WO2015178411A1 - Mri device having magnet with extremely narrow leakage magnetic field - Google Patents

Mri device having magnet with extremely narrow leakage magnetic field Download PDF

Info

Publication number
WO2015178411A1
WO2015178411A1 PCT/JP2015/064435 JP2015064435W WO2015178411A1 WO 2015178411 A1 WO2015178411 A1 WO 2015178411A1 JP 2015064435 W JP2015064435 W JP 2015064435W WO 2015178411 A1 WO2015178411 A1 WO 2015178411A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
coil
shield
magnet
magnetomotive force
Prior art date
Application number
PCT/JP2015/064435
Other languages
French (fr)
Japanese (ja)
Inventor
充志 阿部
竹内 博幸
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to CN201580026951.9A priority Critical patent/CN106456047B/en
Priority to JP2016521125A priority patent/JP6486344B2/en
Publication of WO2015178411A1 publication Critical patent/WO2015178411A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a horizontal magnetic field type MRI apparatus.
  • the magnetic field intensity corresponds to the diagnosis location, so the accuracy required for the magnetic field intensity generated by the magnet system is A fluctuation of about one millionth of the magnetic field strength becomes a problem.
  • the magnetic field leaks not only to the originally required imaging region 6 (see FIG. 3) but also to the periphery of the apparatus.
  • This leakage magnetic field is completely unnecessary for imaging, but cannot be eliminated.
  • the MRI apparatus is devised to reduce the leakage magnetic field to the surroundings.
  • a device applied to the MRI apparatus in order to suppress this leakage magnetic field is called a magnetic shield, but there are roughly the following two types. (1) A system in which a magnetic material is arranged on the wall of the room where the MRI apparatus is arranged, and the leaking magnetic field lines are captured in the magnetic material to reduce the leakage magnetic field outside the room.
  • Patent Document 1 Active magnetic shielding methods are detailed in Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4.
  • Patent Document 1 discloses that a shield coil block (SC-CB) is used so that the magnetic field of the entire magnet is substantially zero, and then the higher-order components are adjusted so that the leakage magnetic field is quickly attenuated as the distance from the device increases. Disposing groups is disclosed.
  • SC-CB shield coil block
  • FIG. 2 shows the concept of the conventional example of Patent Document 2.
  • the axial direction is taken up and down, the radial direction is taken in the lateral direction, and the equal magnetic flux lines and CB positions are written.
  • the main coil corresponds to MC10 and MC11
  • the shield coil corresponds to SC10 and SC11. Since Patent Document 2 employs a shield coil arrangement that is as simple as possible, the leakage magnetic field region in the axial direction (vertical direction in the figure) is widened.
  • isomagnetic flux lines (also magnetic lines) and magnetic field strength contour lines are written on the left side.
  • the outermost contour line 2 is a 5 gauss line.
  • a 5-gauss line has a radius of 2 m or more and about 3.5 m or more from the apparatus center in the axial direction due to a leakage magnetic field to the surroundings.
  • Patent Document 3 in order to improve the magnetic field uniformity in the imaging region, the magnetic field change due to the CB deformation is optimized from the response of the deformation and the magnetic field change to improve the uniformity.
  • the variation of the magnetic field due to the size of the deformation was discussed, and the distribution of the magnetic field reference was not determined. As a result, it was difficult to achieve the best uniformity.
  • Patent Document 4 a large number of SC-CBs are arranged. However, since the arrangement is concentrated at a relatively short position in the axial direction, it is difficult to exert a sufficient shielding effect. In addition, since the generation of a uniform magnetic field in the imaging region is discussed in terms of spherical harmonic functions, the function for calculating the current distribution becomes complicated and many functions are superimposed, so that the accuracy is likely to deteriorate.
  • An object of the present invention is to provide an MRI electromagnet that has a uniform magnetic field in an imaging region, while having an active magnetic shielding function that can suppress a leakage magnetic field to the surroundings.
  • the present invention provides, as one form thereof, “a horizontal magnetic field type MRI apparatus having a cylindrical magnet open at both ends, wherein the magnet includes an annular main coil, A plurality of annular shield coils each having a diameter larger than that of the main coil and coaxially arranged with the main coil, and at least three of the shield coils are arranged on the shaft, The main coil is also disposed closer to the center of the magnet than the shield coils disposed at both ends in the axial direction, and the shield coil has a larger diameter in the axial direction as it is closer to the center of the magnet. '' It is characterized by.
  • the present invention it is possible to provide a magnet capable of satisfactorily suppressing the leakage magnetic field to the outside and forming a good uniform magnetic field in the imaging region. Since the leakage magnetic field region is narrow, it can be said that the area and room size required for installing the MRI apparatus can be reduced, and the installation restrictions can be further reduced. In addition, good uniform magnetic field performance can be ensured regardless of the magnetic shielding to the outside.
  • positioning of a coil block regarding embodiment of this invention The figure which shows typically magnetic field distribution and arrangement
  • the magnetomotive force arrangement positioning figure which shows an example using the magnetic field adjustment method of this invention.
  • a coil block is arrangement
  • the coil block corresponding to the main coil (MC) is represented as MC-CB11, and the coil block (SC) corresponding to the shield coil is represented as SC-CB15.
  • the electromagnet when considering the generated magnetic field, separate the two directions of the axial direction and the radial direction. That is, for example, assuming a horizontal magnetic field type MRI apparatus, the electromagnet (magnet) is cylindrical. The cylindrical magnet is open at both ends, and an annular main coil and a shield coil are included therein. In the present invention, this cylindrical type electromagnet is considered by separating the leakage magnetic field into the following two regions.
  • Radial leakage magnetic field from the cylindrical body (2) Axial leakage magnetic field from the end of the shaft
  • the radial leakage magnetic field of (1) is used for the magnetic moment of the entire electromagnet and the leakage in the radial direction.
  • the problem is solved by paying attention to the magnetic field distribution that generates the magnetic field, that is, the number of magnetic poles.
  • positive and negative current coil blocks are not arranged in the angle and axial directions as in the conventional examples of Patent Document 1 and Patent Document 3, but the axial and radial magnetic shields are separated. Think about it. That is, in order to reduce the leakage magnetic field in the radial direction, the SC-CB 15 having a large radius is arranged with a negative current. This is the same as in Patent Document 2.
  • a negative current is arranged in the axial direction at a position away from the center of the device (or the imaging region 6) from all MC-CBs.
  • the CB group here refers to an MC-CB group that is a set of MC-CB11 and an SC-CB group that is a set of SC-CB15.
  • FIG. 3 is a diagram showing a concept of a new technique related to the coil block arrangement used in the present invention.
  • the left diagram schematically shows three steps from the top to the bottom, and the right diagram shows the CB to be obtained. It is a schematic diagram of group arrangement.
  • the horizontal magnetic field type MRI apparatus of the present embodiment is a horizontal magnetic field type MRI apparatus having a cylindrical magnet that is open at both ends, and the magnet includes an annular main coil and a main coil. And a plurality of annular shield coils each having a larger diameter and arranged coaxially with the main coil.
  • the axis here is an axis that passes through the center of the opening at both ends of the magnet, and in many cases, it is a horizontal axis.
  • the ring current 20 is continuously arranged in the axial direction at a predetermined position in the radial direction that is larger than the inner diameter. At this point in time, the distribution of current magnitude in the axial direction of the continuous ring current 20, in other words, the current distribution in the axial direction has not been determined.
  • a current distribution in which the magnetic field generated in the imaging region 6 (DSV 6) satisfies a predetermined uniformity is changed from the current distribution to the imaging region. 6 is subjected to singular value decomposition to obtain the sum of dominant eigenmodes.
  • the current distribution to be acquired is a combination of 10 to 14 eigen distributions of symmetrical and asymmetrical components in the axial direction.
  • the MC-CB 11 is installed at a location where a large amount of the wire ring current 20 is arranged, in other words, a certain portion in the axial direction where the wire ring current 20 is concentrated. This is repeated as many times as the number of the eigen distributions described above, and the current density is given to each MC-CB 11 on the assumption that the arrangement of the MC-CB group is tentatively determined. Further, the eigen magnetic field distribution intensity when a uniform magnetic field is generated in the imaging region 6 is obtained for each eigen distribution.
  • each MC-CB 11 When the position and shape of each MC-CB 11 are changed in the MC-CB group temporarily arranged so as to correspond to the above-described eigen distribution, the MC-CB including the MC-CB 11 after the change is obtained.
  • the target of the magnetic field generated by the group The target of the magnetic field generated by the group.
  • a current distribution of the ring current 20 is obtained in a spatially continuous state, and an eigen distribution with a dense current distribution is obtained.
  • the arrangement of the MC-CB 11 is determined in a spatially discrete state so as to correspond to the eigen distribution.
  • the MC has a current distribution that generates a magnetic field that substantially matches the uniform magnetic field generated in the imaging region 6 by the spatial distribution of the ring current 20 that is spatially determined previously. -Adjust the placement and shape of CB11.
  • the eigenmode used here includes both a symmetric component and an asymmetric component with respect to the axial position.
  • the arrangement is symmetrical in the axial direction from the center of the apparatus. Therefore, the natural mode component to be used is half of the above and is about 5 to 7.
  • SC is arranged as a coil block, and its magnetomotive force is determined according to the magnetomotive force of the main coil so as to shield the leakage magnetic field.
  • the first step described above is based on the reference "M. Abe, K. Shibata," Consideration on Current and Coil Block Placements with Good Homogeneity for MRI Magnets using Truncated SVD ", IEEE Trans. Magn., Vol. 49, no.
  • Second Step Using the number of windings of each CB as a continuous real number, the position and shape of MC-CB11 (cross-sectional side position indicated by an arrow) are reproduced so as to reproduce the magnetic field eigendistribution intensity obtained by the ring current 20 obtained in the first step. adjust. At the same time, the magnetomotive force of the SC-CB group 15 that adjusts the leakage magnetic field is also adjusted. These adjustments are performed by repeated calculation. The details of the second step and the next third step will be described later. 3.
  • Step 3 information about the actual wire rod is given and reflected on the MC-CB 11 and SC-CB 15 whose positions and shapes have been obtained in the previous second step. Specifically, based on the wire shape to be used, an integer number of windings, coil cross-sectional shape, magnetomotive force, and coil position (adjusted in the direction indicated by the arrow) are given to the CB group for approximation. Then, the position of each MC-CB 11 is adjusted to reproduce the intrinsic magnetic field strength obtained in the first step. For SC-CB15, the leakage magnetic field is adjusted to be small. The adjustment of the leakage magnetic field here is performed by adjusting the magnetic moment of the shield coil (proportional to the square of the radius of the current x area) and the position of the SC-CB 15 in the radial direction.
  • CB group arrangement with high accuracy is obtained by this method, and the CB group arrangement is determined according to the magnetomotive force arrangement of the magnet that generates a magnetic field with high accuracy regardless of the position of the SC-CB group performing magnetic shielding to the outside.
  • the leakage magnetic field in the axial direction and the radial direction can be adjusted, and the leakage magnetic field in a narrow region can be obtained.
  • the uniform magnetic field in the imaging region 6 can be reconstructed with a uniform magnetic field distribution based on the uniform magnetic field generated by the ring current 20 having a high degree of freedom, a CB group with good uniformity can be obtained.
  • the MRI apparatus can be installed in a narrow space as compared with the conventional case.
  • the number of magnetic shields that weaken the influence on the surroundings can be reduced, and the area required for installing the apparatus can be reduced.
  • u i , ⁇ i , and v i are the i-th eigen distribution vector of the magnetic field, the i-th singular value, and the i-th eigen vector of the current distribution on the side, respectively.
  • the combination of these three elements is called an eigenmode, and the current to be placed on the side is obtained from the combination of these eigenmodes.
  • the number of eigenmodes to be combined is determined depending on the required magnetic field accuracy, the upper limit is the number of ranks in the response example A, and the accuracy increases as the number of combinations increases.
  • FIG. 4 schematically shows the relationship between the current on the CB cross-sectional side and the CB movement / deformation.
  • the CB 13 moves as shown in the left of FIG. 4
  • positive and negative currents appear as shown in the center diagram due to the difference in cross-sectional position.
  • This current is treated as the ring current 21 on the side as shown in the rightmost diagram, and the magnetic field response is summarized in the matrix A.
  • the position of each side of the CB 13 is adjusted independently, but the side given the X mark in the diagram schematically showing the second step shown in FIG. 3 is not moved. This is because the inner diameter of the coil is a fixed value for the MRI apparatus and cannot be moved during magnetic design. Further, the size of movement of each side is continuous, and the change in the size of the cross section is also continuous. Therefore, the magnetomotive force (Ampere-turn) of each CB 13 is also continuous.
  • the CB cross section shows the i-th intrinsic magnetic field strength P i obtained by the inner product u i B of the magnetic field eigen distribution vector u i by the ring-wheel current 20 and the magnetic field distribution vector B, P i ⁇ inner product value ⁇ (i-th intrinsic magnetic field distribution of ring current 20) (uniform magnetic field distribution) ⁇ (2) To be transformed. Adjustment is performed by continuously changing the coil shape assuming the current density.
  • the size of the deformation as follows considered to adjust the residual intrinsic magnetic field strength Pr i.
  • a vector representing the distribution of the magnetic field generated by the CB group is Bc
  • these intrinsic magnetic field strengths are inner products of Bc and the intrinsic magnetic field distribution u i due to the ring wheel current 20
  • the residual intrinsic magnetic field strength is the intrinsic magnetic field distribution u i .
  • Is the inner product of Pr i (Uniform magnetic field distribution vector ⁇ magnetic field distribution by CB group) u i (3) It is.
  • ⁇ I is a vector having, as an element, a current that appears due to CB deformation for each CB 13.
  • the sum is executed for a number of eigenmodes that require magnetic field accuracy.
  • Nc MC-CBs 11 are arranged in a portion where the current due to the ring current 20 is large, the number is normally 2Nc.
  • 2Nc + 2 eigenmodes may be executed.
  • the number of eigenmodes is half the number of magnets in which the CB 13 is arranged symmetrically with respect to the axial position. The remaining half is an eigenmode that is antisymmetric and cannot be used.
  • the eigenmode related to the residual eigenmagnetic field strength is added according to the required magnetic field homogeneity to obtain ⁇ I.
  • ⁇ I is converted into the deformation amount of CB13 based on the current density assumed previously. By reflecting this deformation amount on the original shape of the CB 13, the position of each side of the CB 13 can be adjusted independently. Then, after reflecting the deformation amount of the CB 13, the second step is executed again for the arrangement of the CB 13 after the deformation, and the deformation amount is calculated in the same manner.
  • Adjustment of SC-CB15 changes the magnetomotive force according to the cross-sectional size. It is a practical method to adjust the magnetic moment to the target during the repeated calculation. Normally, adjustment is performed by the magnitude of the magnetomotive force assuming the current density.
  • the coil position is moved by constraining the movement of the opposite sides of the cross-sectional sides of each CB 13 to the same current value in the positive and negative directions in the movement of the cross-sectional sides of each CB 13 in the third step.
  • the current density is determined from the assumed wire and number of windings and the CB cross-sectional area determined from them, but it is desirable that the current density be approximately the same as in the second step. If the current density and magnetomotive force value are far from each other, an inconvenient CB group arrangement greatly changed from the second step is obtained, and in this case, the second step is recalculated.
  • step 3 as shown in the lower diagram of FIG. 3, the cross-sectional shape of the CB is determined by arranging the wire based on the shape of the wire in the cross section. Since the number of windings is determined, the size of the cross section remains unchanged during the adjustment iteration calculation, and the movement of the opposite side positions is the same size and direction, and is adjusted by the movement of the radial and axial positions of the CB 13. . In this adjustment, adjustment is performed by the method shown in the equations (1) to (4) except for the condition that the size of the cross section is not limited.
  • FIG. 5 and 6 show that the convergence calculation in the second step and the third step can determine the uniform magnetic field with high accuracy, respectively.
  • the horizontal axis shows the number of repeated calculations, the vertical axis shows the uniformity from the top, the difference between MC and SC of the magnetic moment in%, the bottom shows the residual eigenmode strength in FIG. Shows six.
  • FIG. 5 shows the second step, and FIG. 6 shows the third step.
  • the number Nc of MC-CB11 is six.
  • the eigenmode intensity of the residual is sufficiently small, and the uniformity is converged to about 1 ppm. This uniformity is evaluated at a magnetic field calculation point placed on the surface of a sphere with a diameter of 40 cm.
  • the SC magnetic moment (dipole strength) is adjusted to 99% of the MC magnetic dipole strength and converges. Generally, adjusting between 98% and 99.75% provides a reasonable magnetic shield.
  • FIG. 7 It can be seen from FIG. 7 that this calculation works well.
  • the current value of the wire ring current 20 and the coil block rCB by the continuous magnetomotive force value reproducing the magnetic field, and the resulting magnetic field lines and magnetic field strength contour lines are shown on the left.
  • the left and right are axial positions, and the radial positions are written from bottom to top.
  • the striking point area is an area having a magnetic field strength of 1.5 T or more.
  • the magnetomotive force arrangement is determined so that a 1.5 T uniform magnetic field is generated in an FOV having a thickness of 20 cm and an outermost shape of 42 cm.
  • both the magnetic field by rCB and the magnetic field by iCB can be adjusted within ⁇ 1.5 ppm in the FOV. That is, it was shown that a good magnetic field distribution is possible with this calculation method even in such an arrangement with a very short axis and a negative current.
  • FIG. 1 shows an example of magnetomotive force arrangement applying the above-described new design technique and the arrangement of SC-SB groups calculated by this technique.
  • isomagnetic flux lines also magnetic lines of force
  • the outermost contour line is a 5 gauss line 9.
  • what is represented by a square with a radius in the vicinity of 0.5 m to 1.0 m is the cross-sectional shape of the CB group 13.
  • the CB name is appended to the square of the CB cross section.
  • MC10-30 is the main coil
  • SC10, SC11, SC12, and SC13 are shield coils.
  • the magnetomotive force arrangement of this embodiment is 1.8 m in the radial direction (2 m or more in the conventional example).
  • R 2.00, 2.25m, and 2.50m
  • an axial line is written every 0.25m as a mark, but the 5 gauss line 9 is located at a position of a small radius sufficiently. It can also be seen that it is narrower than the conventional example of FIG.
  • the 5 gauss line 9 exists at a position 2.5 m or less from the center. Compared to the conventional apparatus, the area surrounded by the 5 Gaussian line 9 is narrow.
  • the figure on the right side is useful for the uniformity of the imaging region 6.
  • the striking area is a strong magnetic field exceeding 1.5T.
  • the number of SC-CB 15 is increased, and the necessary uniform magnetic field can be generated even in the magnetomotive force arrangement in which the MC is smaller than the normal six.
  • SC-CB15 there are four SC-CB15, two of which (SC10, SC11) are arranged in the axial direction away from the main coil (referred to as end SC-CB).
  • SC10, SC11 any main coil is disposed on the center side of the magnet with respect to both ends of the magnet with respect to the shield coil.
  • the axial leakage magnetic field is limited to a narrow region.
  • the other two are MC-CB groups and positions larger in the radial direction than SC-CB15 (end SC-CB) arranged farther in the axial direction, and the MC-CB group is arranged in the axial direction. It is placed in the position range. Further, the radius is made smaller by the farther SC-CB15. In other words, the diameter of the shield coil increases as it approaches the center of the magnet in the horizontal axis direction. With this arrangement, the axial leakage magnetic field is limited to a narrow region.
  • FIG. 8 shows the case where there are six MC-CB11.
  • the SC-CB15 is the same as described above.
  • This CB arrangement also has a narrow leakage magnetic field region (evaluated in the region surrounded by the 5 Gaussian line 9) as in the previous example (FIG. 1). That is, the same magnetic shielding performance is obtained regardless of the MC-CB arrangement.
  • FIG. 9 shows the case where there are four SC-CBs 15 at the end including two that are far from all the MC-CBs 11 in the axial direction, and all the SC-CBs 15 have the same radius.
  • the uniformity is good, but it can be seen that the area surrounded by the 5 Gaussian line 9 is wide. That is, it can be understood that the radial position of the SC-CB 15 at the end must be smaller than that of the other SC-CB 15.
  • FIG. 10 shows a magnet (magnet) incorporating a main coil and a shield coil reflecting the arrangement of the coil block of the present embodiment described above, and shows an overview thereof.
  • the magnet In the axial direction, the magnet is about 1.2m to 1.8m and the diameter of the cylindrical body is about 1.8m to 2.4m.
  • the magnet container 3 cryostat
  • it When separated, it is a magnet with a magnetic field of 5 gauss or less.
  • An imaging space 7 having a uniform magnetic field exists at the center of the magnet device.
  • the horizontal magnetic field type MRI apparatus has been described with reference to a new design method devised by the present inventor and examples of magnetomotive force arrangement obtained by the method. According to this method, it is possible to design a magnet with good uniformity, which suppresses the leakage magnetic field with respect to the outside. Further, since the leakage magnetic field region is narrow, an effect of reducing the area and room size required for installing the MRI apparatus can be obtained. In other words, it can be said that the installation restrictions can be reduced for the MRI apparatus having a strong magnetic field (for example, 3T). In addition, good uniform magnetic field performance can be ensured regardless of the magnetic shielding to the outside.
  • a strong magnetic field for example, 3T
  • the size of the imaging region 6, the 5 gauss region, and the uniformity of the magnetic field have been described with specific numerical values. However, this is for ease of explanation, and as necessary. Needless to say, it can be changed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

In the present invention, an electromagnet, which is configured by a main coil group (positive current) and a shield coil group (negative current) that constitute a magnetic resonance tomography imaging device (MRI) used for medical diagnosis, contains three or more negative current shield coil blocks, and at least one or more of the shield coil blocks is positioned beyond a main coil block and has a radius that is smaller than the other shield coil blocks.

Description

極狭漏れ磁場磁石型MRI装置Extremely narrow magnetic field magnet type MRI system
 本発明は、水平磁場型のMRI装置に関する。 The present invention relates to a horizontal magnetic field type MRI apparatus.
 医療診断用に用いる核磁気共鳴断層写真装置(MRI)による、核磁気共鳴を利用した診断では、磁場強度と診断箇所が対応しているので、マグネットシステムが発生する磁場強度に要求される精度は磁場強度の百万分の1程度の変動が問題となる。ここで、MRI装置において利用される磁場には大別して3種類がある。
(1)時間的に定常で空間的にも一定、かつ通常0.1から数テスラ以上の強さであって撮像を行う空間(通常直径で30-40cmの球もしくは楕円体の空間)内で数ppm程度の変動範囲に収まる磁場
(2)1秒程度以下の時定数で変化して、空間的に傾斜した磁場
(3)核磁気共鳴に対応した周波数(数MHz以上)の高周波の電磁波による磁場
 この磁場は、本来必要とされる撮像領域6(図3参照)のみならず、装置周囲へも漏れる。この漏れ磁場は撮像のためには全く不要なものであるが、無くしてしまうことはできない。このため、周囲への漏れ磁場を小さくする工夫が、MRI装置には施される。この漏れ磁場を抑制するためにMRI装置に施される工夫を磁気シールドと言うが、大別して下記の2種類が有る。
(1)MRI装置を配置した部屋の壁に磁性体を配置し、漏れてくる磁力線を、磁性体中でとらえて、部屋の外への漏れ磁場を小さくする方式。
(2)もっぱら撮像領域6に均一な磁場を生成する主コイル(MC)コイルブロック(CB)群とは別に、撮像領域6には負の磁場を作るが、主コイルの周囲への漏れ磁場を、装置周囲で打ち消す磁場を発生する、シールドコイル(SC)をマグネット自体が備える方式(能動的磁気遮蔽方式)。
In the diagnosis using nuclear magnetic resonance by the nuclear magnetic resonance tomography apparatus (MRI) used for medical diagnosis, the magnetic field intensity corresponds to the diagnosis location, so the accuracy required for the magnetic field intensity generated by the magnet system is A fluctuation of about one millionth of the magnetic field strength becomes a problem. Here, there are roughly three types of magnetic fields used in the MRI apparatus.
(1) Several ppm in a space (usually a 30-40cm sphere or ellipsoidal space with a diameter of 0.1 to several tesla), which is steady in time and constant in space Magnetic field that falls within the fluctuation range of about (2) A magnetic field that is changed with a time constant of about 1 second or less and that is spatially inclined. (3) A magnetic field by a high-frequency electromagnetic wave having a frequency (several MHz or more) corresponding to nuclear magnetic resonance. The magnetic field leaks not only to the originally required imaging region 6 (see FIG. 3) but also to the periphery of the apparatus. This leakage magnetic field is completely unnecessary for imaging, but cannot be eliminated. For this reason, the MRI apparatus is devised to reduce the leakage magnetic field to the surroundings. A device applied to the MRI apparatus in order to suppress this leakage magnetic field is called a magnetic shield, but there are roughly the following two types.
(1) A system in which a magnetic material is arranged on the wall of the room where the MRI apparatus is arranged, and the leaking magnetic field lines are captured in the magnetic material to reduce the leakage magnetic field outside the room.
(2) Apart from the main coil (MC) coil block (CB) group that generates a uniform magnetic field exclusively in the imaging region 6, a negative magnetic field is created in the imaging region 6, but a leakage magnetic field around the main coil is generated. A method in which the magnet itself has a shield coil (SC) that generates a magnetic field that cancels around the device (active magnetic shielding method).
 そして、一般的な方式は、これら2種類を共用する方式である。なお、以降は、上記(2)に挙げたシールドコイルを用いた磁気シールドについて詳細に論ずる。 And a general method is a method that shares these two types. Hereinafter, the magnetic shield using the shield coil mentioned in the above (2) will be discussed in detail.
 能動磁気遮蔽方式は、特許文献1、特許文献2、特許文献3及び特許文献4に詳しい。 Active magnetic shielding methods are detailed in Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4.
 特許文献1は、マグネット全体としての磁気モーメントをほぼ零として、その上で、高次成分を調整して、装置から離れるに従って、素早く漏れ磁場が減衰するように、シールドコイルブロック(SC-CB)群を配置することが開示されている。 Patent Document 1 discloses that a shield coil block (SC-CB) is used so that the magnetic field of the entire magnet is substantially zero, and then the higher-order components are adjusted so that the leakage magnetic field is quickly attenuated as the distance from the device increases. Disposing groups is disclosed.
 特許文献1の方式では、周囲での漏れ磁場を小さくするため、SC-CB群では正負両方の電流を流すCBが存在する。このため、CB数の増加や導体量の増加、隣り合って反対方向の電流が流れるために個々のCBの起磁力増加、またその起磁力を実現する線材量の増加、そして電磁力の増加によるCB支持構造の強化などが、電磁石製造コストの増加原因となる。 In the method of Patent Document 1, there is a CB that passes both positive and negative currents in the SC-CB group in order to reduce the leakage magnetic field in the surroundings. For this reason, an increase in the number of CBs, an increase in the amount of conductors, an increase in the magnetomotive force of individual CBs due to the adjacent current flowing in the opposite direction, an increase in the amount of wire that realizes the magnetomotive force, and an increase in electromagnetic force Strengthening the CB support structure and the like cause an increase in electromagnet manufacturing costs.
 図2は特許文献2の従来例の考え方を示す。図2で上下に軸方向、横方向に半径方向をとり、等磁束線とCB位置を書いている。主コイルはMC10、MC11と対応しており、シールドコイルはSC10、SC11などと対応する。特許文献2では出来るだけ簡素なシールドコイルの配置を採用しているので、軸方向(図で上下方向)への漏れ磁場領域が広くなっている。この図では、左側には等磁束線(磁力線でもある)と磁場強度等高線を書いている。最外側等高線2が5ガウス線である。また半径が0.5mから1.0m付近で四角に書かれているものはコイルブロック(MC10やMC11及びSC10やSC11)の断面である。右側にはCB名を四角に添えて書いているが、MC10~MC30は主コイルに対応するMC-CB11で、SC10、SC11はシールドコイルに対応するコイルブロックSC-CB15である。このように従来のMRI装置用磁石では、周囲への漏れ磁場により、5ガウス線は、半径で2m以上、軸方向に装置中心から3.5m程度以上となっていた。上下に走っている直線は半径R方向位置でR=2.25m、2.5mである。 FIG. 2 shows the concept of the conventional example of Patent Document 2. In FIG. 2, the axial direction is taken up and down, the radial direction is taken in the lateral direction, and the equal magnetic flux lines and CB positions are written. The main coil corresponds to MC10 and MC11, and the shield coil corresponds to SC10 and SC11. Since Patent Document 2 employs a shield coil arrangement that is as simple as possible, the leakage magnetic field region in the axial direction (vertical direction in the figure) is widened. In this figure, isomagnetic flux lines (also magnetic lines) and magnetic field strength contour lines are written on the left side. The outermost contour line 2 is a 5 gauss line. In addition, what is written in a square with a radius in the vicinity of 0.5 m to 1.0 m is a cross section of the coil block (MC10 or MC11, SC10 or SC11). On the right side, the CB name is written with a square. MC10 to MC30 are MC-CB11 corresponding to the main coil, and SC10 and SC11 are coil blocks SC-CB15 corresponding to the shield coil. Thus, in a conventional magnet for an MRI apparatus, a 5-gauss line has a radius of 2 m or more and about 3.5 m or more from the apparatus center in the axial direction due to a leakage magnetic field to the surroundings. The straight line running up and down is R = 2.25m and 2.5m in the radius R direction position.
 一方、特許文献3では撮像領域の磁場均一度を良くするために、CB変形による磁場変化を変形と磁場変化の応答から最適化して均一度を良くした。しかし、変形の大きさによる磁場変動を議論して、磁場の基準の分布が決まっていなかったので、結果として最良の均一度を達成することが難しかった。 On the other hand, in Patent Document 3, in order to improve the magnetic field uniformity in the imaging region, the magnetic field change due to the CB deformation is optimized from the response of the deformation and the magnetic field change to improve the uniformity. However, the variation of the magnetic field due to the size of the deformation was discussed, and the distribution of the magnetic field reference was not determined. As a result, it was difficult to achieve the best uniformity.
 特許文献4では、SC-CB数を多く配置しているが、その配置は、軸方向に比較的短い位置に集中しているため、十分なシールド効果を発揮することは難しい。また、撮像領域の均一磁場の発生についても、球面調和関数で議論しているため電流配分を計算する関数は複雑となり、多くの関数を重ね合わせるので、精度が劣化しやすかった。 In Patent Document 4, a large number of SC-CBs are arranged. However, since the arrangement is concentrated at a relatively short position in the axial direction, it is difficult to exert a sufficient shielding effect. In addition, since the generation of a uniform magnetic field in the imaging region is discussed in terms of spherical harmonic functions, the function for calculating the current distribution becomes complicated and many functions are superimposed, so that the accuracy is likely to deteriorate.
特許4043946号公報Japanese Patent No. 4043946 特開2009-397号公報JP 2009-397 A 国際公開2012-086644号公報International Publication No. 2012-086644 特表2009-502031号公報JP-T 2009-502031
 以上で説明したように従来の技術においては、磁石で発生する撮像領域の磁場を良い精度に保ちながら、周囲への漏れ磁場を低減できる能動的磁気遮蔽を実現することは難しかった。本発明は、撮像領域の均一磁場を持ち、一方で、周囲への漏れ磁場を抑制できる能動的磁気遮蔽の機能を持つMRI電磁石を提供することが課題である。 As described above, in the conventional technique, it has been difficult to realize active magnetic shielding capable of reducing the leakage magnetic field to the surroundings while maintaining the magnetic field of the imaging region generated by the magnet with good accuracy. An object of the present invention is to provide an MRI electromagnet that has a uniform magnetic field in an imaging region, while having an active magnetic shielding function that can suppress a leakage magnetic field to the surroundings.
 磁気遮蔽に利用するSC-CB群は、主コイル群より撮像領域から離れた位置に配置されるので、撮像領域への影響は比較的小さい。しかし、特許文献1に記述されているように、極端な磁気遮蔽は、起磁力の増大や均一磁場の劣化を招きやすい。そのため、最小限のSC-CB数としていたが、やや大きな漏れ磁場を許す結果となっていた。そこで、本発明では、他の方法を含めて改良を行う。つまり、撮像領域の磁場の均一度を良好に保つ位置と形状を持つCB配置を行う。そして、その均一度を良好に保ったまま、外部への漏れ磁場も抑制する。 Since the SC-CB group used for magnetic shielding is arranged at a position farther from the imaging area than the main coil group, the influence on the imaging area is relatively small. However, as described in Patent Document 1, extreme magnetic shielding tends to increase the magnetomotive force and deteriorate the uniform magnetic field. For this reason, the minimum number of SC-CBs was used, but a somewhat large leakage magnetic field was allowed. Therefore, in the present invention, improvements are made including other methods. That is, a CB arrangement having a position and a shape that maintains good uniformity of the magnetic field in the imaging region is performed. And the leakage magnetic field to the outside is also suppressed while the uniformity is kept good.
