WO2015178131A1 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
WO2015178131A1
WO2015178131A1 PCT/JP2015/061433 JP2015061433W WO2015178131A1 WO 2015178131 A1 WO2015178131 A1 WO 2015178131A1 JP 2015061433 W JP2015061433 W JP 2015061433W WO 2015178131 A1 WO2015178131 A1 WO 2015178131A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
load
supply circuit
low
Prior art date
Application number
PCT/JP2015/061433
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 倫人
鈴木 慎吾
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to CN201580020799.3A priority Critical patent/CN106233597A/en
Priority to DE112015002340.2T priority patent/DE112015002340T5/en
Publication of WO2015178131A1 publication Critical patent/WO2015178131A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a switching power supply.
  • a switching power supply that converts an input voltage and generates an output voltage has been designed and controlled to support a maximum output. That is, in the switching power supply, the power conversion efficiency also fluctuates due to the load variation, and the power conversion efficiency tends to deteriorate particularly as the load is lighter (lower load factor).
  • Patent Document 1 a plurality of DC / DC converters (switching power supplies) are connected in parallel, and the number of DC / DC converters operated in accordance with the load current of the device is controlled. The structure which avoids that a state arises and prevents the fall of power conversion efficiency is disclosed.
  • Patent Document 1 in the case of a power supply device in which a plurality of switching power supplies are connected in parallel, the number of switching power supplies incorporated in the device increases, resulting in a problem that the device is enlarged.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a switching power supply capable of improving power conversion efficiency and preventing the enlargement of the apparatus.
  • a switching power supply controls a switching-type power supply circuit capable of performing a voltage conversion operation that converts an input voltage and generates an output voltage, and controls the voltage conversion operation of the power supply circuit.
  • a control unit that performs the voltage conversion operation of the power supply circuit when the load factor of the power supply circuit is equal to or greater than a predetermined value.
  • control unit causes the voltage conversion operation of the power supply circuit to be executed when the remaining amount of power stored in the power storage device on the output side of the power supply circuit is equal to or less than a predetermined value.
  • the control unit monitors the state of the load target on the output side of the power supply circuit, and when the load target is in an operating state, compared to when the load target is in a non-operating state. Thus, it is preferable to increase the predetermined value of the remaining power storage amount.
  • the switching power supply according to the present invention performs the voltage conversion operation of the power supply circuit while limiting the load factor of the power supply circuit to a predetermined value or more, the power conversion efficiency can be maintained at a high position.
  • the power conversion efficiency is improved by switching the execution / stop of the voltage conversion operation by a single switching power supply, and it is necessary to use a plurality of switching power supplies together in order to avoid the occurrence of a light load state. Absent. Thereby, there exists an effect that power conversion efficiency can be improved and the enlargement of an apparatus can be prevented.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply device to which a DC / DC converter (switching power supply) according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a schematic configuration of the DC / DC converter according to the present embodiment in FIG.
  • FIG. 3 is a flowchart showing the switching process of the voltage conversion operation by the DC / DC converter according to the present embodiment.
  • FIG. 4 is a diagram illustrating an example of the characteristic of the power conversion efficiency with respect to the load factor in the switching power supply.
  • FIG. 5 is a diagram illustrating another example of a schematic configuration of a power supply device to which the switching power supply according to the present embodiment is applied.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply device to which a DC / DC converter (switching power supply) according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a schematic configuration of the DC / DC converter according to the present embodiment in FIG.
  • a power supply device 1 illustrated in FIG. 1 is a device for supplying electric power to a starter motor 4 that starts an engine in a hybrid vehicle, for example.
  • a step-down DC / DC converter 2 will be described as an example of a switching power supply that is applied to the power supply device 1 and converts an input voltage to generate an output voltage.
  • the power supply device 1 includes a DC / DC converter 2, a generator 3, a starter motor 4, a high voltage battery 5, a low voltage battery 6, a high voltage load 7, and a low voltage load. 8 and.
  • the DC / DC converter 2 is a step-down type, and in the example of FIG. 1, a voltage conversion operation for stepping down an input voltage of 48V to an output voltage of 14V can be executed.
  • the DC / DC converter 2 performs the voltage conversion on the electric power input from the high voltage side (the generator 3 or the high voltage battery 5) during the voltage conversion operation.
  • Output to the low voltage side (low voltage battery 6, low voltage load 8, or starter motor 4).
  • the generator 3 obtains electric energy (electric power) from motive energy, and supplies the generated electric power to the DC / DC converter 2, the high-voltage battery 5, and the high-voltage load 7.
  • the high voltage side battery 5 is a power storage device that stores electric power supplied from the generator 3, and supplies the stored electric power to the high voltage side load 7.
  • the high voltage side load 7 is an arbitrary device that is operated by electric power supplied from the generator 3 or the high voltage side battery 5.
  • the low voltage side battery 6 is a power storage device that stores electric power supplied from the generator 3 via the DC / DC converter 2, and supplies the stored electric power to the starter motor 4 and the low voltage side load 8.
  • the low-voltage load 8 is an arbitrary device that operates with electric power supplied from the generator 3 or the low-voltage battery 6.
  • the starter motor 4 is operated by electric power supplied from the generator 3 or the low voltage side battery 6.
  • the DC / DC converter 2 includes a power supply circuit 21 and a control unit 22.
  • the power supply circuit 21 is a voltage conversion circuit that constitutes a switching power supply capable of performing a voltage conversion operation for converting an input voltage and generating an output voltage. Since the power supply circuit 21 can use a known circuit that generates a desired output voltage by controlling on / off of the switching elements among the constituent elements, the detailed description of the internal configuration is omitted. .
  • the control unit 22 controls the voltage conversion operation of the power supply circuit 21. Specifically, the control unit 22 controls the voltage conversion operation by controlling on / off of the switching element of the power supply circuit 21. As shown in FIG. 2, the control unit 22 includes a vehicle operating status (ignition on / off), an engine operating status (engine speed), a generator operating status (generator voltage), a battery status (low voltage side battery 6 Voltage and current), load operation status (load on (operational state) / off (non-operational state)), and other information. The load operation status can be obtained using, for example, communication. Based on the input information, the control unit 22 determines whether or not the voltage conversion operation by the power supply circuit 21 can be performed.
  • the control unit 22 when it is determined that the load factor of the power supply circuit 21 is equal to or greater than a predetermined value based on the input information, the control unit 22 causes the power supply circuit 21 to perform a voltage conversion operation. On the other hand, when determining that the load factor of the power supply circuit 21 is lower than the predetermined value, the control unit 22 switches the power supply circuit 21 to the standby state and does not execute the voltage conversion operation.
  • a specific method for determining that the load factor of the power supply circuit 21 is equal to or greater than a predetermined value by the control unit 22 will be described later with reference to FIG.
  • the control unit 22 is physically configured to include an electronic circuit mainly including a well-known microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an interface. Integrated circuit.
  • the function of the control unit 22 is to load various application programs stored in the ROM into the RAM and execute them by the CPU, thereby operating the various devices of the power supply device 1 under the control of the CPU, and data in the RAM and ROM. This is realized by reading and writing.
  • the control unit 22 may be configured by an analog circuit, and each function of the control unit 22 may be realized by the operation of the analog circuit.
  • FIG. 3 is a flowchart showing the switching process of the voltage conversion operation by the DC / DC converter according to the present embodiment.
  • the process of the flowchart shown in FIG. 3 is performed by the control unit 22 of the DC / DC converter 2 at predetermined intervals, for example.
  • step S01 detection of the state of charge of the low voltage side battery 6 is started.
  • step S01 the process proceeds to step S02.
  • step S02 the DC / DC converter 2 is set to a standby state in which no voltage conversion operation is performed.
  • step S02 the process proceeds to step S03.
  • the control unit 22 can make this determination based on, for example, information on the vehicle operation status input from the vehicle (ignition on / off). If the result of determination in step S03 is that the ignition is on (Yes in step S03), the process proceeds to step S04. On the other hand, if the ignition is off (No in step S03), the process returns to step S02, and the standby state of the DC / DC converter 2 is maintained until the ignition is on.
  • step S04 it is determined whether or not the low-pressure side load 8 is in an operating state (on state).
  • the low-voltage load 8 is an element that is a load target on the output side of the power supply circuit 21 of the DC / DC converter 2.
