JP7133017B2 - END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM - Google Patents

END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM Download PDF

Info

Publication number
JP7133017B2
JP7133017B2 JP2020531883A JP2020531883A JP7133017B2 JP 7133017 B2 JP7133017 B2 JP 7133017B2 JP 2020531883 A JP2020531883 A JP 2020531883A JP 2020531883 A JP2020531883 A JP 2020531883A JP 7133017 B2 JP7133017 B2 JP 7133017B2
Authority
JP
Japan
Prior art keywords
work
end effector
selection
shape
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020531883A
Other languages
Japanese (ja)
Other versions
JPWO2020021643A1 (en
Inventor
弘健 江嵜
アヌスヤ ナラサンビ
剛 内田
博史 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2020021643A1 publication Critical patent/JPWO2020021643A1/en
Application granted granted Critical
Publication of JP7133017B2 publication Critical patent/JP7133017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

本明細書は、エンドエフェクタの選択方法および選択システムを開示する。 This specification discloses an end effector selection method and system.

従来より、ワークを把持するハンド(エンドエフェクタ)を備えるロボットにおいて、複数種類のハンドから作業対象のワークに応じた適切なハンドを選択する選択方法が提案されている。例えば、特許文献1には、作業対象のワークに関する情報とハンドに関する情報とに基づいて、ワークとハンドの適合性を評価し、より適切なハンドを自動で選択することが記載されている。 2. Description of the Related Art Conventionally, in robots equipped with hands (end effectors) for gripping workpieces, there have been proposed selection methods for selecting an appropriate hand from a plurality of types of hands according to the workpiece to be worked on. For example, Patent Literature 1 describes evaluating compatibility between a work and a hand based on information about a work to be worked on and information about a hand, and automatically selecting a more appropriate hand.

WO2015/178377A1WO2015/178377A1

上述したようなハンドの自動選択において選択ミスが生じると、ロボットが適切にワークを把持することができず、作業ミスや誤動作が生じることになる。このように、ハンドの選択は、ロボットの作業性に大きな影響を及ぼすものであるから、より適切に選択できるようにさらなる改善が求められている。 If a selection error occurs in the automatic hand selection as described above, the robot cannot properly grip the workpiece, resulting in work errors or malfunctions. In this way, hand selection has a great influence on the operability of the robot, and further improvements are required so that the hand can be selected more appropriately.

本開示は、ワークを把持するエンドエフェクタの選択をより適切に行うことを主目的とする。 A main object of the present disclosure is to more appropriately select an end effector for gripping a workpiece.

本開示は、上述の主目的を達成するために以下の手段を採った。 The present disclosure has taken the following means to achieve the above-mentioned main objectives.

本開示のエンドエフェクタの選択方法は、ワークに対する作業を実行するロボットに交換可能に装着され、前記ワークを把持するエンドエフェクタの選択方法であって、前記ワークの形状および作業内容を含む情報を取得する取得ステップと、既知の作業における前記ワークの形状および作業内容と、当該作業で選択された前記エンドエフェクタの種類との関係を学習してモデルを構築する構築ステップと、前記ワークおよび作業内容の少なくともいずれかが新規な対象作業が実行される場合、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを選択する選択ステップと、を含むことを要旨とする。 An end effector selection method of the present disclosure is a method of selecting an end effector that is replaceably attached to a robot that performs work on a work and grips the work, and acquires information including the shape of the work and work details. a building step of building a model by learning the relationship between the shape of the workpiece, the work content in a known work, and the type of the end effector selected in the work, and the work and the work content When at least one of them is a new target work, the end effector suitable for the target work is selected from among a plurality of types of end effectors based on the shape and work content of the work in the target work and the model. and a selecting step of selecting .

本開示のエンドエフェクタの選択方法では、既知の作業におけるワークの形状および作業内容と、当該作業で選択されたエンドエフェクタの種類との関係を学習してモデルを構築する。そして、作業対象のワークおよび作業内容の少なくともいずれかが新規な対象作業が実行される場合、対象作業におけるワークの形状および作業内容と、構築したモデルとに基づいて、複数種類のエンドエフェクタから対象作業に適したエンドエフェクタを選択する。これにより、作業対象のワークや作業内容が新規な対象作業であっても、既知の作業の学習で構築したモデルを用いて、ワークの形状および作業内容を考慮したエンドエフェクタの選択をより適切に行うことができる。 In the end effector selection method of the present disclosure, a model is constructed by learning the relationship between the shape of a work piece and work content in a known work and the type of end effector selected for the work. Then, when at least one of the target work and work content is a new target work, multiple types of end effectors are used based on the shape of the work and the work content in the target work and the constructed model. Choose the right end effector for the job. As a result, even if the work to be performed or the work to be performed is new, the end effector can be selected more appropriately by considering the shape of the work and the work to be performed using a model constructed by learning from known work. It can be carried out.

ロボットシステム10の構成の概略を示す構成図。1 is a configuration diagram showing an outline of the configuration of a robot system 10; FIG. ロボット20の構成の概略を示す構成図。2 is a configuration diagram showing an outline of the configuration of the robot 20; FIG. ロボットシステム10の電気的な接続関係を示すブロック図。FIG. 2 is a block diagram showing the electrical connection relationship of the robot system 10; エンドエフェクタの自動選択に関する機能を示すブロック図。FIG. 4 is a block diagram showing functions related to automatic selection of end effectors; 作業DB83の一例を示す説明図。Explanatory drawing which shows an example of work DB83. 選択モデルの一例を示す説明図。Explanatory drawing which shows an example of a selection model. 自動選択処理の一例を示すフローチャート。4 is a flowchart showing an example of automatic selection processing; エンドエフェクタの一覧表示画面89aの一例を示す説明図。FIG. 11 is an explanatory diagram showing an example of an end effector list display screen 89a; エンドエフェクタ確認処理の一例を示すフローチャート。4 is a flowchart showing an example of end effector confirmation processing; 変形例の自動選択処理を示すフローチャート。10 is a flowchart showing automatic selection processing according to a modification;

次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, embodiments for implementing the present disclosure will be described with reference to the drawings.

図1はロボットシステム10の構成の概略を示す構成図であり、図2はロボット20の構成の概略を示す構成図であり、図3はロボットシステム10の電気的な接続関係を示すブロック図である。なお、図1の左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 is a configuration diagram showing an outline of the configuration of the robot system 10, FIG. 2 is a configuration diagram showing an outline of the configuration of the robot 20, and FIG. be. 1 is the X-axis direction, the front-rear direction is the Y-axis direction, and the vertical direction is the Z-axis direction.

ロボットシステム10は、ロボット20と、ロボット制御装置70と、管理装置80とを備える。ロボットシステム10は、例えばピックアンドプレースシステムとして構成されており、ワーク供給装置12により供給された機械部品や電子部品などのワークWをピッキング(保持)して、トレイ搬送装置14により搬送されたトレイT上に整列させてプレースする作業などが行われる。また、トレイT上に整列させたボルトなどのワークWに対し、ワッシャーなどの別のワークWをピッキングして、ボルトの軸部に挿入するようにプレースする作業なども行われる。なお、ロボットシステム10は、ピックアンドプレースシステムに限られず、ロボット20を用いてワークWに対して作業を行うものであれば、如何なる作業システムにも適用できる。 The robot system 10 includes a robot 20 , a robot control device 70 and a management device 80 . The robot system 10 is configured, for example, as a pick-and-place system, picks (holds) a work W such as a mechanical component or an electronic component supplied by a work supply device 12, and picks up a tray transported by a tray transport device 14. Work such as aligning and placing on T is performed. Another work W such as a washer is picked from the work W such as a bolt aligned on the tray T and placed so as to be inserted into the shank of the bolt. Note that the robot system 10 is not limited to a pick-and-place system, and can be applied to any work system as long as the robot 20 is used to work on a workpiece W.

