WO2015177974A1 - Spectral sensor - Google Patents

Spectral sensor Download PDF

Info

Publication number
WO2015177974A1
WO2015177974A1 PCT/JP2015/002303 JP2015002303W WO2015177974A1 WO 2015177974 A1 WO2015177974 A1 WO 2015177974A1 JP 2015002303 W JP2015002303 W JP 2015002303W WO 2015177974 A1 WO2015177974 A1 WO 2015177974A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
movable
light receiving
receiving element
light
Prior art date
Application number
PCT/JP2015/002303
Other languages
French (fr)
Japanese (ja)
Inventor
吉原 孝明
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015177974A1 publication Critical patent/WO2015177974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors

Definitions

  • the present invention relates to a spectrum sensor, and more particularly to a spectrum sensor that measures an intensity distribution for each wavelength of light.
  • Document 1 Japanese Patent Application Publication No. 2004-212600 (hereinafter referred to as “Document 1”)).
  • the laser scanning microscope described in Document 1 includes a second detection unit as a configuration for performing spectroscopic measurement of fluorescence from a specimen separately from the first detection unit.
  • the second detection unit includes an imaging lens, a pinhole, a collimator lens, a planar diffraction grating, a condenser lens, a slit, a photoelectric conversion element, a correction processing unit, and a control unit.
  • the plane diffraction grating splits incident light and reflects the light flux at different angles for each wavelength.
  • the planar diffraction grating is provided with a motor as drive means. An encoder that outputs a signal corresponding to the rotation angle of the planar diffraction grating is connected to the motor.
  • An object of the present invention is to provide a spectrum sensor that can be miniaturized.
  • the spectrum sensor of the present invention includes a housing having an opening, a collimating lens, a spectrum separation unit, a first light receiving element, and a first diaphragm.
  • the collimating lens is disposed so as to close the opening of the housing.
  • the spectrum separation unit is housed in the casing and includes a diffraction grating.
  • the spectrum separation unit is configured by a MEMS mirror that separates light emitted from the collimating lens into a plurality of spectra.
  • the first light receiving element is housed in the housing.
  • the first diaphragm is disposed on the light receiving surface side of the first light receiving element and is housed in the housing, and has a first slit through which light having a predetermined wavelength band passes.
  • the spectrum sensor further includes a second light receiving element, a second diaphragm, a signal processing device, and a drive unit.
  • the second light receiving element is disposed so as to be able to receive 0th-order diffracted light among the light diffracted by the diffraction grating provided in the movable part of the MEMS mirror, and is housed in the housing.
  • the second diaphragm is disposed on the light receiving surface side of the second light receiving element and is housed in the housing, and has a second slit through which light in the predetermined wavelength band passes.
  • the first light receiving element is disposed so as to be able to receive diffracted light of a specified order other than the 0th order among the light diffracted by the diffraction grating.
  • the signal processing device corresponds to a swing angle of the movable part or a swing angle thereof based on at least the timing when the second-order diffracted light is detected by the second light receiving element and the vibration frequency of the movable part.
  • An arithmetic unit for obtaining the time to perform The signal processing device is configured to correlate the wavelength stored in advance corresponding to the deflection angle of the movable part and the signal of the first light receiving element obtained at the deflection angle on a one-to-one basis.
  • the MEMS mirror includes a frame-shaped support part, the movable part arranged inside the support part, and a pair of twists arranged so as to sandwich the movable part and connecting the support part and the movable part.
  • the drive unit is housed in the housing, and is provided integrally with the MEMS mirror so as to drive the movable unit.
  • the spectrum sensor of the present invention can be downsized.
  • FIG. 1 is a schematic configuration diagram of a spectrum sensor according to an embodiment.
  • FIG. 2 is a schematic perspective view in which a main part of the spectrum sensor according to the embodiment is partially broken.
  • FIG. 3 is a schematic plan view of the MEMS mirror in the spectrum sensor of the embodiment. 4 is a schematic cross-sectional view taken along the line X1-X1 of FIG. 5 is a schematic cross-sectional view taken along the line X2-Y2 of FIG.
  • FIG. 6 is an operation explanatory diagram of the spectrum sensor of the embodiment.
  • FIG. 7 is an operation explanatory diagram of the spectrum sensor of the embodiment.
  • FIG. 8 is an operation explanatory diagram of the spectrum sensor of the embodiment.
  • FIG. 9 is an operation explanatory diagram of the spectrum sensor of the embodiment.
  • FIG. 10 is an operation explanatory diagram of the spectrum sensor of the embodiment.
  • the spectrum sensor 100 is a sensor that measures the distribution of intensity for each wavelength of light.
  • the spectrum sensor 100 is a sensor that measures the relative spectral distribution as a function of wavelength.
  • the spectrum sensor 100 has sensitivity in a predetermined wavelength band, for example.
  • As the predetermined wavelength band a wavelength range of visible light is set.
  • the wavelength range of visible light in this specification is 400 nm to 800 nm.
  • the wavelength resolution of the spectrum sensor 100 can be set to 10 nm, for example.
  • the spectrum sensor 100 includes a housing 1 having an opening 11, a collimating lens 2, a spectrum separating unit 3, a first light receiving element 5, and a first diaphragm 6.
  • the collimating lens 2 is disposed so as to close the opening 11 of the housing 1.
  • the spectrum separation unit 3 is housed in the housing 1 and includes a diffraction grating 35.
  • the spectrum separation unit 3 includes a MEMS (Micro Electro Mechanical System) mirror 30 that separates light emitted from the collimating lens 2 into a plurality of spectra.
  • the first light receiving element 5 is housed in the housing 1.
  • the first diaphragm 6 is disposed on the light receiving surface 51 side of the first light receiving element 5 and is housed in the housing 1 and has a first slit 61 that allows light in a predetermined wavelength band to pass through.
  • the spectrum sensor 100 further includes a second light receiving element 7, a second diaphragm 8, a signal processing device 10, and a drive unit 4.
  • the second light receiving element 7 is disposed and accommodated in the housing 1 so as to be able to receive 0th-order diffracted light among the light diffracted by the diffraction grating 35 provided in the movable portion 32 of the MEMS mirror 30. .
  • the second diaphragm 8 is disposed on the light receiving surface 71 side of the second light receiving element 7 and is housed in the housing 1, and has a second slit 81 that allows light in a predetermined wavelength band to pass through.
  • the first light receiving element 5 is arranged so as to be able to receive diffracted light of a specified order other than the 0th order among the light diffracted by the diffraction grating 35.
  • the signal processing device 10 corresponds to the deflection angle of the movable portion 32 or the deflection angle thereof based on at least the timing when the second-order diffracted light is detected by the second light receiving element 7 and the vibration frequency of the movable portion 32.
  • the calculating part 18 which calculates
  • the signal processing apparatus 10 is configured to associate the wavelength stored in advance corresponding to the deflection angle of the movable unit 32 with the signal of the first light receiving element 5 obtained at the deflection angle, on a one-to-one basis.
  • the MEMS mirror 30 is a pair of a frame-shaped support part 31, a movable part 32 arranged inside the support part 31, and a pair of parts arranged so as to sandwich the movable part 32 and connecting the support part 31 and the movable part 32.
  • a torsion spring portion 33 and a mirror portion 34 formed on the surface 32a side of the movable portion 32 are provided.
  • the diffraction grating 35 is formed on the surface of the mirror portion 34.
  • the drive unit 4 is housed in the housing 1 and is provided integrally with the MEMS mirror 30 so as to drive the movable unit 32. Therefore, the spectrum sensor 100 can be downsized.
  • the spectrum sensor 100 further includes a storage unit 9 and a signal processing device 10.
  • the storage unit 9 stores in advance the relationship between the deflection angle of the movable unit 32 and the wavelength of light incident on the first light receiving element 5.
  • the signal processing apparatus 10 includes a calculation unit 18 that obtains the deflection angle of the movable unit 32 based on at least the timing when the second-order diffracted light is detected by the second light receiving element 7 and the vibration frequency of the movable unit 32. .
  • the signal processing device 10 is configured to associate the wavelength read from the storage unit 9 with the signal of the first light receiving element 5 on a one-to-one basis based on the deflection angle obtained by the calculation unit 18.
  • the deflection angle means a rotation angle when the movable portion 32 rotates from a horizontal posture parallel to the support portion 31.
  • the second light receiving element 7 is preferably disposed at a position for receiving the 0th-order diffracted light when the swing angle of the movable portion 32 in the prescribed rotation direction of the movable portion 32 (see FIG. 7) is maximized. .
  • the spectrum sensor 100 can improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can improve the measurement accuracy of the spectrum.
  • the prescribed rotation direction is a counterclockwise direction in FIG.
  • the MEMS mirror 30 preferably includes a detection unit 36 that detects the timing at which the swing angle of the movable unit 32 becomes 0 degrees.
  • the calculation unit 18 is based on the timing at which the 0th-order diffracted light is detected by the second light receiving element 7, the vibration frequency of the movable unit 32, and the timing detected by the detection unit 36. It is preferable that the deflection angle is determined.
  • the spectrum sensor 100 can further improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can further improve the spectrum measurement accuracy.
  • the spectrum sensor 100 preferably includes a drive circuit 45 that applies a drive voltage to the drive unit 4, and a timing control unit 55 that controls the operation timing of each of the drive circuit 45 and the signal processing device 10.
  • the spectrum sensor 100 includes a housing 1 having an opening 11, a spectrum separation unit 3, a drive unit 4 (see FIG. 3), a first light receiving element 5, a first diaphragm 6, and a second light reception.
  • the element 7 and the second diaphragm 8 are accommodated.
  • the housing 1 may have only the opening 11.
  • the spectrum sensor 100 is preferably arranged such that the collimating lens 2 closes the opening 11 of the housing 1 and the internal space of the housing 1 is in a reduced pressure atmosphere. As a result, the spectrum sensor 100 can increase the swing angle of the movable portion 32 while reducing power consumption compared to the case where the internal space of the housing 1 is atmospheric pressure.
  • the spectrum sensor 100 is not limited to the case where the internal space of the housing 1 is a reduced pressure atmosphere, and may be an inert gas atmosphere.
  • the spectrum sensor 100 can improve stability over time such as measurement accuracy by setting the internal space of the housing 1 to a reduced pressure atmosphere or an inert gas atmosphere.
  • the inert gas for example, N 2 gas, Ar gas, or the like can be employed.
  • the housing 1 is formed in a box shape.
  • the casing 1 adopts a rectangular box shape as a box shape.
  • the housing 1 has a bottom portion 1a, a plurality (four in the example of FIG. 2) side portions 1b, and an upper portion 1c.
  • the opening 11 is formed so as to penetrate in the thickness direction of the wall 12 of the housing 1 (upper part 1c in the example of FIG. 1).
  • the opening shape of the opening 11 is preferably, for example, a circular shape.
  • casing 1 may have the bottom part 1a, the side part 1b which consists of one surrounding wall, and the upper part 1c.
  • the housing 1 is preferably formed of, for example, a black resin.
  • the spectrum sensor 100 can reduce stray light reaching the first light receiving element 5 and the second light receiving element 7 respectively. Therefore, the spectrum sensor 100 can improve the S / N ratio of the outputs of the first light receiving element 5 and the second light receiving element 7.
  • the housing 1 is not limited to black resin, and may be formed of metal, for example. In this case, for example, the spectrum sensor 100 may coat the inner surface side of the housing 1 with a black coating material, or may form black alumite.
  • the spectrum sensor 100 may be configured such that the inner surface of the housing 1 is a rough surface that scatters stray light. Thereby, the spectrum sensor 100 can reduce stray light reaching the light receiving surface 51 of the first light receiving element 5 and the light receiving surface 71 of the second light receiving element 7.
  • the collimating lens 2 is configured so that light incident from the outside of the spectrum sensor 100 becomes a parallel light beam.
  • the collimating lens 2 is configured to convert incident light into parallel light.
  • the collimating lens 2 can be composed of, for example, a biconvex lens 21 and a plano-concave lens 22.
  • the MEMS mirror 30 is manufactured using MEMS manufacturing technology. The structure of the MEMS mirror 30 will be described with reference to FIGS.
  • the MEMS mirror 30 has a support portion 31, a movable portion 32, and a pair of torsion spring portions 33 formed from a substrate 300.
  • a substrate 300 an SOI substrate in which a silicon layer 313 is formed on a silicon oxide film 312 on a silicon substrate 311 is used.
  • the silicon oxide film 312 can be composed of, for example, a buried oxide film.
  • the surface of the silicon layer 313 of the SOI substrate is a (100) plane.
  • the thickness of the silicon substrate 311, the silicon oxide film 312, and the silicon layer 313 can be set to 400 ⁇ m, 1 ⁇ m, and 30 ⁇ m, respectively.
  • the silicon substrate 311 and the silicon layer 313 have conductivity.
  • the silicon oxide film 312 constitutes an insulating film having electrical insulation.
  • the outer peripheral shape of the support portion 31 is a rectangle (right-angled quadrilateral).
  • the wafer serving as the basis of the substrate 300 is an SOI wafer.
  • the chip size of the MEMS mirror 30 can be set to 4 mm ⁇ 4 mm, for example.
  • the support portion 31 adopts a rectangular frame shape as the frame shape.
  • the support portion 31 is formed of a silicon substrate 311, a silicon oxide film 312, and a silicon layer 313 among the SOI substrate.
  • the MEMS mirror 30 has a movable portion 32 and a pair of torsion spring portions 33 formed on the first surface 301 side in the thickness direction of the substrate 300.
  • the first surface 301 of the substrate 300 is constituted by the surface of the silicon layer 313.
  • the movable portion 32 and the pair of torsion spring portions 33 are formed from a silicon layer 313 of the SOI substrate. Accordingly, the movable portion 32 and the pair of torsion spring portions 33 are sufficiently thinner than the support portion 31.
  • the outer peripheral shape of the movable part 32 is rectangular.
  • the movable part 32 has a thickness set to 30 ⁇ m.
  • the mirror part 34 has a rectangular outer peripheral shape.
  • the mirror part 34 can be comprised by the reflective film formed on the silicon layer 313, for example. Al is adopted as the material of the reflective film.
  • the material of the reflective film is not limited to Al, and for example, Ag, Al—Si, Au, or the like may be employed.
  • the thickness of the mirror part 34 can be set to 500 nm, for example.
  • the torsion spring portion 33 is a torsion bar that can be torsionally deformed.
  • the torsion spring portion 33 has a thickness of 30 ⁇ m and a width of 5 ⁇ m.
  • the movable part 32 is rotatable about a pair of torsion spring parts 33 supported by the support part 31 as a rotation axis. More specifically, the movable portion 32 is rotatable with respect to the support portion 31 around a straight line including the axis of the pair of torsion spring portions 33.
  • the movable portion 32 has the first position (see ⁇ m in FIG. 6) at which the maximum deflection angle is obtained in the clockwise direction and the maximum deflection angle in the counterclockwise direction, with the pair of torsion spring portions 33 as the rotation axes. It can reciprocate between the second position (see ⁇ m ⁇ in FIG. 7). As shown in FIG.
  • the deflection angle in the present specification is based on the position of the movable portion 32 that is not driven, and the clockwise direction is a positive angle and the counterclockwise direction is a negative angle. .
  • the direction in which the pair of torsion springs 33 are arranged in the movable portion 32 is defined as a first direction D1
  • the direction perpendicular to the first direction D1 in the movable portion 32 is defined as a second direction D2.
  • the first light receiving element 5 and the second light receiving element 7 are provided between the collimating lens 2 and the movable portion 32.
  • the first light receiving element 5 is arranged on the first end side of the movable portion 32 on the first side (right side in the drawing) in the second direction D2, while the second light receiving element 7 is arranged in the second direction D2. It is arranged on the second end side of the movable part 32 on the second side (left side in the figure).
  • the clockwise direction is a direction in which the first end portion of the movable portion 32 is separated from the first light receiving element 5 side and the second end portion of the movable portion 32 is closer to the first light receiving element 5 side.
  • the counterclockwise direction is a direction in which the first end portion of the movable portion 32 approaches the first light receiving element 5 side and the second end portion of the movable portion 32 moves away from the first light receiving element 5 side.
  • the movable part 32 is rotatable about the pair of torsion spring parts 33 arranged in the first direction D1 as the rotation axis.
  • the diffraction grating 35 is a reflective diffraction grating that diffracts the light emitted from the collimating lens 2 and reflects it at different angles for each wavelength.
  • the diffraction grating 35 is configured to emit each wavelength component of light contained in incident light in a direction corresponding to each wavelength.
  • the diffraction grating 35 has a plurality of grooves 35b arranged in the second direction D2. More specifically, in the diffraction grating 35, a plurality of grooves 35b are periodically formed in the second direction D2. Each groove 35b is formed along the first direction D1.
  • the diffraction grating 35 emits diffracted light of each order (the order of diffraction) when the light emitted from the collimating lens 2 enters.
  • the light L entering and exiting the collimating lens 2 is schematically described by broken lines.
  • the range in which the 0th-order diffracted light (reflected light) DL0 is emitted is schematically illustrated by an elongated band shape indicated by a dashed line.
  • the emission ranges of the first-order diffracted light DL1 and the ⁇ 1st-order diffracted light DL1- are schematically described in fan shapes indicated by alternate long and short dash lines.
  • the spectrum sensor 100 preferably employs the first-order diffracted light DL1 as the diffracted light having a specified order other than the 0th order from the viewpoint of increasing sensitivity.
  • the shape of the groove 35b in the cross section orthogonal to the first direction D1 is a sawtooth shape. Accordingly, the diffraction grating 35 can further increase the diffraction efficiency of the first-order diffracted light DL1 as compared with the case where the shape of the groove 35b in the cross section orthogonal to the first direction D1 is rectangular.
  • the period d of the groove 35b is the grating period.
  • the period d of the groove 35b can be set in a range of about 500 nm to 2000 nm, for example.
  • the depth of the groove 35b can be set, for example, in the range of about 10 nm to 100 nm.
  • the blaze angle of the groove 35b can be set to 7 degrees, for example.
  • the spectrum sensor 100 rotates the diffraction grating 35 by rotating the movable part 32 of the MEMS mirror 30, thereby changing the wavelength of the light incident on the light receiving surface 51 of the first light receiving element 5, and the light intensity for each wavelength. Can be measured (see the first-order diffracted light DL1 in FIGS. 1, 6 and 7).
  • the swing angle of the movable part 32 is specified in order to specify the wavelength of the light incident on the light receiving surface 51. There is a need. A configuration for specifying the deflection angle of the movable portion 32 will be described later.
  • the microactuator constituting the drive unit 4 is an electrostatic actuator that drives the movable unit 32 by electrostatic force, and is preferably formed integrally with the MEMS mirror 30.
  • the drive unit 4 is paired with a pair of movable electrodes 41 formed on both sides of the movable unit 32 in the second direction D2 and a pair of movable electrodes 41 formed on the support unit 31. 1 and a pair of fixed electrodes 42 facing each other. That is, the drive unit 4 that is an electrostatic actuator includes two sets of the movable electrode 41 and the fixed electrode 42 that face each other. In the drive unit 4, the movable electrode 41 and the fixed electrode 42 are formed from the silicon layer 313. The drive unit 4 drives the movable unit 32 by an electrostatic force generated between the movable electrode 41 and the fixed electrode 42.
  • the movable electrode 41 and the fixed electrode 42 are preferably comb-shaped.
  • the comb-shaped movable electrode 41 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 41a formed along the first direction D1 and the support portion 31 of the comb bone portion 41a.
  • the plurality of comb teeth 41b of the movable electrode 41 are formed side by side in the first direction D1.
  • the comb-shaped fixed electrode 42 includes a plurality of comb teeth projecting along the second direction D2 from the facing surfaces of the comb bone portion 42a formed along the first direction D1 and the movable portion 32 of the comb bone portion 42a.
  • the plurality of comb-tooth portions 42b of the fixed electrode 42 are formed side by side in the first direction D1.
  • the comb-shaped movable electrode 41 and the comb-shaped fixed electrode 42 are arranged so as to be intertwined with each other. More specifically, in the driving unit 4, the comb bone portions 41 a and 42 a of the movable electrode 41 and the fixed electrode 42 face each other, and the comb tooth portions 41 b of the movable electrode 41 and the fixed electrode 42 of the movable electrode 41 in the first direction D ⁇ b> 1.
  • the comb tooth portions 42b are alternately arranged. What is necessary is just to set suitably the clearance gap between the comb-tooth part 41b and the comb-tooth part 42b which adjoin in the 1st direction D1, for example in the range of about 5 micrometers-20 micrometers.
  • the drive unit 4 generates an electrostatic force that acts in the direction of attracting between the movable electrode 41 and the fixed electrode 42 when a voltage is applied between the movable electrode 41 and the fixed electrode 42.
  • the MEMS mirror 30 is tilted although the movable part 32 is not in a horizontal posture even in a stationary state but is slightly inclined due to the internal stress of the movable part 32 and the pair of torsion spring parts 33. For this reason, for example, when a pulse voltage is applied between the movable electrode 41 and the fixed electrode 42, the MEMS mirror 30 causes the movable portion 32 to move in the thickness direction of the support portion 31 even from a stationary state. A driving force in the direction along is applied. As a result, the MEMS mirror 30 rotates while the movable portion 32 twists the pair of torsion spring portions 33 around the pair of torsion spring portions 33 as rotation axes.
  • the movable portion 32 repeats rotation by the driving force of the driving portion 4 and the restoring force of the pair of torsion spring portions 33.
  • the drive part 4 can reciprocately rotate the movable part 32 by making a pair of torsion spring part 33 into a rotating shaft.
  • the drive unit 4 can swing the movable unit 32 around the pair of torsion springs 33 as the rotation axis.
  • the MEMS mirror 30 is driven with a resonance phenomenon by applying a pulse voltage having a frequency approximately twice the resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33. .
  • the MEMS mirror 30 can have a larger deflection angle than when driven at a frequency that does not cause a resonance phenomenon.
  • the drive voltage of the MEMS mirror 30 can be set in the range of about 20 to 50V, for example.
  • the MEMS mirror 30 preferably has a resonance frequency of the vibration system of 1 kHz or less, and preferably 200 Hz or less.
  • the resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33 is determined by the shape of the movable portion 32, the mass of the movable portion 32, the spring constant of each torsion spring portion 33, and the like.
  • the resonance frequency is the resonance frequency of the torsional vibration mode. Since the MEMS mirror 30 is formed with the movable portion 32 and each torsion spring portion 33 from the silicon layer 313 of the SOI substrate, the movable portion 32 and each torsion spring portion 33 are compared with the case where the substrate 300 is a silicon substrate. It becomes possible to increase the accuracy of the thickness. Thereby, the MEMS mirror 30 can improve the accuracy of the resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33.
  • the detection unit 36 includes a pair of movable electrodes 37 formed on both sides in the second direction D2 in the movable unit 32, and a pair of fixed electrodes 38 formed on the support unit 31 and facing the pair of movable electrodes 37, respectively.
  • a capacitive sensor is preferred.
  • the spectrum sensor 100 detects the timing at which the swing angle of the movable portion 32 becomes 0 degrees by a capacitive sensor having a simple structure including the pair of movable electrodes 37 and the pair of fixed electrodes 38. It becomes possible.
  • the movable electrode 37 and the fixed electrode 38 are preferably comb-shaped.
  • the comb-shaped movable electrode 37 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 37a formed along the first direction D1 and the support portion 31 of the comb bone portion 37a.
  • the plurality of comb teeth portions 37b of the movable electrode 37 are formed side by side in the first direction D1.
  • the comb-shaped fixed electrode 38 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 38a formed along the first direction D1 and the movable portion 32 of the comb bone portion 38a.
  • the plurality of comb-tooth portions 38b of the fixed electrode 38 are formed side by side in the first direction D1.
  • the comb-shaped movable electrode 37 and the comb-shaped fixed electrode 38 are arranged so as to be intertwined with each other. More specifically, in the detection unit 36, the comb bone portions 37 a and 38 a of the movable electrode 37 and the fixed electrode 38 are opposed to each other, and the comb teeth 37 b and the fixed electrode 38 of the movable electrode 37 in the first direction D ⁇ b> 1.
  • the comb tooth portions 38b are alternately arranged. What is necessary is just to set suitably the clearance gap between the comb-tooth part 37b and the comb-tooth part 38b which adjoin in the 1st direction D1, for example in the range of about 5 micrometers-20 micrometers.
  • a first pad electrode 39a, a second pad electrode 39b, and a third pad electrode 39c are formed on the surface 31a side of the support portion 31.
  • the first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c have a square shape in plan view.
  • the first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c are made of a metal film.
  • the metal film is an Al—Si film.
  • the thicknesses of the first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c are set to 500 nm.
  • the movable electrode 41 of the driving unit 4 and the first pad electrode 39a are electrically connected.
  • the fixed electrode 42 of the driving unit 4 and the second pad electrode 39b are electrically connected.
  • the movable electrode 37 of the detector 36 and the first pad electrode 39a are electrically connected.
  • the fixed electrode 38 of the detection unit 36 and the third pad electrode 39c are electrically connected.
  • the movable electrode 41 of the drive unit 4 is referred to as a first movable electrode
  • the fixed electrode 42 of the drive unit 4 is referred to as a first fixed electrode
  • the movable electrode 37 of the detection unit 36 is referred to as a second movable electrode.
  • the fixed electrode 38 of the detection unit 36 can be referred to as a second fixed electrode.
  • a plurality of grooves 314 having a depth reaching the silicon oxide film 312 from the surface of the silicon layer 313 are formed in the support portion 31.
  • the movable electrode 41 and the fixed electrode 42 of the drive unit 4 are electrically insulated, and the movable electrode 37 and the fixed electrode 38 of the detection unit 36 are electrically insulated.
  • the MEMS mirror 30 has fixed electrodes 42 formed at four locations, and the upper two fixed electrodes 42 and the lower two fixed electrodes 42 in FIG. They are electrically connected by wiring such as conductive wires.
  • the MEMS mirror 30 by applying a driving voltage between the movable electrode 41 and the fixed electrode 42 facing each other, an electrostatic force is generated between the movable electrode 41 and the fixed electrode 42 facing each other, and the movable portion 32.
  • the pair of torsion spring portions 33 rotate around the rotation axis. Therefore, in the MEMS mirror 30, by applying a pulse voltage of a predetermined frequency between the movable electrode 41 and the fixed electrode 42 facing each other, an electrostatic force can be periodically generated, and the movable part 32 is continuously formed. Can be rotated back and forth.
  • the MEMS mirror 30 can swing the movable portion 32 around the pair of torsion spring portions 33 as rotation axes. More specifically, the predetermined frequency is preferably about twice the resonance frequency.
  • the MEMS mirror 30 has a movable portion 32 and a pair of torsion spring portions 33 as rotation axes within an angular range (swing range) determined by a maximum clockwise swing angle ⁇ m and a maximum counterclockwise swing angle ⁇ m ⁇ . Can be swung.
  • the maximum deflection angle ⁇ m in the clockwise direction can be set to +15 degrees, for example. Further, the maximum deflection angle ⁇ m ⁇ in the counterclockwise direction can be set to ⁇ 15 degrees, for example.
  • the MEMS mirror 30 is applied with a drive voltage between the movable electrode 41 and the fixed electrode 42 facing each other when a drive voltage is applied between the first pad electrode 39a and the second pad electrode 39b.
  • a detection voltage having a higher frequency than the drive voltage of the drive unit 4 is applied between the movable electrode 37 and the fixed electrode 38 facing each other in the detection unit 36.
  • the detection unit 36 has a capacitance of a capacitor including the movable electrode 37 and the fixed electrode 38 according to a change in the relative position of the movable unit 32 with respect to the support unit 31 (that is, a change in the deflection angle of the movable unit 32). Changes, and the current value based on the detection voltage of the current flowing through the detection unit 36 changes. This current value becomes the largest when the deflection angle of the movable part 32 is 0 degree. Therefore, the signal processing apparatus 10 can know the timing at which the deflection angle of the movable unit 32 becomes 0 degrees by monitoring the current flowing through the detection unit 36.
  • the center line of the movable part 32 along the thickness direction of the movable part 32 is on the optical axis 201 of the collimator lens 2 in a state where the swing angle of the movable part 32 is 0 degree.
  • a substrate 300 made of an SOI substrate is prepared, and then an unevenness 321 (see FIG. 4) corresponding to the shape of the diffraction grating 35 is formed on the first surface 301 of the substrate 300.
  • a formation process is performed.
  • the uneven shape is a texture structure.
  • the uneven shape can be formed using, for example, a photolithography technique and an etching technique.
  • the concavo-convex shape can also be formed using an imprint technique and an etching technique.
  • a metal film forming step is performed.
  • a metal film is formed on the first surface 301 side of the substrate 300 using a sputtering method, a vapor deposition method, or the like.
  • the first patterning step is performed after the metal film forming step.
  • the metal film is patterned so that the first pad electrode 39a, the second pad electrode 39b, the third pad electrode 39c, and the mirror part 34 are formed from the metal film.
  • a diffraction grating 35 is formed on the surface side of the mirror portion 34.
  • a second patterning step for patterning the silicon layer 313 of the SOI substrate is performed.
  • the second patterning step of the silicon layer 313, the movable portion 32, the pair of torsion spring portions 33, the support portion 31, the pair of movable electrodes 41, the pair of fixed electrodes 42, the pair of movable electrodes 37, and the pair of fixed electrodes 38.
  • the silicon layer 313 is patterned so as to leave a portion corresponding to.
  • unnecessary portions of the silicon layer 313 are etched using a photolithography technique and an etching technique.
  • the silicon oxide film 312 is used as an etching stopper layer.
  • a third patterning step for patterning the silicon substrate 311 is performed.
  • the silicon substrate 311 is patterned so that a portion of the silicon substrate 311 corresponding to the support portion 31 remains.
  • unnecessary portions of the silicon substrate 311 are etched using photolithography technology and etching technology.
  • the silicon oxide film 312 is used as an etching stopper layer.
  • a fourth patterning step for patterning the silicon oxide film 312 is performed.
  • the MEMS mirror 30 is obtained by performing the fourth patterning step.
