WO2015178324A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO2015178324A1
WO2015178324A1 PCT/JP2015/064121 JP2015064121W WO2015178324A1 WO 2015178324 A1 WO2015178324 A1 WO 2015178324A1 JP 2015064121 W JP2015064121 W JP 2015064121W WO 2015178324 A1 WO2015178324 A1 WO 2015178324A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
diaphragm
base member
pressure sensor
pressure
Prior art date
Application number
PCT/JP2015/064121
Other languages
French (fr)
Japanese (ja)
Inventor
正人 若原
Original Assignee
株式会社シミウス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シミウス filed Critical 株式会社シミウス
Priority to JP2016521083A priority Critical patent/JP6392863B2/en
Publication of WO2015178324A1 publication Critical patent/WO2015178324A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the present invention relates to a pressure sensor, and more particularly to a pressure sensor that includes an optical fiber and optically detects pressure.
  • An optical pressure sensor using an optical fiber having an FBG (Fiber Bragg Grating) portion is used for measuring the fluid physical quantity.
  • This type of optical pressure sensor requires no wiring for measurement and power supply like a pressure sensor using an electric strain gauge, and it is necessary to make a hole in the model in order to place the wiring inside the model. In addition, a large number of sensors can be easily arranged on the model surface.
  • the optical pressure sensor has, for example, a configuration in which an FBG portion is fixed to a diaphragm with an adhesive as disclosed in Patent Document 1.
  • a change in pressure in the diaphragm is converted into a change in strain (stress), and the strain is detected as a change in wavelength of reflected light in the FBG section.
  • an optical fiber having an FBG portion is arranged on a through hole of a base film so that a more minute pressure change can be detected, and the diaphragm is covered so as to cover the through hole in a state of contacting the optical fiber.
  • a configuration in which is arranged is disclosed.
  • the base film since the base film has flexibility, it is possible to arrange a pressure sensor on an arbitrary surface such as a curved surface.
  • the optical pressure sensor as described above, it is generally possible to detect more minute pressure fluctuations by increasing the diameter of the diaphragm.
  • the diaphragm is adjusted to the applied pressure.
  • the region where the shift amount of the Bragg wavelength in the FBG portion changes linearly with respect to the pressure becomes narrow.
  • the measurable pressure range (dynamic range) becomes small.
  • the present invention has been made in view of the above-described problems of the prior art, and has high measurement reproducibility and can detect a minute pressure change, that is, a minute pressure change can be detected. It is an object of the present invention to provide a small pressure sensor and a pressure sensor with a high reaction speed capable of detecting a minute pressure change.
  • the pressure sensor according to the present invention includes an optical fiber, a base member, and a diaphragm.
  • the optical fiber includes an FBG (Fiber Bragg Grating) section.
  • the base member has an open end on one surface.
  • An optical fiber to which tension is applied is fixed to the base member so as to cross the open end.
  • the base member has rigidity that is not deformed by the tension.
  • the outer periphery of the diaphragm is supported at the open end in a state where the optical fiber is disposed between the diaphragm and the base member and in a state where the diaphragm is in contact with the optical fiber.
  • transformation of a diaphragm is arrange
  • the base member since the base member has rigidity that does not deform due to the tension applied to the optical fiber, the diaphragm is deformed in a short term or a long term, and the tension of the optical fiber is released. There is nothing. As a result, stable measurement reproducibility can be ensured.
  • the opening width (opening area) of the opening end is increased. Therefore, the measurement sensitivity of pressure fluctuation can be improved and the dynamic range can be increased. As a result, a small and highly sensitive pressure sensor can be realized.
  • the length of the optical fiber movable according to the deformation of the diaphragm is shorter than the opening width of the opening end of the base member at the portion where the optical fiber crosses, the opening width (opening area) of the opening end is reduced.
  • the reaction rate with respect to pressure fluctuation can be improved.
  • a pressure sensor with high sensitivity and high reaction speed can be realized.
  • the above-mentioned fulcrum is formed by the end of the groove part deeper than the fixing position of the optical fiber provided in the base member in a state of extending toward the outside of the opening end along the arrangement direction of the optical fiber in plan view.
  • the length of the optical fiber movable in accordance with the deformation of the diaphragm is longer than the opening width of the opening end of the base member at the portion where the optical fiber crosses.
  • the above-mentioned fulcrum can be constituted by the tip of a projecting portion that extends toward the inside of the opening end in a state in which the fulcrum is in contact with the optical fiber in a plan view.
  • the length of the optical fiber that can move according to the deformation of the diaphragm is shorter than the opening width of the opening end of the base member at the portion where the optical fiber crosses.
  • the diaphragm further includes a transmission part that concentrates the stress generated in the diaphragm on a specific part of the optical fiber according to the applied pressure, and a configuration in which the diaphragm abuts on the optical fiber through the transmission part is adopted. can do. According to this configuration, since the stress generated in the diaphragm is concentrated on a specific portion of the optical fiber fixed to the base member, the optical fiber can be distorted even with a minute pressure. As a result, it is possible to detect a smaller change in pressure applied to the diaphragm.
  • the base member can be made of metal, ceramic or glass.
  • the diaphragm can be formed of a resin film.
  • the optical fiber may be configured to be fixed to the base member while being accommodated in a groove provided on one surface of the base member.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a pressure sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing an example of a pressure sensor in one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a pressure sensor in one embodiment of the present invention.
  • 4 (a) and 4 (b) are diagrams showing the effect of the pressure sensor in one embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram illustrating another example of a pressure sensor according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing another example of the pressure sensor in one embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the pressure sensor in one embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of the pressure sensor 1 in the present embodiment.
  • FIG. 2 is a schematic plan view showing an example of the pressure sensor 1 in the present embodiment.
  • FIG. 3 is a schematic cross-sectional view taken along the line AA shown in FIG.
  • the pressure sensor 1 includes a base member 11, an optical fiber 12, and a diaphragm 13. 1 and 2, only the outer shape of the diaphragm 13 is indicated by a broken line in order to show the internal structure.
  • the base member 11 has a form in which a circular through hole 15 is formed at the center of a pupil-shaped plate member having a thickness larger than the diameter of the optical fiber 12. The ends are exposed on both surfaces of the base member 11.
  • the groove part 16 which accommodates the optical fiber 12 is formed in the one surface (here upper surface) of the base member 11 along a longitudinal direction.
  • the groove portions 16 provided at portions facing each other with the through hole 15 interposed therebetween are arranged in the same straight line.
  • Each groove 16 is provided with a portion having a width slightly larger than the diameter of the optical fiber 12 and a wide portion 17 having a width wider than the width. It is not essential to provide the wide portion 17.
  • a deep groove portion 19 having a deep groove is provided in a portion having a predetermined length from the through hole 15.
  • the deep groove portion 19 is a through groove (slit).
  • the entire groove portion 16 from the through hole 15 to the end portion on the through hole 15 side of the wide portion 17 is the deep groove portion 19, but the end of the deep groove portion 19 is the through hole 15 of the wide portion 17. It can also be arranged closer to the through hole 15 than the side end.
  • the optical fiber 12 is accommodated in the groove 16 in a state of crossing the through hole 15 and is fixed to the base member 11 in a state where a tension (pre-tension) is applied.
  • the fixing method is not particularly limited, in this embodiment, the optical fiber 12 is fixed to the base member 11 with an ultraviolet curable adhesive filled in the wide portion 17.
  • the wide portion 17 not only the wide portion 17 but also the entire groove portion 16 (hereinafter referred to as the shallow groove portion 20) excluding the deep groove portion 19 is filled with the adhesive. In FIGS. 1 to 3, the adhesive is not shown.
  • the shallow groove portion 20 has a uniform depth that is about the same as the diameter of the optical fiber 12. Further, the wide portion 17 is formed slightly deeper than the shallow groove portion 20 as shown in FIG. Thereby, in the wide part 17, an adhesive agent can be made to go around also to the downward side of the optical fiber 12.
  • FIG. The bottom surface of the shallow groove portion 20 is formed in parallel with the top surface and the bottom surface of the base member 11, and the optical fiber 12 is fixed in contact with the bottom surface of the shallow groove portion 20, thereby fixing the optical fiber 12 to the top surface of the base member 11. And in the same plane parallel to the lower surface. Note that the bottom surface of the shallow groove portion 20 can be formed of a curved surface that matches the outer periphery of the optical fiber 12.
  • the base member 11 has a rigidity that does not deform in a short term and a long term due to the tension applied to the optical fiber 12.
  • the material of the base member 11 is not particularly limited. For example, it can be made of metal, ceramic or glass. Here, the base member 11 is made of metal.
  • the optical fiber 12 includes an FBG (Fiber-Bragg-Grating) unit 18 having a specific Bragg wavelength.
  • the length of the FBG portion 18 may be longer than the diameter of the through hole 15 or may be shorter than the diameter of the through hole 15.
  • the FBG portion 18 only needs to be at least partially disposed in the portion of the optical fiber 12 that is fixed to the base member 11 on both sides.
  • the optical fiber 12 is fixed to the base member 11 over the entire wide portion 17 and the shallow groove portion 20. Therefore, in this embodiment, the portion of the optical fiber 12 whose both sides are fixed to the base member 11 extends from the end portion on the through hole 15 side of one wide portion 17 to the end portion on the through hole 15 side of the other wide portion 17. Become the part between.
  • the FBG portion 18 is configured to have a length of about 3 of the diameter of the through hole 15 and is disposed at the center of the through hole 15 in plan view. .