ロボット20は、5軸の垂直多関節アーム(以下、アームという)22を備える。アーム22は、6つのリンク31~36と、各リンクを回転または旋回可能に連結する5つの関節41~45とを有する。各関節41~45には、対応する関節を駆動するサーボモータ51~55と、対応するモータの回転位置を検出するエンコーダ61~65とが設けられている。 The robot 20 has a five-axis vertical articulated arm (hereinafter referred to as arm) 22 . The arm 22 has six links 31-36 and five joints 41-45 that connect each link so as to rotate or pivot. The joints 41-45 are provided with servo motors 51-55 for driving the corresponding joints and encoders 61-65 for detecting the rotational positions of the corresponding motors.

アーム22の先端のリンク36には、作業ツールとしての複数種のエンドエフェクタEが交換可能に装着されている。エンドエフェクタE1*は、磁性体からなるワークWを電磁石により吸着する電磁チャックであり、サイズや形状が異なる複数のタイプ(E11,E12,・・・)を有する。また、エンドエフェクタE2*は、ワークWの保持と保持の解除とを行うように開閉可能な一対のクランプ爪を有するメカニカルチャック(以下、メカチャックという)であり、クランプ爪のサイズや形状が異なる複数のタイプ(E21,E22,・・・)を有する。さらに、エンドエフェクタE3*は、ワークWを負圧によって吸着する吸着ノズルであり、吸着ノズルの径や長さが異なる複数のタイプ(E31,E32,・・・)を有する。先端のリンク36に装着されるエンドエフェクタEは、後述する自動選択処理により選択される。 A plurality of types of end effectors E as work tools are interchangeably attached to the link 36 at the tip of the arm 22 . The end effector E1* is an electromagnetic chuck that uses an electromagnet to attract a workpiece W made of a magnetic material, and has a plurality of types (E11, E12, . . . ) with different sizes and shapes. Further, the end effector E2* is a mechanical chuck (hereinafter referred to as a mechanical chuck) having a pair of clamp claws that can be opened and closed so as to hold and release the workpiece W, and the size and shape of the clamp claws are different. It has multiple types (E21, E22, . . . ). Furthermore, the end effector E3* is a suction nozzle that sucks the workpiece W by negative pressure, and has a plurality of types (E31, E32, . . . ) with different suction nozzle diameters and lengths. The end effector E attached to the link 36 at the tip is selected by an automatic selection process to be described later.

また、アーム22のリンク35には、カメラ24が取り付けられている。カメラ24は、ワーク供給装置12により供給された各ワークWの位置および姿勢を認識するために当該ワークWを撮像し、トレイ搬送装置14により搬送されたトレイTの位置を認識するために当該トレイTを撮像する。 A camera 24 is attached to the link 35 of the arm 22 . The camera 24 captures an image of each work W supplied by the work supply device 12 in order to recognize the position and orientation of the work W, and detects the position of the tray T transported by the tray transport device 14 to recognize the position of the tray T. Take an image of T.

アーム22の基端のリンク31は、作業台11に固定されている。作業台11には、ワーク供給装置12やトレイ搬送装置14などが配置されている。ワーク供給装置12は、本実施形態では、前後方向(Y軸方向)に離間して配置された駆動ローラおよび従動ローラに架け渡されたコンベアベルト12aを備える。コンベアベルト12aには複数のワークWがバラ置きされ、ワーク供給装置12は、駆動ローラを回転駆動することにより、コンベアベルト12a上の複数のワークWを後方から前方へ供給する。なお、ワーク供給装置として、コンベアベルト12aに代えて或いはコンベアベルト12aに併設して、ケース(部品箱)に収容された複数のワークをケースごと供給する供給装置が設けられてもよい。トレイ搬送装置14は、コンベアベルトにより構成され、ワークWの供給方向とは直交する方向(X軸方向)にトレイTを搬送し、略中央位置にて位置決め保持する。 A base end link 31 of the arm 22 is fixed to the workbench 11 . A work supply device 12, a tray transport device 14, and the like are arranged on the workbench 11. As shown in FIG. In this embodiment, the work supply device 12 includes a conveyor belt 12a stretched over a drive roller and a driven roller spaced apart in the front-rear direction (Y-axis direction). A plurality of works W are randomly placed on the conveyor belt 12a, and the work supply device 12 supplies the plurality of works W on the conveyor belt 12a from the rear to the front by rotationally driving the drive roller. As the work supply device, instead of the conveyor belt 12a or in addition to the conveyor belt 12a, a supply device for supplying a plurality of works housed in a case (parts box) together with the case may be provided. The tray transport device 14 is composed of a conveyor belt, transports the tray T in a direction (X-axis direction) perpendicular to the supply direction of the work W, and positions and holds the tray T at a substantially central position.

ロボット制御装置70は、図示は省略するが、CPUやROM、HDD、RAM、入出力インタフェース、通信インタフェースなどを備える。ロボット制御装置70には、エンコーダ61~65などからの検知信号が入力される。また、ロボット制御装置70からは、ワーク供給装置12やトレイ搬送装置14、サーボモータ51~55、アクチュエータ56などへの制御信号が出力される。なお、アクチュエータ56は、ロボット20に装着されているエンドエフェクタEを駆動するためのものである。ロボット制御装置70は、ロボット20の各サーボモータ51~55を駆動制御することにより、ロボット20に、ワークWをピッキングさせたり、ピッキングさせたワークWをプレースさせたりする。 Although not shown, the robot control device 70 includes a CPU, ROM, HDD, RAM, input/output interface, communication interface, and the like. Detection signals from the encoders 61 to 65 are input to the robot control device 70 . Further, the robot control device 70 outputs control signals to the work supply device 12, the tray transfer device 14, the servo motors 51 to 55, the actuator 56, and the like. The actuator 56 is for driving the end effector E attached to the robot 20 . The robot control device 70 drives and controls the servo motors 51 to 55 of the robot 20 to cause the robot 20 to pick the work W and place the picked work W. FIG.

管理装置80は、図示は省略するが、CPUやROM、HDD、RAM、入出力インタフェース、通信インタフェースなどを備える。管理装置80には、カメラ24からの画像信号や入力装置88からの入力信号などが入力される。また、管理装置80からは、カメラ24への駆動信号や表示装置89への表示信号などが出力される。ここで、入力装置88は、例えばキーボードやマウスであり、表示装置89は、例えば液晶ディスプレイである。管理装置80は、ロボット制御装置70と通信可能に接続されており、互いに制御信号や各種情報のやり取りを行う。管理装置80は、ロボット制御装置70に制御信号を送信してアーム22(カメラ24)をワーク供給装置12により供給されたワークWの撮像ポイントへ移動させ、カメラ24を駆動してワークWを撮像し、撮像された画像を入力する。続いて、管理装置80は、入力した画像を処理して画像中のワークWを認識する。そして、管理装置80は、認識したワークWのうちピッキング可能なワークWを抽出して当該ワークWをピッキングするためのエンドエフェクタEの目標位置および目標姿勢を割り出し、ロボット制御装置70に送信する。 Although not shown, the management device 80 includes a CPU, a ROM, an HDD, a RAM, an input/output interface, a communication interface, and the like. An image signal from the camera 24 and an input signal from the input device 88 are input to the management device 80 . Further, the control device 80 outputs a drive signal to the camera 24, a display signal to the display device 89, and the like. Here, the input device 88 is, for example, a keyboard or mouse, and the display device 89 is, for example, a liquid crystal display. The management device 80 is communicably connected to the robot control device 70 and exchanges control signals and various information with each other. The management device 80 transmits a control signal to the robot control device 70 to move the arm 22 (camera 24) to an imaging point of the work W supplied by the work supply device 12, and drives the camera 24 to image the work W. and input the captured image. Subsequently, the management device 80 processes the input image and recognizes the work W in the image. Then, the management device 80 extracts the work W that can be picked from the recognized works W, determines the target position and the target posture of the end effector E for picking the work W, and transmits them to the robot control device 70 .

