WO2015178362A1 - Tire cooling control device in chassis dynamometer - Google Patents

Tire cooling control device in chassis dynamometer Download PDF

Info

Publication number
WO2015178362A1
WO2015178362A1 PCT/JP2015/064276 JP2015064276W WO2015178362A1 WO 2015178362 A1 WO2015178362 A1 WO 2015178362A1 JP 2015064276 W JP2015064276 W JP 2015064276W WO 2015178362 A1 WO2015178362 A1 WO 2015178362A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
cooling fan
tire cooling
speed
temperature
Prior art date
Application number
PCT/JP2015/064276
Other languages
French (fr)
Japanese (ja)
Inventor
明 野田
洋 高畑
鈴木 雅彦
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to KR1020167035104A priority Critical patent/KR101758142B1/en
Priority to CN201580025764.9A priority patent/CN106415233B/en
Publication of WO2015178362A1 publication Critical patent/WO2015178362A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines

Definitions

  • the present invention relates to a tire cooling control device in a chassis dynamometer, and more particularly to a tire cooling fan control device for managing tire temperature.
  • Patent Document 1 does not disclose a technique for managing the temperature of the tire in order to improve the fuel efficiency evaluation accuracy.
  • Applicant conducted a verification test to determine whether the temperature management state of the tire would cause a variation in fuel consumption due to load fluctuations applied to the vehicle during load adjustment during the fuel consumption test and tire loss.
  • the present invention verifies the effects of the presence or absence of a tire temperature management method on coasting travel, tire loss (resistance) during mode travel, and travel work when setting the travel resistance to the chassis dynamometer based on the verification test results
  • the present invention has been made on the basis of the result, and an object of the present invention is to provide a tire cooling control device in a chassis dynamometer for improving the fuel efficiency evaluation accuracy.
  • a chassis dynamometer in which a vehicle under test is mounted on a roller, and a test is performed by sending cooling air to a tire-roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device.
  • An inverter for controlling the tire cooling fan of the vehicle under test, and a ratio setting unit for setting a wind speed characteristic with respect to the vehicle speed A speed signal is generated by multiplying the ratio setting value set by the ratio setting unit and the vehicle speed setting value, The tire cooling fan is controlled through the inverter in accordance with the generated speed signal.
  • a chassis dynamo in which a vehicle under test is mounted on a roller, and a test is performed by sending cooling air to a tire-roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device.
  • a temperature signal is generated based on a difference between a detected temperature signal detected by the thermometer and a temperature set value, and the tire cooling fan is controlled via the inverter based on the temperature signal. is there.
  • Claim 3 of the present invention generates a temperature signal based on a thermometer for detecting the tire temperature, and a difference between the detected temperature signal detected by the thermometer and the temperature setting, A switch for switching the generated temperature signal and the speed signal is provided, and the temperature signal and the speed signal can be switched by the switch.
  • the ratio setting value of the wind speed to the vehicle speed set by the ratio setting unit is a tire installed on the rear wheel side with respect to a tire cooling fan installed on the front wheel side of the vehicle under test. It is characterized by setting the wind power sent from the cooling fan to be weak.
  • the ratio of the wind speed to the vehicle speed set by the ratio setting unit is arbitrarily set for each of the tire cooling fans installed on the front, rear, left and right wheels of the vehicle under test. It is characterized by making possible.
  • the present invention by performing temperature management by wind speed control for each tire, a change in tire loss (resistance) due to a difference from the actual road when performing load adjustment on the chassis dynamometer is suppressed. Therefore, the load condition can be appropriately given during the test, and the fuel consumption test approximated to the actual road becomes possible, and the evaluation accuracy can be improved.
  • FIG. 1 is a schematic diagram of a test apparatus using a chassis dynamometer. Vehicle speed-wind speed characteristic diagram by ratio setting.
  • Fig. 4 is a vehicle speed-wind speed characteristic diagram around the front tire according to the test results.
  • Fig. 4 is a vehicle speed-wind speed characteristic diagram around the rear tire according to the test results.
  • FIG. 2 shows a schematic configuration diagram of a fuel efficiency test apparatus for a chassis dynamometer.
  • Reference numeral 1 denotes a vehicle under test. Each wheel of the vehicle 1 is placed on a roller 2 of a chassis dynamometer, and the vehicle itself is fixed by a restraining device (not shown). Further, the roller 2 is controlled via a dynamometer control device based on data acquired at the time of coasting.
  • Reference numeral 3 denotes a vehicle cooling fan that blows wind force from the front side of the vehicle under test 1, 11 denotes a tire cooling fan that blows wind force to the contact surface between the four tires and the roller 2, and 5 denotes a floor surface.
  • a non-contact thermometer for measuring the tire temperature and a hot-wire anemometer for measuring the tire peripheral wind speed are attached to the body of the vehicle body.
  • FIGS. 4 and 5 show the wind speed around the tire on the vertical axis and the vehicle speed on the horizontal axis. The comparison result of the wind speed around the tire due to the difference in tire cooling conditions is shown. 4 shows the case around the front tire, and FIG. 5 shows the case around the rear tire.
  • FIG. 4 which is a comparison diagram of the wind speed around the front tire
  • the line a indicates the wind speed relative to the vehicle speed on the actual road
  • the line b indicates the case where the wind speed of the tire cooling fan 11 follows the speed of the roller 2 (vehicle speed)
  • a tire cooling fan vehicle speed tracking method In the wind speed around the front tire, the tire cooling fan vehicle speed tracking method has a wind speed result for a vehicle speed similar to the actual road compared to other cooling methods. Further, in the comparison of the wind speed around the rear tire shown in FIG. 5, the wind speed on the actual road (line A) is about half that of the tire cooling fan vehicle speed tracking method shown by line B. This is considered to be influenced by the vehicle body.
  • the tire cooling fan vehicle speed tracking method that is approximated on the front wheel side also produces a wind speed that is proportional to the vehicle speed on the rear wheel side, and thus does not approximate the actual road.
  • FIG. 6 shows a comparison result of the maximum value, the minimum value and the average value of tire temperature due to the difference in tire cooling conditions during mode running.
