JP2006288085A - Electric vehicle controller - Google Patents

Electric vehicle controller Download PDF

Info

Publication number
JP2006288085A
JP2006288085A JP2005105186A JP2005105186A JP2006288085A JP 2006288085 A JP2006288085 A JP 2006288085A JP 2005105186 A JP2005105186 A JP 2005105186A JP 2005105186 A JP2005105186 A JP 2005105186A JP 2006288085 A JP2006288085 A JP 2006288085A
Authority
JP
Japan
Prior art keywords
electric vehicle
converter
edlc
inverter
vehicle control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105186A
Other languages
Japanese (ja)
Inventor
Takeshi Koga
猛 古賀
Hajime Yamamoto
肇 山本
Yukio Kadota
行生 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005105186A priority Critical patent/JP2006288085A/en
Publication of JP2006288085A publication Critical patent/JP2006288085A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric vehicle controller with reduced size and weight by reducing the load to environment. <P>SOLUTION: This electric vehicle controller is equipped with a fuel cell which generates power, a first converter which controls the output of an autonomous power source, an auxiliary power unit which is connected with the above fuel cell and converts the power supplied from the above fuel cell and supplies it to an air conditioner and an illuminator, an EDLC which performs the charge and discharge of the power supplied from the above first converter, a second converter which controls the input voltage of an inverter, on the basis of the voltage of the above accumulating device, an inverter which converts the power supplied from the above second converter, and a main motor which is driven with the power supplied from the above inverter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気車制御装置に関する。 The present invention relates to an electric vehicle control device.

従来の電気車制御装置について、図を参照し詳細に説明する。図○は、従来の電気車制御装置のブロック図である。   A conventional electric vehicle control device will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a conventional electric vehicle control device.

従来の電気車制御装置は、ディーゼル発電機20、制御整流器21、バッテリー22、コンバータ23、インバータ24から構成されていた。   The conventional electric vehicle control device is composed of a diesel generator 20, a control rectifier 21, a battery 22, a converter 23, and an inverter 24.

従来の電気車制御装置において、ディーゼル発電機20は、制御整流器21と直列接続される。ディーゼル発電機20と制御整流器21からなる直列回路は、インバータ24と接続される。バッテリー22は、コンバータ23と直列接続される。バッテリー22とコンバータ23からなる直列回路は、インバータ24と接続される。   In the conventional electric vehicle control device, the diesel generator 20 is connected in series with the control rectifier 21. A series circuit composed of the diesel generator 20 and the control rectifier 21 is connected to the inverter 24. Battery 22 is connected in series with converter 23. A series circuit including the battery 22 and the converter 23 is connected to the inverter 24.

このように構成された従来の電気車制御装置は、力行時には、ディーゼル発電機20による発電、若しくはバッテリー23から放電された電力を、制御整流器21及びインバータ24が変換し、主電動機(図示しない)に供給する。回生時には、回生電力をコンバータ23が変換し、コンバータ23により変換された電力をバッテリー22が貯蔵していた。 In the conventional electric vehicle control device configured as described above, during power running, the control rectifier 21 and the inverter 24 convert the electric power generated by the diesel generator 20 or the electric power discharged from the battery 23, and the main electric motor (not shown). To supply. During regeneration, the converter 23 converts the regenerative power, and the battery 22 stores the power converted by the converter 23.

このように構成された従来の電気車制御装置は、力行時はディーゼル発電機20が発電した電力とバッテリー22に蓄えられた電力によって駆動することができた。
特開2003−164003号公報
The conventional electric vehicle control device configured as described above can be driven by the electric power generated by the diesel generator 20 and the electric power stored in the battery 22 during power running.
JP 2003-164003 A

しかしながら、従来の電気車制御装置のディーゼル発電機20は、排気ガスを発生させるため、環境保護の観点からは好ましくないという問題がある。 However, since the diesel generator 20 of the conventional electric vehicle control device generates exhaust gas, there is a problem that it is not preferable from the viewpoint of environmental protection.