  • the control unit 22 determines the state of the load target on the output side of the power supply circuit 21 based on, for example, information on the load operation state input from the vehicle (load on (operating state) / off (non-operating state)). It can be performed.
  • step S04 if the low-pressure side load 8 is in the non-operating state (No in step S04), the process proceeds to step S05. If the low-pressure side load 8 is in the operating state (Yes in step S04), the process proceeds to step S06. move on.
  • step S05 it is determined whether or not the state of charge (SOC) of the low voltage side battery 6 exceeds 80% in response to the determination that the low voltage side load 8 is in the non-operating state in step S04.
  • the control unit 22 can calculate the SOC based on, for example, information on the battery state input from the vehicle (the voltage and current of the low-voltage battery 6), and can make this determination using the calculated SOC.
  • the process proceeds to step S07.
  • Step S05 when the SOC of the low voltage side battery 6 exceeds 80% (Yes in Step S05), the process returns to Step S02, and the DC / DC converter 2 stands by until the SOC of the low voltage side battery 6 becomes 80% or less. State is maintained.
  • step S06 it is determined whether or not the state of charge (SOC) of the low voltage side battery 6 exceeds 90% in response to the determination that the low voltage side load 8 is in the operating state in step S04.
  • SOC state of charge
  • Step S05 and S06 are both DC / DC in step S08, which will be described later, when the SOC is equal to or less than a predetermined threshold value (predetermined value), that is, when the low voltage side battery 6 is in a state where there is sufficient power storage. This is a determination condition for executing the voltage conversion operation of the converter 2.
  • step S06 is a determination step that proceeds when the low-voltage side load 8 that is the load target on the output side of the power supply circuit 21 of the DC / DC converter 2 is in an operating state (driving).
  • the DC / DC Part of the electric power supplied from the converter 2 to the low voltage side is also used to drive the low voltage side load 8.
  • step S06 even if the chargeable amount of the low-voltage side battery 6 is relatively small compared to step S05 that proceeds when the low-voltage side load 8 is in a non-operating state (stopped), the low-voltage side battery 6 is considered to be less likely to be overcharged due to excessive power supply.
  • the SOC threshold value of the low-voltage side battery 6 is set to be relatively larger than the threshold value of step S06. In other words, when the low-voltage side load 8 is in an operating state, the SOC threshold value of the low-voltage side battery 6 is increased and increased as compared with a case where the low-voltage side load 8 is in an inoperative state.
  • step S07 it is determined whether or not the generator 3 is generating power.
  • the control part 22 can determine this based on the information (generator voltage) regarding the generator operating condition input, for example from the inside of a vehicle. If the result of determination in step S07 is that the generator 3 is generating power (Yes in step S07), the process proceeds to step S08. On the other hand, when the generator 3 is stopped (No in step S07), the process returns to step S02, and the standby state of the DC / DC converter 2 is maintained until the generator 3 is driven.
  • step S08 the DC / DC converter 2 performs a voltage conversion operation.
  • the electric power generated by the generator 3 is stepped down by the DC / DC converter 2 and supplied to the low voltage side battery 6 to be stored.
  • the low-voltage load 8 is in an operating state, a part of the power output from the DC / DC converter 2 is also supplied to the low-voltage load 8.
  • step S08 the process returns to step S03, and the determination of each condition (steps S03 to S07) for executing the voltage conversion operation is performed again.
  • the voltage conversion operation is continuously executed while each condition is satisfied.
  • the process proceeds to step S02 and the voltage conversion operation is stopped.
  • FIG. 4 is a diagram illustrating an example of the characteristic of the power conversion efficiency with respect to the load factor in the switching power supply.
  • the “load factor” represents the ratio of the current (load current) flowing through the switching power supply to the rated current (A) (or the ratio of the load capacity to the rated output capacity (W)) as a percentage. That is, the state where the load factor is 100% means a state where a rated current flows through the switching power supply.
  • the vertical axis in FIG. 4 indicates the power conversion efficiency ⁇ of the switching power supply.
  • power conversion efficiency represents the efficiency with which input / output power is converted in the switching power supply.
  • the power conversion efficiency ⁇ is more efficient as it approaches 100%, and the internal loss is reduced. Therefore, if the power conversion efficiency is improved, the power supply device can be reduced in size.
  • FIG. 4 shows an example of characteristics relating to the load factor and power conversion efficiency in the switching power supply by a solid line.
  • the lower the load factor the lighter the load
  • the power conversion efficiency ⁇ gradually improves, and as the load factor approaches 100%, the power conversion efficiency ⁇ stabilizes at a high position.
  • the higher the load factor the easier it is to maintain the power conversion efficiency near 100%. That is, as the load current flowing through the DC / DC converter 2 approaches the rated current, the load factor approaches 100%, and the power conversion efficiency can be improved.
  • the load factor is preferably as close to 100% as long as the power conversion efficiency can be maintained in a region close to 100%. In the example of FIG. 4, the load factor only needs to be larger than about 50%, and is preferably larger than about 75%.
  • the power supply device 1 of the present embodiment In order to increase the load current flowing through the DC / DC converter 2 to the rated current, it is necessary to sufficiently consume power on the low voltage side of the power supply device 1.
  • the remaining amount of power stored in the low-voltage side battery 6 is equal to or less than a predetermined value, it is determined that the current used for charging the low-voltage side battery 6 can be expected to the vicinity of the rated current. Then, the voltage conversion operation of the DC / DC converter 2 is executed, current is passed from the high voltage side to the low voltage side, and the low voltage side battery 6 is positively charged by the DC / DC converter 2. As a result, the load factor becomes an operation near 100%, and the power conversion efficiency of the DC / DC converter 2 can be increased.
  • the condition that “the remaining charge amount of the low-voltage side battery 6 is equal to or less than a predetermined value” for executing the voltage conversion operation of the DC / DC converter 2 is “the load factor of the DC / DC converter 2. This is an example of a condition for satisfying that “is greater than or equal to a predetermined value (and thereby maintaining power conversion efficiency at a high position)”.
  • the DC / DC converter 2 of the present embodiment includes a switching-type power supply circuit 21 that can perform a voltage conversion operation that converts an input voltage and generates an output voltage, and a control unit 22 that controls the voltage conversion operation of the power supply circuit 21. .
  • the control unit 22 specifically, when the remaining charge amount of the low-voltage side battery 6 on the output side of the power supply circuit 21 is equal to or less than the predetermined value, 21 voltage conversion operation is executed.
  • the DC / DC converter is focused on when the remaining charge of the low-voltage side battery 6 on the output side of the power supply circuit 21 is equal to or less than a predetermined value, i. Since the voltage conversion operation of the second power supply circuit 21 is executed, the power conversion efficiency of the DC / DC converter 2 can be maintained at a high position, and the power conversion efficiency can be improved. Further, since the power conversion efficiency is improved by switching the execution / stop of the voltage conversion operation by the single DC / DC converter 2, a plurality of units are provided in order to avoid the occurrence of a light load state as in the prior art. It is not necessary to use a DC / DC converter together, and the enlargement of the power supply device 1 can be prevented.
  • the control unit 22 monitors the state of the low-pressure side load 8 that is the load target on the output side of the power supply circuit 21, and when the low-pressure side load 8 is in an operating state. As compared with the case where the low-pressure side load 8 is in the non-operating state, the predetermined value of the remaining amount of power storage is increased.
  • the range of the remaining amount of charge of the low-voltage side battery 6 in which the voltage conversion operation of the DC / DC converter 2 can be executed is expanded.
  • the power supplied from the DC / DC converter 2 to the low-voltage side is used not only for charging the low-voltage battery 6 but also for driving the low-voltage load 8. Is done. For this reason, even if the chargeable amount of the low-voltage side battery 6 is relatively small compared with the case where the low-voltage side load 8 is in the non-operating state, electric power is excessively supplied to the low-voltage side battery 6 and overcharge can occur. The nature is low.
  • the power conversion efficiency is high even if the range of the remaining amount of charge of the low-voltage battery 6 that can execute the voltage conversion operation of the DC / DC converter 2 is expanded. Can be maintained. Thereby, the opportunity to perform the voltage conversion operation of the DC / DC converter 2 can be increased while improving the power conversion efficiency.
