WO2015178377A1 - Assembly instruction device and method - Google Patents

Assembly instruction device and method Download PDF

Info

Publication number
WO2015178377A1
WO2015178377A1 PCT/JP2015/064328 JP2015064328W WO2015178377A1 WO 2015178377 A1 WO2015178377 A1 WO 2015178377A1 JP 2015064328 W JP2015064328 W JP 2015064328W WO 2015178377 A1 WO2015178377 A1 WO 2015178377A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
information
assembly
component
teaching
Prior art date
Application number
PCT/JP2015/064328
Other languages
French (fr)
Japanese (ja)
Inventor
博文 田口
敦子 榎本
中須 信昭
俊一 川邊
裕美子 上野
典明 山本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016521107A priority Critical patent/JP6425718B2/en
Publication of WO2015178377A1 publication Critical patent/WO2015178377A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof

Definitions

  • the present invention relates to a part assembly teaching apparatus and method.
  • Patent Document 1 an automatic tool changer is simplified by recognizing identification parts and grip positions of a plurality of tools by an image processing apparatus, automatically selecting and holding a tool, and automatically changing the tool.
  • a technique for reducing the work burden of teaching related to selection is disclosed.
  • Patent Document 2 discloses a technique for automating teaching of a component gripping operation by a robot hand.
  • the teaching work for selecting the hand is particularly complicated in the teaching work as a whole, and is a heavy burden on the conventional worker. Therefore, it is highly necessary to automate the teaching work.
  • Patent Document 1 selects one of a plurality of pre-given hands without considering any compatibility or compatibility with a part to be gripped by the hand. is there.
  • Patent Document 2 determines the gripping position of a component when a predetermined hand grips the predetermined component, and does not consider compatibility or compatibility with the component in the selection. .
  • an object of the present invention is to provide an assembly teaching apparatus and method for automating teaching of an appropriate hand selection operation considering compatibility with a gripped component or optimizing the position of a gripped component. .
  • the present invention relates to an assembly teaching apparatus for selecting a hand that holds a part in an assembly operation of an assembly, a processing program for selecting a hand (hand selection processing program), a storage unit for storing a related database, and a hand selection process.
  • a data processing unit that executes a program, and the related database includes a component information DB that stores information related to a component, and a hand information DB that stores information related to one or more hands.
  • the present invention can be realized as an assembly teaching method having a step of executing the above processing.
  • the robot teaching work man-hour can be significantly reduced by automating the selection of the hand and the generation of the grip position information of the parts.
  • the block diagram of the assembly teaching apparatus concerning one Example of this invention is shown. It is a figure which shows hand tool information DB concerning one Example. It is a figure which shows components information DB concerning one Example. It is a figure which shows the whole processing flow of the assembly teaching apparatus concerning one Example. It is a figure which shows a part of processing flow of the assembly teaching apparatus concerning one Example. It is a figure which shows arrangement
  • FIG. 1 is a configuration diagram of an assembly teaching apparatus 100 according to this embodiment.
  • the assembly teaching apparatus 100 includes a data processing unit (CPU 10) such as a computer that executes a program and processes data, an input unit 20 that receives an input signal including an instruction from a user, and a display unit 30 that displays at least an input screen.
  • a storage unit 40 for storing parts and hand databases and processing programs, a hand 3D-CAD device 101 for generating hand design data, a product 3D-CAD device 102 for generating part design data, And a vision system 103 such as a camera or a scanner capable of capturing product shape data.
  • the storage unit 40 includes a parts information DB 104 that stores information on the shape, size, material, surface state, mass, and the like of parts obtained from the product 3D-CAD device 102 and the vision system 103, and a hand, a driver, a jig, and the like.
  • a hand / tool information DB 117 that stores tool information and a hand selection program 50 that is a processing program for selecting an optimum hand are stored.
  • the hand selection program 50 includes an assembly order generation unit 105 that generates an assembly order and an assembly direction of a product composed of a plurality of parts, a component gripping surface extraction unit 106 that extracts a surface or position that can be gripped by the hand on the component, A part-hand information collating unit 107 that collates information on a hand and a tool, a part-hand compatibility evaluation unit 108 that evaluates compatibility between a part and a hand, a hand determination unit 109 that determines an optimum hand, A component gripping position generation unit 110 that generates a gripping position of the component when gripping the target component with the determined hand, and a path generation unit 111 that generates a path for moving each component from the initial position to the assembly position.
  • the hand switching frequency counting unit 112 that measures the number of hand switching times (replacement times) until the assembly of the parts is completed, and the assembly time for calculating the assembly time of the parts A calculation unit 113, stores.
  • the hand 3D-CAD device 101 and the product 3D-CAD device 102 may be configured as a single device having both functions.
  • the hand tool information DB 117 as an example of the contents of the hand tool information, as shown in FIG. 2 (a), as shown in FIG.
  • Various types of shape information such as a type that grips a part by closing the inside, a type that grips a part by opening the outside, a type that handles the product by suction instead of a nail, a finger type, a hand opening / closing operation range, Various information such as the load capacity is stored.
  • the assembly order generation unit 105 and the component gripping surface extraction unit 106 information obtained by exhaustively extracting the parts that can be gripped by the component gripping surface extraction unit 106, the assembly order and assembly generated by the assembly order generation unit 105 Depending on the direction information, the surface on which a part is placed during assembly or the surface that needs to be shared with other parts during assembly is not gripped (cannot be gripped) by the hand. Is provided (details will be described later).
  • the component-hand information collating unit 107 includes component information (see FIG. 2B) such as the shape, size, and mass of the component obtained from the component information DB 104 in order to hold the component with the hand, and the hand and tool. Check the information.
  • component information see FIG. 2B
  • the part-hand information collating unit 107 compares the size of the part and the movable range of the hand, compares the mass of the part and the portable mass of the hand, and considers the degree of slippage between the hand and the part. Extract candidates. After that, for each hand candidate, the part-hand compatibility evaluation unit 108 qualitatively or quantitatively calculates and evaluates the compatibility between the part and the hand using, for example, an evaluation function.
  • a plurality of types of hands prepared in advance so as to correspond to an arbitrary component, for example, a suction type that sucks and grips a component, A gripping type in which a part is sandwiched and gripped by a plurality of plate-like or claw-shaped members, and an open-open type in which a hollow type part is opened and gripped by opening a plurality of plate-like or claw-shaped members, Assess compatibility qualitatively or quantitatively.
  • a suction type that sucks and grips a component
  • a gripping type in which a part is sandwiched and gripped by a plurality of plate-like or claw-shaped members
  • an open-open type in which a hollow type part is opened and gripped by opening a plurality of plate-like or claw-shaped members
  • the hand and tool evaluated by the part-hand compatibility evaluation unit 108 for each part in the hand determination unit 109, which is the next processing, For example, the hand or tool having the maximum evaluation value is determined.
  • the evaluation value should be determined with the hand or tool having the maximum value or the hand or tool with the minimum value, depending on the setting of the evaluation function (described later) that is the basis for the calculation. Is different.
  • the component gripping position generation unit 110 determines which region of the component should be gripped by the hand or tool (details will be described later). Subsequently, a path for moving each part from the initial position to the assembly position where the parts are assembled is generated by the path generation unit 111. Thereafter, the hand switching count (number of replacements) until the assembly of the parts is measured by the hand switching counting unit 112, and then the assembly time of the parts is calculated by the assembly time calculating unit 113.
  • the hand considered in this embodiment is a hand having two claws and three claws as an example, a type that grips a part by closing inside, a type that grips a part by opening outside, or a suction type, or A finger type (not shown) imitating a human hand, a hand configured by a combination of them, and the like are conceivable.
  • the assembly sequence generation unit 105 When the start of the assembly teaching apparatus is started (START S2000), the assembly sequence generation unit 105 generates the assembly procedure and the direction for assembling the parts based on the product information of the product 3D-CAD apparatus 102 (S2001). .
  • the number of parts is set to N and the number of hands is set to n (S2002).
  • the values of the counter K that counts the number of parts and the counter Q that counts the number of hands in this operation flow are respectively initialized (value is set to 0) (S2003).
  • the counter K is incremented by 1 (S2004).
  • the process proceeds to the step of selecting each type of hand, for example, for each type of hand of nail type, suction type, and finger type (S2009).
  • the suction-type hand can be sucked if at least one suction surface is present, it is possible to cope with conditions of two or more surfaces (S2009).
  • the component gripping surface extraction unit 106 extracts the component gripping surface of the first component (S2010), and generates a virtual hexahedron (hereinafter referred to as a hexahedral virtual space) serving as an index of a size that can be gripped by the hand (S2011). ). Details of this virtual hexahedron will be described later.
  • the virtual hexahedron space formed by the two-claw or three-claw type hand is compared with the size of the part to be gripped, and it is evaluated whether or not the first part can be gripped by the first hand ( S2012).
  • a gripping position is calculated such that the moment is minimized in the operation after gripping (in a grippable plane) (S2013).
  • the moving direction of the hand is the + Z direction (220Z) in the figure.
  • the component gripping center 220c and the component gripping center position 223g and the component gripping center of the component 223, the protrusion 223a on the component 223, the center of gravity position 223g of this component, the hand 220, and the two claws 222 of the hand The distance from 220c is L, the mass of the part is m, the gravitational acceleration is G, and the moment 225 generated around the gripping center 220c is a value obtained by multiplying the product 223f of the part mass m ⁇ gravity acceleration G by the distance L ⁇ M ⁇ G ⁇ . L.
  • the gripping center 220c can approach the center of gravity 223g of the component, it is desirable to reduce the moment m ⁇ G ⁇ L by bringing the hand close to the position of the center of gravity as close as possible.
  • a path from the part gripping to the part assembly is generated by the path generation unit 111, and there is a part, a hand, or a robot arm (not shown) in the path. Also, it is confirmed whether or not interference occurs with the surrounding environment of the robot, for example, an interference object such as a part supply table or a cage that forms the assembly table (S2016).
  • an interference object such as a part supply table or a cage that forms the assembly table (S2016).
  • the cumulative total assembly time and / or the number of hand switching (exchange) are counted (S2017).
  • the loop with A is repeated n times for the number of hands.
  • the hand combination that minimizes the total component assembly time T can be considered as a low-cost assembly operation.
  • a hand replacement schedule such as the type of hand to be replaced corresponding to the parts to be assembled, the number of hand replacements, and the hand replacement timing.
  • the magnitude relationship between the hand and the component is evaluated (S2012a), then the component mass and the load resistance of the hand (hereinafter referred to as mass resistance) are evaluated (S2012b), and the sliding condition between the component surface and the gripping surface of the hand is further evaluated. Evaluation is performed (S2012c), and the suitability of the hand with respect to an arbitrary part is calculated.
  • FIGS. 13 to 14 show an outline of the suction type hand.
  • the suction hand 230 having one suction surface shown in FIG. 13A is composed of a hand base 231, a suction hollow shaft 232, and a suction cup 233.
  • 230c is a substantially center line of the suction hand 230
  • 234 is a part to be assembled
  • 234g is a center of gravity of the part
  • 234c is a center of gravity line passing through the center of gravity of the part.
  • the suction hand 230 shown in FIG. 13A moves in the ⁇ Z direction at the bottom of the drawing to try to suck the component 234.
  • the mass of the component 234 is m.
  • FIG. 13B is a diagram in the middle of the movement of the component 234 in the + Z direction above the drawing when the component 234 is picked up by the suction hand 230.
  • FIG. 13C shows the position of the center of gravity 234g of the component 234 in FIG. 13A and the size (width in FIG. 13) of the component.
  • the part is a substantially rectangular parallelepiped, the width of the part is 2L, and the distance from the center of gravity position to one end is L.
  • (d) in FIG. 13 in FIG. 13 (c) shows a state in which substantially the center line 230c of gravity line 234c and suction hand parts are shifted by L 3.
  • FIG. 13 (f) shows the relationship of moment M generated when a part is picked up and lifted by a suction hand.
  • the horizontal axis is the distance L from the center of gravity of the component to the center of gripping (suction) of the suction hand
  • the vertical axis is the moment MO applied to the suction part
  • the straight line 240 is a straight line of the moment MO and is a line of mass m ⁇ gravity acceleration G ⁇ distance L. Yes.
  • the distance L from the center of gravity of the component must be reduced in order to reduce the moment MO.
  • the component suction surface 234T is in a substantially flat state, so that suction with a suction hand is possible in an area within the component suction surface 234T.
  • the avoidance method is the method described in FIG. This avoidance process is calculated by the component gripping surface extraction unit 106. Next, description will be given of a case where a component is picked up by another type of hand.
  • the suction hand 240 having two suction surfaces includes a base 241 of the hand, suction hollow shafts 242l and 242r, and suction cups 243l and 243r.
  • Reference numerals 240a and 240b denote center lines of the suction hollow shafts 242l and 242r.
  • Reference numeral 244 denotes a part to be assembled, and 244g denotes a position of the center of gravity.
  • FIG. 14B is a diagram in which the component 244 is attracted to the suction hand 240 by the suction surface 244T and is moving in the + Z direction above the drawing.
  • FIG. 14 shows a moment diagram. From this figure, it can be seen that when the center of gravity position 234g is between the suction cups (between -i and + i), less moment is generated than when the center of gravity is not. This indicates that the load on the hand 240 is small. In this figure, these calculations are also performed by the component gripping position generation unit 110, and it is possible to reduce the load on the upper device to which the hand or a hand (not shown) is attached. As shown in FIG. 13 and FIG. 14, the suction type hand basically requires only one surface for picking up the components. Therefore, the handling of components having complicated shapes or components having a small plane area is limited. It is effective for.
  • FIG. 4A shows an example of a flow applied to a suction type hand
  • FIG. 4B shows an example of a flow applied to a finger type hand (not shown).
  • the suction type hand shown in FIG. 4 (a) if two or more parts can be gripped by the hand in S2006 of FIG. 3, first, extraction of the part suction surface is attempted ((a of FIG. 4). ) S3001).
  • the processing flow moves to D in (b) of FIG. 4B in the case of using a finger type hand described later.
  • the degree of compatibility between the hand and the part is calculated (S3002). Subsequently, when the hand sucks the part and the hand tries to move to the next posture, the hand suction position is calculated so that the moment acting on the hand is minimized by the mass of the part (S3003).
  • the suction position is determined (S3004), and the operation temporarily moves to S2015 shown in FIG. Since the method of minimizing this moment in a grippable state has been described with reference to FIGS. 12 and 13, it is omitted here.
  • the collation between the suction type hand and the part in S3002 will be described next.
  • S3002a is a step of evaluating the mass of the part and the mass resistance of the hand.
  • the mass of the part obtained from the attribute information of the 3D-CAD information is likely to exceed the mass resistance of the hand, the combination of the part and the hand is inappropriate. And the process is moved to A shown in FIG. 3, and the hand is reviewed again.
  • the mass resistance is not exceeded in step S005
  • the sliding condition of the part and the hand is evaluated in the next S3002b.
  • the information used as the basis for the evaluation of the slip condition is, for example, attribute information possessed by the 3D-CAD apparatuses 101 and 102.
  • FIG. 4B is used to show a flow when a finger type hand (not shown) is selected.
  • the finger-type hand is a hand provided with one or more pairs of finger-shaped connecting members having joints.
  • each step (S3007a and S3007b) of combination evaluation of a finger type hand and a component to be grasped is performed. Details of this evaluation will be described later.
  • the moment applied to the hand when the part is gripped is calculated (S3008). For example, when the gripping position is arbitrarily changed at several places, the moment amount changes, but the moment amount is calculated at least at a plurality of grippable positions, and the gripping position is determined so as to be minimized (S3009).
  • the process moves to A (S2007) shown in FIG. 3 as the load is over, and the flow enters the flow for selecting the next hand candidate. If the mass of the component is less than or equal to the withstand mass of the hand, the process proceeds to the step of evaluating the sliding condition of the component and the hand (S3007b).
  • FIG. 5A shows a workbench 180 for assembly, a part A181 constituting one part of the product, and a part B182.
  • Parts A and B are parts that have not been assembled yet.
  • a state of being placed on the work table 180 in a level state is shown.
  • the surface 181a constituting one surface of the component 181 is a surface that comes into contact with the component B when assembled in the future
  • the surface 182b is a surface facing the surface 182a.
  • the parts 182 can be gripped by using the surfaces 182a and 182b.
  • a hatched surface 182a of the component B182 indicates a surface that contacts the component A181 when assembled in the future.
  • FIG. 5B is a view in the process of assembling the part 181 and the part 182, and FIG. 5C shows the final form in which the part A181 and the part B182 are assembled.
  • 181a and 182a which are the contact surfaces of the two parts after assembly, are sent to the assembly order generation unit 105 based on the product information DB 104 obtained by the product 3D-CAD device 102 or the vision system 103 in FIG. Is extracted.
  • the hand to be used is the same for picking up parts and assembling parts. Further, consider a case where the parts are not changed during the transition from the part removal to the part assembly.
  • the surface 182c is in contact with the workbench 180.
  • the surfaces 182a and 182b can be gripped by using a hand other than the surface 182c.
  • the state after the completion of assembly shown in FIG. 5C is predicted, the surface 182a of the part B and the surface 181a of the part A are in contact with each other. It cannot be. Therefore, at the used hand determined by the hand determining unit 109 and the gripping position determined by the component gripping position generating unit 110, the state after completion of assembly is calculated in advance by the assembly order generating unit 105, and the gripping or suctioning with the hand is performed. In this case, the gripping surface is determined by excluding the contact surface after assembly in advance. This process is a major feature of the present embodiment, and FIG. 17 shows a diagram representing these in the processing flow.
  • FIG. 17 is performed by the component gripping surface extraction unit 106 in the component gripping surface extraction step (S2010 in FIG. 3) (details omitted).
  • S2010 in FIG. 3 component gripping surface extraction step
  • FIGS. 17 An example of a method for determining whether or not an arbitrary part can be held with an arbitrary hand will be described with reference to FIGS.
  • the contents described here are processed in the part-hand information collating unit 107 in FIGS. 1 and 3 and the step S2012a of the hand-part magnitude relation evaluation step.
  • FIG. 6 is a diagram schematically showing a two-claw hand.
  • FIG. 6A is a schematic perspective view of a two-claw hand.
  • the hand 190 includes a base portion 191 of the hand and two claws 192. These two claws open and close inward and outward in the X direction. By doing so, it is possible to grip the component.
  • the description of the actuator such as an actuator for driving the tab of the hand is omitted.
  • FIG. 6B is a diagram when the distance between the claw portions of the two-claw hand is maximized to Bmax. A state where a hexahedral virtual space 193 is formed in a region surrounded by the base portion 191 and two claws 192 is shown.
  • FIG. 6 (c) is a view of the two-claw hand as viewed from the front.
  • the inter-nail dimension when the two nails are fully opened is Bmax, and the distance between the nails when the interval is closed to the minimum (dashed line 192a).
  • the dimension is Bmin.
  • FIG. 6D is a diagram in which the hexahedral virtual space 193 is extracted.
  • FIG. 7 shows a hexahedral virtual space 193 and a part 194 to be gripped by the two-claw hand.
  • FIG. 7A is a diagram showing the dimensional relationship between the hexahedral virtual space 193 and the part 194, and the width direction dimension Bp of the part satisfies the condition that Bmax> Bp with respect to the opening / closing direction dimension Bmax of the hand. It is a figure when satisfy
  • FIG. 7B is a diagram in which the hexahedral virtual space 193 and the part 194 are overlapped, and since Bmax> Bp, the hexahedral virtual space formed by the base portion of the hand and two claws is illustrated. The state where the part 194 is included in the space 193, that is, the part 194 can be gripped by the two-claw hand 190 is shown.
  • FIG. 7C the state of the hexahedral virtual space 193 is the same as FIG. 7A and FIG. 7B, but the dimensional relationship of the part 195 to be grasped is different from that of the part 194. Shows the case.
  • FIG. 7D is a diagram in which a hexahedral virtual space 193 and a component 195 are overlapped as in FIG. 7B.
  • Bmax ⁇ Bp the component 195 protrudes from the hexahedral virtual space 193. That is, the component 195 cannot be gripped by the two-claw hand 190.
  • the part-hand information collating unit 107 performs a process of superimposing the hexahedral virtual space that can be formed between the claws of the hand and the part to be grasped on the part-hand information collation unit 107, so that the two-nail type hand is applied to the part. It is possible to determine whether or not can be gripped. Next, another gripping example will be described with reference to FIG.
  • FIG. 8 (a) shows a hexahedral virtual space 193 and a part 194 formed by the two-claw hand shown in FIGS. Similarly to the above, 193a indicates a surface sandwiched between two claws.
  • FIG. 8B shows a state in which the direction of the two-claw hand 190 is rotated 90 degrees with respect to the component in FIG.
  • the width of the hexahedron virtual space 193 with respect to the part is Bmax
  • the part width is Wp.
  • Bmax> Wp and therefore, as shown in FIG.
  • the part 194 is included in the hexahedral virtual space 193.
  • the component-hand information collating unit 107 in FIG. 1 performs collation assuming that the hand is rotated with respect to the component.
  • FIG. 9 is a diagram when the hand form is changed from the conventional two-claw hand to the three-claw hand.
  • 9A is a schematic perspective view of the three-claw hand 200
  • FIG. 9B is a diagram in the case of assuming a hexahedral virtual space inside the claw as an example in FIG. 9A
  • FIG. (C) is a view of the three-claw hand 200 as viewed from above.
  • the three-claw hand 200 is composed of a base portion 201 of the hand and three claws 202, and these three claws open and close inward and outward in the direction of arrow E in FIG. .
  • 3 claw 202 is a view showing a state in which the claw interval is widened to the maximum, and 3 claws indicated by a broken line 202b are showing a state in which the component 204 is being held. Since the relation between the virtual space of the hexahedron and the parts to be gripped is basically the same as the contents described with reference to FIGS. 6 to 8, the description thereof is omitted here.
  • the part-hand compatibility evaluation unit 108 in FIG. 1 and FIG. 3 performs a hand / part magnitude relationship evaluation step S2012a, a part mass / hand mass resistance evaluation step S2012b, and a part / hand.
  • the process is performed in the slip condition evaluation step S2012c.
  • the interval when the distance between the two claws is the maximum is indicated by L1
  • the interval when the distance between the claws is the minimum is indicated by L2.
  • the width dimension of the component to be gripped here is indicated by Lp.
  • the ideal state desirable as a hand is that the ratio of Lp and L1 is sufficiently small when the nail is open ((Lp / L1) ⁇ 1), and the ratio of Lp and L2 is when the nail is closed. Is sufficiently large ((Lp / L2) >> 1), and if these conditions are satisfied, the opening / closing margin of the nail with respect to the size of the component increases. Therefore, as an example, the expression (1) is defined as an index of the opening / closing margin of the nail.
  • the margin Mmargin with respect to mass is defined as an example, the equation shown in (2) is obtained.
  • Mmargin (%) ⁇ 1- (Mp / Mlimit) ⁇ ⁇ 100 ----- (2) Further, the evaluation of the sliding condition between the part and the hand depends on the friction coefficient ⁇ between the part and the hand and the force F with which the hand grips the part.
  • the relationship between the part mass Mp, the friction coefficient ⁇ , the gravitational acceleration G, and the force F with which the hand grips the part is balanced when the part is lifted in the vertical direction under the condition shown in the equation (3). It becomes a state.
  • the evaluation index may extend the equation of (6) and take the form of the root mean square of the size, mass, moment, and friction state as shown in the equation of (7).
  • FIG. 11 shows an example of an input screen of the assembly teaching apparatus in the present embodiment. This screen is displayed on the display unit 30 in FIG. 1, and an input operation is performed with the input unit 20 including a keyboard and a mouse.
  • the input unit 20 including a keyboard and a mouse.
  • a series of assembly teaching is automatically performed by pressing the teaching execution button.
  • a structure in which a hand has only one set of gripping portions has been described so far, but the scope of application of this embodiment is not limited to this.
  • FIG. It may have a structure having a gripping function, two or more sets of suction functions, or a gripping function and a suction function.
  • a hand 250 shown in FIG. 15 includes a hand base 251 and three claws 252.
  • Reference numeral 250 c denotes a center line of the hand 250.
  • Reference numeral 253 denotes a ring-shaped component, and the three claws 252 have a structure suitable for gripping the component 253 at the center hole 235a portion.
  • the three claws 252 are close to each other when the part 253 is passed, and after passing the part 253, the claws spread in the J direction in the figure to grip the part 253. can do.
  • FIG. 15 (f) shows the relationship between the movable range of the hand claw and the inner peripheral diameter of the ring-shaped part.
  • the movable range of the claw is R1 to R2 and the inner peripheral diameter of the ring-shaped part is rp1 to rp2
  • gripping is possible when R1 ⁇ rp1 ⁇ rp2 ⁇ R2.
  • the calculation of the grippable range is also performed by the component-hand information matching unit 107 component.
  • the method of selecting the hand, the method of determining the gripping position, and the concept of the opening / closing allowance of the parts and the hand are the same as the methods described so far, so detailed description thereof is omitted here.
  • FIG. 16 shows an example in which two hand functions are integrated into one hand.
  • FIG. 16 is a schematic perspective view of a hand 260 having a structure in which two systems of two-claw type hands are formed by one hand.
  • the hand 260 includes a base portion 261 of the hand and two sets of claws 262 (first claws) and 263 (second claws).
  • the two sets of claws are independent on the inside and outside in the X direction. It opens and closes.
  • 262a and 263a indicated by hatching indicate gripping surfaces for the parts in the claws 262 and 263, respectively.
  • the present embodiment can also be applied to a hand having a plurality of claws and suction cups for these one hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided are an assembly instruction device and method that automate the teaching of an appropriate hand selection task while taking into consideration compatibility with the component to be grasped. This assembly instruction device selects a hand for grasping a component in the assembly task for an assembled product, and is provided with: a storage unit that stores a processing program (hand selection processing program) that selects a hand, and a relational database; and a data processing unit that executes the hand selection processing program. The relational database includes: a component information database that stores information pertaining to components; and a hand information database that stores information pertaining to one or more hands. By executing the hand selection processing program, the data processing unit generates component grasping position information or generates teaching information for selecting the hand that grasps the component on the basis of the information in the component information database and hand information database.