  • the process until the completion of the fourth patterning process is performed at the wafer level and then the dicing process is performed to divide the MEMS mirror 30 into individual MEMS mirrors 30.
  • the MEMS mirror 30 is mounted on the first support substrate 401.
  • the first support substrate 401 can be configured by, for example, a printed circuit board.
  • the first support substrate 401 is positioned with respect to the housing 1 within the housing 1.
  • the first support substrate 401 is preferably positioned with respect to the housing 1 by being fixed to the housing 1, for example.
  • the first light receiving element 5 is preferably composed of a photodiode. Thereby, the first light receiving element 5 can be reduced in size and improved in response. What is necessary is just to change the material and structure of the 1st light receiving element 5 according to the wavelength, light quantity, etc. of the light received with the 1st light receiving element 5.
  • the first light receiving element 5 is arranged in the housing 1 so as to receive the first-order diffracted light DL1 from the diffraction grating 35. More specifically, in the spectrum sensor 100, the first light receiving element 5 is arranged so that the first-order diffracted light DL 1 is received by the first light receiving element 5 regardless of the deflection angle of the movable portion 32. In the example of FIG. 1, the first light receiving element 5 is configured to receive only the first-order diffracted light DL ⁇ b> 1 regardless of the deflection angle of the movable portion 32.
  • the diffraction angle of the first-order diffracted light DL1 is a function of the wavelength of the light.
  • the first light receiving element 5 is arranged so that the optical axis 501 of the first light receiving element 5 and the center line of the emission range of the primary light DL1 are aligned when the swing angle of the movable part 32 is 0 degree. It is preferable.
  • the first light receiving element 5 is a photoelectric conversion element, and outputs a signal (hereinafter referred to as “photoelectric conversion signal”) corresponding to the light intensity of the light incident on the light receiving surface 51.
  • the spectrum sensor 100 further includes an output unit 65, and the signal processing device 10 is configured to output a light intensity signal obtained from the photoelectric conversion signal via the output unit 65.
  • the output unit 65 may be included in the signal processing device 10.
  • the output unit 65 may be a digital output port of the signal processing device 10.
  • the first light receiving element 5 receives the first-order diffracted light DL1 in the spectrum sensor 100, the first light-receiving element 5 can be downsized as compared with the case where the second-order or higher order diffracted light is received. In addition, the amount of light received by the first light receiving element 5 can be increased.
  • the first light receiving element 5 is mounted on the second support substrate 402.
  • the second support substrate 402 can be configured by, for example, a printed circuit board.
  • the second support substrate 402 is positioned with respect to the housing 1 within the housing 1.
  • the second support substrate 402 is preferably positioned with respect to the housing 1 by being fixed to the housing 1, for example.
  • the shape of the first slit 61 in the first diaphragm 6 is preferably a linear shape, for example.
  • the first diaphragm 6 is preferably arranged so that the longitudinal direction of the first slit 61 is in the direction along the first direction D1.
  • the distance between the first diaphragm 6 and the center of the diffraction grating 35 can be set to 5 mm, for example.
  • the width of the first slit 61 can be appropriately set according to the desired wavelength resolution of the spectrum sensor 100. For example, when the wavelength resolution is 10 nm, it can be set to 0.065 mm.
  • the center of the first slit 61 is preferably on the optical axis 501 of the first light receiving element 5.
  • the first diaphragm 6 can be constituted by, for example, a first light shielding film arranged so as to cover the light receiving surface 51 of the first light receiving element 5. Thereby, the first diaphragm 6 can be formed integrally with the first light receiving element 5.
  • the first light shielding film shields light.
  • the opening formed in the first light shielding film constitutes the first slit 61.
  • a material of the first light shielding film for example, a metal or the like can be employed.
  • the first light shielding film can be formed using, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like.
  • the first light-shielding film is preferably made of a material having a high light absorption rate from the viewpoint of reducing stray light due to multiple reflection of light, and may be formed of a material other than metal.
  • the spectrum sensor 100 includes the first diaphragm 6, the wavelength of the first-order diffracted light DL1 received by the first light receiving element 5 changes according to the deflection angle (rotation angle) of the movable part 32. Therefore, the relationship between the deflection angle of the movable part 32 and the output of the first light receiving element 5 is, for example, as shown in the schematic diagram of FIG. FIG. 8 shows three curves with the deflection angle as a function, but these three curves have a one-to-one correspondence with the three spectra with the wavelength as a function. In other words, in FIG.
  • the deflection angle can be converted into a wavelength, and the leftmost curve of the three curves corresponds to the spectrum having the center wavelength ⁇ 1, and the middle curve is the spectrum having the center wavelength ⁇ 2.
  • the rightmost curve corresponds to the spectrum having the center wavelength ⁇ 3.
  • the second light receiving element 7 is preferably composed of a photodiode. As a result, the second light receiving element 7 can be reduced in size and improved in response.
  • the material and configuration of the second light receiving element 7 may be changed according to the wavelength, light amount, etc. of the light received by the second light receiving element 7.
  • the second light receiving element 7 is arranged so as to be able to receive the reflected light which is the 0th-order diffracted light DL0 from the diffraction grating 35 (see FIG. 7). More specifically, the spectrum sensor 100 receives the 0th-order diffracted light by the second light receiving element 7 when the deflection angle of the movable portion 32 in the prescribed rotational direction of the movable portion 32 is the negative maximum deflection angle ⁇ m ⁇ . Thus, the second light receiving element 7 is arranged. In other words, the spectrum sensor 100 receives the second-order diffracted light DL0 so that it receives the 0th-order diffracted light DL0 when the movable part 32 is at a position (see FIG.
  • the position of the light receiving element 7 is set.
  • the spectrum sensor 100 emits the optical axis 701 of the second light receiving element 7 and the 0th-order diffracted light DL0 when the deflection angle of the movable portion 32 in the prescribed rotational direction of the movable portion 32 is the negative maximum deflection angle ⁇ m ⁇ .
  • the second light receiving element 7 is arranged so as to be aligned with the center line of the range.
  • the “position where the negative maximum deflection angle ⁇ m ⁇ ” is not only a position where the negative maximum deflection angle ⁇ m ⁇ is strictly, but also a deflection angle whose absolute value is about 1 degree smaller than the negative maximum deflection angle ⁇ m ⁇ . To the position. Therefore, the position of the second light receiving element 7 can be in the range of ⁇ 15 degrees to ⁇ 14 degrees of the position where the negative maximum deflection angle ⁇ m ⁇ is obtained, for example.
  • the second light receiving element 7 is a photoelectric conversion element, and outputs a signal (photoelectric conversion signal) corresponding to the light intensity of the light incident on the light receiving surface 71.
  • the second light receiving element 7 is mounted on the third support substrate 403.
  • the third support substrate 403 can be constituted by a printed circuit board, for example.
  • the third support substrate 403 is positioned with respect to the housing 1 within the housing 1.
  • the third support substrate 403 is preferably positioned with respect to the housing 1 by being fixed to the housing 1.
  • the first light receiving element 5 and the second light receiving element 7 are preferably arranged in a direction along the rotation direction of the movable portion 32.
  • the MEMS mirror 30 when the MEMS mirror 30 is used by making incident light incident on the diffraction grating 35 along a plane orthogonal to the first direction D1, reflected light that is the 0th-order diffracted light DL0 from the diffraction grating 35 is The light can travel along the plane and enter the second light receiving element 7.
  • the MEMS mirror 30 can cause the first-order diffracted light DL1 from the diffraction grating 35 to travel along the plane and enter the first light receiving element 5.
  • the shape of the second slit 81 in the second diaphragm 8 is preferably a linear shape, for example.
  • the second diaphragm 8 is preferably arranged so that the longitudinal direction of the second slit 81 is in the direction along the first direction D1.
  • the distance between the second diaphragm 8 and the center of the diffraction grating 35 can be set to 5 mm, for example.
  • the width of the second slit 81 can be set to 0.065 mm, for example.
  • the center of the second slit 81 is preferably on the optical axis 701 of the second light receiving element 7.
  • the second diaphragm 8 can be constituted by, for example, a second light shielding film arranged so as to cover the light receiving surface 71 of the second light receiving element 7. Thereby, the second diaphragm 8 can be formed integrally with the second light receiving element 7.
  • the second light shielding film shields light.
  • the opening formed in the second light shielding film forms the second slit 81.
  • a metal or the like can be employed as the material of the second light shielding film.
  • the second light shielding film can be formed using, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like.
  • the second light-shielding film is preferably made of a material having a high light absorption rate from the viewpoint of reducing stray light due to multiple reflections of light, and may be formed of a material other than metal.
  • the storage unit 9 can be constituted by, for example, a semiconductor memory.
  • a semiconductor memory for example, a nonvolatile memory is preferably employed.
  • the nonvolatile memory for example, an EEPROM or the like can be adopted.
  • the storage unit 9 preferably stores a data table in which the deflection angle of the movable unit 32 and the wavelength of light incident on the first light receiving element 5 are associated with each other.
  • the data table includes various deflection angle values and various wavelengths (wavelength values) respectively associated with the various deflection angles.
  • the range of various deflection angles corresponds to the light receiving range of the first-order diffracted light DL1 by the first light receiving element 5, as shown in FIGS.
  • a spectrophotometer and a laser displacement meter may be used.
  • a spectrophotometer is arranged in place of the first light receiving element 5, and the swing angle of the movable part 32 is changed by changing the magnitude of the voltage applied to the drive part 4 of the MEMS mirror 30, so that the spectrophotometer What is necessary is just to measure the wavelength of light with a meter.
  • the deflection angle of the movable part 32 can be obtained, for example, by measuring the inclination of the movable part 32 with a laser displacement meter.
  • the calculation unit 18 determines the deflection angle of the movable unit 32 based on the timing at which the 0th-order diffracted light DL 0 is detected by the second light receiving element 7 and the vibration frequency of the movable unit 32.
  • the signal processing apparatus 10 includes a processing unit 19 that associates the wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 with the signal of the first light receiving element 5 on a one-to-one basis.
  • the signal processing apparatus 10 can be configured by, for example, mounting an appropriate program on a microcomputer.
  • the swing angle of the movable part 32 changes according to a substantially sine curve as shown in FIG.
  • the horizontal axis represents time elapsed from the start of driving of the movable unit 32 by the drive unit 4 (hereinafter also referred to as “elapsed time”).
  • the vertical axis represents the deflection angle of the movable part 32.
  • ⁇ m is the maximum deflection angle of the movable part 32.
  • tm 0 and tm 1 are times when the deflection angle of the movable part 32 becomes the maximum deflection angle ⁇ m.
  • the intermediate time point between tm 0 and tm 1 at which the negative maximum deflection angle ⁇ m ⁇ is reached corresponds to the timing at which the 0th-order diffracted light DL0 is detected by the second light receiving element 7.
  • th 1 , th 2 , and th 3 are times when the deflection angle becomes 0 degrees.
  • th 1 , th 2 , and th 3 correspond to the timing at which the detection unit 36 detects that the deflection angle of the movable unit 32 is 0 degree.
  • FIG. 10 schematically shows changes in the signal of the detection unit 36 and the signal of the second light receiving element 7 when the movable unit 32 vibrates.
  • the time point t1 in FIG. 10 corresponds to the timing at which the movable part 32 becomes the negative maximum deflection angle ⁇ m ⁇ in the counterclockwise direction as shown in FIG.
  • the time point t2 in FIG. 10 corresponds to the timing when the deflection angle of the movable part 32 becomes 0 as shown in FIG.
  • a time point t3 in FIG. 10 corresponds to a timing at which the movable portion 32 reaches the (positive) maximum deflection angle ⁇ m in the clockwise direction.
  • the signal processing device 10 includes a time measuring unit 20 that measures elapsed time.
  • the timing control unit 55 preferably controls the operation timing of the drive circuit 45 and the operation timing of the signal processing device 10 so that the operation timing of the drive circuit 45 and the operation timing of the timer unit 20 are synchronized.
  • the timing control unit 55 can be configured using, for example, a PLD (programmable logic device).
  • the signal processing apparatus 10 stores the signal of the first light receiving element 5 and the elapsed time measured by the time measuring unit 20 in a one-to-one correspondence in the data storage unit 15 (for example, at predetermined time intervals). Preferably, it is configured. Accordingly, the calculation unit 18 can know the signal of the first light receiving element 5 at an arbitrary elapsed time from the stored contents of the data storage unit 15. Further, in the signal processing device 10, the signal of the second light receiving element 7 and the elapsed time measured by the time measuring unit 20 are associated with each other on a one-to-one basis and stored in the data storage unit 15 (for example, at predetermined time intervals). It is preferable to be configured as described above.
  • the calculation unit 18 can know the signal of the second light receiving element 7 at an arbitrary elapsed time from the stored contents of the data storage unit 15. Further, the signal processing apparatus 10 stores the signal (current) of the detection unit 36 and the elapsed time measured by the time measuring unit 20 in one-to-one correspondence in the data storage unit 15 (for example, at predetermined time intervals). It is preferable to be configured so that the
  • the signal processing device 10 converts the signal of the first light receiving element 5 from current to voltage and outputs the signal, and the signal converted by the first I / V converter 13 is converted from analog to digital. And a first A / D conversion unit 14 that outputs to the data storage unit 15.
  • the signal processing device 10 converts the signal of the second light receiving element 7 from current to voltage and outputs it, and the signal converted by the second I / V converter 16 is converted from analog to digital. And a second A / D conversion unit 17 that outputs the data to the data storage unit 15.
  • the signal processing device 10 converts the signal of the detection unit 36 from current to voltage and outputs the signal, and the signal converted by the third I / V conversion unit 28 is converted from analog to digital. And a third A / D conversion unit 29 that outputs the data to the data storage unit 15.
  • the signal processing device 10 can be configured to obtain the deflection angle of the movable unit 32 at an arbitrary elapsed time, for example, by the following equation (1) in the calculation unit 18.
  • is the deflection angle of the movable part 32.
  • ⁇ m is the maximum deflection angle of the movable part 32 in the clockwise direction.
  • T is an arbitrary elapsed time.
  • Tm 0 is the elapsed time up to the time tm 0 when the deflection angle becomes the maximum deflection angle ⁇ m in the clockwise direction of the movable part 32 (see FIG. 9).
  • Td is a delay time in the signal processing apparatus 10.
  • the delay time Td is, for example, a delay time of a microcomputer circuit that constitutes the signal processing device 10.
  • the delay time Td can be omitted in applications where the accuracy of the value (the deflection angle and the elapsed time value) obtained by the expression (1) or the expression (4) described later is not so much required.
  • f is the vibration frequency of the movable part 32, and can be obtained by the following equation (2), for example.
  • tm i is the elapsed time up to the i-th time point when the swing angle becomes the maximum swing angle ⁇ m in the clockwise direction of the movable portion 32.
  • tm j is an elapsed time up to the j-th time point when the swing angle becomes the maximum swing angle ⁇ m in the clockwise direction of the movable portion 32.
  • j i + 1.
  • vibration frequency of the movable unit 32 used by the calculation unit 18 in the calculation of Expression (1) data measured in advance may be stored in the storage unit 9, and the calculation unit 18 may read out from the storage unit 9.
  • the wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 is the wavelength of light associated with the deflection angle in the storage unit 9 on a one-to-one basis.
  • the signal processing apparatus 10 can determine the wavelength of light by calculating the deflection angle of the movable unit 32 by the calculation unit 18.
  • the signal processing device 10 is configured to associate the wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 and the signal of the first light receiving element 5 on a one-to-one basis with the same elapsed time. Yes.
  • the signal of the first light receiving element 5 corresponds to the intensity of light incident on the first light receiving element 5 through the first slit 61. Therefore, the spectrum sensor 100 can obtain an intensity distribution for each wavelength of light.
  • the spectrum sensor 100 preferably includes a detection unit 36 that detects the timing at which the MEMS mirror 30 has a swing angle of the movable unit 32 of 0 degrees.
  • the spectrum sensor 100 includes a timing at which the calculation unit 18 detects the 0th-order diffracted light DL0 by the second light receiving element 7, a vibration frequency of the movable unit 32, and a timing detected by the detection unit 36. It is preferable that the deflection angle of the movable part 32 is obtained based on the above. Thereby, the spectrum sensor 100 can further improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can further improve the spectrum measurement accuracy.
  • the signal processing device 10 obtains the deflection angle of the movable portion 32 by using the time difference between the elapsed times Th i and Th j until two timings when the deflection angle of the movable portion 32 becomes 0 degrees. .
  • the swing angle of the movable part 32 is between the time point th i corresponding to the fast timing and the time point th j corresponding to the late timing of the two timings at which the swing angle of the movable part 32 becomes 0 degrees.
  • the elapsed time Tmij until the time when the maximum deflection angle is reached is obtained by the following equation (3).
  • the signal processing device 10 determines the deflection angle of the movable portion 32 used in place of Tm 0 of the formula (1). Therefore, the spectrum sensor 100 can accurately measure the deflection angle of the movable part 32 even when the vibration mode of the movable part 32 changes during driving of the movable part 32, for example.
  • the spectrum sensor 100 can be used for, for example, an illumination system as well as a spectroscopic device such as a fluorescence analyzer.
  • the spectrum sensor 100 When the spectrum sensor 100 is used in a fluorescence analyzer, for example, the spectrum sensor 100 is arranged and used so that fluorescence emitted from the organic substance is incident on the collimating lens 2 when the organic substance is irradiated with excitation light from an excitation light source of the fluorescence analyzer. can do. In this case, the spectrum sensor 100 can measure the intensity distribution for each wavelength of light with respect to the fluorescence emitted by the organic substance. Thereby, in the fluorescence analyzer, it becomes possible to specify an organic substance, specify an amount, and the like based on the measurement result of the spectrum sensor 100.
  • Illumination spaces include, for example, rooms for residents in elderly welfare facilities and hospital rooms for hospital inpatients.
  • the circadian rhythm means a rhythm with a cycle close to 24 hours that appears as behavior and physical function to people living on the earth.
  • a cycle close to 24 hours means a cycle of 24 ⁇ 4 hours.
  • the spectrum in the illumination space varies depending on, for example, morning, noon, and night, and varies depending on the open / closed state of a window, weather, and the like.
  • the illumination system can be configured to include a control device that controls an illumination light source or the like based on a spectrum measurement result in the illumination space by the spectrum sensor 100, for example.
  • the outer peripheral shape of the movable portion 32 is not limited to a rectangular shape, and may be, for example, a circular shape.
  • the inner peripheral shape of the support portion 31 is not limited to a rectangular shape, and may be, for example, a circular shape.
  • the microactuator constituting the drive unit 4 is not limited to an electrostatic actuator, but may be an electromagnetic actuator, a piezoelectric actuator, or the like.
  • the electromagnetic actuator drives the movable part 32 by an electromagnetic force using a magnet or a coil provided integrally with the movable part 32.
  • the piezoelectric actuator drives the movable part 32 by a piezoelectric element provided integrally with the movable part 32.
  • the first light receiving element 5 can be constituted by, for example, a CMOS sensor, a photomultiplier tube, or the like.
  • the 2nd light receiving element 7 can be comprised by a CMOS sensor, a photomultiplier tube, etc., for example.
  • a timer unit 20 configured to output a timing signal
  • timer data to be stored in the data storage unit 15 is obtained from the timing signal.
  • the timer data is data indicating an elapsed time such as an elapsed time from the start of driving of the movable portion 32 or an elapsed time from the time when the second light receiving element 7 receives the 0th-order diffracted light.
  • the first input value for example, light intensity value
  • the first input value obtained from the first light receiving element 5 through the first I / V conversion unit 13 and the first A / D conversion unit 14 is set together with the timer data for a predetermined time.
  • a data set including various first input values and timer data associated with each of the various first input values is referred to as a first data set.
  • the second input value (for example, light intensity value) obtained from the second light receiving element 7 via the second I / V conversion unit 16 and the second A / D conversion unit 17 is stored together with the timer data at predetermined time intervals.
  • a data set including various second input values and timer data associated with each of the various second input values is referred to as a second data set.
  • the signal processing device 10 uses the second data set to obtain the timer data from which the movable unit 32 has the maximum deflection angle ⁇ m ⁇ in the counterclockwise direction. (T1) can be obtained. That is, the computing unit 18 can obtain an elapsed time corresponding to the time t1 by extracting timer data corresponding to the maximum value of various second input values from the second data set. Since the time t1 corresponds to the negative maximum deflection angle ⁇ m ⁇ in FIG. 9, the calculation unit 18 calculates from the first data set based on the extracted timer data (t1) and the vibration frequency f of the movable unit 32.
  • timer data corresponding to the positive maximum deflection angle ⁇ m (elapsed time corresponding to time tm 0 or time tm 1 ) can be extracted.
  • the calculation unit 18 uses the above equation (1) based on at least the maximum shake angle ⁇ m, the vibration frequency f, and the timer data corresponding to the maximum shake angle ⁇ m.
  • the angle ⁇ can be obtained.
  • the signal processing device 10 (processing unit 19) reads the wavelength (wavelength value) corresponding to the deflection angle ⁇ from the storage unit 9, and also the first of the data storage unit 15 A first input value corresponding to the elapsed time T is read from the data set.
  • the signal processing device 10 (processing unit 19) outputs the read wavelength value and the first input value via the output unit 65 (to an external device).
  • the signal processing apparatus 10 receives, via the output unit 65, a wavelength value in one cycle of the deflection angle ⁇ (for example, see time 0 to th 2 in FIG. 9) and a first input corresponding to the wavelength value.
  • the value may be output at predetermined time intervals (or predetermined deflection angles).
  • the signal processing device 10 includes a timer unit 20 configured to output a timer signal and a data storage unit 15.
  • the data storage unit 15 stores the first and second input values obtained from the first and second light receiving elements 5 and 7 and timer data indicating the elapsed time obtained from the timing signal from the timing unit 20 at predetermined time intervals. Configured to store.
  • the computing unit 18 extracts timer data (t1) corresponding to the maximum value of the second input value from the data storage unit 15, and based on the extracted timer data (t1) and the vibration frequency f, the data storage unit 15 Is extracted from the timer data (tm 0 or tm 1 ) corresponding to the maximum positive swing angle ⁇ m based on at least the maximum swing angle ⁇ m, the vibration frequency f, and the timer data corresponding to the maximum swing angle ⁇ m.
  • the deflection angle ⁇ corresponding to the elapsed time (T) is calculated.
  • the signal processing device 10 (processing unit 19) reads the value of the wavelength corresponding to the calculated deflection angle ⁇ from the storage unit 9, and the first input value corresponding to the elapsed time (T) from the data storage unit 15.
  • the read wavelength value and the first input value are output via the output unit 65 (to an external device).
  • the signal processing device 10 includes a timer unit 20 configured to output a timer signal and a data storage unit 15.
  • the data storage unit 15 stores the first and second input values obtained from the first and second light receiving elements 5 and 7 and timer data indicating the elapsed time obtained from the timing signal from the timing unit 20 at predetermined time intervals.
  • the timer data is data indicating an elapsed time such as an elapsed time from the start of driving of the movable portion 32 or an elapsed time from the time when the second light receiving element 7 receives the 0th-order diffracted light.
  • the computing unit 18 extracts timer data (t1) corresponding to the maximum value of the second input value from the data storage unit 15, and based on the extracted timer data (t1) and the vibration frequency f, the data storage unit 15 Is configured to extract timer data (tm 0 or tm 1 ) corresponding to the positive maximum deflection angle ⁇ m. Further, the calculation unit 18 calculates an elapsed time T corresponding to an arbitrary shake angle ⁇ based on at least the maximum shake angle ⁇ m, the vibration frequency f, and timer data corresponding to the maximum shake angle ⁇ m. Configured. That is, the elapsed time T is given by equation (4) obtained from equation (1).
  • the signal processing device 10 (processing unit 19) is configured to read out a wavelength value corresponding to the deflection angle ⁇ from the storage unit 9 and read out a first input value corresponding to the elapsed time T from the data storage unit 15. Is done.
  • the signal processing device 10 (processing unit 19) is configured to output the read wavelength value and the first input value via the output unit 65 (to an external device).
  • the spectrum sensor 100 further includes an input unit for inputting the deflection angle ⁇ of the movable unit 32 from an external device, the wavelength value and the first input value corresponding to the desired deflection angle ⁇ are obtained. be able to.
  • the spectrum sensor includes an input unit for inputting a wavelength value instead of the input unit, and reads out the deflection angle ⁇ corresponding to the input wavelength value from the storage unit 9 and performs the same processing. It may be configured as follows.
  • the signal processing apparatus 10 uses the output unit 65 to output a wavelength value in one period of the deflection angle ⁇ (for example, time 0 to th2 in FIG. 9) and a first input value corresponding to the wavelength value. May be output at predetermined time intervals (or at predetermined deflection angles or predetermined wavelength intervals).
  • the signal processing device 10 includes a timer unit 20 configured to output a timer signal and an arithmetic unit 18.
  • the timing signal is output to the calculation unit 18 and the processing unit 19.
  • the calculation unit 18 sets the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value to the maximum deflection angle at which the movable unit 32 has a negative deflection angle.
  • the time tm 1 at which the deflection angle of the movable part 32 becomes the positive maximum deflection angle ⁇ m is calculated based on the time when the negative deflection angle is detected and the vibration frequency f. Is done.
  • a time tm 1 after the time t1 is calculated.
  • the arithmetic unit 18, the maximum deflection angle .theta.m, the vibration frequency f, based on the time tm 1 and comprising a maximum deflection angle .theta.m, equation (4) from a time corresponding to the deflection angle ⁇ after the time t1 Is configured to compute
  • the signal processing device 10 (processing unit 19) reads the value of the wavelength corresponding to the deflection angle ⁇ from the storage unit 9, and calculates the first light receiving element 5 at the time calculated by the calculation unit 18 according to the timing signal from the timing unit 20. Is output together with the read wavelength via the output unit 65 (to an external device).
  • the time such as t1 and tm 1 means the time on the time axis shown in FIG.
  • the spectrum sensor 100 further includes an input unit for inputting the deflection angle ⁇ of the movable unit 32 from an external device, the wavelength value and the first input value corresponding to the desired deflection angle ⁇ are obtained.
  • the spectrum sensor includes an input unit for inputting a wavelength value instead of the input unit, and reads out the deflection angle ⁇ corresponding to the input wavelength value from the storage unit 9 and performs the same processing. It may be configured as follows.
  • the signal processing apparatus 10 uses the output unit 65 to output a wavelength value in one period of the deflection angle ⁇ (for example, time 0 to th2 in FIG. 9) and a first input value corresponding to the wavelength value. May be output at predetermined time intervals (or at predetermined deflection angles or predetermined wavelength intervals).
  • the light receiving range of the first-order diffracted light DL1 by the first light receiving element 5 is narrower than the swinging range of the movable portion 32. Therefore, in the various examples described above, the signal processing apparatus 10 The value and the first input value corresponding to the wavelength value may be sequentially output within the light receiving range.
  • the first polarity and the second polarity are respectively the polarity of the clockwise swing angle and the polarity of the counterclockwise swing angle, respectively.
  • the polarity of the swing angle may be used.
  • the time (time point) tm 0 and the time point tm 1 in FIG. 9 are detected by the second light receiving element 7. Therefore, as in the first modification, the calculation unit 18 uses the timer data (tm) corresponding to the positive maximum deflection angle ⁇ m from the data storage unit 15 based on the extracted timer data (t1) and the vibration frequency f. It is not necessary to extract 0 or tm 1 ).
  • the calculation unit 18 is configured to calculate a deflection angle corresponding to the elapsed time based on at least the extracted timer data, the maximum deflection angle of the movable unit 32, and the vibration frequency f. It will be.
  • the calculation unit 18 uses the timer data (tm) corresponding to the positive maximum deflection angle ⁇ m from the data storage unit 15 based on the extracted timer data (t1) and the vibration frequency f. It is not necessary to extract 0 or tm 1 ).
  • the calculation unit 18 is configured to calculate an elapsed time corresponding to the swing angle based on at least the extracted timer data, the maximum swing angle of the movable unit 32, and the vibration frequency f.
  • the calculation unit 18 sets the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value based on the time signal from the time measurement unit 20 to the movable unit. 32 is detected as a time when the deflection angle of 32 becomes the maximum negative deflection angle, and based on the time when the maximum deflection angle is negative and the vibration frequency f, the deflection angle of the movable portion 32 is the maximum positive deflection angle ⁇ m. There is no need to calculate the time tm 1 to become.
  • the calculation unit 18 detects the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value based on the time signal from the time measuring unit 20, and the detected time and the movable unit Based on the maximum deflection angle of 32 and the vibration frequency f, the time corresponding to the deflection angle ⁇ after the time t1 is calculated.

