WO2015180191A1 - 印刷电路板及其制作方法 - Google Patents

印刷电路板及其制作方法 Download PDF

Info

Publication number
WO2015180191A1
WO2015180191A1 PCT/CN2014/079032 CN2014079032W WO2015180191A1 WO 2015180191 A1 WO2015180191 A1 WO 2015180191A1 CN 2014079032 W CN2014079032 W CN 2014079032W WO 2015180191 A1 WO2015180191 A1 WO 2015180191A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
circuit board
embedded
printed circuit
groove
Prior art date
Application number
PCT/CN2014/079032
Other languages
English (en)
French (fr)
Inventor
王攀
郝沁汾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/079032 priority Critical patent/WO2015180191A1/zh
Priority to CN201480038029.7A priority patent/CN105359635A/zh
Publication of WO2015180191A1 publication Critical patent/WO2015180191A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • Embodiments of the present invention relate to silicon light technology, and in particular, to a printed circuit board and a method of fabricating the same.
  • PCB printed circuit board
  • an Opto-electrical hybrid printed circuit board (OE-PCB) embedded in a polymer optical waveguide which firstly spin-coats a layer of polymer under cladding material on a PCB substrate.
  • the under cladding layer is cured by ultraviolet exposure, and then a layer of polymer material is spin-coated as a core layer, and a corresponding mask is formed according to the required optical waveguide layer network structure, and the mask is placed on the core layer through the ultraviolet
  • the core layer is exposed such that a corresponding optical waveguide layer network structure is formed on the core layer, and finally a layer of the polymer over cladding material is spin-coated on the core layer, and exposed and cured under ultraviolet light.
  • the method for fabricating the optical waveguide 0E-PCB is simple in processing and low in cost, so that mass production can be achieved.
  • Embodiments of the present invention provide a printed circuit board to reduce the complexity of the manufacturing process of the printed circuit board and reduce the manufacturing cost.
  • an embodiment of the present invention provides a printed circuit board including an underclad layer, a recess is disposed on the lower clad layer, and an optical fiber for transmitting an optical signal is embedded in the recess, the optical fiber Includes microfibers between 500nm and 50um in diameter.
  • the optical fiber for transmitting optical signals embedded in the groove further includes a common optical fiber having a diameter greater than 50 um, and the end of the micro optical fiber. a diameter gradually increasing to form a tapered region, wherein a bottom portion of the tapered region of the microfiber is connected to the common optical fiber, wherein a diameter of a bottom portion of the tapered portion of the microfiber is different from a common optical fiber embedded in the groove
  • the diameter is the same.
  • the embodiment of the present invention provides a second possible implementation manner, in which at least one end of the groove, a bottom of the IHJ slot and a side of the IHJ slot form a turn, and a circle is formed at the turn A curved corner, the microfiber embedded in the IHJ slot forms a turn at a circular arc corner of the IHJ slot.
  • the embodiment of the present invention further provides a third possible implementation manner of the first aspect, where the lower cladding layer is provided with the concave Slot, including:
  • the lower cladding layer has different grooves corresponding to different versions of the optical waveguide network path map, wherein each of the versions of the optical waveguide network path map corresponds to the optical fiber embedded in the IHJ slot to form an optical waveguide layer. .
  • the embodiment of the present invention further provides the first aspect.
  • a fourth possible implementation manner is that the groove provided on the lower cladding layer intersects at a position where the depth of the groove is greater than or equal to the sum of the diameters of the optical fibers embedded at the position.
  • an embodiment of the present invention further provides a method for fabricating a printed circuit board, including: providing an under cladding layer on a substrate for fabricating the circuit board;
  • a recess is provided in the lower cladding, and an optical fiber for transmitting an optical signal is embedded in the recess, the optical fiber comprising a microfiber having a diameter of between 500 nm and 50 ⁇ m.
  • the embodiment of the present invention provides a first possible implementation manner of the second aspect, wherein the optical fiber for transmitting the optical signal embedded in the groove further includes a common optical fiber having a diameter greater than 50 um, and the micro a diameter of the end of the optical fiber is gradually increased to form a tapered region, and a bottom portion of the tapered portion of the microfiber is connected to the common optical fiber, wherein a diameter of a bottom portion of the tapered portion of the microfiber is embedded in the groove
  • the ordinary fiber has the same diameter.
  • the embodiment of the present invention provides a second possible implementation manner of the second aspect, where the lower cladding layer has different grooves corresponding to different versions of the optical waveguide network path map.
  • the optical waveguide network path diagram of each version corresponds to the optical fiber embedded in the groove, and forms an optical waveguide layer.
  • a printed circuit board includes a lower cladding layer, and a recess is disposed on the lower cladding layer, and an optical fiber for transmitting an optical signal is embedded in the recess, and the optical fiber includes a diameter of 500 nm.
  • Microfiber between -50um. Since the transmission loss of the microfiber is small, it is not necessary to fluorinate the embedded optical waveguide layer as in the prior art, which greatly reduces the process complexity and reduces the manufacturing cost of the printed circuit board.