Description

組立教示装置及び方法Assembly teaching apparatus and method
 本発明は部品の組立教示装置及び方法に関する。 The present invention relates to a part assembly teaching apparatus and method.
 ロボットを活用した組立自動化において事前に組立動作プログラムを生成する場合、通常は直接ロボットを動作させながら行うダイレクトティーチングが一般的である。このダイレクトティーチングは、ロボットに望むべき一連の動作を動作ごとに全てティーチングする必要があり、ティーチング作業が複雑になるので、多大な工数を要するため、ティーチング作業者の大きな負担となっている。 When generating assembly operation programs in advance in assembly automation using robots, direct teaching is generally performed while operating the robot directly. In this direct teaching, it is necessary to teach a series of motions desired for the robot for each operation, and the teaching work becomes complicated, which requires a great amount of man-hours, which is a heavy burden on the teaching worker.
 また、近年では、顧客ニーズの多様化により、商品の生産形態が少品種大量生産型から多品種変量生産型に移行してきており、ロボットを活用した組立工程も多品種に対応したものが望まれている。
このことは、ダイレクトティーチングを行なう作業者の負担を加速度的に増大させることになる。
In recent years, due to the diversification of customer needs, the production form of products has shifted from a low-mix, high-volume production type to a multi-variable, variable-volume production type, and the assembly process using robots is also expected to support multiple types. ing.
This increases the burden on the operator who performs direct teaching at an accelerated rate.
 そこで、従来より、ティーチングの作業負担を低減する自動化技術が提案されている。例えば特許文献1には、複数のツールの識別部位及び把持位置を画像処理装置により認識し、ツールを自動選択して把持し自動交換をすることにより、自動ツール交換装置の簡素化を図り、ツール選択に関するティーチングの作業負担を低減させる技術が開示されている。 Therefore, conventionally, an automated technique for reducing the work burden of teaching has been proposed. For example, in Patent Document 1, an automatic tool changer is simplified by recognizing identification parts and grip positions of a plurality of tools by an image processing apparatus, automatically selecting and holding a tool, and automatically changing the tool. A technique for reducing the work burden of teaching related to selection is disclosed.
 また、例えば特許文献2には、ロボットハンドによる部品の把持作業のティーチングを自動化する技術が開示されている。 Further, for example, Patent Document 2 discloses a technique for automating teaching of a component gripping operation by a robot hand.
特開昭62-264839号公報JP-A-62-264839 特開2008-272886号公報JP 2008-272886 A
 汎用的なハンドが数種類準備してあるロボットを活用した組立ラインの場合、新規部品の組立に対応しようとすると、既存のハンドの中から適切なハンドを選択・選定し、さらに部品の把持位置を決定する必要がある。このハンド選択及び把持位置決定において、部品の大きさや重量(質量)、摩擦力等を考慮した部品の特性に最も適合したハンドを選択しなければならない。 In the case of an assembly line using a robot that has several types of general-purpose hands, when trying to support the assembly of new parts, an appropriate hand is selected and selected from existing hands, and the gripping position of the parts is further determined. It is necessary to decide. In this hand selection and gripping position determination, it is necessary to select a hand that best suits the characteristics of the part in consideration of the size, weight (mass), frictional force, etc. of the part.
 しかし、このハンド選択のためのティーチング作業は、ティーチング作業全体の中でも特に作業内容が複雑であり、従来作業者の大きな負担となっているため、ティーチング作業の自動化の必要性が高い。 However, the teaching work for selecting the hand is particularly complicated in the teaching work as a whole, and is a heavy burden on the conventional worker. Therefore, it is highly necessary to automate the teaching work.
 然るに、特許文献1に開示される従来技術は、ハンドが把持しようとする部品との相性や適合性は一切考慮せずに、予め与えられた複数のハンドの中から1つを選択するものである。 However, the prior art disclosed in Patent Document 1 selects one of a plurality of pre-given hands without considering any compatibility or compatibility with a part to be gripped by the hand. is there.
 また、特許文献2に開示される従来技術は、所定のハンドが所定の部品を把持する場合の部品の把持位置を決定するものであり、選択にあたって部品との相性や適合性は考慮していない。 The prior art disclosed in Patent Document 2 determines the gripping position of a component when a predetermined hand grips the predetermined component, and does not consider compatibility or compatibility with the component in the selection. .
 そこで、本発明の目的は、把持する部品との適合性を考慮した適切なハンド選択作業のティーチングを自動化する、あるいは把持する部品の位置を適正化する組立教示装置及び方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an assembly teaching apparatus and method for automating teaching of an appropriate hand selection operation considering compatibility with a gripped component or optimizing the position of a gripped component. .
 本発明は、組立品の組み立て作業における部品を把持するハンドを選択する組立教示装置であって、ハンドを選択する処理プログラム(ハンド選択処理プログラム)及び関連データベースを格納する記憶部と、ハンド選択処理プログラムを実行するデータ処理部と、を備え、関連データベースは部品に関する情報を格納した部品情報DBと、一又は複数のハンドに関する情報を格納したハンド情報DBと、を含み、データ処理部は、ハンド選択処理プログラムを実行することにより、部品情報DBとハンド情報DBの情報に基づいて、部品を把持するハンドを選択するティーチング情報を生成することを特徴とする、また部品の把持位置情報を生成することを特徴とする組立教示装置として実現することができる。 The present invention relates to an assembly teaching apparatus for selecting a hand that holds a part in an assembly operation of an assembly, a processing program for selecting a hand (hand selection processing program), a storage unit for storing a related database, and a hand selection process. A data processing unit that executes a program, and the related database includes a component information DB that stores information related to a component, and a hand information DB that stores information related to one or more hands. By executing a selection processing program, teaching information for selecting a hand that grips a component is generated based on information in the component information DB and the hand information DB, and component gripping position information is generated It can be realized as an assembly teaching apparatus characterized by this.
 また、本発明は、上記の処理を実行する工程を有する組立教示方法として実現することができる。 Further, the present invention can be realized as an assembly teaching method having a step of executing the above processing.
 本発明によれば、ハンドの選択及び部品の把持位置情報の生成を自動化することにより、ロボットのティーチング作業工数を大幅に低減することができる。 According to the present invention, the robot teaching work man-hour can be significantly reduced by automating the selection of the hand and the generation of the grip position information of the parts.
本発明の一実施例にかかる組立教示装置の構成図を示す。The block diagram of the assembly teaching apparatus concerning one Example of this invention is shown. 一実施例にかかるハンド・ツール情報DBを示す図である。It is a figure which shows hand tool information DB concerning one Example. 一実施例にかかる部品情報DBを示す図である。It is a figure which shows components information DB concerning one Example. 一実施例にかかる組立教示装置の処理フロー全体を示す図である。It is a figure which shows the whole processing flow of the assembly teaching apparatus concerning one Example. 一実施例にかかる組立教示装置の処理フローの一部を示す図である。It is a figure which shows a part of processing flow of the assembly teaching apparatus concerning one Example. 一実施例にかかる組立教示装置の部品の配置を示す図である。It is a figure which shows arrangement | positioning of the components of the assembly teaching apparatus concerning one Example. 一実施例にかかる2爪ハンド及びその仮想六面体を示す図である。It is a figure which shows the 2 claw hand and its virtual hexahedron concerning one Example. 一実施例にかかる仮想六面体及びそれより大きい対象部品を示す図である。It is a figure which shows the virtual hexahedron concerning one Example, and a larger target component. 一実施例にかかる仮想六面体及びそれより幅の広い対象部品を示す図である。It is a figure which shows the virtual hexahedron concerning one Example, and a target object wider than it. 一実施例にかかる3爪ハンド及びその仮想六面体を示す図である。It is a figure which shows the 3 claw hand and its virtual hexahedron concerning one Example. 一実施例にかかる2爪ハンドの可動範囲及び対象部品の幅を示す図である。It is a figure which shows the movable range of 2 claw hand concerning one Example, and the width | variety of object component. 一実施例にかかる組立教示装置の入力画面の一例を示す。An example of the input screen of the assembly teaching apparatus concerning one Example is shown. 一実施例にかかるモーメントが最小となる把持位置の算出方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the calculation method of the holding | grip position where the moment concerning one Example becomes the minimum. 一実施例にかかる吸着ハンドによる部品の吸着を示す図とグラフである。It is a figure and graph which show adsorption | suction of the components by the adsorption | suction hand concerning one Example. 一実施例にかかる吸着面が2箇所の吸着ハンドによる部品の吸着を示す図とグラフである。It is a figure and graph which show adsorption of parts by an adsorption hand with two adsorption surfaces concerning one example. 一実施例にかかる外側開きのハンドによるリング状部品の把持例及びグラフを示す図である。It is a figure which shows the example of holding | grip of the ring-shaped components by the hand of the outward opening concerning one Example, and a graph. 一実施例にかかる2系統のハンド機能を持つハンドを示す図である。It is a figure which shows the hand which has 2 types of hand functions concerning one Example. 一実施例にかかる部品把持面抽出の処理フローを示す図である。It is a figure which shows the processing flow of component gripping surface extraction concerning one Example.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施形態を図面にしたがって説明する。図1は本実施例による組立教示装置100の構成図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an assembly teaching apparatus 100 according to this embodiment.
 組立教示装置100は、プログラムの実行やデータの処理を行うコンピュータ等のデータ処理部(CPU10)と、ユーザからの指示を含む入力信号を受け付ける入力部20と、少なくとも入力画面を表示する表示部30と、部品やハンドのデータベース及び処理プログラムを格納する記憶部40と、ハンドの設計データを生成するハンド用3D-CAD装置101と、部品の設計データを生成する製品用3D-CAD装置102と、製品形状データを取込むことが可能なカメラやスキャナ等のビジョンシステム103と、から構成される。 The assembly teaching apparatus 100 includes a data processing unit (CPU 10) such as a computer that executes a program and processes data, an input unit 20 that receives an input signal including an instruction from a user, and a display unit 30 that displays at least an input screen. A storage unit 40 for storing parts and hand databases and processing programs, a hand 3D-CAD device 101 for generating hand design data, a product 3D-CAD device 102 for generating part design data, And a vision system 103 such as a camera or a scanner capable of capturing product shape data.
 記憶部40は、製品用3D-CAD装置102やビジョンシステム103から得られる部品の形状、大きさや材質、表面状態、質量の情報などを格納する部品情報DB104と、ハンドやドライバ、治具等のツール情報を格納するハンド・ツール情報DB117と、最適なハンドを選択するための処理プログラムであるハンド選択プログラム50と、を記憶する。 The storage unit 40 includes a parts information DB 104 that stores information on the shape, size, material, surface state, mass, and the like of parts obtained from the product 3D-CAD device 102 and the vision system 103, and a hand, a driver, a jig, and the like. A hand / tool information DB 117 that stores tool information and a hand selection program 50 that is a processing program for selecting an optimum hand are stored.
 ハンド選択プログラム50は、複数部品から成る製品の組立順序や組立方向を生成する組立順序生成部105と、部品上においてハンドで把持できる面または位置を抽出する部品把持面抽出部106と、部品とハンドやツールの情報とを照らし合わせる部品-ハンド情報照合部107と、部品とハンド等の適合性を評価する部品-ハンド適合性評価部108と、最適なハンドを決定するハンド決定部109と、決定されたハンドで対象部品を把持する時の部品の把持位置を生成する部品把持位置生成部110と、各部品が初期位置から組立される組立位置まで移動する経路を生成する経路生成部111と、部品の組立が終るまでのハンド切替回数(交換回数)を計測するハンド切替回数カウント部112と、部品の組立時間を計算する組立時間計算部113と、を記憶する。
ここでハンド用3D-CAD装置101と製品用3D-CAD装置102は、お互いの機能を兼ね備えた装置としてひとつの装置として構成しても構わない。 このうち、ハンド・ツール情報DB117には、ハンド・ツール情報の内容の例として、図2(a)に示すように、ハンドの種類、例えば爪タイプ、それも2爪タイプ、3爪タイプ、また、内側閉じで部品を把持するタイプ、外側開きで部品を把持するタイプ、等、また爪ではなく吸着により製品の取扱いを行なうタイプ、指タイプなど様々なタイプの形状情報、ハンドの開閉動作範囲、可搬質量、等の様々な情報が格納されている。
The hand selection program 50 includes an assembly order generation unit 105 that generates an assembly order and an assembly direction of a product composed of a plurality of parts, a component gripping surface extraction unit 106 that extracts a surface or position that can be gripped by the hand on the component, A part-hand information collating unit 107 that collates information on a hand and a tool, a part-hand compatibility evaluation unit 108 that evaluates compatibility between a part and a hand, a hand determination unit 109 that determines an optimum hand, A component gripping position generation unit 110 that generates a gripping position of the component when gripping the target component with the determined hand, and a path generation unit 111 that generates a path for moving each component from the initial position to the assembly position. The hand switching frequency counting unit 112 that measures the number of hand switching times (replacement times) until the assembly of the parts is completed, and the assembly time for calculating the assembly time of the parts A calculation unit 113, stores.
Here, the hand 3D-CAD device 101 and the product 3D-CAD device 102 may be configured as a single device having both functions. Among them, in the hand tool information DB 117, as an example of the contents of the hand tool information, as shown in FIG. 2 (a), as shown in FIG. Various types of shape information such as a type that grips a part by closing the inside, a type that grips a part by opening the outside, a type that handles the product by suction instead of a nail, a finger type, a hand opening / closing operation range, Various information such as the load capacity is stored.