上記課題を解決するために、ディーゼル発電機20を燃料電池に置き換え、環境に対する負荷を減らすという方法が、近年考案されている。しかし、ディーゼル発電機20の出力と同程度の出力を燃料電池で確保しようとすると、燃料電池の大きさが非常に大きくなってします。 In order to solve the above problems, a method has been devised in recent years in which the diesel generator 20 is replaced with a fuel cell to reduce the environmental load. However, if you try to secure the same output as the output of the diesel generator 20 with the fuel cell, the size of the fuel cell will become very large.

そこで、本発明は、環境に対する負荷を低減し、小型・軽量化が可能な電気車制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric vehicle control device that can reduce the load on the environment and can be reduced in size and weight.

上記課題は、電力を発電する燃料電池と、前記自律電源の出力を制御する第1のコンバータと、前記燃料電池と接続され、前記燃料電池から供給された電力を変換し、電気車内の空調機器や照明機器に電力を供給する補助電源装置と、前記第1のコンバータから供給された電力の充放電を行うEDLCと、前記EDLCの電圧を基準にインバータ入力電圧を制御する第2のコンバータと、前記第2のコンバータから供給された電力を変換するインバータと、前記インバータから供給される電力により駆動する主電動機とを備えたことによって達成することができる。   An object of the present invention is to provide a fuel cell that generates electric power, a first converter that controls the output of the autonomous power source, and an air conditioner in an electric vehicle that is connected to the fuel cell and converts electric power supplied from the fuel cell. And an auxiliary power supply for supplying power to lighting equipment, an EDLC for charging / discharging the power supplied from the first converter, a second converter for controlling an inverter input voltage based on the voltage of the EDLC, This can be achieved by including an inverter that converts the power supplied from the second converter and a main motor that is driven by the power supplied from the inverter.

本発明により、環境に対する負荷を低減し、小型・軽量化が可能な電気車制御装置を提供することができる。 According to the present invention, it is possible to provide an electric vehicle control apparatus that can reduce the environmental load and can be reduced in size and weight.

(第1の実施の形態)
本発明に基づく第1の実施の形態の電気車制御装置について、図を参照し詳細に説明する。図1は、本発明に基づく第1の実施の形態の電気車制御装置の構成図である。図2は、本発明に基づく第1の実施の形態の電気車制御装置のブロック図である。図3は、本発明に基づく第1の実施の形態の電気車制御装置の第1のコンバータの構成図である。
(First embodiment)
An electric vehicle control apparatus according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of an electric vehicle control apparatus according to a first embodiment based on the present invention. FIG. 2 is a block diagram of the electric vehicle control device according to the first embodiment of the present invention. FIG. 3 is a configuration diagram of a first converter of the electric vehicle control device according to the first embodiment of the present invention.

本発明に基づく第1の実施の形態の電気車制御装置は、燃料電池1、燃料電池1の出力を制御し一定の出力を行う第1のコンバータ2、コンバータ2の制御を行うコンバータ制御装置2a、コンバータ2から供給された電力を貯蔵し、貯蔵した電力を負荷へ供給する電気二重層キャパシタ3(以後、「EDLC3」と記載する)、EDLC3の電圧を基準にインバータ入力電圧を制御する第2のコンバータ4及びコンバータ4の制御を行うコンバータ制御装置4a、主電動機の制御をするインバータ5及びインバータの制御を行うインバータ制御装置5a、主電動機6、空調機器や照明機器に電力を供給する補助電源装置10(以後、「SIV10」と記載する)から構成されている。   The electric vehicle control device according to the first embodiment of the present invention includes a fuel cell 1, a first converter 2 that controls the output of the fuel cell 1 to perform a constant output, and a converter control device 2a that controls the converter 2. , An electric double layer capacitor 3 (hereinafter referred to as “EDLC3”) that stores the electric power supplied from the converter 2 and supplies the stored electric power to a load, and a second that controls the inverter input voltage based on the voltage of the EDLC3. Converter 4 and converter control device 4a for controlling converter 4, inverter 5 for controlling the main motor, inverter control device 5a for controlling the inverter, main motor 6, auxiliary power supply for supplying power to air conditioning equipment and lighting equipment The apparatus 10 (hereinafter referred to as “SIV10”) is configured.