Abstract

 A spectral separation part (3) includes a MEMS mirror (30) for holding a diffraction grating (35). A first photodetector (5) receives a specific order of diffracted light from the diffraction grating (35). A second photoreceptor (7) is capable of receiving zero-order diffracted light from the diffraction grating (35). A signal processing device (10) obtains the deflection angle of a movable part (23) on the basis of the detection timing of the zero-order diffracted light and the oscillation frequency of a movable part (32), and performs one-to-one correlation of a wavelength stored in advance corresponding to the deflection angle and a signal of the first photoreceptor (5) obtained at the deflection angle. The MEMS mirror (30) is provided with a support part (31), the movable part (32) on an inside of the support part (31), a pair of torsion spring parts (33) on either side of the movable part (32) and connecting the support part (31) and the movable part (32), and a mirror part (34) formed on a surface side of the movable part (32). A drive part (4) is provided integrally with the MEMS mirror (30), and drives the movable part (32).

Description

スペクトルセンサSpectrum sensor
 本発明は、スペクトルセンサに関し、より詳細には、光の波長ごとの強度の分布を測定するスペクトルセンサに関する。 The present invention relates to a spectrum sensor, and more particularly to a spectrum sensor that measures an intensity distribution for each wavelength of light.
 従来、分光測定を可能にした構成を備えたものとして、レーザ走査型顕微鏡が提案されている(例えば、日本国特許出願公開番号2004-212600(以下「文献1」という))。 Conventionally, a laser scanning microscope has been proposed as having a configuration that enables spectroscopic measurement (for example, Japanese Patent Application Publication No. 2004-212600 (hereinafter referred to as “Document 1”)).
 文献1に記載されたレーザ走査型顕微鏡は、第1の検出部とは別に、標本からの蛍光について分光測定を行うための構成として、第2の検出部を備えている。第2の検出部は、結像レンズと、ピンホールと、コリメートレンズと、平面回折格子と、集光レンズと、スリットと、光電変換素子と、補正処理部と、制御部と、を備えている。平面回折格子は、入射光を分光して波長ごとに異なる角度に光束を反射する。平面回折格子には、駆動手段としてモータが設けられている。モータには、平面回折格子の回転角度に相当する信号を出力するエンコーダが接続されている。 The laser scanning microscope described in Document 1 includes a second detection unit as a configuration for performing spectroscopic measurement of fluorescence from a specimen separately from the first detection unit. The second detection unit includes an imaging lens, a pinhole, a collimator lens, a planar diffraction grating, a condenser lens, a slit, a photoelectric conversion element, a correction processing unit, and a control unit. Yes. The plane diffraction grating splits incident light and reflects the light flux at different angles for each wavelength. The planar diffraction grating is provided with a motor as drive means. An encoder that outputs a signal corresponding to the rotation angle of the planar diffraction grating is connected to the motor.
 上述の分光測定を行うための構成では、平面回折格子を小型化しても、モータ及びエンコーダのような比較的大きな構成要素を必要とするので、小型化が難しい。 In the configuration for performing the above-described spectroscopic measurement, it is difficult to reduce the size of the planar diffraction grating because it requires relatively large components such as a motor and an encoder.
 本発明の目的は、小型化が可能なスペクトルセンサを提供することにある。 An object of the present invention is to provide a spectrum sensor that can be miniaturized.
 本発明のスペクトルセンサは、開口部を有する筐体と、コリメートレンズと、スペクトル分離部と、第1受光素子と、第1絞りと、を備える。前記コリメートレンズは、前記筐体の開口部を塞ぐように配置されている。スペクトル分離部は、前記筐体に収納されており、回折格子を備えている。前記スペクトル分離部は、前記コリメートレンズから出射された光を複数のスペクトルに分離するMEMSミラーにより構成されている。第1受光素子は前記筐体に収納されている。前記第1絞りは、前記第1受光素子の受光面側に配置され前記筐体に収納されており、所定波長帯域の光を通す第1スリットを有する。前記スペクトルセンサは、第2受光素子と、第2絞りと、信号処理装置と、駆動部とをさらに備える。前記第2受光素子は、前記MEMSミラーの可動部に設けられた前記回折格子で回折された光のうち0次の回折光を受光可能となるように配置され前記筐体に収納されている。前記第2絞りは、前記第2受光素子の受光面側に配置され前記筐体に収納されており、前記所定波長帯域の光を通す第2スリットを有する。前記第1受光素子は、前記回折格子で回折された光のうち0次以外の規定次数の回折光を受光可能となるように配置されている。前記信号処理装置は、少なくとも、前記第2受光素子により0次の回折光が検知されたタイミングと、前記可動部の振動周波数と、に基づいて、前記可動部の振れ角またはその振れ角に対応する時間を求める演算部を備える。前記信号処理装置は、前記可動部の振れ角に対応する、予め記憶された波長と、その振れ角で得られる前記第1受光素子の信号と、を1対1で対応付けるように構成されている。前記MEMSミラーは、枠状の支持部と、前記支持部の内側に配置された前記可動部と、前記可動部を挟むように配置され前記支持部と前記可動部とを繋いでいる一対の捩りばね部と、前記可動部の表面側に形成されたミラー部と、を備える。前記回折格子は、前記ミラー部の表面に形成されている。前記駆動部は、前記筐体に収納されており、前記MEMSミラーに一体に設けられて前記可動部を駆動するように構成されている。 The spectrum sensor of the present invention includes a housing having an opening, a collimating lens, a spectrum separation unit, a first light receiving element, and a first diaphragm. The collimating lens is disposed so as to close the opening of the housing. The spectrum separation unit is housed in the casing and includes a diffraction grating. The spectrum separation unit is configured by a MEMS mirror that separates light emitted from the collimating lens into a plurality of spectra. The first light receiving element is housed in the housing. The first diaphragm is disposed on the light receiving surface side of the first light receiving element and is housed in the housing, and has a first slit through which light having a predetermined wavelength band passes. The spectrum sensor further includes a second light receiving element, a second diaphragm, a signal processing device, and a drive unit. The second light receiving element is disposed so as to be able to receive 0th-order diffracted light among the light diffracted by the diffraction grating provided in the movable part of the MEMS mirror, and is housed in the housing. The second diaphragm is disposed on the light receiving surface side of the second light receiving element and is housed in the housing, and has a second slit through which light in the predetermined wavelength band passes. The first light receiving element is disposed so as to be able to receive diffracted light of a specified order other than the 0th order among the light diffracted by the diffraction grating. The signal processing device corresponds to a swing angle of the movable part or a swing angle thereof based on at least the timing when the second-order diffracted light is detected by the second light receiving element and the vibration frequency of the movable part. An arithmetic unit for obtaining the time to perform The signal processing device is configured to correlate the wavelength stored in advance corresponding to the deflection angle of the movable part and the signal of the first light receiving element obtained at the deflection angle on a one-to-one basis. . The MEMS mirror includes a frame-shaped support part, the movable part arranged inside the support part, and a pair of twists arranged so as to sandwich the movable part and connecting the support part and the movable part. A spring part, and a mirror part formed on the surface side of the movable part. The diffraction grating is formed on the surface of the mirror portion. The drive unit is housed in the housing, and is provided integrally with the MEMS mirror so as to drive the movable unit.
 本発明のスペクトルセンサにおいては、小型化が可能となる。 The spectrum sensor of the present invention can be downsized.
 図面は本教示に従って一又は複数の実施例を示すが、限定するものではなく例に過ぎない。図面において、同様の符号は同じか類似の要素を指す。
図1は、実施形態のスペクトルセンサの概略構成図である。 図2は、実施形態のスペクトルセンサにおける要部の一部破断した概略斜視図である。 図3は、実施形態のスペクトルセンサにおけるMEMSミラーの概略平面図である。 図4は、図3のX1-X1概略断面図である。 図5は、図3のX2-Y2概略断面図である。 図6は、実施形態のスペクトルセンサの動作説明図である。 図7は、実施形態のスペクトルセンサの動作説明図である。 図8は、実施形態のスペクトルセンサの動作説明図である。 図9は、実施形態のスペクトルセンサの動作説明図である。 図10は、実施形態のスペクトルセンサの動作説明図である。
The drawings illustrate one or more embodiments in accordance with the present teachings, but are by way of example and not limitation. In the drawings, like numerals refer to the same or similar elements.
FIG. 1 is a schematic configuration diagram of a spectrum sensor according to an embodiment. FIG. 2 is a schematic perspective view in which a main part of the spectrum sensor according to the embodiment is partially broken. FIG. 3 is a schematic plan view of the MEMS mirror in the spectrum sensor of the embodiment. 4 is a schematic cross-sectional view taken along the line X1-X1 of FIG. 5 is a schematic cross-sectional view taken along the line X2-Y2 of FIG. FIG. 6 is an operation explanatory diagram of the spectrum sensor of the embodiment. FIG. 7 is an operation explanatory diagram of the spectrum sensor of the embodiment. FIG. 8 is an operation explanatory diagram of the spectrum sensor of the embodiment. FIG. 9 is an operation explanatory diagram of the spectrum sensor of the embodiment. FIG. 10 is an operation explanatory diagram of the spectrum sensor of the embodiment.
 以下では、本実施形態のスペクトルセンサについて、図1~10に基づいて説明する。 Hereinafter, the spectrum sensor of the present embodiment will be described with reference to FIGS.
 スペクトルセンサ100は、光の波長ごとの強度の分布を測定するセンサである。要するに、スペクトルセンサ100は、相対分光分布を波長の関数として測定するセンサである。スペクトルセンサ100は、例えば、所定波長帯域に感度を有する。所定波長帯域としては、可視光の波長域を設定してある。本明細書における可視光の波長域は、400nm~800nmである。スペクトルセンサ100の波長分解能は、例えば、10nmに設定することができる。 The spectrum sensor 100 is a sensor that measures the distribution of intensity for each wavelength of light. In short, the spectrum sensor 100 is a sensor that measures the relative spectral distribution as a function of wavelength. The spectrum sensor 100 has sensitivity in a predetermined wavelength band, for example. As the predetermined wavelength band, a wavelength range of visible light is set. The wavelength range of visible light in this specification is 400 nm to 800 nm. The wavelength resolution of the spectrum sensor 100 can be set to 10 nm, for example.
 スペクトルセンサ100は、開口部11を有する筐体1と、コリメートレンズ2と、スペクトル分離部3と、第1受光素子5と、第1絞り6と、を備える。コリメートレンズ2は、筐体1の開口部11を塞ぐように配置されている。スペクトル分離部3は、筐体1に収納されており、回折格子35を備えている。スペクトル分離部3は、コリメートレンズ2から出射された光を複数のスペクトルに分離するMEMS(Micro Electro Mechanical System)ミラー30により構成されている。第1受光素子5は筐体1に収納されている。第1絞り6は、第1受光素子5の受光面51側に配置され筐体1に収納されており、所定波長帯域の光を通す第1スリット61を有する。スペクトルセンサ100は、第2受光素子7と、第2絞り8と、信号処理装置10と、駆動部4とをさらに備える。第2受光素子7は、MEMSミラー30の可動部32に設けられた回折格子35で回折された光のうち0次の回折光を受光可能となるように配置され筐体1に収納されている。第2絞り8は、第2受光素子7の受光面71側に配置され筐体1に収納されており、所定波長帯域の光を通す第2スリット81を有する。第1受光素子5は、回折格子35で回折された光のうち0次以外の規定次数の回折光を受光可能となるように配置されている。信号処理装置10は、少なくとも、第2受光素子7により0次の回折光が検知されたタイミングと、可動部32の振動周波数と、に基づいて、可動部32の振れ角またはその振れ角に対応する時間を求める演算部18を備える。信号処理装置10は、可動部32の振れ角に対応する、予め記憶された波長と、その振れ角で得られる第1受光素子5の信号と、を1対1で対応付けるように構成されている。MEMSミラー30は、枠状の支持部31と、支持部31の内側に配置された可動部32と、可動部32を挟むように配置され支持部31と可動部32とを繋いでいる一対の捩りばね部33と、可動部32の表面32a側に形成されたミラー部34と、を備える。回折格子35は、ミラー部34の表面に形成されている。駆動部4は、筐体1に収納されており、MEMSミラー30に一体に設けられて可動部32を駆動するように構成されている。よって、スペクトルセンサ100の小型化を図ることが可能となる。 The spectrum sensor 100 includes a housing 1 having an opening 11, a collimating lens 2, a spectrum separating unit 3, a first light receiving element 5, and a first diaphragm 6. The collimating lens 2 is disposed so as to close the opening 11 of the housing 1. The spectrum separation unit 3 is housed in the housing 1 and includes a diffraction grating 35. The spectrum separation unit 3 includes a MEMS (Micro Electro Mechanical System) mirror 30 that separates light emitted from the collimating lens 2 into a plurality of spectra. The first light receiving element 5 is housed in the housing 1. The first diaphragm 6 is disposed on the light receiving surface 51 side of the first light receiving element 5 and is housed in the housing 1 and has a first slit 61 that allows light in a predetermined wavelength band to pass through. The spectrum sensor 100 further includes a second light receiving element 7, a second diaphragm 8, a signal processing device 10, and a drive unit 4. The second light receiving element 7 is disposed and accommodated in the housing 1 so as to be able to receive 0th-order diffracted light among the light diffracted by the diffraction grating 35 provided in the movable portion 32 of the MEMS mirror 30. . The second diaphragm 8 is disposed on the light receiving surface 71 side of the second light receiving element 7 and is housed in the housing 1, and has a second slit 81 that allows light in a predetermined wavelength band to pass through. The first light receiving element 5 is arranged so as to be able to receive diffracted light of a specified order other than the 0th order among the light diffracted by the diffraction grating 35. The signal processing device 10 corresponds to the deflection angle of the movable portion 32 or the deflection angle thereof based on at least the timing when the second-order diffracted light is detected by the second light receiving element 7 and the vibration frequency of the movable portion 32. The calculating part 18 which calculates | requires the time to perform is provided. The signal processing apparatus 10 is configured to associate the wavelength stored in advance corresponding to the deflection angle of the movable unit 32 with the signal of the first light receiving element 5 obtained at the deflection angle, on a one-to-one basis. . The MEMS mirror 30 is a pair of a frame-shaped support part 31, a movable part 32 arranged inside the support part 31, and a pair of parts arranged so as to sandwich the movable part 32 and connecting the support part 31 and the movable part 32. A torsion spring portion 33 and a mirror portion 34 formed on the surface 32a side of the movable portion 32 are provided. The diffraction grating 35 is formed on the surface of the mirror portion 34. The drive unit 4 is housed in the housing 1 and is provided integrally with the MEMS mirror 30 so as to drive the movable unit 32. Therefore, the spectrum sensor 100 can be downsized.
 スペクトルセンサ100は、記憶部9と、信号処理装置10と、をさらに備えることが好ましい。記憶部9は、可動部32の振れ角と第1受光素子5に入射する光の波長との関係を予め記憶している。信号処理装置10は、少なくとも、第2受光素子7により0次の回折光が検知されたタイミングと、可動部32の振動周波数と、に基づいて可動部32の振れ角を求める演算部18を備える。信号処理装置10は、演算部18で求めた振れ角に基づいて記憶部9から読み出した波長と、第1受光素子5の信号と、を1対1で対応付けるように構成されている。振れ角とは、可動部32が支持部31に平行な水平姿勢の状態から回転したときの回転角を意味する。 It is preferable that the spectrum sensor 100 further includes a storage unit 9 and a signal processing device 10. The storage unit 9 stores in advance the relationship between the deflection angle of the movable unit 32 and the wavelength of light incident on the first light receiving element 5. The signal processing apparatus 10 includes a calculation unit 18 that obtains the deflection angle of the movable unit 32 based on at least the timing when the second-order diffracted light is detected by the second light receiving element 7 and the vibration frequency of the movable unit 32. . The signal processing device 10 is configured to associate the wavelength read from the storage unit 9 with the signal of the first light receiving element 5 on a one-to-one basis based on the deflection angle obtained by the calculation unit 18. The deflection angle means a rotation angle when the movable portion 32 rotates from a horizontal posture parallel to the support portion 31.
 第2受光素子7は、可動部32の規定の回転方向(図7参照)における可動部32の振れ角が最大となるときに0次の回折光を受光する位置に配置されているのが好ましい。これにより、スペクトルセンサ100は、可動部32の振れ角の測定精度の向上を図ることが可能となる。よって、スペクトルセンサ100は、スペクトルの測定精度の向上を図ることが可能となる。規定の回転方向は、図1では、反時計回りの方向である。 The second light receiving element 7 is preferably disposed at a position for receiving the 0th-order diffracted light when the swing angle of the movable portion 32 in the prescribed rotation direction of the movable portion 32 (see FIG. 7) is maximized. . Thereby, the spectrum sensor 100 can improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can improve the measurement accuracy of the spectrum. The prescribed rotation direction is a counterclockwise direction in FIG.
 MEMSミラー30は、可動部32の振れ角が0度となるタイミングを検知する検知部36を備えるのが好ましい。この場合、演算部18は、第2受光素子7により0次の回折光が検知されたタイミングと、可動部32の振動周波数と、検知部36により検知されたタイミングと、に基づいて可動部32の振れ角を求めるように構成されているのが好ましい。これにより、スペクトルセンサ100は、可動部32の振れ角の測定精度の更なる向上を図ることが可能となる。よって、スペクトルセンサ100は、スペクトルの測定精度の更なる向上を図ることが可能となる。 The MEMS mirror 30 preferably includes a detection unit 36 that detects the timing at which the swing angle of the movable unit 32 becomes 0 degrees. In this case, the calculation unit 18 is based on the timing at which the 0th-order diffracted light is detected by the second light receiving element 7, the vibration frequency of the movable unit 32, and the timing detected by the detection unit 36. It is preferable that the deflection angle is determined. Thereby, the spectrum sensor 100 can further improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can further improve the spectrum measurement accuracy.
 スペクトルセンサ100は、駆動部4へ駆動電圧を与える駆動回路45と、駆動回路45及び信号処理装置10それぞれの動作タイミングを制御するタイミング制御部55と、を備えるのが好ましい。 The spectrum sensor 100 preferably includes a drive circuit 45 that applies a drive voltage to the drive unit 4, and a timing control unit 55 that controls the operation timing of each of the drive circuit 45 and the signal processing device 10.
 スペクトルセンサ100の各構成要素については、以下に詳細に説明する。 Each component of the spectrum sensor 100 will be described in detail below.
 図1に示すように、スペクトルセンサ100は、開口部11を有する筐体1に、スペクトル分離部3、駆動部4(図3参照)、第1受光素子5、第1絞り6、第2受光素子7及び第2絞り8等が収納されている。例えば、筐体1は開口部11のみを有してもよい。スペクトルセンサ100は、コリメートレンズ2が筐体1の開口部11を塞ぐように配置され、筐体1の内部空間を減圧雰囲気としてあるのが好ましい。これにより、スペクトルセンサ100は、筐体1の内部空間が大気圧である場合に比べて、低消費電力化を図りつつ可動部32の振れ角を大きくすることが可能となる。 As shown in FIG. 1, the spectrum sensor 100 includes a housing 1 having an opening 11, a spectrum separation unit 3, a drive unit 4 (see FIG. 3), a first light receiving element 5, a first diaphragm 6, and a second light reception. The element 7 and the second diaphragm 8 are accommodated. For example, the housing 1 may have only the opening 11. The spectrum sensor 100 is preferably arranged such that the collimating lens 2 closes the opening 11 of the housing 1 and the internal space of the housing 1 is in a reduced pressure atmosphere. As a result, the spectrum sensor 100 can increase the swing angle of the movable portion 32 while reducing power consumption compared to the case where the internal space of the housing 1 is atmospheric pressure.
 スペクトルセンサ100は、筐体1の内部空間を減圧雰囲気とする場合に限らず、不活性ガス雰囲気としてもよい。スペクトルセンサ100は、筐体1の内部空間を減圧雰囲気もしくは不活性ガス雰囲気とすることにより、測定精度等の経時安定性を向上させることが可能となる。不活性ガスとしては、例えば、Nガス、Arガス等を採用することができる。 The spectrum sensor 100 is not limited to the case where the internal space of the housing 1 is a reduced pressure atmosphere, and may be an inert gas atmosphere. The spectrum sensor 100 can improve stability over time such as measurement accuracy by setting the internal space of the housing 1 to a reduced pressure atmosphere or an inert gas atmosphere. As the inert gas, for example, N 2 gas, Ar gas, or the like can be employed.
 筐体1は、箱状に形成されている。筐体1は、箱状の形状として、矩形箱状の形状を採用している。図1及び2の例では、筐体1は、底部1aと、複数(図2の例では4つ)の側部1bと、上部1cとを有する。開口部11は、筐体1の壁12(図1の例では上部1c)の厚み方向に貫通するように形成されている。開口部11の開口形状は、例えば、円形状であるのが好ましい。なお、筐体1は、底部1aと、一つの周壁からなる側部1bと、上部1cとを有してもよい。 The housing 1 is formed in a box shape. The casing 1 adopts a rectangular box shape as a box shape. In the example of FIGS. 1 and 2, the housing 1 has a bottom portion 1a, a plurality (four in the example of FIG. 2) side portions 1b, and an upper portion 1c. The opening 11 is formed so as to penetrate in the thickness direction of the wall 12 of the housing 1 (upper part 1c in the example of FIG. 1). The opening shape of the opening 11 is preferably, for example, a circular shape. In addition, the housing | casing 1 may have the bottom part 1a, the side part 1b which consists of one surrounding wall, and the upper part 1c.
 筐体1は、例えば、黒色の樹脂により形成されているのが好ましい。これにより、スペクトルセンサ100は、第1受光素子5及び第2受光素子7それぞれに到達する迷光を低減することが可能となる。よって、スペクトルセンサ100は、第1受光素子5及び第2受光素子7それぞれの出力のS/N比の向上を図ることが可能となる。筐体1は、黒色の樹脂に限らず、例えば、金属により形成されていてもよい。この場合、スペクトルセンサ100は、例えば、筐体1の内面側を黒色の塗装材料により塗装してもよいし、黒色のアルマイトを形成してもよい。 The housing 1 is preferably formed of, for example, a black resin. Thereby, the spectrum sensor 100 can reduce stray light reaching the first light receiving element 5 and the second light receiving element 7 respectively. Therefore, the spectrum sensor 100 can improve the S / N ratio of the outputs of the first light receiving element 5 and the second light receiving element 7. The housing 1 is not limited to black resin, and may be formed of metal, for example. In this case, for example, the spectrum sensor 100 may coat the inner surface side of the housing 1 with a black coating material, or may form black alumite.
 また、スペクトルセンサ100は、筐体1の内面が、迷光を散乱する粗面となっている構成としてもよい。これにより、スペクトルセンサ100は、第1受光素子5の受光面51及び第2受光素子7の受光面71それぞれに到達する迷光を低減することが可能となる。 Further, the spectrum sensor 100 may be configured such that the inner surface of the housing 1 is a rough surface that scatters stray light. Thereby, the spectrum sensor 100 can reduce stray light reaching the light receiving surface 51 of the first light receiving element 5 and the light receiving surface 71 of the second light receiving element 7.
 コリメートレンズ2は、スペクトルセンサ100の外部から入射した光を平行光線束とするように構成されている。言い換えれば、コリメートレンズ2は、入射した光を平行光に変換するように構成されている。より詳細には、コリメートレンズ2は、例えば、両凸レンズ21と、平凹レンズ22と、で構成することができる。 The collimating lens 2 is configured so that light incident from the outside of the spectrum sensor 100 becomes a parallel light beam. In other words, the collimating lens 2 is configured to convert incident light into parallel light. More specifically, the collimating lens 2 can be composed of, for example, a biconvex lens 21 and a plano-concave lens 22.
 MEMSミラー30は、MEMSの製造技術を利用して製造されている。MEMSミラー30の構造については、図3~5に基づいて説明する。 The MEMS mirror 30 is manufactured using MEMS manufacturing technology. The structure of the MEMS mirror 30 will be described with reference to FIGS.
 MEMSミラー30は、支持部31と可動部32と一対の捩りばね部33とが、基板300から形成されている。基板300としては、シリコン基板311上のシリコン酸化膜312上にシリコン層313が形成されたSOI基板を用いている。シリコン酸化膜312は、例えば、埋込酸化膜により構成することができる。SOI基板のシリコン層313の表面は、(100)面としてある。SOI基板は、例えば、シリコン基板311、シリコン酸化膜312及びシリコン層313の厚さを、それぞれ、400μm、1μm及び30μmとすることができる。シリコン基板311及びシリコン層313は、導電性を有している。シリコン酸化膜312は、電気絶縁性を有する絶縁膜を構成している。 The MEMS mirror 30 has a support portion 31, a movable portion 32, and a pair of torsion spring portions 33 formed from a substrate 300. As the substrate 300, an SOI substrate in which a silicon layer 313 is formed on a silicon oxide film 312 on a silicon substrate 311 is used. The silicon oxide film 312 can be composed of, for example, a buried oxide film. The surface of the silicon layer 313 of the SOI substrate is a (100) plane. In the SOI substrate, for example, the thickness of the silicon substrate 311, the silicon oxide film 312, and the silicon layer 313 can be set to 400 μm, 1 μm, and 30 μm, respectively. The silicon substrate 311 and the silicon layer 313 have conductivity. The silicon oxide film 312 constitutes an insulating film having electrical insulation.
 支持部31は、外周形状が矩形(直角四辺形)状であるのが好ましい。これにより、MEMSミラー30の製造方法では、複数のMEMSミラー30を形成したウェハから個々のMEMSミラー30に分離するダイシング工程の作業性を向上させることが可能となる。基板300がSOI基板の場合、基板300の基礎となるウェハは、SOIウェハである。MEMSミラー30のチップサイズは、例えば、4mm×4mmに設定することができる。 It is preferable that the outer peripheral shape of the support portion 31 is a rectangle (right-angled quadrilateral). Thereby, in the manufacturing method of the MEMS mirror 30, it becomes possible to improve the workability | operativity of the dicing process which isolate | separates into the individual MEMS mirror 30 from the wafer in which the several MEMS mirror 30 was formed. When the substrate 300 is an SOI substrate, the wafer serving as the basis of the substrate 300 is an SOI wafer. The chip size of the MEMS mirror 30 can be set to 4 mm × 4 mm, for example.
 支持部31は、枠状の形状として、矩形枠状の形状を採用している。支持部31は、SOI基板のうちシリコン基板311とシリコン酸化膜312とシリコン層313とから形成されている。 The support portion 31 adopts a rectangular frame shape as the frame shape. The support portion 31 is formed of a silicon substrate 311, a silicon oxide film 312, and a silicon layer 313 among the SOI substrate.
 MEMSミラー30は、基板300の厚さ方向の第1面301側において可動部32及び一対の捩りばね部33が形成されている。基板300の第1面301は、シリコン層313の表面により構成されている。可動部32及び一対の捩りばね部33は、SOI基板のシリコン層313から形成されている。これにより、可動部32及び一対の捩りばね部33は、支持部31よりも厚さが十分に薄くなっている。 The MEMS mirror 30 has a movable portion 32 and a pair of torsion spring portions 33 formed on the first surface 301 side in the thickness direction of the substrate 300. The first surface 301 of the substrate 300 is constituted by the surface of the silicon layer 313. The movable portion 32 and the pair of torsion spring portions 33 are formed from a silicon layer 313 of the SOI substrate. Accordingly, the movable portion 32 and the pair of torsion spring portions 33 are sufficiently thinner than the support portion 31.
 可動部32は、外周形状が矩形状である。可動部32は、厚さを30μmに設定してある。ミラー部34は、外周形状が矩形状である。ミラー部34は、例えば、シリコン層313上に形成された反射膜により構成することができる。反射膜の材料としては、Alを採用している。反射膜の材料は、Alに限らず、例えば、Ag、Al-Si、Au等を採用してもよい。ミラー部34の厚さは、例えば、500nmに設定することができる。 The outer peripheral shape of the movable part 32 is rectangular. The movable part 32 has a thickness set to 30 μm. The mirror part 34 has a rectangular outer peripheral shape. The mirror part 34 can be comprised by the reflective film formed on the silicon layer 313, for example. Al is adopted as the material of the reflective film. The material of the reflective film is not limited to Al, and for example, Ag, Al—Si, Au, or the like may be employed. The thickness of the mirror part 34 can be set to 500 nm, for example.
 捩りばね部33は、捩れ変形が可能なトーションバーである。捩りばね部33は、厚さを30μm、幅を5μmに設定してある。 The torsion spring portion 33 is a torsion bar that can be torsionally deformed. The torsion spring portion 33 has a thickness of 30 μm and a width of 5 μm.