  • FIG. 1 is a schematic structural diagram of a printed circuit board according to an embodiment of the present invention
  • FIG. 1b is a schematic diagram of a lower cladding layer having an IHJ slot according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a lower cladding layer having a crossed optical fiber according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a printed circuit board according to an embodiment of the present invention
  • 4a is a schematic diagram of a printed circuit board according to an embodiment of the present invention.
  • FIG. 4b is a schematic structural view of an IHJ slot provided by an example of the present invention.
  • FIG. 5 is a schematic diagram of a method for fabricating a printed circuit board according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a printed circuit board according to an embodiment of the present invention.
  • the printed circuit board 100 includes a substrate 11, an upper cladding layer 12, an under cladding layer 13, and an embedded layer.
  • the optical fiber 14 for transmitting signals on the cladding layer is described, and the embedded optical fiber forms a fiber waveguide layer; in order to clarify the internal structure in FIG. 1a, the optical fiber embedded in the lower cladding layer is represented as visible, and the actual structure is not Limit whether Visible; the upper cladding layer is above the fiber waveguide layer.
  • a corresponding groove 131 is disposed on the lower cladding layer 13 corresponding to the optical waveguide network path, and the optical fiber 14 for transmitting the optical signal is embedded in the groove 131.
  • the optical fiber embedded in the recess 131 includes a microfiber directly between 500 nm and 50 ⁇ m, and the microfiber embedded in the recess 131 for transmitting an optical signal forms a fiber waveguide layer.
  • the optical waveguide network path diagram includes a routing direction of the optical fiber 14.
  • the microfibers referred to in the embodiments of the present invention each have a diameter of 50 um to 500 um, and the micro fiber in the example of the present invention may be a single mode fiber or a multimode fiber.
  • a schematic diagram of a lower cladding layer disposed on a PCB liner of a printed circuit board, and a layer of a polymeric material having a thickness of about 5 um is spin-coated on a glass epoxy resin copper clad laminate board commonly used for PCBs.
  • the ester is exposed to ultraviolet light to cure the spin-coated polymer material to support the subsequently embedded microfiber; on this basis, a layer of the same polymeric material having a thickness of 6 um can be spin-coated.
  • the polymer coated on the PCB is polymerized as a lower cladding layer; according to the actual optical waveguide network path diagram, a recess for embedding the microfiber is disposed on the lower cladding layer; the groove setting can be performed by the following method
  • the polymer material of the cladding under ultraviolet exposure is used to partially cure the under cladding layer under ultraviolet light, and the rest is processed to form an IHJ groove.
  • a micro-fiber having a diameter of 3 um is embedded in the IHJ tank; the micro-fiber can be heated to a micro-fiber having a diameter of 3 um by heating a common fiber having a diameter of more than 50 um, and is convenient for description.
  • the common optical fibers described below are all optical fibers having a diameter greater than 50 um.
  • the optical waveguide network path diagram includes a routing direction of the optical fiber, wherein each of the versions of the optical waveguide network path map corresponds to an optical fiber embedded in the groove, forming an optical waveguide layer. And, a position where the grooves provided on the lower cladding layer intersect, where the depth of the grooves is greater than or equal to the sum of the diameters of the optical fibers embedded at the positions.
  • Figure 2 shows a schematic diagram of the lower cladding layer with crossed fibers, in the transverse grooves and vertical grooves in the figure.
  • the microfiber 221 embedded in the lateral groove and the microfiber 222 embedded in the vertical groove intersect, and the concave of the lower cladding at the intersection
  • the depth of the groove needs to be set such that the two microfibers are embedded in the groove. If the diameter of the microfiber is 3 um, the depth of the groove at the intersection of the two microfibers needs to be at least 6 um.
  • the refractive index of the under cladding material used to form the recess is less than the refractive index of the fiber material in the IHJ trench embedded in the lower cladding.
  • the end face of the microfiber is polished to improve the coupling degree of subsequent connection with other fibers.
  • a layer of polymer material is further spin-coated on the under cladding layer embedded with the microfiber, and the material may be polydecyl methacrylate, and the spin-coated polymeric material is cured by an ultraviolet exposure method to form an overcladding layer.
  • the microfiber is protected; or a fiberboard of the same size is covered on the lower cladding layer, and the printed circuit board covering the fiberboard is subjected to a high temperature and high pressure process to process the printed circuit board.
  • the embedded optical waveguide layer is not required to be fluorinated as in the prior art, the process complexity is greatly reduced, and the printed circuit board is reduced.
  • the manufacturing cost is small, and the set cross-sectional size of the microfiber is small, so that an optical waveguide layer having a high integration density is obtained.