このように構成された電気車制御装置において、燃料電池1は、コンバータ2と直列接続される。コンバータ2には、EDLC3接続される。EDLC3には、コンバータ4が接続される。コンバータ4にはインバータ5が接続される。インバータ5には、主電動機6が接続される。SIV10の入力側は、燃料電池1と接続され、SIV10の出力側は空調機器や照明機器と接続されている。 In the electric vehicle control apparatus configured as described above, the fuel cell 1 is connected in series with the converter 2. The converter 2 is connected to the EDLC 3. A converter 4 is connected to the EDLC 3. An inverter 5 is connected to the converter 4. A main motor 6 is connected to the inverter 5. The input side of the SIV 10 is connected to the fuel cell 1, and the output side of the SIV 10 is connected to an air conditioner and a lighting device.

このように構成された電気車制御装置において、燃料電池1は、第1のコンバータ2とSIV10に電力を供給する。第1のコンバータ2は、燃料電池1から供給された電力を変換し、一定の電力をEDLC3に供給する。コンバータ2はEDLC3が十分に充電された時点(EDLC3の電圧から求めまれるEDLC3の充電量が所定値を超えた場合)では運転を停止し、過充電からの保護を行なう。EDLC3は、自機に蓄えられた電力をコンバータ4に供給する。コンバータ4は、EDLC3の電圧を昇圧し、一定の電圧に保ち、インバータ5に供給する。インバータ5が力行の動作をするとインバータ5の入力電圧は低下に向かうが、コンバータ4の制御により、この電圧を一定にする電力をインバータ5に移行させる。回生時は逆にインバータ5の入力電圧が上昇に向かうが、コンバータ4はこの電圧を一定にする電力をEDLC3に移行し充電する。この際EDLC3が十分充電された電圧になればコンバータ4は停止する。同時に燃料電池から充電していたコンバータ2も停止し、充電を止める。SIV10は、燃料電池1から供給される電力を変換し、空調機器や照明機器に電力を供給する。 In the electric vehicle control apparatus configured as described above, the fuel cell 1 supplies power to the first converter 2 and the SIV 10. The first converter 2 converts the power supplied from the fuel cell 1 and supplies constant power to the EDLC 3. The converter 2 stops operation when the EDLC 3 is sufficiently charged (when the charge amount of the EDLC 3 obtained from the voltage of the EDLC 3 exceeds a predetermined value), and protects from overcharge. The EDLC 3 supplies power stored in the own device to the converter 4. Converter 4 boosts the voltage of EDLC 3, maintains it at a constant voltage, and supplies it to inverter 5. When the inverter 5 performs a power running operation, the input voltage of the inverter 5 tends to decrease, but the electric power that makes this voltage constant is transferred to the inverter 5 under the control of the converter 4. Conversely, during regeneration, the input voltage of the inverter 5 goes up, but the converter 4 transfers the electric power for making this voltage constant to the EDLC 3 and charges it. At this time, if the EDLC 3 reaches a sufficiently charged voltage, the converter 4 stops. At the same time, the converter 2 charged from the fuel cell is also stopped, and charging is stopped. SIV10 converts the electric power supplied from the fuel cell 1, and supplies electric power to an air conditioner or lighting equipment.

このように構成された電気車制御装置において、電気車が力行時に、主電動機6から要求される電力が、燃料電池1の出力より数倍大きな負荷変動である場合には、EDLC3に蓄積されている電力を主電動機6からの要求に従って、第2のコンバータ4に供給する。EDLC3の電圧はコンバータ4の昇圧モードでインバータ5の入力電圧をある電圧に制御する。そのため、主電動機6からの大きな電力の要求があっても、コンバータ4の制御により、インバータ5の入力電圧は維持される。また、電気車が回生時にも、インバータ5の入力電圧を一定にするように制御するので、回生電力をEDLC3に充電することが出来る(図2及び図4参照)。つまり、第2のコンバータ4は、電気車が力行時にはEDLC3の放電電流を制御し前記インバータ5への入力電圧を一定の電圧に制御し、電気車が回生時には、EDLC3への充電電流をせいぎょすることで前記インバータ5への入力電圧を一定の電圧に制御する。尚、コンバータ4の昇降圧チョッパの制御により、インバータの入力電圧が自由に選択できることから力行では750Vに制御、回生では1000Vに制御する。 In the electric vehicle control device configured as described above, when the electric vehicle is powered, the power required from the main motor 6 is a load fluctuation several times larger than the output of the fuel cell 1, and is accumulated in the EDLC 3. The supplied electric power is supplied to the second converter 4 in accordance with a request from the main motor 6. The voltage of the EDLC 3 controls the input voltage of the inverter 5 to a certain voltage in the boost mode of the converter 4. Therefore, the input voltage of the inverter 5 is maintained by the control of the converter 4 even when there is a demand for large electric power from the main motor 6. Further, since the input voltage of the inverter 5 is controlled to be constant even when the electric vehicle is regenerating, the regenerative power can be charged to the EDLC 3 (see FIGS. 2 and 4). In other words, the second converter 4 controls the discharge current of the EDLC 3 when the electric vehicle is powered and controls the input voltage to the inverter 5 to a constant voltage, and the charging current to the EDLC 3 is controlled when the electric vehicle is regenerated. Thus, the input voltage to the inverter 5 is controlled to a constant voltage. In addition, since the input voltage of the inverter can be freely selected by the control of the step-up / step-down chopper of the converter 4, the power running is controlled to 750V, and the regeneration is controlled to 1000V.