  • the step-down DC / DC converter 2 has been described as an example of the switching power supply that converts the input voltage and generates the output voltage.
  • the present invention is not limited to this, and for example, a step-up DC / DC converter may be used. It may be an AC / DC converter.
  • FIG. 5 is a diagram illustrating another example of a schematic configuration of a power supply device to which the switching power supply according to the present embodiment is applied.
  • the power supply device 1a shown in FIG. 5 is different from the power supply device 1 of the above-described embodiment in that the starter motor 4 is disposed on the high voltage side.
  • the DC / DC converter 2 (switching power supply) according to this embodiment can be applied to various devices other than the power supply devices 1 and 1a for supplying power to the starter motor 4 shown in FIGS.
  • the condition that the voltage conversion operation of the DC / DC converter 2 is executed is exemplified by “the remaining charge amount of the low-voltage side battery 6 is not more than a predetermined value”.
  • Other conditions may be used as long as the conditions satisfy the condition that the load factor of 2 is equal to or greater than a predetermined value (and thereby maintain power conversion efficiency at a high position).
  • the load supplied from the DC / DC converter 2 to the load target based on the load operation status of the load target on the output side of the DC / DC converter 2 (low-voltage side load 8 or starter motor 4 in the example of FIG. 1).
  • the operating power is a high efficiency point of the load factor to power conversion efficiency characteristic shown in FIG.
  • the load factor that is the ratio of the load operating power to the rated output capacity of the DC / DC converter 2 is the power conversion efficiency. It is also possible to adopt a configuration in which the voltage conversion operation of the DC / DC converter 2 is executed in the high region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A DC/DC converter (2) working as a switching power supply comprises: a switching type power supply circuit (21) capable of executing a voltage conversion operation for converting an input voltage and generating an output voltage; and a control unit (22) for controlling the voltage conversion operation of the power supply circuit (21). The control unit (22) allows the power supply circuit (21) to execute the voltage conversion operation while the load factor of the power supply circuit (21) is a predetermined value or more. This brings about effects of enabling the power conversion efficiency to be improved and enabling the device to be prevented from increasing in size.

Description

スイッチング電源Switching power supply
 本発明は、スイッチング電源に関する。 The present invention relates to a switching power supply.
 従来、入力電圧を変換し出力電圧を生成するスイッチング電源は、最大出力に対応するための設計及び制御が実施されている。つまり、スイッチング電源は、負荷変動によって電力変換効率も変動し、特に負荷が軽いほど(負荷率が低いほど)電力変換効率が悪化する傾向がある。これに対して、例えば特許文献1には、複数のDC/DCコンバータ(スイッチング電源)を並列接続し、装置の負荷電流に合わせて動作させるDC/DCコンバータの個数を制御することで、軽負荷状態が生じるのを回避して電力変換効率の低下を防止する構成が開示されている。 Conventionally, a switching power supply that converts an input voltage and generates an output voltage has been designed and controlled to support a maximum output. That is, in the switching power supply, the power conversion efficiency also fluctuates due to the load variation, and the power conversion efficiency tends to deteriorate particularly as the load is lighter (lower load factor). On the other hand, for example, in Patent Document 1, a plurality of DC / DC converters (switching power supplies) are connected in parallel, and the number of DC / DC converters operated in accordance with the load current of the device is controlled. The structure which avoids that a state arises and prevents the fall of power conversion efficiency is disclosed.
特開2012-210013号公報JP 2012-210013 A
 しかしながら、特許文献1に記載されるように複数のスイッチング電源を並列接続するする電源装置の場合、装置に組み込まれるスイッチング電源の個数が増えるので、装置が肥大化するという問題があった。 However, as described in Patent Document 1, in the case of a power supply device in which a plurality of switching power supplies are connected in parallel, the number of switching power supplies incorporated in the device increases, resulting in a problem that the device is enlarged.
 本発明は、上記に鑑みてなされたものであって、電力変換効率を向上でき、かつ、装置の肥大化を防止できるスイッチング電源を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a switching power supply capable of improving power conversion efficiency and preventing the enlargement of the apparatus.
 上記の課題を解決するため、本発明に係るスイッチング電源は、入力電圧を変換し出力電圧を生成する電圧変換動作を実行可能なスイッチング方式の電源回路と、前記電源回路の前記電圧変換動作を制御する制御部と、を備え、前記制御部は、前記電源回路の負荷率が所定値以上となる状態のとき、前記電源回路の前記電圧変換動作を実行させることを特徴とする。 In order to solve the above problems, a switching power supply according to the present invention controls a switching-type power supply circuit capable of performing a voltage conversion operation that converts an input voltage and generates an output voltage, and controls the voltage conversion operation of the power supply circuit. A control unit that performs the voltage conversion operation of the power supply circuit when the load factor of the power supply circuit is equal to or greater than a predetermined value.
 また、上記のスイッチング電源において、前記制御部は、前記電源回路の出力側の蓄電装置の蓄電残量が所定値以下のとき、前記電源回路の前記電圧変換動作を実行させることが好ましい。 In the switching power supply described above, it is preferable that the control unit causes the voltage conversion operation of the power supply circuit to be executed when the remaining amount of power stored in the power storage device on the output side of the power supply circuit is equal to or less than a predetermined value.
 また、上記のスイッチング電源において、前記制御部は、前記電源回路の出力側の負荷対象の状態を監視し、前記負荷対象が作動状態の場合には、前記負荷対象が非作動状態の場合に比べて、前記蓄電残量の前記所定値を増加させることが好ましい。 In the above switching power supply, the control unit monitors the state of the load target on the output side of the power supply circuit, and when the load target is in an operating state, compared to when the load target is in a non-operating state. Thus, it is preferable to increase the predetermined value of the remaining power storage amount.
 本発明に係るスイッチング電源は、電源回路の負荷率を所定値以上にできる状態に絞って、電源回路の電圧変換動作を実行するので、電力変換効率を高い位置に維持することができる。また、単一のスイッチング電源による電圧変換動作の実施/停止を切り替えることによって電力変換効率の向上を図る構成であり、軽負荷状態が生じるのを回避するために複数のスイッチング電源を併用する必要がない。これにより、電力変換効率を向上でき、かつ、装置の肥大化を防止できるという効果を奏する。 Since the switching power supply according to the present invention performs the voltage conversion operation of the power supply circuit while limiting the load factor of the power supply circuit to a predetermined value or more, the power conversion efficiency can be maintained at a high position. In addition, the power conversion efficiency is improved by switching the execution / stop of the voltage conversion operation by a single switching power supply, and it is necessary to use a plurality of switching power supplies together in order to avoid the occurrence of a light load state. Absent. Thereby, there exists an effect that power conversion efficiency can be improved and the enlargement of an apparatus can be prevented.
図1は、本発明の一実施形態に係るDC/DCコンバータ(スイッチング電源)が適用される電源装置の概略構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply device to which a DC / DC converter (switching power supply) according to an embodiment of the present invention is applied. 図2は、図1中の本実施形態に係るDC/DCコンバータの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of the DC / DC converter according to the present embodiment in FIG. 図3は、本実施形態に係るDC/DCコンバータによる電圧変換動作の切替処理を示すフローチャートである。FIG. 3 is a flowchart showing the switching process of the voltage conversion operation by the DC / DC converter according to the present embodiment. 図4は、スイッチング電源における負荷率に対する電力変換効率の特性の一例を示す図である。FIG. 4 is a diagram illustrating an example of the characteristic of the power conversion efficiency with respect to the load factor in the switching power supply. 図5は、本実施形態に係るスイッチング電源が適用される電源装置の概略構成の他の例を示す図である。FIG. 5 is a diagram illustrating another example of a schematic configuration of a power supply device to which the switching power supply according to the present embodiment is applied.
 以下に、本発明に係るスイッチング電源の実施形態を図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of a switching power supply according to the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
[実施形態]
 まず図1,2を参照して、本発明の一実施形態に係るスイッチング電源の構成を説明する。図1は、本発明の一実施形態に係るDC/DCコンバータ(スイッチング電源)が適用される電源装置の概略構成の一例を示す図である。図2は、図1中の本実施形態に係るDC/DCコンバータの概略構成を示すブロック図である。
[Embodiment]
First, the configuration of a switching power supply according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an example of a schematic configuration of a power supply device to which a DC / DC converter (switching power supply) according to an embodiment of the present invention is applied. FIG. 2 is a block diagram showing a schematic configuration of the DC / DC converter according to the present embodiment in FIG.