  • the FBG portion 18 is expressed by black painting.
  • the FBG unit 18 reflects light having a wavelength defined by the Bragg wavelength.
  • the FBG unit 18 is composed of a plurality of diffraction gratings arranged at a predetermined interval in the core of the optical fiber, and the Bragg wavelength is proportional to the product of the refractive index of the optical fiber and the arrangement interval of the diffraction gratings. Therefore, when the stress acts on the FBG part 18 and the interval between the diffraction gratings constituting the FBG part 18 increases, the wavelength of light reflected by the FBG part 18 increases.
  • the wavelength of light reflected by the FBG portion 18 becomes small.
  • the change in wavelength is acquired by a light source and a measuring instrument connected to one end of the optical fiber 12.
  • the Bragg wavelength of the FBG unit 18 of each pressure sensor 1 is set to a different wavelength. Thereby, the reflection position of reflected light can be easily distinguished based on the wavelength of reflected light.
  • the diaphragm 13 has a pupil-shaped outer shape slightly smaller than the outer shape of the base member 11 in plan view, and covers the wide portion 17 and the shallow groove portion 20.
  • the diaphragm 13 has a function of converting a change in pressure applied to the diaphragm 13 into a change in strain (stress).
  • the diaphragm 13 can be made of a flexible material (for example, a resin film).
  • the diaphragm 13 is made of a polyimide film.
  • a fixing method between the diaphragm 13 and the base member 11 is not particularly limited. For example, it can be fixed with an ultraviolet curable adhesive.
  • the diaphragm 13 includes a transmission unit 14.
  • the transmission unit 14 has a function of concentrating stress generated in the diaphragm 13 on a specific portion of the optical fiber 12 according to the pressure applied to the diaphragm 13.
  • the transmission unit 14 is fixed to the diaphragm 13, and the diaphragm 13 is in contact with the optical fiber 12 through the transmission unit 14.
  • the fixing can be realized by an ultraviolet curable adhesive.
  • the transmission unit 14 is not fixed to the optical fiber 12.
  • the transmission part 14 is comprised by the cylindrical body arrange
  • the transmission unit 14 makes point contact with the optical fiber 12 to concentrate stress generated in the diaphragm 13 on the portion of the optical fiber 12 located at the center of the through hole 15.
  • a small piece of an optical fiber having the same outer diameter as that of the optical fiber 12 is used as the transmission unit 14.
  • the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is not the side wall (open end) of the through-hole 15 but the deep groove 19. Become the end.
  • 4 (a) and 4 (b) are diagrams showing effects obtained by adopting such a configuration.
  • the horizontal axis corresponds to the pressure applied to the diaphragm 13.
  • the vertical axis corresponds to the shift amount of the Bragg wavelength.
  • FIG. 4 (a) is a diagram showing the pressure dependence of the Bragg wavelength shift when the diameter of the diaphragm 13 (opening diameter of the through hole 15) is 6 mm, 10 mm, and 14 mm.
  • the deep groove portion 19 is not provided, and the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is the side wall portion of the through hole 15.
  • the shift amount of the Bragg wavelength increases in proportion to the increase in pressure applied to the diaphragm 13.
  • the opening diameters are 10 mm and 14 mm, the inclination is increased as compared with the case where the opening diameter is 6 mm, and a smaller pressure fluctuation can be detected.
  • the slope is different between the region where the pressure is relatively low and the region where the pressure is relatively high, and the region between these regions, and the region where the shift amount of the Bragg wavelength changes linearly with respect to the pressure is narrow. It has become. That is, when the opening diameter of the through-hole 15 is increased, the measurement sensitivity is improved, but it can be understood that the dynamic range of pressure at which the measurement can be performed with the improved sensitivity is narrowed.
  • FIG. 4B is a diagram showing the pressure dependence of the Bragg wavelength shift amount when the length of the deep groove portion 19 along the longitudinal direction is set to 0 mm, 1 mm, and 3 mm.
  • the opening diameter of the through hole 15 is 6 mm.
  • the inclination increases as the length of the deep groove portion 19 is increased. Therefore, if the length of the deep groove portion 19 is increased, a more minute pressure fluctuation can be detected. Further, when the length of the deep groove portion 19 is increased, the linearity is not lost as in the case where the diameter of the diaphragm 13 is increased. That is, by increasing the length of the deep groove portion 19, it is possible to improve the pressure fluctuation measurement sensitivity without increasing the opening diameter of the through hole 15. In addition, the dynamic range can be increased. Further, since it is not necessary to increase the opening diameter of the through hole 15, it is possible to realize a small and highly sensitive pressure sensor 1.
  • the pressure sensor 1 is provided with a sheet member 21 having a rigidity lower than that of the base member 11 on a contact surface with the measurement object (here, the lower surface side of the base member 11).
  • a resin material having a lower rigidity (having flexibility) than a metal such as an ultraviolet curable adhesive or a sealant can be used.
  • the base member 11 since the base member 11 has rigidity that does not deform due to the tension applied to the optical fiber 12, the diaphragm 13 is deformed in the short term or in the long term, and the tension of the optical fiber 12 is released. It is never done. As a result, stable measurement reproducibility can be ensured.
  • the length of the optical fiber 12 movable according to the deformation of the diaphragm 13 is longer than the opening diameter of the through hole 15 at the portion where the optical fiber 12 crosses, the opening diameter (opening area) of the through hole 15 is increased.
  • the measurement sensitivity of pressure fluctuation can be improved without doing so.
  • the dynamic range can be increased. As a result, a small and highly sensitive pressure sensor can be realized.
  • the pressure sensor 1 does not measure the distortion of the diaphragm 13 but measures the distortion (stress) that is amplified and transmitted by the transmission unit 14 according to the distortion of the diaphragm 13. Therefore, since the stress generated in the diaphragm 13 is concentrated on a specific portion of the optical fiber 12 fixed to the base member 11, the optical fiber 12 can be distorted even with a minute pressure. As a result, a minute pressure change applied to the diaphragm 13 can be detected.
  • the pressure sensor 1 can be attached relatively easily even if the measurement target surface is a curved surface. Even when pasted on a curved surface in this way, the positional relationship between the base member 11 and the optical fiber 12 (FBG portion 18) does not change as in the conventional configuration using a flexible base film. The magnitude of the tension applied to the optical fiber 12 does not change. Therefore, unlike the conventional pressure sensor using a flexible base film, the situation where the output value of the pressure sensor differs depending on the attachment position does not occur.
  • the sheet member 21 is disposed, even if vibration or deformation occurs on the measurement target surface, it is possible to suppress the vibration or deformation from being transmitted to the diaphragm 13 or the FBG unit 18. Can be prevented.
  • the pressure sensor 1 since it can measure from low pressure to high pressure with the same structure, for example, when measuring pressure in a reduced model
  • the pressure sensor having the same structure can be used when the pressure is measured in the real model.
  • the diameter of the through-hole 15 can be about 6 mm
  • the diameter of the cylindrical body which is the transmission part 14 can be about 0.15 mm.
  • the width and thickness of the base member 11 can be designed arbitrarily.
  • what is necessary is just to make the dimension of each part into a constant multiple when measuring a high pressure.
  • the deep groove portion 19 is a through groove.
  • the deep groove portion 19 is deeper than the fixing position of the optical fiber 12 and may interfere with the movable optical fiber 12 according to the deformation of the diaphragm 13. Any depth can be set as long as there is no depth.
  • the diaphragm 13 and the transmission unit 14 are separate members, but the transmission unit 14 may be formed integrally with the diaphragm 13. In addition, it is not essential to include the transmission unit 14, and a configuration in which the optical fiber 12 directly contacts the diaphragm 13 without including the transmission unit 14 may be employed.
  • the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is arranged outside the through hole 15 along the arrangement direction of the optical fiber 12 in plan view.
  • the length of the movable optical fiber 12 is increased according to the deformation of the diaphragm 13, and as a result, the response speed of the diaphragm 13 to the pressure fluctuation is reduced. Resulting in. From the viewpoint of increasing the response speed, it is preferable to reduce the opening diameter of the through hole 15. However, as can be understood from FIG. 4A, if the opening diameter of the through hole 15 is reduced, the measurement sensitivity is lowered.
  • FIG. 5 is a schematic configuration diagram showing an example of the overall configuration of the pressure sensor 2 in the present embodiment.
  • FIG. 6 is a schematic plan view showing an example of the pressure sensor 2 in the present embodiment.
  • FIG. 7 is a schematic cross-sectional view along the line BB shown in FIG.
  • the pressure sensor 2 is different from the configuration of the pressure sensor 1 in that the deep groove portion 19 is not provided and the protrusion portion 22 is provided.
  • the other configuration is the same as that of the pressure sensor 1, and the same reference numerals are given to the components that exhibit the same effects as the pressure sensor 1.
  • FIGS. 5 and 6 only the outer shape of the diaphragm 13 is indicated by a broken line.
  • the projecting portion 22 is arranged so as to extend toward the inside of the through hole 15 in contact with the optical fiber 12 along the arrangement direction of the optical fiber 12 in plan view.
  • the protruding portion 22 is configured integrally with the base member 11, and the upper surface of the protruding portion 22 is configured to be flush with the bottom surface of the groove portion 16. Further, the lower surface of the protrusion 22 is configured to be flush with the lower surface of the base member 11.
  • the width in the direction perpendicular to the protrusion direction is the same as the width of the groove 16.
  • the optical fiber 12 is fixed to the upper surface of the protrusion 22. Such fixing can be performed, for example, with an ultraviolet curable adhesive.
  • the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is not the side wall (opening end) of the through-hole 15 but the protrusion 22. Become the tip.
  • the optical fiber 12 is rapidly deformed according to the deformation of the diaphragm 13.
  • the response of the Bragg wavelength shift to 13 deformations can be improved.
  • the opening diameter (opening area) of the through hole 15 is not reduced, the measurement sensitivity due to the reduction of the diaphragm 13 does not occur. As a result, it is possible to realize a pressure sensor with high sensitivity and high reaction speed.
  • the shape of the through hole 15 is circular as a particularly preferable form, but the shape of the through hole may be polygonal.
  • the base member 11 may be configured to include a concave portion whose bottom surface is closed instead of the through hole 15.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

In this pressure sensor, an optical fiber has an FBG section and a base member has an open end on one side. The optical fiber is affixed to the base member under tension so as to traverse the open end thereof. The base member exhibits rigidity so as not to be deformed by said tension. The outer edge of a diaphragm is supported in the aforementioned open end with the optical fiber placed between the base member and the diaphragm so as to be in contact with the diaphragm. A fulcrum that determines the length of the optical fiber that can move in accordance with deformation of the diaphragm is located in the traversing part of the optical fiber but outside the abovementioned open end.

Description

圧力センサPressure sensor
 本発明は、圧力センサに関し、特に、光ファイバを備え光学的に圧力を検知する圧力センサに関する。 The present invention relates to a pressure sensor, and more particularly to a pressure sensor that includes an optical fiber and optically detects pressure.
 従来、自動車、船舶、航空機等の設計では、物体の表面に作用する空気圧や水圧等の流体物理量を把握することが求められている。このような流体物理量を把握するためにシミュレーションが多用されている。また、シミュレーションの精度向上や妥当性の確認を目的として、縮小モデル(例えば、1/100モデル)や実寸モデルを使用した風洞実験によるモデル表面における空気圧の測定や、水槽実験によるモデル表面の水圧の測定が実施されている。 Conventionally, in the design of automobiles, ships, airplanes, etc., it is required to grasp the physical quantity of fluid such as air pressure and water pressure acting on the surface of an object. Simulations are often used to grasp such fluid physical quantities. In addition, for the purpose of improving the accuracy of simulation and confirming its validity, measurement of air pressure on the model surface by a wind tunnel experiment using a reduced model (for example, 1/100 model) or an actual size model, and the water pressure of the model surface by a tank experiment Measurements are being carried out.
 このような流体物理量の測定に、FBG(Fiber Bragg Grating)部を備える光ファイバを利用した光式圧力センサが使用されている。この種の光式圧力センサは、電気式の歪みゲージを使用した圧力センサのような計測及び給電のための配線が不要であり、モデル内部に配線を配置するためにモデルに穴をあける必要がなく、モデル表面に多数のセンサを容易に配置することができるという特徴を有している。 An optical pressure sensor using an optical fiber having an FBG (Fiber Bragg Grating) portion is used for measuring the fluid physical quantity. This type of optical pressure sensor requires no wiring for measurement and power supply like a pressure sensor using an electric strain gauge, and it is necessary to make a hole in the model in order to place the wiring inside the model. In addition, a large number of sensors can be easily arranged on the model surface.
 光式圧力センサは、例えば、特許文献1が開示するように、FBG部が接着剤によりダイヤフラムに固定された構成を有している。この構成では、ダイヤフラムにおいて圧力の変化が歪み(応力)の変化に変換され、当該歪みがFBG部における反射光の波長変化として検出される。 The optical pressure sensor has, for example, a configuration in which an FBG portion is fixed to a diaphragm with an adhesive as disclosed in Patent Document 1. In this configuration, a change in pressure in the diaphragm is converted into a change in strain (stress), and the strain is detected as a change in wavelength of reflected light in the FBG section.
 また、特許文献2は、より微小な圧力変化を検知できるように、ベースフィルムの貫通孔上にFBG部を備える光ファイバを配置し、当該光ファイバに当接する状態で貫通孔を覆うようにダイヤフラムを配置した構成を開示している。また、この構成では、ベースフィルムが可撓性を有しているため、曲面等の任意の面に圧力センサを配置することが可能になっている。 Further, in Patent Document 2, an optical fiber having an FBG portion is arranged on a through hole of a base film so that a more minute pressure change can be detected, and the diaphragm is covered so as to cover the through hole in a state of contacting the optical fiber. A configuration in which is arranged is disclosed. Moreover, in this structure, since the base film has flexibility, it is possible to arrange a pressure sensor on an arbitrary surface such as a curved surface.
特開2002-098604号公報JP 2002-098604 A 特開2008-070357号公報JP 2008-070357 A
 FBG部を備える光ファイバにより歪みを安定的に計測するためには、光ファイバに張力を安定して付与し続ける必要がある。しかしながら、特許文献1のように、ダイヤフラムに光ファイバを直接固定する構成では、光ファイバに付与された張力により短期的又は長期的にダイヤフラムが変形して光ファイバの張力が開放されるため、十分な測定再現性を得られないという問題がある。 In order to stably measure strain with an optical fiber including an FBG section, it is necessary to stably apply tension to the optical fiber. However, in the configuration in which the optical fiber is directly fixed to the diaphragm as in Patent Document 1, the diaphragm is deformed in a short or long term due to the tension applied to the optical fiber, and the tension of the optical fiber is released. There is a problem that it is not possible to obtain accurate measurement reproducibility.
 このような問題は、高剛性で変形することのないダイヤフラムを使用することで解消することができるとも思える。しかしながら、そのような対応では、微小な圧力変化でダイヤフラムが変形することがないため、微小な圧力変化を検出することは不可能である。 It seems that such a problem can be solved by using a highly rigid diaphragm that does not deform. However, in such a correspondence, since the diaphragm is not deformed by a minute pressure change, it is impossible to detect the minute pressure change.
 また、特許文献2が開示する構成によれば、光ファイバが、ベースフィルムの貫通孔上に配置され、当該貫通孔上でダイヤフラムと接触しているため、ダイヤフラムの微小な歪み変化を検出することはできる。しかしながら、光ファイバを保持するベース部材がフィルム状であるため、特許文献1と同様、十分な測定再現性を得られないという問題がある。このような問題は、ベースフィルムを金属等の高剛性材料で構成した場合でも、ベースフィルムが可撓性を有している以上、光ファイバに付与された張力により短期的又は長期的にベースフィルムが変形し、十分な測定再現性を得られないという問題がある。 Moreover, according to the structure which patent document 2 discloses, since the optical fiber is arrange | positioned on the through-hole of a base film, and is contacting with the diaphragm on the said through-hole, it detects the micro distortion change of a diaphragm. I can. However, since the base member that holds the optical fiber is in the form of a film, there is a problem that sufficient measurement reproducibility cannot be obtained as in Patent Document 1. Even if the base film is made of a high-rigidity material such as a metal, the problem is that the base film is short-term or long-term due to the tension applied to the optical fiber as long as the base film has flexibility. Is deformed, and there is a problem that sufficient measurement reproducibility cannot be obtained.
 一方、上述のような光式圧力センサでは、一般に、ダイヤフラムの径を大きくすることで、より微小な圧力変動を検知することが可能になる。しかしながら、例えば、特許文献2が開示する構成のように、微小な圧力変動検知のために、ダイヤフラムの厚さが薄くなっている場合には、ダイヤフラム径を大きくすると、ダイヤフラムは付与された圧力に応じて偏って変形するようになる。この場合、FBG部におけるブラッグ波長のシフト量が圧力に対して線形に変化する領域が狭くなる。その結果、計測可能な圧力範囲(ダイナミックレンジ)が小さくなってしまう。 On the other hand, in the optical pressure sensor as described above, it is generally possible to detect more minute pressure fluctuations by increasing the diameter of the diaphragm. However, for example, as in the configuration disclosed in Patent Document 2, in the case where the thickness of the diaphragm is thin for detection of minute pressure fluctuations, if the diameter of the diaphragm is increased, the diaphragm is adjusted to the applied pressure. Correspondingly, it will be deformed unevenly. In this case, the region where the shift amount of the Bragg wavelength in the FBG portion changes linearly with respect to the pressure becomes narrow. As a result, the measurable pressure range (dynamic range) becomes small.
 また、特許文献2の構成において、ダイヤフラムの径を大きくすると、ダイヤフラムの変形に応じて可動する光ファイバの部分(貫通孔を横断する光ファイバの部分)が長くなる。この場合、ダイヤフラムの変形に対するFGB部の変形の応答速度が遅くなってしまう。応答速度を高めるためには、一般に、ダイヤフラム径を小さくすればよいが、ダイヤフラム径を小さくすると、検出可能な圧力変動が大きくなってしまい、微小な圧力変動を検出できなくなってしまう。 In the configuration of Patent Document 2, when the diameter of the diaphragm is increased, the portion of the optical fiber that moves according to the deformation of the diaphragm (the portion of the optical fiber that crosses the through hole) becomes longer. In this case, the response speed of the deformation of the FGB portion with respect to the deformation of the diaphragm becomes slow. In order to increase the response speed, it is generally only necessary to reduce the diaphragm diameter. However, if the diaphragm diameter is reduced, the detectable pressure fluctuation increases, and the minute pressure fluctuation cannot be detected.
 本発明は、このような従来技術の課題を鑑みてなされたものであって、測定再現性がよく、微小な圧力変化を検出可能な高性能圧力センサ、すなわち、微小な圧力変化を検出可能な小型の圧力センサや微小な圧力変化を検出可能な反応速度が速い圧力センサを提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and has high measurement reproducibility and can detect a minute pressure change, that is, a minute pressure change can be detected. It is an object of the present invention to provide a small pressure sensor and a pressure sensor with a high reaction speed capable of detecting a minute pressure change.
 上述の目的を達成するために、本発明は以下の技術的手段を採用している。すなわち、本発明に係る圧力センサは、光ファイバ、ベース部材及びダイヤフラムを備える。光ファイバはFBG(Fiber Bragg Grating)部を備える。ベース部材は、一方面に開口端を備える。ベース部材には、当該開口端を横断する状態で、張力が付与された光ファイバが固定される。ベース部材は、当該張力により変形することのない剛性を有する。ダイヤフラムは、ベース部材との間に光ファイバが配置される状態、かつ光ファイバと当接する状態で開口端に外周が支持される。そして、ダイヤフラムの変形に応じて可動する光ファイバの長さを規定する支点は、光ファイバが横断する部分における開口端とは異なる位置に配置される。すなわち、ダイヤフラムの変形に応じて可動する光ファイバの長さは、光ファイバが横断する部分におけるベース部材の開口端の開口幅と同一ではなく、長い状態あるいは短い状態になっている。 In order to achieve the above object, the present invention employs the following technical means. That is, the pressure sensor according to the present invention includes an optical fiber, a base member, and a diaphragm. The optical fiber includes an FBG (Fiber Bragg Grating) section. The base member has an open end on one surface. An optical fiber to which tension is applied is fixed to the base member so as to cross the open end. The base member has rigidity that is not deformed by the tension. The outer periphery of the diaphragm is supported at the open end in a state where the optical fiber is disposed between the diaphragm and the base member and in a state where the diaphragm is in contact with the optical fiber. And the fulcrum which prescribes | regulates the length of the optical fiber which can move according to a deformation | transformation of a diaphragm is arrange | positioned in the position different from the opening end in the part which an optical fiber crosses. That is, the length of the optical fiber that can move according to the deformation of the diaphragm is not the same as the opening width of the opening end of the base member at the portion where the optical fiber crosses, but is in a long state or a short state.
 本発明の圧力センサによれば、ベース部材は、光ファイバに付与された張力により変形することのない剛性を有するため、短期的又は長期的にダイヤフラムが変形して光ファイバの張力が開放されることがない。その結果、安定した測定再現性を確保することができる。 According to the pressure sensor of the present invention, since the base member has rigidity that does not deform due to the tension applied to the optical fiber, the diaphragm is deformed in a short term or a long term, and the tension of the optical fiber is released. There is nothing. As a result, stable measurement reproducibility can be ensured.
 また、ダイヤフラムの変形に応じて可動する光ファイバの長さが、光ファイバが横断する部分におけるベース部材の開口端の開口幅よりも長い構成では、開口端の開口幅(開口面積)を大きくすることなく、圧力変動の計測感度を向上させることができるとともに、ダイナミックレンジを大きくすることができる。その結果、小型で高感度の圧力センサを実現することができる。 Further, in the configuration in which the length of the optical fiber movable according to the deformation of the diaphragm is longer than the opening width of the opening end of the base member in the portion where the optical fiber crosses, the opening width (opening area) of the opening end is increased. Therefore, the measurement sensitivity of pressure fluctuation can be improved and the dynamic range can be increased. As a result, a small and highly sensitive pressure sensor can be realized.
 一方、ダイヤフラムの変形に応じて可動する光ファイバの長さが、光ファイバが横断する部分におけるベース部材の開口端の開口幅よりも短い構成では、開口端の開口幅(開口面積)を小さくすることなく、圧力変動に対する反応速度を向上させることができる。その結果、高感度で反応速度が速い圧力センサを実現することができる。 On the other hand, when the length of the optical fiber movable according to the deformation of the diaphragm is shorter than the opening width of the opening end of the base member at the portion where the optical fiber crosses, the opening width (opening area) of the opening end is reduced. The reaction rate with respect to pressure fluctuation can be improved. As a result, a pressure sensor with high sensitivity and high reaction speed can be realized.
 さらに、各部の寸法を調整する必要はあるが、同一の構造で、低圧力から高圧力までを計測することができるため、例えば、縮小モデルにおいて圧力を測定する場合と、実物モデルにおいて圧力を測定する場合とで、同一構造の圧力センサを使用することができる。 Furthermore, although it is necessary to adjust the dimensions of each part, it is possible to measure from low pressure to high pressure with the same structure. For example, when measuring pressure in a reduced model and measuring pressure in a real model In this case, a pressure sensor having the same structure can be used.
 例えば、上述の支点は、平面視において、光ファイバの配置方向に沿って、開口端の外側に向けて延びる状態でベース部材に設けられた、光ファイバの固定位置よりも深い溝部の端部により構成することができる。この場合、ダイヤフラムの変形に応じて可動する光ファイバの長さは、光ファイバが横断する部分におけるベース部材の開口端の開口幅よりも長くなる。また、上述の支点は、平面視において、光ファイバの配置方向に沿って、光ファイバに当接する状態で開口端の内側に向けて延びる突出部の先端により構成することができる。この場合、ダイヤフラムの変形に応じて可動する光ファイバの長さは、光ファイバが横断する部分におけるベース部材の開口端の開口幅よりも短くなる。 For example, the above-mentioned fulcrum is formed by the end of the groove part deeper than the fixing position of the optical fiber provided in the base member in a state of extending toward the outside of the opening end along the arrangement direction of the optical fiber in plan view. Can be configured. In this case, the length of the optical fiber movable in accordance with the deformation of the diaphragm is longer than the opening width of the opening end of the base member at the portion where the optical fiber crosses. Moreover, the above-mentioned fulcrum can be constituted by the tip of a projecting portion that extends toward the inside of the opening end in a state in which the fulcrum is in contact with the optical fiber in a plan view. In this case, the length of the optical fiber that can move according to the deformation of the diaphragm is shorter than the opening width of the opening end of the base member at the portion where the optical fiber crosses.
 以上の圧力センサにおいて、ダイヤフラムが、付与された圧力に応じてダイヤフラムに発生する応力を光ファイバの特定部位に集中させる伝達部をさらに備え、当該伝達部を介して光ファイバに当接する構成を採用することができる。この構成によれば、ダイヤフラムに発生する応力が、ベース部材に固定された光ファイバの特定部位に集中するため、微小な圧力であっても光ファイバを歪ませることができる。その結果、ダイヤフラムに付与されるより微小な圧力変化を検出することが可能になる。 In the above pressure sensor, the diaphragm further includes a transmission part that concentrates the stress generated in the diaphragm on a specific part of the optical fiber according to the applied pressure, and a configuration in which the diaphragm abuts on the optical fiber through the transmission part is adopted. can do. According to this configuration, since the stress generated in the diaphragm is concentrated on a specific portion of the optical fiber fixed to the base member, the optical fiber can be distorted even with a minute pressure. As a result, it is possible to detect a smaller change in pressure applied to the diaphragm.
 また、ベース部材は、金属、セラミック又はガラスにより構成することができる。また、ダイヤフラムは、樹脂膜により構成することができる。さらに、光ファイバは、ベース部材の一方面に設けられた溝部に収容された状態で、ベース部材に固定される構成を採用することもできる。 Further, the base member can be made of metal, ceramic or glass. Further, the diaphragm can be formed of a resin film. Further, the optical fiber may be configured to be fixed to the base member while being accommodated in a groove provided on one surface of the base member.
 本発明によれば、測定再現性がよく、微小な圧力変化を検出可能な高性能な圧力センサを実現することができる。 According to the present invention, it is possible to realize a high-performance pressure sensor with good measurement reproducibility and capable of detecting minute pressure changes.
図1は、本発明の一実施形態における圧力センサの一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a pressure sensor according to an embodiment of the present invention. 図2は、本発明の一実施形態における圧力センサの一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of a pressure sensor in one embodiment of the present invention. 図3は、本発明の一実施形態における圧力センサの一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a pressure sensor in one embodiment of the present invention. 図4(a)及び図4(b)は、本発明の一実施形態における圧力センサの効果を示す図である。4 (a) and 4 (b) are diagrams showing the effect of the pressure sensor in one embodiment of the present invention. 図5は、本発明の一実施形態における圧力センサの他の例を示す概略構成図である。FIG. 5 is a schematic configuration diagram illustrating another example of a pressure sensor according to an embodiment of the present invention. 図6は、本発明の一実施形態における圧力センサの他の例を示す概略平面図である。FIG. 6 is a schematic plan view showing another example of the pressure sensor in one embodiment of the present invention. 図7は、本発明の一実施形態における圧力センサの他の例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing another example of the pressure sensor in one embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照しながらより詳細に説明する。図1は、本実施形態における圧力センサ1の全体構成の一例を示す概略構成図である。また、図2は、本実施形態における圧力センサ1の一例を示す概略平面図である。さらに、図3は、図2に示すA-A線に沿う概略断面図である。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of the pressure sensor 1 in the present embodiment. FIG. 2 is a schematic plan view showing an example of the pressure sensor 1 in the present embodiment. FIG. 3 is a schematic cross-sectional view taken along the line AA shown in FIG.
 図1~図3に示すように、圧力センサ1は、ベース部材11、光ファイバ12及びダイヤフラム13を備える。なお、図1及び図2では、内部構造を示すため、ダイヤフラム13は外形のみを破線で示している。 1 to 3, the pressure sensor 1 includes a base member 11, an optical fiber 12, and a diaphragm 13. 1 and 2, only the outer shape of the diaphragm 13 is indicated by a broken line in order to show the internal structure.
 本実施形態では、ベース部材11は、光ファイバ12の直径よりも大きな厚みを有する瞳形状の板材の中央部に円形の貫通孔15が形成された形態を有しており、貫通孔15の開口端がベース部材11の両面に露出している。 In the present embodiment, the base member 11 has a form in which a circular through hole 15 is formed at the center of a pupil-shaped plate member having a thickness larger than the diameter of the optical fiber 12. The ends are exposed on both surfaces of the base member 11.
 ベース部材11の一方面(ここでは、上面)には長手方向に沿って、光ファイバ12を収容する溝部16が形成されている。ベース部材11において貫通孔15を挟んで対向する部分に設けられた溝部16は同一直線状に配置されている。各溝部16には、光ファイバ12の直径よりもわずかに大きい幅の部分と、当該幅よりも広い幅を有する幅広部17が設けられている。なお、幅広部17を設けることは必須ではない。 The groove part 16 which accommodates the optical fiber 12 is formed in the one surface (here upper surface) of the base member 11 along a longitudinal direction. In the base member 11, the groove portions 16 provided at portions facing each other with the through hole 15 interposed therebetween are arranged in the same straight line. Each groove 16 is provided with a portion having a width slightly larger than the diameter of the optical fiber 12 and a wide portion 17 having a width wider than the width. It is not essential to provide the wide portion 17.
 また、幅広部17よりも貫通孔15側の溝部16において、貫通孔15から所定長さの部分には、溝の深さが深い深溝部19が設けられている。特に限定されないが、本実施形態では、深溝部19は貫通溝(スリット)になっている。また、本実施形態では、貫通孔15から幅広部17の貫通孔15側端部までの溝部16の全体が深溝部19になっているが、深溝部19の端は幅広部17の貫通孔15側端部よりも貫通孔15側に配置することもできる。 Further, in the groove portion 16 on the side of the through hole 15 relative to the wide portion 17, a deep groove portion 19 having a deep groove is provided in a portion having a predetermined length from the through hole 15. Although not particularly limited, in the present embodiment, the deep groove portion 19 is a through groove (slit). Further, in the present embodiment, the entire groove portion 16 from the through hole 15 to the end portion on the through hole 15 side of the wide portion 17 is the deep groove portion 19, but the end of the deep groove portion 19 is the through hole 15 of the wide portion 17. It can also be arranged closer to the through hole 15 than the side end.
 光ファイバ12は、貫通孔15を横断する状態で溝部16に収容されるとともに、張力(プリテンション)が付与された状態でベース部材11に固定される。固定方法は特に限定されないが、本実施形態では、幅広部17に充填された紫外線硬化型接着剤により光ファイバ12がベース部材11に固定されている。本実施形態では、幅広部17だけでなく、深溝部19を除く溝部16(以下、浅溝部20という。)の全体にわたって接着剤が充填されている。なお、図1~図3では、接着剤の図示を省略している。 The optical fiber 12 is accommodated in the groove 16 in a state of crossing the through hole 15 and is fixed to the base member 11 in a state where a tension (pre-tension) is applied. Although the fixing method is not particularly limited, in this embodiment, the optical fiber 12 is fixed to the base member 11 with an ultraviolet curable adhesive filled in the wide portion 17. In the present embodiment, not only the wide portion 17 but also the entire groove portion 16 (hereinafter referred to as the shallow groove portion 20) excluding the deep groove portion 19 is filled with the adhesive. In FIGS. 1 to 3, the adhesive is not shown.
 本実施形態では、浅溝部20は、光ファイバ12の直径と同程度の均一な深さを有している。また、幅広部17は、図3に示すように、浅溝部20よりもわずかに深く形成されている。これにより、幅広部17では、光ファイバ12の下方側にも接着剤を回り込ませることができる。浅溝部20の底面は、ベース部材11の上面及び下面と平行に形成されており、光ファイバ12を浅溝部20の底面に接触する状態で固定することで、光ファイバ12をベース部材11の上面及び下面と平行な同一面内に配置することができる。なお、浅溝部20の底面は、光ファイバ12の外周に整合する曲面で構成することもできる。 In the present embodiment, the shallow groove portion 20 has a uniform depth that is about the same as the diameter of the optical fiber 12. Further, the wide portion 17 is formed slightly deeper than the shallow groove portion 20 as shown in FIG. Thereby, in the wide part 17, an adhesive agent can be made to go around also to the downward side of the optical fiber 12. FIG. The bottom surface of the shallow groove portion 20 is formed in parallel with the top surface and the bottom surface of the base member 11, and the optical fiber 12 is fixed in contact with the bottom surface of the shallow groove portion 20, thereby fixing the optical fiber 12 to the top surface of the base member 11. And in the same plane parallel to the lower surface. Note that the bottom surface of the shallow groove portion 20 can be formed of a curved surface that matches the outer periphery of the optical fiber 12.
 ベース部材11は、光ファイバ12に付与された張力により、短期的及び長期的に変形することのない剛性を有する。ベース部材11の材質は、特に限定されない。例えば、金属、セラミック又はガラスにより構成することができる。ここでは、ベース部材11は金属により構成されている。 The base member 11 has a rigidity that does not deform in a short term and a long term due to the tension applied to the optical fiber 12. The material of the base member 11 is not particularly limited. For example, it can be made of metal, ceramic or glass. Here, the base member 11 is made of metal.
 光ファイバ12は、特定のブラッグ波長を有するFBG(Fiber Bragg Grating)部18を備える。FBG部18の長さは、貫通孔15の直径より長くてもよく、また、貫通孔15の直径より短くてもよい。FBG部18は、両側がベース部材11に固定された光ファイバ12の部分に、少なくともその一部が配置されていればよい。上述のように、本実施形態では、光ファイバ12は幅広部17と浅溝部20の全体にわたってベース部材11に固定されている。したがって、本実施形態では、両側がベース部材11に固定されている光ファイバ12の部分は、一方の幅広部17の貫通孔15側端部から他方の幅広部17の貫通孔15側端部までの間の部分になる。なお、特に限定されないが、本実施形態では、FBG部18は、貫通孔15の直径の1/3程度の長さで構成されており、平面視において、貫通孔15の中心に配置されている。図中では、便宜上、FBG部18を黒塗りにより表現している。 The optical fiber 12 includes an FBG (Fiber-Bragg-Grating) unit 18 having a specific Bragg wavelength. The length of the FBG portion 18 may be longer than the diameter of the through hole 15 or may be shorter than the diameter of the through hole 15. The FBG portion 18 only needs to be at least partially disposed in the portion of the optical fiber 12 that is fixed to the base member 11 on both sides. As described above, in this embodiment, the optical fiber 12 is fixed to the base member 11 over the entire wide portion 17 and the shallow groove portion 20. Therefore, in this embodiment, the portion of the optical fiber 12 whose both sides are fixed to the base member 11 extends from the end portion on the through hole 15 side of one wide portion 17 to the end portion on the through hole 15 side of the other wide portion 17. Become the part between. Although not particularly limited, in the present embodiment, the FBG portion 18 is configured to have a length of about 3 of the diameter of the through hole 15 and is disposed at the center of the through hole 15 in plan view. . In the drawing, for convenience, the FBG portion 18 is expressed by black painting.
 公知のように、FBG部18はブラッグ波長により規定される波長の光を反射する。FBG部18は光ファイバのコアに所定の間隔で配置された複数の回折格子により構成され、ブラッグ波長は光ファイバの屈折率と回折格子の配置間隔との積に比例する。したがって、FBG部18に応力が作用してFBG部18を構成する回折格子の間隔が拡がると、FBG部18により反射される光の波長は大きくなる。また、応力によりFBG部18が圧縮されFBG部18を構成する回折格子の間隔が狭まると、FBG部18により反射される光の波長は小さくなる。波長の変化は、光ファイバ12の一端に接続された光源及び計測器により取得される。なお、複数の圧力センサ1を直列接続して使用する場合は、各圧力センサ1のFBG部18のブラッグ波長は互いに異なる波長に設定される。これにより、反射光の波長に基づいて反射光の反射位置を容易に区別することができる。 As is well known, the FBG unit 18 reflects light having a wavelength defined by the Bragg wavelength. The FBG unit 18 is composed of a plurality of diffraction gratings arranged at a predetermined interval in the core of the optical fiber, and the Bragg wavelength is proportional to the product of the refractive index of the optical fiber and the arrangement interval of the diffraction gratings. Therefore, when the stress acts on the FBG part 18 and the interval between the diffraction gratings constituting the FBG part 18 increases, the wavelength of light reflected by the FBG part 18 increases. Further, when the FBG portion 18 is compressed by stress and the interval between the diffraction gratings constituting the FBG portion 18 is narrowed, the wavelength of light reflected by the FBG portion 18 becomes small. The change in wavelength is acquired by a light source and a measuring instrument connected to one end of the optical fiber 12. When using a plurality of pressure sensors 1 connected in series, the Bragg wavelength of the FBG unit 18 of each pressure sensor 1 is set to a different wavelength. Thereby, the reflection position of reflected light can be easily distinguished based on the wavelength of reflected light.
 ダイヤフラム13は、貫通孔15の開口端であるベース部材11の上面に外周が固定支持されている。したがって、光ファイバ12は、ダイヤフラム13とベース部材11との間に配置されることになる。特に限定されないが、本実施形態では、ダイヤフラム13は、平面視において、ベース部材11の外形よりやや小さい瞳形状の外形を有しており、幅広部17や浅溝部20も被覆している。 The outer periphery of the diaphragm 13 is fixedly supported on the upper surface of the base member 11 that is the open end of the through hole 15. Therefore, the optical fiber 12 is disposed between the diaphragm 13 and the base member 11. Although not particularly limited, in the present embodiment, the diaphragm 13 has a pupil-shaped outer shape slightly smaller than the outer shape of the base member 11 in plan view, and covers the wide portion 17 and the shallow groove portion 20.
 ダイヤフラム13は、ダイヤフラム13に付与される圧力の変化を歪み(応力)の変化に変換する機能を有する。ダイヤフラム13は、可撓性を有する材料(例えば、樹脂膜)により構成することができる。特に限定されないが、本実施形態では、ダイヤフラム13は、ポリイミドフィルムにより構成されている。ダイヤフラム13とベース部材11との間の固定方法は特に限定されない。例えば、紫外線硬化型接着剤により固定することができる。 The diaphragm 13 has a function of converting a change in pressure applied to the diaphragm 13 into a change in strain (stress). The diaphragm 13 can be made of a flexible material (for example, a resin film). Although not particularly limited, in the present embodiment, the diaphragm 13 is made of a polyimide film. A fixing method between the diaphragm 13 and the base member 11 is not particularly limited. For example, it can be fixed with an ultraviolet curable adhesive.
 また、特に限定されないが、ダイヤフラム13は伝達部14を備えている。伝達部14は、ダイヤフラム13に付与された圧力に応じてダイヤフラム13に発生する応力を、光ファイバ12の特定部位に集中させる機能を有する。伝達部14は、ダイヤフラム13に固定されており、ダイヤフラム13は伝達部14を介して光ファイバ12に当接している。当該固定は、紫外線硬化型接着剤により実現することができる。また、伝達部14は、光ファイバ12に対しては固定されていない。本実施形態では、伝達部14は、平面視において、貫通孔15の中心に配置された円柱体により構成されている。当該円柱体は、光ファイバ12の配置方向と直交する方向に向けて配置されている。当該伝達部14は、光ファイバ12と点接触することで、ダイヤフラム13に発生する応力を貫通孔15の中心に位置する光ファイバ12の部分に集中させる。なお、本実施形態では、伝達部14として光ファイバ12と同一の外径を有する光ファイバの小片を使用している。 Although not particularly limited, the diaphragm 13 includes a transmission unit 14. The transmission unit 14 has a function of concentrating stress generated in the diaphragm 13 on a specific portion of the optical fiber 12 according to the pressure applied to the diaphragm 13. The transmission unit 14 is fixed to the diaphragm 13, and the diaphragm 13 is in contact with the optical fiber 12 through the transmission unit 14. The fixing can be realized by an ultraviolet curable adhesive. Further, the transmission unit 14 is not fixed to the optical fiber 12. In this embodiment, the transmission part 14 is comprised by the cylindrical body arrange | positioned in the center of the through-hole 15 in planar view. The cylindrical body is arranged in a direction orthogonal to the arrangement direction of the optical fiber 12. The transmission unit 14 makes point contact with the optical fiber 12 to concentrate stress generated in the diaphragm 13 on the portion of the optical fiber 12 located at the center of the through hole 15. In this embodiment, a small piece of an optical fiber having the same outer diameter as that of the optical fiber 12 is used as the transmission unit 14.
 以上のような構成を有する圧力センサ1では、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さを規定する支点は、貫通孔15の側壁部(開口端)ではなく、深溝部19の端部になる。 In the pressure sensor 1 having the above-described configuration, the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is not the side wall (open end) of the through-hole 15 but the deep groove 19. Become the end.
 図4(a)及び図4(b)は、このような構成を採用することにより得られる効果を示す図である。図4(a)及び図4(b)において、横軸はダイヤフラム13に付与される圧力に対応する。縦軸は、ブラッグ波長のシフト量に対応する。 4 (a) and 4 (b) are diagrams showing effects obtained by adopting such a configuration. 4A and 4B, the horizontal axis corresponds to the pressure applied to the diaphragm 13. The vertical axis corresponds to the shift amount of the Bragg wavelength.
 図4(a)は、ダイヤフラム13の径(貫通孔15の開口径)を、6mm、10mm、14mmとした場合のブラッグ波長シフト量の圧力依存性を示す図である。なお、図4(a)では、深溝部19は設けられておらず、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さを規定する支点は貫通孔15の側壁部である。 FIG. 4 (a) is a diagram showing the pressure dependence of the Bragg wavelength shift when the diameter of the diaphragm 13 (opening diameter of the through hole 15) is 6 mm, 10 mm, and 14 mm. In FIG. 4A, the deep groove portion 19 is not provided, and the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is the side wall portion of the through hole 15.
 図4(a)から理解できるように、開口径が6mmである場合、ダイヤフラム13に付与される圧力の増大にほぼ比例してブラッグ波長のシフト量が増大する。開口径が10mm、14mmである場合、開口径が6mmの場合に比べて傾きが増大しており、より微小な圧力変動が検知可能になることが理解できる。しかしながら、圧力が比較的低い領域及び圧力が比較的高い領域と、これらの領域の間の領域とでは、傾きが異なっており、ブラッグ波長のシフト量が圧力に対して線形に変化する領域が狭くなっている。すなわち、貫通孔15の開口径を大きくすると、計測感度は向上するが、その向上した感度で計測を実施できる圧力のダイナミックレンジが狭くなることが理解できる。 As can be understood from FIG. 4A, when the opening diameter is 6 mm, the shift amount of the Bragg wavelength increases in proportion to the increase in pressure applied to the diaphragm 13. It can be understood that when the opening diameters are 10 mm and 14 mm, the inclination is increased as compared with the case where the opening diameter is 6 mm, and a smaller pressure fluctuation can be detected. However, the slope is different between the region where the pressure is relatively low and the region where the pressure is relatively high, and the region between these regions, and the region where the shift amount of the Bragg wavelength changes linearly with respect to the pressure is narrow. It has become. That is, when the opening diameter of the through-hole 15 is increased, the measurement sensitivity is improved, but it can be understood that the dynamic range of pressure at which the measurement can be performed with the improved sensitivity is narrowed.
 また、図4(b)は、長手方向に沿う深溝部19の長さを、0mm、1mm、3mmとした場合のブラッグ波長シフト量の圧力依存性を示す図である。なお、図4(b)では、貫通孔15の開口径は6mmである。 FIG. 4B is a diagram showing the pressure dependence of the Bragg wavelength shift amount when the length of the deep groove portion 19 along the longitudinal direction is set to 0 mm, 1 mm, and 3 mm. In FIG. 4B, the opening diameter of the through hole 15 is 6 mm.
 図4(b)から理解できるように、深溝部19の長さを大きくするにつれて傾きが増大している。したがって、深溝部19の長さを大きくすると、より微小な圧力変動が検知可能になる。また、深溝部19の長さを大きくする場合、ダイヤフラム13の径を大きくする場合のように線形性が失われることがない。すなわち、深溝部19の長さを大きくすることで、貫通孔15の開口径を大きくすることなく、圧力変動の計測感度を向上させることができる。また、ダイナミックレンジを大きくすることができる。また、貫通孔15の開口径を大きくする必要がないため、小型で高感度な圧力センサ1を実現することが可能になる。 As can be understood from FIG. 4B, the inclination increases as the length of the deep groove portion 19 is increased. Therefore, if the length of the deep groove portion 19 is increased, a more minute pressure fluctuation can be detected. Further, when the length of the deep groove portion 19 is increased, the linearity is not lost as in the case where the diameter of the diaphragm 13 is increased. That is, by increasing the length of the deep groove portion 19, it is possible to improve the pressure fluctuation measurement sensitivity without increasing the opening diameter of the through hole 15. In addition, the dynamic range can be increased. Further, since it is not necessary to increase the opening diameter of the through hole 15, it is possible to realize a small and highly sensitive pressure sensor 1.
 なお、計測対象物への圧力センサ1の固定には、接着剤や両面テープ等、公知の任意の手法を採用することができる。特に限定されないが、図3に示すように、圧力センサ1は、計測対象物との接触面(ここでは、ベース部材11の下面側)にベース部材11よりも剛性の低いシート部材21が設けられている。シート部材21の材質として、例えば、紫外線硬化型接着剤や封止剤のような金属等と比較して剛性の低い(柔軟性を有する)樹脂系材料を使用することができる。 For fixing the pressure sensor 1 to the measurement object, any known method such as an adhesive or a double-sided tape can be employed. Although not particularly limited, as shown in FIG. 3, the pressure sensor 1 is provided with a sheet member 21 having a rigidity lower than that of the base member 11 on a contact surface with the measurement object (here, the lower surface side of the base member 11). ing. As the material of the sheet member 21, for example, a resin material having a lower rigidity (having flexibility) than a metal such as an ultraviolet curable adhesive or a sealant can be used.