 組立順序生成部105と部品把持面抽出部106において、該部品把持面抽出部106により部品の把持可能な面を網羅的に抽出した情報と、組立順序生成部105で生成された組立順序および組立方向情報により、組立時に部品を置く面、あるいは組立の際に他の部品と共有する必要のある面は、ハンドで把持しない(把持出来ない)ので、他の2面以上を使って部品把持面を決定する機能を備えている(詳細後述)。 In the assembly order generation unit 105 and the component gripping surface extraction unit 106, information obtained by exhaustively extracting the parts that can be gripped by the component gripping surface extraction unit 106, the assembly order and assembly generated by the assembly order generation unit 105 Depending on the direction information, the surface on which a part is placed during assembly or the surface that needs to be shared with other parts during assembly is not gripped (cannot be gripped) by the hand. Is provided (details will be described later).
 また、部品-ハンド情報照合部107は、部品をハンドにより把持するために、部品情報DB104から得られる部品の形状や大きさや質量等の部品情報(図2(b)参照)と、ハンドやツールの情報を照らし合わせる。 In addition, the component-hand information collating unit 107 includes component information (see FIG. 2B) such as the shape, size, and mass of the component obtained from the component information DB 104 in order to hold the component with the hand, and the hand and tool. Check the information.
 この部品-ハンド情報照合部107では、部品の大きさとハンド可動範囲の比較、部品の質量とハンドの可搬質量との比較、ハンドと部品の滑りの程度を加味し、部品に適したハンドの候補を抽出する。その後、ハンドの各候補について、部品-ハンド適合性評価部108で、部品とハンドの適合性を定性的もしくは定量的に例えば評価関数を用いて計算して評価する。 The part-hand information collating unit 107 compares the size of the part and the movable range of the hand, compares the mass of the part and the portable mass of the hand, and considers the degree of slippage between the hand and the part. Extract candidates. After that, for each hand candidate, the part-hand compatibility evaluation unit 108 qualitatively or quantitatively calculates and evaluates the compatibility between the part and the hand using, for example, an evaluation function.
 この部品-ハンド情報照合部107、および部品-ハンド適合性評価部108では、任意の部品に対応するように予め準備されている複数種類のハンド、例えば、部品を吸着して把持する吸着タイプ、部品を複数の板状もしくは爪状の部材で挟持して把持する把持タイプ、中空タイプの部品を複数の板状もしくは爪状の部材を外開きして把持する外開きタイプ、とそれぞれ部品との相性を定性的、または定量的に評価する。ここで、本実施例による部品とハンドの組合せ評価の方法に関する詳細は後述する。 In the component-hand information collating unit 107 and the component-hand compatibility evaluating unit 108, a plurality of types of hands prepared in advance so as to correspond to an arbitrary component, for example, a suction type that sucks and grips a component, A gripping type in which a part is sandwiched and gripped by a plurality of plate-like or claw-shaped members, and an open-open type in which a hollow type part is opened and gripped by opening a plurality of plate-like or claw-shaped members, Assess compatibility qualitatively or quantitatively. Here, details regarding the method of evaluating the combination of parts and hands according to the present embodiment will be described later.
 部品-ハンド適合性評価部108で評価されたハンドやツールに関して、次の処理であるハンド決定部109で部品-ハンド適合性評価部108で部品ごとに評価されたハンドやツールの中で、その評価値が例えば最大となるハンドやツールが決定される。ここで、評価値はその算出根拠となる評価関数(後述)の設定により、最大となる値を持ったハンドやツールを以って決定すべきか、最小となる値を持ったハンドやツールを以って決定すべきかが異なる。 Regarding the hand and tool evaluated by the part-hand compatibility evaluation unit 108, the hand and tool evaluated by the part-hand compatibility evaluation unit 108 for each part in the hand determination unit 109, which is the next processing, For example, the hand or tool having the maximum evaluation value is determined. Here, the evaluation value should be determined with the hand or tool having the maximum value or the hand or tool with the minimum value, depending on the setting of the evaluation function (described later) that is the basis for the calculation. Is different.
 ハンド決定部109でハンド・ツールが決定されると、次に、ハンドやツールで部品のどの領域を把持すべきかを部品把持位置生成部110で決定する(詳細後述)。続いて、経路生成部111でそれぞれの部品が初期位置から組立される組立位置まで移動する経路が生成される。その後、部品の組立が終るまでのハンド切替回数(交換回数)をハンド切替カウント部112で計測し、次に、組立時間計算部113で部品の組立時間を計算する。 When the hand / tool is determined by the hand determination unit 109, the component gripping position generation unit 110 determines which region of the component should be gripped by the hand or tool (details will be described later). Subsequently, a path for moving each part from the initial position to the assembly position where the parts are assembled is generated by the path generation unit 111. Thereafter, the hand switching count (number of replacements) until the assembly of the parts is measured by the hand switching counting unit 112, and then the assembly time of the parts is calculated by the assembly time calculating unit 113.
 引き続き、本実施例による組立教示装置の動作フローを図3に示す。ここで、本実施例で考慮するハンドは、一例として2爪、3爪を有したハンドで、それぞれ内側閉じで部品を把持するタイプ、または外側開きで部品を把持するタイプ、または吸着タイプ、または人手を模した指タイプ(図示せず)、およびそれらの組合せにより構成されたハンド等が考えられる。 The operation flow of the assembly teaching apparatus according to the present embodiment is shown in FIG. Here, the hand considered in this embodiment is a hand having two claws and three claws as an example, a type that grips a part by closing inside, a type that grips a part by opening outside, or a suction type, or A finger type (not shown) imitating a human hand, a hand configured by a combination of them, and the like are conceivable.
 組立教示装置のスタートが開始される(START S2000)と製品用3D-CAD装置102の製品情報を基に組立順序生成部105で組立手順および部品の組立の際の方向が生成される(S2001)。 When the start of the assembly teaching apparatus is started (START S2000), the assembly sequence generation unit 105 generates the assembly procedure and the direction for assembling the parts based on the product information of the product 3D-CAD apparatus 102 (S2001). .
 次に、部品数をN個、ハンド数をn個として設定する(S2002)。次に、本動作フロー中で部品数をカウントするカウンタK、ハンド数をカウントするカウンタQの値をそれぞれ初期化(値を0に)する(S2003)。 Next, the number of parts is set to N and the number of hands is set to n (S2002). Next, the values of the counter K that counts the number of parts and the counter Q that counts the number of hands in this operation flow are respectively initialized (value is set to 0) (S2003).
 引き続き、カウンタKを+1し(S2004)、まず組立の最初の部品、つまり第一番目の部品に対し、記憶部40内のハンド選択プログラム50にある部品-ハンド情報照合部107の情報を基に第一番目の部品に対し把持可能なハンド候補の絞込みおよび部品に対応した割振りが行なわれる(S2005)。続いて、部品把持面の数を確認(S2006)し、2面以上の面の存在が確認できた場合、次のステップに移り、ハンド数のカウンタQを+1する(S2008)。次に、ハンド種類別の選定、例えば爪タイブ、吸着タイプ、指タイプの各種類のハンドについて以降選定を行なうステップに移る(S2009)。ここで、吸着タイプのハンドは吸着面が少なくとも1面以上あれば吸着可能であるので、2面以上の条件でも言うまでもなく対応可能である(S2009)。 Subsequently, the counter K is incremented by 1 (S2004). First, based on the information of the part-hand information collating unit 107 in the hand selection program 50 in the storage unit 40 for the first part of assembly, that is, the first part. Hand candidates that can be held are narrowed down to the first part and allocation corresponding to the part is performed (S2005). Subsequently, the number of component gripping surfaces is confirmed (S2006). If the presence of two or more surfaces is confirmed, the process proceeds to the next step, and the hand count counter Q is incremented by 1 (S2008). Next, the process proceeds to the step of selecting each type of hand, for example, for each type of hand of nail type, suction type, and finger type (S2009). Here, since the suction-type hand can be sucked if at least one suction surface is present, it is possible to cope with conditions of two or more surfaces (S2009).
 部品把持面抽出部106で、第一部品の部品把持面を抽出し(S2010)、ハンドで把持可能な大きさの指標となる仮想6面体(以下、6面体の仮想空間)を生成する(S2011)。この仮想6面体については詳細を後述する。 The component gripping surface extraction unit 106 extracts the component gripping surface of the first component (S2010), and generates a virtual hexahedron (hereinafter referred to as a hexahedral virtual space) serving as an index of a size that can be gripped by the hand (S2011). ). Details of this virtual hexahedron will be described later.
 引続き、2爪あるいは3爪タイプ等のハンドにより形成される仮想6面体空間と、把持すべき部品の大きさを比較し、第一のハンドで第一の部品が把持可能か否か評価する(S2012)。次に、ハンドで部品を把持する際、(把持できる面内において)把持後の動作においてモーメントが最少となるような把持位置を算出する(S2013)。 Subsequently, the virtual hexahedron space formed by the two-claw or three-claw type hand is compared with the size of the part to be gripped, and it is evaluated whether or not the first part can be gripped by the first hand ( S2012). Next, when gripping a component with the hand, a gripping position is calculated such that the moment is minimized in the operation after gripping (in a grippable plane) (S2013).
 ここで、モーメントが最小となる把持位置の算出方法の一例の概略について図12の(a)を用いて説明する。 Here, an outline of an example of a method for calculating the gripping position at which the moment is minimized will be described with reference to FIG.
 ここで、説明のため、ハンドの移動方向は図中+Z方向(220Z)である。
図12の(a)において、部品223、部品223にある突起223a、本部品の重心位置223g、ハンド220、ハンドの2爪222において、部品把持中心を220c、部品の重心位置223gと部品把持中心220cとの距離をL、部品の質量をm、重力加速度をG、把持中心220c周りに発生するモーメント225は部品質量m×重力加速度Gとの積223fに距離Lを掛けた値m×G×Lとなる。ここで、把持中心220cが部品の重心223gに近付くことが可能である場合、できるだけ重心位置に近い位置にハンドを予め近付け、モーメントm×G×Lを小さくすることが望まれる。
Here, for the sake of explanation, the moving direction of the hand is the + Z direction (220Z) in the figure.
In FIG. 12A, the component gripping center 220c and the component gripping center position 223g and the component gripping center of the component 223, the protrusion 223a on the component 223, the center of gravity position 223g of this component, the hand 220, and the two claws 222 of the hand The distance from 220c is L, the mass of the part is m, the gravitational acceleration is G, and the moment 225 generated around the gripping center 220c is a value obtained by multiplying the product 223f of the part mass m × gravity acceleration G by the distance L × M × G ×. L. Here, when the gripping center 220c can approach the center of gravity 223g of the component, it is desirable to reduce the moment m × G × L by bringing the hand close to the position of the center of gravity as close as possible.
 ここで、図12の(b)は、図12の(a)において、ハンド220を部品の重心位置223gに最も近づけた図であるが、部品223には突起223aがあるので、L=0の位置までハンド220を部品重心223gまで近づけることができない。図12の(c)は横軸に部品重心(223g)からハンド把持中心220cまでの距離Lを、縦軸はハンド把持中心220cに加わるモーメントを示している。 Here, FIG. 12B is a diagram in which the hand 220 is closest to the center of gravity position 223g of the component in FIG. 12A, but since the component 223 has a protrusion 223a, L = 0. The hand 220 cannot be brought close to the part center of gravity 223g to the position. 12C, the horizontal axis indicates the distance L from the center of gravity of the component (223g) to the hand gripping center 220c, and the vertical axis indicates the moment applied to the hand gripping center 220c.
 また、L=L2の状態を図12の(a)、L=L1の状態を図12の(b)としている。以上のことより、把持位置中心に加わるモートントを小さくしようとすれば、L=0に近づけることが望ましいが、把持する部品や、ハンドの構造、形状によりそれが困難である場合、図12の(c)の例では、L=L1で、モーメントMO=MOminとなる。このようなLが極小になる位置を製品用3D-CAD装置102のデータを基に部品把持位置生成部110で算出する。次に、図3を用いて組立教示フローを引き続き説明する。複数のハンドからハンド候補を抽出し、ハンドで部品を掴む把持位置を算出する(S2014)。 Further, the state of L = L2 is shown in FIG. 12 (a), and the state of L = L1 is shown in FIG. 12 (b). From the above, it is desirable to make L = 0 closer to the moment to be applied to the center of the gripping position. However, if this is difficult due to the gripped part, the structure and shape of the hand, In the example of c), L = L1 and moment MO = MOmin. The position where L is minimized is calculated by the component gripping position generation unit 110 based on the data of the product 3D-CAD device 102. Next, the assembly teaching flow will be described with reference to FIG. Hand candidates are extracted from a plurality of hands, and a gripping position for gripping a component with the hands is calculated (S2014).
 また、次に、第一の部品およびそれを把持するハンドの組合せにおいて、部品把持から部品組立までの経路を経路生成部111で生成し、経路中に部品やハンドまたは図示しないロボットアーム等が存在しないか、また、ロボット周囲環境、例えば部品の供給台や、組立台を構成する櫓(やぐら)などの干渉物と干渉が発生しないか否か確認をする(S2016)。ここで、干渉物がない場合、次のステップとして部品累計組立時間、およびまたはハンドの切替(交換)回数をカウントする(S2017)。ここで、ひとつの部品に対して複数のハンドで同様な処理を行ない、部品とハンドとの適合性評価を計算する必要があるため、ハンドの数n種類回だけAとのループを繰返す。 Next, in the combination of the first part and the hand that holds it, a path from the part gripping to the part assembly is generated by the path generation unit 111, and there is a part, a hand, or a robot arm (not shown) in the path. Also, it is confirmed whether or not interference occurs with the surrounding environment of the robot, for example, an interference object such as a part supply table or a cage that forms the assembly table (S2016). Here, when there is no interference, as the next step, the cumulative total assembly time and / or the number of hand switching (exchange) are counted (S2017). Here, since it is necessary to perform the same process with a plurality of hands on one part and calculate the compatibility evaluation between the part and the hand, the loop with A is repeated n times for the number of hands.