  • the printed circuit board 300 is provided in the embodiment of the present invention, as shown in FIG. Knowing the structure of the printed circuit board fiber waveguide layer, the printed circuit board in FIG. 3 does not show the upper cladding layer, shows the lower cladding layer 31 on the PCB liner 30, and the grooves (grooves) provided in the lower cladding layer. In FIG. 3, an optical fiber is embedded in the recess, and the embedded optical fiber is used to transmit an optical signal to form a fiber waveguide layer;
  • the optical fiber for transmitting optical signals in the optical fiber waveguide layer includes a micro fiber 312 having a diameter between 500 nm and 50 ⁇ m and a common optical fiber 313 having a diameter greater than 50 um, and the common optical fiber is embedded in the groove. a position of an edge of the printed circuit board 300, the micro-fiber 312 in the fiber waveguide layer is connected to the common optical fiber 313, wherein the micro-fiber is used to connect one end of the common optical fiber, and the diameter is gradually increased.
  • the tapered portion 314 is formed to be connected to the microfiber 312 by a fiber 314 having a tapered region, wherein the diameter of the bottom of the tapered region 314 is the same as the diameter of the common optical fiber.
  • the bottom of the tapered region 314 is connected to the common optical fiber 313, wherein the tapered region of the two ends of the microfiber may be a conical region, and the bottom of the tapered region is the one having the largest diameter of the tapered region.
  • the micro-fiber 312 is connected to a tapered region formed by one end of the ordinary optical fiber 313, and the micro-fiber 312 is connected to the ordinary optical fiber 313 as a transition region, or a tapered region of the optical fiber 314 is connected to one end of the micro-fiber 312.
  • Ordinary optical fiber 313 is used as a transition zone for connecting microfibers in a printed circuit board to ordinary fibers other than printed circuit boards, and it is easy to solve the coupling problem between microfibers and ordinary fibers.
  • the embodiment of the present invention further provides a printed circuit board 400 for realizing a 90 degree turn of the optical path in the plane of the vertical optical waveguide layer in the printed circuit board, as shown in FIG. 4a, in order to clarify the internal structure, in FIG. 4a
  • the upper cladding of the printed circuit board is not shown.
  • a recess is provided on the lower cladding layer 41 on the substrate 40 corresponding to the optical waveguide network path diagram, and the structure of the recess is shown in FIG. 4b, the IHJ slot.
  • the two ends of the 411 form a 90 degree turn, and the 90 degree turn forms a circular arc.
  • the microfiber 412 embedded in the groove forms an optical waveguide layer, and the microfiber 412 is bent and bent along the corner at a circular arc corner, so that the microfiber 412 is 90 degrees in the groove.
  • the turn forms a 90 degree turn.
  • the depth of the IHJ slot can be greater than the diameter of the microfiber, for example, a depth of 80 um.
  • the microfiber is embedded in the IHJ slot to form a fiber waveguide layer for transmitting optical signals.
  • the microfiber may have a smaller bending radius and may pass through the groove. The corner realizes the 90 degree bending of the micro fiber, thereby achieving a 90 degree turn of the optical path in the printed circuit board along the plane direction of the vertical optical waveguide layer, which simplifies the manufacturing process and reduces the manufacturing cost compared with the prior art.
  • an embodiment of the present invention further provides a method for fabricating a printed circuit board, including: Step 501: providing an under cladding layer on a substrate used to fabricate the circuit board;
  • Step 502 Set a groove on the lower cladding layer corresponding to the optical waveguide network path map, and insert an optical fiber for transmitting the optical signal into the groove;
  • optical fiber embedded in the IHJ slot forms a fiber waveguide layer.
  • the optical fibers forming the fiber waveguide layer are heated and stretched into microfibers having a diameter of between 500 nm and 50 ⁇ m before being embedded in the grooves; the optical fibers embedded in the grooves include The microfiber.
  • the embodiment of the present invention may further include:
  • Step 503 providing an upper cladding layer for fixing and protecting the fiber waveguide layer above the lower cladding layer.
  • the optical fiber forming the fiber waveguide layer further includes a common optical fiber having a diameter greater than 50 um, and the optical fiber for transmitting the optical signal is embedded in the groove, including: a common optical fiber is embedded in the recess near a position of the edge of the printed circuit board; the microfiber embedded in the recess is connected to the common optical fiber;
  • the microfiber is used to connect one end of the common optical fiber, and the diameter is gradually increased to be a tapered region.
  • the diameter of the bottom of the tapered region is the same as the diameter of the common optical fiber, and the microfiber passes through the cone.
  • the bottom of the shaped area is connected to the common fiber.
  • the angle formed by the two ends of the IHJ slot is 90 degrees, and the 90 degree angle of the end can be set as a circular arc corner, and the micro fiber embedded in the groove is at the corner.
  • the curved shape is curved along the arcuate corner to cause the microfiber to form a 90 degree turn at the arcuate corner of the IHJ slot.
  • Different grooves, wherein each version of the optical waveguide network path map corresponds to a fiber embedded in the groove for transmitting an optical signal to form an optical waveguide layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明实施例提供一种印刷电路板及其制作方法,包括下包层,在所述下包层上设置有凹槽,在所述凹槽中嵌入有用于传输光信号的光纤,所述光纤包括直径在500nm-50um之间的微光纤。由于微光纤的传输损耗很小,不需要如现有技术对嵌入的光波导层进行氟化,大幅度降低了工艺复杂度,减小了印刷电路板的制作成本。