 可動部32は、支持部31に支持された一対の捩りばね部33を回転軸として回転可能となっている。より詳細には、可動部32は、支持部31に対して、一対の捩りばね部33の軸線を含む直線の回りで回転可能となっている。ここで、可動部32は、一対の捩りばね部33を回転軸として、時計回り方向において最大振れ角になる第1位置(図6のθm参照)と、反時計回り方向において最大振れ角になる第2位置(図7のθm-参照)と、の間で往復回転可能となっている。本明細書における振れ角は、図1に示すように駆動されていない可動部32の位置を基準に、時計回り方向の角度を正の角度とし、反時計回り方向の角度を負の角度とする。また、本明細書では、可動部32において一対の捩りばね部33の並んでいる方向を第1方向D1と規定し、可動部32において第1方向D1に直交する方向を第2方向D2と規定する。図6及び7の例では、第1受光素子5及び第2受光素子7は、コリメートレンズ2と可動部32との間に設けられている。第1受光素子5は、第2方向D2の第1側(図では右側)の可動部32の第1端部側に配置されている一方、第2受光素子7は、第2方向D2の第2側(図では左側)の可動部32の第2端部側に配置されている。この場合、上記時計回り方向は、可動部32の第1端部が第1受光素子5側から離れ、可動部32の第2端部が第1受光素子5側に近づく方向である。反時計回り方向は、可動部32の第1端部が第1受光素子5側に近づき、可動部32の第2端部が第1受光素子5側から離れる方向である。このように、可動部32は、第1方向D1に並ぶ一対の捩りばね部33を回転軸として回転自在である。 The movable part 32 is rotatable about a pair of torsion spring parts 33 supported by the support part 31 as a rotation axis. More specifically, the movable portion 32 is rotatable with respect to the support portion 31 around a straight line including the axis of the pair of torsion spring portions 33. Here, the movable portion 32 has the first position (see θm in FIG. 6) at which the maximum deflection angle is obtained in the clockwise direction and the maximum deflection angle in the counterclockwise direction, with the pair of torsion spring portions 33 as the rotation axes. It can reciprocate between the second position (see θm− in FIG. 7). As shown in FIG. 1, the deflection angle in the present specification is based on the position of the movable portion 32 that is not driven, and the clockwise direction is a positive angle and the counterclockwise direction is a negative angle. . In the present specification, the direction in which the pair of torsion springs 33 are arranged in the movable portion 32 is defined as a first direction D1, and the direction perpendicular to the first direction D1 in the movable portion 32 is defined as a second direction D2. To do. 6 and 7, the first light receiving element 5 and the second light receiving element 7 are provided between the collimating lens 2 and the movable portion 32. The first light receiving element 5 is arranged on the first end side of the movable portion 32 on the first side (right side in the drawing) in the second direction D2, while the second light receiving element 7 is arranged in the second direction D2. It is arranged on the second end side of the movable part 32 on the second side (left side in the figure). In this case, the clockwise direction is a direction in which the first end portion of the movable portion 32 is separated from the first light receiving element 5 side and the second end portion of the movable portion 32 is closer to the first light receiving element 5 side. The counterclockwise direction is a direction in which the first end portion of the movable portion 32 approaches the first light receiving element 5 side and the second end portion of the movable portion 32 moves away from the first light receiving element 5 side. Thus, the movable part 32 is rotatable about the pair of torsion spring parts 33 arranged in the first direction D1 as the rotation axis.
 回折格子35は、コリメートレンズ2から出射した光を回折し波長毎に異なる角度で反射する反射型回折格子である。要するに、回折格子35は、入射する光に含まれている光の各波長の成分を各波長に対応した方向に出射するように構成されている。 The diffraction grating 35 is a reflective diffraction grating that diffracts the light emitted from the collimating lens 2 and reflects it at different angles for each wavelength. In short, the diffraction grating 35 is configured to emit each wavelength component of light contained in incident light in a direction corresponding to each wavelength.
 回折格子35は、複数の溝35bが第2方向D2に並んで形成されている。より詳細には、回折格子35は、複数の溝35bが第2方向D2において周期的に形成されている。各溝35bは、第1方向D1に沿って形成されている。 The diffraction grating 35 has a plurality of grooves 35b arranged in the second direction D2. More specifically, in the diffraction grating 35, a plurality of grooves 35b are periodically formed in the second direction D2. Each groove 35b is formed along the first direction D1.
 回折格子35は、コリメートレンズ2から出射した光が入射すると、各次数(回折の次数)の回折光を出射する。図1、6及び7には、コリメートレンズ2に入射して出射する光Lを破線で模式的に記載してある。また、0次の回折光(反射光)DL0が出射される範囲を一点鎖線で示す細長の帯形で模式的に記載してある。また、1次の回折光DL1及び-1次の回折光DL1-それぞれの出射される範囲を、一点鎖線で示す扇形で模式的に記載してある。スペクトルセンサ100は、高感度化の観点から、0次以外の規定次数の回折光として、1次の回折光DL1を採用するのが好ましい。 The diffraction grating 35 emits diffracted light of each order (the order of diffraction) when the light emitted from the collimating lens 2 enters. In FIGS. 1, 6 and 7, the light L entering and exiting the collimating lens 2 is schematically described by broken lines. In addition, the range in which the 0th-order diffracted light (reflected light) DL0 is emitted is schematically illustrated by an elongated band shape indicated by a dashed line. In addition, the emission ranges of the first-order diffracted light DL1 and the −1st-order diffracted light DL1- are schematically described in fan shapes indicated by alternate long and short dash lines. The spectrum sensor 100 preferably employs the first-order diffracted light DL1 as the diffracted light having a specified order other than the 0th order from the viewpoint of increasing sensitivity.
 図4に示すように、回折格子35は、第1方向D1に直交する断面における溝35bの形状を鋸歯状としてある。これにより、回折格子35は、第1方向D1に直交する断面における溝35bの形状を矩形状としてある場合に比べて、1次の回折光DL1の回折効率をより高めることが可能となる。回折格子35は、溝35bの周期dが格子周期となる。溝35bの周期dは、例えば、500nm~2000nm程度の範囲で設定することができる。また、溝35bの深さは、例えば、10nm~100nm程度の範囲で設定することができる。また、溝35bのブレーズ角は、例えば、7度とすることができる。 As shown in FIG. 4, in the diffraction grating 35, the shape of the groove 35b in the cross section orthogonal to the first direction D1 is a sawtooth shape. Accordingly, the diffraction grating 35 can further increase the diffraction efficiency of the first-order diffracted light DL1 as compared with the case where the shape of the groove 35b in the cross section orthogonal to the first direction D1 is rectangular. In the diffraction grating 35, the period d of the groove 35b is the grating period. The period d of the groove 35b can be set in a range of about 500 nm to 2000 nm, for example. Further, the depth of the groove 35b can be set, for example, in the range of about 10 nm to 100 nm. The blaze angle of the groove 35b can be set to 7 degrees, for example.
 スペクトルセンサ100は、MEMSミラー30の可動部32を回転させることで回折格子35を回転させることにより、第1受光素子5の受光面51に入射する光の波長を変えて波長毎の光の強度を測定することが可能となる(図1、6及び7の1次の回折光DL1参照)。この場合、受光面51に入射する光の波長は、可動部32の振れ角に依存するので、受光面51に入射する光の波長を特定するためには、可動部32の振れ角を特定する必要がある。可動部32の振れ角を特定するための構成については後述する。 The spectrum sensor 100 rotates the diffraction grating 35 by rotating the movable part 32 of the MEMS mirror 30, thereby changing the wavelength of the light incident on the light receiving surface 51 of the first light receiving element 5, and the light intensity for each wavelength. Can be measured (see the first-order diffracted light DL1 in FIGS. 1, 6 and 7). In this case, since the wavelength of the light incident on the light receiving surface 51 depends on the swing angle of the movable part 32, the swing angle of the movable part 32 is specified in order to specify the wavelength of the light incident on the light receiving surface 51. There is a need. A configuration for specifying the deflection angle of the movable portion 32 will be described later.
 駆動部4を構成するマイクロアクチュエータは、静電力により可動部32を駆動する静電型アクチュエータであり、MEMSミラー30に一体に形成されているのが好ましい。 The microactuator constituting the drive unit 4 is an electrostatic actuator that drives the movable unit 32 by electrostatic force, and is preferably formed integrally with the MEMS mirror 30.
 図3に示すように、駆動部4は、例えば、第2方向D2における可動部32の両側に形成された一対の可動電極41と、支持部31に形成され一対の可動電極41それぞれに1対1で対向する一対の固定電極42と、を備えた構成とすることができる。つまり、静電型アクチュエータである駆動部4は、互いに対向する可動電極41と固定電極42との組を2組備えている。駆動部4は、可動電極41及び固定電極42が、シリコン層313から形成されている。駆動部4は、可動電極41と固定電極42との間に発生する静電力により可動部32を駆動する。 As shown in FIG. 3, for example, the drive unit 4 is paired with a pair of movable electrodes 41 formed on both sides of the movable unit 32 in the second direction D2 and a pair of movable electrodes 41 formed on the support unit 31. 1 and a pair of fixed electrodes 42 facing each other. That is, the drive unit 4 that is an electrostatic actuator includes two sets of the movable electrode 41 and the fixed electrode 42 that face each other. In the drive unit 4, the movable electrode 41 and the fixed electrode 42 are formed from the silicon layer 313. The drive unit 4 drives the movable unit 32 by an electrostatic force generated between the movable electrode 41 and the fixed electrode 42.
 可動電極41及び固定電極42は、櫛形状の形状とするのが好ましい。櫛形状の可動電極41は、第1方向D1に沿って形成された櫛骨部41aと、櫛骨部41aにおける支持部31との対向面から第2方向D2に沿って突出した複数の櫛歯部41bと、を備える。可動電極41の複数の櫛歯部41bは、第1方向D1に並んで形成されている。櫛形状の固定電極42は、第1方向D1に沿って形成された櫛骨部42aと、櫛骨部42aにおける可動部32との対向面から第2方向D2に沿って突出した複数の櫛歯部42bと、を備える。固定電極42の複数の櫛歯部42bは、第1方向D1に並んで形成されている。 The movable electrode 41 and the fixed electrode 42 are preferably comb-shaped. The comb-shaped movable electrode 41 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 41a formed along the first direction D1 and the support portion 31 of the comb bone portion 41a. Part 41b. The plurality of comb teeth 41b of the movable electrode 41 are formed side by side in the first direction D1. The comb-shaped fixed electrode 42 includes a plurality of comb teeth projecting along the second direction D2 from the facing surfaces of the comb bone portion 42a formed along the first direction D1 and the movable portion 32 of the comb bone portion 42a. Part 42b. The plurality of comb-tooth portions 42b of the fixed electrode 42 are formed side by side in the first direction D1.
 櫛形状の可動電極41と櫛形状の固定電極42とは、互いに入り組むように配置されている。より詳細には、駆動部4は、可動電極41と固定電極42との互いの櫛骨部41a、42a同士が対向し、第1方向D1において可動電極41の櫛歯部41bと固定電極42の櫛歯部42bとが交互に並んでいる。第1方向D1において隣り合う櫛歯部41bと櫛歯部42bとの間の隙間は、例えば、5μm~20μm程度の範囲で適宜設定すればよい。駆動部4は、可動電極41と固定電極42との間に電圧が印加されることにより、可動電極41と固定電極42との間に互いに引き合う方向に作用する静電力が発生する。 The comb-shaped movable electrode 41 and the comb-shaped fixed electrode 42 are arranged so as to be intertwined with each other. More specifically, in the driving unit 4, the comb bone portions 41 a and 42 a of the movable electrode 41 and the fixed electrode 42 face each other, and the comb tooth portions 41 b of the movable electrode 41 and the fixed electrode 42 of the movable electrode 41 in the first direction D <b> 1. The comb tooth portions 42b are alternately arranged. What is necessary is just to set suitably the clearance gap between the comb-tooth part 41b and the comb-tooth part 42b which adjoin in the 1st direction D1, for example in the range of about 5 micrometers-20 micrometers. The drive unit 4 generates an electrostatic force that acts in the direction of attracting between the movable electrode 41 and the fixed electrode 42 when a voltage is applied between the movable electrode 41 and the fixed electrode 42.
 MEMSミラー30は、可動部32及び一対の捩りばね部33の内部応力に起因して、可動部32が、静止状態でも水平姿勢ではなく、きわめて僅かであるが傾いている。このため、MEMSミラー30は、例えば、可動電極41と固定電極42との間にパルス電圧が印加されると、静止状態からであっても、可動部32に、支持部31の厚さ方向に沿った方向の駆動力が加わる。これにより、MEMSミラー30は、可動部32が、一対の捩りばね部33を回転軸として、一対の捩りばね部33を捩りながら回転する。そして、MEMSミラー30は、櫛歯部41bと櫛歯部42bとが完全に重なりあうような姿勢となった時に可動電極41と固定電極42との間の駆動力が解除されると、可動部32が、慣性力により、一対の捩りばね部33を捩りながら回転し続ける。そして、MEMSミラー30は、可動部32の回転方向への慣性力と、一対の捩りばね部33の復元力とが等しくなったとき、可動部32の回転が停止する。このとき、MEMSミラー30は、可動電極41と固定電極42との間に再びパルス電圧が印加されて静電力が発生すると、可動部32が、一対の捩りばね部33の復元力と駆動部4の駆動力とにより、それまでとは逆の方向への回転を開始する。可動部32は、駆動部4の駆動力と一対の捩りばね部33の復元力とによる回転を繰り返す。これにより、駆動部4は、一対の捩りばね部33を回転軸として可動部32を往復回転させることができる。要するに、駆動部4は、一対の捩りばね部33を回転軸として可動部32を揺動運動させることができる。 The MEMS mirror 30 is tilted although the movable part 32 is not in a horizontal posture even in a stationary state but is slightly inclined due to the internal stress of the movable part 32 and the pair of torsion spring parts 33. For this reason, for example, when a pulse voltage is applied between the movable electrode 41 and the fixed electrode 42, the MEMS mirror 30 causes the movable portion 32 to move in the thickness direction of the support portion 31 even from a stationary state. A driving force in the direction along is applied. As a result, the MEMS mirror 30 rotates while the movable portion 32 twists the pair of torsion spring portions 33 around the pair of torsion spring portions 33 as rotation axes. Then, when the driving force between the movable electrode 41 and the fixed electrode 42 is released when the MEMS mirror 30 is in such a posture that the comb tooth portion 41b and the comb tooth portion 42b are completely overlapped, 32 continues to rotate while twisting the pair of torsion spring portions 33 by inertial force. Then, when the inertial force in the rotation direction of the movable part 32 and the restoring force of the pair of torsion spring parts 33 become equal, the MEMS mirror 30 stops the rotation of the movable part 32. At this time, when a pulse voltage is applied again between the movable electrode 41 and the fixed electrode 42 to generate an electrostatic force, the movable portion 32 causes the restoring force of the pair of torsion spring portions 33 and the drive portion 4 to move. Rotation in the direction opposite to that until then is started. The movable portion 32 repeats rotation by the driving force of the driving portion 4 and the restoring force of the pair of torsion spring portions 33. Thereby, the drive part 4 can reciprocately rotate the movable part 32 by making a pair of torsion spring part 33 into a rotating shaft. In short, the drive unit 4 can swing the movable unit 32 around the pair of torsion springs 33 as the rotation axis.
 MEMSミラー30は、可動部32と一対の捩りばね部33とを含む振動系の共振周波数の略2倍の周波数のパルス電圧を印加することにより、可動部32が共振現象を伴って駆動される。これにより、MEMSミラー30は、共振現象を生じない周波数で駆動される場合に比べて、振れ角を大きくすることが可能となる。 The MEMS mirror 30 is driven with a resonance phenomenon by applying a pulse voltage having a frequency approximately twice the resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33. . As a result, the MEMS mirror 30 can have a larger deflection angle than when driven at a frequency that does not cause a resonance phenomenon.
 MEMSミラー30の駆動電圧は、例えば、20~50V程度の範囲で設定することができる。 The drive voltage of the MEMS mirror 30 can be set in the range of about 20 to 50V, for example.
 MEMSミラー30は、例えば、振動系の共振周波数を1kHz以下とするのが好ましく、200Hz以下とするのが好ましい。可動部32と一対の捩りばね部33とを含む振動系の共振周波数は、可動部32の形状、可動部32の質量、各捩りばね部33のばね定数等によって決まる。共振周波数は、捩れ振動モードの共振周波数である。MEMSミラー30は、SOI基板のシリコン層313から可動部32及び各捩りばね部33を形成してあるので、基板300がシリコン基板である場合に比べて、可動部32及び各捩りばね部33の厚さの精度を高めることが可能となる。これにより、MEMSミラー30は、可動部32と一対の捩りばね部33とを含む振動系の共振周波数の精度を高めることが可能となる。 For example, the MEMS mirror 30 preferably has a resonance frequency of the vibration system of 1 kHz or less, and preferably 200 Hz or less. The resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33 is determined by the shape of the movable portion 32, the mass of the movable portion 32, the spring constant of each torsion spring portion 33, and the like. The resonance frequency is the resonance frequency of the torsional vibration mode. Since the MEMS mirror 30 is formed with the movable portion 32 and each torsion spring portion 33 from the silicon layer 313 of the SOI substrate, the movable portion 32 and each torsion spring portion 33 are compared with the case where the substrate 300 is a silicon substrate. It becomes possible to increase the accuracy of the thickness. Thereby, the MEMS mirror 30 can improve the accuracy of the resonance frequency of the vibration system including the movable portion 32 and the pair of torsion spring portions 33.
 検知部36は、可動部32において第2方向D2の両側に形成された一対の可動電極37と、支持部31に形成され一対の可動電極37それぞれに対向する一対の固定電極38と、を備える静電容量型センサであるのが好ましい。これにより、スペクトルセンサ100は、一対の可動電極37と一対の固定電極38とにより構成される簡単な構造の静電容量型センサにより、可動部32の振れ角が0度となるタイミングを検知することが可能となる。 The detection unit 36 includes a pair of movable electrodes 37 formed on both sides in the second direction D2 in the movable unit 32, and a pair of fixed electrodes 38 formed on the support unit 31 and facing the pair of movable electrodes 37, respectively. A capacitive sensor is preferred. As a result, the spectrum sensor 100 detects the timing at which the swing angle of the movable portion 32 becomes 0 degrees by a capacitive sensor having a simple structure including the pair of movable electrodes 37 and the pair of fixed electrodes 38. It becomes possible.
 可動電極37及び固定電極38は、櫛形状の形状とするのが好ましい。櫛形状の可動電極37は、第1方向D1に沿って形成された櫛骨部37aと、櫛骨部37aにおける支持部31との対向面から第2方向D2に沿って突出した複数の櫛歯部37bと、を備える。可動電極37の複数の櫛歯部37bは、第1方向D1に並んで形成されている。櫛形状の固定電極38は、第1方向D1に沿って形成された櫛骨部38aと、櫛骨部38aにおける可動部32との対向面から第2方向D2に沿って突出した複数の櫛歯部38bと、を備える。固定電極38の複数の櫛歯部38bは、第1方向D1に並んで形成されている。 The movable electrode 37 and the fixed electrode 38 are preferably comb-shaped. The comb-shaped movable electrode 37 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 37a formed along the first direction D1 and the support portion 31 of the comb bone portion 37a. Part 37b. The plurality of comb teeth portions 37b of the movable electrode 37 are formed side by side in the first direction D1. The comb-shaped fixed electrode 38 includes a plurality of comb teeth projecting along the second direction D2 from the facing surface of the comb bone portion 38a formed along the first direction D1 and the movable portion 32 of the comb bone portion 38a. Part 38b. The plurality of comb-tooth portions 38b of the fixed electrode 38 are formed side by side in the first direction D1.
 櫛形状の可動電極37と櫛形状の固定電極38とは、互いに入り組むように配置されている。より詳細には、検知部36は、可動電極37と固定電極38との互いの櫛骨部37a、38a同士が対向し、第1方向D1において可動電極37の櫛歯部37bと固定電極38の櫛歯部38bとが交互に並んでいる。第1方向D1において隣り合う櫛歯部37bと櫛歯部38bとの間の隙間は、例えば、5μm~20μm程度の範囲で適宜設定すればよい。 The comb-shaped movable electrode 37 and the comb-shaped fixed electrode 38 are arranged so as to be intertwined with each other. More specifically, in the detection unit 36, the comb bone portions 37 a and 38 a of the movable electrode 37 and the fixed electrode 38 are opposed to each other, and the comb teeth 37 b and the fixed electrode 38 of the movable electrode 37 in the first direction D <b> 1. The comb tooth portions 38b are alternately arranged. What is necessary is just to set suitably the clearance gap between the comb-tooth part 37b and the comb-tooth part 38b which adjoin in the 1st direction D1, for example in the range of about 5 micrometers-20 micrometers.
 MEMSミラー30は、支持部31の表面31a側に、第1パッド電極39a、第2パッド電極39b及び第3パッド電極39cが形成されている。第1パッド電極39a、第2パッド電極39b及び第3パッド電極39cは、平面視形状が正方形状である。第1パッド電極39a、第2パッド電極39b及び第3パッド電極39cは、金属膜により構成されている。金属膜は、Al-Si膜である。第1パッド電極39a、第2パッド電極39b及び第3パッド電極39cの厚さは、500nmに設定してある。 In the MEMS mirror 30, a first pad electrode 39a, a second pad electrode 39b, and a third pad electrode 39c are formed on the surface 31a side of the support portion 31. The first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c have a square shape in plan view. The first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c are made of a metal film. The metal film is an Al—Si film. The thicknesses of the first pad electrode 39a, the second pad electrode 39b, and the third pad electrode 39c are set to 500 nm.
 MEMSミラー30は、駆動部4の可動電極41と第1パッド電極39aとが電気的に接続されている。また、MEMSミラー30は、駆動部4の固定電極42と第2パッド電極39bとが電気的に接続されている。また、MEMSミラー30は、検知部36の可動電極37と第1パッド電極39aとが電気的に接続されている。また、MEMSミラー30は、検知部36の固定電極38と第3パッド電極39cとが電気的に接続されている。なお、本明細書では、駆動部4の可動電極41を第1可動電極と称し、駆動部4の固定電極42を第1固定電極と称し、検知部36の可動電極37を第2可動電極と称し、検知部36の固定電極38を第2固定電極と称することができる。 In the MEMS mirror 30, the movable electrode 41 of the driving unit 4 and the first pad electrode 39a are electrically connected. In the MEMS mirror 30, the fixed electrode 42 of the driving unit 4 and the second pad electrode 39b are electrically connected. In the MEMS mirror 30, the movable electrode 37 of the detector 36 and the first pad electrode 39a are electrically connected. In the MEMS mirror 30, the fixed electrode 38 of the detection unit 36 and the third pad electrode 39c are electrically connected. In the present specification, the movable electrode 41 of the drive unit 4 is referred to as a first movable electrode, the fixed electrode 42 of the drive unit 4 is referred to as a first fixed electrode, and the movable electrode 37 of the detection unit 36 is referred to as a second movable electrode. In other words, the fixed electrode 38 of the detection unit 36 can be referred to as a second fixed electrode.
 支持部31には、シリコン層313の表面からシリコン酸化膜312に達する深さの複数の溝314が形成されている。これにより、MEMSミラー30は、駆動部4の可動電極41と固定電極42とが電気的に絶縁され、検知部36の可動電極37と固定電極38とが電気的に絶縁されている。なお、MEMSミラー30は、図3に示すように、4か所に固定電極42が形成されており、図3における上側の2つの固定電極42と下側の2つの固定電極42とが、例えば、導電性ワイヤ等の配線により電気的に接続されている。 A plurality of grooves 314 having a depth reaching the silicon oxide film 312 from the surface of the silicon layer 313 are formed in the support portion 31. Thereby, in the MEMS mirror 30, the movable electrode 41 and the fixed electrode 42 of the drive unit 4 are electrically insulated, and the movable electrode 37 and the fixed electrode 38 of the detection unit 36 are electrically insulated. As shown in FIG. 3, the MEMS mirror 30 has fixed electrodes 42 formed at four locations, and the upper two fixed electrodes 42 and the lower two fixed electrodes 42 in FIG. They are electrically connected by wiring such as conductive wires.
 MEMSミラー30では、互いに対向する可動電極41と固定電極42との間に駆動電圧を印加することにより、互いに対向する可動電極41と固定電極42との間に静電力が発生し、可動部32が、一対の捩りばね部33を回転軸として回転する。よって、MEMSミラー30では、互いに対向する可動電極41と固定電極42との間に所定周波数のパルス電圧を印加することにより、周期的に静電力を発生させることができ、可動部32を連続的に往復回転させることが可能となる。要するに、MEMSミラー30は、可動部32を、一対の捩りばね部33を回転軸として、揺動させることができる。より詳細には、所定周波数は、共振周波数の略2倍の周波数が好ましい。MEMSミラー30は、可動部32を、一対の捩りばね部33を回転軸として、時計回り方向の最大振れ角θmと反時計回り方向の最大振れ角θm-で決まる角度範囲(揺動範囲)内で揺動させることができる。時計回り方向の最大振れ角θmは、例えば、+15度に設定することができる。また、反時計回り方向の最大振れ角θm-は、例えば、-15度に設定することができる。 In the MEMS mirror 30, by applying a driving voltage between the movable electrode 41 and the fixed electrode 42 facing each other, an electrostatic force is generated between the movable electrode 41 and the fixed electrode 42 facing each other, and the movable portion 32. However, the pair of torsion spring portions 33 rotate around the rotation axis. Therefore, in the MEMS mirror 30, by applying a pulse voltage of a predetermined frequency between the movable electrode 41 and the fixed electrode 42 facing each other, an electrostatic force can be periodically generated, and the movable part 32 is continuously formed. Can be rotated back and forth. In short, the MEMS mirror 30 can swing the movable portion 32 around the pair of torsion spring portions 33 as rotation axes. More specifically, the predetermined frequency is preferably about twice the resonance frequency. The MEMS mirror 30 has a movable portion 32 and a pair of torsion spring portions 33 as rotation axes within an angular range (swing range) determined by a maximum clockwise swing angle θm and a maximum counterclockwise swing angle θm−. Can be swung. The maximum deflection angle θm in the clockwise direction can be set to +15 degrees, for example. Further, the maximum deflection angle θm− in the counterclockwise direction can be set to −15 degrees, for example.
 MEMSミラー30は、第1パッド電極39aと第2パッド電極39bとの間に駆動電圧が印加されることにより、互いに対向する可動電極41と固定電極42との間に駆動電圧が印加される。 The MEMS mirror 30 is applied with a drive voltage between the movable electrode 41 and the fixed electrode 42 facing each other when a drive voltage is applied between the first pad electrode 39a and the second pad electrode 39b.
 MEMSミラー30は、検知部36において互いに対向する可動電極37と固定電極38との間に、駆動部4の駆動電圧に比べて高周波の検知用電圧が印加される。 In the MEMS mirror 30, a detection voltage having a higher frequency than the drive voltage of the drive unit 4 is applied between the movable electrode 37 and the fixed electrode 38 facing each other in the detection unit 36.
 検知部36は、支持部31に対する可動部32の相対的な位置の変化(つまり、可動部32の振れ角の変化)に応じて、可動電極37と固定電極38とを含むコンデンサの静電容量に変化が生じ、検知部36に流れる電流の検知用電圧に基づく電流値に変化が生じる。この電流値は、可動部32の振れ角が0度のときに最も大きくなる。よって、信号処理装置10は、検知部36に流れる電流を監視することにより、可動部32の振れ角が0度となるタイミングを知ることができる。 The detection unit 36 has a capacitance of a capacitor including the movable electrode 37 and the fixed electrode 38 according to a change in the relative position of the movable unit 32 with respect to the support unit 31 (that is, a change in the deflection angle of the movable unit 32). Changes, and the current value based on the detection voltage of the current flowing through the detection unit 36 changes. This current value becomes the largest when the deflection angle of the movable part 32 is 0 degree. Therefore, the signal processing apparatus 10 can know the timing at which the deflection angle of the movable unit 32 becomes 0 degrees by monitoring the current flowing through the detection unit 36.
 MEMSミラー30は、可動部32の振れ角が0度の状態で、可動部32の厚さ方向に沿った可動部32の中心線が、コリメートレンズ2の光軸201上にあるのが好ましい。 In the MEMS mirror 30, it is preferable that the center line of the movable part 32 along the thickness direction of the movable part 32 is on the optical axis 201 of the collimator lens 2 in a state where the swing angle of the movable part 32 is 0 degree.
 MEMSミラー30の製造方法に関しては、その一例について以下に簡単に説明する。 An example of the manufacturing method of the MEMS mirror 30 will be briefly described below.
 MEMSミラー30の製造にあたっては、まず、SOI基板からなる基板300を準備し、その後、回折格子35の形状に対応する凹凸形状321(図4参照)を基板300の第1面301に形成する凹凸形成工程を行う。凹凸形状は、テクスチャ構造である。凹凸形状は、例えば、フォトリソグラフィ技術及びエッチング技術を利用して形成することができる。凹凸形状は、インプリント技術及びエッチング技術を利用して形成することもできる。 In manufacturing the MEMS mirror 30, first, a substrate 300 made of an SOI substrate is prepared, and then an unevenness 321 (see FIG. 4) corresponding to the shape of the diffraction grating 35 is formed on the first surface 301 of the substrate 300. A formation process is performed. The uneven shape is a texture structure. The uneven shape can be formed using, for example, a photolithography technique and an etching technique. The concavo-convex shape can also be formed using an imprint technique and an etching technique.
 凹凸形成工程の後には、金属膜形成工程を行う。金属膜形成工程では、スパッタ法、蒸着法等を利用して基板300の第1面301側に金属膜を形成する。 After the unevenness forming step, a metal film forming step is performed. In the metal film forming step, a metal film is formed on the first surface 301 side of the substrate 300 using a sputtering method, a vapor deposition method, or the like.
 金属膜形成工程の後には、第1パターニング工程を行う。第1パターニング工程では、金属膜から第1パッド電極39a、第2パッド電極39b、第3パッド電極39c及びミラー部34が形成されるように、金属膜をパターニングする。このとき、ミラー部34の表面側には、回折格子35が形成される。 The first patterning step is performed after the metal film forming step. In the first patterning step, the metal film is patterned so that the first pad electrode 39a, the second pad electrode 39b, the third pad electrode 39c, and the mirror part 34 are formed from the metal film. At this time, a diffraction grating 35 is formed on the surface side of the mirror portion 34.
 第1パターニング工程の後には、SOI基板のシリコン層313をパターニングする第2パターニング工程を行う。第2パターニング工程では、シリコン層313のうち、可動部32、一対の捩りばね部33、支持部31、一対の可動電極41、一対の固定電極42、一対の可動電極37、一対の固定電極38等に対応する部分が残るように、シリコン層313をパターニングする。第2パターニング工程では、フォトリソグラフィ技術及びエッチング技術を利用して、シリコン層313の不要部分を、エッチングする。第2パターニング工程では、シリコン酸化膜312をエッチングストッパ層として利用している。 After the first patterning step, a second patterning step for patterning the silicon layer 313 of the SOI substrate is performed. In the second patterning step, of the silicon layer 313, the movable portion 32, the pair of torsion spring portions 33, the support portion 31, the pair of movable electrodes 41, the pair of fixed electrodes 42, the pair of movable electrodes 37, and the pair of fixed electrodes 38. The silicon layer 313 is patterned so as to leave a portion corresponding to. In the second patterning step, unnecessary portions of the silicon layer 313 are etched using a photolithography technique and an etching technique. In the second patterning step, the silicon oxide film 312 is used as an etching stopper layer.
 第2パターニング工程の後には、シリコン基板311をパターニングする第3パターニング工程を行う。第3パターニング工程では、シリコン基板311のうち、支持部31に対応する部分が残るように、シリコン基板311をパターニングする。第3パターニング工程では、フォトリソグラフィ技術及びエッチング技術を利用して、シリコン基板311の不要部分を、エッチングする。第3パターニング工程では、シリコン酸化膜312をエッチングストッパ層として利用している。 After the second patterning step, a third patterning step for patterning the silicon substrate 311 is performed. In the third patterning step, the silicon substrate 311 is patterned so that a portion of the silicon substrate 311 corresponding to the support portion 31 remains. In the third patterning step, unnecessary portions of the silicon substrate 311 are etched using photolithography technology and etching technology. In the third patterning step, the silicon oxide film 312 is used as an etching stopper layer.