また、管理装置80およびロボット制御装置70では、ワークWの形状や作業内容に応じたエンドエフェクタEの自動選択が可能となっている。図4はエンドエフェクタの自動選択に関する機能を示すブロック図である。図4に示すように、管理装置80は、各種情報を入力する情報入力部80Aと、入力された情報からエンドエフェクタEの選択処理を行う選択処理部80Bとを有する。情報入力部80Aは、ワークWに関するワーク情報81aやワークWに対して行われる作業内容に関する作業情報81bを含む各種情報を入力する。ワーク情報81aは、ワークWの形状や寸法、種類などの情報を含み、例えばワークWの3次元CAD情報などが入力される。なお、カメラ24で撮像された画像を処理して得られたワークWの形状や寸法などがワーク情報81aとして入力されてもよい。また、作業情報81bは、ワークWをプレースする対象の対象形状や対象寸法、ワークWをトレイT上に整列させるのかボルトの軸に挿入するかなどの作業内容の情報を含む。なお、情報入力部80Aは、作業者により入力装置88を介して入力される作業指示などから作業情報81bを取得してもよい。 Further, the management device 80 and the robot control device 70 are capable of automatically selecting the end effector E according to the shape of the work W and the work content. FIG. 4 is a block diagram showing functions related to automatic selection of end effectors. As shown in FIG. 4, the management device 80 has an information input section 80A for inputting various information, and a selection processing section 80B for selecting the end effector E based on the input information. The information input unit 80A inputs various types of information including work information 81a regarding the work W and work information 81b regarding work content to be performed on the work W. FIG. The work information 81a includes information such as the shape, dimensions, and type of the work W, and for example, three-dimensional CAD information of the work W is input. The shape and dimensions of the workpiece W obtained by processing the image captured by the camera 24 may be input as the workpiece information 81a. In addition, the work information 81b includes information on work details such as the shape and size of the object on which the work W is to be placed, and whether the work W is to be aligned on the tray T or inserted into the shaft of the bolt. The information input unit 80A may acquire the work information 81b from a work instruction or the like input by the worker via the input device 88. FIG.

選択処理部80Bは、パラメータ抽出部82と、作業DB83と、モデル構築部84と、スコア演算部85と、一覧表示部86と、候補決定部87とを有する。パラメータ抽出部82は、情報入力部80Aにより入力されたワーク情報81aや作業情報81bから特徴的なパラメータを抽出する。例えば、ワッシャーをボルトの軸に挿入する作業の場合、パラメータ抽出部82は、ワークWの形状(ワッシャー)やワッシャーの内外径の寸法、ボルトの軸径、作業内容(軸挿入)など、エンドエフェクタEの選択に必要な情報をパラメータとして抽出する。パラメータ抽出部82により抽出されたパラメータは、作業DB83に登録されると共にスコア演算部85に出力される。図5は作業DB83の一例を示す説明図である。図示するように、作業DB83は、既知の作業のワーク情報および作業情報と、当該作業で選択されたエンドエフェクタEの情報と、選択されたエンドエフェクタEの良否の判定結果(評価)とが対応付けて登録されている。既知の作業のワーク情報および作業情報には、パラメータ抽出部82により抽出されたパラメータが登録されるが、それら以外の情報が登録されてもよい。なお、良否の判定結果については後述する。 The selection processing unit 80B has a parameter extraction unit 82, a work DB 83, a model construction unit 84, a score calculation unit 85, a list display unit 86, and a candidate determination unit 87. The parameter extraction unit 82 extracts characteristic parameters from the work information 81a and the work information 81b input by the information input unit 80A. For example, in the case of the work of inserting a washer into the shaft of a bolt, the parameter extraction unit 82 extracts information such as the shape of the work W (washer), the inner and outer diameters of the washer, the shaft diameter of the bolt, the work content (shaft insertion), etc. Information necessary for selecting E is extracted as a parameter. The parameters extracted by the parameter extractor 82 are registered in the work DB 83 and output to the score calculator 85 . FIG. 5 is an explanatory diagram showing an example of the work DB 83. As shown in FIG. As illustrated, in the work DB 83, work information and work information of known work, information of the end effector E selected for the work, and quality judgment results (evaluations) of the selected end effector E correspond to each other. registered with. The parameters extracted by the parameter extractor 82 are registered in the work information and work information of the known work, but information other than these may be registered. In addition, the quality determination result will be described later.

モデル構築部84は、エンドエフェクタEを自動選択するための選択モデルを構築する。このモデル構築部84は、作業DB83に登録された情報のうち特徴的なパラメータを用いた機械学習により、エンドエフェクタEの種類毎にグループ化して分類した選択モデルを構築する。機械学習は、例えば、判別分析やK近傍法などにより複数のグループに分類する公知の手法を用いて行えばよい。また、深層学習などが用いられてもよい。図6は選択モデルの一例を示す説明図である。図6では、図示の都合上、2つの特徴的なパラメータX,Yから3種類のエンドエフェクタE*1(△)、E*2(□),E*3(◇)が選択される選択モデルのイメージを示す。また、図6では、エンドエフェクタE*1(△)、E*2(□),E*3(◇)の各グループ(クラス)の値の重心などの代表値をそれぞれ代表値▲、■、◆で示し、各グループの境界の一例を点線で示す。 The model construction unit 84 constructs a selection model for automatically selecting the end effector E. FIG. The model construction unit 84 constructs a selection model grouped and classified for each type of the end effector E by machine learning using characteristic parameters among the information registered in the work DB 83 . Machine learning may be performed using a known method of classifying into a plurality of groups by, for example, discriminant analysis or the K-nearest neighbor method. Also, deep learning or the like may be used. FIG. 6 is an explanatory diagram showing an example of a selection model. In FIG. 6, for convenience of illustration, a selection model in which three types of end effectors E*1 (Δ), E*2 (□), and E*3 (◇) are selected from two characteristic parameters X and Y. shows an image of In FIG. 6, representative values such as the center of gravity of the values of each group (class) of end effectors E*1 (Δ), E*2 (□), and E*3 (◇) are represented by representative values ▲, ▪, It is indicated by ♦, and an example of the boundary of each group is indicated by a dotted line.

スコア演算部85は、パラメータ抽出部82からエンドエフェクタEの選択条件であるパラメータが入力されると、選択モデルにおけるエンドエフェクタEの各グループとの関連性を示す近似スコアを演算する。例えばスコア演算部85は、入力されたパラメータに基づく選択モデル上での該当位置(図6の◎)と、各グループの代表値▲、■、◆との間の距離としての近似スコアを演算する。このように新たな作業におけるワークWや作業内容が得られると、スコア演算部85により、既知の作業で選択された各種のエンドエフェクタEのそれぞれに対する近似スコアが演算される。一覧表示部86は、スコア演算部85による演算結果に基づいて、複数種類のエンドエフェクタEを近似スコアの高い順に表示装置89に一覧表示する。また、候補決定部87は、一覧表示されたエンドエフェクタEの中から作業者による入力装置88の操作により選択された一のエンドエフェクタEを候補に決定する。候補決定部87は、候補に決定したエンドエフェクタEの種類と、作業番号などの作業の識別情報とをロボット制御装置70に送信する。 The score calculation unit 85 calculates an approximate score indicating the relevance to each group of the end effectors E in the selection model, when the parameter that is the selection condition of the end effector E is input from the parameter extraction unit 82 . For example, the score calculation unit 85 calculates an approximate score as the distance between the corresponding position (⊚ in FIG. 6) on the selected model based on the input parameters and the representative values ▲, ▪, ◆ of each group. . When the work W and the work content for the new work are obtained in this way, the score calculation unit 85 calculates approximate scores for each of the various end effectors E selected in the known work. The list display unit 86 displays a list of a plurality of types of end effectors E on the display device 89 in descending order of approximate score based on the result of calculation by the score calculation unit 85 . Further, the candidate determination unit 87 determines, as a candidate, one end effector E selected by the operator's operation of the input device 88 from among the end effectors E displayed in the list. The candidate determination unit 87 transmits the type of the end effector E determined as a candidate and the work identification information such as the work number to the robot control device 70 .