 図1に例示する電源装置1は、例えばハイブリッド車両においてエンジンを始動させるスタータモータ4に電力を供給するための装置である。なお、本実施形態では、この電源装置1に適用され、入力電圧を変換し出力電圧を生成するスイッチング電源の一例として、降圧型のDC/DCコンバータ2を挙げて説明する。 A power supply device 1 illustrated in FIG. 1 is a device for supplying electric power to a starter motor 4 that starts an engine in a hybrid vehicle, for example. In the present embodiment, a step-down DC / DC converter 2 will be described as an example of a switching power supply that is applied to the power supply device 1 and converts an input voltage to generate an output voltage.
 図1に示すように、電源装置1は、DC/DCコンバータ2と、発電機3と、スタータモータ4と、高圧側バッテリ5と、低圧側バッテリ6と、高圧側負荷7と、低圧側負荷8と、を備えている。 As shown in FIG. 1, the power supply device 1 includes a DC / DC converter 2, a generator 3, a starter motor 4, a high voltage battery 5, a low voltage battery 6, a high voltage load 7, and a low voltage load. 8 and.
 DC/DCコンバータ2は、降圧型であり、図1の例では48Vの入力電圧を14Vの出力電圧に降圧する電圧変換動作を実行可能である。図1に示す電源装置1の構成では、DC/DCコンバータ2は、電圧変換動作の実行時には、高圧側(発電機3または高圧側バッテリ5)から入力される電力を、電圧変換を行った後に低圧側(低圧側バッテリ6、低圧側負荷8、またはスタータモータ4)に出力する。 The DC / DC converter 2 is a step-down type, and in the example of FIG. 1, a voltage conversion operation for stepping down an input voltage of 48V to an output voltage of 14V can be executed. In the configuration of the power supply device 1 shown in FIG. 1, the DC / DC converter 2 performs the voltage conversion on the electric power input from the high voltage side (the generator 3 or the high voltage battery 5) during the voltage conversion operation. Output to the low voltage side (low voltage battery 6, low voltage load 8, or starter motor 4).
 発電機3は、動力エネルギから電気エネルギ(電力)を得るものであり、生成した電力をDC/DCコンバータ2、高圧側バッテリ5、高圧側負荷7に供給する。高圧側バッテリ5は、発電機3から供給される電力を蓄電する蓄電装置であり、蓄電された電力を高圧側負荷7に供給する。高圧側負荷7は、発電機3または高圧側バッテリ5から供給される電力によって作動する任意の装置である。 The generator 3 obtains electric energy (electric power) from motive energy, and supplies the generated electric power to the DC / DC converter 2, the high-voltage battery 5, and the high-voltage load 7. The high voltage side battery 5 is a power storage device that stores electric power supplied from the generator 3, and supplies the stored electric power to the high voltage side load 7. The high voltage side load 7 is an arbitrary device that is operated by electric power supplied from the generator 3 or the high voltage side battery 5.
 低圧側バッテリ6は、DC/DCコンバータ2を介して発電機3から供給される電力を蓄電する蓄電装置であり、蓄電された電力をスタータモータ4及び低圧側負荷8に供給する。低圧側負荷8は、発電機3または低圧側バッテリ6から供給される電力によって作動する任意の装置である。スタータモータ4は、発電機3または低圧側バッテリ6から供給される電力によって作動する。 The low voltage side battery 6 is a power storage device that stores electric power supplied from the generator 3 via the DC / DC converter 2, and supplies the stored electric power to the starter motor 4 and the low voltage side load 8. The low-voltage load 8 is an arbitrary device that operates with electric power supplied from the generator 3 or the low-voltage battery 6. The starter motor 4 is operated by electric power supplied from the generator 3 or the low voltage side battery 6.
 図2に示すように、DC/DCコンバータ2は、電源回路21と、制御部22とを備える。 As shown in FIG. 2, the DC / DC converter 2 includes a power supply circuit 21 and a control unit 22.
 電源回路21は、入力電圧を変換し出力電圧を生成する電圧変換動作を実行可能なスイッチング方式の電源を構成する電圧変換回路である。なお電源回路21は、その構成要素のうちのスイッチング素子のオン・オフを制御することにより所望の出力電圧を生成する公知の回路を用いることができるため、内部構成の詳細については説明を省略する。 The power supply circuit 21 is a voltage conversion circuit that constitutes a switching power supply capable of performing a voltage conversion operation for converting an input voltage and generating an output voltage. Since the power supply circuit 21 can use a known circuit that generates a desired output voltage by controlling on / off of the switching elements among the constituent elements, the detailed description of the internal configuration is omitted. .
 制御部22は、電源回路21の電圧変換動作を制御する。制御部22は、具体的には、電源回路21のスイッチング素子のオン・オフを制御することで、上記の電圧変換動作を制御する。図2に示すように、制御部22には、車両動作状況(イグニッションのオン/オフ)、エンジン動作状況(エンジン回転数)、発電機動作状況(発電機電圧)、バッテリ状態(低圧側バッテリ6の電圧及び電流)、負荷動作状況(負荷のオン(作動状態)/オフ(非作動状態))などの各種情報が入力される。負荷動作状況は、例えば通信を利用して得ることができる。制御部22は、これらの入力情報に基づいて、電源回路21による電圧変換動作の実行可否を判定する。より詳細には、制御部22は、上記の入力情報に基づいて、電源回路21の負荷率が所定値以上となる状態と判定した場合には、電源回路21の電圧変換動作を実行させる。一方、電源回路21の負荷率が所定値を下回る状態と判定した場合には、制御部22は、電源回路21を待機状態に切り替えて電圧変換動作を実行させない。なお、制御部22が電源回路21の負荷率が所定値以上となる状態と判定するための具体的な手法については図3を参照して後述する。 The control unit 22 controls the voltage conversion operation of the power supply circuit 21. Specifically, the control unit 22 controls the voltage conversion operation by controlling on / off of the switching element of the power supply circuit 21. As shown in FIG. 2, the control unit 22 includes a vehicle operating status (ignition on / off), an engine operating status (engine speed), a generator operating status (generator voltage), a battery status (low voltage side battery 6 Voltage and current), load operation status (load on (operational state) / off (non-operational state)), and other information. The load operation status can be obtained using, for example, communication. Based on the input information, the control unit 22 determines whether or not the voltage conversion operation by the power supply circuit 21 can be performed. More specifically, when it is determined that the load factor of the power supply circuit 21 is equal to or greater than a predetermined value based on the input information, the control unit 22 causes the power supply circuit 21 to perform a voltage conversion operation. On the other hand, when determining that the load factor of the power supply circuit 21 is lower than the predetermined value, the control unit 22 switches the power supply circuit 21 to the standby state and does not execute the voltage conversion operation. A specific method for determining that the load factor of the power supply circuit 21 is equal to or greater than a predetermined value by the control unit 22 will be described later with reference to FIG.
 制御部22は、物理的には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及びインタフェースを含む周知のマイクロコンピュータを主体とする電子回路を含んで構成される集積回路である。制御部22の機能は、ROMに保持されるアプリケーションプログラムをRAMにロードしてCPUで実行することによって、CPUの制御のもとで電源装置1の各種装置を動作させるとともに、RAMやROMにおけるデータの読み出し及び書き込みを行うことで実現される。なお、制御部22をアナログ回路により構成し、アナログ回路の動作によって制御部22の各機能を実現することもできる。 The control unit 22 is physically configured to include an electronic circuit mainly including a well-known microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an interface. Integrated circuit. The function of the control unit 22 is to load various application programs stored in the ROM into the RAM and execute them by the CPU, thereby operating the various devices of the power supply device 1 under the control of the CPU, and data in the RAM and ROM. This is realized by reading and writing. Note that the control unit 22 may be configured by an analog circuit, and each function of the control unit 22 may be realized by the operation of the analog circuit.