  • the tire cooling fan vehicle speed tracking method is lower than other methods.
  • the cooling is performed by the other method because the cooling fan follows the vehicle speed to a higher speed range than the other methods.
  • the instantaneous value of the tire temperature for the first 300 seconds in the JC08 mode was lower in the case of the tire cooling fan vehicle speed tracking method than in other methods throughout the mode.
  • tire loss decreases when the tire temperature is higher than when it is lower. It is necessary to adjust the load of the chassis dynamometer before mode operation with the chassis dynamometer. However, when the tire temperature is higher during mode operation than when adjusting the load, tire loss tends to decrease and fuel consumption tends to improve. .
  • the wind speed around the tire on the chassis dynamometer is similar to the actual wind speed by the vehicle speed tracking method of the tire cooling fan.
  • the wind speed around the tire on the rear wheel side is halved compared to the front wheel side. For this reason, it is necessary to be able to set the wind speed setting of the rear wheels separately from the front wheels in order to approach real road running.
  • the tire temperature is lowest when the tire cooling fan is driven by the vehicle speed tracking method. This is because the tire cooling fan follows up to a high speed region, so that the amount of air hitting the tire is increased and the cooling effect is high compared to other methods.
  • the tire loss was obtained using the tire RRC (rolling resistance coefficient), and the vehicle internal transmission loss in the rolling resistance could be estimated.
  • the tire cooling fan vehicle speed tracking method in which the tire peripheral wind speed is equivalent to the actual road and the tire temperature tends to be low, is larger than other methods, and the tire temperature in the chassis dynamometer test I was able to grasp the necessity of management.
  • the present invention has been made based on the understanding that, in order to accurately evaluate the fuel consumption by the chassis dynamometer, the management of the vehicle condition and the temperature management of the tire are important in appropriately giving the load condition. Is.
  • FIG. 1 shows an embodiment based on a tire cooling fan vehicle speed tracking system.
  • FIG. 1 shows a block diagram of a tire cooling fan control device 10 (10F L , 10R L ) only on the left and right of the front and rear wheels when the vehicle under test is a 4WD vehicle.
  • the control device 10 (10F R , 10R R ) is similarly configured. Therefore, describing the control device 10F L tire cooling fan of the left front wheel side as a representative.
  • reference numeral 11 denotes a tire cooling fan, which is disposed at a position for sending cooling air to the contact surface between the roller 2 and the tire of the vehicle under test.
  • a non-contact thermometer 12 is attached to the vehicle body near the tire.
  • a subtractor 13 calculates a difference between the detected temperature and the temperature setting Tset.
  • Reference numeral 14 denotes a PI calculation unit which performs a proportional / integral calculation on the calculated temperature difference and outputs it as a predetermined temperature signal.
  • a switch 15 switches between the output signal of the PI calculation unit 17 and the temperature signal (output signal of the PI calculation unit 14).
  • Reference numeral 16 denotes a multiplication unit, to which a vehicle speed set value at the time of mode traveling is input from the dynamometer control device 6, and the multiplication unit 16 multiplies the vehicle speed set value and the ratio set value of the ratio setting unit 7 to perform PI.
  • a speed signal is generated by being input to the calculation unit 17.
  • a speed detection unit 18 detects the speed of the tire cooling fan 11 with a detector such as a pulse pickup, and the temperature signal generated by the PI calculation unit 14 in the subtraction unit 19 or the speed signal generated by the PI calculation unit 17. The difference is obtained.
  • Reference numeral 20 denotes an inverter that generates a control signal corresponding to the difference from the subtractor 19 and controls the rotation speed of the tire cooling fan 11 at a frequency modulated based on the control signal to send out wind power.
  • These 11 to 20 constitute a tire cooling fan control device 10 (10F L , 10R L , 10F R , 10R R ).
  • the ratio setting unit 7 sets the ratio of the wind speed to the vehicle speed so that the wind speed setting has the vehicle speed-wind speed characteristics as shown in FIG. 3 based on the test results of FIGS. It performs the control device 10F L and the ratio distribution to the control device 10R L tire cooling fan on the rear wheel side. For example, when the front wheel side is 0.7, the wind speed setting for each of the front, rear, left and right tires is set individually so that the rear wheel side is 0.3. By setting the wind speed of the ratio setting unit 7, temperature management by wind speed control for each tire can be performed.
  • Ratio set by the ratio setting unit 7, for example, the control apparatus 10F L of the front side of the tire cooling fan 0.7, the control device 10R L tire cooling fan on the rear wheel side is assumed to be 0.3.
  • Each multiplication unit 16 multiplies the ratio set value by the vehicle speed set value from each dynamometer control device 6, and each PI calculation unit 17 generates a predetermined speed signal.
  • the speed signal is input to the subtracting unit 19 via the terminal a of the switch 15.
  • the subtraction unit 19 calculates the difference between the detected speed of the tire cooling fan 11 detected through the speed detection unit 18 and the speed signal, and controls the tire cooling fan 11 with the inverter 20 so that the difference becomes zero.
  • the wind speed is sent at a ratio such that the rear wheel side is 0.3 with respect to the front wheel side 0.7. That is, as shown in FIG. 3, when the vehicle speed set value is n, the front wheel side wind speed is w1, and the rear wheel side wind speed is w2. Tire cooling control equivalent to that during running is performed.
  • the switch 15 is switched to the terminal b side.
  • the tire temperature during driving is detected by each thermometer 12 and a temperature detection value which is a difference between the detected temperature and the temperature setting Tset is obtained in the subtractor 13.
  • the temperature signal generated by the PI calculator 14 is a terminal.
  • the result is input to each subtraction unit 19 through b.
  • This temperature setting Tset can be set for each tire cooling fan.
  • Each subtractor 19 calculates the difference between the detected speed of the tire cooling fan 11 detected via the speed detector 18 and the temperature signal, and controls the tire cooling fan 11 with the inverter 20 so that this difference becomes zero. .
  • the ratio setting of the wind speed of the tire cooling fan is set to a different setting value only on the front and rear sides of the vehicle under test. It can be a set value.