一般的に、入力電源が一定なインバータ装置では、高速域でのブレーキでその運動エネルギーを電気にすべて帰ることができず、一部は機械ブレーキの作用を強いられている。それに対して、本実施の形態の電気車制御装置は、回生時のインバータ入力電圧の上昇は高速からの全電力回生または近い値を実現するので、高効率化が可能となる。   In general, an inverter device with a constant input power source cannot return all of its kinetic energy to electricity by braking in a high speed range, and some of them are forced to act as mechanical brakes. On the other hand, in the electric vehicle control apparatus according to the present embodiment, the increase in the inverter input voltage during regeneration realizes full power regeneration from a high speed or a close value, so that high efficiency can be achieved.

本実施の形態のコンバータ2は、図3に示すように、入力側には逆L形LCフィルタ(リアクトル7、コンデンサ9)をもち、後段に降圧チョッパと昇圧チョッパ(リアクトル7、半導体素子、ダイオード11等から構成される)と備える。前記EDLCの充電が入力電圧まで充電され、昇圧チョッパ領域で動作する際は逆LC形LCフィルタとそれに直列接続されたスイッチデバイスは接触器で短絡して損失を少なくすることもできる。 As shown in FIG. 3, converter 2 of the present embodiment has an inverted L-type LC filter (reactor 7, capacitor 9) on the input side, and a step-down chopper and a step-up chopper (reactor 7, semiconductor element, diode) at the subsequent stage. 11). When the EDLC is charged to the input voltage and operates in the step-up chopper region, the inverse LC type LC filter and the switch device connected in series with the LCLC can be short-circuited by a contactor to reduce loss.

コンバータ2の制御装置2aは燃料電池1の電圧と駆動回路への出力電流を入力し、その出力を計算する。この実出力は予め設定している基準出力Pとの比較で動作し、Pの電力がEDLCに充電される。したがって燃料電池の出力は補助電源で使用する電力にPの電力が加算される。 The control device 2a of the converter 2 inputs the voltage of the fuel cell 1 and the output current to the drive circuit, and calculates the output. This actual output operates by comparison with a preset reference output P, and the electric power of P is charged in the EDLC. Therefore, as for the output of the fuel cell, the power of P is added to the power used by the auxiliary power source.

