103414376A (zh) * 2013-07-25 2013-11-27 北京航天控制仪器研究所 内置角度传感器一体化超声电机伺服控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088981A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310645A (zh) * 2020-11-06 2021-02-02 中国电子科技集团公司第五十四研究所 一种3rsr并联机构天线的工作空间闭环控制方法
CN113300106A (zh) * 2021-06-08 2021-08-24 中国电子科技集团公司第五十四研究所 一种两轴天线过顶方法
CN113300106B (zh) * 2021-06-08 2022-07-01 中国电子科技集团公司第五十四研究所 一种两轴天线过顶方法

Also Published As

Publication number Publication date
EP3088981B1 (en) 2019-08-21
US9541913B2 (en) 2017-01-10
EP3088981A4 (en) 2017-09-13
CN104133432A (zh) 2014-11-05
EP3088981A1 (en) 2016-11-02
CN104133432B (zh) 2016-08-24
US20160327926A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2015180229A1 (zh) 一种非正交六杆动中通伺服系统及控制方法
CN108698223A (zh) 机器人关节和具有至少一个这种机器人关节的机器人
CN101545790B (zh) 惯性器件旋转振动性能测试系统
CN104897400B (zh) 一种机器人关节减速器试验台
CN104191434B (zh) 中空串联机械臂
CN102039589B (zh) 模块化的灾害救援机器人
CN104748840A (zh) 柔性关节柔性臂杆振动特性分析与控制的方法及实验装置
CN102157790A (zh) 一种用于动中通的天线跟踪系统
CN104914864A (zh) 一种移动装置、移动装置控制系统及控制方法
CN204788945U (zh) 一种机器人关节减速器试验台
CN104723341A (zh) 基于连接和阻尼配置的柔性关节机械臂的位置控制方法
CN103802621A (zh) 基于周转轮系的轮桨腿复合构型两栖机器人
CN108638015B (zh) 基于量化通信的主从机械臂同步跟踪控制方法
CN104444896A (zh) 具有测量和缓冲功能的一体化恒张力吊索控制装置
CN201525026U (zh) 模块化的灾害救援机器人
CN108681239B (zh) 一种两轴一体陀螺加速度计解耦伺服控制回路系统及方法
CN105014664A (zh) 适用于狭小空间的轻质模块化机械臂
CN101590650B (zh) 解耦的三转动自由度并联机构
CN102591245A (zh) 一种步进电机驱动稳定平台的方法
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
CN204997688U (zh) 移动装置
CN104090577A (zh) 一种基于自抗扰的天线位置控制方法
CN101369134A (zh) 构建全方位移动装置运动模型的方法及设备
CN112319387B (zh) 一种拉线控制式随稳平台
CN205630638U (zh) 一种以超声电机为驱动的机械手臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892970

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108776

Country of ref document: US

Ref document number: 2014892970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE