WO2015180002A1 - 特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置 - Google Patents

特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置 Download PDF

Info

Publication number
WO2015180002A1
WO2015180002A1 PCT/CN2014/001058 CN2014001058W WO2015180002A1 WO 2015180002 A1 WO2015180002 A1 WO 2015180002A1 CN 2014001058 W CN2014001058 W CN 2014001058W WO 2015180002 A1 WO2015180002 A1 WO 2015180002A1
Authority
WO
WIPO (PCT)
Prior art keywords
current transformer
current
iron core
parallel
reactor
Prior art date
Application number
PCT/CN2014/001058
Other languages
English (en)
French (fr)
Inventor
俞华
王天正
高鹏
米康民
杨冬冬
陈昱同
梁基重
芦竹茂
王志鹏
李艳鹏
刘永鑫
马丽强
Original Assignee
国家电网公司
国网山西省电力公司电力科学研究院
俞华
王天正
高鹏
米康民
杨冬冬
陈昱同
梁基重
芦竹茂
王志鹏
李艳鹏
刘永鑫
马丽强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网山西省电力公司电力科学研究院, 俞华, 王天正, 高鹏, 米康民, 杨冬冬, 陈昱同, 梁基重, 芦竹茂, 王志鹏, 李艳鹏, 刘永鑫, 马丽强 filed Critical 国家电网公司
Publication of WO2015180002A1 publication Critical patent/WO2015180002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

Definitions

  • the utility model belongs to the field of electrical components, and particularly relates to a device for monitoring and eliminating the grounding current of a reactor.
  • Shunt reactors are indispensable equipment in high-voltage, long-distance AC transmission networks to compensate for charging currents on long lines, to attenuate capacitive effects, to limit system power-frequency voltage rise and operate over-voltage, and to eliminate synchronous generator belts. Self-excitation caused by no-load long lines.
  • the charging power of the UHV transmission line is large. For a unit length transmission line, its charging power is about 4 to 5 times that of a 500 kV transmission line, and a parallel high-voltage reactor is required for reactive power compensation.
  • UHV reactors usually use single-phase oil-immersed reactors. The core and windings are immersed in insulating oil. The reactor is rated at 1000kV or higher.
  • the iron core and the clamp When the reactor is running, the iron core and the clamp must be grounded effectively and reliably. Otherwise, the clamp and the iron core will generate a floating potential through the coupling of the capacitor. When the potential difference between the floating potential and other components in the reactor reaches a certain value. At this time, it will break through the insulation between them and generate a spark discharge. In severe cases, the reactor will be burnt.
  • the UHV reactor clamp and the iron core are grounded at multiple points, a closed current loop is formed between the clamp and the iron core and the ground respectively.
  • the loop resistance formed by the clamp member and the iron core is small, under the action of the induced potential.
  • the grounding current of the iron core and the clamp is much larger than that during normal operation, and even up to hundreds of amps at maximum, such a large ground current is enough to cause damage to the reactor.
  • the utility model CN202119823U proposes an intelligent on-line monitoring device for the grounding current of a reactor core, comprising a current sensor with a microcrystalline material as a magnetic core, a signal amplification conditioning device and a computer monitoring display terminal, and the current sensor is sealed in the casing by pouring epoxy. For real-time monitoring to show the core ground current. If there is a fault, it needs to be powered off and then connected in series and other ways to deal with it. This kind of power outage treatment seriously affects the normal and safe operation of the UHV grid.
  • the object of the present invention is to provide a grounding current monitoring, control and elimination device for an ultra-high voltage reactor core and a clamp.
  • a UHV reactor core and a clamp grounding current monitoring, control and elimination device comprising a reactor fuel tank, a reactor core, a clamp at two ends of the reactor core, the clamp and the iron
  • the core is connected with a grounding lead wire, and the grounding lead wire passes through the lead wire bushing, and extends from the outside of the reactor oil tank to the grounding end of the ground;
  • the monitoring, control and elimination device comprises: two grounding lead line supporting insulators, each comprising two sets of current transformers having first, second and third current transformers, all of which are connected by a parallel limiting impedance unit and a fault eliminating device Two sets of electrical units consisting of two thyristors connected in anti-parallel, an AD conversion interface circuit, and a single chip microcomputer;
  • the grounding lead wire supporting the insulator is fixed on the outer side of the box body of the reactor fuel tank, and the grounding lead wire of the clamping member supports the first current transformer, the second current sensor and the second current transformer fixed on the insulator a third current transformer, the ground lead of the clip passes through the primary coil of the first current transformer, and then reaches the ground through a parallel circuit composed of a limiting impedance unit, a fault eliminating device and two anti-parallel thyristors end;
  • the grounding lead wire supporting the insulator is fixed on the outer side of the box body of the reactor fuel tank, and the grounding lead wire supporting the iron core supports the first current transformer, the second current transformer and the first a three-current transformer, the ground lead of the iron core passes through the primary coil of the first current transformer, and then passes through the parallel limiting impedance unit, the fault elimination device and the two anti-parallel thyristors, and then reaches the ground terminal;
  • the two ends of the iron core and the first current transformer of the clip, the second current transformer and the secondary coil of the third current transformer are respectively connected to the 12 input ends of the AD conversion interface circuit.
  • the output end of the AD conversion interface circuit is connected to the single chip microcomputer;
  • the single chip microcomputer is connected to the control ends of the two thyristors connected in parallel with the limiting impedance unit and the fault eliminating device.
  • the first current transformer, the second current transformer and the third current transformer are connected in parallel.
  • the limiting impedance unit comprises a winding and an insulating cylinder, the winding is wound on the insulating cylinder, and five taps are connected to the winding, and each switch is provided with a switch group composed of two reverse parallel thyristors The total resistance of the winding is 1000 ⁇ .
  • the winding is connected with 5 taps, the number of turns between each tap is different, and the tap ratio of the tap is 10:40:100:400:1000.
  • the fault elimination device is composed of a transformer, two anti-parallel thyristors and a pulse capacitor, the transformer and the thyristor parallel branch are connected in series, and the pulse capacitor is connected in parallel with the branch of the transformer and the thyristor.
  • the low voltage side voltage of the transformer is 220V, and the high voltage side voltage is 1000.V.
  • the single chip microcomputer is further connected with a display unit, a multi-point ground fault current recording unit, a multi-point grounding alarm and a background monitoring computer.
  • a display unit Preferably, the single chip microcomputer is further connected with a display unit, a multi-point ground fault current recording unit, a multi-point grounding alarm and a background monitoring computer.