 第3パターニング工程の後には、シリコン酸化膜312をパターニングする第4パターニング工程を行う。第4パターニング工程を行うことにより、MEMSミラー30を得る。 After the third patterning step, a fourth patterning step for patterning the silicon oxide film 312 is performed. The MEMS mirror 30 is obtained by performing the fourth patterning step.
 MEMSミラー30の製造にあたっては、第4パターニング工程が終了するまでをウェハレベルで行ってから、ダイシング工程を行うことで個々のMEMSミラー30に分割するようにしている。 In manufacturing the MEMS mirror 30, the process until the completion of the fourth patterning process is performed at the wafer level and then the dicing process is performed to divide the MEMS mirror 30 into individual MEMS mirrors 30.
 MEMSミラー30は、第1支持基板401に実装されている。第1支持基板401は、例えば、プリント基板により構成することができる。第1支持基板401は、筐体1内で、筐体1に対して位置決めされている。第1支持基板401は、例えば、筐体1に固定されることで筐体1に対して位置決めされているのが好ましい。 The MEMS mirror 30 is mounted on the first support substrate 401. The first support substrate 401 can be configured by, for example, a printed circuit board. The first support substrate 401 is positioned with respect to the housing 1 within the housing 1. The first support substrate 401 is preferably positioned with respect to the housing 1 by being fixed to the housing 1, for example.
 第1受光素子5は、フォトダイオードにより構成されているのが好ましい。これにより、第1受光素子5は、小型化及び応答性の向上を図ることが可能となる。第1受光素子5は、第1受光素子5で受光する光の波長や光量等に応じて材料や構成を変更すればよい。 The first light receiving element 5 is preferably composed of a photodiode. Thereby, the first light receiving element 5 can be reduced in size and improved in response. What is necessary is just to change the material and structure of the 1st light receiving element 5 according to the wavelength, light quantity, etc. of the light received with the 1st light receiving element 5. FIG.
 第1受光素子5は、筐体1内において、回折格子35からの1次の回折光DL1を受光できるように配置されている。より詳細には、スペクトルセンサ100は、可動部32の振れ角によらず1次の回折光DL1が第1受光素子5で受光されるように第1受光素子5を配置してある。図1の例では、第1受光素子5は、可動部32の振れ角によらず1次の回折光DL1のみを受光するように構成されている。1次の回折光DL1の回折角は、光の波長の関数となる。スペクトルセンサ100は、可動部32の振れ角が0度のとき、第1受光素子5の光軸501と1次光DL1の出射範囲の中心線とが揃うように、第1受光素子5が配置されているのが好ましい。第1受光素子5は、光電変換素子であり、受光面51に入射した光の光強度に応じた信号(以下、「光電変換信号」という)を出力する。図1の例では、スペクトルセンサ100は、出力部65をさらに備え、信号処理装置10は、出力部65を介して、光電変換信号から得られる光強度信号を出力するように構成されている。なお、出力部65は、信号処理装置10に含まれてもよい。例えば、信号処理装置10がマイクロコンピュータで構成される場合、出力部65は、信号処理装置10のディジタル出力ポートでもよい。 The first light receiving element 5 is arranged in the housing 1 so as to receive the first-order diffracted light DL1 from the diffraction grating 35. More specifically, in the spectrum sensor 100, the first light receiving element 5 is arranged so that the first-order diffracted light DL 1 is received by the first light receiving element 5 regardless of the deflection angle of the movable portion 32. In the example of FIG. 1, the first light receiving element 5 is configured to receive only the first-order diffracted light DL <b> 1 regardless of the deflection angle of the movable portion 32. The diffraction angle of the first-order diffracted light DL1 is a function of the wavelength of the light. In the spectrum sensor 100, the first light receiving element 5 is arranged so that the optical axis 501 of the first light receiving element 5 and the center line of the emission range of the primary light DL1 are aligned when the swing angle of the movable part 32 is 0 degree. It is preferable. The first light receiving element 5 is a photoelectric conversion element, and outputs a signal (hereinafter referred to as “photoelectric conversion signal”) corresponding to the light intensity of the light incident on the light receiving surface 51. In the example of FIG. 1, the spectrum sensor 100 further includes an output unit 65, and the signal processing device 10 is configured to output a light intensity signal obtained from the photoelectric conversion signal via the output unit 65. Note that the output unit 65 may be included in the signal processing device 10. For example, when the signal processing device 10 is configured by a microcomputer, the output unit 65 may be a digital output port of the signal processing device 10.
 スペクトルセンサ100では、第1受光素子5において1次の回折光DL1を受光するから、2次以上の回折光を受光する構成とする場合に比べて、第1受光素子5の小型化を図れ、また、第1受光素子5の受光量の増加を図ることが可能となる。 Since the first light receiving element 5 receives the first-order diffracted light DL1 in the spectrum sensor 100, the first light-receiving element 5 can be downsized as compared with the case where the second-order or higher order diffracted light is received. In addition, the amount of light received by the first light receiving element 5 can be increased.
 第1受光素子5は、第2支持基板402に実装されている。第2支持基板402は、例えば、プリント基板により構成することができる。第2支持基板402は、筐体1内で、筐体1に対して位置決めされている。第2支持基板402は、例えば、筐体1に固定されることで筐体1に対して位置決めされているのが好ましい。 The first light receiving element 5 is mounted on the second support substrate 402. The second support substrate 402 can be configured by, for example, a printed circuit board. The second support substrate 402 is positioned with respect to the housing 1 within the housing 1. The second support substrate 402 is preferably positioned with respect to the housing 1 by being fixed to the housing 1, for example.
 第1絞り6における第1スリット61の形状は、例えば直線状の形状が好ましい。第1絞り6は、第1スリット61の長手方向が第1方向D1に沿った方向となるように配置されているのが好ましい。 The shape of the first slit 61 in the first diaphragm 6 is preferably a linear shape, for example. The first diaphragm 6 is preferably arranged so that the longitudinal direction of the first slit 61 is in the direction along the first direction D1.
 第1絞り6と回折格子35の中心との間隔は、例えば、5mmに設定することができる。ここで、第1スリット61の幅は、スペクトルセンサ100の所望の波長分解能に応じて適宜設定することができ、例えば、波長分解能が10nmの場合、0.065mmに設定することができる。第1絞り6は、第1スリット61の中心が第1受光素子5の光軸501上にあるのが好ましい。 The distance between the first diaphragm 6 and the center of the diffraction grating 35 can be set to 5 mm, for example. Here, the width of the first slit 61 can be appropriately set according to the desired wavelength resolution of the spectrum sensor 100. For example, when the wavelength resolution is 10 nm, it can be set to 0.065 mm. In the first diaphragm 6, the center of the first slit 61 is preferably on the optical axis 501 of the first light receiving element 5.
 第1絞り6は、例えば、第1受光素子5の受光面51を覆うように配置される第1遮光膜により構成することができる。これにより、第1絞り6は、第1受光素子5と一体に形成することが可能となる。第1遮光膜は、光を遮光する。第1絞り6は、第1遮光膜に形成された開口部が第1スリット61を構成している。第1遮光膜の材料としては、例えば、金属等を採用することができる。第1遮光膜は、例えば、蒸着法、スパッタ法、CVD法、めっき法等を利用して形成することができる。第1遮光膜は、光の多重反射に起因した迷光を低減する観点では光の吸収率の高い材料を採用するのが好ましく、金属以外の材料により形成してもよい。 The first diaphragm 6 can be constituted by, for example, a first light shielding film arranged so as to cover the light receiving surface 51 of the first light receiving element 5. Thereby, the first diaphragm 6 can be formed integrally with the first light receiving element 5. The first light shielding film shields light. In the first diaphragm 6, the opening formed in the first light shielding film constitutes the first slit 61. As a material of the first light shielding film, for example, a metal or the like can be employed. The first light shielding film can be formed using, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like. The first light-shielding film is preferably made of a material having a high light absorption rate from the viewpoint of reducing stray light due to multiple reflection of light, and may be formed of a material other than metal.
 スペクトルセンサ100は、第1絞り6を備えるので、第1受光素子5により受光する1次の回折光DL1の波長が、可動部32の振れ角(回転角)に応じて変化する。したがって、可動部32の振れ角と第1受光素子5の出力との関係は、例えば、図8に示す模式図のようになる。図8には、振れ角を関数とする3つの曲線を図示してあるが、これら3つの曲線が、波長を関数とする3つのスペクトルに1対1で対応している。言い換えれば、図8は、振れ角を波長に変換でき、3つの曲線のうち1番左の曲線が、中心波長をλ1とするスペクトルに対応し、真ん中の曲線が、中心波長をλ2とするスペクトルに対応し、1番右の曲線が、中心波長をλ3とするスペクトルに対応している。 Since the spectrum sensor 100 includes the first diaphragm 6, the wavelength of the first-order diffracted light DL1 received by the first light receiving element 5 changes according to the deflection angle (rotation angle) of the movable part 32. Therefore, the relationship between the deflection angle of the movable part 32 and the output of the first light receiving element 5 is, for example, as shown in the schematic diagram of FIG. FIG. 8 shows three curves with the deflection angle as a function, but these three curves have a one-to-one correspondence with the three spectra with the wavelength as a function. In other words, in FIG. 8, the deflection angle can be converted into a wavelength, and the leftmost curve of the three curves corresponds to the spectrum having the center wavelength λ1, and the middle curve is the spectrum having the center wavelength λ2. The rightmost curve corresponds to the spectrum having the center wavelength λ3.
 第2受光素子7は、フォトダイオードにより構成されているのが好ましい。これにより、第2受光素子7は、小型化及び応答性の向上を図ることが可能となる。第2受光素子7は、第2受光素子7で受光する光の波長や光量等に応じて材料や構成を変更すればよい。 The second light receiving element 7 is preferably composed of a photodiode. As a result, the second light receiving element 7 can be reduced in size and improved in response. The material and configuration of the second light receiving element 7 may be changed according to the wavelength, light amount, etc. of the light received by the second light receiving element 7.
 第2受光素子7は、回折格子35からの0次の回折光DL0である反射光を受光できるように配置してある(図7参照)。より詳細には、スペクトルセンサ100は、可動部32の規定の回転方向における可動部32の振れ角が、負の最大振れ角θm-のときに0次の回折光が第2受光素子7で受光されるように第2受光素子7を配置してある。言い換えれば、スペクトルセンサ100は、可動部32が規定の回転方向において負の最大振れ角θm-となる位置(図7参照)にあるときに、0次の回折光DL0を受光するように第2受光素子7の位置を設定してある。スペクトルセンサ100は、可動部32の規定の回転方向における可動部32の振れ角が、負の最大振れ角θm-のとき、第2受光素子7の光軸701と0次の回折光DL0の出射範囲の中心線とが揃うように、第2受光素子7が配置されているのが好ましい。「負の最大振れ角θm-となる位置」とは、厳密に負の最大振れ角θm-となる位置だけでなく、負の最大振れ角θm-よりも絶対値が1度程度小さな振れ角となる位置まで含む。よって、第2受光素子7の位置は、例えば、負の最大振れ角θm-となる位置の-15度から-14度の範囲内とすることができる。第2受光素子7は、光電変換素子であり、受光面71に入射した光の光強度に応じた信号(光電変換信号)を出力する。 The second light receiving element 7 is arranged so as to be able to receive the reflected light which is the 0th-order diffracted light DL0 from the diffraction grating 35 (see FIG. 7). More specifically, the spectrum sensor 100 receives the 0th-order diffracted light by the second light receiving element 7 when the deflection angle of the movable portion 32 in the prescribed rotational direction of the movable portion 32 is the negative maximum deflection angle θm−. Thus, the second light receiving element 7 is arranged. In other words, the spectrum sensor 100 receives the second-order diffracted light DL0 so that it receives the 0th-order diffracted light DL0 when the movable part 32 is at a position (see FIG. 7) at which the negative maximum deflection angle θm− is obtained in the specified rotational direction. The position of the light receiving element 7 is set. The spectrum sensor 100 emits the optical axis 701 of the second light receiving element 7 and the 0th-order diffracted light DL0 when the deflection angle of the movable portion 32 in the prescribed rotational direction of the movable portion 32 is the negative maximum deflection angle θm−. It is preferable that the second light receiving element 7 is arranged so as to be aligned with the center line of the range. The “position where the negative maximum deflection angle θm−” is not only a position where the negative maximum deflection angle θm− is strictly, but also a deflection angle whose absolute value is about 1 degree smaller than the negative maximum deflection angle θm−. To the position. Therefore, the position of the second light receiving element 7 can be in the range of −15 degrees to −14 degrees of the position where the negative maximum deflection angle θm− is obtained, for example. The second light receiving element 7 is a photoelectric conversion element, and outputs a signal (photoelectric conversion signal) corresponding to the light intensity of the light incident on the light receiving surface 71.
 第2受光素子7は、第3支持基板403に実装されている。第3支持基板403は、例えば、プリント基板により構成することができる。第3支持基板403は、筐体1内で、筐体1に対して位置決めされている。第3支持基板403は、例えば、筐体1に固定されることで筐体1に対して位置決めされているのが好ましい。 The second light receiving element 7 is mounted on the third support substrate 403. The third support substrate 403 can be constituted by a printed circuit board, for example. The third support substrate 403 is positioned with respect to the housing 1 within the housing 1. For example, the third support substrate 403 is preferably positioned with respect to the housing 1 by being fixed to the housing 1.
 スペクトルセンサ100は、第1受光素子5と第2受光素子7とが、可動部32の回転方向に沿った方向において並んでいるのが好ましい。これにより、MEMSミラー30は、第1方向D1に直交する平面に沿って回折格子35に入射光を入射させて用いる場合に、回折格子35からの0次の回折光DL0である反射光を、前記平面に沿って進行させて第2受光素子7に入射させることが可能となる。また、MEMSミラー30は、回折格子35からの1次の回折光DL1を前記平面に沿って進行させ第1受光素子5に入射させることが可能となる。 In the spectrum sensor 100, the first light receiving element 5 and the second light receiving element 7 are preferably arranged in a direction along the rotation direction of the movable portion 32. Thereby, when the MEMS mirror 30 is used by making incident light incident on the diffraction grating 35 along a plane orthogonal to the first direction D1, reflected light that is the 0th-order diffracted light DL0 from the diffraction grating 35 is The light can travel along the plane and enter the second light receiving element 7. In addition, the MEMS mirror 30 can cause the first-order diffracted light DL1 from the diffraction grating 35 to travel along the plane and enter the first light receiving element 5.
 第2絞り8における第2スリット81の形状は、例えば直線状の形状が好ましい。第2絞り8は、第2スリット81の長手方向が第1方向D1に沿った方向となるように配置されているのが好ましい。 The shape of the second slit 81 in the second diaphragm 8 is preferably a linear shape, for example. The second diaphragm 8 is preferably arranged so that the longitudinal direction of the second slit 81 is in the direction along the first direction D1.
 第2絞り8と回折格子35の中心との間隔は、例えば、5mmに設定することができる。この場合、第2スリット81の幅は、例えば、0.065mmに設定することができる。第2絞り8は、第2スリット81の中心が第2受光素子7の光軸701上にあるのが好ましい。 The distance between the second diaphragm 8 and the center of the diffraction grating 35 can be set to 5 mm, for example. In this case, the width of the second slit 81 can be set to 0.065 mm, for example. In the second diaphragm 8, the center of the second slit 81 is preferably on the optical axis 701 of the second light receiving element 7.
 第2絞り8は、例えば、第2受光素子7の受光面71を覆うように配置される第2遮光膜により構成することができる。これにより、第2絞り8は、第2受光素子7と一体に形成することが可能となる。第2遮光膜は、光を遮光する。第2絞り8は、第2遮光膜に形成された開口部が第2スリット81を構成している。第2遮光膜の材料としては、例えば、金属等を採用することができる。第2遮光膜は、例えば、蒸着法、スパッタ法、CVD法、めっき法等を利用して形成することができる。第2遮光膜は、光の多重反射に起因した迷光を低減する観点では光の吸収率の高い材料を採用するのが好ましく、金属以外の材料により形成してもよい。 The second diaphragm 8 can be constituted by, for example, a second light shielding film arranged so as to cover the light receiving surface 71 of the second light receiving element 7. Thereby, the second diaphragm 8 can be formed integrally with the second light receiving element 7. The second light shielding film shields light. In the second diaphragm 8, the opening formed in the second light shielding film forms the second slit 81. As the material of the second light shielding film, for example, a metal or the like can be employed. The second light shielding film can be formed using, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like. The second light-shielding film is preferably made of a material having a high light absorption rate from the viewpoint of reducing stray light due to multiple reflections of light, and may be formed of a material other than metal.
 記憶部9は、例えば、半導体メモリにより構成することができる。半導体メモリとしては、例えば、不揮発性メモリを採用するのが好ましい。不揮発性メモリとしては、例えば、EEPROM等を採用することができる。 The storage unit 9 can be constituted by, for example, a semiconductor memory. As the semiconductor memory, for example, a nonvolatile memory is preferably employed. As the nonvolatile memory, for example, an EEPROM or the like can be adopted.
 記憶部9には、可動部32の振れ角と第1受光素子5に入射する光の波長とを対応付けたデータテーブルが記憶されているのが好ましい。詳しくは、データテーブルは、種々の振れ角の値と、その種々の振れ角にそれぞれ対応付けられた種々の波長(波長の値)とを含む。本実施形態では、種々の振れ角の範囲は、図6及び7に示されるように、第1受光素子5による1次の回折光DL1の受光範囲に対応する。可動部32の振れ角と第1受光素子5で受光される光の対応する波長との関係を予め求めるには、例えば、分光光度計とレーザ変位計とを利用すればよい。この場合には、第1受光素子5の代わりに分光光度計を配置し、MEMSミラー30の駆動部4に印加する電圧の大きさを変えることで可動部32の振れ角を変化させ、分光光度計により光の波長を測定すればよい。可動部32の振れ角は、例えば、レーザ変位計により可動部32の傾きを測定することで求めることができる。 The storage unit 9 preferably stores a data table in which the deflection angle of the movable unit 32 and the wavelength of light incident on the first light receiving element 5 are associated with each other. Specifically, the data table includes various deflection angle values and various wavelengths (wavelength values) respectively associated with the various deflection angles. In this embodiment, the range of various deflection angles corresponds to the light receiving range of the first-order diffracted light DL1 by the first light receiving element 5, as shown in FIGS. In order to obtain in advance the relationship between the deflection angle of the movable portion 32 and the corresponding wavelength of the light received by the first light receiving element 5, for example, a spectrophotometer and a laser displacement meter may be used. In this case, a spectrophotometer is arranged in place of the first light receiving element 5, and the swing angle of the movable part 32 is changed by changing the magnitude of the voltage applied to the drive part 4 of the MEMS mirror 30, so that the spectrophotometer What is necessary is just to measure the wavelength of light with a meter. The deflection angle of the movable part 32 can be obtained, for example, by measuring the inclination of the movable part 32 with a laser displacement meter.
 信号処理装置10は、例えば、演算部18が、第2受光素子7により0次の回折光DL0が検知されたタイミングと、可動部32の振動周波数と、に基づいて可動部32の振れ角を求める。そして、信号処理装置10は、演算部18で求めた振れ角に基づいて記憶部9から読み出した波長と、第1受光素子5の信号と、を1対1で対応付ける処理部19を備えている。信号処理装置10は、例えば、マイクロコンピュータに適宜のプログラムを搭載することにより構成することができる。 In the signal processing device 10, for example, the calculation unit 18 determines the deflection angle of the movable unit 32 based on the timing at which the 0th-order diffracted light DL 0 is detected by the second light receiving element 7 and the vibration frequency of the movable unit 32. Ask. The signal processing apparatus 10 includes a processing unit 19 that associates the wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 with the signal of the first light receiving element 5 on a one-to-one basis. . The signal processing apparatus 10 can be configured by, for example, mounting an appropriate program on a microcomputer.
 MEMSミラー30では、共振現象を伴って可動部32が揺動する場合、可動部32の振れ角が図9に示すように略サインカーブに従って変化する。図9において、横軸は、駆動部4による可動部32の駆動の開始時点から経過した時間(以下、「経過時間」ともいう。)である。図9において、縦軸は、可動部32の振れ角である。図9において、θmは、可動部32の最大振れ角である。また、図9において、tm、tmは、可動部32の振れ角が最大振れ角θmとなる時点である。ここで、負の最大振れ角θm-となるtmとtmの中間時点は、第2受光素子7により0次の回折光DL0が検知されるタイミングに対応する。また、図9において、th、th、thは、振れ角が0度となる時点である。ここで、th、th、thは、検知部36により可動部32の振れ角が0度であることを検知されるタイミングに対応する。 In the MEMS mirror 30, when the movable part 32 swings with a resonance phenomenon, the swing angle of the movable part 32 changes according to a substantially sine curve as shown in FIG. In FIG. 9, the horizontal axis represents time elapsed from the start of driving of the movable unit 32 by the drive unit 4 (hereinafter also referred to as “elapsed time”). In FIG. 9, the vertical axis represents the deflection angle of the movable part 32. In FIG. 9, θm is the maximum deflection angle of the movable part 32. Further, in FIG. 9, tm 0 and tm 1 are times when the deflection angle of the movable part 32 becomes the maximum deflection angle θm. Here, the intermediate time point between tm 0 and tm 1 at which the negative maximum deflection angle θm− is reached corresponds to the timing at which the 0th-order diffracted light DL0 is detected by the second light receiving element 7. In FIG. 9, th 1 , th 2 , and th 3 are times when the deflection angle becomes 0 degrees. Here, th 1 , th 2 , and th 3 correspond to the timing at which the detection unit 36 detects that the deflection angle of the movable unit 32 is 0 degree.
 図10は、可動部32が振動しているときの検知部36の信号及び第2受光素子7の信号それぞれの変化を模式的に示している。図10における時点t1は、図7のように可動部32が反時計回り方向において負の最大振れ角θm-となるタイミングに対応している。図10における時点t2は、図1のように可動部32の振れ角が0となるタイミングに対応している。図10における時点t3は、可動部32が時計回り方向において(正の)最大振れ角θmとなるタイミングに対応している。 FIG. 10 schematically shows changes in the signal of the detection unit 36 and the signal of the second light receiving element 7 when the movable unit 32 vibrates. The time point t1 in FIG. 10 corresponds to the timing at which the movable part 32 becomes the negative maximum deflection angle θm− in the counterclockwise direction as shown in FIG. The time point t2 in FIG. 10 corresponds to the timing when the deflection angle of the movable part 32 becomes 0 as shown in FIG. A time point t3 in FIG. 10 corresponds to a timing at which the movable portion 32 reaches the (positive) maximum deflection angle θm in the clockwise direction.
 信号処理装置10は、経過時間を計時する計時部20を備えているのが好ましい。タイミング制御部55は、駆動回路45の動作タイミングと計時部20の動作タイミングとを同期させるように、駆動回路45の動作タイミングと、信号処理装置10の動作タイミングと、を制御するのが好ましい。タイミング制御部55は、例えば、PLD(programmable logic device)を用いて構成することができる。 It is preferable that the signal processing device 10 includes a time measuring unit 20 that measures elapsed time. The timing control unit 55 preferably controls the operation timing of the drive circuit 45 and the operation timing of the signal processing device 10 so that the operation timing of the drive circuit 45 and the operation timing of the timer unit 20 are synchronized. The timing control unit 55 can be configured using, for example, a PLD (programmable logic device).
 信号処理装置10は、第1受光素子5の信号と計時部20で計時している経過時間とを1対1で対応付けてデータ格納部15に(例えば所定時間間隔毎に)格納させるように構成されているのが好ましい。これにより、演算部18では、データ格納部15の記憶内容から、任意の経過時間における第1受光素子5の信号を知ることが可能となる。また、信号処理装置10では、第2受光素子7の信号と計時部20で計時している経過時間とを1対1で対応付けてデータ格納部15に(例えば所定時間間隔毎に)格納させるように構成されているのが好ましい。これにより、演算部18では、データ格納部15の記憶内容から、任意の経過時間における第2受光素子7の信号を知ることが可能となる。また、信号処理装置10は、検知部36の信号(電流)と計時部20で計時している経過時間とを1対1で対応付けてデータ格納部15に(例えば所定時間間隔毎に)格納させるように構成されているのが好ましい。 The signal processing apparatus 10 stores the signal of the first light receiving element 5 and the elapsed time measured by the time measuring unit 20 in a one-to-one correspondence in the data storage unit 15 (for example, at predetermined time intervals). Preferably, it is configured. Accordingly, the calculation unit 18 can know the signal of the first light receiving element 5 at an arbitrary elapsed time from the stored contents of the data storage unit 15. Further, in the signal processing device 10, the signal of the second light receiving element 7 and the elapsed time measured by the time measuring unit 20 are associated with each other on a one-to-one basis and stored in the data storage unit 15 (for example, at predetermined time intervals). It is preferable to be configured as described above. Thereby, the calculation unit 18 can know the signal of the second light receiving element 7 at an arbitrary elapsed time from the stored contents of the data storage unit 15. Further, the signal processing apparatus 10 stores the signal (current) of the detection unit 36 and the elapsed time measured by the time measuring unit 20 in one-to-one correspondence in the data storage unit 15 (for example, at predetermined time intervals). It is preferable to be configured so that the
 信号処理装置10は、第1受光素子5の信号を電流-電圧変換して出力する第1I/V変換部13と、第1I/V変換部13で変換された信号をアナログ-ディジタル変換してデータ格納部15へ出力する第1A/D変換部14と、を備えるのが好ましい。 The signal processing device 10 converts the signal of the first light receiving element 5 from current to voltage and outputs the signal, and the signal converted by the first I / V converter 13 is converted from analog to digital. And a first A / D conversion unit 14 that outputs to the data storage unit 15.
 また、信号処理装置10は、第2受光素子7の信号を電流-電圧変換して出力する第2I/V変換部16と、第2I/V変換部16で変換された信号をアナログ-ディジタル変換してデータ格納部15へ出力する第2A/D変換部17と、を備えるのが好ましい。 Further, the signal processing device 10 converts the signal of the second light receiving element 7 from current to voltage and outputs it, and the signal converted by the second I / V converter 16 is converted from analog to digital. And a second A / D conversion unit 17 that outputs the data to the data storage unit 15.
 また、信号処理装置10は、検知部36の信号を電流-電圧変換して出力する第3I/V変換部28と、第3I/V変換部28で変換された信号をアナログ-ディジタル変換してデータ格納部15へ出力する第3A/D変換部29と、を備えるのが好ましい。 In addition, the signal processing device 10 converts the signal of the detection unit 36 from current to voltage and outputs the signal, and the signal converted by the third I / V conversion unit 28 is converted from analog to digital. And a third A / D conversion unit 29 that outputs the data to the data storage unit 15.
 信号処理装置10は、例えば、演算部18で下記の式(1)により、任意の経過時間における可動部32の振れ角を求めるように構成することができる。 The signal processing device 10 can be configured to obtain the deflection angle of the movable unit 32 at an arbitrary elapsed time, for example, by the following equation (1) in the calculation unit 18.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、θは、可動部32の振れ角である。θmは、可動部32の時計回り方向における最大振れ角である。θmについては、例えば、予め測定したデータを記憶部9に記憶させておき、演算部18が記憶部9から読み出すようにすればよい。Tは、任意の経過時間である。Tmは、可動部32の時計回り方向において振れ角が最大振れ角θmとなる時点tmまでの経過時間である(図9参照)。Tdは、信号処理装置10での遅延時間である。遅延時間Tdは、例えば、信号処理装置10を構成するマイクロコンピュータの回路の遅延時間である。遅延時間Tdは、式(1)または後述する式(4)で求められる値(振れ角や経過時間の値)の精度をそれほど求めない用途では省略可能である。fは、可動部32の振動周波数であり、例えば、下記の式(2)により求めることができる。 Here, θ is the deflection angle of the movable part 32. θm is the maximum deflection angle of the movable part 32 in the clockwise direction. For θm, for example, data measured in advance may be stored in the storage unit 9, and the calculation unit 18 may read out from the storage unit 9. T is an arbitrary elapsed time. Tm 0 is the elapsed time up to the time tm 0 when the deflection angle becomes the maximum deflection angle θm in the clockwise direction of the movable part 32 (see FIG. 9). Td is a delay time in the signal processing apparatus 10. The delay time Td is, for example, a delay time of a microcomputer circuit that constitutes the signal processing device 10. The delay time Td can be omitted in applications where the accuracy of the value (the deflection angle and the elapsed time value) obtained by the expression (1) or the expression (4) described later is not so much required. f is the vibration frequency of the movable part 32, and can be obtained by the following equation (2), for example.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、tmは、可動部32の時計回り方向において振れ角が最大振れ角θmとなるi回目の時点までの経過時間である。tmは、可動部32の時計回り方向において振れ角が最大振れ角θmとなるj回目の時点までの経過時間である。式(2)においては、j=i+1である。 Here, tm i is the elapsed time up to the i-th time point when the swing angle becomes the maximum swing angle θm in the clockwise direction of the movable portion 32. tm j is an elapsed time up to the j-th time point when the swing angle becomes the maximum swing angle θm in the clockwise direction of the movable portion 32. In equation (2), j = i + 1.