 上記課題を解決するにあたり、本発明はその一形態として、「両端が開口している円筒状のマグネットを持つ水平磁場型のMRI装置であって、前記マグネットは、円環状の主コイルと、前記主コイルよりも径が大きく、かつ前記主コイルと同軸上に配置される円環状のシールドコイルとを、それぞれ複数個含み、前記シールドコイルは、前記軸上に少なくとも3個以上配置され、いずれの前記主コイルも前記軸方向において両端に配置された前記シールドコイルよりも前記マグネットの中央側に配置され、前記シールドコイルは、前記軸方向において、前記マグネットの中央部に近いほど径が大きいこと」を特徴とする。 In solving the above-described problems, the present invention provides, as one form thereof, “a horizontal magnetic field type MRI apparatus having a cylindrical magnet open at both ends, wherein the magnet includes an annular main coil, A plurality of annular shield coils each having a diameter larger than that of the main coil and coaxially arranged with the main coil, and at least three of the shield coils are arranged on the shaft, The main coil is also disposed closer to the center of the magnet than the shield coils disposed at both ends in the axial direction, and the shield coil has a larger diameter in the axial direction as it is closer to the center of the magnet. '' It is characterized by.
 本発明によれば、外部に対して漏れ磁場を良好に抑制するとともに、撮像領域に良好な均一磁場の形成が可能な磁石を提供できる。そして、漏れ磁場領域が狭いことで、MRI装置の設置に必要な面積や部屋の大きさを小さくでき、より設置の制約を少なくできるといえる。また、外部への磁気遮蔽とは無関係に良い均一磁場性能を確保できる。 According to the present invention, it is possible to provide a magnet capable of satisfactorily suppressing the leakage magnetic field to the outside and forming a good uniform magnetic field in the imaging region. Since the leakage magnetic field region is narrow, it can be said that the area and room size required for installing the MRI apparatus can be reduced, and the installation restrictions can be further reduced. In addition, good uniform magnetic field performance can be ensured regardless of the magnetic shielding to the outside.
本発明の実施形態に関する磁場分布およびコイルブロックの配置を模式的に示す図。The figure which shows typically magnetic field distribution and arrangement | positioning of a coil block regarding embodiment of this invention. 従来例に関する磁場分布およびコイルブロックの配置を模式的に示す図。The figure which shows typically magnetic field distribution and arrangement | positioning of a coil block regarding a prior art example. 本発明で利用するコイルブロック配置に関する新たな計算手法の概念を示す図。The figure which shows the concept of the new calculation method regarding coil block arrangement | positioning utilized by this invention. 本発明の起磁力配置計算に利用するコイルブロック位置移動・変形に対応した辺上の電流の概念図。The conceptual diagram of the electric current on the edge | side corresponding to the coil block position movement and deformation | transformation utilized for magnetomotive force arrangement | positioning calculation of this invention. 本発明の起磁力配置計算法の第2ステップの繰り返し計算の収束状況を示した図。The figure which showed the convergence condition of the repetition calculation of the 2nd step of the magnetomotive force arrangement | positioning calculation method of this invention. 本発明の起磁力配置計算法の第3ステップの繰り返し計算の収束状況を示した図。The figure which showed the convergence condition of the repetition calculation of the 3rd step of the magnetomotive force arrangement | positioning calculation method of this invention. 本発明の磁場調整手法を用いた一例を示す起磁力配置図。The magnetomotive force arrangement | positioning figure which shows an example using the magnetic field adjustment method of this invention. 本発明の起磁力配置で、主コイルのブロック数を6個とした場合の起磁力配置と磁場分布図。The magnetomotive force arrangement and magnetic field distribution when the number of blocks of the main coil is six in the magnetomotive force arrangement of the present invention. SC-CB4個の半径を同じとした場合の磁場分布と漏れ磁場参考図。Magnetic field distribution and leakage magnetic field reference diagram when the radii of four SC-CBs are the same. 新たな計算手法により算出される起磁力配置のコイルブロックを内蔵した磁石の概観図。An overview of a magnet with a built-in coil block with magnetomotive force calculated by a new calculation method.
 以降、本発明者が考案した良い均一度と良い漏れ磁場を同時に満足するように、均一な磁場を構成できる手法及び、その手法を均一磁場設計に応用し良い均一度を得ることができるコイルの配置について説明する。 Thereafter, a method of constructing a uniform magnetic field so as to satisfy the good uniformity and good leakage magnetic field devised by the present inventors at the same time, and a coil that can obtain a good uniformity by applying the method to uniform magnetic field design. The arrangement will be described.
 また、本手法を適用して均一磁場設計をすることで撮像領域6の均一度の劣化を心配すること無く、SC-CBを配置し周囲への漏れ磁場を効果的に抑制することができる。なお、以降において適宜コイルブロック(CB)という文言を用いて本実施例を説明するが、コイルブロックとは、図1に示すように、マグネットの水平方向断面において主コイルやシールドコイルの配置や大きさを反映させて、各コイルを模式的に示したものである。また、主コイル(MC)に対応するコイルブロックをMC-CB11と表し、シールドコイルに対応するコイルブロック(SC)をSC-CB15と表記する。 Also, by applying the present method and designing a uniform magnetic field, the SC-CB can be arranged and the leakage magnetic field to the surroundings can be effectively suppressed without worrying about deterioration of the uniformity of the imaging region 6. In addition, although a present Example is described hereafter using the word of a coil block (CB) suitably, as shown in FIG. 1, a coil block is arrangement | positioning and magnitude | size of a main coil and a shield coil in the horizontal direction cross section of a magnet. Reflecting the above, each coil is schematically shown. The coil block corresponding to the main coil (MC) is represented as MC-CB11, and the coil block (SC) corresponding to the shield coil is represented as SC-CB15.
 MRI用の磁石では、発生する磁場について検討する場合、軸方向と半径方向の2つの方向で分離して考える。つまり、例えば水平磁場型のMRI装置を想定すると電磁石(マグネット)は円筒型である。円筒型のマグネットは両端が開口しており、かつその内部に、円環状の主コイルおよびシールドコイルが内包されている。本発明ではこの円筒型タイプの電磁石について漏れ磁場を次の2領域で分離して考える。 In the case of the MRI magnet, when considering the generated magnetic field, separate the two directions of the axial direction and the radial direction. That is, for example, assuming a horizontal magnetic field type MRI apparatus, the electromagnet (magnet) is cylindrical. The cylindrical magnet is open at both ends, and an annular main coil and a shield coil are included therein. In the present invention, this cylindrical type electromagnet is considered by separating the leakage magnetic field into the following two regions.
 (1)円筒の胴部から半径方向の漏れ磁場
 (2)軸端部からの軸方向漏れ磁場
ここでは特に(1)の半径方向の漏れ磁場を、電磁石全体の磁気モーメントと半径方向への漏れ磁場を発生する磁場分布、つまり磁極数に注目して問題を解決する。
(1) Radial leakage magnetic field from the cylindrical body (2) Axial leakage magnetic field from the end of the shaft Here, in particular, the radial leakage magnetic field of (1) is used for the magnetic moment of the entire electromagnet and the leakage in the radial direction. The problem is solved by paying attention to the magnetic field distribution that generates the magnetic field, that is, the number of magnetic poles.
 本実施例のマグネットの胴部では、特許文献1や特許文献3の従来例のように角度および軸方向に正負の電流のコイルブロックを並べるのではなく、軸方向と半径方向の磁気シールドを分離して考える。つまり、半径方向への漏れ磁場を小さくするために、半径の大きなSC-CB15を負電流で配置する。これは特許文献2と同様である。 In the magnet body of the present embodiment, positive and negative current coil blocks are not arranged in the angle and axial directions as in the conventional examples of Patent Document 1 and Patent Document 3, but the axial and radial magnetic shields are separated. Think about it. That is, in order to reduce the leakage magnetic field in the radial direction, the SC-CB 15 having a large radius is arranged with a negative current. This is the same as in Patent Document 2.
 一方、軸方向においても漏れ磁場を減少させる必要が残っているので、軸方向に、全MC-CBより装置中心(もしくは撮像領域6)位置から離れた位置に負電流を配置する。これらの負電流のSC-CB15は、MC-CB11より半径を大きくしておくことで、撮像領域に対してシールドコイルが発生させる磁場の影響は小さくできる。 On the other hand, since it is still necessary to reduce the leakage magnetic field in the axial direction, a negative current is arranged in the axial direction at a position away from the center of the device (or the imaging region 6) from all MC-CBs. By setting the radius of these negative current SC-CB15 to be larger than that of MC-CB11, the influence of the magnetic field generated by the shield coil on the imaging region can be reduced.
 また、各SC―CB15の配置に対して、その影響を撮像領域6の均一磁場に影響が出ないようにする。そのため、磁場分布を撮像領域6で均一化する方法も特許文献3より改良する。つまり、下記のように3つのステップに従ってCB群を配置することで、撮像領域6の磁場均一度を、良好に保つと共に、漏れ磁場にたいしても良好な配置を求める。なお、ここでいうCB群とは、MC-CB11の集合であるMC-CB群およびSC-CB15の集合であるSC-CB群を言う。 Further, the influence of the arrangement of each SC-CB 15 is prevented from affecting the uniform magnetic field in the imaging region 6. Therefore, the method of making the magnetic field distribution uniform in the imaging region 6 is also improved from Patent Document 3. That is, by arranging the CB group according to the three steps as described below, the magnetic field uniformity of the imaging region 6 is kept good, and a good arrangement is also obtained for the leakage magnetic field. The CB group here refers to an MC-CB group that is a set of MC-CB11 and an SC-CB group that is a set of SC-CB15.
 図3は、本発明で利用するコイルブロック配置に関する新たな手法の概念を示した図であり、左側の図は上から下に3つのステップを模式的に示した図、右側の図は求めるCB群配置の模式図である。 FIG. 3 is a diagram showing a concept of a new technique related to the coil block arrangement used in the present invention. The left diagram schematically shows three steps from the top to the bottom, and the right diagram shows the CB to be obtained. It is a schematic diagram of group arrangement.
 なお、本手法により均一磁場設計を実施すると、例えば図1に示すようなCB群の配置が得られる。具体的には、本実施例の水平磁場型のMRI装置は、両端が開口している円筒状のマグネットを持つ水平磁場型のMRI装置であって、マグネットは、円環状の主コイルと主コイルよりも径が大きく、かつ主コイルと同軸上に配置される円環状のシールドコイルと、をそれぞれ複数個含んでいる。なお、ここでいう軸とは、マグネットの両端にある開口部の中央を通過する軸であって、多くの場合、水平軸である。また、シールドコイルは、軸上に少なくとも3個以上配置され、いずれの主コイルもマグネットの両端にある開口部に対して、シールドコイルよりもマグネットの中央側に配置される。
1.第1ステップ
 MC-CB群の配置を次のように求める。
In addition, when a uniform magnetic field design is performed by this method, for example, an arrangement of CB groups as shown in FIG. 1 is obtained. Specifically, the horizontal magnetic field type MRI apparatus of the present embodiment is a horizontal magnetic field type MRI apparatus having a cylindrical magnet that is open at both ends, and the magnet includes an annular main coil and a main coil. And a plurality of annular shield coils each having a larger diameter and arranged coaxially with the main coil. The axis here is an axis that passes through the center of the opening at both ends of the magnet, and in many cases, it is a horizontal axis. Further, at least three shield coils are arranged on the shaft, and all the main coils are arranged closer to the center of the magnet than the shield coils with respect to the openings at both ends of the magnet.
1. First Step The arrangement of the MC-CB group is obtained as follows.
 まず、撮像領域6(DSV6)の大きさからマグネットの内径が求まるため、この内径よりも大きくなるような半径方向の所定位置において、軸方向に関して連続的に線輪電流20を配置する。この時点では、連続的な線輪電流20が軸方向においてどのような電流の大きさの分布をとるか、換言すると軸方向における電流分布は決定されていない。 First, since the inner diameter of the magnet is obtained from the size of the imaging region 6 (DSV 6), the ring current 20 is continuously arranged in the axial direction at a predetermined position in the radial direction that is larger than the inner diameter. At this point in time, the distribution of current magnitude in the axial direction of the continuous ring current 20, in other words, the current distribution in the axial direction has not been determined.
 次に、上記のように軸方向に関して連続的に配置された線輪電流20に関して、撮像領域6(DSV6)に発生させる磁場が所定の均一度を満たすような電流分布を、電流分布から撮像領域6に生じる磁場への応答行列を特異値分解し、優位な固有モードの和を算出して取得する。なお、取得する電流分布は、軸方向に対称及び非対称な成分の固有分布を10から14個を組み合わせたものである。 Next, regarding the ring current 20 continuously arranged in the axial direction as described above, a current distribution in which the magnetic field generated in the imaging region 6 (DSV 6) satisfies a predetermined uniformity is changed from the current distribution to the imaging region. 6 is subjected to singular value decomposition to obtain the sum of dominant eigenmodes. The current distribution to be acquired is a combination of 10 to 14 eigen distributions of symmetrical and asymmetrical components in the axial direction.
 次に、線輪電流20が多く配置された箇所、換言すると線輪電流20が集中した軸方向の一定部分をMC-CB11の設置位置と仮定する。これを先に述べた固有分布の個数分繰り返し、さらに個々のMC-CB11について電流密度を仮定して付与させることで、MC-CB群の配置を仮決定する。また、撮像領域6に均一な磁場を発生する場合の固有磁場分布強度を各固有分布について求める。この固有磁場分布強度は、上述した固有分布に対応するように仮配置したMC-CB群について、個々のMC-CB11について位置や形状を変化させるとき、変化後のMC-CB11を含むMC-CB群が発生させる磁場の目標となる。 Next, it is assumed that the MC-CB 11 is installed at a location where a large amount of the wire ring current 20 is arranged, in other words, a certain portion in the axial direction where the wire ring current 20 is concentrated. This is repeated as many times as the number of the eigen distributions described above, and the current density is given to each MC-CB 11 on the assumption that the arrangement of the MC-CB group is tentatively determined. Further, the eigen magnetic field distribution intensity when a uniform magnetic field is generated in the imaging region 6 is obtained for each eigen distribution. When the position and shape of each MC-CB 11 are changed in the MC-CB group temporarily arranged so as to correspond to the above-described eigen distribution, the MC-CB including the MC-CB 11 after the change is obtained. The target of the magnetic field generated by the group.
 すなわち第1ステップでは、空間的に連続した状態で線輪電流20の電流分布を求めるとともに、その電流分布が密である固有分布を求める。そして固有分布について対応するように空間的に離散した状態でMC-CB11の配置を決定する。以降の第2ステップでは、先に求めた空間的に連続した線輪電流20の電流分布が撮像領域6に生じさせる均一磁場と、略一致するような磁場を発生する電流分布をもつようにMC-CB11の配置や形状を調整する。 That is, in the first step, a current distribution of the ring current 20 is obtained in a spatially continuous state, and an eigen distribution with a dense current distribution is obtained. Then, the arrangement of the MC-CB 11 is determined in a spatially discrete state so as to correspond to the eigen distribution. In the subsequent second step, the MC has a current distribution that generates a magnetic field that substantially matches the uniform magnetic field generated in the imaging region 6 by the spatial distribution of the ring current 20 that is spatially determined previously. -Adjust the placement and shape of CB11.
 なお、ここで用いる固有モードは軸方向位置に対して対称成分と非対称成分の両方を含んでいる。通常の水平磁場型のMRI用磁石であれば、軸方向に装置中心から対称な配置であるので、利用する固有モード成分も上記の半分となり、5から7個程度である。なお、SCはコイルブロックとして配置しておき、その起磁力を漏れ磁場をシールドするように、主コイルの起磁力に応じて決める。以上説明した第1ステップは、参考文献「M. Abe, K. Shibata, “Consideration on Current and Coil Block Placements with Good Homogeneity for MRI Magnets using Truncated SVD”, IEEE Trans. Magn., vol. 49, no. 6, pp. 2873-2880, June. 2013」に詳細に記述されている。
2.第2ステップ
 各CBの巻き線数を連続実数として、第1ステップで求めた線輪電流20による磁場固有分布強度を再現するようにMC-CB11の位置・形状(矢印で示す断面辺位置)を調整する。同時に、漏れ磁場を調整するSC-CB群15の起磁力調整をも行う。これらの調整は、繰り返し計算で実行する。なお、この第2ステップと次の第3ステップについて詳細は後述する。
3.第3ステップ
 本ステップでは、前の第2ステップで位置・形状を求めたMC-CB11やSC-CB15に対して、現実の線材に関する情報を付与し反映させる。具体的には利用する線材形状を元に、整数の巻き線数、コイルの断面形状と起磁力およびコイル位置(矢印で示す方向に調整)をCB群に付与し近似する。その上で各MC-CB11の位置を調整して、第1ステップで求めた固有磁場強度を再現する。また、SC-CB15に対しては、漏れ磁場を小さくするように調整する。ここでの漏れ磁場の調整はシールドコイルの磁気モーメント(電流x面積で半径の2乗に比例)を、SC-CB15の半径方向の位置を調整することで実行する。
The eigenmode used here includes both a symmetric component and an asymmetric component with respect to the axial position. In the case of a normal horizontal magnetic field type MRI magnet, the arrangement is symmetrical in the axial direction from the center of the apparatus. Therefore, the natural mode component to be used is half of the above and is about 5 to 7. SC is arranged as a coil block, and its magnetomotive force is determined according to the magnetomotive force of the main coil so as to shield the leakage magnetic field. The first step described above is based on the reference "M. Abe, K. Shibata," Consideration on Current and Coil Block Placements with Good Homogeneity for MRI Magnets using Truncated SVD ", IEEE Trans. Magn., Vol. 49, no. 6, pp. 2873-2880, June. 2013 ”.
2. Second Step Using the number of windings of each CB as a continuous real number, the position and shape of MC-CB11 (cross-sectional side position indicated by an arrow) are reproduced so as to reproduce the magnetic field eigendistribution intensity obtained by the ring current 20 obtained in the first step. adjust. At the same time, the magnetomotive force of the SC-CB group 15 that adjusts the leakage magnetic field is also adjusted. These adjustments are performed by repeated calculation. The details of the second step and the next third step will be described later.
3. Third Step In this step, information about the actual wire rod is given and reflected on the MC-CB 11 and SC-CB 15 whose positions and shapes have been obtained in the previous second step. Specifically, based on the wire shape to be used, an integer number of windings, coil cross-sectional shape, magnetomotive force, and coil position (adjusted in the direction indicated by the arrow) are given to the CB group for approximation. Then, the position of each MC-CB 11 is adjusted to reproduce the intrinsic magnetic field strength obtained in the first step. For SC-CB15, the leakage magnetic field is adjusted to be small. The adjustment of the leakage magnetic field here is performed by adjusting the magnetic moment of the shield coil (proportional to the square of the radius of the current x area) and the position of the SC-CB 15 in the radial direction.
 この方法で精度良いCB群配置を得て、外部への磁気シールドを行うSC-CB群位置に依らず精度良い磁場を発生する磁石の起磁力配置に従ってCB群配置を決める。 CB group arrangement with high accuracy is obtained by this method, and the CB group arrangement is determined according to the magnetomotive force arrangement of the magnet that generates a magnetic field with high accuracy regardless of the position of the SC-CB group performing magnetic shielding to the outside.
 前記のようにCB群の起磁力を配置することで、軸方向および半径方向の漏れ磁場を調整可能で、狭い領域での漏れ磁場に出来る。また、このとき、撮像領域6の均一磁場は、自由度の多い線輪電流20による均一磁場を基準に均一な磁場分布を再構成できるので、良い均一度のCB群を求めることが出来る。この結果、漏れ磁場を狭く、また同時に均一磁場も良好な磁石の設計が可能となる。その結果、従来と比べて狭い場所にもMRI装置を設置できる。また周囲への影響を弱める磁気シールドを少なくでき、装置設置に必要な面積を狭くできる。また、撮像性能を良好に保つ良好な均一度も実現でき、使い勝手の良いMRI装置を提供できる。 By arranging the magnetomotive force of the CB group as described above, the leakage magnetic field in the axial direction and the radial direction can be adjusted, and the leakage magnetic field in a narrow region can be obtained. At this time, since the uniform magnetic field in the imaging region 6 can be reconstructed with a uniform magnetic field distribution based on the uniform magnetic field generated by the ring current 20 having a high degree of freedom, a CB group with good uniformity can be obtained. As a result, it is possible to design a magnet with a narrow leakage magnetic field and a good uniform magnetic field at the same time. As a result, the MRI apparatus can be installed in a narrow space as compared with the conventional case. In addition, the number of magnetic shields that weaken the influence on the surroundings can be reduced, and the area required for installing the apparatus can be reduced. In addition, it is possible to realize a good uniformity that keeps the imaging performance good, and to provide an easy-to-use MRI apparatus.
 第1ステップの実例は、前出の参考文献に詳しいが、この文献では第2、第3ステップは議論されてない。第2、3ステップでのコイル位置・断面形状の調整は、CB13の位置・断面形状の変化は、CB13の各辺上に電流として現れると考えられる。そこで本手法においては、CB13の変形と対応するように辺上に電流を配置して、その電流が作る磁場と撮像領域6の磁場との応答行列を求め、その応答行列Aを特異値分解し、
 A=Σuλ   (1)
とする。ここで、u、λ、vはそれぞれ、磁場のi番目固有分布ベクトル、i番目特異値および辺上の電流配分のi番目固有ベクトルである。なお、これら3つの要素の組み合わせを固有モードと呼び、これらの固有モードの組み合わせから辺上に配置すべき電流を求める。組み合わせる固有モードの個数は必要な磁場精度に依存して決めるが、応答行例Aのランク数を上限とし、組み合わせ数が増加するほど精度は高くなる。
An example of the first step is detailed in the above-mentioned reference, but the second and third steps are not discussed in this document. Regarding the adjustment of the coil position / cross-sectional shape in the second and third steps, it is considered that the change in the position / cross-sectional shape of the CB 13 appears as a current on each side of the CB 13. Therefore, in this method, a current is arranged on the side so as to correspond to the deformation of CB13, a response matrix between the magnetic field generated by the current and the magnetic field of the imaging region 6 is obtained, and the response matrix A is singularly decomposed. ,
A = Σu i λ i v i (1)
And Here, u i , λ i , and v i are the i-th eigen distribution vector of the magnetic field, the i-th singular value, and the i-th eigen vector of the current distribution on the side, respectively. The combination of these three elements is called an eigenmode, and the current to be placed on the side is obtained from the combination of these eigenmodes. Although the number of eigenmodes to be combined is determined depending on the required magnetic field accuracy, the upper limit is the number of ranks in the response example A, and the accuracy increases as the number of combinations increases.
 図4にはCB断面辺上の電流とCB移動・変形の関係を模式的に示した。図4左のようにCB13が移動すると、その断面位置の差で中央図のように正負の電流が現れる。この電流を最右側図のように辺上の線輪電流21として扱い、その磁場の応答を行列Aに纏める。 FIG. 4 schematically shows the relationship between the current on the CB cross-sectional side and the CB movement / deformation. When the CB 13 moves as shown in the left of FIG. 4, positive and negative currents appear as shown in the center diagram due to the difference in cross-sectional position. This current is treated as the ring current 21 on the side as shown in the rightmost diagram, and the magnetic field response is summarized in the matrix A.
 第2ステップでは、CB13の各辺の位置を独立に調整するが、図3に示す第2ステップを模式的に示した図においてX印を付与した辺は動かさない。これはコイルの内径はMRI装置として決まった値となり、磁気設計時には動かすことが出来ないためである。また、各辺の動く大きさは連続的で、断面の大きさの変化も連続的である。そのために、各CB13の起磁力(Ampere-turn)も連続的である。CB断面は、線輪電流20による磁場固有分布ベクトルuと磁場分布のベクトルBの内積uBで求めたi番目の固有磁場強度Pを、
 P→内積値{(線輪電流20のi番目固有磁場分布)(一様磁場分布)}  (2)
とするように変形させる。電流密度を仮定してコイル形状を連続的に変更することで調整を行う。
In the second step, the position of each side of the CB 13 is adjusted independently, but the side given the X mark in the diagram schematically showing the second step shown in FIG. 3 is not moved. This is because the inner diameter of the coil is a fixed value for the MRI apparatus and cannot be moved during magnetic design. Further, the size of movement of each side is continuous, and the change in the size of the cross section is also continuous. Therefore, the magnetomotive force (Ampere-turn) of each CB 13 is also continuous. The CB cross section shows the i-th intrinsic magnetic field strength P i obtained by the inner product u i B of the magnetic field eigen distribution vector u i by the ring-wheel current 20 and the magnetic field distribution vector B,
P i → inner product value {(i-th intrinsic magnetic field distribution of ring current 20) (uniform magnetic field distribution)} (2)
To be transformed. Adjustment is performed by continuously changing the coil shape assuming the current density.
 変形の大きさは次のように、残差固有磁場強度Prを調整するように考える。CB群が作る磁場の分布を表すベクトルをBcとすると、これらの固有磁場強度はBcと線輪電流20による固有磁場分布uの内積であり、残差固有磁場強度は固有磁場分布uとの内積で、
 Pr=(一様磁場分布ベクトル-CB群による磁場分布)u (3)
である。これを補正する(Pr→0)辺上の電流分布を表すベクトルΔIは特異値λを用いて、
 ΔI= ΣvPr/λ             (4)
である。なお、ΔIは、各CB13に関し、CB変形により現れる電流を要素にもつベクトルである。ここで和は、磁場精度が必要な数の固有モードについて実行する。線輪電流20による電流の多い部分にNc個のMC-CB11を配置する場合、通常は2Ncであるが、良い磁場精度が必要な場合には2Nc+2個の固有モードについて実行する事もある。また、これらの固有モードでは、軸方向位置に対して対称にCB13が配置される磁石では半分の数の固有モード数である。のこり半分は反対称で利用できない固有モードである。
The size of the deformation as follows considered to adjust the residual intrinsic magnetic field strength Pr i. Assuming that a vector representing the distribution of the magnetic field generated by the CB group is Bc, these intrinsic magnetic field strengths are inner products of Bc and the intrinsic magnetic field distribution u i due to the ring wheel current 20, and the residual intrinsic magnetic field strength is the intrinsic magnetic field distribution u i . Is the inner product of
Pr i = (Uniform magnetic field distribution vector−magnetic field distribution by CB group) u i (3)
It is. This is corrected (Pr i → 0) vector ΔI representing the current distribution on the edges using singular value lambda i,
ΔI = Σv i Pr i / λ i (4)
It is. Note that ΔI is a vector having, as an element, a current that appears due to CB deformation for each CB 13. Here, the sum is executed for a number of eigenmodes that require magnetic field accuracy. When Nc MC-CBs 11 are arranged in a portion where the current due to the ring current 20 is large, the number is normally 2Nc. However, when a good magnetic field accuracy is required, 2Nc + 2 eigenmodes may be executed. Moreover, in these eigenmodes, the number of eigenmodes is half the number of magnets in which the CB 13 is arranged symmetrically with respect to the axial position. The remaining half is an eigenmode that is antisymmetric and cannot be used.
 本手法の第2ステップでは、必要な磁場均一度に応じて残差固有磁場強度に関する固有モードを加算し、ΔIを求める。ΔIを求めた後は、先に仮定した電流密度に基づき、ΔIをCB13の変形量へと変換する。この変形量を元のCB13の形状に反映することによって、CB13の各辺の位置を独立に調整することができる。そしてCB13の変形量を反映させた後は、再び第2ステップを変形後のCB13の配置について実行し、同様に変形量を算出する。この演算を所定の磁場均一度を満たす、つまり残差固有磁場強度が所望の閾値以下となるまで、繰り返し実行し調整することで、CB13の変形が反映された、良い均一度の磁場を生成できるCB群の配置が算出される。 In the second step of this method, the eigenmode related to the residual eigenmagnetic field strength is added according to the required magnetic field homogeneity to obtain ΔI. After obtaining ΔI, ΔI is converted into the deformation amount of CB13 based on the current density assumed previously. By reflecting this deformation amount on the original shape of the CB 13, the position of each side of the CB 13 can be adjusted independently. Then, after reflecting the deformation amount of the CB 13, the second step is executed again for the arrangement of the CB 13 after the deformation, and the deformation amount is calculated in the same manner. By repeatedly executing and adjusting this calculation until a predetermined magnetic field homogeneity is satisfied, that is, until the residual eigenmagnetic field strength is equal to or less than a desired threshold value, a magnetic field with good uniformity reflecting the deformation of the CB 13 can be generated. The arrangement of the CB group is calculated.
 SC-CB15の調整は断面の大きさで起磁力を変更する。繰り返し計算中に目標の磁気モーメントとなるように調整することが実際的な方法である。通常、電流密度を仮定して起磁力の大きさで調整を行う。 * Adjustment of SC-CB15 changes the magnetomotive force according to the cross-sectional size. It is a practical method to adjust the magnetic moment to the target during the repeated calculation. Normally, adjustment is performed by the magnitude of the magnetomotive force assuming the current density.
 第3ステップでは、第2ステップで行った方法で、各CB13の断面辺の相対する辺の移動をCB13の断面の辺上の電流を正負逆方向の同じ電流値と制約してコイル位置移動を表す。この段階では電流密度は想定した線材と巻き線数、およびそれらから決まるCB断面積から決まるが、第2ステップとおおよそ同じ値となることが望ましい。この電流密度や起磁力値がかけ離れていると、第2ステップとは大きく変化した不都合なCB群配置となるので、この場合には第2ステップを再計算することになる。 In the third step, the coil position is moved by constraining the movement of the opposite sides of the cross-sectional sides of each CB 13 to the same current value in the positive and negative directions in the movement of the cross-sectional sides of each CB 13 in the third step. To express. At this stage, the current density is determined from the assumed wire and number of windings and the CB cross-sectional area determined from them, but it is desirable that the current density be approximately the same as in the second step. If the current density and magnetomotive force value are far from each other, an inconvenient CB group arrangement greatly changed from the second step is obtained, and in this case, the second step is recalculated.
 このステップ3では、図3下の図のように断面には素線の形状を元に線材を配置してCB断面形状を決めておく。巻き線数が決まっているので、断面の大きさは調整繰り返し計算中に不変であり、相対する辺位置の移動は同じ大きさと方向であり、CB13の半径方向及び軸方向位置の移動によって調整する。この調整では、断面の大きさが不変と制約する条件以外は、式(1)~(4)で示した方法で調整する。 In step 3, as shown in the lower diagram of FIG. 3, the cross-sectional shape of the CB is determined by arranging the wire based on the shape of the wire in the cross section. Since the number of windings is determined, the size of the cross section remains unchanged during the adjustment iteration calculation, and the movement of the opposite side positions is the same size and direction, and is adjusted by the movement of the radial and axial positions of the CB 13. . In this adjustment, adjustment is performed by the method shown in the equations (1) to (4) except for the condition that the size of the cross section is not limited.
 図5、図6にはそれぞれ第2ステップと第3ステップでの収束計算が精度良く均一磁場を決められることを示している。横軸は繰り返し計算の回数で、縦軸には上から均一度、磁気モーメントのMCとSCの差を%で示し、最下部には残差固有モード強度を図5には7個、図6には6個示している。図5は第2ステップで、図6は第3ステップである。MC-CB11の数Ncは6個である。残差の固有モード強度は十分小さい値となり、均一度は1ppm程度に収束している。この均一度は直径40cmの球体表面に配置した磁場計算点で評価している。SCの磁気モーメント(双極子強度)はMCの磁気双極子強度に対して99%に調整されて収束している。通常、98%から99.75%の間で調整すると妥当な磁気シールドが得られる。 5 and 6 show that the convergence calculation in the second step and the third step can determine the uniform magnetic field with high accuracy, respectively. The horizontal axis shows the number of repeated calculations, the vertical axis shows the uniformity from the top, the difference between MC and SC of the magnetic moment in%, the bottom shows the residual eigenmode strength in FIG. Shows six. FIG. 5 shows the second step, and FIG. 6 shows the third step. The number Nc of MC-CB11 is six. The eigenmode intensity of the residual is sufficiently small, and the uniformity is converged to about 1 ppm. This uniformity is evaluated at a magnetic field calculation point placed on the surface of a sphere with a diameter of 40 cm. The SC magnetic moment (dipole strength) is adjusted to 99% of the MC magnetic dipole strength and converges. Generally, adjusting between 98% and 99.75% provides a reasonable magnetic shield.
 これらの図から、前記の第2ステップと第3ステップで行うCB13の位置や断面形状に関する調整の繰り返し計算が目論見通りに収束して計算できることが解る。 From these figures, it can be understood that the repeated calculation of the adjustment of the position and the cross-sectional shape of the CB 13 performed in the second step and the third step can be converged and calculated as expected.
 この計算が良く機能することは図7からも把握できる。この図で、左には線輪電流20の電流値と、その磁場を再現した連続起磁力値によるコイルブロックrCBとそれによる磁力線及び磁場強度等高線を示した。図で左右には軸方向位置で、下から上に半径方向位置を書いている。打点領域は1.5T以上の磁場強度の領域で、ここでは、厚さ20cmで最外形が42cmのFOVに1.5Tの均一磁場を発生するように起磁力配置を決めている。 It can be seen from FIG. 7 that this calculation works well. In this figure, the current value of the wire ring current 20 and the coil block rCB by the continuous magnetomotive force value reproducing the magnetic field, and the resulting magnetic field lines and magnetic field strength contour lines are shown on the left. In the figure, the left and right are axial positions, and the radial positions are written from bottom to top. The striking point area is an area having a magnetic field strength of 1.5 T or more. Here, the magnetomotive force arrangement is determined so that a 1.5 T uniform magnetic field is generated in an FOV having a thickness of 20 cm and an outermost shape of 42 cm.
 右側には、素線電流を1kAの巻き線構造を仮定し離散的な起磁力値として、コイルブロック(iCB)位置を、線輪電流20による磁場を再現するように第3ステップで調整した結果である。rCB及びiCB共に負電流のMC-CB11が配置されており、MC22とMC23がこれに対応する。これは軸方向に短軸化するために必要となる負電流であってSC10、SC11とは別途必要となる。線輪電流20による検討でもこの負電流がMC22付近に現れている。 On the right side, as a result of adjusting the coil block (iCB) position in the third step so as to reproduce the magnetic field due to the wire ring current 20 as a discrete magnetomotive force value assuming a winding structure of 1 kA for the wire current It is. MC-CB11 of negative current is arranged for both rCB and iCB, and MC22 and MC23 correspond to this. This is a negative current required to shorten the axis in the axial direction, and is required separately from SC10 and SC11. This negative current also appears in the vicinity of the MC 22 in the study using the ring current 20.
 rCBによる磁場、およびiCBによる磁場共にFOV内が±1.5ppm以内に磁場を調整できていることが判る。つまり、このように非常に短軸で、負電流があるような配置でも、本計算手法で良い磁場分布が可能であると言うことが示された。 It can be seen that both the magnetic field by rCB and the magnetic field by iCB can be adjusted within ± 1.5 ppm in the FOV. That is, it was shown that a good magnetic field distribution is possible with this calculation method even in such an arrangement with a very short axis and a negative current.
 上述した新たな設計手法と、本手法により算出されるSC-SB群の配置を適用した起磁力配置例を図1に示す。この図の左側には等磁束線(磁力線でもある)と磁場強度等高線を書いている。最外側等高線が5ガウス線9である。また半径が0.5mから1.0m付近に四角で表しているものはCB群13の断面形状である。右側にはCB名をCB断面の四角に添えて書いているが、MC10-30は主コイルで、SC10、SC11、SC12、SC13はシールドコイルである。通常のMRI装置用磁石に比べて、本実施例の起磁力配置では半径方向には1.8m位置(従来例では2m以上)である。R=2.00、 2.25m、 2.50mには目印に0.25m毎に軸方向線を書いているが、5ガウス線9はこれらより充分に小半径位置となっている。また、図2の従来例より狭くなっている事が判る。 FIG. 1 shows an example of magnetomotive force arrangement applying the above-described new design technique and the arrangement of SC-SB groups calculated by this technique. On the left side of this figure are drawn isomagnetic flux lines (also magnetic lines of force) and magnetic field strength contour lines. The outermost contour line is a 5 gauss line 9. In addition, what is represented by a square with a radius in the vicinity of 0.5 m to 1.0 m is the cross-sectional shape of the CB group 13. On the right side, the CB name is appended to the square of the CB cross section. MC10-30 is the main coil, and SC10, SC11, SC12, and SC13 are shield coils. Compared to a normal magnet for an MRI apparatus, the magnetomotive force arrangement of this embodiment is 1.8 m in the radial direction (2 m or more in the conventional example). For R = 2.00, 2.25m, and 2.50m, an axial line is written every 0.25m as a mark, but the 5 gauss line 9 is located at a position of a small radius sufficiently. It can also be seen that it is narrower than the conventional example of FIG.
 一方軸方向では、5ガウス線9は中心より2.5m以下の位置に存在している。従来装置に比べて5ガウス線9が囲む領域は狭いものとなっている。 In the one-axis direction, the 5 gauss line 9 exists at a position 2.5 m or less from the center. Compared to the conventional apparatus, the area surrounded by the 5 Gaussian line 9 is narrow.
 一方、撮像領域6の均一度は右側の図が参考になる。上下に走っている磁力線と放射状
に書かれた磁場等高線(1.5T±1.5ppm)を書いている。打点領域は1.5Tを超えた磁場の強い領域である。このように、SC-CB15の配置数が増え、MCが通常の6個より少ない起磁力配置においても、必要な均一磁場を発生できる。
On the other hand, the figure on the right side is useful for the uniformity of the imaging region 6. Writing magnetic field lines running vertically and magnetic field contours (1.5T ± 1.5ppm) written radially. The striking area is a strong magnetic field exceeding 1.5T. As described above, the number of SC-CB 15 is increased, and the necessary uniform magnetic field can be generated even in the magnetomotive force arrangement in which the MC is smaller than the normal six.
 この起磁力配置で、SC―CB15は4個有り、そのうち2個(SC10、SC11)は主コイルより中心から軸方向に離れた位置に配置されている(端部SC-CBと呼ぶ)。換言すれば、いずれの主コイルもマグネットの両端に対して、シールドコイルよりもマグネットの中央側に配置される。この配置で、軸方向の漏れ磁場は狭い領域に限られている。また、他の2個は、MC-CB群及び軸方向の遠い位置に配置されたSC-CB15(端部SC-CB)より半径方向に大きな位置で、軸方向にはMC-CB群の配置されている位置範囲に置かれている。またより遠いSC-CB15で半径を小さくしている。換言すると、シールドコイルは、水平軸方向においてマグネットの中央部に近いほど径が大きくなる。この配置により、軸方向の漏れ磁場も狭い領域に限られている。 In this magnetomotive force arrangement, there are four SC-CB15, two of which (SC10, SC11) are arranged in the axial direction away from the main coil (referred to as end SC-CB). In other words, any main coil is disposed on the center side of the magnet with respect to both ends of the magnet with respect to the shield coil. With this arrangement, the axial leakage magnetic field is limited to a narrow region. The other two are MC-CB groups and positions larger in the radial direction than SC-CB15 (end SC-CB) arranged farther in the axial direction, and the MC-CB group is arranged in the axial direction. It is placed in the position range. Further, the radius is made smaller by the farther SC-CB15. In other words, the diameter of the shield coil increases as it approaches the center of the magnet in the horizontal axis direction. With this arrangement, the axial leakage magnetic field is limited to a narrow region.
 図8はMC-CB11が6個の場合である。前記と同様のSC-CB15としている。このCB配置でも前例(図1)と同様に狭い漏れ磁場領域(5ガウス線9の囲む領域で評価)となっている。つまり、MC-CBの配置に依らず同様の磁気シールド性能を持つ。 FIG. 8 shows the case where there are six MC-CB11. The SC-CB15 is the same as described above. This CB arrangement also has a narrow leakage magnetic field region (evaluated in the region surrounded by the 5 Gaussian line 9) as in the previous example (FIG. 1). That is, the same magnetic shielding performance is obtained regardless of the MC-CB arrangement.
 図9は軸方向に全てのMC-CB11より遠い2個を含む4個の端部のSC-CB15を持つが、全てのSC-CB15を同じ半径とした場合である。均一度は良く出来ているが、しかし、5ガウス線9で囲む領域は広くなっていることが判る。つまり、端部のSC-CB15の半径方向の位置を他のSC―CB15より小さくしておく必要が有ることが判る。 FIG. 9 shows the case where there are four SC-CBs 15 at the end including two that are far from all the MC-CBs 11 in the axial direction, and all the SC-CBs 15 have the same radius. The uniformity is good, but it can be seen that the area surrounded by the 5 Gaussian line 9 is wide. That is, it can be understood that the radial position of the SC-CB 15 at the end must be smaller than that of the other SC-CB 15.
 図10は以上説明した本実施例のコイルブロック配置を反映した主コイルやシールドコイルを内蔵した磁石(マグネット)であり、その概観図を示す。軸方向には1.2mから1.8m程度で、円筒状胴部の直径は1.8mから2.4m程度の磁石であるが、このような磁石装置で、磁石の容器3(クライオスタット)表面から、おおよそ1m離れると、5ガウス以下の磁場となる磁石である。この磁石装置中心部には磁場の均一な撮像用空間7が存在する。 FIG. 10 shows a magnet (magnet) incorporating a main coil and a shield coil reflecting the arrangement of the coil block of the present embodiment described above, and shows an overview thereof. In the axial direction, the magnet is about 1.2m to 1.8m and the diameter of the cylindrical body is about 1.8m to 2.4m. With such a magnet device, approximately 1m from the surface of the magnet container 3 (cryostat). When separated, it is a magnet with a magnetic field of 5 gauss or less. An imaging space 7 having a uniform magnetic field exists at the center of the magnet device.
 以上、水平磁場型のMRI装置について、本発明者が考案した新たな設計手法およびその手法により得られる起磁力配置の例を説明した。本手法によれば、外部に対して漏れ磁場を良く抑制した、良い均一度の磁石を設計することができる。そして、漏れ磁場領域が狭いことで、MRI装置の設置に必要な面積や部屋の大きさを小さくできるという効果も得られる。換言すると強磁場(例えば3T)のMRI装置について、設置の制約を少なくできるといえる。また、外部への磁気遮蔽とは無関係に良い均一磁場性能を確保できる。 As described above, the horizontal magnetic field type MRI apparatus has been described with reference to a new design method devised by the present inventor and examples of magnetomotive force arrangement obtained by the method. According to this method, it is possible to design a magnet with good uniformity, which suppresses the leakage magnetic field with respect to the outside. Further, since the leakage magnetic field region is narrow, an effect of reducing the area and room size required for installing the MRI apparatus can be obtained. In other words, it can be said that the installation restrictions can be reduced for the MRI apparatus having a strong magnetic field (for example, 3T). In addition, good uniform magnetic field performance can be ensured regardless of the magnetic shielding to the outside.
 また、上記の実施例では、撮像領域6の大きさや5ガウス領域、磁場の均一度について具体的な数値を挙げて説明したが、これは説明を容易にするためであって、適宜必要に応じて変更することができることは言うまでもない。 In the above-described embodiment, the size of the imaging region 6, the 5 gauss region, and the uniformity of the magnetic field have been described with specific numerical values. However, this is for ease of explanation, and as necessary. Needless to say, it can be changed.
 1…磁束等高線
 2…磁場強度等高線
 3…電磁石容器外壁
 4…磁場方向の矢印
 5…磁場強度等高線(±1.5ppm)
 6…撮像領域
 7…均一磁場領域
 8…支持脚
 9…磁場等高線(5ガウス)
11…MC-CB(主コイルに対応するコイルブロック)
12…磁力線(等磁束線と同じ)
13…コイルブロック
15…SC-CB(シールドコイルに対応するコイルブロック)
20…線輪電流
21…コイルブロック断面片上の線輪電流
DESCRIPTION OF SYMBOLS 1 ... Magnetic flux contour 2 ... Magnetic field strength contour 3 ... Electromagnetic container outer wall 4 ... Magnetic field direction arrow 5 ... Magnetic field strength contour (± 1.5ppm)
6 ... Imaging region 7 ... Uniform magnetic field region 8 ... Support leg 9 ... Magnetic field contour (5 gauss)
11 ... MC-CB (coil block corresponding to the main coil)
12 ... Magnetic field lines (same as equal magnetic field lines)
13 ... Coil block 15 ... SC-CB (coil block corresponding to shield coil)
20 ... Ring current 21 ... Ring current on the coil block cross section