Abstract

It has been found that, in cases of evaluating fuel consumption by mounting a vehicle to be tested on a chassis dynamometer, the management of vehicle conditions and also the management of tire temperature are important in setting load conditions appropriately. In order to manage tire temperature, a tire cooling fan control device (10) (10FL, 10RL, 10FR, 10RR) is provided. The tire cooling fan control device is constituted by, for example, a ratio setting unit (7), a tire cooling fan (11), and an inverter (20) that controls the tire cooling fan. A speed signal is generated by multiplying a vehicle speed setting value from a dynamometer control device (6) by the ratio setting of the wind speed to the vehicle speed, which has been set by the ratio setting unit (7). The temperature of the contact surface between a roller (2) and a tire is managed by controlling the tire cooling fan (11) through the inverter (20) in accordance with a difference between the generated speed signal and the detected speed of the tire cooling fan (the output of a subtracting unit (19)).

Description

シャシダイナモメータにおけるタイヤ冷却制御装置Tire cooling control system for chassis dynamometer
 本発明は、シャシダイナモメータにおけるタイヤ冷却制御装置に係わり、特にタイヤの温度管理を行うためのタイヤ冷却ファンの制御装置に関するものである。 The present invention relates to a tire cooling control device in a chassis dynamometer, and more particularly to a tire cooling fan control device for managing tire temperature.
 車両の燃費試験を行う場合、実路での惰行によって取得したデータに基づき、走行抵抗と等価慣性質量を設定してシャシダイナモメータに与える。シャシダイナモメータは設定されたパラメータに従って車両に対し負荷を与え、JC08などのモード走行を行うことで燃費計測が行われる。その燃費試験では、シャシダイナモメータで走行抵抗と等価慣性質量を実路と同等に再現するために、シャシダイナモメータ上に車両搭載した状態で惰行を行い、惰行時間が実路と同等となるように負荷調整が行われる。 When performing a fuel consumption test on a vehicle, set the running resistance and equivalent inertial mass based on the data acquired by coasting on the actual road and give it to the chassis dynamometer. The chassis dynamometer applies a load to the vehicle according to the set parameters, and performs fuel consumption measurement by performing mode driving such as JC08. In the fuel consumption test, in order to reproduce the running resistance and equivalent inertial mass with the chassis dynamometer equivalent to the actual road, coasting is performed with the vehicle mounted on the chassis dynamometer, and the coasting time is made equal to the actual road. Load adjustment is performed.
 近年、この燃費試験において、車両コンディションの管理と共に、タイヤの温度管理が負荷条件を適切に与える上で重要となっていることが非特許文献によって報告されている。負荷調整を行う際、タイヤの温度状態により影響が発生すると車両へ与える負荷が変動する可能性があり、また、モード走行時もタイヤの温度状態によりタイヤ損失に変化が生じて燃費のばらつき要因になる可能性が生じる。 In recent years, in this fuel consumption test, it has been reported by non-patent literature that the management of the vehicle condition and the temperature management of the tire are important for appropriately giving the load condition. When adjusting the load, the load on the vehicle may fluctuate if there is an effect due to the temperature condition of the tire, and even during mode driving, the tire loss will change due to the temperature condition of the tire, causing variations in fuel consumption. The possibility arises.
 なお、シャシダイナモメータにおいて、エンジン又はタイヤ等に風速を与えることは特許文献1によって公開されている。ただし、特許文献1においては、燃費評価精度の向上を図るためにタイヤの温度管理を行う技術については開示されていない。 Note that, in the chassis dynamometer, giving wind speed to an engine or a tire is disclosed in Patent Document 1. However, Patent Document 1 does not disclose a technique for managing the temperature of the tire in order to improve the fuel efficiency evaluation accuracy.
特開昭62-24126号公報JP-A-62-24126
 出願人は、タイヤの温度管理状態が、燃費試験時の負荷調整を行う際に車両へ与える負荷変動、及びタイヤ損失による燃費のばらつき要因になるか否かの検証試験を行った。 Applicant conducted a verification test to determine whether the temperature management state of the tire would cause a variation in fuel consumption due to load fluctuations applied to the vehicle during load adjustment during the fuel consumption test and tire loss.
 本発明は、検証試験結果によりタイヤの温度管理方法の有無が、シャシダイナモメータへの走行抵抗設定時の惰行走行やモード走行時のタイヤ損失(抵抗)、走行仕事量に及ぼす影響度などを検証し、その結果に基づいてなされたもので、本発明が目的とするところは、燃費評価精度の向上を図るためのシャシダイナモメータにおけるタイヤ冷却制御装置を提供することにある。 The present invention verifies the effects of the presence or absence of a tire temperature management method on coasting travel, tire loss (resistance) during mode travel, and travel work when setting the travel resistance to the chassis dynamometer based on the verification test results The present invention has been made on the basis of the result, and an object of the present invention is to provide a tire cooling control device in a chassis dynamometer for improving the fuel efficiency evaluation accuracy.
 本発明の請求項1は、ローラ上に被試験車両を搭載し、ダイナモメータ制御装置によりタイヤ冷却ファンを介して被試験車両のタイヤとローラ接触部分に冷却風を送出しながら試験を行うシャシダイナモメータにおいて、
 前記被試験車両のタイヤ冷却ファンを制御するインバータ、および車速に対する風速特性が設定される比率設定部を設け、
 比率設定部により設定された比率設定値と車速設定値を乗算して速度信号を生成し、
 生成された速度信号に応じて前記インバータを介してタイヤ冷却ファンを制御するよう構成することを特徴としたものである。
According to a first aspect of the present invention, a chassis dynamometer is provided in which a vehicle under test is mounted on a roller, and a test is performed by sending cooling air to a tire-roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device. In the meter
An inverter for controlling the tire cooling fan of the vehicle under test, and a ratio setting unit for setting a wind speed characteristic with respect to the vehicle speed,
A speed signal is generated by multiplying the ratio setting value set by the ratio setting unit and the vehicle speed setting value,
The tire cooling fan is controlled through the inverter in accordance with the generated speed signal.
 本発明の請求項2は、ローラ上に被試験車両を搭載し、ダイナモメータ制御装置によりタイヤ冷却ファンを介して被試験車両のタイヤとローラ接触部分に冷却風を送出しながら試験を行うシャシダイナモメータにおいて、
 前記被試験車両のタイヤ温度を検出する温度計と、前記タイヤ冷却ファンを制御するインバータを設け、
 前記温度計により検出された検出温度信号と温度設定値の差分に基づき温度信号を生成し、この温度信号に基づき前記インバータを介してタイヤ冷却ファンを制御するよう構成することを特徴としたものである。
According to a second aspect of the present invention, a chassis dynamo is used in which a vehicle under test is mounted on a roller, and a test is performed by sending cooling air to a tire-roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device. In the meter
A thermometer for detecting the tire temperature of the vehicle under test and an inverter for controlling the tire cooling fan;
A temperature signal is generated based on a difference between a detected temperature signal detected by the thermometer and a temperature set value, and the tire cooling fan is controlled via the inverter based on the temperature signal. is there.
 本発明の請求項3は、タイヤ温度を検出する温度計、および温度計により検出された検出温度信号と温度設定の差分に基づき温度信号を生成し、