一般に鉄道車両は留置時には制御用の100Vバッテリ以外は無電圧にする。したがって初起動時にはEDLC3は電圧が0Vの状態であり、EDLCの充電量は所定値よりも低くなっている。この場合、燃料電池1を動作させ、コンバータ2は燃料電池1の電力を降圧動作でEDLC3の充電をはじめる。充電が進み、EDLC3の電圧が燃料電池1の出力電圧相当になると、動作モードを昇圧モードに切り替えて充電を継続し設定の電圧までその動作を続ける。この動作が初動時の準備動作となり、これが確立すると、走行準備完了となる。つまり、初起動時にはEDLC3の充電状況を確認し、不足している場合は十分に充電する動作を行なう。ここまでの動作を短時間で達成する必要がある場合は停電コンバータ2の定電力制御基準値を選ぶことで、急速充電モードに切り替えることもできる。電気車の起動時には、通常の運転モードと定電力制御基準値を選ぶ初期充電のモードを切り替えることが好ましい。 Generally, when a railway vehicle is detained, no voltage is applied except for a control 100V battery. Therefore, when EDLC3 is initially activated, the voltage is 0 V, and the amount of charge of EDLC is lower than a predetermined value. In this case, the fuel cell 1 is operated, and the converter 2 starts charging the EDLC 3 by reducing the power of the fuel cell 1. When the charging proceeds and the voltage of the EDLC 3 becomes equivalent to the output voltage of the fuel cell 1, the operation mode is switched to the boosting mode, the charging is continued, and the operation is continued up to the set voltage. This operation is a preparatory operation at the time of initial movement, and when this is established, preparation for traveling is completed. In other words, the charging state of the EDLC 3 is checked at the time of initial startup, and if it is insufficient, an operation of fully charging is performed. When it is necessary to achieve the operation up to this point in a short time, the constant power control reference value of the power failure converter 2 can be selected to switch to the quick charge mode. When the electric vehicle is started, it is preferable to switch between the normal operation mode and the initial charging mode for selecting the constant power control reference value.

本発明に基づく第1の実施の形態の電気車制御装置は、燃料電池1の出力が、インバータ5の入力電圧までに2段のコンバータを介しているので、出力電圧が低いという特性を持つ燃料電池1と入力電圧は適度な高電圧の方が装置構成にとって好ましいという特性を持つインバータ5とを同じシステム内に組み入れることが出来る。 In the electric vehicle control apparatus according to the first embodiment of the present invention, since the output of the fuel cell 1 passes through the two-stage converter until the input voltage of the inverter 5, the fuel having the characteristic that the output voltage is low. The battery 1 and the inverter 5 having a characteristic that a moderately high input voltage is preferable for the device configuration can be incorporated in the same system.

本実施の形態の電気車制御装置は、燃料電池1の出力は化学反応による出力でありすばやい出力変化は難しいという特性にも、コンバータ2の制御により、数分という短時間の単位で見て一定出力にすること可能であるので、燃料電池を安定に使用する事ができる。 The electric vehicle control apparatus according to the present embodiment has a characteristic that the output of the fuel cell 1 is an output due to a chemical reaction and a quick change in output is difficult. Since the output can be made, the fuel cell can be used stably.

このように構成された電気車制御装置は、環境に対する負荷を低減し、小型・軽量化が可能となる。 The electric vehicle control device configured as described above can reduce the environmental load, and can be reduced in size and weight.

本発明に基づく第1の実施の形態の電気車制御装置の構成図である。It is a block diagram of the electric vehicle control apparatus of 1st Embodiment based on this invention. 本発明に基づく第1の実施の形態の電気車制御装置のブロック図である。It is a block diagram of the electric vehicle control apparatus of 1st Embodiment based on this invention. 本発明に基づく第1の実施の形態の電気車制御装置の第1のコンバータのブロック図である。It is a block diagram of the 1st converter of the electric vehicle control apparatus of 1st Embodiment based on this invention. 本発明に基づく第1の実施の形態の電気車制御装置の走行状況とEDLCに入出力される電力量を示した図である。It is the figure which showed the driving condition of the electric vehicle control apparatus of 1st Embodiment based on this invention, and the electric energy input / output to EDLC. 従来の電気車制御装置の構成図である。It is a block diagram of the conventional electric vehicle control apparatus.

符号の説明Explanation of symbols

1 燃料電池
2 第1のコンバータ
3 EDLC(電気二重層キャパシタ)
4 第2のコンバータ
5 インバータ
6 主電動機
7 リアクトル
8 半導体素子
9 コンデンサ
10 SIV
11 ダイオード
20 ディーゼル発電機
21 制御整流器
22 バッテリー
23 コンバータ
24 インバータ
1 Fuel Cell 2 First Converter 3 EDLC (Electric Double Layer Capacitor)
4 Second converter 5 Inverter 6 Main motor 7 Reactor 8 Semiconductor element 9 Capacitor 10 SIV
11 Diode 20 Diesel generator 21 Control rectifier 22 Battery 23 Converter 24 Inverter

Claims (6)

