WO2015177392A1 - Heat exchange nanofluid - Google Patents

Heat exchange nanofluid Download PDF

Info

Publication number
WO2015177392A1
WO2015177392A1 PCT/ES2015/070393 ES2015070393W WO2015177392A1 WO 2015177392 A1 WO2015177392 A1 WO 2015177392A1 ES 2015070393 W ES2015070393 W ES 2015070393W WO 2015177392 A1 WO2015177392 A1 WO 2015177392A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofluid
nanoparticles
sulfone
diphenyl
synthetic oil
Prior art date
Application number
PCT/ES2015/070393
Other languages
Spanish (es)
French (fr)
Inventor
José Enrique JULIÁ BOLÍVAR
Rosa MONDRAGÓN CAZORLA
Leonor HERNÁNDEZ LÓPEZ
Raúl MARTÍNEZ CUENCA
Salvador Francisco TORRO CUECO
Luis Cabedo Mas
Original Assignee
Universitat Jaume I De Castelló
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Jaume I De Castelló filed Critical Universitat Jaume I De Castelló
Publication of WO2015177392A1 publication Critical patent/WO2015177392A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a nanofluid comprising a high temperature thermal transfer fluid and nanoparticles comprising carbon.
  • Said nanofluid has improved thermal conductivity properties in an operating range of the initial fluid without compromising other relevant variables such as viscosity and stability. These features make it applicable to heat transmission systems. Therefore, the present invention could be framed in the field of thermal engineering.
  • Heat exchange fluids are fluids used for heat transport in many industrial applications. These fluids are used to transport energy in the form of heat from the point of heat generation (burners, nuclear reactor cores, solar fields, etc.) to the system that will use it (thermal storage systems, steam generators, etc.). ).
  • the most commonly used thermal fluids are water, ethylene glycol, thermal oils and molten salts. A characteristic common to all of them is their low thermal conductivity, a fact that limits the efficiency of the heat exchange systems that use them.
  • nanoparticles inside the nanofluid form clusters.
  • the size and shape of these clusters largely determine the thermal conductivity, viscosity and stability of the nanofluid.
  • the stability of a Nanofluid is defined as the lack of sedimentation of nanoparticles or clusters of nanoparticles inside.
  • Nanofluids can be stabilized by repulsion systems between nanoparticles. Stabilized correctly, they can be used in heat exchange systems initially designed for thermal fluids without particles, thus increasing their performance.
  • Nanofluids based on thermal oils can reach high working temperatures and therefore have greater industrial interest.
  • Availability of the nanoparticle material should preferably be abundant, easy to obtain and low cost.
  • US6432320B1 describes chemically stabilized nanofluids, where the fluid is a heat transfer fluid selected from water, glycols, mineral and synthetic oils, organic and inorganic paraffins and eutectic, the nanoparticles are metallic or carbon.
  • the additive used is an additive of the azole group most preferably used at 10% by weight.
  • nanofluid as a gear oil that exhibits viscosity and thermal conductivity higher than the base fluid.
  • the nanoparticles used are graphite nanoparticles of non-spherical morphology and dispersants or alternatively non-ionic surfactants or a mixture of non-ionic and ionic are used.
  • the present invention relates to a nanofluid comprising a high temperature thermal transfer fluid and nanoparticles comprising carbon.
  • the nanofluid of the invention has the following advantages: - The nanofluid of the invention can be used in a wide range of temperatures (from 15 ° C to 400 ° C);
  • the nanofluid of the invention has a good stability over time in the operating temperature range
  • the viscosity of the nanofluid does not vary significantly compared to that of the base fluid
  • the nanofluid of the invention has improved thermal conductivity properties
  • the use of the nanofluid of the invention not significant changes in the facilities where the base fluid is already used; - The materials necessary for the preparation of the nanofluid are abundant and easily accessible.
  • the present invention relates to a nanofluid comprising: a) an organic synthetic oil that is a polyphenyl;
  • polyphenyl is meant a compound comprising 2 or more phenyls.
  • the polyphenyl is selected from diphenyls, terphenyls, alkylated polyphenyls and their oxides.
  • a nanoparticle means a particle with a size below 500 nm.
  • the nanoparticles of the invention comprise carbon.
  • the nanoparticles of the invention are carbon nanoparticles or are carbon coated nanoparticles.
  • a sulfone is a compound of formula (I):
  • R and R ' are independently C "
  • the organic synthetic oil is selected from diphenyl, diphenyl oxide, o-terphenyl, m-terphenyl, p-terphenyl and any of its mixtures, preferably the organic synthetic oil is selected from diphenyl, diphenyl oxide and any of its mixtures and even more preferably the organic synthetic oil consists of 50% to 99% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of organic synthetic oil.
  • the organic synthetic oil consists of 73% to 73.5% by weight of diphenyl and diphenyl oxide to complete 100% by weight with respect to the total weight of the organic synthetic oil.
  • the organic synthetic oil is the eutectic mixture of diphenyl oxide and diphenyl.
  • This synthetic oil has a wide range of operating temperatures (between 15 ° C and 400 ° C) and a low viscosity for the entire operating range of the fluid.
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 50% to 99% by weight of diphenyl and diphenyl oxide to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • the nanoparticles are selected from carbon nanotubes, graphite nanoparticles, carbon nanofibers, amorphous carbon nanospheres, fulerenes, diamond nanoparticles, carbon coated nanoparticles and any mixture thereof.
  • the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black, carbon black is a material produced by the partial combustion of organic products derived from petroleum, and is formed by amorphous carbon nanospheres that can agglomerate forming clusters.
  • the nanofluids of the invention comprising carbon black have provided excellent results. of thermal conductivity and stability. They also have the advantage that carbon black is abundant and easily obtainable.
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • nanoparticles comprising carbon, where the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black;
  • the concentration of the nanoparticles comprising carbon in the nanofluid is from 0.1% to 10% by volume with respect to the total volume of the nanofluid, preferably, the concentration of nanoparticles in the nanofluid is from 1% to 8% by volume with respect to the total volume of the nanofluid, more preferably the concentration of nanoparticles in the nanofluid is 3% to 5% by volume with respect to the total volume of the nanofluid.