ロボット制御装置70は、交換装着部71と、動作確認部72と、作業実行部73とを有する。交換装着部71は、候補決定部87で決定されたエンドエフェクタEを先端のリンク36に装着させる。なお、交換装着部71は、ロボット20がエンドエフェクタEを自動交換可能に構成されていれば自動で交換させ、自動交換可能でなければ作業者に交換指示を表示するなどして作業者に交換させる。動作確認部72は、候補決定部87で決定された候補のエンドエフェクタEを用いて、作業対象のワークWをピッキングさせるなどの動作の確認を行う。動作確認部72による動作の確認結果は、管理装置80に送信されて作業DB83に評価として登録される。作業実行部73は、動作確認部72による確認結果が良好とされたエンドエフェクタEを用いて実際の作業を行う。 The robot control device 70 has a replacement mounting section 71 , an operation confirmation section 72 and a work execution section 73 . The replacement attachment section 71 attaches the end effector E determined by the candidate determination section 87 to the link 36 at the tip. If the robot 20 is configured to automatically replace the end effector E, the replacement mounting unit 71 automatically replaces the end effector E. If the robot 20 cannot automatically replace the end effector E, the replacement mounting unit 71 displays a replacement instruction to the operator to allow the operator to replace the end effector E. Let The operation confirmation unit 72 uses the candidate end effector E determined by the candidate determination unit 87 to confirm the operation such as picking the workpiece W to be worked. The operation confirmation result by the operation confirmation unit 72 is transmitted to the management device 80 and registered in the work DB 83 as an evaluation. The work execution unit 73 performs actual work using the end effector E for which the result of confirmation by the operation confirmation unit 72 is good.

次に、ロボットシステム10がこれらの機能を用いて、エンドエフェクタEの自動選択を行う際の処理を説明する。図7は自動選択処理の一例を示すフローチャートである。この処理は、管理装置80の上述した各機能により実行される。この処理が開始されると、管理装置80は、まず、ワークWの形状および作業内容の少なくともいずれかが新規な作業が開始されるタイミングであるか(S100)、ロボット制御装置70の動作確認部72から結果通知を受信したタイミングであるか(S105)、をそれぞれ判定する。 Next, the processing when the robot system 10 automatically selects the end effector E using these functions will be described. FIG. 7 is a flowchart showing an example of automatic selection processing. This process is executed by each function of the management device 80 described above. When this process is started, the management device 80 first determines whether at least one of the shape of the work W and the work content is the timing for starting a new work (S100). 72 (S105).

管理装置80は、S100で新規な作業(対象作業)が開始されるタイミングであると判定すると、ワーク情報81aや作業情報81bを入力し(S110)、それらの情報から特徴的なパラメータを抽出すると共に(S115)、作業DB83に登録する(S120)。次に、管理装置80は、選択モデルを用いて新規な作業に対する各エンドエフェクタEの近似スコアを演算し(S125)、表示装置89にスコア順に一覧表示して(S130)、作業者によるエンドエフェクタEの候補の選択操作がなされるのを待つ(S135)。 When the management device 80 determines in S100 that it is time to start a new work (target work), it inputs work information 81a and work information 81b (S110), and extracts characteristic parameters from the information. Together (S115), it is registered in the work DB 83 (S120). Next, the management device 80 uses the selection model to calculate the approximate score of each end effector E for the new task (S125), displays a list on the display device 89 in order of score (S130), and It waits for selection operation of the candidate of E (S135).

図8はエンドエフェクタの一覧表示画面89aの一例を示す説明図である。図示するように、各エンドエフェクタEがスコア順に並んで表示されると共にカーソルが指し示すエンドエフェクタEの概略図が表示されている。この一覧表示画面89aでは、作業者が入力装置88で上下操作を行う度にカーソルが上または下に移動すると共に概略図が表示されるエンドエフェクタEが変化する。また、作業者は、入力装置88で選択操作を行うと、一覧表示画面89aにおいてカーソルが指し示しているエンドエフェクタEを選択することができる。 FIG. 8 is an explanatory diagram showing an example of the end effector list display screen 89a. As shown, the end effectors E are displayed in order of score, and a schematic diagram of the end effector E pointed by the cursor is displayed. On this list display screen 89a, each time the operator performs an up/down operation on the input device 88, the cursor moves up or down and the end effector E whose schematic diagram is displayed changes. Further, the operator can select the end effector E indicated by the cursor on the list display screen 89a by performing a selection operation with the input device 88. FIG.

管理装置80は、作業者による選択操作がなされると、選択されたエンドエフェクタEを候補に決定し(S140)、決定したエンドエフェクタEの種類と作業の識別情報とを含む候補決定通知をロボット制御装置70に送信して(S145)、自動選択処理を終了する。以下、管理装置80の自動選択処理の説明を中断して、ロボット制御装置70の処理を説明する。 When the operator performs a selection operation, the management device 80 determines the selected end effector E as a candidate (S140), and notifies the robot of the determination of the candidate including the type of the determined end effector E and work identification information. The data is transmitted to the control device 70 (S145), and the automatic selection process ends. Hereinafter, the description of the automatic selection processing of the management device 80 will be interrupted, and the processing of the robot control device 70 will be described.

図9はエンドエフェクタ確認処理の一例を示すフローチャートである。この処理は、ロボット制御装置70により実行される。この処理では、ロボット制御装置70は、まず、候補決定通知を受信したと判定するのを待ち(S200)、候補決定通知を受信したと判定すると、候補決定通知に含まれる種類のエンドエフェクタEに交換する(S205)。なお、S205では、ロボット20による自動交換または作業者による交換が行われる。次に、ロボット制御装置70は、エンドエフェクタEを用いたワークWのピッキングなどの動作確認を行う(S210)。S210では、ロボット制御装置70は、候補とされたエンドエフェクタEを用いて、作業対象のワークWのピッキングを行い、ワークWを正常にピッキングできるか否かを判定する。ロボット制御装置70は、ワークWをピッキングできなかったり、ピッキングしてもすぐにワークWが落下したりする場合には、ワークWを正常にピッキングできないと判定する。また、S210では、ロボット制御装置70は、ワークWのピッキングだけでなく、正常にプレースできるか否かを判定してもよい。 FIG. 9 is a flowchart showing an example of end effector confirmation processing. This processing is executed by the robot control device 70 . In this process, the robot control device 70 first waits until it determines that it has received the notification of candidate determination (S200). Exchange (S205). In S205, automatic replacement by the robot 20 or replacement by the operator is performed. Next, the robot control device 70 confirms the operation such as picking of the workpiece W using the end effector E (S210). In S210, the robot control device 70 uses the candidate end effector E to pick the work W to be worked on, and determines whether or not the work W can be picked normally. The robot control device 70 determines that the work W cannot be picked normally when the work W cannot be picked or when the work W drops immediately after being picked. Further, in S210, the robot control device 70 may determine whether or not the work W can be placed normally as well as the picking of the work W.