電力を発電する燃料電池と、
前記自律電源の出力を制御する第1のコンバータと、
前記燃料電池と接続され、前記燃料電池から供給された電力を変換し、電気車内の空調機器や照明機器に電力を供給する補助電源装置と、
前記第1のコンバータから供給された電力の充放電を行うEDLCと、
前記EDLCの電圧を基準にインバータ入力電圧を制御する第2のコンバータと、
前記第2のコンバータから供給された電力を変換するインバータと、
前記インバータから供給される電力により駆動する主電動機とを備えたことを特徴とする電気車制御装置。
A fuel cell for generating electric power;
A first converter for controlling the output of the autonomous power source;
An auxiliary power supply device connected to the fuel cell, converting power supplied from the fuel cell, and supplying power to an air conditioner or lighting device in an electric vehicle;
EDLC that charges and discharges the power supplied from the first converter;
A second converter for controlling an inverter input voltage based on the voltage of the EDLC;
An inverter that converts electric power supplied from the second converter;
An electric vehicle control device comprising: a main motor driven by electric power supplied from the inverter.
前記請求項1記載の電気車制御装置において、
前記第1のコンバータは、前記燃料電池の出力を一定に制御しすることを特徴とする電気車制御装置。
In the electric vehicle control device according to claim 1,
The electric vehicle control device, wherein the first converter controls the output of the fuel cell to be constant.
前記請求項2記載の電気車制御装置において、
前記第2のコンバータは、電気車が力行時には前記インバータへの入力電圧を一定の電圧にするように前記EDLCの放電電流を制御し、電気車が回生時には、前記インバータへの入力電圧を一定の電圧にするように前記EDLCの充電電流を制御することを特徴とする電気車制御装置。
In the electric vehicle control device according to claim 2,
The second converter controls the discharge current of the EDLC so that the input voltage to the inverter is a constant voltage when the electric vehicle is powered, and the input voltage to the inverter is constant when the electric vehicle is regenerated. An electric vehicle control device that controls a charging current of the EDLC so as to be a voltage.
前記請求項1乃至請求項3記載の電気車制御装置において、
前記EDLCの充電量が所定値を超えた場合には、前記第1及び第2のコンバータは停止することを特徴とする電気車制御装置。
In the electric vehicle control device according to any one of claims 1 to 3,
The electric vehicle control device according to claim 1, wherein when the charge amount of the EDLC exceeds a predetermined value, the first and second converters are stopped.
前記請求項1乃至請求項4記載の電気車制御装置において、
電気車が力行動作時に、前記EDLCの充電量が所定値以下である場合には、前記第1のコンバータにより前記EDLCを充電し前記第2のコンバータは停止することを特徴とする電気車制御装置。
In the electric vehicle control device according to any one of claims 1 to 4,
When the electric vehicle is in a power running operation, if the charge amount of the EDLC is equal to or less than a predetermined value, the EDLC is charged by the first converter and the second converter is stopped. .
前記請求項1乃至請求項5記載の電気車制御装置において、
電気車が回生動作時に、前記EDLCの充電量が所定値を超えた場合には、前記第1のコンバータと前記第2のコンバータの動作を停止することを特徴とする電気車制御装置。
In the electric vehicle control device according to any one of claims 1 to 5,
When the electric vehicle is in a regenerative operation, when the charge amount of the EDLC exceeds a predetermined value, the operation of the first converter and the second converter is stopped.
JP2005105186A 2005-03-31 2005-03-31 Electric vehicle controller Pending JP2006288085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105186A JP2006288085A (en) 2005-03-31 2005-03-31 Electric vehicle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105186A JP2006288085A (en) 2005-03-31 2005-03-31 Electric vehicle controller

Publications (1)

Publication Number Publication Date
JP2006288085A true JP2006288085A (en) 2006-10-19

Family

ID=37409410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105186A Pending JP2006288085A (en) 2005-03-31 2005-03-31 Electric vehicle controller

Country Status (1)