Description

印刷电路板及其制作方法 技术领域
本发明实施例涉及硅光技术,尤其涉及一种印刷电路板及其制作方法。
背景技术
随着人们对数据消费量的快速增长,数据中心需要处理的数据量变得越来 越大, 需要大量的处理器协同完成工作, 这导致数据中心对芯片间互连带宽的 需求变得越来越大, 对系统内印刷电路板( Printed circuit board, PCB )提出了 更高要求。 因此, 如何在 PCB中实现高性能、 低制作成本的光波导层是解决数 据中心面临的瓶颈问题的关键。
现有技术中提供了一种嵌入聚合物光波导的光电混合印刷电路板 ( Opto-electrical hybrid printed circuit board, OE-PCB ) , 该方案首先在 PCB基 板上旋涂一层聚合物下包层材料,通过紫外线曝光而使下包层固化, 然后在旋 涂一层聚合物材料作为芯层, 根据需要的光波导层网络结构制作对应的掩膜 版,将掩膜版放置在芯层上通过紫外曝光芯层而使得在芯层上形成对应的光波 导层网络结构, 最后在芯层上旋涂一层聚合物上包层材料,在紫外线下曝光固 化即可。 该方法制作光波导 0E-PCB加工简单, 成本较低, 因此可实现大规模 生产。
然后, 发明人在研究中发现, 由于对 1310和155011111通信波段, 聚合物光 波导存在明显的吸收损耗, 通常只适合在 850nm波段范围使用, 具有很大的局 限性, 而且通常需要对聚合物波导进行氟化, 制作工艺复杂且大大增加了印刷 电路板的制作成本。 发明内容
本发明实施例提供一种印刷电路板, 以减小印刷电路板制作工艺的复杂 度, 且降低制作成本。
第一方面, 本发明实施例提供一种印刷电路板, 包括下包层, 在所述下包 层上设置有凹槽, 在所述凹槽中嵌入有用于传输光信号的光纤, 所述光纤包括 直径在 500nm-50um之间的微光纤。
结合第一方面, 本发明实施例提供第一种可能的实现方式, 所述凹槽中嵌 入的用于传输光信号的光纤中, 还包括直径大于 50um的普通光纤, 所述微光 纤的端部直径逐渐增大而呈锥形区域, 所述微光纤的锥形区域底部与所述普 通光纤相连, 其中, 所述微光纤的锥形区域底部直径与所述嵌入在凹槽中的普 通光纤的直径相同。
结合第一方面, 本发明实施例提供第二种可能的实现方式,在所述凹槽的 至少一端, 所述 IHJ槽的底部和所述 IHJ槽的侧面形成转折, 在所述转折处形成圓 弧形转角, 所述嵌入所述 IHJ槽中的微光纤在所述 IHJ槽的圓弧形转角处形成转 折。
结合第一方面以及第一方面的第一种或第二种可能的实现方式,本发明实 施例还提供第一方面的第三种可能的实现方式, 所述下包层上设置有所述凹 槽, 包括:
所述下包层上对应不同版本的光波导网络路径图设置不同凹槽, 其中, 所述每一个版本的光波导网络路径图对应设置的 IHJ槽中所嵌入的光纤,形成一 层光波导层。
结合第一方面的第三种可能的实施方式,本发明实施例还提供第一方面的 第四种可能的实现方式, 在所述下包层上设置的凹槽发生交叉的位置, 所述位 置处凹槽的深度大于等于所述位置处嵌入的光纤直径的总和。
第二方面, 本发明实施例还提供一种印刷电路板的制作方法, 包括: 在用于制作所述电路板的衬底上设置下包层;
在所述下包层上设置凹槽, 在所述凹槽中嵌入有用于传输光信号的光纤, 所述光纤包括直径在 500nm-50um之间的微光纤。
结合第二方面, 本发明实施例提供第二方面的第一种可能的实现方式, 所 述凹槽中嵌入的用于传输光信号的光纤中,还包括直径大于 50um的普通光纤, 所述微光纤的端部直径逐渐增大而呈锥形区域, 所述微光纤的锥形区域底部 与所述普通光纤相连, 其中, 所述微光纤的锥形区域底部直径与所述嵌入在凹 槽中的普通光纤的直径相同。
结合第二方面的第一种可能的实现方式,本发明实施例提供第二方面的第 二种可能的实现方式,所述下包层上对应不同版本的光波导网络路径图设置不 同凹槽, 其中, 所述每一个版本的光波导网络路径图对应设置的凹槽中所嵌入 的光纤, 形成一层光波导层。
本发明实施例所提供的印刷电路板, 包括下包层, 在所述下包层上设置有 凹槽, 在所述凹槽中嵌入有用于传输光信号的光纤, 所述光纤包括直径在 500nm-50um之间的微光纤。 由于微光纤的传输损耗很小, 不需要如现有技术 对嵌入的光波导层进行氟化, 大幅度降低了工艺复杂度, 减小了印刷电路板的 制作成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 la为本发明实施例提供的一种印刷电路板的结构示意图;