そして、ロボット制御装置70は、動作確認の結果が良好であるか否かを判定し(S215)、良好であると判定すると、動作良好の旨の結果通知を管理装置80に送信する(S220)。この場合、候補のエンドエフェクタEを用いて作業することに支障はないから、ロボット制御装置70は、そのまま現在のエンドエフェクタEを用いて作業を開始して(S225)、エンドエフェクタ確認処理を終了する。一方、ロボット制御装置70は、動作確認の結果が不良であると判定すると、動作不良の旨の結果通知を管理装置80に送信して(S230)、S200に戻り処理を行う。この場合、候補のエンドエフェクタEを用いて作業を行うと、ワークWの落下などの作業ミスやワークWのピッキングのし直しなどが頻発して作業効率が低下するおそれがあるから、作業を開始することなく新たな候補決定通知を受信するまで待機することになる。 Then, the robot control device 70 determines whether or not the result of the operation check is good (S215), and if it determines that it is good, it transmits a result notification to the effect that the operation is good to the management device 80 (S220). . In this case, since there is no problem in working with the candidate end effector E, the robot control device 70 starts working with the current end effector E (S225), and ends the end effector confirmation process. do. On the other hand, when the robot control device 70 determines that the result of the operation check is defective, it transmits a result notification to the effect that the operation is defective to the management device 80 (S230), and returns to S200 for processing. In this case, if the work is performed using the candidate end effector E, work errors such as dropping of the work W or re-picking of the work W may occur frequently, which may reduce the work efficiency, so the work is started. Instead, it waits until it receives a new candidate decision notification.

このようにして、ロボット制御装置70から結果通知が管理装置80に送信されると、図7の自動選択処理のS105で管理装置80は結果通知を受信したと判定し、良否結果をパラメータに対応付けて作業DB83に登録する(S150)。S150では、結果通知における動作確認結果が良好であれば、良好の旨がジョブ番号に対応付けて登録され、結果通知における動作確認結果が不良であれば、不良の旨がジョブ番号に対応付けて登録される。また、管理装置80は、登録後の作業DB83に基づいて選択モデルを構築(更新)する(S155)。S155では、新たに良否結果が登録されたエンドエフェクタEとパラメータの関係を選択モデルに反映させることができるから、選択モデルの信頼性を向上させることができる。なお、図5の作業番号**2では、先に選択したエンドエフェクタE*2の確認結果が不良で、再選択したエンドエフェクタE*1の確認結果が良好であった場合を例示している。また、図6では、E*2(□)のエンドエフェクタEを選択した際の不良結果を×印を付加して示している。本実施形態では、動作確認結果が良好の結果と不良の結果とをいずれも反映させた選択モデルを構築するため、各グループの境界をより精度よく設定することが可能となる。そして、管理装置80は、動作確認結果が不良であるか否かを判定し(S160)、動作確認結果が不良でなく良好であると判定すると、そのまま自動選択処理を終了する。 In this way, when the result notification is transmitted from the robot control device 70 to the management device 80, the management device 80 determines that the result notification has been received in S105 of the automatic selection process in FIG. and register it in the work DB 83 (S150). In S150, if the operation check result in the result notification is good, the fact that it is good is registered in association with the job number, and if the operation check result in the result notification is bad, the fact that it is bad is associated with the job number. be registered. Also, the management device 80 builds (updates) a selection model based on the post-registration work DB 83 (S155). In S155, the relationship between the end effector E whose pass/fail result is newly registered and the parameters can be reflected in the selection model, so the reliability of the selection model can be improved. Note that the work number **2 in FIG. 5 illustrates a case where the confirmation result of the previously selected end effector E*2 was unsatisfactory and the confirmation result of the reselected end effector E*1 was good. . In addition, in FIG. 6, the failure result when the end effector E of E*2 (□) is selected is indicated by adding an x mark. In this embodiment, since a selection model is constructed that reflects both good and bad operation check results, it is possible to set the boundaries of each group with higher accuracy. Then, the management device 80 determines whether or not the operation check result is unsatisfactory (S160), and when determining that the operation check result is not unsatisfactory but good, ends the automatic selection process.

一方、管理装置80は、S160で動作確認結果が不良であると判定すると、S155で構築した選択モデルを用いて各エンドエフェクタEの近似スコアを再演算し(S165)、選択済みのエンドエフェクタEを除いてスコア順に一覧表示する(S170)。図8の例でスコア順1のエンドエフェクタE22が選択されたものの動作確認結果が不良であった場合、管理装置80は、選択済みのエンドエフェクタE22を除いた他のエンドエフェクタEを、再演算されたスコア順に一覧表示することになる。そして、管理装置80は、作業者によって選択されたエンドエフェクタEをロボット制御装置70に送信するS135~S145の処理を実行する。これにより、一旦選択したものの動作確認結果が不良であったエンドエフェクタEを除いた他のエンドエフェクタEの中から、適切なエンドエフェクタEを再選択させることができる。各エンドエフェクタEの近似スコアは、動作確認結果を反映して構築された選択モデルを用いて再演算されるから、各エンドエフェクタEをより適切に一覧表示した中から作業者に選択させることが可能となる。 On the other hand, if the management device 80 determines in S160 that the result of the operation check is unsatisfactory, it recalculates the approximation score of each end effector E using the selection model constructed in S155 (S165). are displayed in order of score (S170). In the example of FIG. 8, when the end effector E22 with the score order 1 is selected but the operation check result is unsatisfactory, the management device 80 recalculates the other end effectors E excluding the selected end effector E22. The list will be displayed in order of the score given. Then, the management device 80 executes the processing of S135 to S145 for transmitting the end effector E selected by the operator to the robot control device 70. FIG. As a result, an appropriate end effector E can be reselected from among the other end effectors E excluding the end effector E that was once selected but whose operation confirmation result was unsatisfactory. Since the approximate score of each end effector E is recalculated using the selection model constructed by reflecting the result of operation confirmation, the operator can be made to select each end effector E from a more appropriate list. It becomes possible.

ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態のロボット20がロボットに相当し、エンドエフェクタEがエンドエフェクタに相当し、図7の自動選択処理のS110が取得ステップに相当し、同処理のS155が構築ステップに相当し、同処理のS115~S140が選択ステップに相当する。また、エンドエフェクタ確認処理のS210が確認ステップに相当する。また、図7の自動選択処理のS110を実行する情報入力部80Aが取得部に相当し、同処理のS155を実行するモデル構築部84が構築部に相当し、同処理のS115~S140を実行するパラメータ抽出部82とスコア演算部85と一覧表示部86と候補決定部87とが選択部に相当する。 Here, correspondence relationships between the components of the present embodiment and the components of the present disclosure will be clarified. The robot 20 of this embodiment corresponds to the robot, the end effector E corresponds to the end effector, S110 of the automatic selection process in FIG. corresponds to the selection step. Also, S210 of the end effector confirmation process corresponds to the confirmation step. Further, the information input unit 80A that executes S110 of the automatic selection process in FIG. 7 corresponds to the acquisition unit, and the model construction unit 84 that executes S155 of the same process corresponds to the construction unit, and executes S115 to S140 of the same process. The parameter extraction unit 82, the score calculation unit 85, the list display unit 86, and the candidate determination unit 87 correspond to the selection unit.

以上説明したロボットシステム10は、作業におけるワークWの形状および作業内容と、構築した選択モデルとに基づいて、複数種類のエンドエフェクタEから新規な作業に適したエンドエフェクタEを選択する。これにより、既知の作業の学習で構築したモデルを用いて、ワークWの形状および作業内容を考慮したエンドエフェクタEの選択をより適切に行うことができる。 The robot system 10 described above selects an end effector E suitable for a new task from a plurality of types of end effectors E based on the shape of the workpiece W in the task, the work content, and the constructed selection model. As a result, it is possible to more appropriately select the end effector E in consideration of the shape of the work W and the content of the work using a model constructed by learning of known work.