 次に、図3を参照して、本実施形態に係るDC/DCコンバータ2(スイッチング電源)の動作を説明する。図3は、本実施形態に係るDC/DCコンバータによる電圧変換動作の切替処理を示すフローチャートである。図3に示すフローチャートの処理は、DC/DCコンバータ2の制御部22により、例えば所定周期ごとに実施される。 Next, the operation of the DC / DC converter 2 (switching power supply) according to this embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the switching process of the voltage conversion operation by the DC / DC converter according to the present embodiment. The process of the flowchart shown in FIG. 3 is performed by the control unit 22 of the DC / DC converter 2 at predetermined intervals, for example.
 ステップS01では、低圧側バッテリ6の充電状態の検出が開始される。ステップS01の処理が完了するとステップS02に移行する。 In step S01, detection of the state of charge of the low voltage side battery 6 is started. When the process of step S01 is completed, the process proceeds to step S02.
 ステップS02では、DC/DCコンバータ2が、電圧変換動作を実行しない待機状態に設定される。ステップS02の処理が完了するとステップS03に移行する。 In step S02, the DC / DC converter 2 is set to a standby state in which no voltage conversion operation is performed. When the process of step S02 is completed, the process proceeds to step S03.
 ステップS03では、電源装置1が搭載される車両がイグニッションオン状態(IG=ON)であるか否かが判定される。制御部22は、例えば車両内から入力される車両動作状況に関する情報(イグニッションのオン/オフ)に基づいて、この判定を行うことができる。ステップS03の判定の結果、イグニッションオン状態である場合(ステップS03のYes)にはステップS04に移行する。一方、イグニッションオフ状態である場合(ステップS03のNo)には、ステップS02に戻り、イグニッションオン状態となるまでDC/DCコンバータ2の待機状態が維持される。 In step S03, it is determined whether or not the vehicle on which the power supply device 1 is mounted is in an ignition-on state (IG = ON). The control unit 22 can make this determination based on, for example, information on the vehicle operation status input from the vehicle (ignition on / off). If the result of determination in step S03 is that the ignition is on (Yes in step S03), the process proceeds to step S04. On the other hand, if the ignition is off (No in step S03), the process returns to step S02, and the standby state of the DC / DC converter 2 is maintained until the ignition is on.
 ステップS04では、低圧側負荷8が作動状態(オン状態)か否かが判定される。本実施形態では、低圧側負荷8が、DC/DCコンバータ2の電源回路21の出力側の負荷対象となる要素である。制御部22は、例えば車両内から入力される負荷動作状況に関する情報(負荷のオン(作動状態)/オフ(非作動状態))に基づいて、電源回路21の出力側の負荷対象の状態の判定を行うことができる。ステップS04の判定の結果、低圧側負荷8が非作動状態の場合(ステップS04のNo)にはステップS05に進み、低圧側負荷8が作動状態の場合(ステップS04のYes)にはステップS06に進む。 In step S04, it is determined whether or not the low-pressure side load 8 is in an operating state (on state). In the present embodiment, the low-voltage load 8 is an element that is a load target on the output side of the power supply circuit 21 of the DC / DC converter 2. The control unit 22 determines the state of the load target on the output side of the power supply circuit 21 based on, for example, information on the load operation state input from the vehicle (load on (operating state) / off (non-operating state)). It can be performed. As a result of the determination in step S04, if the low-pressure side load 8 is in the non-operating state (No in step S04), the process proceeds to step S05. If the low-pressure side load 8 is in the operating state (Yes in step S04), the process proceeds to step S06. move on.
 ステップS05では、ステップS04にて低圧側負荷8が非作動状態と判定されたのに応じて、低圧側バッテリ6の充電状態(SOC)が80%を超えているか否かが判定される。制御部22は、例えば車両内から入力されるバッテリ状態に関する情報(低圧側バッテリ6の電圧及び電流)に基づいてSOCを算出し、算出したSOCを用いてこの判定を行うことができる。ステップS05の判定の結果、低圧側バッテリ6のSOCが80%以下である場合(ステップS05のNo)には、ステップS07に進む。一方、低圧側バッテリ6のSOCが80%を超えている場合(ステップS05のYes)には、ステップS02に戻り、低圧側バッテリ6のSOCが80%以下となるまでDC/DCコンバータ2の待機状態が維持される。 In step S05, it is determined whether or not the state of charge (SOC) of the low voltage side battery 6 exceeds 80% in response to the determination that the low voltage side load 8 is in the non-operating state in step S04. The control unit 22 can calculate the SOC based on, for example, information on the battery state input from the vehicle (the voltage and current of the low-voltage battery 6), and can make this determination using the calculated SOC. As a result of the determination in step S05, when the SOC of the low voltage side battery 6 is 80% or less (No in step S05), the process proceeds to step S07. On the other hand, when the SOC of the low voltage side battery 6 exceeds 80% (Yes in Step S05), the process returns to Step S02, and the DC / DC converter 2 stands by until the SOC of the low voltage side battery 6 becomes 80% or less. State is maintained.
 ステップS06では、ステップS04にて低圧側負荷8が作動状態と判定されたのに応じて、低圧側バッテリ6の充電状態(SOC)が90%を超えているか否かが判定される。ステップS06の判定の結果、低圧側バッテリ6のSOCが90%以下である場合(ステップS06のNo)には、ステップS07に進む。一方、低圧側バッテリ6のSOCが90%を超えている場合(ステップS06のYes)には、ステップS02に戻り、低圧側バッテリ6のSOCが90%以下となるまでDC/DCコンバータ2の待機状態が維持される。 In step S06, it is determined whether or not the state of charge (SOC) of the low voltage side battery 6 exceeds 90% in response to the determination that the low voltage side load 8 is in the operating state in step S04. As a result of the determination in step S06, if the SOC of the low voltage side battery 6 is 90% or less (No in step S06), the process proceeds to step S07. On the other hand, when the SOC of the low voltage side battery 6 exceeds 90% (Yes in Step S06), the process returns to Step S02, and the DC / DC converter 2 stands by until the SOC of the low voltage side battery 6 becomes 90% or less. State is maintained.
 なお、本実施形態では、低圧側バッテリ6のSOCの閾値として、ステップS05では「80%」を用い、ステップS06では「90%」を用いているが、ステップS06の閾値をステップS05のものより相対的に大きく設定すれば他の値でもよい。ステップS05,S06は、共に、SOCが所定の閾値(所定値)以下の場合、すなわち、低圧側バッテリ6が充分に蓄電する余裕のある状態である場合に、後述するステップS08にてDC/DCコンバータ2の電圧変換動作を実行させるための判定条件である。ただし、ステップS06では、DC/DCコンバータ2の電源回路21の出力側の負荷対象である低圧側負荷8が作動状態(駆動中)の場合に進む判定ステップであり、この場合にはDC/DCコンバータ2から低圧側に供給される電力の一部は、低圧側負荷8の駆動にも利用される。このため、ステップS06の場合、低圧側負荷8が非作動状態(停止中)の場合に進むステップS05と比較して、低圧側バッテリ6の充電可能量が相対的に少なくても、低圧側バッテリ6に電力が過剰供給されて過充電となる可能性が低いと考えられる。以上の理由によって、低圧側バッテリ6のSOCの閾値は、ステップS06の閾値をステップS05のものより相対的に大きく設定する。言い換えると、低圧側負荷8が作動状態の場合には、低圧側負荷8が非作動状態の場合に比べて、低圧側バッテリ6のSOCの閾値を嵩上げして増加させる。 In the present embodiment, “80%” is used in step S05 and “90%” is used in step S06 as the SOC threshold value of the low-voltage side battery 6, but the threshold value in step S06 is that of step S05. Other values may be used as long as they are set relatively large. Steps S05 and S06 are both DC / DC in step S08, which will be described later, when the SOC is equal to or less than a predetermined threshold value (predetermined value), that is, when the low voltage side battery 6 is in a state where there is sufficient power storage. This is a determination condition for executing the voltage conversion operation of the converter 2. However, step S06 is a determination step that proceeds when the low-voltage side load 8 that is the load target on the output side of the power supply circuit 21 of the DC / DC converter 2 is in an operating state (driving). In this case, the DC / DC Part of the electric power supplied from the converter 2 to the low voltage side is also used to drive the low voltage side load 8. For this reason, in the case of step S06, even if the chargeable amount of the low-voltage side battery 6 is relatively small compared to step S05 that proceeds when the low-voltage side load 8 is in a non-operating state (stopped), the low-voltage side battery 6 is considered to be less likely to be overcharged due to excessive power supply. For the above reasons, the SOC threshold value of the low-voltage side battery 6 is set to be relatively larger than the threshold value of step S06. In other words, when the low-voltage side load 8 is in an operating state, the SOC threshold value of the low-voltage side battery 6 is increased and increased as compared with a case where the low-voltage side load 8 is in an inoperative state.