图 lb为本发明实施例提供的一种具有 IHJ槽的下包层的示意图;
图 2为本发明实施例提供的一种具有交叉光纤的下包层的示意图; 图 3为本发明实施例提供的一种印刷电路板的示意图;
图 4a为本发明实施例提供的一种印刷电路板的示意图;
图 4b为本发明实例所提供的一种 IHJ槽的结构示意图;
图 5为本发明实施例所提供的一种印刷电路板的制作方法。 具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例 ,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1 a为本发明实施例所提供的一种印刷电路板的结构示意图, 如图 1 a所 示, 印刷电路板 100 包括衬底 11 , 上包层 12, 下包层 13 , 以及嵌入在所述下包 层上用于传输信号的光纤 14 , 所述嵌入的光纤形成光纤波导层; 附图 la中为了 更清楚内部结构, 将嵌入下包层的光纤表示为可视, 实际结构中并不限定是否 可视; 所述上包层位于所述光纤波导层之上。
参见图 lb所示的具有凹槽的下包层的示意图,在下包层 13上对应光波导网 络路径图设置有凹槽 131 , 所述凹槽 131内嵌入有用于传输光信号的光纤 14, 所 述凹槽 131内嵌入的光纤包括直经在 500nm-50um之间的微光纤, 嵌入凹槽 131 中的用于传输光信号的微光纤形成光纤波导层。其中, 所述光波导网络路径图 中包括光纤 14的布线走向。
其中, 为方便描述, 在本发明实施例中所称的微光纤均为直径在 50um-500um之间, 并且, 本发明实例中的微光纤可以是单模光纤也可以是多 模光纤。
印刷电路板的 PCB衬板上设置的下包层示意图, 在 PCB常用的玻璃环氧树 脂树脂覆铜板板材上旋涂一层厚度约为 5um的聚合材料, 该聚合材料可以选择 聚曱基丙烯酸曱酯, 釆用紫外光线曝光该材料, 固化所述旋涂的聚合物材料, 为后续嵌入的微光纤其支撑作用; 在此基础上, 还可以旋涂一层厚度为 6um的 同样的聚合材料, 在 PCB板上所旋涂的聚合为作为下包层; 按照实际需要的光 波导网络路径图, 在所述下包层上设置用于嵌入微光纤的凹槽; 凹槽设置可以 釆用以下方法: 根据实际布线的光波导网络路径图设计对应的掩膜版, 利用紫 外线曝光下包层的聚合物材料,使下包层暴露在紫外线下的部分固化, 其余部 分经过处理后形成 IHJ槽。 将直径为 3um微光纤嵌入到所述的 IHJ槽中; 其中的 微光纤可以通过将二氧化硅材料的直径大于 50um的普通光纤进行加热后拉伸 为直径为 3um的微光纤, 为描述方便, 下文所述的普通光纤均为光纤的直径大 于 50um的光纤。
另外,在下包层中可对应不同版本的光波导网络路径图设置不同凹槽, 所 述光波导网络路径图中包括光纤的布线走向, 其中, 所述每一个版本光波导网 络路径图对应设置的凹槽中所嵌入的光纤, 形成一层光波导层。 并且, 在所述 下包层上设置的凹槽发生交叉的位置,所述位置处凹槽的深度大于等于所述位 置处嵌入的光纤直径的总和。 例如图 2所示具有交叉光纤的下包层示意图, 在 图中横向凹槽和竖向凹槽。而且分别对应两个不同版本的光波导网络路径图设 置的凹槽,在横向凹槽中嵌入的微光纤 221和竖向凹槽中嵌入的微光纤 222会发 生交叉,交叉处下包层的凹槽的深度需要设置为能使两根微光纤重叠埋入凹槽 内。假如微光纤的直径是 3um, 两根微光纤交叉处凹槽的深度至少需要是 6um。
优选的, 为减小传输损耗, 用于制作具有凹槽的下包层材料的折射率小于 嵌入下包层的 IHJ槽中的光纤材料的折射率。
本发明实施例中,对微光纤的端面进行抛光,提高后续和其他光纤进行连 接的耦合度。
在嵌入了微光纤的下包层上再旋涂一层聚合物材料 ,该材料可以是聚曱基 丙烯酸曱酯, 釆用紫外线曝光的方法, 固化所旋涂的聚合材料而形成上包层, 对微光纤进行保护; 或者在下包层上覆盖一块尺寸相同的纤维板,将覆盖纤维 板后的印刷电路板经过高温高压的流程, 加工成型印刷电路板。
本发明实施例所提供的印刷电路板, 由于微光纤的传输损耗很小, 不需要 如现有技术对嵌入的光波导层进行氟化, 大幅度降低了工艺复杂度, 减小了印 刷电路板的制作成本,且微光纤的设置截面尺寸很小,使得获得很高的集成密 度的光波导层。