また、複数種類のエンドエフェクタについて近似スコアを算出してスコア順に表示装置89に一覧表示し、作業者による選択に従ってエンドエフェクタEを選択するから、スコア順に作業者の経験などによる判断を加えて、エンドエフェクタEの選択をさらに適切に行うことができる。 In addition, approximate scores are calculated for a plurality of types of end effectors and displayed on the display device 89 in order of score, and the end effector E is selected according to the selection by the operator. The selection of the end effector E can be made even more appropriately.

また、選択されたエンドエフェクタEの動作を確認し、その確認結果の良否を対応付けて選択モデルを構築するから、選択モデルの信頼性を高めて、エンドエフェクタEの選択の精度をより向上させることができる。 In addition, the operation of the selected end effector E is confirmed, and the quality of the confirmation result is correlated to construct the selection model. Therefore, the reliability of the selection model is increased, and the accuracy of the selection of the end effector E is further improved. be able to.

また、確認結果が不良であった場合、再構築された選択モデルを用いて、既に選択されたエンドエフェクタEを除いた複数種類のエンドエフェクタEから再選択を行うことができるから、再選択の精度をより向上させることができる。 In addition, if the confirmation result is unsatisfactory, the reconstructed selection model can be used to reselect from a plurality of types of end effectors E excluding the end effector E that has already been selected. Accuracy can be further improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.

例えば、上述した実施形態では、選択されたエンドエフェクタEの動作の確認結果が不良であった場合、更新された選択モデルを用いて近似スコアを再度演算した上でエンドエフェクタEの再選択を行うものとしたが、これに限られるものではない。例えば、近似スコアを再度演算することなく、前回の近似スコアを用いて、既に選択されたエンドエフェクタEを除いた中からエンドエフェクタEの再選択を行うものなどとしてもよい。 For example, in the above-described embodiment, if the operation confirmation result of the selected end effector E is unsatisfactory, the approximate score is calculated again using the updated selection model, and the end effector E is reselected. However, it is not limited to this. For example, without calculating the approximate score again, the previous approximate score may be used to reselect the end effector E from among the already selected end effectors E excluded.

上述した実施形態では、スコア順にエンドエフェクタEを一覧表示して作業者に選択させるものとしたが、これに限られず、スコア順に基づいて管理装置80が選択するものとしてもよい。図10は変形例の自動選択処理を示すフローチャートである。図10では、図7と同じ処理には同じステップ番号を付して説明を省略する。管理装置80は、S125で選択モデルを用いて近似スコアを演算すると、スコア順が最も上位のエンドエフェクタEを候補に決定する(S140a)。このため、図8の例では、エンドエフェクタE22が自動的に候補に決定されることになる。また、管理装置80は、ロボット制御装置70から受信した結果が不良であるとS160で判定すると、既に選択されたエンドエフェクタEを除いてスコア順が最も上位のエンドエフェクタEに決定する(S168)。このため、図8の例では、エンドエフェクタE21が自動的に候補に決定されることになる。なお、図10においても、図7と同様に、更新された選択モデルを用いて近似スコアを演算し直してから、S168の処理を実行するものとしてもよい。 In the above-described embodiment, the list of end effectors E is displayed in the order of scores, and the operator is allowed to select the end effectors. FIG. 10 is a flow chart showing the automatic selection process of the modification. In FIG. 10, the same step numbers are assigned to the same processes as in FIG. 7, and the description thereof is omitted. After calculating the approximate score using the selection model in S125, the management device 80 determines the end effector E with the highest score order as a candidate (S140a). Therefore, in the example of FIG. 8, the end effector E22 is automatically determined as a candidate. Further, when the management device 80 determines in S160 that the result received from the robot control device 70 is defective, the management device 80 determines the end effector E with the highest score order excluding the already selected end effector E (S168). . Therefore, in the example of FIG. 8, the end effector E21 is automatically determined as a candidate. In FIG. 10 as well, similar to FIG. 7, the approximate score may be calculated again using the updated selection model, and then the process of S168 may be executed.

上述した実施形態では、候補に選択されたエンドエフェクタEの動作を確認することによりエンドエフェクタEの良否を判定してから作業を開始するものとしたが、これに限られず、エンドエフェクタEの良否を判定することなく作業を開始するものなどとしてもよい。その場合、確認結果が不良であった場合のエンドエフェクタEの再選択も行わないものとすればよい。ただし、ワークWの落下などの作業ミスやワークWのピッキングのし直しなどを防ぐために、候補に選択されたエンドエフェクタEの良否を作業開始前に判定するものが好ましい。 In the above-described embodiment, the operation of the end effector E selected as a candidate is checked to determine whether the end effector E is good or bad, and then work is started. It is also possible to start the work without judging. In that case, the end effector E may not be reselected if the confirmation result is unsatisfactory. However, in order to prevent work errors such as dropping of the work W and re-picking of the work W, it is preferable to determine the acceptability of the end effector E selected as a candidate before starting the work.

上述した実施形態では、特徴的なパラメータから選択モデルにおけるエンドエフェクタEの種類毎の近似スコアを演算し、近似スコアの高いエンドエフェクタEを優先的に選択するものなどとしたが、これに限られるものではない。既知の作業におけるワークWの形状および作業内容と、その作業で選択されたエンドエフェクタEとの関係を学習して構築された選択モデルを用いて、新規な作業のエンドエフェクタEを選択するものであれば如何なる処理でエンドエフェクタEを選択してもよい。 In the above-described embodiment, the approximation score for each type of end effector E in the selected model is calculated from the characteristic parameters, and the end effector E with the high approximation score is preferentially selected. not a thing An end effector E for a new job is selected using a selection model constructed by learning the relationship between the shape of the work W in a known job, the content of the job, and the end effector E selected for that job. Any processing may be used to select the end effector E.

上述した実施形態では、ワーク情報81aにワークWの形状以外に寸法や種類などを含むものとしたが、少なくともワークWの形状を含むものであればよい。また、作業情報81bにワークWをプレースする対象形状や対象寸法などを含むものとしたが、少なくともどのような作業を行うかの作業内容を含むものであればよい。 In the above-described embodiment, the work information 81a includes the dimensions and type of the work W in addition to the shape of the work W, but at least the shape of the work W may be included. Also, although the work information 81b includes the target shape and target dimensions for placing the workpiece W, it may at least include the work content of what kind of work is to be performed.

ここで、本開示のコンピュータによるエンドエフェクタの選択方法および選択システムは、以下のように構成してもよい。例えば、本開示のエンドエフェクタの選択方法において、前記選択ステップでは、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタについて前記対象作業との関連性を示すスコアを算出してスコア順に一覧表示し、作業者による選択に従って前記エンドエフェクタを選択するものとしてもよい。こうすれば、エンドエフェクタのスコア順に、作業者の経験などによる判断を加えてエンドエフェクタを選択することも可能となるから、エンドエフェクタの選択をさらに適切に行うことができる。 Here, the computer-based end effector selection method and selection system of the present disclosure may be configured as follows. For example, in the end effector selection method of the present disclosure, in the selection step, based on the shape of the work and the work content in the target work and the model, the relationship between the plurality of types of end effectors and the target work is determined. It is also possible to calculate a score indicating the quality of the end effector, display a list in order of the score, and select the end effector according to the selection by the operator. In this way, it is possible to select the end effector in the order of the scores of the end effectors, and to add judgment based on the experience of the operator, etc., so that the end effector can be selected more appropriately.