 ステップS07では、発電機3が発電中であるか否かが判定される。制御部22は、例えば車両内から入力される発電機動作状況に関する情報(発電機電圧)に基づいてこれを判定することができる。ステップS07の判定の結果、発電機3が発電中である場合(ステップS07のYes)にはステップS08に進む。一方、発電機3が停止中の場合(ステップS07のNo)には、ステップS02に戻り、発電機3が駆動するまでDC/DCコンバータ2の待機状態が維持される。 In step S07, it is determined whether or not the generator 3 is generating power. The control part 22 can determine this based on the information (generator voltage) regarding the generator operating condition input, for example from the inside of a vehicle. If the result of determination in step S07 is that the generator 3 is generating power (Yes in step S07), the process proceeds to step S08. On the other hand, when the generator 3 is stopped (No in step S07), the process returns to step S02, and the standby state of the DC / DC converter 2 is maintained until the generator 3 is driven.
 ステップS08では、DC/DCコンバータ2により電圧変換動作が実行される。これにより、発電機3により生成された電力がDC/DCコンバータ2により降圧されて、低圧側バッテリ6に供給されて蓄電される。また、低圧側負荷8が作動状態である場合には、DC/DCコンバータ2から出力された電力の一部が低圧側負荷8にも供給される。ステップS08の処理が完了すると、ステップS03に戻り、電圧変換動作を実行するための各条件(ステップS03~S07)の判定が再度行われる。そして、各条件を満たしている間は電圧変換動作の実行が継続され、各条件を満たさなくなった場合にステップS02へ移行して電圧変換動作が停止される。 In step S08, the DC / DC converter 2 performs a voltage conversion operation. Thereby, the electric power generated by the generator 3 is stepped down by the DC / DC converter 2 and supplied to the low voltage side battery 6 to be stored. In addition, when the low-voltage load 8 is in an operating state, a part of the power output from the DC / DC converter 2 is also supplied to the low-voltage load 8. When the process of step S08 is completed, the process returns to step S03, and the determination of each condition (steps S03 to S07) for executing the voltage conversion operation is performed again. The voltage conversion operation is continuously executed while each condition is satisfied. When each condition is not satisfied, the process proceeds to step S02 and the voltage conversion operation is stopped.
 図3のフローチャートに示した処理を纏めると、低圧側バッテリ6の蓄電残量が所定値以下であり、充分に蓄電する余裕がある状態のときに、DC/DCコンバータ2の電圧変換動作を実行させている。一方、低圧側バッテリ6の蓄電残量が所定値より多く、蓄電する余裕が少ない状態のときに、電圧変換動作の実行を中止する。この理由について図4を参照して説明する。図4は、スイッチング電源における負荷率に対する電力変換効率の特性の一例を示す図である。 When the processing shown in the flowchart of FIG. 3 is summarized, the voltage conversion operation of the DC / DC converter 2 is executed when the remaining charge amount of the low voltage side battery 6 is equal to or less than a predetermined value and there is a sufficient margin for storing power. I am letting. On the other hand, the execution of the voltage conversion operation is stopped when the remaining charge of the low-voltage side battery 6 is greater than a predetermined value and there is little room for storing power. The reason for this will be described with reference to FIG. FIG. 4 is a diagram illustrating an example of the characteristic of the power conversion efficiency with respect to the load factor in the switching power supply.
 図4の横軸は、スイッチング電源(本実施形態ではDC/DCコンバータ2)の負荷率を示す。ここで「負荷率」とは、スイッチング電源を流れる電流(負荷電流)の定格電流(A)に対する比率(あるいは定格出力容量(W)に対する負荷容量の比率)を百分率で表わすものである。つまり負荷率が100%の状態とは、スイッチング電源に定格電流が流れている状態を意味する。また、図4の縦軸はスイッチング電源の電力変換効率ηを示す。ここで、「電力変換効率」とは、スイッチング電源において、入出力される電力が変換される効率を表す。電力変換効率ηは、スイッチング電源の入力電力と出力電力との比率であり、入力電力をPIN、出力電力POUTとすると、η=POUT/PIN×100(%)によって表すことができる。電力変換効率ηは、100%に近づくほど効率が良いことになり、内部の損失が少なくなる。従って、電力変換効率を向上させれば、その分だけ電源装置を小型化することが可能である。そして、図4には、スイッチング電源における、負荷率と電力変換効率とに関する特性の一例を実線で示している。 4 represents the load factor of the switching power supply (DC / DC converter 2 in this embodiment). Here, the “load factor” represents the ratio of the current (load current) flowing through the switching power supply to the rated current (A) (or the ratio of the load capacity to the rated output capacity (W)) as a percentage. That is, the state where the load factor is 100% means a state where a rated current flows through the switching power supply. The vertical axis in FIG. 4 indicates the power conversion efficiency η of the switching power supply. Here, “power conversion efficiency” represents the efficiency with which input / output power is converted in the switching power supply. The power conversion efficiency η is a ratio between the input power and the output power of the switching power supply, and can be expressed by η = POUT / PIN × 100 (%) where the input power is PIN and the output power POUT. The power conversion efficiency η is more efficient as it approaches 100%, and the internal loss is reduced. Therefore, if the power conversion efficiency is improved, the power supply device can be reduced in size. FIG. 4 shows an example of characteristics relating to the load factor and power conversion efficiency in the switching power supply by a solid line.
 図4に示すように、負荷率が低いほど(負荷が軽いほど)、電力変換効率ηは悪化する傾向となる。一方、負荷率が高くなるにつれて、電力変換効率ηは徐々に良好となってゆき、負荷率が100%に近づくにつれて電力変換効率ηは高い位置で安定する。負荷率を高くするほど、電力変換効率を100%近くに維持しやすくできる。つまり、DC/DCコンバータ2に流れる負荷電流を定格電流に近づけるほど、負荷率が100%に近づき、電力変換効率を向上させることができる。負荷率は100%に近い程好ましいが、電力変換効率を100%に近い領域に維持できる値であればよい。図4の例では、負荷率は50%程度より大きければよく、75%程度より大きい値となるのが好ましい。 As shown in FIG. 4, the lower the load factor (the lighter the load), the worse the power conversion efficiency η. On the other hand, as the load factor increases, the power conversion efficiency η gradually improves, and as the load factor approaches 100%, the power conversion efficiency η stabilizes at a high position. The higher the load factor, the easier it is to maintain the power conversion efficiency near 100%. That is, as the load current flowing through the DC / DC converter 2 approaches the rated current, the load factor approaches 100%, and the power conversion efficiency can be improved. The load factor is preferably as close to 100% as long as the power conversion efficiency can be maintained in a region close to 100%. In the example of FIG. 4, the load factor only needs to be larger than about 50%, and is preferably larger than about 75%.
 DC/DCコンバータ2に流れる負荷電流を定格電流まで大きくするには、電源装置1の低圧側で十分に電力を消費させる必要がある。本実施形態の電源装置1では、低圧側バッテリ6の蓄電残量が所定値以下のとき、低圧側バッテリ6の充電に用いる電流が定格電流付近まで見込めると判断する。そして、DC/DCコンバータ2の電圧変換動作を実行させ高圧側から低圧側へ電流を流し、DC/DCコンバータ2による低圧側バッテリ6の充電を積極的に行う。これにより、負荷率が100%付近での動作となり、DC/DCコンバータ2の電力変換効率を高効率化することができる。つまり、本実施形態でDC/DCコンバータ2の電圧変換動作を実行させるための「低圧側バッテリ6の蓄電残量が所定値以下であること」という条件は、「DC/DCコンバータ2の負荷率が所定値以上となること(これにより電力変換効率を高い位置に維持すること)」を満足するための条件の一例である。 In order to increase the load current flowing through the DC / DC converter 2 to the rated current, it is necessary to sufficiently consume power on the low voltage side of the power supply device 1. In the power supply device 1 of the present embodiment, when the remaining amount of power stored in the low-voltage side battery 6 is equal to or less than a predetermined value, it is determined that the current used for charging the low-voltage side battery 6 can be expected to the vicinity of the rated current. Then, the voltage conversion operation of the DC / DC converter 2 is executed, current is passed from the high voltage side to the low voltage side, and the low voltage side battery 6 is positively charged by the DC / DC converter 2. As a result, the load factor becomes an operation near 100%, and the power conversion efficiency of the DC / DC converter 2 can be increased. That is, in the present embodiment, the condition that “the remaining charge amount of the low-voltage side battery 6 is equal to or less than a predetermined value” for executing the voltage conversion operation of the DC / DC converter 2 is “the load factor of the DC / DC converter 2. This is an example of a condition for satisfying that “is greater than or equal to a predetermined value (and thereby maintaining power conversion efficiency at a high position)”.