由于微光纤的截面尺寸很小,使得与微光纤所在印刷电路板之外的普通光 纤的耦合连接存在一定的困难, 需要额外的工艺步骤来实现对准和固定, 因此 如图 3所示的印刷电路板示意图, 本发明实施例还提供了一种印刷电路板 300, 为清楚地了解印刷电路板光纤波导层的结构, 图 3中的印刷电路板未示出上包 层, 展示了在 PCB衬板 30上的下包层 31 , 以及下包层中设置的凹槽(凹槽在附 图 3中未示出) , 凹槽中嵌入了光纤, 所述嵌入的光纤用于传输光信号而形成 光纤波导层;
其中, 所述光纤波导层中用于传输光信号的光纤中, 包括直径在 500nm-50um之间的微光纤 312和直径大于 50um的普通光纤 313 , 所述普通光纤 嵌入在所述凹槽中靠近所述印刷电路板 300的边缘的位置, 所述光纤波导层中 的所述微光纤 312与所述普通光纤 313相连, 其中, 所述微光纤用于连接所述普 通光纤的一端, 直径逐渐增大而形成锥形区域 314 , 也可以通过单独增加一个 锥形区域的光纤 314和微光纤 312相连, 其中, 所述锥形区域 314底部直径与所 述普通光纤的直径相同,所述微光纤 312通过所述锥形区域 314底部与所述普通 光纤 313连接, 其中所述微光纤的两端的锥形区域可以是圓锥形的区域, 锥形 区域的底部为锥形区域直径最大的一个面。
313 , 微光纤 312连接普通光纤 313的一端形成的锥形区域, 作为过渡区域实现 微光纤 312和普通光纤 313无缝连接, 也可以在微光纤 312的一端连接一个锥形 区域的光纤 314,而普通光纤 313作为印刷电路板中的微光纤和印刷电路板之外 的普通光纤进行连接的过渡区, 而轻松解决微光纤和普通光纤之间的耦合问 题。
现有技术中, 为实现印刷电路板中光路沿垂直光波导层平面方向的转折, 通常需要在聚合物光波导端面设计反射结构来使光路沿垂直于光波导层平面 方向发生 90度转折, 结构制作比较复杂。
本发明实施例还提供一种印刷电路板 400 , 以实现印刷电路板中光路沿垂 直光波导层平面方向的 90度转折为例, 如图 4a所示, 为清楚内部结构, 所述图 4a中未示出印刷电路板的上包层。在图 4a中所示的印刷电路板中在衬底 40上的 下包层 41上对应于光波导网络路径图设置的凹槽, 所述凹槽的结构参见图 4b 所示, 所述 IHJ槽 411的两端的形成 90度的转折处, 所述 90度的转折处形成圓弧 形转角。 参见图 4a, 嵌入凹槽中的微光纤 412形成光波导层, 所述微光纤 412 在圓弧形转角处沿着所述转角弯曲上升, 从而所述微光纤 412在所述凹槽 90度 的转折形成 90度转折。 为便于微光纤在 IHJ槽的转角处进行弯曲, IHJ槽的深度可 以大于微光纤的直径, 例如深度为 80um。 在嵌入了光纤波导层之后, 在下包 层上覆盖一块尺寸和下包层相同的环氧玻璃纤维板 FR4, 然后加工成型为实现 微光纤 90度转角的印刷电路板。 本实施例中以 90度为例说明, 当然实际使用的 时候, 并不限定 90度,还可以在所述凹槽的底部和所述凹槽的侧面形成其他角 度的转折,从而能够在所述转折处形成圓弧形转角, 所述嵌入所述 IHJ槽中的微 光纤在所述 IHJ槽的圓弧形转角处形成转折。
本发明实施例釆用微光纤嵌入到 IHJ槽中形成用于传输光信号的光纤波导 层, 和现有技术中的普通光纤相比, 微光纤可以具有更小的弯曲半径, 可以通 过凹槽的转角实现微光纤的 90度弯曲,从而实现印刷电路板中光路沿垂直光波 导层平面方向的 90度转折, 和现有技术相比, 简化了制作工艺, 降低了制作成 本。
参见图 5 , 本发明实施例还提供一种印刷电路板的制作方法, 包括: 步骤 501 : 在用于制作所述电路板的衬底上设置下包层;
步骤 502: 在所述下包层上对应光波导网络路径图设置凹槽, 将用于传输 光信号的光纤嵌入所述凹槽中;
其中, 所述嵌入 IHJ槽中的所述光纤形成光纤波导层。
其中, 所述形成光纤波导层的光纤中, 至少一部分光纤在嵌入进所述凹槽 之前, 进行加热拉伸为直径在 500nm-50um之间的微光纤; 所述嵌入所述凹槽 的光纤包括所述微光纤。
为对下包层进行保护, 本发明实施例还可以包括:
步骤 503: 在所述下包层之上设置用于对光纤波导层进行固定和保护的上 包层。
优选的, 本发明实施例中, 所述形成光纤波导层的光纤中, 还包括直径大 于 50um的普通光纤, 所述将用于传输光信号的光纤嵌入所述凹槽中, 包括: 将所述普通光纤嵌入在所述凹槽中靠近所述印刷电路板的边缘的位置; 将所述嵌入所述凹槽中的微光纤与所述普通光纤相连;