 また、更に部品の数であるN個分だけ同様な繰り返しが必要になるためS2004との間で、処理を繰返す。一連のN×n回分のループを終了すると、次に、部品累計組立時間Tが最少となるハンド組合せを抽出し(S2020)、実際のロボット動作プログラムの自動生成を行なう(S2021)。 Further, since the same repetition is required for N parts, which is the number of parts, the process is repeated with S2004. When the series of N × n loops is completed, a hand combination that minimizes the total component assembly time T is extracted (S2020), and an actual robot operation program is automatically generated (S2021).
 ここで、部品累計組立時間Tが最少となるハンド組合せは低コストな組立作業と考えることもできる。
これらの処理フローを実行することで、組立てる部品に対応して交換すべきハンドの種類、ハンドの交換回数、ハンドの交換タイミング等のハンドの交換スケジュールを決定することが可能となる。
Here, the hand combination that minimizes the total component assembly time T can be considered as a low-cost assembly operation.
By executing these processing flows, it is possible to determine a hand replacement schedule such as the type of hand to be replaced corresponding to the parts to be assembled, the number of hand replacements, and the hand replacement timing.
 引き続き、S2021で生成された動作プログラムを実行すると(S2022)、組立に必要な部品に見合ったハンドが取り付けられ(S2023)、図示しない製品の組立動作の一連が実行され(S2024)、動作終了となる(S2025)。 Subsequently, when the operation program generated in S2021 is executed (S2022), a hand corresponding to a part necessary for assembly is attached (S2023), a series of assembly operations for a product (not shown) is executed (S2024), and the operation ends. (S2025).
 続いて、図3において、S2012に記載のハンドと部品の組合せ評価方法について説明する。 Subsequently, in FIG. 3, the combination evaluation method of the hand and parts described in S2012 will be described.
 まず、ハンドと部品の大小関係を評価し(S2012a)、次に、部品質量とハンドの耐荷重(以下、耐質量)の評価を行い(S2012b)、さらに部品表面とハンドの把持面の滑り具合評価を実施し(S2012c)、任意の部品に対するハンドの適合度を算出する。 First, the magnitude relationship between the hand and the component is evaluated (S2012a), then the component mass and the load resistance of the hand (hereinafter referred to as mass resistance) are evaluated (S2012b), and the sliding condition between the component surface and the gripping surface of the hand is further evaluated. Evaluation is performed (S2012c), and the suitability of the hand with respect to an arbitrary part is calculated.
 この任意の部品に対するハンドの適合度に関しては、図10を用いて更に詳細を後述する。またここで、図13~図14に吸着タイプのハンドの概要を示す。 The hand suitability for this arbitrary part will be described in detail later with reference to FIG. Here, FIGS. 13 to 14 show an outline of the suction type hand.
 図13の(a)で示される吸着面が1箇所の吸着ハンド230は、ハンドのベース231と、吸着用中空シャフト232、吸盤233から構成される。230cは吸着ハンド230の略中心線、234は組立対象となる部品、234gは部品重心、234cは部品の重心を通る重心線である。また、図13の(a)に示す吸着ハンド230は図面下方の-Z方向へ移動し、部品234を吸着しようとしている。またここで、部品234の質量はmである。 The suction hand 230 having one suction surface shown in FIG. 13A is composed of a hand base 231, a suction hollow shaft 232, and a suction cup 233. 230c is a substantially center line of the suction hand 230, 234 is a part to be assembled, 234g is a center of gravity of the part, and 234c is a center of gravity line passing through the center of gravity of the part. Further, the suction hand 230 shown in FIG. 13A moves in the −Z direction at the bottom of the drawing to try to suck the component 234. Here, the mass of the component 234 is m.
 また、図13の(b)は、部品234が吸着ハンド230に吸着されて、図面上方の+Z方向に移動する途中の図である。図13の(c)は図13の(a)における部品234の重心位置234g、および部品の大きさ(同図では幅)を示すものである。部品は略直方体であり、部品の幅は2L、重心位置から片端までの距離はLである。また、図13の(d)は図13の(c)において、部品の重心線234cと吸着ハンドの略中心線230cがLだけずれている状態を示している。 FIG. 13B is a diagram in the middle of the movement of the component 234 in the + Z direction above the drawing when the component 234 is picked up by the suction hand 230. FIG. 13C shows the position of the center of gravity 234g of the component 234 in FIG. 13A and the size (width in FIG. 13) of the component. The part is a substantially rectangular parallelepiped, the width of the part is 2L, and the distance from the center of gravity position to one end is L. Further, (d) in FIG. 13 in FIG. 13 (c) shows a state in which substantially the center line 230c of gravity line 234c and suction hand parts are shifted by L 3.
 また、図13の(f)に吸着ハンドで部品を吸着して持ち上げた時に発生するモーメントMの関係を示す。横軸は部品重心から吸着ハンド把持(吸着)中心までの距離L、縦軸は吸着部に加わるモーメントMO、直線240はモーメントMOの直線で質量m×重力加速度G×距離Lなる線を示している。部品の質量mは吸着中に変化はしないものと仮定すると、言うまでもなくモーメントMOを小さい値にするには、部品重心との距離Lを小さくしなければならない。図13の図の例では、部品吸着面234Tは概略平らな状態であるので、部品吸着面234T内の領域で吸着ハンドでの吸着が可能である。 Also, FIG. 13 (f) shows the relationship of moment M generated when a part is picked up and lifted by a suction hand. The horizontal axis is the distance L from the center of gravity of the component to the center of gripping (suction) of the suction hand, the vertical axis is the moment MO applied to the suction part, and the straight line 240 is a straight line of the moment MO and is a line of mass m × gravity acceleration G × distance L. Yes. Assuming that the mass m of the component does not change during the adsorption, it goes without saying that the distance L from the center of gravity of the component must be reduced in order to reduce the moment MO. In the example shown in FIG. 13, the component suction surface 234T is in a substantially flat state, so that suction with a suction hand is possible in an area within the component suction surface 234T.
 ここで、部品形状が異なった場合の例について、図13の(e)を図を用いて説明する。図13の(e)中、部品235に関する部分以外は図13の中で共通である。部品235は部品を形成する面が一様な面ではなく、吸着面235Tに一部分凸がある例を示している。また、部品235を吸着ハンド230で吸着しようとする場合、部品把持位置生成部110にて、優先的に吸着面235T以外の面を優先的な吸着面として算出する場合もあるが、本図13の(e)では説明のため吸着面235Tを吸着面として用いる場合について説明する。 Here, an example in which the part shapes are different will be described with reference to FIG. In FIG. 13E, parts other than the part related to the component 235 are common in FIG. The component 235 shows an example in which the surface on which the component is formed is not a uniform surface, and the suction surface 235T is partially convex. When the component 235 is to be sucked by the suction hand 230, the component gripping position generation unit 110 may preferentially calculate a surface other than the suction surface 235T as a preferential suction surface. In (e), the case where the suction surface 235T is used as the suction surface will be described for the sake of explanation.
 図13の(e)及びこれまでに説明した通り、部品重心からハンド把持位置までの距離が小さいほどモーメントの影響が小さくなり、ハンドに掛かる負荷は小さくなる。しかしながら、図13の(e)のように、部品の重心線235cの直上付近に吸着ハンドで吸着できない突起235Uがある場合、その場所を極力小さい距離で回避する必要がある。この回避方法の一例としては図12の(b)のところで説明した方法で回避するものである。また、この回避処理は部品把持面抽出部106にて算出するものである。引き続き、別な形態のハンドで部品を吸着する場合について説明する。 As shown in FIG. 13E and as described above, the smaller the distance from the center of gravity of the part to the hand gripping position, the smaller the influence of the moment and the smaller the load on the hand. However, as shown in FIG. 13 (e), when there is a protrusion 235U that cannot be sucked by the suction hand near the center of gravity line 235c of the component, it is necessary to avoid that place at a minimum distance. As an example of this avoidance method, the avoidance method is the method described in FIG. This avoidance process is calculated by the component gripping surface extraction unit 106. Next, description will be given of a case where a component is picked up by another type of hand.
 図14の(a)及び(b)で示される吸着面が2箇所の吸着ハンド240は、ハンドのベース241と、吸着用中空シャフト242lと242r、吸盤243lと243r、から成る。また、240a、240bは、吸着用中空シャフト242l、242rの中心線である。244は組立を行なおうとする部品で、244gは重心位置を示している。また、図13の(a)と同様、図14の(a)に示す吸着ハンド240は図面下方の-Z方向へ移動し、部品244の吸着面244Tを吸着しようとしている。また、図14の(b)は、部品244が吸着面244Tで吸着ハンド240に吸着されて図面上方の+Z方向へ移動中の図である。 14A and 14B, the suction hand 240 having two suction surfaces includes a base 241 of the hand, suction hollow shafts 242l and 242r, and suction cups 243l and 243r. Reference numerals 240a and 240b denote center lines of the suction hollow shafts 242l and 242r. Reference numeral 244 denotes a part to be assembled, and 244g denotes a position of the center of gravity. Similarly to FIG. 13A, the suction hand 240 shown in FIG. 14A moves in the −Z direction below the drawing, and tries to suck the suction surface 244T of the component 244. FIG. 14B is a diagram in which the component 244 is attracted to the suction hand 240 by the suction surface 244T and is moving in the + Z direction above the drawing.
 図14の(c)はモーメント図を示している。この図から吸盤間(-iから+iまでの間)に重心位置234gがある場合は、そうでない場合よりモーメントの発生が少ないことが分かる。このことはハンド240にかかる負荷も少ないことを示している。本図では、これらの算出も部品把持位置生成部110で行なうものであり、ハンドに対してあるいは図示しないハンドが取り付けられている上位装置の負荷を低減することが可能となる。図13及び図14で示すように、吸着タイプのハンドは、部品吸着に必要な面は基本的に1面だけであるので、複雑な形状をした部品や平面エリアが小さく限定される部品の取扱いに有効である。 (C) in FIG. 14 shows a moment diagram. From this figure, it can be seen that when the center of gravity position 234g is between the suction cups (between -i and + i), less moment is generated than when the center of gravity is not. This indicates that the load on the hand 240 is small. In this figure, these calculations are also performed by the component gripping position generation unit 110, and it is possible to reduce the load on the upper device to which the hand or a hand (not shown) is attached. As shown in FIG. 13 and FIG. 14, the suction type hand basically requires only one surface for picking up the components. Therefore, the handling of components having complicated shapes or components having a small plane area is limited. It is effective for.
 引き続き、図4の(a)に、吸着タイプのハンドに適用されるフローの一例と、図4の(b)に、図示しない指タイプのハンドに適用されるフローの一例を示す。図4の(a)に示す吸着タイプのハンドの場合、図3のS2006により、ハンドでの部品の把持面が2面以上取れない場合、まず部品吸着面の抽出を試みる(図4の(a)のS3001)。ここで、吸着面が見つからない場合は、後述する指タイプのハンドを使用する場合のフロー図4の(b)のDに処理フローが移る。 4A shows an example of a flow applied to a suction type hand, and FIG. 4B shows an example of a flow applied to a finger type hand (not shown). In the case of the suction type hand shown in FIG. 4 (a), if two or more parts can be gripped by the hand in S2006 of FIG. 3, first, extraction of the part suction surface is attempted ((a of FIG. 4). ) S3001). Here, when the suction surface is not found, the processing flow moves to D in (b) of FIG. 4B in the case of using a finger type hand described later.
 S3001で吸着面が見つかった場合、ハンドと部品との適合度を算出する(S3002)。引き続き、ハンドが部品を吸着し、ハンドが次の姿勢まで移動しようとした場合、部品の質量によりハンドに作用するモーメントが最少になるようにハンド吸着位置を算出し(S3003)、ハンドの候補と吸着位置が決定され(S3004)、図3に示すS2015に動作が一旦移動する。このモーメントを把持可能な状態で最小にする方法については、図12及び図13で説明したので、ここでは省略する。ここで、S3002の吸着タイプハンドと部品との照合について次に説明する。 When the suction surface is found in S3001, the degree of compatibility between the hand and the part is calculated (S3002). Subsequently, when the hand sucks the part and the hand tries to move to the next posture, the hand suction position is calculated so that the moment acting on the hand is minimized by the mass of the part (S3003). The suction position is determined (S3004), and the operation temporarily moves to S2015 shown in FIG. Since the method of minimizing this moment in a grippable state has been described with reference to FIGS. 12 and 13, it is omitted here. Here, the collation between the suction type hand and the part in S3002 will be described next.
 S3002aは部品質量とハンドの耐質量との評価を行なうステップであり、3D-CAD情報の属性情報などから得られる部品質量がハンドの耐質量を超えそうな時は部品とハンドが不適切な組合せと判断し、図3に示すAに処理を移動し、ハンドの再見直しを行なう。一方、ステップS005で耐質量をオーバーしていない場合は次のS3002bで部品とハンドの滑り具合の評価を行なう。 S3002a is a step of evaluating the mass of the part and the mass resistance of the hand. When the mass of the part obtained from the attribute information of the 3D-CAD information is likely to exceed the mass resistance of the hand, the combination of the part and the hand is inappropriate. And the process is moved to A shown in FIG. 3, and the hand is reviewed again. On the other hand, if the mass resistance is not exceeded in step S005, the sliding condition of the part and the hand is evaluated in the next S3002b.
 ここで、滑り具合の評価の基になる情報は、一例として3D-CAD装置101と102が有する属性情報からのものである。次に、図4の(b)を用いて、図示しない指タイプのハンドを選択した場合のフローを示す。
ここで、指タイプのハンドとは、関節を持った指形状の連結部材を1組以上備えたハンドである。
Here, the information used as the basis for the evaluation of the slip condition is, for example, attribute information possessed by the 3D- CAD apparatuses 101 and 102. Next, FIG. 4B is used to show a flow when a finger type hand (not shown) is selected.
Here, the finger-type hand is a hand provided with one or more pairs of finger-shaped connecting members having joints.
 図4の(a)のS3001で吸着面が検出できなかった際、図4の(b)の指タイプハンドを使用するフローに遷移する。まずS3007において、指タイプのハンドと把持すべき部品との組合せ評価の各ステップ(S3007aとS3007b)を行なう。この評価の詳細は後述する。この組立評価の後、部品を把持した際にハンドにかかるモーメントを計算する(S3008)。把持位置を例えば任意に数箇所変化させた場合、モーメント量が変化するが、少なくともそれら複数の把持可能な位置でモーメント量を算出し、最少になるように把持位置を決定する(S3009)。 4 When the suction surface cannot be detected in S3001 of FIG. 4A, the flow proceeds to the flow using the finger type hand of FIG. 4B. First, in S3007, each step (S3007a and S3007b) of combination evaluation of a finger type hand and a component to be grasped is performed. Details of this evaluation will be described later. After this assembly evaluation, the moment applied to the hand when the part is gripped is calculated (S3008). For example, when the gripping position is arbitrarily changed at several places, the moment amount changes, but the moment amount is calculated at least at a plurality of grippable positions, and the gripping position is determined so as to be minimized (S3009).