 演算部18が式(1)の演算で用いる可動部32の振動周波数については、予め測定したデータを記憶部9に記憶させておき、演算部18が記憶部9から読み出すようにしてもよい。 As for the vibration frequency of the movable unit 32 used by the calculation unit 18 in the calculation of Expression (1), data measured in advance may be stored in the storage unit 9, and the calculation unit 18 may read out from the storage unit 9.
 演算部18で求めた振れ角に基づいて記憶部9から読み出した波長は、記憶部9において振れ角に1対1で対応付けられた光の波長である。要するに、信号処理装置10は、演算部18で可動部32の振れ角を求めれば、光の波長を求めることができる。 The wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 is the wavelength of light associated with the deflection angle in the storage unit 9 on a one-to-one basis. In short, the signal processing apparatus 10 can determine the wavelength of light by calculating the deflection angle of the movable unit 32 by the calculation unit 18.
 信号処理装置10は、演算部18で求めた振れ角に基づいて記憶部9から読み出した波長と、第1受光素子5の信号と、を同じ経過時間によって1対1で対応付けるように構成されている。ここで、第1受光素子5の信号は、第1スリット61を通して第1受光素子5に入射した光の強度に相当する。よって、スペクトルセンサ100は、光の波長ごとの強度の分布を得ることが可能となる。 The signal processing device 10 is configured to associate the wavelength read from the storage unit 9 based on the deflection angle obtained by the calculation unit 18 and the signal of the first light receiving element 5 on a one-to-one basis with the same elapsed time. Yes. Here, the signal of the first light receiving element 5 corresponds to the intensity of light incident on the first light receiving element 5 through the first slit 61. Therefore, the spectrum sensor 100 can obtain an intensity distribution for each wavelength of light.
 スペクトルセンサ100は、MEMSミラー30が、可動部32の振れ角が0度となるタイミングを検知する検知部36を備えるのが好ましい。この場合、スペクトルセンサ100は、演算部18が、第2受光素子7により0次の回折光DL0が検知されたタイミングと、可動部32の振動周波数と、検知部36により検知されたタイミングと、に基づいて可動部32の振れ角を求めるように構成されるのが好ましい。これにより、スペクトルセンサ100は、可動部32の振れ角の測定精度を更に向上させることが可能となる。よって、スペクトルセンサ100は、スペクトルの測定精度を更に向上させることが可能となる。 The spectrum sensor 100 preferably includes a detection unit 36 that detects the timing at which the MEMS mirror 30 has a swing angle of the movable unit 32 of 0 degrees. In this case, the spectrum sensor 100 includes a timing at which the calculation unit 18 detects the 0th-order diffracted light DL0 by the second light receiving element 7, a vibration frequency of the movable unit 32, and a timing detected by the detection unit 36. It is preferable that the deflection angle of the movable part 32 is obtained based on the above. Thereby, the spectrum sensor 100 can further improve the measurement accuracy of the deflection angle of the movable part 32. Therefore, the spectrum sensor 100 can further improve the spectrum measurement accuracy.
 より詳細には、信号処理装置10は、可動部32の振れ角が0度となる2つのタイミングそれぞれまでの経過時間Th、Thの時間差を利用して、可動部32の振れ角を求める。信号処理装置10は、可動部32の振れ角が0度となる2つのタイミングのうち速いタイミングに対応する時点thと遅いタイミングに対応する時点thとの間で可動部32の振れ角が最大振れ角となる時点までの経過時間Tmijを下記の式(3)で求める。 More specifically, the signal processing device 10 obtains the deflection angle of the movable portion 32 by using the time difference between the elapsed times Th i and Th j until two timings when the deflection angle of the movable portion 32 becomes 0 degrees. . In the signal processing device 10, the swing angle of the movable part 32 is between the time point th i corresponding to the fast timing and the time point th j corresponding to the late timing of the two timings at which the swing angle of the movable part 32 becomes 0 degrees. The elapsed time Tmij until the time when the maximum deflection angle is reached is obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、信号処理装置10は、式(3)で求めた経過時間Tmijを、式(1)のTmの代わりに用いて可動部32の振れ角を求める。よって、スペクトルセンサ100は、例えば、可動部32の振動モードが可動部32の駆動中に変化した場合でも、可動部32の振れ角を精度よく測定することが可能となる。 Then, the signal processing device 10, the elapsed time Tm ij obtained by Equation (3) determines the deflection angle of the movable portion 32 used in place of Tm 0 of the formula (1). Therefore, the spectrum sensor 100 can accurately measure the deflection angle of the movable part 32 even when the vibration mode of the movable part 32 changes during driving of the movable part 32, for example.
 スペクトルセンサ100は、例えば、蛍光分析装置等の分光機器の他、照明システム等に利用することが可能となる。 The spectrum sensor 100 can be used for, for example, an illumination system as well as a spectroscopic device such as a fluorescence analyzer.
 スペクトルセンサ100は、蛍光分析装置に利用する場合、例えば、蛍光分析装置の励起光源からの励起光を有機物に照射したときに有機物の発する蛍光が、コリメートレンズ2に入射するように配置して使用することができる。この場合、スペクトルセンサ100は、有機物の発する蛍光に関して、光の波長ごとの強度の分布を測定することが可能となる。これにより、蛍光分析装置では、スペクトルセンサ100の測定結果に基づいて、有機物の物質の特定や量の特定等を行うことが可能となる。 When the spectrum sensor 100 is used in a fluorescence analyzer, for example, the spectrum sensor 100 is arranged and used so that fluorescence emitted from the organic substance is incident on the collimating lens 2 when the organic substance is irradiated with excitation light from an excitation light source of the fluorescence analyzer. can do. In this case, the spectrum sensor 100 can measure the intensity distribution for each wavelength of light with respect to the fluorescence emitted by the organic substance. Thereby, in the fluorescence analyzer, it becomes possible to specify an organic substance, specify an amount, and the like based on the measurement result of the spectrum sensor 100.
 照明システムとしては、例えば、照明光源による照明空間にいる人のサーカディアンリズムを整えるように照明光源をフィードバック制御するシステムが挙げられる。照明空間としては、例えば、高齢者福祉施設の入居者の部屋やホスピタルの入院患者の病室等がある。サーカディアンリズムとは、地球上に生息する人に行動や身体機能として現れる、24時間に近い周期のリズムを意味する。24時間に近い周期とは、24±4時間の周期を意味する。照明空間内のスペクトルは、例えば、朝、昼、夜で異なったり、窓等の開閉状態、天気等によって異なったりする。照明システムは、例えば、スペクトルセンサ100による照明空間内のスペクトルの測定結果に基づいて照明光源等を制御する制御装置を備えた構成とすることができる。 As the illumination system, for example, a system that feedback-controls the illumination light source so as to adjust the circadian rhythm of the person in the illumination space by the illumination light source. Illumination spaces include, for example, rooms for residents in elderly welfare facilities and hospital rooms for hospital inpatients. The circadian rhythm means a rhythm with a cycle close to 24 hours that appears as behavior and physical function to people living on the earth. A cycle close to 24 hours means a cycle of 24 ± 4 hours. The spectrum in the illumination space varies depending on, for example, morning, noon, and night, and varies depending on the open / closed state of a window, weather, and the like. The illumination system can be configured to include a control device that controls an illumination light source or the like based on a spectrum measurement result in the illumination space by the spectrum sensor 100, for example.
 上述の実施形態等において説明した各図は、模式的な図であり、各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、実施形態等に記載した材料、数値等は、好ましい例を挙げているだけであり、それに限定する主旨ではない。更に、本願発明は、その技術的思想の範囲を逸脱しない範囲で、構成に適宜変更を加えることが可能である。 Each figure explained in the above-mentioned embodiment etc. is a typical figure, and ratio of each size and thickness of each component does not necessarily reflect an actual size ratio. In addition, the materials, numerical values, and the like described in the embodiments and the like are merely preferred examples and are not intended to be limited thereto. Furthermore, the present invention can be appropriately modified in configuration without departing from the scope of its technical idea.
 例えば、MEMSミラー30に関し、可動部32の外周形状は、矩形状に限らず、例えば、円形状でもよい。また、支持部31の内周形状も矩形状に限らず、例えば、円形状でもよい。また、駆動部4を構成するマイクロアクチュエータは、静電型アクチュエータに限らず、電磁型アクチュエータ、圧電型アクチュエータ等でもよい。電磁型アクチュエータは、可動部32に一体に設けた磁石やコイルを利用した電磁力によって可動部32を駆動する。圧電型アクチュエータは、可動部32に一体に設けた圧電素子によって可動部32を駆動する。 For example, regarding the MEMS mirror 30, the outer peripheral shape of the movable portion 32 is not limited to a rectangular shape, and may be, for example, a circular shape. Further, the inner peripheral shape of the support portion 31 is not limited to a rectangular shape, and may be, for example, a circular shape. The microactuator constituting the drive unit 4 is not limited to an electrostatic actuator, but may be an electromagnetic actuator, a piezoelectric actuator, or the like. The electromagnetic actuator drives the movable part 32 by an electromagnetic force using a magnet or a coil provided integrally with the movable part 32. The piezoelectric actuator drives the movable part 32 by a piezoelectric element provided integrally with the movable part 32.
 また、第1受光素子5は、例えば、CMOSセンサ、光電子増倍管等により構成することができる。また、第2受光素子7は、例えば、CMOSセンサ、光電子増倍管等により構成することができる。 Further, the first light receiving element 5 can be constituted by, for example, a CMOS sensor, a photomultiplier tube, or the like. Moreover, the 2nd light receiving element 7 can be comprised by a CMOS sensor, a photomultiplier tube, etc., for example.
 種々の変形例として、先ず第1の変形例を説明する。図1の例では、計時信号を出力するように構成される計時部20が設けられ、データ格納部15に格納されることになるタイマデータは、その計時信号から得られる。例えば、タイマデータは、可動部32の駆動開始時点からの経過時間または第2受光素子7による0次の回折光の受光時点からの経過時間などの経過時間を示すデータである。この場合、上述した如く、第1I/V変換部13及び第1A/D変換部14を介して第1受光素子5から得られる第1入力値(例えば光強度値)が、タイマデータとともに所定時間間隔毎にデータ格納部15に格納される。以下、種々の第1入力値と、その種々の第1入力値の各々に対応付けられるタイマデータとを含むデータセットを第1データセットという。また、第2I/V変換部16及び第2A/D変換部17を介して第2受光素子7から得られる第2入力値(例えば光強度値)が、タイマデータとともに所定時間間隔毎にデータ格納部15に格納される。以下、種々の第2入力値と、その種々の第2入力値の各々に対応付けられるタイマデータとを含むデータセットを第2データセットという。 First, as various modifications, a first modification will be described. In the example of FIG. 1, a timer unit 20 configured to output a timing signal is provided, and timer data to be stored in the data storage unit 15 is obtained from the timing signal. For example, the timer data is data indicating an elapsed time such as an elapsed time from the start of driving of the movable portion 32 or an elapsed time from the time when the second light receiving element 7 receives the 0th-order diffracted light. In this case, as described above, the first input value (for example, light intensity value) obtained from the first light receiving element 5 through the first I / V conversion unit 13 and the first A / D conversion unit 14 is set together with the timer data for a predetermined time. It is stored in the data storage unit 15 at every interval. Hereinafter, a data set including various first input values and timer data associated with each of the various first input values is referred to as a first data set. Further, the second input value (for example, light intensity value) obtained from the second light receiving element 7 via the second I / V conversion unit 16 and the second A / D conversion unit 17 is stored together with the timer data at predetermined time intervals. Stored in the unit 15. Hereinafter, a data set including various second input values and timer data associated with each of the various second input values is referred to as a second data set.
 信号処理装置10(演算部18)は、図10の「第2受光素子の信号」から分かるように、第2データセットから可動部32が反時計回り方向において最大振れ角θm-となるタイマデータ(t1)を得ることができる。つまり、演算部18は、第2データセットから種々の第2入力値の最大値に対応するタイマデータを抽出することにより、時間t1に対応する経過時間を得ることができる。時間t1は図9における負の最大振れ角θm-に対応するので、演算部18は、抽出したタイマデータ(t1)と、可動部32の振動周波数fと、に基づいて、第1データセットから、図9における正の最大振れ角θmに対応するタイマデータ(時間tmまたは時間tmに対応する経過時間)を抽出することができる。これにより、演算部18は、少なくとも、最大振れ角θmと、振動周波数fと、最大振れ角θmに対応するタイマデータと、に基づいて、上記式(1)から、任意の経過時間Tの振れ角θを求めることができる。演算部18が振れ角θを求めれば、信号処理装置10(処理部19)は、記憶部9から、振れ角θに対応する波長(波長の値)を読み出し、またデータ格納部15の第1データセットから、経過時間Tに対応する第1入力値を読み出す。 As can be seen from the “signal of the second light receiving element” in FIG. 10, the signal processing device 10 (calculation unit 18) uses the second data set to obtain the timer data from which the movable unit 32 has the maximum deflection angle θm− in the counterclockwise direction. (T1) can be obtained. That is, the computing unit 18 can obtain an elapsed time corresponding to the time t1 by extracting timer data corresponding to the maximum value of various second input values from the second data set. Since the time t1 corresponds to the negative maximum deflection angle θm− in FIG. 9, the calculation unit 18 calculates from the first data set based on the extracted timer data (t1) and the vibration frequency f of the movable unit 32. 9, timer data corresponding to the positive maximum deflection angle θm (elapsed time corresponding to time tm 0 or time tm 1 ) can be extracted. As a result, the calculation unit 18 uses the above equation (1) based on at least the maximum shake angle θm, the vibration frequency f, and the timer data corresponding to the maximum shake angle θm. The angle θ can be obtained. When the calculation unit 18 obtains the deflection angle θ, the signal processing device 10 (processing unit 19) reads the wavelength (wavelength value) corresponding to the deflection angle θ from the storage unit 9, and also the first of the data storage unit 15 A first input value corresponding to the elapsed time T is read from the data set.
 続いて、信号処理装置10(処理部19)は、読み出した波長の値と第1入力値を、出力部65を介して(外部の装置に)出力する。別例として、信号処理装置10は、出力部65を介して、振れ角θの1周期(例えば図9の時間0からth参照)における波長の値とその波長の値に対応する第1入力値とを所定時間間隔(または所定振れ角)毎に出力するように構成されてもよい。 Subsequently, the signal processing device 10 (processing unit 19) outputs the read wavelength value and the first input value via the output unit 65 (to an external device). As another example, the signal processing apparatus 10 receives, via the output unit 65, a wavelength value in one cycle of the deflection angle θ (for example, see time 0 to th 2 in FIG. 9) and a first input corresponding to the wavelength value. The value may be output at predetermined time intervals (or predetermined deflection angles).
 要するに、信号処理装置10は、計時信号を出力するように構成される計時部20と、データ格納部15とを備える。データ格納部15は、第1及び第2受光素子5及び7から得られる第1及び第2入力値と計時部20からの計時信号から得られる経過時間を示すタイマデータとを所定時間間隔毎に格納するように構成される。演算部18は、データ格納部15から第2入力値の最大値に対応するタイマデータ(t1)を抽出し、その抽出したタイマデータ(t1)と振動周波数fとに基づいて、データ格納部15から正の最大振れ角θmに対応するタイマデータ(tmまたはtm)を抽出し、少なくとも、最大振れ角θmと、振動周波数fと、最大振れ角θmに対応するタイマデータと、に基づいて、経過時間(T)に対応する振れ角θを算出するように構成される。信号処理装置10(処理部19)は、記憶部9から、算出した振れ角θに対応する波長の値を読み出し、またデータ格納部15から、経過時間(T)に対応する第1入力値を読み出し、読み出した波長の値と第1入力値を、出力部65を介して(外部の装置に)出力するように構成される。 In short, the signal processing device 10 includes a timer unit 20 configured to output a timer signal and a data storage unit 15. The data storage unit 15 stores the first and second input values obtained from the first and second light receiving elements 5 and 7 and timer data indicating the elapsed time obtained from the timing signal from the timing unit 20 at predetermined time intervals. Configured to store. The computing unit 18 extracts timer data (t1) corresponding to the maximum value of the second input value from the data storage unit 15, and based on the extracted timer data (t1) and the vibration frequency f, the data storage unit 15 Is extracted from the timer data (tm 0 or tm 1 ) corresponding to the maximum positive swing angle θm based on at least the maximum swing angle θm, the vibration frequency f, and the timer data corresponding to the maximum swing angle θm. The deflection angle θ corresponding to the elapsed time (T) is calculated. The signal processing device 10 (processing unit 19) reads the value of the wavelength corresponding to the calculated deflection angle θ from the storage unit 9, and the first input value corresponding to the elapsed time (T) from the data storage unit 15. The read wavelength value and the first input value are output via the output unit 65 (to an external device).
 次に、第2の変形例を説明する。信号処理装置10は、計時信号を出力するように構成される計時部20と、データ格納部15とを備える。データ格納部15は、第1及び第2受光素子5及び7から得られる第1及び第2入力値と計時部20からの計時信号から得られる経過時間を示すタイマデータとを所定時間間隔毎に格納するように構成される。例えば、タイマデータは、可動部32の駆動開始時点からの経過時間または第2受光素子7による0次の回折光の受光時点からの経過時間などの経過時間を示すデータである。演算部18は、データ格納部15から第2入力値の最大値に対応するタイマデータ(t1)を抽出し、その抽出したタイマデータ(t1)と振動周波数fとに基づいて、データ格納部15から正の最大振れ角θmに対応するタイマデータ(tmまたはtm)を抽出するように構成される。また、演算部18は、少なくとも、最大振れ角θmと、振動周波数fと、最大振れ角θmに対応するタイマデータと、に基づいて、任意の振れ角θに対応する経過時間Tを算出するように構成される。すなわち、経過時間Tは、式(1)から得られる式(4)によって与えられる。 Next, a second modification will be described. The signal processing device 10 includes a timer unit 20 configured to output a timer signal and a data storage unit 15. The data storage unit 15 stores the first and second input values obtained from the first and second light receiving elements 5 and 7 and timer data indicating the elapsed time obtained from the timing signal from the timing unit 20 at predetermined time intervals. Configured to store. For example, the timer data is data indicating an elapsed time such as an elapsed time from the start of driving of the movable portion 32 or an elapsed time from the time when the second light receiving element 7 receives the 0th-order diffracted light. The computing unit 18 extracts timer data (t1) corresponding to the maximum value of the second input value from the data storage unit 15, and based on the extracted timer data (t1) and the vibration frequency f, the data storage unit 15 Is configured to extract timer data (tm 0 or tm 1 ) corresponding to the positive maximum deflection angle θm. Further, the calculation unit 18 calculates an elapsed time T corresponding to an arbitrary shake angle θ based on at least the maximum shake angle θm, the vibration frequency f, and timer data corresponding to the maximum shake angle θm. Configured. That is, the elapsed time T is given by equation (4) obtained from equation (1).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 信号処理装置10(処理部19)は、記憶部9から、振れ角θに対応する波長の値を読み出し、またデータ格納部15から、経過時間Tに対応する第1入力値を読み出すように構成される。 The signal processing device 10 (processing unit 19) is configured to read out a wavelength value corresponding to the deflection angle θ from the storage unit 9 and read out a first input value corresponding to the elapsed time T from the data storage unit 15. Is done.
 信号処理装置10(処理部19)は、読み出した波長の値と第1入力値を、出力部65を介して(外部の装置に)出力するように構成される。この場合、スペクトルセンサ100が、外部の装置から可動部32の振れ角θを入力するための入力部をさらに備えれば、所望の振れ角θに対応する波長の値と第1入力値を得ることができる。なお、スペクトルセンサは、上記入力部に代えて、波長の値を入力するための入力部を備え、入力された波長の値に対応する振れ角θを記憶部9から読み出して同様の処理を行うように構成されてもよい。別例として、信号処理装置10は、出力部65を介して、振れ角θの1周期(例えば図9の時間0からth2参照)における波長の値とその波長の値に対応する第1入力値とを所定時間間隔(または所定振れ角または所定の波長間隔)毎に出力するように構成されてもよい。 The signal processing device 10 (processing unit 19) is configured to output the read wavelength value and the first input value via the output unit 65 (to an external device). In this case, if the spectrum sensor 100 further includes an input unit for inputting the deflection angle θ of the movable unit 32 from an external device, the wavelength value and the first input value corresponding to the desired deflection angle θ are obtained. be able to. The spectrum sensor includes an input unit for inputting a wavelength value instead of the input unit, and reads out the deflection angle θ corresponding to the input wavelength value from the storage unit 9 and performs the same processing. It may be configured as follows. As another example, the signal processing apparatus 10 uses the output unit 65 to output a wavelength value in one period of the deflection angle θ (for example, time 0 to th2 in FIG. 9) and a first input value corresponding to the wavelength value. May be output at predetermined time intervals (or at predetermined deflection angles or predetermined wavelength intervals).
 第3の変形例を説明する。信号処理装置10は、計時信号を出力するように構成される計時部20と、演算部18とを備える。この代替例では、計時信号は、演算部18と処理部19に出力される。演算部18は、計時部20からの計時信号に基づいて、第2受光素子7から得られる第2入力値が最大値になる時間t1を、可動部32の振れ角が負の最大振れ角になる時間として検出し、その負の最大振れ角になる時間と、振動周波数fと、に基づいて、可動部32の振れ角が正の最大振れ角θmになる時間tmを演算するように構成される。つまり、時間t1より後の時間tmが演算される。また、演算部18は、最大振れ角θmと、振動周波数fと、最大振れ角θmになる時間tmとに基づいて、式(4)から、時間t1より後の振れ角θに対応する時間を演算するように構成される。信号処理装置10(処理部19)は、記憶部9から、振れ角θに対応する波長の値を読み出し、計時部20からの計時信号に従って演算部18で演算された時間に第1受光素子5から得られる第1入力値を、その読み出した波長とともに出力部65を介して(外部の装置に)出力するように構成される。ここで、t1やtmなどの時間は、図9に示す時間軸上の時間を意味する。 A third modification will be described. The signal processing device 10 includes a timer unit 20 configured to output a timer signal and an arithmetic unit 18. In this alternative example, the timing signal is output to the calculation unit 18 and the processing unit 19. Based on the timing signal from the timing unit 20, the calculation unit 18 sets the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value to the maximum deflection angle at which the movable unit 32 has a negative deflection angle. The time tm 1 at which the deflection angle of the movable part 32 becomes the positive maximum deflection angle θm is calculated based on the time when the negative deflection angle is detected and the vibration frequency f. Is done. That is, a time tm 1 after the time t1 is calculated. The arithmetic unit 18, the maximum deflection angle .theta.m, the vibration frequency f, based on the time tm 1 and comprising a maximum deflection angle .theta.m, equation (4) from a time corresponding to the deflection angle θ after the time t1 Is configured to compute The signal processing device 10 (processing unit 19) reads the value of the wavelength corresponding to the deflection angle θ from the storage unit 9, and calculates the first light receiving element 5 at the time calculated by the calculation unit 18 according to the timing signal from the timing unit 20. Is output together with the read wavelength via the output unit 65 (to an external device). Here, the time such as t1 and tm 1, means the time on the time axis shown in FIG.
 この場合、スペクトルセンサ100が、外部の装置から可動部32の振れ角θを入力するための入力部をさらに備えれば、所望の振れ角θに対応する波長の値と第1入力値を得ることができる。なお、スペクトルセンサは、上記入力部に代えて、波長の値を入力するための入力部を備え、入力された波長の値に対応する振れ角θを記憶部9から読み出して同様の処理を行うように構成されてもよい。別例として、信号処理装置10は、出力部65を介して、振れ角θの1周期(例えば図9の時間0からth2参照)における波長の値とその波長の値に対応する第1入力値とを所定時間間隔(または所定振れ角または所定の波長間隔)毎に出力するように構成されてもよい。 In this case, if the spectrum sensor 100 further includes an input unit for inputting the deflection angle θ of the movable unit 32 from an external device, the wavelength value and the first input value corresponding to the desired deflection angle θ are obtained. be able to. The spectrum sensor includes an input unit for inputting a wavelength value instead of the input unit, and reads out the deflection angle θ corresponding to the input wavelength value from the storage unit 9 and performs the same processing. It may be configured as follows. As another example, the signal processing apparatus 10 uses the output unit 65 to output a wavelength value in one period of the deflection angle θ (for example, time 0 to th2 in FIG. 9) and a first input value corresponding to the wavelength value. May be output at predetermined time intervals (or at predetermined deflection angles or predetermined wavelength intervals).
 なお、図1の例では、第1受光素子5による1次の回折光DL1の受光範囲は、可動部32の揺動範囲より狭いので、上記種々の例において、信号処理装置10は、波長の値とその波長の値に対応する第1入力値とを、上記受光範囲内で順次出力するように構成されてもよい。 In the example of FIG. 1, the light receiving range of the first-order diffracted light DL1 by the first light receiving element 5 is narrower than the swinging range of the movable portion 32. Therefore, in the various examples described above, the signal processing apparatus 10 The value and the first input value corresponding to the wavelength value may be sequentially output within the light receiving range.
 上記種々の例では、第1極性及び第2極性は、それぞれ、時計回りの振れ角の極性及び反時計回りの振れ角の極性であるが、それぞれ、反時計回りの振れ角の極性及び時計回りの振れ角の極性でもよい。この場合、図9の時間(時点)tm及び時点tmは、第2受光素子7によって検出される。このため、第1変形例のように、演算部18は、抽出したタイマデータ(t1)と振動周波数fとに基づいて、データ格納部15から正の最大振れ角θmに対応するタイマデータ(tmまたはtm)を抽出する必要はない。この場合、演算部18は、少なくとも、その抽出したタイマデータと、可動部32の最大振れ角と、振動周波数fと、に基づいて、経過時間に対応する振れ角を算出するように構成されることになる。同様に、第2変形例のように、演算部18は、抽出したタイマデータ(t1)と振動周波数fとに基づいて、データ格納部15から正の最大振れ角θmに対応するタイマデータ(tmまたはtm)を抽出する必要はない。この場合、演算部18は、少なくとも、その抽出したタイマデータと、可動部32の最大振れ角と、振動周波数fと、に基づいて、振れ角に対応する経過時間を算出するように構成されることになる。同様に、第3変形例のように、演算部18は、計時部20からの計時信号に基づいて、第2受光素子7から得られる第2入力値が最大値になる時間t1を、可動部32の振れ角が負の最大振れ角になる時間として検出し、その負の最大振れ角になる時間と、振動周波数fと、に基づいて、可動部32の振れ角が正の最大振れ角θmになる時間tmを演算する必要はない。この場合、演算部18は、計時部20からの計時信号に基づいて、第2受光素子7から得られる第2入力値が最大値になる時間t1を検出し、その検出した時間と、可動部32の最大振れ角と、振動周波数fと、に基づいて、時間t1より後の振れ角θに対応する時間を演算するように構成されることになる。 In the various examples above, the first polarity and the second polarity are respectively the polarity of the clockwise swing angle and the polarity of the counterclockwise swing angle, respectively. The polarity of the swing angle may be used. In this case, the time (time point) tm 0 and the time point tm 1 in FIG. 9 are detected by the second light receiving element 7. Therefore, as in the first modification, the calculation unit 18 uses the timer data (tm) corresponding to the positive maximum deflection angle θm from the data storage unit 15 based on the extracted timer data (t1) and the vibration frequency f. It is not necessary to extract 0 or tm 1 ). In this case, the calculation unit 18 is configured to calculate a deflection angle corresponding to the elapsed time based on at least the extracted timer data, the maximum deflection angle of the movable unit 32, and the vibration frequency f. It will be. Similarly, as in the second modification, the calculation unit 18 uses the timer data (tm) corresponding to the positive maximum deflection angle θm from the data storage unit 15 based on the extracted timer data (t1) and the vibration frequency f. It is not necessary to extract 0 or tm 1 ). In this case, the calculation unit 18 is configured to calculate an elapsed time corresponding to the swing angle based on at least the extracted timer data, the maximum swing angle of the movable unit 32, and the vibration frequency f. It will be. Similarly, as in the third modification, the calculation unit 18 sets the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value based on the time signal from the time measurement unit 20 to the movable unit. 32 is detected as a time when the deflection angle of 32 becomes the maximum negative deflection angle, and based on the time when the maximum deflection angle is negative and the vibration frequency f, the deflection angle of the movable portion 32 is the maximum positive deflection angle θm. There is no need to calculate the time tm 1 to become. In this case, the calculation unit 18 detects the time t1 when the second input value obtained from the second light receiving element 7 becomes the maximum value based on the time signal from the time measuring unit 20, and the detected time and the movable unit Based on the maximum deflection angle of 32 and the vibration frequency f, the time corresponding to the deflection angle θ after the time t1 is calculated.