其中, 所述微光纤用于连接所述普通光纤的一端, 直径逐渐增大而呈锥形 区域, 所述锥形区域底部直径与所述普通光纤的直径相同, 所述微光纤通过所 述锥形区域底部与所述普通光纤连接。 置的 IHJ槽的两个端部形成的转角, 以转角为 90度为例, 可以将端部的 90度转角 设置为圓弧形转角,所述嵌入凹槽中的微光纤在所述转角处沿着所述圓弧形转 角弯曲上升而使得所述微光纤在所述 IHJ槽的圓弧形转角形成 90度转折。 不同的凹槽, 其中,每一个版本的光波导网络路径图对应的凹槽中所嵌入的用 于传输光信号光纤形成一层光波导层。
图 4b实施例的具体描述, 不再赘述。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当 理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部 分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质 脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种印刷电路板, 包括下包层, 其特征在于:
在所述下包层上设置有凹槽,在所述凹槽中嵌入有用于传输光信号的光纤, 所述光纤包括直径在 500nm-50um之间的微光纤。
2、 根据权利要求 1所述的印刷电路板, 其特征在于, 所述凹槽中嵌入的用于传 输光信号的光纤中, 还包括直径大于 50um的普通光纤, 所述微光纤的端部 直径逐渐增大而呈锥形区域, 所述微光纤的锥形区域底部与所述普通光纤 相连, 其中, 所述微光纤的锥形区域底部直径与所述嵌入在 IHJ槽中的普通 光纤的直径相同。
3、 根据权利要求 1所述的印刷电路板, 其特征在于, 在所述凹槽的至少一端, 所述 IHJ槽的底部和所述 IHJ槽的侧面形成转折, 在所述转折处形成圓弧形转 角 , 所述嵌入所述 IHJ槽中的微光纤在所述 IHJ槽的圓弧形转角处形成转折。
4、 根据权利要求 1-3所述的印刷电路板, 其特征在于, 所述具有凹槽的下包层 材料的折射率小于所述嵌入所述 iHJ槽中的光纤材料的折射率。
5、 根据权利要求 1-3所述的印刷电路板, 其特征在于, 所述下包层上设置有所 述凹槽, 包括:
所述下包层上对应不同版本的光波导网络路径图设置不同凹槽, 其中, 所述 每一个版本的光波导网络路径图对应设置的凹槽中所嵌入的光纤, 形成一 层光波导层。
6、 根据权利要求 5所述的印刷电路板, 其特征在于, 在所述下包层上设置的凹 槽发生交叉的位置, 所述位置处凹槽的深度大于等于所述位置处嵌入的光 纤直径的总和。
7、 根据权利要求 1-3所述的印刷电路板, 其特征在于, 所述印刷电路板还包括 上包层, 所述上包层设置于所述下包层之上。
8、 一种印刷电路板的制作方法, 其特征在于, 包括: 在用于制作所述电路板的衬底上设置下包层; 在所述下包层上设置凹槽, 在所述凹槽中嵌入有用于传输光信号的光纤, 所述光纤包括直径在 500nm-50um之间的微光纤。
9、 根据权利要求 8所述的方法, 其特征在于, 所述凹槽中嵌入的用于传输光 信号的光纤中, 还包括直径大于 50um的普通光纤, 所述微光纤的端部直径 逐渐增大而呈锥形区域, 所述微光纤的锥形区域底部与所述普通光纤相 连, 其中, 所述微光纤的锥形区域底部直径与所述嵌入在凹槽中的普通光 纤的直径相同。
10、 根据权利要求 8所述的方法, 其特征在于, 在所述凹槽的至少一端的底部 和侧面形成转折, 在所述转折处形成圓弧形转角, 所述嵌入所述 IHJ槽中的 微光纤在所述 IHJ槽的圓弧形转角处形成转折。
11、 根据权利要求 8-10所述的方法, 其特征在于, 所述下包层上对应不同版 本的光波导网络路径图设置不同凹槽, 其中, 所述每一个版本的光波导网 络路径图对应设置的凹槽中所嵌入的光纤, 形成一层光波导层。
PCT/CN2014/079032 2014-05-31 2014-05-31 印刷电路板及其制作方法 WO2015180191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/079032 WO2015180191A1 (zh) 2014-05-31 2014-05-31 印刷电路板及其制作方法
CN201480038029.7A CN105359635A (zh) 2014-05-31 2014-05-31 印刷电路板及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079032 WO2015180191A1 (zh) 2014-05-31 2014-05-31 印刷电路板及其制作方法