Claims (4)

  1.  両端が開口している円筒状のマグネットを持つ水平磁場型のMRI装置であって、
     前記マグネットは、
     円環状の主コイルと、
     前記主コイルよりも径が大きく、かつ前記主コイルと同軸上に配置される円環状のシールドコイルと、をそれぞれ複数個含み、
     前記シールドコイルは、前記軸上に少なくとも3個以上配置され、
     いずれの前記主コイルも前記軸方向において両端に配置された前記シールドコイルよりも前記マグネットの中央側に配置され、
     前記シールドコイルは、前記軸方向において、前記マグネットの中央部に近いほど径が大きい
     ことを特徴とする水平磁場型のMRI装置。
    A horizontal magnetic field type MRI apparatus having a cylindrical magnet open at both ends,
    The magnet
    An annular main coil;
    A plurality of annular shield coils each having a larger diameter than the main coil and arranged coaxially with the main coil,
    At least three shield coils are arranged on the shaft,
    Any of the main coils is disposed closer to the center of the magnet than the shield coils disposed at both ends in the axial direction,
    A horizontal magnetic field type MRI apparatus characterized in that the shield coil has a larger diameter in the axial direction as it is closer to the center of the magnet.
  2.  請求項1に記載の水平磁場型のMRI装置において、
     前記シールドコイルの磁気モーメントが主コイルの磁気モーメントの99.75%から98%の大きさある
     ことを特徴とする水平磁場型のMRI装置。
    The horizontal magnetic field type MRI apparatus according to claim 1,
    A horizontal magnetic field type MRI apparatus characterized in that the magnetic moment of the shield coil is 99.75% to 98% of the magnetic moment of the main coil.
  3.  主コイルが配置される所定の半径方向の位置において、軸方向に関し連続に線輪電流を配置し、
     前記配置された線輪電流から撮像領域に発生させる目標磁場への応答行列を特異値分解して、前記配置された線輪電流の固有分布を9から14個求めて電流分布を算出し、
     シールドコイルの起磁力を、漏れ磁場をシールドするように、前記主コイルの起磁力に応じて決め、
     前記固有分布をコイルブロックと置き換え、該コイルブロック毎に電流密度を仮定し、
     前記固有分布毎に固有磁場分布強度を求める第1ステップと、
     前記コイルブロックの巻き線数を連続実数として、前記磁場の固有磁場分布強度を再現する主コイル形状の調整と、前記シールドコイル起磁力の調整を繰り返し計算で実行することで、コイルブロックの位置形状を求める第2ステップと、
     前記第2ステップで位置形状を求めたコイルブロックについて線材の巻き線数が整数値となるよう制限を加え、
     前記制限を加えたコイルブロックを前記第2ステップで求めたコイルブロックの形状、起磁力および配置位置について近似させ、
     前記第1ステップで求めた固有磁場分布を再現するコイルブロックの位置を前記近似させたコイルブロックについて算出し、
     前記シールドコイルの半径を外部磁場の漏れ磁場を小さくするように調整する第3ステップと、
     を含む
     ことを特徴とする起磁力配置の設計方法。
    The ring current is continuously arranged in the axial direction at a predetermined radial position where the main coil is arranged,
    Singular value decomposition of a response matrix to the target magnetic field generated in the imaging region from the arranged ring current, and calculating current distribution by obtaining 9 to 14 eigen distributions of the arranged ring current,
    Determine the magnetomotive force of the shield coil according to the magnetomotive force of the main coil so as to shield the leakage magnetic field,
    Replacing the eigendistribution with coil blocks, assuming current density for each coil block;
    A first step of obtaining an eigen magnetic field distribution intensity for each eigen distribution;
    The coil block position shape is obtained by repeatedly performing the adjustment of the main coil shape to reproduce the intrinsic magnetic field distribution strength of the magnetic field and the adjustment of the shield coil magnetomotive force by repeated calculation, with the number of windings of the coil block as a continuous real number. A second step for determining
    For the coil block whose position shape was determined in the second step, a restriction is added so that the number of windings of the wire becomes an integer value,
    Approximate the shape, magnetomotive force and arrangement position of the coil block obtained in the second step to the coil block to which the restriction is added,
    Calculating the approximate position of the coil block that reproduces the natural magnetic field distribution obtained in the first step,
    A third step of adjusting the radius of the shield coil to reduce the leakage magnetic field of the external magnetic field;
    A method for designing a magnetomotive force arrangement, comprising:
  4.  請求項3に記載の起磁力配置の設計方法において、
     前記第2ステップにおける前記磁場の固有磁場分布強度を再現する主コイル形状の調整は、
     前記主コイル形状の変形を線輪電流の再配置とし、前記固有磁場強度分布を再現する線輪電流の再配置を算出し、
     前記算出された線輪電流の再配置を前記主コイル形状の変形に置き換えて調整する
    ことを特徴とする起磁力配置の設計方法。
    In the design method of magnetomotive force arrangement according to claim 3,
    Adjustment of the main coil shape that reproduces the natural magnetic field distribution intensity of the magnetic field in the second step is as follows:
    The deformation of the main coil is a relocation of the ring current, and the relocation of the ring current that reproduces the natural magnetic field strength distribution is calculated,
    A design method of magnetomotive force arrangement, wherein the rearrangement of the calculated wire ring current is replaced with the deformation of the main coil shape and adjusted.
PCT/JP2015/064435 2014-05-20 2015-05-20 Mri device having magnet with extremely narrow leakage magnetic field WO2015178411A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580026951.9A CN106456047B (en) 2014-05-20 2015-05-20 Magnetic type MRI apparatus with extremely narrow leakage magnetic field
JP2016521125A JP6486344B2 (en) 2014-05-20 2015-05-20 Design method of magnet magnetomotive force arrangement in horizontal magnetic field type MRI apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-103910 2014-05-20
JP2014103910 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178411A1 true WO2015178411A1 (en) 2015-11-26