 もし、部品質量がハンドの耐質量より重い時は、荷重オーバーとして図3に示すA(S2007)に処理を移動し、次のハンド候補を選択するフローに入る。
部品質量がハンドの耐質量以下の場合、部品とハンドの滑り具合を評価するステップに移り評価を行なう(S3007b)。
If the component mass is heavier than the mass of the hand, the process moves to A (S2007) shown in FIG. 3 as the load is over, and the flow enters the flow for selecting the next hand candidate.
If the mass of the component is less than or equal to the withstand mass of the hand, the process proceeds to the step of evaluating the sliding condition of the component and the hand (S3007b).
 続いて、図5を用いて、本実施例の特徴である製品の組立手順を加味したハンド把持位置の抽出について説明する。図5の(a)に、組立用の作業台180と、製品の一部品を構成する部品A181と、同じく部品B182が示されており、部品Aと部品Bは組立がまだ行なわれていない部品レベルの状態で作業台180に載置された状態が示されている。 Subsequently, extraction of the hand gripping position taking into consideration the product assembly procedure, which is a feature of the present embodiment, will be described with reference to FIG. FIG. 5A shows a workbench 180 for assembly, a part A181 constituting one part of the product, and a part B182. Parts A and B are parts that have not been assembled yet. A state of being placed on the work table 180 in a level state is shown.
 ここで、部品181の一面を構成している面181aは将来組立を行なった際に、部品Bと接する面であり、面182bは面182aに対向する面で、例えば2爪タイプのハンドによればこの面182aと面182bを使って部品182を把持することが可能である。また、部品B182のハッチングを施した面182aは将来組立を行なった際に部品A181と接する面を示している。図5の(b)は部品181と部品182の組立途中の図であり、図5の(c)は部品A181と部品B182が組立てられた最終形態を示すものである。また、ここで、組立後に2つの部品の接触面となる181aおよび182aは図1の製品用3D-CAD装置102、もしくはビジョンシステム103で得られた部品情報DB104を基に組立順序生成部105にて抽出されるものである。 Here, the surface 181a constituting one surface of the component 181 is a surface that comes into contact with the component B when assembled in the future, and the surface 182b is a surface facing the surface 182a. The parts 182 can be gripped by using the surfaces 182a and 182b. A hatched surface 182a of the component B182 indicates a surface that contacts the component A181 when assembled in the future. FIG. 5B is a view in the process of assembling the part 181 and the part 182, and FIG. 5C shows the final form in which the part A181 and the part B182 are assembled. Here, 181a and 182a, which are the contact surfaces of the two parts after assembly, are sent to the assembly order generation unit 105 based on the product information DB 104 obtained by the product 3D-CAD device 102 or the vision system 103 in FIG. Is extracted.
 ここで、使用するハンドは部品取出し用と部品組立て用と同じものとする。また、部品取り出しから部品組立てに動作が遷移する途中で、部品を持替えたりはしない場合を考える。 Here, the hand to be used is the same for picking up parts and assembling parts. Further, consider a case where the parts are not changed during the transition from the part removal to the part assembly.
 図5の(a)の部品B182では、作業台180と接しているのは面182cであり、この面182c以外であれば例えば面182a、および182b面をハンドを使って把持することができる。しかし図5の(c)に示す組立完了後の状態を予測すると、部品Bの面182aと部品Aの面181aはお互いに接触する状態にあるので、この面をハンドの把持面、あるいは吸着面とすることはできない。そこで、ハンド決定部109で決定される使用ハンド、部品把持位置生成部110で決定される把持位置において、組立終了後の状態を予め組立順序生成部105で算定し、ハンドでの把持もしくは吸着の際は、この組立後の接触面を予め除外して把持面を決定する。この過程が本実施例の大きな特徴となっており、これらを処理フローで表現した図を図17に示す。 In the part B182 of FIG. 5A, the surface 182c is in contact with the workbench 180. For example, the surfaces 182a and 182b can be gripped by using a hand other than the surface 182c. However, when the state after the completion of assembly shown in FIG. 5C is predicted, the surface 182a of the part B and the surface 181a of the part A are in contact with each other. It cannot be. Therefore, at the used hand determined by the hand determining unit 109 and the gripping position determined by the component gripping position generating unit 110, the state after completion of assembly is calculated in advance by the assembly order generating unit 105, and the gripping or suctioning with the hand is performed. In this case, the gripping surface is determined by excluding the contact surface after assembly in advance. This process is a major feature of the present embodiment, and FIG. 17 shows a diagram representing these in the processing flow.
 また、本図17で示されるフローは、部品把持面抽出部106により部品把持面抽出ステップ(図3のS2010)で処理が行なわれるものである(詳説省略)。次に、図6、図7を用いて、任意のハンドで任意の部品が把持できるか否かの判定方法について一例を説明する。ここで説明する内容は、図1、図3中の部品-ハンド情報照合部107と、ハンドと部品の大小関係評価ステップのS2012a、で処理が行なわれる。 Further, the flow shown in FIG. 17 is performed by the component gripping surface extraction unit 106 in the component gripping surface extraction step (S2010 in FIG. 3) (details omitted). Next, an example of a method for determining whether or not an arbitrary part can be held with an arbitrary hand will be described with reference to FIGS. The contents described here are processed in the part-hand information collating unit 107 in FIGS. 1 and 3 and the step S2012a of the hand-part magnitude relation evaluation step.
 図6は2爪ハンドを模式的に示した図である。図6の(a)は2爪ハンドの概略斜視図で、ハンド190は、ハンドのベース部191と、2つの爪192で構成されており、この2つの爪がX方向に内側および外側に開閉することで部品を把持することができる。(本説明ではハンドのツメを駆動するアクチュエータ等の駆動部については説明を省略する。)図6の(b)は2爪ハンドの爪部間隔をBmaxまで最大に開いた時の図で、ハンドのベース部191と2つの爪192で囲まれた領域に6面体の仮想空間193を形成した状態を示している。 FIG. 6 is a diagram schematically showing a two-claw hand. FIG. 6A is a schematic perspective view of a two-claw hand. The hand 190 includes a base portion 191 of the hand and two claws 192. These two claws open and close inward and outward in the X direction. By doing so, it is possible to grip the component. (In this description, the description of the actuator such as an actuator for driving the tab of the hand is omitted.) FIG. 6B is a diagram when the distance between the claw portions of the two-claw hand is maximized to Bmax. A state where a hexahedral virtual space 193 is formed in a region surrounded by the base portion 191 and two claws 192 is shown.
 図6の(c)は2爪ハンドを正面から見た図であり、2つの爪が完全に開いた状態の爪間寸法をBmax、間隔が最小まで閉じた状態(破線192a)での爪間寸法をBminとしている。図6の(d)は前記6面体の仮想空間193を抜き出した図である。
図7は6面体の仮想空間193と、この2爪ハンドで把持しようとしている部品194を示している。
FIG. 6 (c) is a view of the two-claw hand as viewed from the front. The inter-nail dimension when the two nails are fully opened is Bmax, and the distance between the nails when the interval is closed to the minimum (dashed line 192a). The dimension is Bmin. FIG. 6D is a diagram in which the hexahedral virtual space 193 is extracted.
FIG. 7 shows a hexahedral virtual space 193 and a part 194 to be gripped by the two-claw hand.
 図7の(a)は6面体の仮想空間193と部品194のお互いの寸法関係を示した図であり、ハンドの開閉方向寸法Bmaxに対し、部品の幅方向寸法BpはBmax>Bpという条件を満たしている場合の図である。図7の(b)は、6面体の仮想空間193と部品194を重ねて表現した図であり、Bmax>Bpであることから、ハンドのベース部分と2つの爪で形成された6面体の仮想空間193に部品194が含まれている状態、つまり2爪ハンド190にて部品194が把持可能なことを示している。 FIG. 7A is a diagram showing the dimensional relationship between the hexahedral virtual space 193 and the part 194, and the width direction dimension Bp of the part satisfies the condition that Bmax> Bp with respect to the opening / closing direction dimension Bmax of the hand. It is a figure when satisfy | filling. FIG. 7B is a diagram in which the hexahedral virtual space 193 and the part 194 are overlapped, and since Bmax> Bp, the hexahedral virtual space formed by the base portion of the hand and two claws is illustrated. The state where the part 194 is included in the space 193, that is, the part 194 can be gripped by the two-claw hand 190 is shown.
 図7の(c)は、6面体の仮想空間193の状態は図7の(a)、図7の(b)と同じだが、把持しようとしている部品195の寸法関係が部品194と異なっている場合を示している。本図7の(c)ではBmax<Bpとなっている。図7の(d)は図7の(b)と同様、6面体の仮想空間193と部品195を重ねて表現した図である。ここで、図7の(d)に示すようにBmax<Bpであるので部品195は6面体の仮想空間193よりはみ出した状態となっている。つまり2爪ハンド190にて部品195が把持不可能なことを示している。 In FIG. 7C, the state of the hexahedral virtual space 193 is the same as FIG. 7A and FIG. 7B, but the dimensional relationship of the part 195 to be grasped is different from that of the part 194. Shows the case. In FIG. 7C, Bmax <Bp. FIG. 7D is a diagram in which a hexahedral virtual space 193 and a component 195 are overlapped as in FIG. 7B. Here, as shown in FIG. 7D, since Bmax <Bp, the component 195 protrudes from the hexahedral virtual space 193. That is, the component 195 cannot be gripped by the two-claw hand 190.
 このように、ハンドの爪と爪の間に形成できる6面体の仮想空間と把持すべき部品を重ね合わせる処理を部品-ハンド情報照合部107で行うことで、部品に対し、2爪タイプのハンドが把持可能か否かを判定することができる。次に、別な把持例を図8を用いて説明する。 In this way, the part-hand information collating unit 107 performs a process of superimposing the hexahedral virtual space that can be formed between the claws of the hand and the part to be grasped on the part-hand information collation unit 107, so that the two-nail type hand is applied to the part. It is possible to determine whether or not can be gripped. Next, another gripping example will be described with reference to FIG.
 図8の(a)は図6および図7で示した2爪ハンドによって形成された6面体の仮想空間193と部品194を示している。前記同様193aは2つの爪で挟まれる面を示している。 FIG. 8 (a) shows a hexahedral virtual space 193 and a part 194 formed by the two-claw hand shown in FIGS. Similarly to the above, 193a indicates a surface sandwiched between two claws.
 図8(a)の状態では、Bmax<Bpであるから、2爪ハンドと部品の向きの関係が変化しなければ、部品194を2爪ハンド190で把持することはできない。図8の(b)は図8の(a)において2爪ハンド190の向きを部品に対して90度回転した様子を示している。この状態だと6面体の仮想空間193の部品に対する幅がBmax、部品の幅がWpとなり、図8の(b)に示すようにBmax>Wpであるため、図8の(c)に示すように両者を重ね合わせると6面体の仮想空間193に部品194が含まれる状態となる。 In the state of FIG. 8A, since Bmax <Bp, the component 194 cannot be gripped by the two-claw hand 190 unless the relationship between the orientation of the two-claw hand and the component changes. FIG. 8B shows a state in which the direction of the two-claw hand 190 is rotated 90 degrees with respect to the component in FIG. In this state, the width of the hexahedron virtual space 193 with respect to the part is Bmax, and the part width is Wp. As shown in FIG. 8B, Bmax> Wp, and therefore, as shown in FIG. When the two are superposed on each other, the part 194 is included in the hexahedral virtual space 193.
 つまり部品に対してハンドで把持する面方向が固定の場合、6面体の仮想空間の幅に対し部品が大きい場合、ハンドでの把持は不可能であるが、ハンドを意図的に略90度回転させることにより、部品を把持できる場合があるので、図1内、部品-ハンド情報照合部107では、部品に対してハンドを回転させた状態も想定して照合を行なう。 In other words, if the surface direction gripped by the hand with respect to the part is fixed, and if the part is larger than the width of the hexahedral virtual space, the hand cannot be gripped, but the hand is intentionally rotated approximately 90 degrees. In this case, the component-hand information collating unit 107 in FIG. 1 performs collation assuming that the hand is rotated with respect to the component.
 続いて、図9はこれまでの2爪のハンドから3爪ハンドにハンド形態を変化させた場合の図である。図9の(a)は3爪ハンド200の概略斜視図、図9の(b)は図9の(a)において一例として爪の内側に6面体の仮想空間を想定した場合の図、図9の(c)は3爪ハンド200を上から見た図である。3爪ハンド200はハンドのベース部201と、3つの爪202で構成されており、この3つの爪が同図中矢印E方向に内側および外側に開閉することで、部品を把持することができる。 Subsequently, FIG. 9 is a diagram when the hand form is changed from the conventional two-claw hand to the three-claw hand. 9A is a schematic perspective view of the three-claw hand 200, FIG. 9B is a diagram in the case of assuming a hexahedral virtual space inside the claw as an example in FIG. 9A, FIG. (C) is a view of the three-claw hand 200 as viewed from above. The three-claw hand 200 is composed of a base portion 201 of the hand and three claws 202, and these three claws open and close inward and outward in the direction of arrow E in FIG. .
 3爪202は爪の間隔を最大に広げた状態での様子、破線202bで示す3爪は部品204を把持している状態を示す図である。
6面体の仮想空間および把持すべき部品との関係は、図6~図8で説明した内容と基本的に同様であるので、ここでの説明は省略する。
3 claw 202 is a view showing a state in which the claw interval is widened to the maximum, and 3 claws indicated by a broken line 202b are showing a state in which the component 204 is being held.
Since the relation between the virtual space of the hexahedron and the parts to be gripped is basically the same as the contents described with reference to FIGS. 6 to 8, the description thereof is omitted here.
 次に、図10を用いて、ハンドと部品の把持動作に関する評価方法について一例を用いて説明する。ここで説明する内容は、図1、図3中の部品-ハンド適合性評価部108により、ハンドと部品の大小関係評価ステップS2012aと、部品質量とハンドの耐質量評価ステップS2012bと、部品とハンドの滑り具合評価ステップS2012cとで処理が行なわれる。 Next, with reference to FIG. 10, an evaluation method related to the gripping operation of the hand and the component will be described using an example. 1 and 3, the part-hand compatibility evaluation unit 108 in FIG. 1 and FIG. 3 performs a hand / part magnitude relationship evaluation step S2012a, a part mass / hand mass resistance evaluation step S2012b, and a part / hand. The process is performed in the slip condition evaluation step S2012c.