Publications (1)

Publication Number Publication Date
WO2015180191A1 true WO2015180191A1 (zh) 2015-12-03

Family

ID=54697956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079032 WO2015180191A1 (zh) 2014-05-31 2014-05-31 印刷电路板及其制作方法

Country Status (2)

Country Link
CN (1) CN105359635A (zh)
WO (1) WO2015180191A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249873A (ja) * 1999-02-25 2000-09-14 Sony Corp 電子回路一体型光伝送モジュール及びその製造方法
CN1853127A (zh) * 2003-09-22 2006-10-25 英特尔公司 用嵌入光纤连接组件
CN202995101U (zh) * 2012-11-12 2013-06-12 依利安达(广州)电子有限公司 一种光学印刷电路板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514443B2 (ja) * 2000-10-10 2004-03-31 日本電信電話株式会社 光ファイバ布線板の製造方法
CN101714742A (zh) * 2009-11-19 2010-05-26 浙江大学 多波长半导体纳米线和微光纤复合结构微激光器
JP2011215418A (ja) * 2010-03-31 2011-10-27 Fujitsu Ltd 光導波路の製造方法
CN102147499B (zh) * 2011-03-15 2013-05-08 上海大学 以高频脉冲二氧化碳激光作为热源的光纤熔融拉锥方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249873A (ja) * 1999-02-25 2000-09-14 Sony Corp 電子回路一体型光伝送モジュール及びその製造方法
CN1853127A (zh) * 2003-09-22 2006-10-25 英特尔公司 用嵌入光纤连接组件
CN202995101U (zh) * 2012-11-12 2013-06-12 依利安达(广州)电子有限公司 一种光学印刷电路板

Also Published As

Publication number Publication date
CN105359635A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
JP2002258081A (ja) 光配線基板、光配線基板の製造方法及び多層光配線
US8300996B2 (en) Optical bus for optical signal broadcasting
JP6271013B2 (ja) マルチコアファイバ用光カプラ
CN103777282A (zh) 一种光栅耦合器及光信号的耦合方法
WO2012008995A1 (en) Single-lens, multi-fiber optical connection method and apparatus
CN105683797B (zh) 柔性玻璃光波导结构
US10768372B2 (en) Resin optical waveguide and composite optical waveguide
JPWO2014034726A1 (ja) 光ファイバ結合部材及び光ファイバ結合部材の製造方法
JPH10104443A (ja) マルチコアファイバ
US9182549B2 (en) Optical coupling system for two optical waveguides
JP2014510311A5 (zh)
CN107942442A (zh) 一种耦合器及光模块
US20140086532A1 (en) Optical Coupling Device, Optical Communication System and Method of Manufacture
WO2015180191A1 (zh) 印刷电路板及其制作方法
US11886006B2 (en) Polymer optical waveguide and composite optical waveguide
CN101983345A (zh) 基于mems的薄膜分束器
JP4865600B2 (ja) 光結合器
US8979372B2 (en) Circuit board and manufacturing method thereof and electro-optic apparatus having the circuit board
JP5737108B2 (ja) 光ファイバユニット及びその製造方法
US20220413220A1 (en) Optical waveguides and methods for producing
JP2010061175A (ja) 光配線基板及びその製造方法
JP4728857B2 (ja) 光結合器
JP2004264339A (ja) 光導波路および光送受信モジュール
JP5280966B2 (ja) 光導波路の製造方法
WO2016175126A1 (ja) 光伝送モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038029.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893059

Country of ref document: EP

Kind code of ref document: A1