 生成された温度信号と前記速度信号を切替えるための切替器を設け、切替器により温度信号と速度信号の切替可能に構成することを特徴としたものである。
Claim 3 of the present invention generates a temperature signal based on a thermometer for detecting the tire temperature, and a difference between the detected temperature signal detected by the thermometer and the temperature setting,
A switch for switching the generated temperature signal and the speed signal is provided, and the temperature signal and the speed signal can be switched by the switch.
 本発明の請求項4は、前記比率設定部によって設定される車速に対する風速の比率設定値は、前記被試験車両の前輪側に設置されたタイヤ冷却ファンに対し、後輪側に設置されたタイヤ冷却ファンから送出される風力が弱くなるよう設定することを特徴としたものである。 According to a fourth aspect of the present invention, the ratio setting value of the wind speed to the vehicle speed set by the ratio setting unit is a tire installed on the rear wheel side with respect to a tire cooling fan installed on the front wheel side of the vehicle under test. It is characterized by setting the wind power sent from the cooling fan to be weak.
 本発明の請求項5は、前記比率設定部によって設定される車速に対する風速の比率設定は、前記被試験車両の前後左右の各輪に設置されるタイヤ冷却ファンに対し、それぞれ各別に任意の設定を可能とすることを特徴としたものである。 According to a fifth aspect of the present invention, the ratio of the wind speed to the vehicle speed set by the ratio setting unit is arbitrarily set for each of the tire cooling fans installed on the front, rear, left and right wheels of the vehicle under test. It is characterized by making possible.
 以上のとおり、本発明によれば、タイヤ個々に対する風速制御による温度管理を行うことによってシャシダイナモメータ上で負荷調整を行うときの実路と異なることに伴うタイヤ損失(抵抗)の変化が抑制され、したがって試験時に負荷条件を適切に与えることが出来て実路に近似した燃費試験が可能となり、評価精度の向上が図れるものである。 As described above, according to the present invention, by performing temperature management by wind speed control for each tire, a change in tire loss (resistance) due to a difference from the actual road when performing load adjustment on the chassis dynamometer is suppressed. Therefore, the load condition can be appropriately given during the test, and the fuel consumption test approximated to the actual road becomes possible, and the evaluation accuracy can be improved.
本発明の実施形態を示すタイヤ冷却制御装置の構成図。The block diagram of the tire cooling control apparatus which shows embodiment of this invention. シャシダイナモメータによる試験装置の概略図。1 is a schematic diagram of a test apparatus using a chassis dynamometer. 比率設定による車速-風速特性図。Vehicle speed-wind speed characteristic diagram by ratio setting. 試験結果による前輪タイヤ周辺の車速-風速特性図。Fig. 4 is a vehicle speed-wind speed characteristic diagram around the front tire according to the test results. 試験結果による後輪タイヤ周辺の車速-風速特性図。Fig. 4 is a vehicle speed-wind speed characteristic diagram around the rear tire according to the test results. タイヤ冷却条件による温度比較図。The temperature comparison figure by tire cooling conditions.
 図2はシャシダイナモメータの燃費試験装置の概略構成図を示したものである。1は被試験車両で、車両1の各輪はシャシダイナモメータのローラ2上に載置されており、車両自体は図示省略された拘束装置によって固定される。また、ローラ2は、路上惰行時に取得したデータに基づき、ダイナモメータ制御装置を介して制御される。3は被試験車両1の前面側より風力を送風する車両冷却ファン、11は4輪の各タイヤとローラ2との接触面に風力を送風するタイヤ冷却ファン、5は床面である。なお、図示省略されているが、タイヤ温度を計測するための非接触温度計と、タイヤ周辺風速を計測するための熱線式風速計が車体ボディなどに取り付けられている。 FIG. 2 shows a schematic configuration diagram of a fuel efficiency test apparatus for a chassis dynamometer. Reference numeral 1 denotes a vehicle under test. Each wheel of the vehicle 1 is placed on a roller 2 of a chassis dynamometer, and the vehicle itself is fixed by a restraining device (not shown). Further, the roller 2 is controlled via a dynamometer control device based on data acquired at the time of coasting. Reference numeral 3 denotes a vehicle cooling fan that blows wind force from the front side of the vehicle under test 1, 11 denotes a tire cooling fan that blows wind force to the contact surface between the four tires and the roller 2, and 5 denotes a floor surface. Although not shown, a non-contact thermometer for measuring the tire temperature and a hot-wire anemometer for measuring the tire peripheral wind speed are attached to the body of the vehicle body.
 本発明の説明に先立って、検証試験について説明する。
シャシダイナモメータ上に被試験車両1を搭載した状態で惰行を行い、走行抵抗と等価慣性質量を実路と同等に再現するためには、惰行時間が路上と同等になるよう負荷調整が行われる。試験に当たっては、実路とシャシダイナモメータ上におけるタイヤ周辺風速の比較、及びシャシダイナモメータ走行時のタイヤ温度管理がモード走行に及ぼす影響について試験を行った。
Prior to the description of the present invention, a verification test will be described.
In order to carry out coasting with the vehicle under test 1 mounted on the chassis dynamometer and to reproduce the running resistance and equivalent inertial mass equivalent to the actual road, load adjustment is performed so that the coasting time is equivalent to that on the road. . In the test, a test was conducted to compare the wind speed around the tire on the actual road and on the chassis dynamometer, and the effect of tire temperature management during running on the chassis dynamometer on mode running.
 (1)実路とシャシダイナモメータ上のタイヤ周辺風速の比較について
 図4,図5は、縦軸にタイヤ周辺の風速を、横軸に車速をとったもので、実路とシャシダイナモメータ上でのタイヤ冷却条件の違いによるタイヤ周辺風速の比較結果を示したものである。図4は前輪タイヤ周辺の場合、図5は後輪タイヤ周辺の場合を示している。
(1) Comparison of the wind speed around the tire on the actual road and the chassis dynamometer FIGS. 4 and 5 show the wind speed around the tire on the vertical axis and the vehicle speed on the horizontal axis. The comparison result of the wind speed around the tire due to the difference in tire cooling conditions is shown. 4 shows the case around the front tire, and FIG. 5 shows the case around the rear tire.
 前輪タイヤ周辺風速の比較図である図4において、線イは実路での車速に対する風速を示し、線ロはタイヤ冷却ファン11の風速をローラ2(車速)の速度に追従させた場合(以下これをタイヤ冷却ファン車速追従方式と呼称する)を示したものである。前輪タイヤ周辺風速では、タイヤ冷却ファン車速追従方式が他の冷却方式に比べて実路に似た車速に対する風速結果となっている。
また、図5で示す後輪タイヤ周辺風速の比較では、実路(線イ)での風速は線ロで示すタイヤ冷却ファン車速追従方式の約半分となっている。これは車両ボディの影響を受けているものと考えられる。
一方、シャシダイナモメータ上では、前輪側では近似しているタイヤ冷却ファン車速追従方式も、後輪側では車速比例に相当した風速を出しているため、実路と近似しない結果となっている。
In FIG. 4, which is a comparison diagram of the wind speed around the front tire, the line a indicates the wind speed relative to the vehicle speed on the actual road, and the line b indicates the case where the wind speed of the tire cooling fan 11 follows the speed of the roller 2 (vehicle speed) This is called a tire cooling fan vehicle speed tracking method). In the wind speed around the front tire, the tire cooling fan vehicle speed tracking method has a wind speed result for a vehicle speed similar to the actual road compared to other cooling methods.
Further, in the comparison of the wind speed around the rear tire shown in FIG. 5, the wind speed on the actual road (line A) is about half that of the tire cooling fan vehicle speed tracking method shown by line B. This is considered to be influenced by the vehicle body.