 図10は簡単のために構成が2爪タイプのハンドと把持すべき部品を示した図である。
ここで、2爪ハンド210は2爪ハンドのベース部分211と、ハンドの支軸211a、2爪212から構成されており、2つの爪間隔が最大となった場合の爪の状態を212aで示し、同じく最小になった場合の爪の状態を212bで示している。
FIG. 10 is a diagram showing a hand having a two-claw type configuration and parts to be gripped for simplicity.
Here, the two-claw hand 210 is composed of a base part 211 of the two-claw hand, a support shaft 211a of the hand, and two claws 212, and the state of the claw when the distance between the two claws is maximized is indicated by 212a. Similarly, the state of the nail when it is minimized is indicated by 212b.
 2つの爪間隔が最大の時の間隔をL1、同じく爪間隔が最小の時の間隔をL2で示す。また、ここで把持しようとしている部品の幅寸法をLpで示す。ここで、ハンドとして望ましい理想的な状態は、爪が開いた状態の時、LpとL1の比率が充分小さく((Lp/L1)<<1)、爪が閉じた状態ではLpとL2の比率が充分大きい((Lp/L2)>>1)ことであり、これらの条件を満たせば、部品の大きさに対する爪の開閉余裕度が高くなる。そこで一例として爪の開閉余裕度の指標として(1)の式を定義した。
Lmargin(%)=[{1-(Lp/L1)}×100+{1-1/(Lp/L2)}×100]
       =[{1-(Lp/L1)}+{1-(Lp/L2)}]×100 -----(1)
 また、ここで、部品質量とハンドの耐質量との観点から評価すると、部品質量をMp、ハンドの耐質量をMlimitとすると、ハンドの耐質量に対し、部品質量が小さい方が余裕度が高くなる。ここで、質量に対する余裕度Mmarginを一例として定義すると(2)に示す式になる。
The interval when the distance between the two claws is the maximum is indicated by L1, and the interval when the distance between the claws is the minimum is indicated by L2. Further, the width dimension of the component to be gripped here is indicated by Lp. Here, the ideal state desirable as a hand is that the ratio of Lp and L1 is sufficiently small when the nail is open ((Lp / L1) << 1), and the ratio of Lp and L2 is when the nail is closed. Is sufficiently large ((Lp / L2) >> 1), and if these conditions are satisfied, the opening / closing margin of the nail with respect to the size of the component increases. Therefore, as an example, the expression (1) is defined as an index of the opening / closing margin of the nail.
Lmargin (%) = [{1- (Lp / L1)} × 100 + {1-1 / (Lp / L2)} × 100]
= [{1- (Lp / L1)} + {1- (Lp / L2)}] × 100 ----- (1)
Also, when evaluating from the viewpoint of the mass of the component and the mass resistance of the hand, if the mass of the component is Mp and the mass mass of the hand is Mlimit, the smaller the mass of the component, the higher the margin. Become. Here, when the margin Mmargin with respect to mass is defined as an example, the equation shown in (2) is obtained.
 Mmargin(%)={1-(Mp/Mlimit)}×100 -----(2)
 また、部品とハンドの滑り具合の評価としては、部品とハンド間の摩擦係数μ、およびハンドが部品を把持する力Fに左右される。部品の質量をMp、摩擦係数をμ、重力加速度をG、ハンドが部品を把持する力Fとの関係は部品を垂直方向に持ち上げようとした場合、(3)の式で示す条件の時に釣り合い状態になる。
Mmargin (%) = {1- (Mp / Mlimit)} × 100 ----- (2)
Further, the evaluation of the sliding condition between the part and the hand depends on the friction coefficient μ between the part and the hand and the force F with which the hand grips the part. The relationship between the part mass Mp, the friction coefficient μ, the gravitational acceleration G, and the force F with which the hand grips the part is balanced when the part is lifted in the vertical direction under the condition shown in the equation (3). It becomes a state.
 μ × F=Mp×G -----(3)
また、(4)の式で表される条件の時にハンドで部品を持ち上げることが可能となる。
μ × F = Mp × G ----- (3)
Further, it is possible to lift the part with the hand under the condition represented by the expression (4).
 μ × F>Mp×G
 μ>(Mp×G)/F   (但し μ≦1) -----(4)
また、さらにハンドに加わるモーメントの余裕度の指標として、ハンドに加わるモーメントをMOp、ハンドに許容できるモーメントをMOlimitとすると、ハンドの許容モーメントに対し、ハンドに加わるモーメントMOpが小さい方が余裕度が高くなる。ここで、モーメントに対する余裕度MOmarginを一例として定義すると
MOmargin(%)={1-(MOp/Mlimit)}×100 -----(5)
と定義することができる。
μ × F> Mp × G
μ> (Mp × G) / F (where μ ≦ 1) ----- (4)
Furthermore, if the moment applied to the hand is MOp and the moment allowable to the hand is MOlimit as an index of the margin of the moment applied to the hand, the margin is greater when the moment MOp applied to the hand is smaller than the allowable moment of the hand. Get higher. Here, when the margin MOmargin with respect to the moment is defined as an example, MOmargin (%) = {1− (MOp / Mlimit)} × 100 (5)
Can be defined as
 以上、部品の大きさ、質量、ハンドに加わるモーメント、摩擦状態を考慮した部品とハンドとの評価指標(評価関数f)を纏めると、一例として(6)の式に示すものとなる。ここで、係数a,b,c,dは、それぞれ大きさ、質量、モーメント、摩擦状態に関する重み係数を示し、言うまでもなくa=b=c=d=1の場合は、大きさ、質量、モーメント、摩擦状態の重み、つまり重要度は等しいと言うことを示す。 As described above, when the evaluation index (evaluation function f) between the part and the hand in consideration of the size, mass, moment applied to the hand, and friction state is summarized, an expression (6) is given as an example. Here, the coefficients a, b, c, and d indicate weighting factors relating to the magnitude, mass, moment, and friction state, respectively. Needless to say, when a = b = c = d = 1, the magnitude, mass, and moment This indicates that the weight of the frictional state, that is, the importance is equal.
 f=a×Lmargin+b×Mmargin+c×MOmargin+d×μ -----(6)
  a,b,c,d:重み係数  
また、評価指標は(6)の式を拡張して、(7)の式に示すように、大きさ、質量、モーメント、摩擦状態の2乗平均の形を取っても構わない。
f = a × Lmargin + b × Mmargin + c × MOmargin + d × μ (6)
a, b, c, d: weighting factors
Further, the evaluation index may extend the equation of (6) and take the form of the root mean square of the size, mass, moment, and friction state as shown in the equation of (7).
 f={a×Lmargin+b×Mmargin+c×MOmargin+d×μ1/2 -----(7)
  a,b,c,d:重み係数
 次に、図11に本実施例における組立教示装置の入力画面の一例を示す。本画面は図1における表示部30に表示され、キーボードやマウス等を含む入力部20で入力操作を行なう。図11において、製品用3D-CAD装置102のデータの製品名称(ファイル名)を入力する入力部501、同装置102に格納してある製品完成の3D-CAD情報を表示する表示部502a、確認用に部品配置レイアウトの様子を表示しているものを502bに示す。
f = {a × Lmargin 2 + b × Mmargin 2 + c × MOmargin 2 + d × μ 2 } 1/2 ----- (7)
a, b, c, d: Weighting coefficient Next, FIG. 11 shows an example of an input screen of the assembly teaching apparatus in the present embodiment. This screen is displayed on the display unit 30 in FIG. 1, and an input operation is performed with the input unit 20 including a keyboard and a mouse. In FIG. 11, an input unit 501 for inputting a product name (file name) of data of the product 3D-CAD device 102, a display unit 502a for displaying 3D-CAD information of the product completion stored in the device 102, confirmation For example, a part layout layout is displayed in 502b.
 また、ここで、ハンドにおける部品把持位置を入力または指定できるよう、ハンド把持位置面指定メニュー503を選択し、表示部504内でハンドの把持位置面指定用のカーソル506a、506bで把持位置面の指定を行なう。本図11ではハッチングで示された507aとその逆側の爪の対向面の508aがハンドの部品把持位置面に指定されたことを示す。ここで、ハンドの部品把持位置面はハンド用3D-CAD装置に格納してあるデータで例えば爪部のハンド把持面を予め属性設定等で設定しておいても構わない。
509はハンドと部品の評価関数の確認画面、510は組立順序生成ボタン、511は図2に示す組立教示処理の実行開始ボタンである。
Also, here, the hand gripping position surface designation menu 503 is selected so that the component gripping position in the hand can be input or designated, and the gripping position surface is designated by the cursors 506a and 506b for hand gripping position surface designation in the display unit 504. Specify. In FIG. 11, 507a indicated by hatching and the opposite surface 508a of the nail on the opposite side are designated as the component gripping position surface of the hand. Here, the component gripping position surface of the hand may be data stored in the hand 3D-CAD device, and for example, the hand gripping surface of the claw may be set in advance by attribute setting or the like.
Reference numeral 509 denotes a confirmation screen for hand and component evaluation functions, 510 denotes an assembly sequence generation button, and 511 denotes an execution start button for the assembly teaching process shown in FIG.
 また、CAD図面情報のデータ取り込み、ハンド把持位置の面指定が済むと、教示実行ボタンを押すことによって一連の組立教示が自動的に行なわれる。
ここで、これまでハンドは一組の把持部分しか持たない構造の例について述べたが、本実施例の適用範囲はこれに留まらず、例えば図16に示すように一つのハンドで2組以上の把持機能、もしくは2組以上の吸着機能、もしくは、把持機能と吸着機能を有した構造のものであっても構わない。
In addition, after the CAD drawing information data has been fetched and the surface of the hand gripping position has been designated, a series of assembly teaching is automatically performed by pressing the teaching execution button.
Here, an example of a structure in which a hand has only one set of gripping portions has been described so far, but the scope of application of this embodiment is not limited to this. For example, as shown in FIG. It may have a structure having a gripping function, two or more sets of suction functions, or a gripping function and a suction function.
 また、ここで、ハンドの形態が異なる例について図15を用いて説明する。
図15に示すハンド250はハンドベース251と3本の爪252から構成される。250cはハンド250の中心線を示している。253はリング状の部品であり、3本の爪252は部品253を中心穴235a部分で把持するのに適した構造となっている。
3本の爪252は図15に示すように、部品253を通す時は爪がお互いに接近していて、部品253を通った後は図中J方向にお互いの爪が広がり、部品253を把持することができる。
Here, an example in which the form of the hand is different will be described with reference to FIG.
A hand 250 shown in FIG. 15 includes a hand base 251 and three claws 252. Reference numeral 250 c denotes a center line of the hand 250. Reference numeral 253 denotes a ring-shaped component, and the three claws 252 have a structure suitable for gripping the component 253 at the center hole 235a portion.
As shown in FIG. 15, the three claws 252 are close to each other when the part 253 is passed, and after passing the part 253, the claws spread in the J direction in the figure to grip the part 253. can do.
 このハンドはこれまで説明してきたハンドと違い、外側開きで部品を把持する形態である。
図15の(f)にハンドの爪の可動範囲とリング状部品の内周径の関係を示している。ここで、爪の可動範囲をR1~R2、リング状部品の内周径をrp1~rp2とすると、R1<rp1<rp2<R2の条件の時に把持が可能である。この把持可能な範囲の算出も部品-ハンド情報照合部107部品により処理が行なわれるものである。ハンドの選択方法、把持位置の決定方法、部品とハンドの開閉余裕度の考え方はこれまで説明してきた方法と同様なので、ここでの詳説は省略する。
Unlike the hand described so far, this hand has a form in which a part is gripped by opening outward.
FIG. 15 (f) shows the relationship between the movable range of the hand claw and the inner peripheral diameter of the ring-shaped part. Here, assuming that the movable range of the claw is R1 to R2 and the inner peripheral diameter of the ring-shaped part is rp1 to rp2, gripping is possible when R1 <rp1 <rp2 <R2. The calculation of the grippable range is also performed by the component-hand information matching unit 107 component. The method of selecting the hand, the method of determining the gripping position, and the concept of the opening / closing allowance of the parts and the hand are the same as the methods described so far, so detailed description thereof is omitted here.
 図16に一例として2系統のハンド機能をひとつのハンドに集約した形態を示す。
図16は1つのハンドで2爪タイプのハンドが2系統形成された構造のハンド260の概略斜視図を示している。
FIG. 16 shows an example in which two hand functions are integrated into one hand.
FIG. 16 is a schematic perspective view of a hand 260 having a structure in which two systems of two-claw type hands are formed by one hand.
 ハンド260は、ハンドのベース部261と、2組の爪262(第一の爪)、263(第二の爪)で構成されており、この2組の爪がX方向に内側および外側に独立に開閉動作するようになっている。また、図中、ハッチングで示した262a、263aは、それぞれ爪262、263における部品に対する把持面を示している。本実施例は、これら1つのハンドに複数の爪や吸着用の吸盤を持ったハンドにも適用されうる。 The hand 260 includes a base portion 261 of the hand and two sets of claws 262 (first claws) and 263 (second claws). The two sets of claws are independent on the inside and outside in the X direction. It opens and closes. In the drawing, 262a and 263a indicated by hatching indicate gripping surfaces for the parts in the claws 262 and 263, respectively. The present embodiment can also be applied to a hand having a plurality of claws and suction cups for these one hand.
 以上、本実施例によれば新規部品を使用して製品の組立を行なう場合であっても、部品のハンドリングに適したハンド(ツールを含む)を自動的に選択し、更に部品の把持位置も自動的に生成する。また、それらハンド選択情報や把持位置情報がロボットの動作プログラムに反映されるため、ティーチング作業の効率化、省力化を図ることが可能となる。 As described above, according to the present embodiment, even when a product is assembled using a new part, a hand (including a tool) suitable for handling the part is automatically selected, and the gripping position of the part is also selected. Generate automatically. In addition, since the hand selection information and the grip position information are reflected in the robot operation program, the teaching work can be made more efficient and labor-saving.
10…CPU(データ処理部)
20…入力部、30…表示部、40…記憶部、
50…ハンド選択プログラム、100…組立教示装置、
104…部品情報DB、105…組立順序生成部、
106…部品把持面抽出部、107…部品-ハンド情報照合部、
108…部品-ハンド適合性評価部、109…ハンド決定部、
110…部品把持位置生成部、111…経路生成部、
112…ハンド切替回数カウント部、113…組立時間計算部
117…ハンド・ツール情報DB。
10 ... CPU (data processing unit)
20 ... input unit, 30 ... display unit, 40 ... storage unit,
50 ... Hand selection program, 100 ... Assembly teaching device,
104 ... parts information DB, 105 ... assembly order generation unit,
106: Component gripping surface extraction unit, 107: Component-hand information verification unit,
108: Component-hand compatibility evaluation unit 109: Hand determination unit
110: Component gripping position generator, 111 ... Path generator,
112: Hand switching frequency counting unit, 113: Assembly time calculating unit 117: Hand / tool information DB.