本開示のエンドエフェクタの選択方法において、前記選択ステップでは、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタについて前記対象作業との関連性を示すスコアを算出し、スコアの高い前記エンドエフェクタを優先的に選択するものとしてもよい。こうすれば、構築したモデルを用いた簡易な処理で、エンドエフェクタの選択をより適切に行うことができる。 In the end effector selection method of the present disclosure, in the selecting step, the relevance of the plurality of types of end effectors to the target work is determined based on the shape of the work and work content in the target work and the model. The score may be calculated, and the end effector with a high score may be preferentially selected. By doing so, it is possible to more appropriately select the end effector with a simple process using the constructed model.

本開示のエンドエフェクタの選択方法において、前記選択ステップで選択された前記エンドエフェクタによる前記ワークの把持動作の良否を確認する確認ステップを含み、前記構築ステップでは、前記確認ステップの確認結果が得られると、前記対象作業における前記ワークの形状および作業内容と、前記選択ステップで選択された前記エンドエフェクタの種類との関係に前記確認結果の良否を対応付けて前記モデルを構築するものとしてもよい。こうすれば、モデルの信頼性を高めることができるから、エンドエフェクタの選択の精度をより向上させることができる。 The end effector selection method of the present disclosure includes a confirmation step of confirming whether the end effector selected in the selection step is good or bad in gripping the workpiece, and in the construction step, confirmation results of the confirmation step are obtained. , and the model may be constructed by associating the quality of the confirmation result with the relationship between the shape of the workpiece and the content of the work in the target work and the type of the end effector selected in the selection step. By doing so, the reliability of the model can be improved, so the accuracy of the selection of the end effector can be further improved.

本開示のエンドエフェクタの選択方法において、前記選択ステップでは、前記確認ステップの確認結果が不良であった場合、既に選択された前記エンドエフェクタを除いた複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを再選択するものとしてもよい。こうすれば、確認結果の良否を対応付けて構築されたモデルを用いてエンドエフェクタの再選択を行うことができるから、再選択の精度をより向上させることができる。 In the end effector selection method of the present disclosure, in the selection step, if the confirmation result of the confirmation step is unsatisfactory, a plurality of types of end effectors other than the end effector that has already been selected are selected. The end effector may be reselected. In this way, it is possible to reselect the end effector using a model constructed by associating the quality of the confirmation result, so that the accuracy of reselection can be further improved.

本開示のエンドエフェクタの選択システムは、ワークに対する作業を実行するロボットに交換可能に装着され、前記ワークを把持するエンドエフェクタの選択システムであって、前記ワークの形状および作業内容を含む情報を取得する取得部と、既知の作業における前記ワークの形状および作業内容と、当該作業で選択された前記エンドエフェクタの種類との関係を学習してモデルを構築する構築部と、作業対象のワークおよび作業内容の少なくともいずれかが新規な対象作業が実行される場合、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを選択する選択部と、を備えることを要旨とする。 An end effector selection system of the present disclosure is an end effector selection system that is replaceably attached to a robot that performs work on a work and that grips the work, and acquires information including the shape of the work and work details. a construction unit that builds a model by learning the relationship between the shape of the work and the work content in the known work and the type of the end effector selected in the work, and the work to be worked and the work When at least one of the contents of the target work is new, based on the shape and work content of the work in the target work and the model, the end effector suitable for the target work is selected from a plurality of types of end effectors. and a selection unit for selecting an end effector.

本開示のエンドエフェクタの選択システムは、上述した選択方法と同様に、作業対象のワークや作業内容が新規な対象作業であっても、既知の作業の学習で構築したモデルを用いて、ワークの形状および作業内容を考慮したエンドエフェクタの選択をより適切に行うことができる。なお、この選択システムにおいて、上述した選択方法の各ステップを実現するような機能を追加してもよい。 As in the selection method described above, the end effector selection system of the present disclosure uses a model constructed by learning a known work to select a work, even if the work to be performed or the work content is new. It is possible to more appropriately select the end effector considering the shape and work content. In addition, in this selection system, a function for realizing each step of the selection method described above may be added.

本発明は、ロボットシステムの製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to the robot system manufacturing industry and the like.

10 ロボットシステム、11 作業台、12 ワーク供給装置、12a コンベアベルト、14 トレイ搬送装置、20 ロボット、22 アーム、24 カメラ、31~36 リンク、41~45 関節、51~55 サーボモータ、56 アクチュエータ、61~65 エンコーダ、70 ロボット制御装置、71 交換装着部、72 動作確認部、73 作業実行部、80 管理装置、80A 情報入力部、80B 選択処理部、81a ワーク情報、81b 作業情報、82 パラメータ抽出部、83 作業DB、84 モデル構築部、85 スコア演算部、86 一覧表示部、87 候補決定部、88 入力装置、89 表示装置、89a 一覧表示画面、E,E1*~E3*,E11,E12,E21,E22,E31,E32 エンドエフェクタ、T トレイ、W ワーク。 10 robot system, 11 work table, 12 work supply device, 12a conveyor belt, 14 tray transfer device, 20 robot, 22 arm, 24 camera, 31 to 36 link, 41 to 45 joint, 51 to 55 servo motor, 56 actuator, 61 to 65 encoder, 70 robot control device, 71 exchange mounting unit, 72 operation confirmation unit, 73 work execution unit, 80 management device, 80A information input unit, 80B selection processing unit, 81a work information, 81b work information, 82 parameter extraction part, 83 work DB, 84 model construction part, 85 score calculation part, 86 list display part, 87 candidate determination part, 88 input device, 89 display device, 89a list display screen, E, E1* to E3*, E11, E12 , E21, E22, E31, E32 end effector, T tray, W workpiece.

Claims (4)