On the other hand, on the chassis dynamometer, the tire cooling fan vehicle speed tracking method that is approximated on the front wheel side also produces a wind speed that is proportional to the vehicle speed on the rear wheel side, and thus does not approximate the actual road.
 (2)モード走行時のタイヤ温度に及ぼすタイヤ冷却条件の影響について
 図6はモード走行時のタイヤ冷却条件の違いによるタイヤ温度の最高値、最低値および平均値の比較結果である。図6ではタイヤ冷却ファン車速追従方式が他の方式と比較して低い結果となっている。これは、タイヤ冷却ファン車速追従方式の場合、他の方式と比較して車速の高速域まで冷却ファンが追従しているために他の方式より冷却が行われていると考えられる。また、JC08モードの最初の300秒のタイヤ温度の瞬時値も、タイヤ冷却ファン車速追従方式とした場合がモードを通して他の方式と比較して低い結果となっていた。
(2) Influence of tire cooling condition on tire temperature during mode running FIG. 6 shows a comparison result of the maximum value, the minimum value and the average value of tire temperature due to the difference in tire cooling conditions during mode running. In FIG. 6, the tire cooling fan vehicle speed tracking method is lower than other methods. In the case of the tire cooling fan vehicle speed tracking method, it is considered that the cooling is performed by the other method because the cooling fan follows the vehicle speed to a higher speed range than the other methods. Also, the instantaneous value of the tire temperature for the first 300 seconds in the JC08 mode was lower in the case of the tire cooling fan vehicle speed tracking method than in other methods throughout the mode.
 なお、タイヤ温度の影響は、車両駆動力(走行抵抗式)のa項に相当するタイヤ単体の転がり抵抗に作用する。ちなみに、タイヤ温度が低い場合より高い方がタイヤ損失は減る。シャシダイナモメータでモード運転する前にはシャシダイナモメータの負荷調整が必要であるが、負荷調整時よりモード運転時の方がタイヤ温度の高い場合はタイヤ損失が減るため燃費が良くなる傾向にある。 It should be noted that the influence of the tire temperature acts on the rolling resistance of the tire corresponding to the item a of the vehicle driving force (running resistance type). By the way, tire loss decreases when the tire temperature is higher than when it is lower. It is necessary to adjust the load of the chassis dynamometer before mode operation with the chassis dynamometer. However, when the tire temperature is higher during mode operation than when adjusting the load, tire loss tends to decrease and fuel consumption tends to improve. .
 上記(1),(2)の他、モード走行時の車両総仕事量に及ぼすタイヤ冷却条件の影響、およびタイヤ冷却条件に対するJC08モード走行仕事量の推計の比較を行った結果、次のA~Dの知見が得られた。 In addition to the above (1) and (2), the effect of tire cooling conditions on the total vehicle workload during mode driving and comparison of estimates of JC08 mode driving workload with respect to tire cooling conditions were compared. Knowledge of D was obtained.
 A.シャシダイナモメータ上のタイヤ周辺の風速は、タイヤ冷却ファンの車速追従方式が実路の風速状況に近似している。ただし、実路では車両ボディの影響から、後輪側が前輪側に比較してタイヤ周辺風速が半減する。このため、実路走行に近づけるためには、後輪の風速設定を前輪とは別に設定できるようにすることが必要である。 A. The wind speed around the tire on the chassis dynamometer is similar to the actual wind speed by the vehicle speed tracking method of the tire cooling fan. However, on the actual road, due to the influence of the vehicle body, the wind speed around the tire on the rear wheel side is halved compared to the front wheel side. For this reason, it is necessary to be able to set the wind speed setting of the rear wheels separately from the front wheels in order to approach real road running.
 B.タイヤ温度は、タイヤ冷却ファン車速追従方式で運転した場合が最も低くなる。これは、高速域までタイヤ冷却ファンが追従するため、他の方式に比べてタイヤに当たる風量が多くなり冷却効果が高いためである。 B. The tire temperature is lowest when the tire cooling fan is driven by the vehicle speed tracking method. This is because the tire cooling fan follows up to a high speed region, so that the amount of air hitting the tire is increased and the cooling effect is high compared to other methods.
 C.タイヤRRC(転がり抵抗係数)を使用してタイヤ損失分を求め、転がり抵抗の中の車両内部伝達ロスの試算をすることができた。 C. The tire loss was obtained using the tire RRC (rolling resistance coefficient), and the vehicle internal transmission loss in the rolling resistance could be estimated.
 D.タイヤ温度が及ぼす転がり抵抗仕事量においては、タイヤ周辺風速が実路相当でタイヤ温度が低い傾向になるタイヤ冷却ファン車速追従方式が、他の方式に比べて大きくなり、シャシダイナモメータ試験におけるタイヤ温度管理の必要性を把握することができた。 D. In terms of the rolling resistance work exerted by the tire temperature, the tire cooling fan vehicle speed tracking method, in which the tire peripheral wind speed is equivalent to the actual road and the tire temperature tends to be low, is larger than other methods, and the tire temperature in the chassis dynamometer test I was able to grasp the necessity of management.
 したがって、本発明はシャシダイナモメータによる燃費評価を高精度に行うには、車両コンディションの管理と共に、タイヤの温度管理が負荷条件を適切に与える上で重要となっていることの把握に基づきなされたものである。 Therefore, the present invention has been made based on the understanding that, in order to accurately evaluate the fuel consumption by the chassis dynamometer, the management of the vehicle condition and the temperature management of the tire are important in appropriately giving the load condition. Is.
 図1はタイヤ冷却ファン車速追従方式に基づく実施例を示したものである。図1は、被試験車両を4WD車としたときの前後輪の各左側のみのタイヤ冷却ファンの制御装置10(10FL,10RL)の構成図を示しているが、右側のタイヤ冷却ファンの制御装置10(10FR,10RR)についても同様に構成されている。よって、左前輪側のタイヤ冷却ファンの制御装置10FLを代表として説明する。 FIG. 1 shows an embodiment based on a tire cooling fan vehicle speed tracking system. FIG. 1 shows a block diagram of a tire cooling fan control device 10 (10F L , 10R L ) only on the left and right of the front and rear wheels when the vehicle under test is a 4WD vehicle. The control device 10 (10F R , 10R R ) is similarly configured. Therefore, describing the control device 10F L tire cooling fan of the left front wheel side as a representative.
 図1において、11はタイヤ冷却ファンで、ローラ2と被試験車両のタイヤとの接触面に対して冷却風を送出する位置に配設される。12は非接触の温度計でタイヤ近辺の車両ボディに取付けられる。13は減算部で、検出温度と温度設定Tsetとの差分が算出される。14はPI演算部で、算出された温度差分に対して比例・積分演算を行って所定の温度信号として出力する。15は切替器で、PI演算部17の出力信号と温度信号(PI演算部14の出力信号)との切り替えを行う。 In FIG. 1, reference numeral 11 denotes a tire cooling fan, which is disposed at a position for sending cooling air to the contact surface between the roller 2 and the tire of the vehicle under test. A non-contact thermometer 12 is attached to the vehicle body near the tire. A subtractor 13 calculates a difference between the detected temperature and the temperature setting Tset. Reference numeral 14 denotes a PI calculation unit which performs a proportional / integral calculation on the calculated temperature difference and outputs it as a predetermined temperature signal. A switch 15 switches between the output signal of the PI calculation unit 17 and the temperature signal (output signal of the PI calculation unit 14).