Claims (6)

  1.  組立品の組み立て作業における部品を把持するハンドを選択する組立教示装置であって、
     ハンドを選択する処理プログラム及び関連データベースを格納する記憶部と、
    該処理プログラムを実行するデータ処理部と、
    を備え、
     該関連データベースは
    部品に関する情報を格納した部品情報DBと、
    一又は複数のハンドに関する情報を格納したハンド情報DBと、
    を含み、
     該データ処理部は、該処理プログラムを実行することにより、
    該部品情報DBと該ハンド情報DBの情報に基づいて、
    該部品を把持する該ハンドを選択するティーチング情報を生成する、
    ことを特徴とする組立教示装置。
    An assembly teaching device for selecting a hand that holds a part in an assembly operation of an assembly,
    A storage unit for storing a processing program for selecting a hand and a related database;
    A data processing unit for executing the processing program;
    With
    The related database includes a parts information DB storing information about parts,
    A hand information DB storing information on one or more hands;
    Including
    The data processing unit executes the processing program,
    Based on the information in the parts information DB and the hand information DB,
    Generating teaching information for selecting the hand holding the part;
    An assembly teaching device.
  2.  前記部品情報DBは、前記部品の大きさ、質量、重心位置、材質、表面状態を示す情報を含み、
     前記ハンド情報DBは、ハンドの種類、開閉動作範囲、可搬質量を示す情報を含むことを特徴とする請求項1に記載の組立教示装置。
    The component information DB includes information indicating the size, mass, position of the center of gravity, material, and surface state of the component,
    The assembly teaching apparatus according to claim 1, wherein the hand information DB includes information indicating a hand type, an opening / closing operation range, and a load capacity.
  3.  前記データ処理部は、前記処理プログラムを実行することにより、
    更に、前記組立品を組立てる手順および組立方向を生成し、
    生成された該組立方向の情報と、
    前記部品情報DBと、前記ハンド情報DBとの情報に基づき、
    前記部品の把持位置を決定するティーチング情報を生成することを特徴とする請求項1又は2に記載の組立教示装置。
    The data processing unit executes the processing program,
    Further, a procedure for assembling the assembly and an assembly direction are generated.
    Information on the generated assembly direction; and
    Based on the information of the component information DB and the hand information DB,
    The assembly teaching apparatus according to claim 1, wherein teaching information for determining a gripping position of the part is generated.
  4.  前記データ処理部は、前記ティーチング情報の生成において、前記部品情報DBと前記ハンド情報DBの情報を参照して、
    前記部品と前記ハンドの質量、重心位置、材質、表面状態の少なくとも1つ以上の物理属性に関する適合性に基づいて、前記ハンドを選択するティーチング情報を生成することを特徴とする請求項1ないし3のいずれかの項に記載の組立教示装置。
    In the generation of the teaching information, the data processing unit refers to the information in the component information DB and the hand information DB,
    4. Teaching information for selecting the hand is generated based on suitability for at least one physical attribute of mass, gravity center position, material, and surface state of the part and the hand. The assembly teaching apparatus according to any one of the above items.
  5.  前記組立教示装置は、
    更に、前記部品に対して把持するハンドを交換する回数、もしくは交換に必要な時間を計測するタイマ、もしくはハンドの交換時間と前記部品の組立て時間の合計を計算するタイマを備えた計測部を有し、
     前記データ処理部は、前記処理プログラムを実行することにより、
    該計測部により計測された情報を基に、交換すべきハンドの種類、ハンドの交換回数、ハンドの交換タイミングのハンドの交換スケジュールを算定することを特徴とする前記請求項1ないし4のいずれかの項に記載の組立教示装置。
    The assembly teaching device comprises:
    In addition, there is a measuring unit equipped with a timer for measuring the number of times the hand to be gripped with respect to the part is replaced or a time required for replacement, or a timer for calculating the sum of the hand replacement time and the assembly time of the part. And
    The data processing unit executes the processing program,
    5. The hand exchange schedule of the type of hand to be exchanged, the number of hand exchanges, and the hand exchange timing is calculated based on the information measured by the measuring unit. The assembly teaching apparatus according to the section.
  6.  コンピュータを用いて、組立品の組み立て作業における部品を把持するハンドを選択する組立教示方法であって、
     該コンピュータは、
    データ処理部でハンドを選択する処理プログラムを実行することにより、
    組立品を組立てる手順および組立方向を生成する組立順序生成処理工程と、
    記憶部に格納した部品情報に関するDBとハンド情報に関するDBに基づいて、
    複数のハンドの中から該部品を把持するハンドを選択するティーチング情報を生成するハンド選択情報生成工程と、
    を実行することを特徴とする組立教示方法。
    An assembly teaching method for selecting a hand that holds a part in an assembly operation of an assembly using a computer,
    The computer
    By executing a processing program that selects a hand in the data processing unit,
    An assembly sequence generation process for generating a procedure for assembling an assembly and an assembly direction;
    Based on the parts information DB and hand information DB stored in the storage unit,
    A hand selection information generating step for generating teaching information for selecting a hand that holds the component from a plurality of hands;
    An assembly teaching method comprising:
PCT/JP2015/064328 2014-05-20 2015-05-19 Assembly instruction device and method WO2015178377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016521107A JP6425718B2 (en) 2014-05-20 2015-05-19 Assembly teaching device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014104209 2014-05-20
JP2014-104209 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178377A1 true WO2015178377A1 (en) 2015-11-26