  • the beneficial effects of the utility model are as follows:
  • the device proposed by the utility model separately collects current through three current transformers, and a current transformer is respectively placed on the clip or the iron core grounding lead, and the measured current is in addition to the clip or iron core grounding current Ir,
  • the interference current Ig generated by other factors such as magnetic flux leakage, and the other two current transformers detect the average interference current Ig due to other factors such as magnetic flux leakage.
  • the ground current of the clip or core is the difference between the current of (Ir+Ig) and the interference current Ig, respectively.
  • the device proposed by the utility model can greatly reduce the working intensity of the operating personnel, and can monitor the change of the grounding current value of the clip and the iron core in real time on the monitoring background, and the monitoring precision is high, and the fault can be eliminated in time.
  • the further expansion of the fault range of the UHV reactor is avoided, and the safe and stable operation of the power grid is guaranteed.
  • Figure 1 is a schematic diagram of the internal structure of a UHV reactor.
  • FIG. 2 is a schematic view showing the arrangement of the grounding current monitoring, control and elimination device for the iron core and the clamp of the UHV reactor of the present invention.
  • Figure 3 is a circuit diagram of a limiting impedance unit.
  • FIG. 4 is a circuit diagram of a fault elimination device.
  • 1 is the UHV reactor tank
  • 2 is the reactor core
  • 3 is the lower clamp
  • 4 is the upper clamp
  • 5 is the soft connection
  • 6 is the pull plate
  • 7 is the iron core grounding piece
  • 8 is the clamp Small casing
  • 9 is a small core casing
  • 10 is a clamp Lead wire
  • 11 is the core lead wire
  • 12 is the grounding terminal
  • 13 is the second current transformer of the clip
  • 14 is the first current transformer of the clip
  • 15 is the third current transformer of the clip
  • 16 is The supporting insulator of the clip
  • 17 is the second current transformer of the iron core
  • 18 is the first current transformer of the iron core
  • 19 is the third current transformer of the iron core
  • 20 is the supporting insulator of the iron core lead wire
  • 23 is the LCD display
  • 24 is the multi-point ground fault current recording unit
  • 25 is the multi-point grounding alarm
  • 26 is the background monitoring computer
  • 27 is
  • connection is disassembled or connected integrally; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood by those skilled in the art in a specific case.
  • a double-internal transformer monitoring, control and elimination device for a large-capacity reactor suspension potential is an oil-immersed reactor with a rated voltage of 1000 kV, including a UHV reactor tank 1,
  • the fuel tank has a reactor core 2, a clamp and a winding.
  • the two ends of the reactor core 2 are respectively provided with a reactor upper clamp 4 and a reactor lower clamp 3, and the reactor upper clamp 4 and the reactor lower clamp 3 are connected by a pull plate 6, the pull plate 6 and
  • the reactor lower clip 3 is connected by a flexible wire 5.
  • the core lead wire 11 is led out through the grounding piece 7 and the small core sleeve 9, and the clip grounding is led out through the clip grounding lead wire 10 and the clip small sleeve 8.
  • a core grounding lead wire supporting insulator 20, a clamp grounding lead wire supporting insulator 16 , a first current transformer 14 of the clamping member, a second current transformer 13 and a third current are fixedly disposed outside the casing of the reactor tank 1 .
  • the transformer 15 is fixed on the clip grounding lead support insulator 15; likewise, the first, second and third current transformers 17, 18, 19 for monitoring the ground current of the core on the core lead are suspended from the core. Supporting insulator 20;
  • the primary coil of the first current transformer 14 of the clip is passed through, and then connected by the parallel clip limiting impedance unit 29, the clip multi-point ground eliminating unit 30
  • An electrical unit composed of two thyristors 31, 32 connected in anti-parallel direction reaches the ground terminal 12.
  • the two ends of the secondary coil of the first current transformer 14 are respectively connected to the two input interfaces of the AD conversion interface circuit 22, and the two ends of the secondary side induction coil of the second current transformer 13 are respectively connected with the AD conversion interface circuit 22
  • Two input interfaces are connected, and two ends of the secondary side induction coil of the third current transformer 15 are connected with the other two input interfaces of the AD conversion interface circuit 22 (a total of six interfaces of the AD conversion interface circuit are connected), and the AD conversion interface
  • the output of circuit 22 is coupled to microcontroller 21.
  • the core lead wire 11 passes through the small core sleeve 9 and passes through three current transformers (the first current transformer 18 of the iron core and the second current mutual inductance) fixed on the core grounding lead line supporting insulator 20.
  • the device 17, the third current transformer 19), the core limiting impedance unit 27, and the core multi-point grounding eliminating unit 28 are grounded.
  • the core grounding lead wire 11 passes through the primary coil of the first current transformer 18, and is then connected to the core limiting impedance unit 27, the core failure eliminating device 28, and the input terminals of the two antiparallel thyristors 33 and 34.
  • the core limiting impedance unit 27, the core failure eliminating device 28, and the two antiparallel thyristors 33 and 34 are in a parallel relationship, and the two ends of the secondary side induction coil of the first current transformer 18 of the iron core are Both ends of the secondary side induction coil of the two current transformers 17 and the two ends of the secondary side induction coil of the third current transformer 19 are respectively connected to the input interface of the AD conversion interface circuit 22 (a total of 6 inputs are connected)
  • the interface of the AD conversion interface circuit 22 is connected to the microcontroller 21.
  • the limiting impedance unit 27 of the iron core and the electrical limiting structure of the limiting impedance unit 29 of the clamping member comprise a winding and an insulating cylinder, and the winding is wound on the insulating cylinder, and five taps are connected to the winding, each tapping A switch group consisting of two reverse parallel thyristors is provided.