 16は乗算部で、ダイナモメータ制御装置6よりのモード走行時の車速設定値が入力されており、この乗算部16において車速設定値と比率設定部7の比率設定値の乗算が行われてPI演算部17に入力され、速度信号が生成される。18は速度検出部で、パルスピックアップ等の検出器によってタイヤ冷却ファン11の速度を検出し、減算部19においてPI演算部14で生成された温度信号、又はPI演算部17で生成された速度信号との差分が求められる。 Reference numeral 16 denotes a multiplication unit, to which a vehicle speed set value at the time of mode traveling is input from the dynamometer control device 6, and the multiplication unit 16 multiplies the vehicle speed set value and the ratio set value of the ratio setting unit 7 to perform PI. A speed signal is generated by being input to the calculation unit 17. A speed detection unit 18 detects the speed of the tire cooling fan 11 with a detector such as a pulse pickup, and the temperature signal generated by the PI calculation unit 14 in the subtraction unit 19 or the speed signal generated by the PI calculation unit 17. The difference is obtained.
 20はインバータで、減算部19からの差分に応じた制御信号を生成し、この制御信号に基づいて変調された周波数でタイヤ冷却ファン11の回転数を制御して風力を送出する。そして、これら11~20によってタイヤ冷却ファンの制御装置10(10FL,10RL,10FR,10RR)が構成される。 Reference numeral 20 denotes an inverter that generates a control signal corresponding to the difference from the subtractor 19 and controls the rotation speed of the tire cooling fan 11 at a frequency modulated based on the control signal to send out wind power. These 11 to 20 constitute a tire cooling fan control device 10 (10F L , 10R L , 10F R , 10R R ).
 なお、比率設定部7では、図4,図5の試験結果に基づき風速設定が図3で示すような車速-風速特性となるよう車速に対する風速の比率設定が行われ、前輪側のタイヤ冷却ファンの制御装置10FLと後輪側のタイヤ冷却ファンの制御装置10RLへの比率分配を行う。例えば前輪側を0.7としたとき、後輪側が0.3となるように前後左右の各タイヤに対する風速設定が各個別に設定されるよう関数型な特性となっている。この比率設定部7の風速設定によって、タイヤ個々に対する風速制御による温度管理が可能となる。 The ratio setting unit 7 sets the ratio of the wind speed to the vehicle speed so that the wind speed setting has the vehicle speed-wind speed characteristics as shown in FIG. 3 based on the test results of FIGS. It performs the control device 10F L and the ratio distribution to the control device 10R L tire cooling fan on the rear wheel side. For example, when the front wheel side is 0.7, the wind speed setting for each of the front, rear, left and right tires is set individually so that the rear wheel side is 0.3. By setting the wind speed of the ratio setting unit 7, temperature management by wind speed control for each tire can be performed.
 以上のように構成された本発明の動作を説明する。
前後輪側の各ダイナモメータ制御装置6には、予め実路での惰行によって取得したデータが記憶されおり、この記憶データに基づきダイナモメータ4を介してローラ2を駆動して燃費試験を行う。燃費試験に当たり、被試験車両に対しタイヤの温度条件が把握されているとは限らない。タイヤの温度条件が把握されていないとき、切替器15を予め端子a側に切り替える。
The operation of the present invention configured as described above will be described.
Data acquired in advance by coasting on the actual road is stored in each dynamometer control device 6 on the front and rear wheels side, and the fuel consumption test is performed by driving the roller 2 via the dynamometer 4 based on the stored data. In the fuel consumption test, the temperature condition of the tire is not always known for the vehicle under test. When the temperature condition of the tire is not grasped, the switch 15 is switched to the terminal a side in advance.
 切替器15が端子a側に切り替えられている場合について説明する。
比率設定部7で設定された比率が、例えば前輪側のタイヤ冷却ファンの制御装置10FLが0.7、後輪側のタイヤ冷却ファンの制御装置10RLが0.3であるとする。各乗算部16では、比率設定値と各ダイナモメータ制御装置6からの車速設定値との乗算が行われ、各PI演算部17で所定の速度信号が生成される。速度信号は、切替器15の端子aを介してそれぞれ減算部19に入力される。
A case where the switch 15 is switched to the terminal a side will be described.
Ratio set by the ratio setting unit 7, for example, the control apparatus 10F L of the front side of the tire cooling fan 0.7, the control device 10R L tire cooling fan on the rear wheel side is assumed to be 0.3. Each multiplication unit 16 multiplies the ratio set value by the vehicle speed set value from each dynamometer control device 6, and each PI calculation unit 17 generates a predetermined speed signal. The speed signal is input to the subtracting unit 19 via the terminal a of the switch 15.
 減算部19では、速度検出部18を介して検出されたタイヤ冷却ファン11の検出速度と速度信号との差分を算出し、この差分が0となるようインバータ20でタイヤ冷却ファン11を制御し、この制御により、前輪側0.7に対し後輪側が0.3となる比率で風速が送出される。すなわち、図3で示すように車速設定値がnであったとき、前輪側の風速はw1、後輪側風速はw2となるタイヤ冷却ファン車速追従方式による制御が行われ、実路での惰行走行時と同等のタイヤ冷却制御が行われる。 The subtraction unit 19 calculates the difference between the detected speed of the tire cooling fan 11 detected through the speed detection unit 18 and the speed signal, and controls the tire cooling fan 11 with the inverter 20 so that the difference becomes zero. By this control, the wind speed is sent at a ratio such that the rear wheel side is 0.3 with respect to the front wheel side 0.7. That is, as shown in FIG. 3, when the vehicle speed set value is n, the front wheel side wind speed is w1, and the rear wheel side wind speed is w2. Tire cooling control equivalent to that during running is performed.
 次に、被試験車両の温度条件が把握されている場合について説明する。この場合、切替器15は端子b側に切り替えられる。
運転時のタイヤ温度は、各温度計12によりそれぞれ検出されて減算部13において検出温度と温度設定Tsetとの差分である温度検出値が求められ、PI演算部14で生成された温度信号は端子bを通って各減算部19に入力される。この温度設定Tsetは個々のタイヤ冷却ファンに対し設定可能とする。
各減算部19では、速度検出部18を介して検出されたタイヤ冷却ファン11の検出速度と温度信号との差分を算出し、この差分が0となるようインバータ20でタイヤ冷却ファン11を制御する。
Next, a case where the temperature condition of the vehicle under test is grasped will be described. In this case, the switch 15 is switched to the terminal b side.
The tire temperature during driving is detected by each thermometer 12 and a temperature detection value which is a difference between the detected temperature and the temperature setting Tset is obtained in the subtractor 13. The temperature signal generated by the PI calculator 14 is a terminal. The result is input to each subtraction unit 19 through b. This temperature setting Tset can be set for each tire cooling fan.
Each subtractor 19 calculates the difference between the detected speed of the tire cooling fan 11 detected via the speed detector 18 and the temperature signal, and controls the tire cooling fan 11 with the inverter 20 so that this difference becomes zero. .
 なお、上記ではタイヤ冷却ファンの風速の比率設定を、被試験車両の前後側でのみ異なる設定値としているが、4輪の各輪において車速に対しそれぞれ個別の比率設定、又は左右で車速に対する比率設定値とすることができる。 In the above, the ratio setting of the wind speed of the tire cooling fan is set to a different setting value only on the front and rear sides of the vehicle under test. It can be a set value.
 したがって、本発明によれば、タイヤ個々に対する風速制御による温度管理を行うことにより、シャシダイナモメータ上で負荷調整を行うとき、実路と異なることに伴うタイヤ損失(抵抗)の変化が抑制され、したがって試験時の負荷条件を適切に与えることが可能となり、実路に近似した燃費試験ができ評価精度の向上を図ることができる。 Therefore, according to the present invention, by performing temperature management by wind speed control for each individual tire, when performing load adjustment on the chassis dynamometer, changes in tire loss (resistance) due to differences from the actual road are suppressed, Therefore, it is possible to appropriately give the load condition at the time of the test, and it is possible to perform a fuel consumption test that approximates the actual road and improve the evaluation accuracy.