Family

ID=54554077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064435 WO2015178411A1 (en) 2014-05-20 2015-05-20 Mri device having magnet with extremely narrow leakage magnetic field

Country Status (3)

Country Link
JP (1) JP6486344B2 (en)
CN (1) CN106456047B (en)
WO (1) WO2015178411A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193056A (en) * 2004-01-06 2005-07-21 Ge Medical Systems Global Technology Co Llc Method and device for magnetic resonance imaging
US20060255805A1 (en) * 2005-03-29 2006-11-16 Magnetica Limited Shielded, asymmetric magnets for use in magnetic resonance imaging
JP2008253593A (en) * 2007-04-06 2008-10-23 Toshiba Corp Magnetic resonance imaging device, shield coil, manufacturing method of shield coil and driving method for magnetic resonance imaging device
JP2015123161A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Superconductive magnet device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217608A (en) * 1984-04-12 1985-10-31 Fuji Electric Corp Res & Dev Ltd Uniform magnetic field coil
JP4369345B2 (en) * 2004-11-01 2009-11-18 株式会社神戸製鋼所 Magnetic field generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193056A (en) * 2004-01-06 2005-07-21 Ge Medical Systems Global Technology Co Llc Method and device for magnetic resonance imaging
US20060255805A1 (en) * 2005-03-29 2006-11-16 Magnetica Limited Shielded, asymmetric magnets for use in magnetic resonance imaging
JP2008253593A (en) * 2007-04-06 2008-10-23 Toshiba Corp Magnetic resonance imaging device, shield coil, manufacturing method of shield coil and driving method for magnetic resonance imaging device
JP2015123161A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Superconductive magnet device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUSHI ABE ET AL.: "Seimitsu Jiba Hassei-yo Jishaku no Tokuichi Bunkai o Mochiita Dojiku Coil Haichi no Kento", THE SYMPOSIUM ON ELECTROMAGNETICS AND DYNAMICS KOEN RONBUNSHU, May 2012 (2012-05-01), pages 79 - 82 *

Also Published As

Publication number Publication date
JP6486344B2 (en) 2019-03-20
CN106456047B (en) 2020-03-06
JPWO2015178411A1 (en) 2017-04-20
CN106456047A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US7071694B1 (en) Magnet assembly of an MRI system with concentric annular ferromagnetic laminations
CN104685584B (en) Method for constructing magnetic resonance image-forming superconducting magnet
JPH04287903A (en) Magnet assembled body
AU658348B2 (en) Screened electromagnetic coil of restricted length having optimized field and method
CN110780245A (en) High-shielding gradient coil design method for planar superconducting magnetic resonance system and gradient coil thereof
US5396208A (en) Magnet system for magnetic resonance imaging
CN108802645B (en) Permanent magnet type longitudinal gradient coil design method based on 0-1 integer programming
JP4043946B2 (en) Low leakage magnetic field magnet and shield coil assembly
JP2001167927A (en) Magnetic-field gradient coil and its design method
US7755358B2 (en) Method to determine the design of a basic magnet of a magnetic resonance apparatus with at least one gradient coil system
JP6486344B2 (en) Design method of magnet magnetomotive force arrangement in horizontal magnetic field type MRI apparatus
Niu et al. A novel design method of independent zonal superconducting shim coil
GB2354327A (en) Gradient coil system with multiple power supplies
CN107831462A (en) Longitudinal gradient coil based on 01 integer programmings
CN112597617A (en) Gradient field coil optimization method
JPS625161A (en) Magnet for mri
CN108491623A (en) A method of reducing high field super magnet coil stress
While et al. 3D Gradient coil design–toroidal surfaces
JP7416377B2 (en) Multipolar electromagnets and accelerators using them
JPWO2012086644A1 (en) Static magnetic field coil apparatus, nuclear magnetic resonance imaging apparatus, and coil arrangement method for static magnetic field coil apparatus
JPS63281410A (en) Electromagnet with magnetic shield
Noguchi et al. Optimal design method for MRI superconducting magnets with ferromagnetic shield
US20170276748A1 (en) Force reduced magnetic shim drawer
JP2018086204A (en) Superconducting magnet device and magnetic resonance imaging apparatus comprising the same
Du et al. Active shim design of a 7 T highly homogeneous superconducting magnet for Lanzhou Penning trap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796010

Country of ref document: EP

Kind code of ref document: A1