Country Link
JP (1) JP2006288085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112119A1 (en) * 2012-01-24 2013-08-01 Utc Power Corporation Fuel cell hybrid power system for large vehicles
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
KR101766040B1 (en) 2015-09-18 2017-08-07 현대자동차주식회사 Battery charging control system and method for vehicle
KR101803151B1 (en) 2015-10-16 2017-11-29 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein
KR101860695B1 (en) 2015-01-29 2018-05-23 닛산 지도우샤 가부시키가이샤 Parking support system and parking support method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130805A (en) * 1994-10-31 1996-05-21 Okamura Kenkyusho:Kk Electric automobile
JPH10271706A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Power unit and electric vehicle
JP2002159149A (en) * 2000-11-16 2002-05-31 Toyota Industries Corp Power supply circuit of mobile unit fed with power in a noncontact manner
JP2003244801A (en) * 2002-02-14 2003-08-29 Toyota Motor Corp Voltage converter
JP2004072892A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Apparatus and method for driving electrical load and computer-readable recording medium with program recorded thereon for causing computer to drive electrical load
WO2004079853A2 (en) * 2003-03-05 2004-09-16 The Gillette Company Fuel cell hybrid power supply
JP2004282859A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Drive unit for rolling stock
JP2005078925A (en) * 2003-08-29 2005-03-24 Toshiba Corp Battery unit and feeding control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130805A (en) * 1994-10-31 1996-05-21 Okamura Kenkyusho:Kk Electric automobile
JPH10271706A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Power unit and electric vehicle
JP2002159149A (en) * 2000-11-16 2002-05-31 Toyota Industries Corp Power supply circuit of mobile unit fed with power in a noncontact manner
JP2003244801A (en) * 2002-02-14 2003-08-29 Toyota Motor Corp Voltage converter
JP2004072892A (en) * 2002-08-06 2004-03-04 Toyota Motor Corp Apparatus and method for driving electrical load and computer-readable recording medium with program recorded thereon for causing computer to drive electrical load
WO2004079853A2 (en) * 2003-03-05 2004-09-16 The Gillette Company Fuel cell hybrid power supply
JP2004282859A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Drive unit for rolling stock
JP2005078925A (en) * 2003-08-29 2005-03-24 Toshiba Corp Battery unit and feeding control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112119A1 (en) * 2012-01-24 2013-08-01 Utc Power Corporation Fuel cell hybrid power system for large vehicles
KR101860695B1 (en) 2015-01-29 2018-05-23 닛산 지도우샤 가부시키가이샤 Parking support system and parking support method
KR101766040B1 (en) 2015-09-18 2017-08-07 현대자동차주식회사 Battery charging control system and method for vehicle
US9878623B2 (en) 2015-09-18 2018-01-30 Hyundai Motor Company Battery charging control system and method for vehicle
US10131233B2 (en) 2015-09-18 2018-11-20 Hyundai Motor Company Battery charging control system and method for vehicle
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
KR101803151B1 (en) 2015-10-16 2017-11-29 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein

Similar Documents

Publication Publication Date Title
US11075394B2 (en) Apparatus and method for high efficiency operation of fuel cell systems
JP4417948B2 (en) Railway vehicle drive control device
EP2193954B1 (en) Auxiliary drive apparatus and method of manufacturing same
US7977819B2 (en) Power converter and controller using such power converter for electric rolling stock
JP4839783B2 (en) Power system
EP1976721B1 (en) Vehicle propulsion system
US8860359B2 (en) Hybrid energy storage system
WO2011021266A1 (en) Power converter for propulsion of electric car
US20090250999A1 (en) Micro-hybrid device for motor vehicle
JP6546612B2 (en) Battery system control device and battery system
JP2008211952A (en) Power supply unit
JP2007028874A5 (en)
JP2009254169A (en) Power supply system
AU2012387794B2 (en) Propulsion control device of engine hybrid railroad vehicle
KR20100013313A (en) Power conversion controlling method of fuel cell-battery hybrid-electric vehicle and control device
CN102474177A (en) Converter controller
JP2007181328A (en) Control device for vehicle
JP2004056934A (en) Auxiliary power unit
JP2006288085A (en) Electric vehicle controller
JP2004289950A (en) Power supply system
JP2007124802A (en) Vehicle drive system
KR101836643B1 (en) Mild hybrid system of vehicle
KR101987484B1 (en) Device and method for battert charging control of air supercharger having turbo gernerator and electric charger
Joshi et al. Battery ultracapacitor based DC motor drive for electric vehicles
JP2008079436A (en) Power supply control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518