Claims (5)

  1.  ローラ上に被試験車両を搭載し、ダイナモメータ制御装置によりタイヤ冷却ファンを介して被試験車両のタイヤとローラ接触部分に冷却風を送出しながら試験を行うシャシダイナモメータにおいて、
     前記被試験車両のタイヤ冷却ファンを制御するインバータ、および車速に対する風速特性が設定される比率設定部を設け、
     比率設定部により設定された比率設定値と車速設定値を乗算して速度信号を生成し、
     生成された速度信号に応じて前記インバータを介してタイヤ冷却ファンを制御するよう構成するシャシダイナモメータにおけるタイヤ冷却制御装置。
    In a chassis dynamometer that mounts a vehicle under test on a roller and performs a test while sending cooling air to the tire and roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device,
    An inverter for controlling the tire cooling fan of the vehicle under test, and a ratio setting unit for setting a wind speed characteristic with respect to the vehicle speed,
    A speed signal is generated by multiplying the ratio setting value set by the ratio setting unit and the vehicle speed setting value,
    A tire cooling control device in a chassis dynamometer configured to control a tire cooling fan via the inverter in accordance with a generated speed signal.
  2.  ローラ上に被試験車両を搭載し、ダイナモメータ制御装置によりタイヤ冷却ファンを介して被試験車両のタイヤとローラ接触部分に冷却風を送出しながら試験を行うシャシダイナモメータにおいて、
     前記被試験車両のタイヤ温度を検出する温度計と、前記タイヤ冷却ファンを制御するインバータを設け、
     前記温度計により検出された検出温度信号と温度設定値の差分に基づき温度信号を生成し、この温度信号に基づき前記インバータを介してタイヤ冷却ファンを制御するよう構成するシャシダイナモメータにおけるタイヤ冷却制御装置。
    In a chassis dynamometer that mounts a vehicle under test on a roller and performs a test while sending cooling air to the tire and roller contact portion of the vehicle under test via a tire cooling fan by a dynamometer control device,
    A thermometer for detecting the tire temperature of the vehicle under test and an inverter for controlling the tire cooling fan;
    Tire cooling control in a chassis dynamometer configured to generate a temperature signal based on a difference between a detected temperature signal detected by the thermometer and a temperature set value, and to control a tire cooling fan via the inverter based on the temperature signal apparatus.
  3.  タイヤ温度を検出する温度計、および温度計により検出された検出温度信号と温度設定の差分に基づき温度信号を生成し、
     生成された温度信号と前記速度信号を切替えるための切替器を設け、切替器により温度信号と速度信号の切替可能に構成する請求項1記載のシャシダイナモメータにおけるタイヤ冷却制御装置。
    A thermometer that detects the tire temperature, and a temperature signal based on the difference between the temperature setting and the detected temperature signal detected by the thermometer,
    The tire cooling control device for a chassis dynamometer according to claim 1, wherein a switch for switching between the generated temperature signal and the speed signal is provided, and the switch can switch between the temperature signal and the speed signal.
  4.  前記比率設定部によって設定される車速に対する風速の比率設定値は、前記被試験車両の前輪側に設置されたタイヤ冷却ファンに対し、後輪側に設置されたタイヤ冷却ファンから送出される風力が弱くなるよう設定する請求項1又は3記載のシャシダイナモメータにおけるタイヤ冷却制御装置。 The ratio setting value of the wind speed with respect to the vehicle speed set by the ratio setting unit is that the wind force sent from the tire cooling fan installed on the rear wheel side is the wind power sent from the tire cooling fan installed on the front wheel side of the vehicle under test. The tire cooling control device for a chassis dynamometer according to claim 1 or 3, wherein the tire cooling control device is set to be weak.
  5.  前記比率設定部によって設定される車速に対する風速の比率設定は、
     前記被試験車両の前後左右の各輪に設置されるタイヤ冷却ファンに対し、それぞれ各別に任意の設定を可能とする請求項1又は3又は4に記載のシャシダイナモメータにおけるタイヤ冷却制御装置。
    The ratio setting of the wind speed to the vehicle speed set by the ratio setting unit is as follows:
    The tire cooling control device for a chassis dynamometer according to claim 1, 3 or 4, wherein an arbitrary setting can be made for each of tire cooling fans installed on front, rear, left and right wheels of the vehicle under test.
PCT/JP2015/064276 2014-05-20 2015-05-19 Tire cooling control device in chassis dynamometer WO2015178362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167035104A KR101758142B1 (en) 2014-05-20 2015-05-19 Tire cooling control device in chassis dynamometer
CN201580025764.9A CN106415233B (en) 2014-05-20 2015-05-19 Tire cool control device in chassis dynamometer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014104582 2014-05-20
JP2014-104582 2014-05-20
JP2015-100713 2015-05-18
JP2015100713A JP6027184B2 (en) 2014-05-20 2015-05-18 Tire cooling control system for chassis dynamometer