  • the winding has a resistance of 1000 ⁇ . See Figure 3.
  • the limiting impedance unit of the iron core or the clamping member comprises: a left bracket 36, a right bracket 37, an insulating cylinder 35, a winding one tap 38, a winding two tap 39, a winding three tap 40, a winding four tap 41, a winding five tap 42.
  • the windings of the windings are divided into two inverting thyristors 53, 54 in parallel, and the two thyristors 55, 56 of the winding five-switching 42 are connected in parallel.
  • the tap ratio of the tap is 10:40:100:400:1000.
  • the electrical components of the clip failure eliminating device 30 and the core failure eliminating device 28 are the same, and are composed of a thyristor 48 and a thyristor 49, a transformer 47, and a pulse capacitor 50 (Fig. 4).
  • the transformer, the pulse capacitor and the thyristor parallel branch are connected in series.
  • the parameters of the transformer 47 are a low voltage side voltage of 220.V and a high voltage side voltage of 1000V.
  • the single chip microcomputer 21 is also connected to an LCD display 23 for displaying current, a multi-point ground fault current recording unit 24, a multi-point grounding alarm 25, and a background monitoring computer 26.
  • the single-chip microcomputer separately controls the short-circuit switch group composed of the two-switch thyristors to be grounded. At this time, the current-limiting impedance unit and the multi-point ground fault elimination device do not work;
  • the single chip When the single chip receives the input signal of the secondary side induction coil of the first current transformer and the signal of the secondary side induction coil of the second current transformer, after calculation, if the ground current of the clamp is greater than 0.1 amp, the single chip microcomputer 21 controlling the short-circuit switch group consisting of the two-switch thyristors (31 and 32) to cut off, the thyristors 48, 49 of the clip-off barrier removing device 30 are controlled to be turned on, the transformer 47 charges the pulse capacitor 50, and after the charging is completed, the thyristor 48 is controlled. At the end of 49, the pulse capacitor 50 is connected to the clip lead-out line 10 to form a discharge loop, that is, the clip is discharged. After the discharge, there are two cases.
  • the ground current of the clamp is less than or equal to 0.1 amp, the multi-point ground fault is eliminated, and the short-circuit switch group 31, 32 composed of the two-switch thyristor is grounded by the single-chip microcomputer.
  • the time limiting impedance unit 29 and the clip failure eliminating device 30 do not operate.
  • the thyristors 43 and 44 are first controlled to be connected to the first tap 38. If the ground current of the core is greater than 0.1 amp, the thyristors 43 and 44 are cut off.
  • the single chip 21 controls the short circuit switch groups 33 and 34 composed of the two switch thyristors to be turned off, the thyristors 48 and 49 of the core failure eliminating device 28 are controlled to be turned on, the transformer 47 charges the pulse capacitor 50, and after the charging is completed, the thyristor 48 is controlled. At the end of 49, the pulse capacitor 50 is connected to the core lead-out line 11 to form a discharge loop, that is, the core is discharged. After the discharge, there are two cases.
  • the multi-point ground fault is eliminated, and the short-circuit switch group 33, 34 composed of the two-switch thyristor is grounded by the single-chip microcomputer.
  • the time limiting impedance unit 27 and the core failure eliminating device 28 do not operate.
  • the thyristor of the limiting impedance unit is directly controlled to be turned on, and the impedance unit is restricted to be connected: first, the thyristors 43 and 44 are controlled to be connected to the first tap 38, If the core ground current is greater than 0.1 amp, the first tap is disconnected by controlling the thyristors 43, 44 to intercept the ground, and the control thyristors 45, 46 are turned on to the second tap 39.
  • ground current of the core is still greater than 0.1 amp, disconnects the second tap by controlling the thyristors 45, 46 to cut off, and controls the thyristors 52, 57 to conduct the third tap 40; similarly, if the core ground current is still greater than 0.1 amp, the third branch is disconnected.
  • the fourth connection 41 is simultaneously connected to the fourth tap 41. If the core ground current is greater than 0.1 amp, the fourth tap 41 is turned off until the fifth tap 42 is accessed.
  • the utility model collects current by the three current transformers respectively by the invention, and a current transformer is respectively sleeved on the clip or the iron core grounding lead, and the measured current has a leakage in addition to the clip or iron core grounding current Ir.
  • the interference current Ig generated by other factors such as magnetic, and the other two current transformers are the average interference current Ig detected by other factors such as magnetic flux leakage.
  • the ground current of the clip or core is the difference between the current of (Ir+Ig) and the interference current Ig, respectively.
  • the current impedance unit adopts a method of resistance and reactance, which solves the problem that the current limiting resistor has high capacity requirements and the current limiting effect is poor.
  • the clamp or the iron core is grounded at multiple points, the multi-point grounding elimination device and the current limiting unit are limited.
  • the current limiting impedance unit uses a winding with 5 taps. When the clip or core is grounded at multiple points, the loop current frequency is often high. The input tap winding is equivalent to connecting the resistor and the inductor in series in the loop, especially the winding. Inductance
  • the traditional method of access impedance is to use a switch. Due to the frequent switching of the switch with current, the ignition occurs, which seriously affects the service life of the switch. The use of thyristor control, cost-effective, strong free-wheeling ability, no fire, the service life is not affected, to solve the problem of the traditional control switch life.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种特高压电抗器铁芯和夹件故障判断及其在线处理、清除装置,其包括接地引出线支撑绝缘子,包括有第一、第二和第三电流互感器的二组电流互感器,由并联的限制阻抗单元、故障消除装置和反向并联的晶闸管组成的电气单元,AD转换接口电路,以及单片机;所述夹件和铁芯的接地引出线穿过第一电流互感器的线圈,然后通过由限制阻抗单元、故障消除装置和二只反向并联的晶闸管组成的并联电路,到达接地端。该装置可大大减轻运行人员的工作强度,在监控后台就能实时地在线地监测到夹件、铁芯接地电流值的变化情况,监测精度高,能及时进行故障消除,避免了特高压电抗器故障范围的进一步扩大,保障了电网的安全稳定运行。