 以上の圧力センサ1では、ベース部材11は、光ファイバ12に付与された張力により変形することのない剛性を有するため、短期的又は長期的にダイヤフラム13が変形して光ファイバ12の張力が開放されることもない。その結果、安定した測定再現性を確保することができる。 In the pressure sensor 1 described above, since the base member 11 has rigidity that does not deform due to the tension applied to the optical fiber 12, the diaphragm 13 is deformed in the short term or in the long term, and the tension of the optical fiber 12 is released. It is never done. As a result, stable measurement reproducibility can be ensured.
 また、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さが、光ファイバ12が横断する部分における貫通孔15の開口径よりも長いため、貫通孔15の開口径(開口面積)を大きくすることなく、圧力変動の計測感度を向上させることができる。また、ダイナミックレンジを大きくすることもできる。その結果、小型で高感度の圧力センサを実現することができる。 In addition, since the length of the optical fiber 12 movable according to the deformation of the diaphragm 13 is longer than the opening diameter of the through hole 15 at the portion where the optical fiber 12 crosses, the opening diameter (opening area) of the through hole 15 is increased. The measurement sensitivity of pressure fluctuation can be improved without doing so. In addition, the dynamic range can be increased. As a result, a small and highly sensitive pressure sensor can be realized.
 さらに、圧力センサ1では、ダイヤフラム13の歪みを計測するのではなく、ダイヤフラム13の歪みに応じて伝達部14により増幅して伝えられた歪み(応力)を計測する。したがって、ダイヤフラム13に発生する応力が、ベース部材11に固定された光ファイバ12の特定部位に集中するため、微小な圧力であっても光ファイバ12を歪ませることができる。その結果、ダイヤフラム13に付与される微小な圧力変化を検出することが可能になる。 Furthermore, the pressure sensor 1 does not measure the distortion of the diaphragm 13 but measures the distortion (stress) that is amplified and transmitted by the transmission unit 14 according to the distortion of the diaphragm 13. Therefore, since the stress generated in the diaphragm 13 is concentrated on a specific portion of the optical fiber 12 fixed to the base member 11, the optical fiber 12 can be distorted even with a minute pressure. As a result, a minute pressure change applied to the diaphragm 13 can be detected.
 加えて、ベース部材11の下面は比較的柔らかいシート部材21で覆われているため、計測対象面が曲面であっても圧力センサ1を比較的容易に貼り付けることができる。このように曲面に貼り付けた場合であっても、可撓性のベースフィルムを使用した従来構成のように、ベース部材11と光ファイバ12(FBG部18)との位置関係が変わることがなく、光ファイバ12に付与された張力の大きさも変化しない。そのため、可撓性のベースフィルムを使用した従来構成の圧力センサのように、貼り付け位置に依存して圧力センサの出力値が異なるという状況は発生しない。 In addition, since the lower surface of the base member 11 is covered with a relatively soft sheet member 21, the pressure sensor 1 can be attached relatively easily even if the measurement target surface is a curved surface. Even when pasted on a curved surface in this way, the positional relationship between the base member 11 and the optical fiber 12 (FBG portion 18) does not change as in the conventional configuration using a flexible base film. The magnitude of the tension applied to the optical fiber 12 does not change. Therefore, unlike the conventional pressure sensor using a flexible base film, the situation where the output value of the pressure sensor differs depending on the attachment position does not occur.
 また、シート部材21を配置しているため、計測対象面に振動や変形が生じた場合でも、ダイヤフラム13やFBG部18にその振動や変形が伝わることを抑制できるため、圧力センサ1の誤計測を防止することができる。 In addition, since the sheet member 21 is disposed, even if vibration or deformation occurs on the measurement target surface, it is possible to suppress the vibration or deformation from being transmitted to the diaphragm 13 or the FBG unit 18. Can be prevented.
 また、各部の寸法を調整する必要はあるが、圧力センサ1によれば、同一の構造で、低圧力から高圧力までを計測することができるため、例えば、縮小モデルにおいて圧力を測定する場合と、実物モデルにおいて圧力を測定する場合とで、同一構造の圧力センサを使用することができる。例えば、低圧力を測定する場合、貫通孔15の直径を6mm程度、伝達部14である円筒体の直径を0.15mm程度にすることができる。ベース部材11の幅や厚さは、任意に設計することができる。また、高圧力を測定する場合、各部の寸法を定数倍にすればよい。 Moreover, although it is necessary to adjust the dimension of each part, according to the pressure sensor 1, since it can measure from low pressure to high pressure with the same structure, for example, when measuring pressure in a reduced model The pressure sensor having the same structure can be used when the pressure is measured in the real model. For example, when measuring a low pressure, the diameter of the through-hole 15 can be about 6 mm, and the diameter of the cylindrical body which is the transmission part 14 can be about 0.15 mm. The width and thickness of the base member 11 can be designed arbitrarily. Moreover, what is necessary is just to make the dimension of each part into a constant multiple when measuring a high pressure.
 なお、上述の例では、深溝部19を貫通溝としたが、深溝部19は、光ファイバ12の固定位置よりも深く、かつダイヤフラム13の変形に応じて可動する光ファイバ12と干渉することがない深さであれば任意の深さに設定することができる。 In the above example, the deep groove portion 19 is a through groove. However, the deep groove portion 19 is deeper than the fixing position of the optical fiber 12 and may interfere with the movable optical fiber 12 according to the deformation of the diaphragm 13. Any depth can be set as long as there is no depth.
 また、上述の例では、ダイヤフラム13と伝達部14とを個別の部材としているが、伝達部14はダイヤフラム13と一体に形成されてもよい。また、伝達部14を備えることも必須ではなく、伝達部14を備えず、光ファイバ12がダイヤフラム13に直接当接する構成を採用することもできる。 In the above example, the diaphragm 13 and the transmission unit 14 are separate members, but the transmission unit 14 may be formed integrally with the diaphragm 13. In addition, it is not essential to include the transmission unit 14, and a configuration in which the optical fiber 12 directly contacts the diaphragm 13 without including the transmission unit 14 may be employed.
 以上では、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さを規定する支点が、平面視において、光ファイバ12の配置方向に沿って、貫通孔15の外側に配置された構成とした。しかしながら、上述の構成では、計測感度及びダイナミックレンジを向上させることはできるが、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さが長くなる結果、ダイヤフラム13の圧力変動に対する応答速度が低下してしまう。応答速度を高める観点では、貫通孔15の開口径を小さくすることが好ましい。しかしながら、図4(a)から理解できるように、貫通孔15の開口径を小さくすると計測感度が低下してしまう。 In the above, the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is arranged outside the through hole 15 along the arrangement direction of the optical fiber 12 in plan view. . However, although the measurement sensitivity and the dynamic range can be improved with the above-described configuration, the length of the movable optical fiber 12 is increased according to the deformation of the diaphragm 13, and as a result, the response speed of the diaphragm 13 to the pressure fluctuation is reduced. Resulting in. From the viewpoint of increasing the response speed, it is preferable to reduce the opening diameter of the through hole 15. However, as can be understood from FIG. 4A, if the opening diameter of the through hole 15 is reduced, the measurement sensitivity is lowered.
 そこで、以下では、計測感度の低下を招くことなく応答速度を向上させることができる構成について説明する。図5は、本実施形態における圧力センサ2の全体構成の一例を示す概略構成図である。また、図6は、本実施形態における圧力センサ2の一例を示す概略平面図である。さらに、図7は、図6に示すB-B線に沿う概略断面図である。 Therefore, in the following, a configuration capable of improving the response speed without causing a decrease in measurement sensitivity will be described. FIG. 5 is a schematic configuration diagram showing an example of the overall configuration of the pressure sensor 2 in the present embodiment. FIG. 6 is a schematic plan view showing an example of the pressure sensor 2 in the present embodiment. Further, FIG. 7 is a schematic cross-sectional view along the line BB shown in FIG.
 図5~図7に示すように、圧力センサ2は、深溝部19を備えない点、及び突出部22を備える点で圧力センサ1の構成と異なる。他の構成は圧力センサ1と同一であり、圧力センサ1と同様の作用効果を奏する構成要素には同一の符号を付している。なお、図5及び図6では、ダイヤフラム13は外形のみを破線で示している。 As shown in FIGS. 5 to 7, the pressure sensor 2 is different from the configuration of the pressure sensor 1 in that the deep groove portion 19 is not provided and the protrusion portion 22 is provided. The other configuration is the same as that of the pressure sensor 1, and the same reference numerals are given to the components that exhibit the same effects as the pressure sensor 1. In FIGS. 5 and 6, only the outer shape of the diaphragm 13 is indicated by a broken line.
 図5~図7に示すように、突出部22は、平面視において、光ファイバ12の配置方向に沿って、光ファイバ12に当接する状態で貫通孔15の内側に向けて延びるように配置される。本実施形態では、突出部22は、ベース部材11と一体に構成されており、突出部22の上面は溝部16の底面と面一に構成される。また、突出部22の下面はベース部材11の下面と面一に構成される。突出部22において、突出方向に垂直な方向の幅は、溝部16の幅と同一になっている。突出部22上において、光ファイバ12は突出部22の上面に固定されている。このような固定は、例えば、紫外線硬化型接着剤で行うことができる。 As shown in FIGS. 5 to 7, the projecting portion 22 is arranged so as to extend toward the inside of the through hole 15 in contact with the optical fiber 12 along the arrangement direction of the optical fiber 12 in plan view. The In the present embodiment, the protruding portion 22 is configured integrally with the base member 11, and the upper surface of the protruding portion 22 is configured to be flush with the bottom surface of the groove portion 16. Further, the lower surface of the protrusion 22 is configured to be flush with the lower surface of the base member 11. In the protrusion 22, the width in the direction perpendicular to the protrusion direction is the same as the width of the groove 16. On the protrusion 22, the optical fiber 12 is fixed to the upper surface of the protrusion 22. Such fixing can be performed, for example, with an ultraviolet curable adhesive.