 次に、本実施形態に係るDC/DCコンバータ2(スイッチング電源)の効果を説明する。 Next, the effect of the DC / DC converter 2 (switching power supply) according to this embodiment will be described.
 本実施形態のDC/DCコンバータ2は、入力電圧を変換し出力電圧を生成する電圧変換動作を実行可能なスイッチング方式の電源回路21と、電源回路21の電圧変換動作を制御する制御部22と、を備える。制御部22は、電源回路21の負荷率が所定値以上となる状態のとき、具体的には、電源回路21の出力側の低圧側バッテリ6の蓄電残量が所定値以下のとき、電源回路21の電圧変換動作を実行させる。 The DC / DC converter 2 of the present embodiment includes a switching-type power supply circuit 21 that can perform a voltage conversion operation that converts an input voltage and generates an output voltage, and a control unit 22 that controls the voltage conversion operation of the power supply circuit 21. . When the load factor of the power supply circuit 21 is equal to or greater than a predetermined value, the control unit 22 specifically, when the remaining charge amount of the low-voltage side battery 6 on the output side of the power supply circuit 21 is equal to or less than the predetermined value, 21 voltage conversion operation is executed.
 この構成により、電源回路21の出力側の低圧側バッテリ6の蓄電残量が所定値以下であるとき、すなわち、電源回路21の負荷率を所定値以上にできる状態に絞って、DC/DCコンバータ2の電源回路21の電圧変換動作が実行されるので、DC/DCコンバータ2の電力変換効率を高い位置に維持することが可能となり、電力変換効率を向上できる。また、単一のDC/DCコンバータ2による電圧変換動作の実施/停止を切り替えることによって電力変換効率の向上を図る構成であるので、従来のように軽負荷状態が生じるのを回避するために複数のDC/DCコンバータを併用する必要がなく、電源装置1の肥大化を防止できる。さらに、低圧側バッテリ6の蓄電残量が多い状況では充電が行われないので、低圧側バッテリ6の過充電を回避でき、低圧側バッテリ6の長寿命化を見込める。 With this configuration, the DC / DC converter is focused on when the remaining charge of the low-voltage side battery 6 on the output side of the power supply circuit 21 is equal to or less than a predetermined value, i. Since the voltage conversion operation of the second power supply circuit 21 is executed, the power conversion efficiency of the DC / DC converter 2 can be maintained at a high position, and the power conversion efficiency can be improved. Further, since the power conversion efficiency is improved by switching the execution / stop of the voltage conversion operation by the single DC / DC converter 2, a plurality of units are provided in order to avoid the occurrence of a light load state as in the prior art. It is not necessary to use a DC / DC converter together, and the enlargement of the power supply device 1 can be prevented. Further, since charging is not performed in a situation where the low-voltage side battery 6 has a large amount of remaining power, overcharging of the low-voltage side battery 6 can be avoided, and the life of the low-voltage side battery 6 can be expected to be extended.
 また、本実施形態のDC/DCコンバータ2において、制御部22は、電源回路21の出力側の負荷対象である低圧側負荷8の状態を監視し、低圧側負荷8が作動状態の場合には、低圧側負荷8が非作動状態の場合に比べて、蓄電残量の所定値を増加させる。 In the DC / DC converter 2 of the present embodiment, the control unit 22 monitors the state of the low-pressure side load 8 that is the load target on the output side of the power supply circuit 21, and when the low-pressure side load 8 is in an operating state. As compared with the case where the low-pressure side load 8 is in the non-operating state, the predetermined value of the remaining amount of power storage is increased.
 この構成により、低圧側負荷8が作動状態の場合には、DC/DCコンバータ2の電圧変換動作を実行可能となる低圧側バッテリ6の蓄電残量の範囲が拡張される。上述のとおり、低圧側負荷8が作動状態の場合には、DC/DCコンバータ2から低圧側に供給される電力は、低圧側バッテリ6の充電の他に、低圧側負荷8の駆動にも利用される。このため、低圧側負荷8が非作動状態の場合と比較して、低圧側バッテリ6の充電可能量が相対的に少なくても、低圧側バッテリ6に電力が過剰供給されて過充電となる可能性が低い。従って、低圧側負荷8が作動状態の場合には、DC/DCコンバータ2の電圧変換動作を実行可能となる低圧側バッテリ6の蓄電残量の範囲を拡張しても、電力変換効率を高い位置で維持できると考えられる。これにより、電力変換効率を向上させつつ、DC/DCコンバータ2の電圧変換動作を実行する機会を増やすことができる。 With this configuration, when the low-voltage side load 8 is in the operating state, the range of the remaining amount of charge of the low-voltage side battery 6 in which the voltage conversion operation of the DC / DC converter 2 can be executed is expanded. As described above, when the low-voltage load 8 is in an operating state, the power supplied from the DC / DC converter 2 to the low-voltage side is used not only for charging the low-voltage battery 6 but also for driving the low-voltage load 8. Is done. For this reason, even if the chargeable amount of the low-voltage side battery 6 is relatively small compared with the case where the low-voltage side load 8 is in the non-operating state, electric power is excessively supplied to the low-voltage side battery 6 and overcharge can occur. The nature is low. Therefore, when the low-voltage load 8 is in an operating state, the power conversion efficiency is high even if the range of the remaining amount of charge of the low-voltage battery 6 that can execute the voltage conversion operation of the DC / DC converter 2 is expanded. Can be maintained. Thereby, the opportunity to perform the voltage conversion operation of the DC / DC converter 2 can be increased while improving the power conversion efficiency.
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As mentioned above, although embodiment of this invention was described, the said embodiment is shown as an example and is not intending limiting the range of invention. The above-described embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The above embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalents thereof.
 上記実施形態では、入力電圧を変換し出力電圧を生成するスイッチング電源の一例として、降圧型のDC/DCコンバータ2を挙げて説明したが、これに限らず、例えば昇圧型のDC/DCコンバータでもよいし、AC/DCコンバータでもよい。 In the above embodiment, the step-down DC / DC converter 2 has been described as an example of the switching power supply that converts the input voltage and generates the output voltage. However, the present invention is not limited to this, and for example, a step-up DC / DC converter may be used. It may be an AC / DC converter.
 また、上記実施形態では、本実施形態に係るDC/DCコンバータ2(スイッチング電源)が適用される構成の一例として、図1に示す電源装置1を例示したが、これに限られず、例えば図5に示す他の装置にも適用可能である。図5は、本実施形態に係るスイッチング電源が適用される電源装置の概略構成の他の例を示す図である。図5に示す電源装置1aは、スタータモータ4が高圧側に配置される点で、上記実施形態の電源装置1と異なるものである。また、図1,5に示すスタータモータ4に電力を供給するための電源装置1,1a以外の各種装置にも、本実施形態に係るDC/DCコンバータ2(スイッチング電源)を適用可能である。 Moreover, in the said embodiment, although the power supply device 1 shown in FIG. 1 was illustrated as an example of the structure to which the DC / DC converter 2 (switching power supply) which concerns on this embodiment is applied, it is not restricted to this, For example, FIG. The present invention can also be applied to other devices shown in FIG. FIG. 5 is a diagram illustrating another example of a schematic configuration of a power supply device to which the switching power supply according to the present embodiment is applied. The power supply device 1a shown in FIG. 5 is different from the power supply device 1 of the above-described embodiment in that the starter motor 4 is disposed on the high voltage side. The DC / DC converter 2 (switching power supply) according to this embodiment can be applied to various devices other than the power supply devices 1 and 1a for supplying power to the starter motor 4 shown in FIGS.