Description

特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置 技术领域
本实用新型属于电气元件领域,具体涉及一种监控和消除电抗器接地电流的装置。
背景技术
并联电抗器是高电压、远距离交流输电网络中不可缺少的重要设备,用来补偿长线上的充电电流,消弱电容效应,限制系统工频电压升高和操作过电压,消除同步发电机带空载长线时产生的自励磁现象。特高压输电线路的充电功率大,就单位长度输电线路而言,它的充电功率约是500kV输电线路的4~5倍,需要并联特高压电抗器进行无功补偿。特高压电抗器通常采用单相的油浸电抗器,铁芯和绕组浸在绝缘油中,电抗器额定电压1000kV甚至更高。
电抗器运行时,其铁芯和夹件必须进行有效可靠地接地,否则夹件、铁芯会通过电容的耦合作用产生悬浮电位,当悬浮电位与电抗器内其他部件的电位差累计达到一定值时,会击穿其间的绝缘,并产生火花放电,严重时还会将电抗器烧损。当特高压电抗器夹件、铁芯发生多点接地时,会使夹件、铁芯分别与地之间形成闭合电流回路,由于夹件、铁芯形成的回路电阻小,在感应电势作用下铁芯和夹件接地电流比正常运行时要大很多,最大时甚至可达上百安培,这么大的接地电流足以造成电抗器的损伤。
由于铁芯接地故障及其它异常情况,绝缘油中会产生多种气体。电力部门惯用的检测手段是检测溶解在绝缘油中的故障气体,以及对设备的绝缘油采样后进行气体色谱分析和用钳形电流表测电抗器铁芯外引接地套管的接地下引线的电流,从而获知接地故障情况。实用新型CN202119823U提出的电抗器铁芯接地电流智能在线监测装置,包括以微晶材料为磁芯的电流传感器、信号放大调理设备以及计算机监控显示终端,电流传感器采用浇注环氧的方法封闭在壳体内,用于实时监测显示铁芯接地电流。如果出现故障,需要停电然后进行串接电阻和其他方式来处理,这种停电进行处理方式严重影响到了特高压电网的正常安全运行。
实用新型内容
针对本领域存在的技术问题,本实用新型的目的是提出一种特高压电抗器铁芯和夹件接地电流监测、控制及消除装置。
实现本实用新型目的的技术方案为:
一种特高压电抗器铁芯和夹件接地电流监测、控制及消除装置,所述电抗器包括电抗器油箱、电抗器铁芯、位于电抗器铁芯两端的夹件,所述夹件和铁芯均连接有接地引出线,所述接地引出线穿过引出线套管,从电抗器油箱外侧延伸至地面的接地端;
所述监测、控制及消除装置包括:二个接地引出线支撑绝缘子,均包括有第一、第二和第三电流互感器的二组电流互感器,均由并联的限制阻抗单元、故障消除装置和二只反向并联的晶闸管组成的二组电气单元,AD转换接口电路,以及单片机;
在电抗器油箱的箱体外侧固定设置有夹件的接地引出线支撑绝缘子,所述夹件的接地引出线支撑绝缘子上固定设置有夹件的第一电流互感器、第二电流瓦感器和第三电流互感器,所述夹件的接地引出线穿过第一电流互感器的一次线圈,然后通过由限制阻抗单元、故障消除装置和二只反向并联的晶闸管组成的并联电路,到达接地端;
在电抗器油箱的箱体外侧固定设置有铁芯的接地引出线支撑绝缘子,所述铁芯的接地引出线支撑绝缘子上固定设置有铁芯的第一电流互感器、第二电流互感器和第三电流互感器,所述铁芯的接地引出线穿过第一电流互感器的一次线圈,然后通过并联的限制阻抗单元、故障消除装置和二制反向并联的晶闸管,然后到达接地端;
所述铁芯的、和夹件的第一电流互感器、第二电流互感器和第三电流互感器的二次线圈的两端分别连接于所述AD转换接口电路的12个输入端,所述AD转换接口电路的输出端连接所述单片机;
所述单片机连接所述的与限制阻抗单元、故障消除装置并联的二只晶闸管的控制端。
其中,所述的第一电流互感器、第二电流互感器和第三电流互感器并联连接。
其中,所述限制阻抗单元包括绕组和绝缘筒,所述绕组缠绕在绝缘筒上,绕组上连接有5个分接,每个分接上均设置有由两只反向并联晶闸管组成的开关组,所述绕组的总电阻为1000Ω。
优选地,所述绕组连接有5个分接,每个分接之间的匝数不相同,分接的匝数比为10∶40∶100∶400∶1000。
其中,所述故障消除装置由变压器、两个反向并联的晶闸管及脉冲电容组成,所述变压器与晶闸管并联支路串联,脉冲电容与变压器和晶闸管的支路并联。
优选地,所述变压器低压侧电压为220V,高压侧电压为1000.V。
优选地,所述单片机还连接有显示单元、多点接地故障电流记录单元、多点接地报警器和后台监视电脑。本实用新型的有益效果在于:
本实用新型提出的装置,通过三电流互感器分别采集电流,一只电流互感器分别套在夹件或铁芯接地引线上,所测的电流除了夹件或铁芯接地电流Ir外,还有漏磁等其它因素产生的干扰电流Ig,另两只电流互感器是检测由于漏磁等其它因素产生的平均干扰电流Ig。夹件或铁芯接地电流分别为(Ir+Ig)和干扰电流Ig的电流之差。此方法消除了漏磁的干扰,解决了特高压电抗器现场检测数据偏大的问题,提高了测试的准确性。
本实用新型提出的装置,可大大减轻了运行人员的工作强度,在监控后台就能实时地在线地监测到夹件、铁芯接地电流值的变化情况,监测精度高,能及时进行故障消除,避免了特高压电抗器故障范围的进一步扩大,保障了电网的安全稳定运行。
附图说明
图1为特高压电抗器内部结构示意图。
图2为本实用新型特高压电抗器铁芯和夹件接地电流监测、控制及消除装置的布置示意图。
图3为限制阻抗单元的电路图。
图4为故障消除装置的电路图。
图中,1为特高压电抗器油箱,2为电抗器铁芯,3为下夹件,4为上夹件,5为软接线,6为拉板,7为铁芯接地片,8为夹件小套管,9为铁芯小套管,10为夹件 引出线,11为铁芯引出线,12为接地端,13为夹件的第二电流互感器,14为夹件的第一电流互感器,15为夹件的第三电流互感器,16为夹件的支撑绝缘子,17为铁芯的第二电流互感器,18为铁芯的第一电流互感器,19为铁芯的第三电流互感器,20为铁芯引出线的支撑绝缘子,21为单片机,22为AD转换接口电路,23为LCD显示器,24为多点接地故障电流记录单元,25为多点接地报警器,26为后台监控电脑,27为铁芯限制阻抗单元,28为铁芯故障消除装置,29为夹件限制阻抗单元,30为夹件故障消除装置,31、32、33、34、43、44、45、4648、49、52、57、53、54、55、56为晶闸管(每两个为一组反向并联,各组分属不同电路),35为绝缘筒、36为左支架、37为右支架、38为绕组一分接、39为绕组二分接、40为绕组三分接、41为绕组四分接、42为绕组五分接,47为变压器,50为脉冲电容。
具体实施方式
以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型的描述中,术语“中心”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
实施例1
参见图1、图2,一种大容量电抗器悬浮电位的双互感器监测、控制和消除装置,该大容量电抗器为油浸式电抗器,额定电压1000kV,包括特高压电抗器油箱1,油箱内有电抗器铁芯2、夹件和绕组。电抗器铁芯2的两端分别设置有电抗器上夹件4和电抗器下夹件3,电抗器上夹件4和电抗器下夹件3通过拉板6连接,拉板6和 电抗器下夹件3通过软接线5连接。铁芯引出线11通过接地片7、铁芯小套管9引出,夹件接地通过夹件接地引出线10、夹件小套管8引出。