 以上のような構成を有する圧力センサ2では、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さを規定する支点は、貫通孔15の側壁部(開口端)ではなく、突出部22の先端になる。 In the pressure sensor 2 having the above-described configuration, the fulcrum that defines the length of the optical fiber 12 that can move according to the deformation of the diaphragm 13 is not the side wall (opening end) of the through-hole 15 but the protrusion 22. Become the tip.
 このように、ダイヤフラム13の変形に応じて可動する光ファイバ12の長さが貫通孔15の開口径よりも短い構成では、ダイヤフラム13の変形に応じて光ファイバ12が速やかに変形するため、ダイヤフラム13の変形に対するブラッグ波長のシフトの応答性を向上させることができる。また、この構成によれば、貫通孔15の開口径(開口面積)は小さくならないため、ダイヤフラム13の縮小に起因する計測感度の低下が発生しない。その結果、高感度で反応速度が速い圧力センサを実現することが可能になる。 As described above, in the configuration in which the length of the optical fiber 12 that is movable according to the deformation of the diaphragm 13 is shorter than the opening diameter of the through hole 15, the optical fiber 12 is rapidly deformed according to the deformation of the diaphragm 13. The response of the Bragg wavelength shift to 13 deformations can be improved. Further, according to this configuration, since the opening diameter (opening area) of the through hole 15 is not reduced, the measurement sensitivity due to the reduction of the diaphragm 13 does not occur. As a result, it is possible to realize a pressure sensor with high sensitivity and high reaction speed.
 なお、上述した実施形態は本発明の技術的範囲を制限するものではなく、既に記載したもの以外でも、本発明の範囲内で種々の変形や応用が可能である。例えば、上記実施形態では、特に好ましい形態として貫通孔15の形状を円形としたが、貫通孔の形状は多角形であってもよい。また、ベース部材11は貫通孔15に代えて、下面が閉塞された凹部を備える構成であってもよい。 The above-described embodiments do not limit the technical scope of the present invention, and various modifications and applications can be made within the scope of the present invention other than those already described. For example, in the above embodiment, the shape of the through hole 15 is circular as a particularly preferable form, but the shape of the through hole may be polygonal. Further, the base member 11 may be configured to include a concave portion whose bottom surface is closed instead of the through hole 15.
 本発明によれば、測定再現性がよく、微小な圧力変化を検出可能な高性能な圧力センサを実現でき、圧力センサとして有用である。 According to the present invention, it is possible to realize a high-performance pressure sensor with good measurement reproducibility and capable of detecting minute pressure changes, and is useful as a pressure sensor.
 1、2 圧力センサ
 11 ベース部材
 12 光ファイバ
 13 ダイヤフラム
 14 伝達部
 15 貫通孔
 16 溝部
 18 FBG部
 19 深溝部
 20 浅溝部
 22 突出部
DESCRIPTION OF SYMBOLS 1, 2 Pressure sensor 11 Base member 12 Optical fiber 13 Diaphragm 14 Transmission part 15 Through-hole 16 Groove part 18 FBG part 19 Deep groove part 20 Shallow groove part 22 Projection part

Claims (7)

  1.  FBG(Fiber Bragg Grating)部を備える光ファイバと、
     一方面に開口端を備え、当該開口端を横断する状態で、張力が付与された前記光ファイバが固定されるとともに、当該張力により変形することのない剛性を有するベース部材と、
     前記ベース部材との間に前記光ファイバが配置され、かつ前記光ファイバと当接する状態で前記開口端に外周が支持される可撓性のダイヤフラムと、
     前記光ファイバが横断する部分における前記開口端とは異なる位置に配置された、前記ダイヤフラムの変形に応じて可動する光ファイバの長さを規定する支点と、
    を備える圧力センサ。
    An optical fiber including an FBG (Fiber Bragg Grating) section;
    A base member having an opening end on one surface and having the rigidity that is not deformed by the tension while the optical fiber to which the tension is applied is fixed in a state of crossing the opening end,
    A flexible diaphragm in which the optical fiber is disposed between the base member and an outer periphery is supported at the opening end in a state of being in contact with the optical fiber;
    A fulcrum that defines the length of an optical fiber that is movable in response to deformation of the diaphragm, disposed at a position different from the opening end in a portion where the optical fiber crosses;
    A pressure sensor.
  2.  前記支点が、平面視において、前記光ファイバの配置方向に沿って、前記開口端の外側に向けて延びる状態で前記ベース部材に設けられた、前記光ファイバの固定位置よりも深い溝部の端部により構成される、請求項1記載の圧力センサ。 The end portion of the groove portion deeper than the fixing position of the optical fiber provided in the base member in a state where the fulcrum extends toward the outside of the opening end along the arrangement direction of the optical fiber in plan view The pressure sensor according to claim 1, comprising:
  3.  前記支点が、平面視において、前記光ファイバの配置方向に沿って、前記光ファイバに当接する状態で前記開口端の内側に向けて延びる突出部の先端により構成される、請求項1記載の圧力センサ。 2. The pressure according to claim 1, wherein the fulcrum is configured by a distal end of a projecting portion that extends toward the inside of the opening end in a state of contacting the optical fiber along a direction in which the optical fiber is disposed in plan view. Sensor.
  4.  前記ダイヤフラムが、付与された圧力に応じて前記ダイヤフラムに発生する応力を、前記光ファイバの特定部位に集中させる伝達部をさらに備え、当該伝達部を介して前記光ファイバに当接する、請求項1から請求項3のいずれか1項に記載の圧力センサ。 The diaphragm further includes a transmission unit that concentrates stress generated in the diaphragm in response to an applied pressure to a specific portion of the optical fiber, and abuts on the optical fiber via the transmission unit. The pressure sensor according to claim 1.
  5.  前記ベース部材が、金属、セラミック又はガラスにより構成される、請求項1から請求項4のいずれか1項に記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 4, wherein the base member is made of metal, ceramic, or glass.
  6.  前記ダイヤフラムが樹脂膜により構成される、請求項1から請求項5のいずれか1項に記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 5, wherein the diaphragm is made of a resin film.
  7.  前記光ファイバは、前記ベース部材の一方面に設けられた溝部に収容された状態で、前記ベース部材に固定される、請求項1から請求項6のいずれか1項に記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 6, wherein the optical fiber is fixed to the base member in a state of being accommodated in a groove provided on one surface of the base member.
PCT/JP2015/064121 2014-05-22 2015-05-17 Pressure sensor WO2015178324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016521083A JP6392863B2 (en) 2014-05-22 2015-05-17 Pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-106591 2014-05-22
JP2014106591 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178324A1 true WO2015178324A1 (en) 2015-11-26

Family

ID=54553995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064121 WO2015178324A1 (en) 2014-05-22 2015-05-17 Pressure sensor

Country Status (2)

Country Link
JP (1) JP6392863B2 (en)
WO (1) WO2015178324A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239200A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Inner pressure sensor for cylinder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306109A (en) * 1994-05-13 1995-11-21 Hitachi Ltd Pressure sensor for measuring pressure inside optical fiber tube and engine control system using sensor thereof
JP4570222B2 (en) * 2000-09-25 2010-10-27 古河電気工業株式会社 Optical pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239200A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Inner pressure sensor for cylinder

Also Published As

Publication number Publication date
JPWO2015178324A1 (en) 2017-04-20
JP6392863B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6392862B2 (en) Pressure sensor
EP2735855A1 (en) A measuring device for measuring a physical quantity
CN112833809B (en) Fiber grating high-temperature strain gauge and calibration method thereof
JP2009079973A (en) Fbg sensor
KR101238987B1 (en) Pressure gauge
CN105158507A (en) Fiber grating acceleration sensor and manufacturing method thereof
JP2009069154A (en) Length measurement device
JP6301963B2 (en) Strain sensor and installation method of strain sensor
JP6120120B2 (en) High precision load cell with elastic body
US6253625B1 (en) Target flow meters with immersed strain gauges
KR101856310B1 (en) Deflection Bend Sensor
KR20070013734A (en) Acceleration and inclination measurement system based on fiber bragg gratings
JP6864375B2 (en) Fiber optic sensor
WO2012144272A1 (en) Fbg strain sensor
WO2015080222A1 (en) Strain sensor and manufacturing method for strain sensor
CN107367240B (en) Square structure fiber grating reverse differential strain detection sensing device
JP6392863B2 (en) Pressure sensor
JP6736044B2 (en) Strain sensor and jig for mounting the strain sensor
US11835406B2 (en) Optical fiber sensing device having a symmetric optical fiber arrangement
CN113865773B (en) High-sensitivity optical fiber surface plasmon air pressure detector
JP2019141117A (en) Pulse wave sensor
JP2017138209A (en) Driving apparatus and distortion control method
CN103528734A (en) Sensor used for simultaneously measuring load and temperature of flexible rope based on FBGs (fiber bragg gratings)
RU2180100C2 (en) Amplitude fiber-optical converter of mechanical quantities
CN216717286U (en) High temperature strain sensing piece based on Fabry-Perot cavity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795931

Country of ref document: EP

Kind code of ref document: A1