Publications (1)

Publication Number Publication Date
WO2015178362A1 true WO2015178362A1 (en) 2015-11-26

Family

ID=54554031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064276 WO2015178362A1 (en) 2014-05-20 2015-05-19 Tire cooling control device in chassis dynamometer

Country Status (4)

Country Link
JP (1) JP6027184B2 (en)
KR (1) KR101758142B1 (en)
CN (1) CN106415233B (en)
WO (1) WO2015178362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017485A1 (en) * 2018-07-18 2020-01-23 株式会社堀場製作所 Vehicle testing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837491B2 (en) * 1976-08-30 1983-08-16 クレイトン マニユフアクチユアリング カンパニ− Inertia and road load simulator
JPH08152380A (en) * 1994-11-30 1996-06-11 Hitachi Ltd Pit cover for chassis dynamometer
JP2001289741A (en) * 2000-04-10 2001-10-19 Toyo Eng Works Ltd Traveling test apparatus for test self-advancing vehicle
JP4176406B2 (en) * 2002-07-16 2008-11-05 株式会社堀場製作所 Automobile running test system, auto exhaust gas measurement system, and simulation mode selection program
JP2009133631A (en) * 2007-11-28 2009-06-18 Bridgestone Corp Durability test method of tire drum

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224126A (en) 1985-07-24 1987-02-02 Hitachi Ltd Wind velocity controller of cooling fan for chasis dynamometer
JP5494812B2 (en) * 2010-09-28 2014-05-21 トヨタ自動車株式会社 Tire temperature control device
KR101383443B1 (en) * 2013-04-30 2014-04-08 주식회사 현대케피코 Cooling system for chassis dynamometer and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837491B2 (en) * 1976-08-30 1983-08-16 クレイトン マニユフアクチユアリング カンパニ− Inertia and road load simulator
JPH08152380A (en) * 1994-11-30 1996-06-11 Hitachi Ltd Pit cover for chassis dynamometer
JP2001289741A (en) * 2000-04-10 2001-10-19 Toyo Eng Works Ltd Traveling test apparatus for test self-advancing vehicle
JP4176406B2 (en) * 2002-07-16 2008-11-05 株式会社堀場製作所 Automobile running test system, auto exhaust gas measurement system, and simulation mode selection program
JP2009133631A (en) * 2007-11-28 2009-06-18 Bridgestone Corp Durability test method of tire drum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOYA NAKAJO ET AL.: "Factors Influencing Driving Force Characteristic on a 4WD Chassis Dynamometer", GAKUJUTSU KOENKAI MAEZURISHU, NO.98-08, 22 October 2008 (2008-10-22), pages 1 - 6 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017485A1 (en) * 2018-07-18 2020-01-23 株式会社堀場製作所 Vehicle testing device
JPWO2020017485A1 (en) * 2018-07-18 2021-08-02 株式会社堀場製作所 Vehicle test equipment
EP3825675A4 (en) * 2018-07-18 2022-05-04 Horiba, Ltd. Vehicle testing device
US11519823B2 (en) 2018-07-18 2022-12-06 Horiba, Ltd. Vehicle testing device with adjustable, side cooling device
JP7324201B2 (en) 2018-07-18 2023-08-09 株式会社堀場製作所 vehicle test equipment

Also Published As

Publication number Publication date
KR101758142B1 (en) 2017-07-14
JP2016001173A (en) 2016-01-07
KR20170002647A (en) 2017-01-06
JP6027184B2 (en) 2016-11-16
CN106415233A (en) 2017-02-15
CN106415233B (en) 2018-07-20

Similar Documents

Publication Publication Date Title
JP5103066B2 (en) Vehicle road surface state estimating device
CN102582625B (en) Linear and non-linear identification of the longitudinal tire-road friction coefficient
US9409453B2 (en) Tire state judging device
JP5776731B2 (en) Drivetrain testing system
CN109489991B (en) Method and system for calculating opening degree of accelerator pedal in electric vehicle performance test
WO2011099436A1 (en) Running-resistance control device
JP6263771B2 (en) Vehicle drive battery deterioration determination device
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
CN106461507B (en) Vehicle testing device and vehicle testing method
JP6027184B2 (en) Tire cooling control system for chassis dynamometer
CN101963519B (en) Road test-simulated standard-state fuel consumption detection method based on bench test
JP5875078B2 (en) Tire evaluation method and tire evaluation system
JP5722144B2 (en) Vehicle test equipment
KR102029296B1 (en) System and method for detecting rough road using wheel speed sensor of vehicle
JP6036115B2 (en) Vehicle traction control device and vehicle traction control method
JP2010078384A (en) Chassis dynamometer for 4wd vehicle
WO2015186616A1 (en) Control device for chassis dynamometer
JP5914374B2 (en) Automatic train driving device
JP2016001173A5 (en)
JP5812229B1 (en) Chassis dynamometer controller
KR101884206B1 (en) Apparatus for estimating tire inflation pressure and method for the same
Valkovski et al. Surface Noise Monitoring and Analysis During Chassis Dynamometer Test
JP2005265417A (en) Control method of dynamometer
KR20170066992A (en) Testing apparatus and method for indirect tire pressure monitoring system
JP5391761B2 (en) Vehicle testing apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035104

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15795870

Country of ref document: EP

Kind code of ref document: A1