在电抗器油箱1的箱体外侧固定设置有铁芯接地引出线支撑绝缘子20、夹件接地引出线支撑绝缘子16,夹件的第一电流互感器14、第二电流互感器13、第三电流互感器15固定在夹件接地引出线支撑绝缘子15上;同样,在铁芯引出线上监测铁芯接地电流的第一、第二、第三电流互感器17、18、19悬挂在铁芯的支撑绝缘子20上;
夹件接地引出线10通过夹件小套管8后,穿过夹件的第一电流互感器14的一次线圈,然后连接由并联的夹件限制阻抗单元29、夹件多点接地消除单元30和二只反向并联的晶闸管31、32所组成的电气单元,到达接地端12。第一电流互感器14的二次线圈两端分别与AD转换接口电路22的两个输入接口连接,第二电流互感器13的二次侧感应线圈的两端分别与AD转换接口电路22的另两个输入接口连接,第三电流互感器15的二次侧感应线圈的两端与AD转换接口电路22的另两个输入接口连接(共接了AD转换接口电路6个接口),AD转换接口电路22的输出端与单片机21连接。
类似的,铁芯引出线11穿过铁芯小套管9后经过固定在铁芯接地引出线支撑绝缘子20上的三个电流互感器(铁芯的第一电流互感器18、第二电流互感器17、第三电流互感器19)、铁芯限制阻抗单元27及铁芯多点接地消除单元28后接地。铁芯接地引出线11从第一电流互感器18的一次线圈中穿过,然后与铁芯限制阻抗单元27、铁芯故障消除装置28及两只反向并联的晶闸管33和34的输入端连接,其中铁芯限制阻抗单元27、铁芯故障消除装置28、两只反向并联的晶闸管33和34是并联关系,铁芯的第一电流互感器18的二次侧感应线圈的两端、第二电流互感器17的二次侧感应线圈的两端、第三电流互感器19的二次侧感应线圈的两端,均各自与AD转换接口电路22的输入接口连接(共接了6个输入接口),AD转换接口电路22的输出端与单片机21连接。
其中,铁芯的限制阻抗单元27和夹件的限制阻抗单元29的电气结构一样,均包括绕组和绝缘筒,绕组缠绕在绝缘筒上,绕组上连接有5个分接,每个分接上均设置有由两只反向并联晶闸管组成的开关组。绕组的电阻为1000Ω。见图3。 铁芯或夹件的限制阻抗单元包括:左支架36、右支架37、绝缘筒35、绕组一分接38、绕组二分接39、绕组三分接40、绕组四分接41、绕组五分接42,以及控制绕组一分接38的两反相并联的晶闸管43、44,绕组二分接39的两反相并联的晶闸管45、46、绕组三分接40的两反相并联的晶闸管52、57,绕组四分接41的两反相并联的晶闸管53、54、绕组五分接42的两反相并联的晶闸管55、56。分接的匝数比为10∶40∶100∶400∶1000。
夹件故障消除装置30、铁芯故障消除装置28的电气结构一样,均是由起开关作用的晶闸管48和晶闸管49、变压器47及脉冲电容50组成(图4)。变压器、脉冲电容与晶闸管并联支路串联。变压器47的参数为低压侧电压220.V,高压侧电压1000V。
单片机21还连接有显示电流的LCD显示器23、多点接地故障电流记录单元24、多点接地报警器25和后台监控电脑26。
本实施例装置的运行方法如下:
当单片机21接受第一电流互感器的二次侧感应线圈的输入信号、第二电流互感器的二次侧感应线圈的信号后,经计算后,若测得夹件或铁芯接地电流小于0.1安培,则单片机分别控制两开关晶闸管组成的短路开关组导通接地,此时限流阻抗单元和多点接地故障消除装置不工作;
当单片机接受第一电流互感器的二次侧感应线圈的输入信号和第二电流互感器的二次侧感应线圈的信号后,经计算后,若测得夹件接地电流大于0.1安培,则单片机21控制两开关晶闸管(31和32)组成的短路开关组截止,将夹件放障消除装置30的晶闸管48、49控制导通,变压器47对脉冲电容50进行充电,充电完成后控制晶闸管48、49截止,将脉冲电容50接入夹件引出线10形成放电回路,即对夹件进行放电。放电后分两种情况,第一种情况若测得夹件接地电流小于或等于0.1安培,则说明多点接地故障消除,单片机控制两开关晶闸管组成的短路开关组31、32导通接地,此时限制阻抗单元29和夹件故障消除装置30不工作。第二种情况,若测得夹件接地电流仍大于0.1安培,首先控制晶闸管43、44导通接入第一分接38,如果铁芯接地电流还大于0.1安培,通过控制晶闸管43、44截止而断开第一分接,控制晶闸管45、46导通接入第二分接39,如果此时铁 芯接地电流仍大于0.1安培,通过控制晶闸管45、46截止而断开第二分接,通过控制晶闸管52、57导通接入第三分接40;类似如果铁芯接地电流仍大于0.1安培,断开第三分接40同时接入第四分接41,如果铁芯接地电流还大于0.1安培,断开第四分接41,直到接入第五分接42为止。
类似地,当单片机接受第一电流互感器的二次侧感应线圈的输入信号和第二电流互感器的二次侧感应线圈的信号后,经计算后,若测得铁芯接地电流大于0.1安培,则单片机21控制两开关晶闸管组成的短路开关组33和34截止,将铁芯故障消除装置28的晶闸管48、49控制导通,变压器47对脉冲电容50进行充电,充电完成后控制晶闸管48、49截止,将脉冲电容50接入铁芯引出线11形成放电回路,即对铁芯进行放电。放电后分两种情况,第一种情况若测得铁芯接地电流小于或等于0.1安培,则说明多点接地故障消除,单片机控制两开关晶闸管组成的短路开关组33、34导通接地,此时限制阻抗单元27和铁芯故障消除装置28不工作。第二种情况,若测得铁芯接地电流仍大于0.1安培,直接控制限制阻抗单元的晶闸管导通,限制阻抗单元接入工作:首先控制晶闸管43、44导通接入第一分接38,如果铁芯接地电流还大于0.1安培,通过控制晶闸管43、44截土而断开第一分接,控制晶闸管45、46导通接入第二分接39,如果此时铁芯接地电流仍大于0.1安培,通过控制晶闸管45、46截止而断开第二分接,通过控制晶闸管52、57导通接入第三分接40;类似如果铁芯接地电流仍大于0.1安培,断开第三分接40同时接入第四分接41,如果铁芯接地电流还大于0.1安培,断开第四分接41,直到接入第五分接42为止。
本实用新型通过本发明通过三电流互感器分别采集电流,一只电流互感器分别套在夹件或铁芯接地引线上,所测的电流除了夹件或铁芯接地电流Ir外,还有漏磁等其它因素产生的干扰电流Ig,另两只电流互感器是检测由于漏磁等其它因素产生的平均干扰电流Ig。夹件或铁芯接地电流分别为(Ir+Ig)和干扰电流Ig的电流之差。此方法消除了漏磁的干扰,解决了特高压电抗器现场检测数据偏大的问题,提高了测试的准确性。
电抗器正常运行时,作为限制电流阻抗单元、故障消除装置均被导通的晶闸管短路。当夹件或铁芯发生多点接地时,投入故障消除装置、限制阻抗单元。限 流阻抗单元采用电阻加电抗的方式,解决了限流电阻容量要求高且限制电流效果差的问题。当夹件或铁芯发生多点接地时,投入多点接地消除装置、限制电流阻抗单元。限流阻抗单元使用带5个分接的绕组当夹件或铁芯发生多点接地时,往往回路电流频率较高,投入分接绕组相当于在回路中串接了电阻和电感,尤其是绕组的电感
传统接入阻抗方法是采用开关,由于开关带电流频繁通断出现打火,严重影响了开关的使用寿命。而采用晶闸管控制,性价比高,续流能力强,不出现打火,使用寿命不受影响,解决了传统控制开关使用寿命的问题。
以上的实施例仅仅是对本实用新型的优选实施方式进行描述,并非对本实用新型的范围进行限定,在不脱离本实用新型设计精神的前提下,本领域普通工程技术人员对本实用新型的技术方案做出的各种变型和改进,均应落入本实用新型的权利要求书确定的保护范围内。