Family

ID=54554045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064328 WO2015178377A1 (en) 2014-05-20 2015-05-19 Assembly instruction device and method

Country Status (2)

Country Link
JP (1) JP6425718B2 (en)
WO (1) WO2015178377A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078194B1 (en) * 2016-05-10 2017-02-08 宮川工機株式会社 Wood precut processing equipment
WO2017113144A1 (en) * 2015-12-30 2017-07-06 深圳配天智能技术研究院有限公司 Robot teaching system and method, and robot
JP2018083277A (en) * 2016-11-25 2018-05-31 富士通株式会社 Assembly working robot operation generating method, operation generating program, and operation generating device
JP2018103343A (en) * 2016-12-28 2018-07-05 オムロン株式会社 Device for outputting holding detection results
JP2019048365A (en) * 2017-09-12 2019-03-28 ファナック株式会社 Machine learning device, robot system and machine learning method
JP2019141939A (en) * 2018-02-19 2019-08-29 オムロン株式会社 Simulation device, simulation method and simulation program
WO2020021643A1 (en) * 2018-07-24 2020-01-30 株式会社Fuji End effector selection method and selection system
WO2020070813A1 (en) * 2018-10-03 2020-04-09 株式会社Fuji End effector provision system and provision method
WO2020188660A1 (en) * 2019-03-15 2020-09-24 オムロン株式会社 Grasping position and orientation registration device, grasping position and orientation registration method, and program
KR102218246B1 (en) * 2020-06-30 2021-02-22 파워오토메이션 주식회사 Gripping System for Hybrid Multi Insertion Robot Machine
JP2022543496A (en) * 2019-12-17 2022-10-12 バイストロニック レーザー アクチェンゲゼルシャフト Designing a gripper for a laser cutting machine for sorting parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993286A (en) * 1982-11-19 1984-05-29 豊田工機株式会社 Working device with exchange type hand
JPH07186012A (en) * 1993-12-27 1995-07-25 Nissan Motor Co Ltd Tool replacement timing estimating device
JPH1086084A (en) * 1997-10-14 1998-04-07 Canon Inc Selection device for robot hand
JPH1133956A (en) * 1997-07-24 1999-02-09 Mitsubishi Electric Corp Industrial robot device and method for controlling it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215033A (en) * 1985-07-10 1987-01-23 Hitachi Ltd Assembly process composing method for automatic assembly line of robot
JPH04349507A (en) * 1991-05-28 1992-12-04 Hitachi Ltd Parts insertion sequence determining system and parts inserting machine
JPH06222825A (en) * 1993-01-27 1994-08-12 Toyota Motor Corp Cutting tool replacing time deciding device
JP2003094367A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Robot hand with tip visual sense
JP2008009899A (en) * 2006-06-30 2008-01-17 Olympus Corp Automatic teaching system and method for assembly work robot
US9089966B2 (en) * 2010-11-17 2015-07-28 Mitsubishi Electric Corporation Workpiece pick-up apparatus
JP5734228B2 (en) * 2011-03-10 2015-06-17 三菱電機株式会社 Automatic programming apparatus and method
JP2012206219A (en) * 2011-03-30 2012-10-25 Seiko Epson Corp Robot control device and robot system
WO2013094366A1 (en) * 2011-12-22 2013-06-27 村田機械株式会社 Industrial machine system and industrial machine system information processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993286A (en) * 1982-11-19 1984-05-29 豊田工機株式会社 Working device with exchange type hand
JPH07186012A (en) * 1993-12-27 1995-07-25 Nissan Motor Co Ltd Tool replacement timing estimating device
JPH1133956A (en) * 1997-07-24 1999-02-09 Mitsubishi Electric Corp Industrial robot device and method for controlling it
JPH1086084A (en) * 1997-10-14 1998-04-07 Canon Inc Selection device for robot hand

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113144A1 (en) * 2015-12-30 2017-07-06 深圳配天智能技术研究院有限公司 Robot teaching system and method, and robot
JP6078194B1 (en) * 2016-05-10 2017-02-08 宮川工機株式会社 Wood precut processing equipment
JP2018083277A (en) * 2016-11-25 2018-05-31 富士通株式会社 Assembly working robot operation generating method, operation generating program, and operation generating device
JP2018103343A (en) * 2016-12-28 2018-07-05 オムロン株式会社 Device for outputting holding detection results
WO2018123086A1 (en) * 2016-12-28 2018-07-05 オムロン株式会社 Device for outputting holding detection results
US11331793B2 (en) 2016-12-28 2022-05-17 Omron Corporation Device for outputting holding detection results
US10737385B2 (en) 2017-09-12 2020-08-11 Fanuc Corporation Machine learning device, robot system, and machine learning method
JP2019048365A (en) * 2017-09-12 2019-03-28 ファナック株式会社 Machine learning device, robot system and machine learning method
JP2019141939A (en) * 2018-02-19 2019-08-29 オムロン株式会社 Simulation device, simulation method and simulation program
JPWO2020021643A1 (en) * 2018-07-24 2021-08-02 株式会社Fuji End effector selection method and selection system
WO2020021643A1 (en) * 2018-07-24 2020-01-30 株式会社Fuji End effector selection method and selection system
JP7133017B2 (en) 2018-07-24 2022-09-07 株式会社Fuji END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM
WO2020070813A1 (en) * 2018-10-03 2020-04-09 株式会社Fuji End effector provision system and provision method
JPWO2020070813A1 (en) * 2018-10-03 2021-09-02 株式会社Fuji End effector provision system and delivery method
WO2020188660A1 (en) * 2019-03-15 2020-09-24 オムロン株式会社 Grasping position and orientation registration device, grasping position and orientation registration method, and program
JPWO2020188660A1 (en) * 2019-03-15 2021-10-14 オムロン株式会社 Gripping position / posture registration device, gripping position / posture registration method and program
JP7164011B2 (en) 2019-03-15 2022-11-01 オムロン株式会社 Gripping position/orientation registration device, gripping position/orientation registration method, and program
JP2022543496A (en) * 2019-12-17 2022-10-12 バイストロニック レーザー アクチェンゲゼルシャフト Designing a gripper for a laser cutting machine for sorting parts
KR102218246B1 (en) * 2020-06-30 2021-02-22 파워오토메이션 주식회사 Gripping System for Hybrid Multi Insertion Robot Machine

Also Published As

Publication number Publication date
JP6425718B2 (en) 2018-11-21
JPWO2015178377A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015178377A1 (en) Assembly instruction device and method
Mateus et al. A structured methodology for the design of a human-robot collaborative assembly workplace
Balasubramanian et al. Physical human interactive guidance: Identifying grasping principles from human-planned grasps
JP6039434B2 (en) Method for generating grip pattern used by robot and computer program product
Busch et al. Planning ergonomic sequences of actions in human-robot interaction
EP3670106B1 (en) Task-specific robot grasping system and method
Sun et al. Research challenges and progress in robotic grasping and manipulation competitions
CN105598987B (en) Determination of a gripping space for an object by means of a robot
JP2013144355A5 (en)
Morgan et al. Benchmarking cluttered robot pick-and-place manipulation with the box and blocks test
Mnyusiwalla et al. A bin-picking benchmark for systematic evaluation of robotic pick-and-place systems
WO2023035832A1 (en) Robot sorting method based on visual recognition and storage medium
Weisner et al. Assessment methodology to design an ergonomic and sustainable order picking system using motion capturing systems
Balasubramanian et al. Physical human interactive guidance: Identifying grasping principles from human-planned grasps
Sarantopoulos et al. Human-inspired robotic grasping of flat objects
TWI649169B (en) Holding position and posture teaching device, holding position and posture teaching method, and robot system
Lietaert et al. Model-based multi-attribute collaborative production cell layout optimization
Nadon et al. Grasp selection for in-hand robotic manipulation of non-rigid objects with shape control
Baumgartl et al. Fast vision-based grasp and delivery planning for unknown objects
Petrík et al. Static stability of robotic fabric strip folding
WO2020012712A1 (en) Gripping attitude evaluating device, and gripping attitude evaluating program
KR20130017123A (en) Robot prehension intelligence study support system and method
McHale Sjödin et al. Intelligent device concepts for medium weight lifting in assembly plant
JP7437288B2 (en) Control device and control method for mobile machinery
Cavallo et al. Task-driven design of a re-configurable gripper for the robotic picking and handling of limp sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796476

Country of ref document: EP

Kind code of ref document: A1