 また、上記実施形態では、DC/DCコンバータ2の電圧変換動作を実行させるための条件として「低圧側バッテリ6の蓄電残量が所定値以下であること」を例示したが、「DC/DCコンバータ2の負荷率が所定値以上となること(これにより電力変換効率を高い位置に維持すること)」を満足する条件であれば、他の条件を用いても良い。例えば、DC/DCコンバータ2の出力側の負荷対象(図1の例では低圧側負荷8またはスタータモータ4)の負荷動作状況に関する情報に基づき、DC/DCコンバータ2から負荷対象へ供給される負荷動作電力が図4に示す負荷率~電力変換効率特性の高効率地点となっている場合、言い換えると、DC/DCコンバータ2の定格出力容量に対する負荷動作電力の比率である負荷率が電力変換効率の高い領域にある場合に、DC/DCコンバータ2の電圧変換動作を実行させる構成とすることも可能である。 In the above-described embodiment, the condition that the voltage conversion operation of the DC / DC converter 2 is executed is exemplified by “the remaining charge amount of the low-voltage side battery 6 is not more than a predetermined value”. Other conditions may be used as long as the conditions satisfy the condition that the load factor of 2 is equal to or greater than a predetermined value (and thereby maintain power conversion efficiency at a high position). For example, the load supplied from the DC / DC converter 2 to the load target based on the load operation status of the load target on the output side of the DC / DC converter 2 (low-voltage side load 8 or starter motor 4 in the example of FIG. 1). When the operating power is a high efficiency point of the load factor to power conversion efficiency characteristic shown in FIG. 4, in other words, the load factor that is the ratio of the load operating power to the rated output capacity of the DC / DC converter 2 is the power conversion efficiency. It is also possible to adopt a configuration in which the voltage conversion operation of the DC / DC converter 2 is executed in the high region.
 また、上記実施形態では、DC/DCコンバータ2の電圧変換動作を実行させるための低圧側バッテリ6のSOCの閾値を、低圧側負荷8が作動状態の場合には、低圧側負荷8が非作動状態の場合に比べて嵩上げする構成を例示したが、これに限らず、低圧側負荷8の動作状態によらず一定値としてもよい。 Moreover, in the said embodiment, when the low voltage | pressure side load 8 is an operation state, when the low voltage | pressure side load 8 is an operation state, the low voltage | pressure side load 8 is inactive. Although the structure which raises compared with the case of a state was illustrated, it is good not only as this but the constant value irrespective of the operation state of the low voltage | pressure side load 8. FIG.
 2 DC/DCコンバータ(スイッチング電源)
 21 電源回路
 22 制御部
 6 低圧側バッテリ(蓄電装置)
 8 低圧側負荷(負荷対象)
2 DC / DC converter (switching power supply)
21 Power supply circuit 22 Control unit 6 Low voltage side battery (power storage device)
8 Low pressure side load (target load)

Claims (3)

  1.  入力電圧を変換し出力電圧を生成する電圧変換動作を実行可能なスイッチング方式の電源回路と、
     前記電源回路の前記電圧変換動作を制御する制御部と、
    を備え、
     前記制御部は、前記電源回路の負荷率が所定値以上となる状態のとき、前記電源回路の前記電圧変換動作を実行させる
    ことを特徴とするスイッチング電源。
    A switching type power supply circuit capable of executing a voltage conversion operation for converting an input voltage and generating an output voltage;
    A control unit for controlling the voltage conversion operation of the power supply circuit;
    With
    The control unit causes the voltage conversion operation of the power supply circuit to be executed when a load factor of the power supply circuit is a predetermined value or more.
  2.  前記制御部は、前記電源回路の出力側の蓄電装置の蓄電残量が所定値以下のとき、前記電源回路の前記電圧変換動作を実行させる、請求項1に記載のスイッチング電源。 2. The switching power supply according to claim 1, wherein the control unit causes the voltage conversion operation of the power supply circuit to be executed when a remaining power amount of a power storage device on an output side of the power supply circuit is equal to or less than a predetermined value.
  3.  前記制御部は、前記電源回路の出力側の負荷対象の状態を監視し、前記負荷対象が作動状態の場合には、前記負荷対象が非作動状態の場合に比べて、前記蓄電残量の前記所定値を増加させる、請求項2に記載のスイッチング電源。 The control unit monitors the state of the load target on the output side of the power supply circuit, and when the load target is in an operating state, the charge remaining amount is lower than when the load target is in a non-operating state. The switching power supply according to claim 2, wherein the predetermined value is increased.
PCT/JP2015/061433 2014-05-20 2015-04-14 Switching power supply WO2015178131A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580020799.3A CN106233597A (en) 2014-05-20 2015-04-14 Switching power supply
DE112015002340.2T DE112015002340T5 (en) 2014-05-20 2015-04-14 Switching power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014104002A JP2015220901A (en) 2014-05-20 2014-05-20 Switching power supply
JP2014-104002 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178131A1 true WO2015178131A1 (en) 2015-11-26

Family

ID=54553807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061433 WO2015178131A1 (en) 2014-05-20 2015-04-14 Switching power supply

Country Status (4)

Country Link
JP (1) JP2015220901A (en)
CN (1) CN106233597A (en)
DE (1) DE112015002340T5 (en)
WO (1) WO2015178131A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667330A (en) * 2016-01-11 2016-06-15 潍柴动力股份有限公司 Control method and system for DCDC (direct current direct current)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018100988A1 (en) 2018-01-17 2019-07-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Supply device for a motor vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041826A (en) * 2008-08-05 2010-02-18 Panasonic Corp Ac-dc converter and electronic apparatus using the same
JP2012210013A (en) * 2011-03-29 2012-10-25 Nec Commun Syst Ltd Power supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200414B2 (en) * 2007-04-26 2013-06-05 トヨタ自動車株式会社 Fuel cell system
CN101445042B (en) * 2008-10-11 2012-03-21 比亚迪股份有限公司 Hybrid vehicle
JP5105431B2 (en) * 2008-04-01 2012-12-26 シャープ株式会社 Power converter
CN102267453B (en) * 2011-05-17 2013-06-12 奇瑞汽车股份有限公司 Energy management method for stroke-increased electric motor car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041826A (en) * 2008-08-05 2010-02-18 Panasonic Corp Ac-dc converter and electronic apparatus using the same
JP2012210013A (en) * 2011-03-29 2012-10-25 Nec Commun Syst Ltd Power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667330A (en) * 2016-01-11 2016-06-15 潍柴动力股份有限公司 Control method and system for DCDC (direct current direct current)

Also Published As

Publication number Publication date
DE112015002340T5 (en) 2017-02-02
CN106233597A (en) 2016-12-14
JP2015220901A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
US8227935B2 (en) Hybrid power supply device
JP6145751B2 (en) In-vehicle power supply
JP5434195B2 (en) Fuel cell system and vehicle equipped with the same
US10538167B2 (en) Power supply system, transportation device, and power transmission method
JP5958449B2 (en) Power conversion system
US11338689B2 (en) System and method for controlling vehicle including solar cell
US9365175B2 (en) Power supply system for vehicle
JP5423858B1 (en) Voltage conversion control device
JP4067554B2 (en) Power storage device
JP6876992B2 (en) Vehicle power supply
JP2020010517A (en) Charge control device and charge control system
JP2015192525A (en) Dc-dc converter and battery system
WO2017179178A1 (en) Power management system
US20050151508A1 (en) Battery isolator
JP2018191381A (en) Power supply system
JP6426014B2 (en) Bidirectional inverter and storage system using the same
WO2015178131A1 (en) Switching power supply
JP5915390B2 (en) Vehicle power supply control method and apparatus
JP2006288085A (en) Electric vehicle controller
JP2020072602A (en) Power supply system for vehicle
JP6470947B2 (en) Drive system and diesel car
KR102030179B1 (en) Power management device for micro hybrid system
JP5726046B2 (en) Vehicle power supply system
JP5664251B2 (en) Power supply stabilization device and power supply stabilization device control method
KR20160093285A (en) A control method of DC-DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015002340

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796177

Country of ref document: EP

Kind code of ref document: A1