Claims (7)

  1. 一种特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置,所述电抗器包括电抗器油箱、电抗器铁芯、位于电抗器铁芯两端的夹件,所述夹件和铁芯均连接有接地引出线,所述接地引出线穿过引出线套管,从电抗器油箱外侧延伸至地面的接地端;
    其特征在于,所述的装置包括:二个接地引出线支撑绝缘子,均包括有第一、第二和第三电流互感器的二组电流互感器,均由并联的限制阻抗单元、故障消除装置和二只反向并联的晶闸管组成的二组电气单元,AD转换接口电路,以及单片机;
    在电抗器油箱的箱体外侧固定设置有夹件的接地引出线支撑绝缘子,所述夹件的接地引出线支撑绝缘子上固定设置有夹件的第一电流互感器、第二电流互感器和第三电流互感器,所述夹件的接地引出线穿过第一电流互感器的一次线圈,然后通过由限制阻抗单元、故障消除装置和二只反向并联的晶闸管组成的并联电路,到达接地端;
    在电抗器油箱的箱体外侧固定设置有铁芯的接地引出线支撑绝缘子,所述铁芯的接地引出线支撑绝缘子上固定设置有铁芯的第一电流互感器、第二电流互感器和第三电流互感器,所述铁芯的接地引出线穿过第一电流互感器的一次线圈,然后通过并联的限制阻抗单元、故障消除装置和二制反向并联的晶闸管,然后到达接地端;
    所述铁芯的、和夹件的第一电流互感器、第二电流互感器和第三电流互感器的二次线圈的两端分别连接于所述AD转换接口电路的12个输入端,所述AD转换接口电路的输出端连接所述单片机;
    所述晶闸管的控制端连接所述单片机。
  2. 根据权利要求1所述的装置,其特征在于,所述的第一电流互感器、第二电流互感器和第三电流互感器并联连接。
  3. 根据权利要求1所述的装置,其特征在于,所述限制阻抗单元包括绕组和绝缘筒,所述绕组缠绕在绝缘筒上,绕组上连接有5个分接,每个分接上均设置有 由两只反向并联晶闸管组成的开关组,所述绕组的总电阻为1000Ω。
  4. 根据权利要求3所述的装置,其特征在于,所述绕组连接有5个分接,每个分接之间的匝数不相同,分接的匝数比为10∶40∶100∶400∶1000。
  5. 根据权利要求1所述的装置,其特征在于,所述故障消除装置由变压器、两个反向并联的晶闸管及脉冲电容组成,所述变压器与晶闸管并联支路串联,脉冲电容与变压器和晶闸管的支路并联。
  6. 根据权利要求4所述的双互感器监测、控制和消除装置,其特征在于,所述变压器低压侧电压为220V,高压侧电压为1000V。
  7. 根据权利要求1-5任一所述的装置,其特征在于,所述单片机还连接有显示单元、多点接地故障电流记录单元、多点接地报警器和后台监视电脑。
PCT/CN2014/001058 2014-05-29 2014-11-27 特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置 WO2015180002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420283070.8 2014-05-29
CN201420283070 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015180002A1 true WO2015180002A1 (zh) 2015-12-03

Family

ID=54697795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001058 WO2015180002A1 (zh) 2014-05-29 2014-11-27 特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置

Country Status (1)