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • nanoparticles comprising carbon, where the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black;
  • the concentration of the nanoparticles is 0.1% to 10% by volume with respect to the total volume of the nanofluid, preferably, from 1% to 8% by volume, more than 3% to 5% by volume with respect to the total volume of the nanofluid .
  • sulfone is a compound of formula (I) where R and R 'are independently C5-C7 heteroaryl, phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of their positions by 1 or more substituents selected from C1-C4 alkyl, -O-C1-C4 alkyl and -OH, more preferably R and R 'are independently phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of its positions by 1 or more substituents selected from C-
  • the sulfone is diphenyl sulfone.
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black;
  • the nanofluid comprises:
  • an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
  • nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black;
  • the nanoparticles: sulfone weight ratio is 2: 1 to 1: 2, preferably the nanoparticles: sulfone weight ratio is 1: 1.
  • a second aspect of the present invention relates to the use of nanofluid as described above as a heat exchange fluid.
  • a third aspect of the present invention relates to a process for obtaining the nanofluid as described above which comprises the steps of: a) homogeneously mixing with stirring the organic synthetic oil and the sulfone; and b) dispersing the nanoparticles in the mixture obtained in step (a) with stirring. This stirring is carried out for a period between 30 min and 2 hours, preferably for 1 hour.
  • the stirring of step (b) is ultrasonic stirring.
  • Ultrasound is a low destructive method for carbon nanoparticle structures and it is preferable that it be used for short and intermittent periods to avoid overheating in the suspension.
  • the ultrasonic stirring is carried out for one minute.
  • FIG. 1 Variation of thermal conductivity with temperature.
  • k n / k bf nanofluid conductivity ratio: base fluid conductivity.
  • T temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticles concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
  • FIG. 2 Variation of viscosity with temperature.
  • ⁇ ⁇ ⁇ nanofluid viscosity ratio: base fluid viscosity; T: temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticle concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
  • FIG. 3 Variation of specific heat with temperature.
  • Cp n / Cp b f specific heat ratio of the nanofluid: specific heat of the base fluid; T: temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticle concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
  • FIG. 4 Comparison of the stability of the nanofluids of the invention.
  • L Transmitted light (%); D: days; 1: nanofluid of the invention; 2: nanofluid with nanoparticles and without sulfone or other additive; 3: nanofluid with nanoparticles and with SDS; 4: nanofluid with nanoparticles and with SDBS.
  • diphenyl sulfone was dissolved in Therminol VP1 or DowTherm A (eutectic mixture of diphenyl and phenyl oxide) by magnetic stirring for 1 hour.
  • the carbon black was then added and dispersed by the application of ultrasound (Sonoplus HD2200 ultrasonic probe, Bandelin) for 1 minute.
  • Table 1 Composition of two nanofluids of the invention.
  • Example 2 Thermal conductivity of the nanofluids of Example 1.
  • the thermal conductivity was measured by transient hot wire, using a commercial device (KD2 Pro, Decagon Devices Inc.). Said device consists of a sensor / thermocouple that is introduced into the sample and generates a heat pulse while recording the evolution of the temperature of the sample over time. The following results were obtained:
  • Example 1 k n / k bf : nanofluid conductivity ratio: base fluid conductivity.
  • Example 3 Viscosity of the nanofluids of Example 1.
  • the viscosity of the samples is measured using a rheometer with a concentric cylinder configuration.
  • the complete rheogram was obtained by sweeping velocity gradients from 1 to 100s "1.
  • the viscosity value taken as representative of the sample is that achieved at high shears and velocity gradients. The following results were obtained:
  • Example 4 Specific heat of the nanofluids of Example 1.
  • Example 5 Stability of the nanofluid 5% of Example 1.
  • the nanofluid was subjected to thermal cycles of 200 ° C-400 ° C.
  • the thermal cycles were carried out in a system consisting of a closed aluminum bowl Hermetically heated by a heating ring. Due to the low vapor pressure of some of the thermal oils used, it is necessary to pressurize the system to 15 bar to avoid boiling it.
  • the system has a pressure transducer to regulate the pressurization pressure and two K-type thermocouples, one on the wall and one in the center of the cuvette to measure the temperature of the fluid.
  • the entire system is regulated by a PID (Proportional Integrated Derivative) system to control the electrical power supplied to the heating ring from the measurement of the wall and fluid temperature.
  • PID Proportional Integrated Derivative
  • the nanofluids were subjected to ten thermal cycles between 200 ° C-400 ° C, with a heating ramp of 20 ° C / min and cooling ramp of 10 ° C / min. Subsequently, the stability over time was measured.
  • the stability of the nanofluid of the invention was compared with a 5% volume concentration of carbon black with other nanofluids using the same base fluid, the same concentration and the same type of nanoparticles, but a different additive.
  • the stability of the nanofluid is checked from the intensity of the laser radiation transmitted by the nanofluid in a glass cuvette with the nanofluid.
  • the radiation comes from a laser diode that emits at 610 nm.
  • the radiation has a 3 mm diameter beam shape.
  • Laser radiation is measured by a photodiode with focusing lens and filter.
  • the laser beam passes through the upper part of the nanofluid so that if the nanofluid is stable it must be constant over time. If the nanofluid is not stable, nanoparticle agglomeration and sedimentation occur. If there is sedimentation, the intensity transmitted in the upper part of the nanofluid increases with time since the clusters of nanoparticles formed settle and concentrate in the lower part of the cuvette.
  • the transmitted light of 4 fluids is represented in Figure 4, in all of them the base fluid is the eutectic mixture of diphenyl and phenyl oxide, and all of them contain 5% carbon black.