ワークに対する作業を実行するロボットに交換可能に装着され、前記ワークを把持するエンドエフェクタの選択方法であって、
前記ワークの形状および作業内容を含む情報を取得する取得ステップと、
既知の作業における前記ワークの形状および作業内容と、当該作業で選択された前記エンドエフェクタの種類との関係を学習してモデルを構築する構築ステップと、
前記ワークおよび作業内容の少なくともいずれかが新規な対象作業が実行される場合、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを選択する選択ステップと、
前記選択ステップで選択された前記エンドエフェクタによる前記ワークの把持動作の良否を確認する確認ステップと、
を含み、
前記構築ステップでは、前記確認ステップの確認結果が得られると、前記対象作業における前記ワークの形状および作業内容と、前記選択ステップで選択された前記エンドエフェクタの種類との関係に前記確認結果の良否を対応付けて前記モデルを構築し、
前記選択ステップでは、前記確認ステップの確認結果が不良であった場合、既に選択された前記エンドエフェクタを除いた複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを再選択する
ンドエフェクタの選択方法。
A method for selecting an end effector that is replaceably attached to a robot that performs work on a work and grips the work,
an acquisition step of acquiring information including the shape of the work and work content;
a construction step of building a model by learning the relationship between the shape of the workpiece and the content of the work in the known work and the type of the end effector selected in the work;
When at least one of the work and work content is a new target work to be executed, a plurality of types of end effectors are used based on the shape of the work and the work content in the target work and the model. a selecting step of selecting the end effector suitable for
a confirmation step of confirming whether the operation of gripping the workpiece by the end effector selected in the selection step is good;
including
In the construction step, when the confirmation result of the confirmation step is obtained, the relationship between the shape of the workpiece and the content of the work in the target work and the type of the end effector selected in the selection step determines whether the confirmation result is good or bad. to build the model by associating
In the selecting step, if the confirmation result of the confirming step is unsatisfactory, the end effector suitable for the target work is reselected from a plurality of types of end effectors excluding the already selected end effector.
How to choose an end effector.
請求項1に記載のエンドエフェクタの選択方法であって、
前記選択ステップでは、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタについて前記対象作業との関連性を示すスコアを算出してスコア順に一覧表示し、作業者による選択に従って前記エンドエフェクタを選択する
エンドエフェクタの選択方法。
A method for selecting an end effector according to claim 1, comprising:
In the selecting step, based on the shape of the work and the work content in the target work and the model, scores indicating the relevance of the plurality of types of end effectors to the target work are calculated and listed in the order of scores. and selecting the end effector according to selection by an operator.
請求項1に記載のエンドエフェクタの選択方法であって、
前記選択ステップでは、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタについて前記対象作業との関連性を示すスコアを算出し、スコアの高い前記エンドエフェクタを優先的に選択する
エンドエフェクタの選択方法。
A method for selecting an end effector according to claim 1, comprising:
In the selecting step, based on the shape of the work and the work content in the target work and the model, a score indicating the relevance of the plurality of types of end effectors to the target work is calculated, and Select end effector preferentially End effector selection method.
ワークに対する作業を実行するロボットに交換可能に装着され、前記ワークを把持するエンドエフェクタの選択システムであって、
前記ワークの形状および作業内容を含む情報を取得する取得部と、
既知の作業における前記ワークの形状および作業内容と、当該作業で選択された前記エンドエフェクタの種類との関係を学習してモデルを構築する構築部と、
前記ワークおよび作業内容の少なくともいずれかが新規な対象作業が実行される場合、前記対象作業における前記ワークの形状および作業内容と、前記モデルとに基づいて、複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを選択する選択部と、
前記選択部で選択された前記エンドエフェクタによる前記ワークの把持動作の良否を確認する確認部と、
を備え
前記構築部は、前記確認部の確認結果が得られると、前記対象作業における前記ワークの形状および作業内容と、前記選択部で選択された前記エンドエフェクタの種類との関係に前記確認結果の良否を対応付けて前記モデルを構築し、
前記選択部は、前記確認部の確認結果が不良であった場合、既に選択された前記エンドエフェクタを除いた複数種類の前記エンドエフェクタから前記対象作業に適した前記エンドエフェクタを再選択する
ンドエフェクタの選択システム。
A selection system for an end effector that is replaceably attached to a robot that performs work on a work and grips the work,
an acquisition unit that acquires information including the shape of the work and work content;
a construction unit that builds a model by learning the relationship between the shape of the workpiece and the content of the work in the known work and the type of the end effector selected in the work;
When at least one of the work and work content is a new target work to be executed, a plurality of types of end effectors are used based on the shape of the work and the work content in the target work and the model. a selection unit that selects the end effector suitable for
a confirming unit for confirming whether the end effector selected by the selecting unit has performed a gripping operation of the workpiece;
with
When the confirmation result of the confirmation unit is obtained, the construction unit determines whether the confirmation result is good or bad based on the relationship between the shape of the workpiece and the work content in the target work and the type of the end effector selected by the selection unit. to build the model by associating
The selection unit reselects the end effector suitable for the target work from a plurality of types of end effectors excluding the already selected end effector when the confirmation result of the confirmation unit is unsatisfactory.
End effector selection system.
JP2020531883A 2018-07-24 2018-07-24 END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM Active JP7133017B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027765 WO2020021643A1 (en) 2018-07-24 2018-07-24 End effector selection method and selection system

Publications (2)

Publication Number Publication Date
JPWO2020021643A1 JPWO2020021643A1 (en) 2021-08-02
JP7133017B2 true JP7133017B2 (en) 2022-09-07

Family

ID=69180973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531883A Active JP7133017B2 (en) 2018-07-24 2018-07-24 END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM

Country Status (2)

Country Link
JP (1) JP7133017B2 (en)
WO (1) WO2020021643A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707753B (en) * 2020-05-07 2020-10-21 鈦昇科技股份有限公司 Automatic arm replacement mechanism
DE202021103093U1 (en) * 2021-06-08 2022-06-10 Dürr Assembly Products GmbH Apparatus for picking up elongated fasteners from a disordered store

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117732A (en) 2007-11-09 2009-05-28 Panasonic Corp Nozzle
JP2009148845A (en) 2007-12-19 2009-07-09 Olympus Corp Small-size production equipment
JP2013052490A (en) 2011-09-06 2013-03-21 Mitsubishi Electric Corp Workpiece takeout device
JP2015044274A (en) 2013-08-29 2015-03-12 三菱電機株式会社 Component supply device, and program generation method of the component supply device
WO2015178377A1 (en) 2014-05-20 2015-11-26 株式会社日立製作所 Assembly instruction device and method
JP2017030135A (en) 2015-07-31 2017-02-09 ファナック株式会社 Machine learning apparatus, robot system, and machine learning method for learning workpiece take-out motion
US20170265392A1 (en) 2014-08-26 2017-09-21 Vineland Research and Innovations Centre Inc. Mushroom Harvester
JP6325174B1 (en) 2017-04-04 2018-05-16 株式会社Mujin Control device, picking system, distribution system, program, control method, and production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117732A (en) 2007-11-09 2009-05-28 Panasonic Corp Nozzle
JP2009148845A (en) 2007-12-19 2009-07-09 Olympus Corp Small-size production equipment
JP2013052490A (en) 2011-09-06 2013-03-21 Mitsubishi Electric Corp Workpiece takeout device
JP2015044274A (en) 2013-08-29 2015-03-12 三菱電機株式会社 Component supply device, and program generation method of the component supply device
WO2015178377A1 (en) 2014-05-20 2015-11-26 株式会社日立製作所 Assembly instruction device and method
US20170265392A1 (en) 2014-08-26 2017-09-21 Vineland Research and Innovations Centre Inc. Mushroom Harvester
JP2017030135A (en) 2015-07-31 2017-02-09 ファナック株式会社 Machine learning apparatus, robot system, and machine learning method for learning workpiece take-out motion
JP2017064910A (en) 2015-07-31 2017-04-06 ファナック株式会社 Machine learning device for learning taking-out operation of workpiece, robot system, and machine learning method
JP6325174B1 (en) 2017-04-04 2018-05-16 株式会社Mujin Control device, picking system, distribution system, program, control method, and production method

Also Published As

Publication number Publication date
WO2020021643A1 (en) 2020-01-30
JPWO2020021643A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP4174342B2 (en) Work transfer device
CN110784708B (en) Sensing system, operation system, method for displaying augmented reality image, method for storing augmented reality image, and program
CN108698228B (en) Task creation device, work system, and control device for work robot
US20120165986A1 (en) Robotic picking of parts from a parts holding bin
CN110871441B (en) Sensing system, operating system, augmented reality image display method, and storage medium storing program
JP4862765B2 (en) Surface inspection apparatus and surface inspection method
JP5272617B2 (en) Robot apparatus and control method of robot apparatus
CN114286740B (en) Work robot and work system
JP7197653B2 (en) Image processing device
JP7133017B2 (en) END EFFECTOR SELECTION METHOD AND SELECTION SYSTEM
JP5345869B2 (en) Production system using parts kit
CN110405729B (en) Robot control device
WO2018131108A1 (en) Work machine and pick-up position selection method
EP2532490A2 (en) Automatic working device
JP5198161B2 (en) Handling apparatus and work handling method
CN111417496B (en) Control device, work operation system, and control method
JP7373028B2 (en) Simulation method, simulation system
JP2015003348A (en) Robot control system, control device, robot, control method for robot control system and robot control method
CN111278612B (en) Component transfer device
WO2023105637A1 (en) Device and method for verifying operation of industrial machine
CN112010021B (en) Workpiece conveying system, workpiece positioning system and positioning method thereof
JP7105281B2 (en) work system
CN114800483B (en) Robot control method and robot system
JP7440635B2 (en) robot system
JPWO2018042590A1 (en) Component mounting apparatus and position recognition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7133017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150