Claims (10)

  1.  開口部を有する筐体と、
     前記筐体の開口部を塞ぐように配置されたコリメートレンズと、
     前記筐体に収納されており、回折格子を備え、前記コリメートレンズから出射された光を複数のスペクトルに分離するMEMSミラーにより構成されるスペクトル分離部と、
     前記筐体に収納されている第1受光素子と、
     前記第1受光素子の受光面側に配置され前記筐体に収納されており、所定波長帯域の光を通す第1スリットを有する第1絞りと、を備えるスペクトルセンサであって、
     前記スペクトルセンサは、
     前記MEMSミラーの可動部に設けられた前記回折格子で回折された光のうち0次の回折光を受光可能となるように配置され前記筐体に収納されている第2受光素子と、
     前記第2受光素子の受光面側に配置され前記筐体に収納されており、前記所定波長帯域の光を通す第2スリットを有する第2絞りと、
     信号処理装置と、
     前記筐体に収納された駆動部と、をさらに備え、
     前記第1受光素子は、前記回折格子で回折された光のうち0次以外の規定次数の回折光を受光可能となるように配置され、
     前記信号処理装置は、少なくとも、前記第2受光素子により0次の回折光が検知されたタイミングと、前記可動部の振動周波数と、に基づいて、前記可動部の振れ角またはその振れ角に対応する時間を求める演算部を備え、前記可動部の振れ角に対応する、予め記憶された波長と、その振れ角で得られる前記第1受光素子の信号と、を1対1で対応付けるように構成され、
     前記MEMSミラーは、枠状の支持部と、前記支持部の内側に配置された前記可動部と、前記可動部を挟むように配置され前記支持部と前記可動部とを繋いでいる一対の捩りばね部と、前記可動部の表面側に形成されたミラー部と、を備え、
     前記回折格子は、前記ミラー部の表面に形成され、
     前記駆動部は、前記MEMSミラーに一体に設けられて前記可動部を駆動するように構成される
     ことを特徴とするスペクトルセンサ。
    A housing having an opening;
    A collimating lens arranged to close the opening of the housing;
    A spectral separation unit that is housed in the housing, includes a diffraction grating, and includes a MEMS mirror that separates light emitted from the collimating lens into a plurality of spectra;
    A first light receiving element housed in the housing;
    A spectrum sensor comprising: a first diaphragm having a first slit that is disposed on the light-receiving surface side of the first light-receiving element and is housed in the housing and transmits light of a predetermined wavelength band;
    The spectrum sensor
    A second light receiving element disposed so as to be capable of receiving zero-order diffracted light out of the light diffracted by the diffraction grating provided in the movable part of the MEMS mirror and housed in the housing;
    A second diaphragm having a second slit that is disposed on the light receiving surface side of the second light receiving element and is housed in the housing, and transmits light of the predetermined wavelength band;
    A signal processing device;
    A drive unit housed in the housing;
    The first light receiving element is disposed so as to be able to receive a diffracted light of a specified order other than the 0th order among the lights diffracted by the diffraction grating,
    The signal processing device corresponds to a swing angle of the movable part or a swing angle thereof based on at least the timing when the second-order diffracted light is detected by the second light receiving element and the vibration frequency of the movable part. A calculation unit for obtaining a time to perform, and a configuration in which the prestored wavelength corresponding to the deflection angle of the movable unit and the signal of the first light receiving element obtained by the deflection angle are associated one-to-one And
    The MEMS mirror includes a frame-shaped support part, the movable part arranged inside the support part, and a pair of twists arranged so as to sandwich the movable part and connecting the support part and the movable part. A spring part, and a mirror part formed on the surface side of the movable part,
    The diffraction grating is formed on the surface of the mirror part,
    The spectrum sensor according to claim 1, wherein the driving unit is provided integrally with the MEMS mirror and configured to drive the movable unit.
  2.  前記可動部の振れ角と前記第1受光素子に入射する光の波長との関係を予め記憶する記憶部をさらに備え、
     前記演算部は、少なくとも、前記第2受光素子により0次の回折光が検知されたタイミングと、前記可動部の振動周波数と、に基づいて前記可動部の振れ角を求めるように構成され、
     前記信号処理装置は、前記演算部で求めた振れ角に基づいて前記記憶部から読み出した波長と、前記演算部で求めた振れ角で得られる前記第1受光素子の信号と、を1対1で対応付けるように構成されている
     ことを特徴とする請求項1記載のスペクトルセンサ。
    A storage unit that stores in advance a relationship between a swing angle of the movable unit and a wavelength of light incident on the first light receiving element;
    The calculation unit is configured to obtain a deflection angle of the movable part based on at least the timing when the second-order diffracted light is detected by the second light receiving element and the vibration frequency of the movable part,
    The signal processing device has a one-to-one correspondence between the wavelength read from the storage unit based on the deflection angle obtained by the computing unit and the signal of the first light receiving element obtained by the deflection angle obtained by the computing unit. The spectrum sensor according to claim 1, wherein the spectrum sensor is associated with each other.
  3.  前記第2受光素子は、前記可動部の規定の回転方向における前記可動部の振れ角が最大となるときに0次の回折光を受光する位置に配置されている、
     ことを特徴とする請求項1または2記載のスペクトルセンサ。
    The second light receiving element is disposed at a position for receiving 0th-order diffracted light when a swing angle of the movable part in a predetermined rotation direction of the movable part is maximized.
    The spectrum sensor according to claim 1 or 2, wherein
  4.  前記MEMSミラーは、前記可動部の振れ角が0度となるタイミングを検知する検知部を備え、
     前記演算部は、前記第2受光素子により0次の回折光が検知されたタイミングと、前記可動部の振動周波数と、前記検知部により検知されたタイミングと、に基づいて前記可動部の振れ角を求めるように構成されている、
     ことを特徴とする請求項1から3の何れか1項に記載のスペクトルセンサ。
    The MEMS mirror includes a detection unit that detects a timing at which the swing angle of the movable unit becomes 0 degrees,
    The calculation unit is configured to detect a deflection angle of the movable unit based on a timing when the second-order diffracted light is detected by the second light receiving element, a vibration frequency of the movable unit, and a timing detected by the detection unit. Configured to ask for,
    The spectrum sensor according to any one of claims 1 to 3, wherein:
  5.  前記検知部は、前記可動部において前記一対の捩りばね部の並んでいる第1方向に直交する第2方向の両側に形成された一対の可動電極と、前記支持部に形成され前記一対の可動電極それぞれに対向する一対の固定電極と、を備える、静電容量型センサである、
     ことを特徴とする請求項4記載のスペクトルセンサ。
    The detection unit includes a pair of movable electrodes formed on both sides in a second direction perpendicular to the first direction in which the pair of torsion springs are arranged in the movable unit, and the pair of movable electrodes formed on the support unit. A capacitive sensor comprising a pair of fixed electrodes facing each of the electrodes,
    The spectrum sensor according to claim 4.
  6.  前記可動部は、第1方向に並ぶ前記一対の捩りばね部を回転軸として回転自在であり、
     前記駆動部は、前記第1方向に直交する第2方向における前記可動部の両側に形成された一対の可動電極と、前記支持部に形成され前記一対の可動電極それぞれに1対1で対向する一対の固定電極と、を備えた
     ことを特徴とする請求項1から5の何れか1項に記載のスペクトルセンサ。
    The movable part is rotatable about the pair of torsion spring parts arranged in the first direction as a rotation axis,
    The drive unit has a pair of movable electrodes formed on both sides of the movable unit in a second direction orthogonal to the first direction, and a pair of movable electrodes formed on the support unit and is opposed to the pair of movable electrodes on a one-to-one basis. The spectrum sensor according to claim 1, further comprising: a pair of fixed electrodes.
  7.  種々の振れ角の値と、その種々の振れ角にそれぞれ対応付けられた種々の波長の値とを含むテーブルを記憶する記憶部と、
      計時信号を出力するように構成される計時部と、
      前記第1及び第2受光素子から得られる第1及び第2入力値と前記計時部からの計時信号から得られる経過時間を示すタイマデータとを所定時間間隔毎に格納するように構成されるデータ格納部と、
      前記データ格納部から前記第2入力値の最大値に対応するタイマデータを抽出し、少なくとも、その抽出したタイマデータと、前記可動部の最大振れ角と、前記振動周波数と、に基づいて、経過時間に対応する振れ角を算出するように構成される演算部と、
     を備える信号処理装置と、
     出力部と、
    をさらに備え、
     前記信号処理装置は、前記記憶部から、その算出した振れ角に対応する波長の値を読み出し、また前記データ格納部から、前記経過時間に対応する第1入力値を読み出し、読み出した波長の値と第1入力値を、前記出力部を介して出力するように構成される
     ことを特徴とする請求項1記載のスペクトルセンサ。
    A storage unit for storing a table including values of various deflection angles and values of various wavelengths respectively associated with the various deflection angles;
    A timing unit configured to output a timing signal;
    Data configured to store first and second input values obtained from the first and second light receiving elements and timer data indicating elapsed time obtained from a time signal from the time measuring unit at predetermined time intervals. A storage unit;
    Timer data corresponding to the maximum value of the second input value is extracted from the data storage unit, and at least based on the extracted timer data, the maximum deflection angle of the movable unit, and the vibration frequency An arithmetic unit configured to calculate a deflection angle corresponding to time;
    A signal processing device comprising:
    An output section;
    Further comprising
    The signal processing device reads a wavelength value corresponding to the calculated deflection angle from the storage unit, reads a first input value corresponding to the elapsed time from the data storage unit, and reads the read wavelength value. The spectrum sensor according to claim 1, wherein the first input value and the first input value are output via the output unit.
  8.  種々の振れ角の値と、その種々の振れ角にそれぞれ対応付けられた種々の波長の値とを含むテーブルを記憶する記憶部と、
      計時信号を出力するように構成される計時部と、
      前記第1及び第2受光素子から得られる第1及び第2入力値と前記計時部からの計時信号から得られる経過時間を示すタイマデータとを所定時間間隔毎に格納するように構成されるデータ格納部と、
      前記データ格納部から前記第2入力値の最大値に対応するタイマデータを抽出し、少なくとも、その抽出したタイマデータと、前記可動部の最大振れ角と、前記振動周波数と、に基づいて、振れ角に対応する経過時間を算出するように構成される演算部と、
     を備える信号処理装置と、
     出力部と、
    をさらに備え、
     前記信号処理装置は、前記記憶部から、前記振れ角に対応する波長の値を読み出し、また前記データ格納部から、前記経過時間に対応する第1入力値を読み出し、読み出した波長の値と第1入力値を、前記出力部を介して出力するように構成される
     ことを特徴とする請求項1記載のスペクトルセンサ。
    A storage unit for storing a table including values of various deflection angles and values of various wavelengths respectively associated with the various deflection angles;
    A timing unit configured to output a timing signal;
    Data configured to store first and second input values obtained from the first and second light receiving elements and timer data indicating elapsed time obtained from a time signal from the time measuring unit at predetermined time intervals. A storage unit;
    Timer data corresponding to the maximum value of the second input value is extracted from the data storage unit, and at least based on the extracted timer data, the maximum deflection angle of the movable unit, and the vibration frequency A computing unit configured to calculate an elapsed time corresponding to the corner;
    A signal processing device comprising:
    An output section;
    Further comprising
    The signal processing device reads a wavelength value corresponding to the deflection angle from the storage unit, and reads a first input value corresponding to the elapsed time from the data storage unit. The spectrum sensor according to claim 1, wherein one input value is configured to be output via the output unit.
  9.  前記経過時間は、前記可動部の駆動開始時点からの経過時間または前記第2受光素子による前記0次の回折光の受光時点からの経過時間を示すデータであることを特徴とする請求項7または8記載のスペクトルセンサ。 8. The data according to claim 7, wherein the elapsed time is data indicating an elapsed time from a driving start time of the movable part or an elapsed time from a light receiving time of the 0th-order diffracted light by the second light receiving element. 8. The spectrum sensor according to 8.
  10.  種々の振れ角の値と、その種々の振れ角にそれぞれ対応付けられた種々の波長の値とを含むテーブルを記憶する記憶部と、
      計時信号を出力するように構成される計時部と、 
      前記計時部からの計時信号に基づいて、前記第2受光素子から得られる第2入力値が最大値になる時間を検出し、その検出した時間と、前記可動部の最大振れ角と、前記振動周波数と、に基づいて、振れ角に対応する時間を演算するように構成される演算部と、
     を備える信号処理装置と、
     出力部と、
    をさらに備え、
     前記信号処理装置は、前記記憶部から、前記振れ角に対応する波長の値を読み出し、前記計時部からの計時信号に従って前記演算部で演算された時間に前記第1受光素子から得られる第1入力値を、その読み出した波長とともに前記出力部を介して出力するように構成される
     ことを特徴とする請求項1記載のスペクトルセンサ。
    A storage unit for storing a table including values of various deflection angles and values of various wavelengths respectively associated with the various deflection angles;
    A timing unit configured to output a timing signal;
    Based on the time signal from the time measuring unit, the time when the second input value obtained from the second light receiving element becomes the maximum value is detected, the detected time, the maximum deflection angle of the movable unit, and the vibration A computing unit configured to compute a time corresponding to the deflection angle based on the frequency;
    A signal processing device comprising:
    An output section;
    Further comprising
    The signal processing device reads a wavelength value corresponding to the deflection angle from the storage unit, and obtains a first value obtained from the first light receiving element at a time calculated by the calculation unit according to a timing signal from the timing unit. The spectrum sensor according to claim 1, wherein an input value is output via the output unit together with the read wavelength.
PCT/JP2015/002303 2014-05-19 2015-05-01 Spectral sensor WO2015177974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-103606 2014-05-19
JP2014103606A JP2015219153A (en) 2014-05-19 2014-05-19 Spectrum sensor