Country Link
WO (1) WO2015180002A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106294956A (zh) * 2016-08-02 2017-01-04 国网黑龙江省电力有限公司齐齐哈尔供电公司 用于检测电流互感器的处理系统
CN108512211A (zh) * 2018-05-25 2018-09-07 长江勘测规划设计研究有限责任公司 组合柜体式阻抗型巨型发电机组中性点接地装置
CN112327236A (zh) * 2020-11-16 2021-02-05 润电能源科学技术有限公司 一种在线监测电容式电压互感器的方法及相关设备
CN115825809A (zh) * 2023-02-17 2023-03-21 国网山西省电力公司电力科学研究院 一种变压器铁心多点接地故障模拟装置及评估方法
CN116973609A (zh) * 2023-09-21 2023-10-31 国网辽宁省电力有限公司 一种电网支柱复合绝缘子检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696830A1 (de) * 1994-08-09 1996-02-14 Licentia Patent-Verwaltungs-GmbH Erdschlussortung in elektrischen Netzen mit einer Erdschlussspule
CN102411084A (zh) * 2011-07-26 2012-04-11 东北电力科学研究院有限公司 变压器铁芯接地电流在线监测装置及其监测方法
CN103558451A (zh) * 2013-11-02 2014-02-05 国家电网公司 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN103560484A (zh) * 2013-11-02 2014-02-05 国家电网公司 三电流互感器在线监测变压器夹件多点接地电流控制装置
CN103560499A (zh) * 2013-11-02 2014-02-05 国家电网公司 三电流互感器监测下变压器夹件多点接地电流的控制方法
DE102011082554B4 (de) * 2011-09-12 2014-04-10 H. Kleinknecht Gmbh & Co. Kg Verfahren zur Bestimmung eines Erdschlussstroms in einem erdschlussbehafteten Drehstromnetz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696830A1 (de) * 1994-08-09 1996-02-14 Licentia Patent-Verwaltungs-GmbH Erdschlussortung in elektrischen Netzen mit einer Erdschlussspule
CN102411084A (zh) * 2011-07-26 2012-04-11 东北电力科学研究院有限公司 变压器铁芯接地电流在线监测装置及其监测方法
DE102011082554B4 (de) * 2011-09-12 2014-04-10 H. Kleinknecht Gmbh & Co. Kg Verfahren zur Bestimmung eines Erdschlussstroms in einem erdschlussbehafteten Drehstromnetz
CN103558451A (zh) * 2013-11-02 2014-02-05 国家电网公司 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN103560484A (zh) * 2013-11-02 2014-02-05 国家电网公司 三电流互感器在线监测变压器夹件多点接地电流控制装置
CN103560499A (zh) * 2013-11-02 2014-02-05 国家电网公司 三电流互感器监测下变压器夹件多点接地电流的控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106294956A (zh) * 2016-08-02 2017-01-04 国网黑龙江省电力有限公司齐齐哈尔供电公司 用于检测电流互感器的处理系统
CN108512211A (zh) * 2018-05-25 2018-09-07 长江勘测规划设计研究有限责任公司 组合柜体式阻抗型巨型发电机组中性点接地装置
CN108512211B (zh) * 2018-05-25 2023-06-27 长江勘测规划设计研究有限责任公司 组合柜体式阻抗型巨型发电机组中性点接地装置
CN112327236A (zh) * 2020-11-16 2021-02-05 润电能源科学技术有限公司 一种在线监测电容式电压互感器的方法及相关设备
CN112327236B (zh) * 2020-11-16 2024-03-19 润电能源科学技术有限公司 一种在线监测电容式电压互感器的方法及相关设备
CN115825809A (zh) * 2023-02-17 2023-03-21 国网山西省电力公司电力科学研究院 一种变压器铁心多点接地故障模拟装置及评估方法
CN116973609A (zh) * 2023-09-21 2023-10-31 国网辽宁省电力有限公司 一种电网支柱复合绝缘子检测装置
CN116973609B (zh) * 2023-09-21 2023-12-01 国网辽宁省电力有限公司 一种电网支柱复合绝缘子检测装置

Similar Documents

Publication Publication Date Title
WO2015180002A1 (zh) 特高压电抗器铁芯和夹件故障判断及其在线处理、消除装置
WO2009152662A1 (zh) 一种自身取能的快速响应可控电抗器
CN201251622Y (zh) 750kV电流互感器现场试验用大电流升流组合装置
CN103248134B (zh) 一种电缆局部放电带电检测感应取电装置
CN108459285A (zh) 电压互感器铁磁谐振实验方法
CN101871960B (zh) 一种变压器的试验方法
CN107861012A (zh) 一种大型变压器的通流装置
CN112510669A (zh) 一种复用接地变压器的配电网单相接地故障消弧系统及其控制方法
CN103560484B (zh) 三电流互感器在线监测变压器夹件多点接地电流控制装置
CN113410035B (zh) 一种基于y型接线具有接地补偿功能的防谐振电压互感器
CN105207173A (zh) 大容量变压器多点接地的监测、控制和消除的装置和方法
CN102969719B (zh) 适用于中频炉的智能滤谐波节能装置
CN108922756A (zh) 一种干式空心并联电抗器监测电路
CN201438412U (zh) 中性点用零序电压互感器
CN205609341U (zh) 一种消谐式电压互感器
CN105048464B (zh) 磁平衡消谐无功补偿装置及方法
CN103560499B (zh) 三电流互感器监测下变压器夹件多点接地电流的控制方法
CN203630208U (zh) 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN204333950U (zh) 一种电力系统双dsp单相接地消弧设备
CN103558451B (zh) 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN103560485B (zh) 双电流互感器监测下变压器夹件多点接地电流的控制方法
CN203982114U (zh) 一种基于投切电路监控变压器铁芯接地电流的装置
CN204258283U (zh) 大容量变压器铁芯故障在线消除装置
CN205353172U (zh) 生产厂高压电磁式电压互感器的替代装置
CN105223457A (zh) 特高压电抗器接地故障判断及处理、消除的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893157

Country of ref document: EP

Kind code of ref document: A1