Publications (1)

Publication Number Publication Date
WO2015177974A1 true WO2015177974A1 (en) 2015-11-26

Family

ID=54553660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002303 WO2015177974A1 (en) 2014-05-19 2015-05-01 Spectral sensor

Country Status (2)

Country Link
JP (1) JP2015219153A (en)
WO (1) WO2015177974A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062350A1 (en) * 2016-09-01 2018-03-01 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module
WO2021102088A1 (en) * 2019-11-19 2021-05-27 Unm Rainforest Innovations Integrated chirped-grating spectrometer-on-a-chip
US11326946B2 (en) 2017-05-22 2022-05-10 Unm Rainforest Innovations Integrated bound-mode spectral sensors with chirped gratings
US20220307900A1 (en) * 2021-03-29 2022-09-29 Anritsu Corporation Optical spectrum analyzer and pulse-modulated light measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147143B2 (en) 2017-01-20 2022-10-05 株式会社リコー Spectrometer and analyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770415A (en) * 1980-10-22 1982-04-30 Hitachi Ltd Initial setting device for wavelength of spectrophotometer
JP2004037282A (en) * 2002-07-04 2004-02-05 Minolta Co Ltd Spectrometer using 0-th diffracted light of diffraction means
JP2004069516A (en) * 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> Spectroscope
JP2004325928A (en) * 2003-04-25 2004-11-18 Nikon Corp Output monitoring device of inverse dispersion double spectroscope, inverse dispersion double spectral device equipped with the same, and control method of inverse dispersion type double spectroscope
US20120069421A1 (en) * 2009-06-24 2012-03-22 Huawei Technologies Co., Ltd. Optical filter and light splitting method of the optical filter
JP2013522600A (en) * 2010-03-09 2013-06-13 シーウェア システムズ Techniques for determining mirror position in optical interferometers.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770415A (en) * 1980-10-22 1982-04-30 Hitachi Ltd Initial setting device for wavelength of spectrophotometer
JP2004037282A (en) * 2002-07-04 2004-02-05 Minolta Co Ltd Spectrometer using 0-th diffracted light of diffraction means
JP2004069516A (en) * 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> Spectroscope
JP2004325928A (en) * 2003-04-25 2004-11-18 Nikon Corp Output monitoring device of inverse dispersion double spectroscope, inverse dispersion double spectral device equipped with the same, and control method of inverse dispersion type double spectroscope
US20120069421A1 (en) * 2009-06-24 2012-03-22 Huawei Technologies Co., Ltd. Optical filter and light splitting method of the optical filter
JP2013522600A (en) * 2010-03-09 2013-06-13 シーウェア システムズ Techniques for determining mirror position in optical interferometers.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062350A1 (en) * 2016-09-01 2018-03-01 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module
US10361538B2 (en) * 2016-09-01 2019-07-23 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module
US11326946B2 (en) 2017-05-22 2022-05-10 Unm Rainforest Innovations Integrated bound-mode spectral sensors with chirped gratings
WO2021102088A1 (en) * 2019-11-19 2021-05-27 Unm Rainforest Innovations Integrated chirped-grating spectrometer-on-a-chip
US20220307900A1 (en) * 2021-03-29 2022-09-29 Anritsu Corporation Optical spectrum analyzer and pulse-modulated light measurement method
US11686617B2 (en) * 2021-03-29 2023-06-27 Anritsu Corporation Optical spectrum analyzer and pulse-modulated light measurement method

Also Published As

Publication number Publication date
JP2015219153A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
WO2015177974A1 (en) Spectral sensor
CN103376545B (en) Variable-wavelength interference filter, filter apparatus, optical module and electronic equipment
JP5569002B2 (en) Analytical instrument and characteristic measurement method
US6147756A (en) Microspectrometer with sacrificial layer integrated with integrated circuit on the same substrate
CN100507477C (en) Micro-spectrograph based on micro-electronic mechanical system technique
JP5954801B2 (en) Mirror for Fabry-Perot interferometer and method of making the mirror
US10101222B2 (en) Piezoelectric position sensor for piezoelectrically driven resonant micromirrors
JP6897226B2 (en) Optical module and driving method of optical module
US8848196B2 (en) Spectrophotometer having prompt spectrophotometric measurement
JP6467801B2 (en) Spectral image acquisition device and received light wavelength acquisition method
Zhou et al. MEMS gratings and their applications
JP2008503732A (en) Lamella grating interferometer based on silicon technology
CN103528685B (en) Spectroscopic measurement device
EP3479159B1 (en) Modulated fabry-perot
KR20170014404A (en) Apparatus for measuring Light Detection and Ranging
Sandner et al. Miniaturized FTIR-spectrometer based on an optical MEMS translatory actuator
Piot et al. Optimization of resonant PZT MEMS mirrors by inverse design and electrode segmentation
JP6805758B2 (en) Spectral measuring instrument and analyzer
JP7147143B2 (en) Spectrometer and analyzer
JP6424337B2 (en) Tunable optical filter module
Castracane et al. Micromechanically controlled diffraction: a new tool for spectroscopy
JP7381952B2 (en) Spectrometer and analyzer
JP5874776B2 (en) Spectrometer
WO2023127269A1 (en) Spectroscopic device
JP7118734B2 (en) Holding mechanism for vibrating member, variable focal length lens, and variable focal length lens device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796724

Country of ref document: EP

Kind code of ref document: A1