Abstract

The present invention relates to a nanofluid comprising an organic synthetic oil which is a polyphenyl, nanoparticles comprising carbon, and at least one sulfone.

Description

NANOFLUIDO DE INTERCAMBIO TÉRMICO  THERMAL EXCHANGE NANOFLUID
DESCRIPCIÓN La presente invención se refiere un nanofluido que comprende un fluido de transferencia térmica a alta temperatura y nanopartículas que comprenden carbón. Dicho nanofluido presenta propiedades mejoradas de conductividad térmica en un rango operativo del fluido inicial sin comprometer otras variables relevantes como la viscosidad y la estabilidad. Estas características lo hacen aplicable a sistemas de transmisión de calor. Por tanto, la presente invención se podría encuadrar en el campo de la ingeniería térmica. DESCRIPTION The present invention relates to a nanofluid comprising a high temperature thermal transfer fluid and nanoparticles comprising carbon. Said nanofluid has improved thermal conductivity properties in an operating range of the initial fluid without compromising other relevant variables such as viscosity and stability. These features make it applicable to heat transmission systems. Therefore, the present invention could be framed in the field of thermal engineering.
ESTADO DE LA TÉCNICA Los fluidos de intercambio térmico son fluidos utilizados para el transporte de calor en numerosas aplicaciones industriales. Estos fluidos se utilizan para transportar energía en forma de calor desde el punto de generación de calor (quemadores, núcleos de reactores nucleares, campos solares, etc.) al sistema que va a utilizarlo (sistemas de almacenamiento térmico, generadores de vapor, etc.). Los fluidos térmicos más utilizados son el agua, el etilenglicol, los aceites térmicos y sales fundidas. Una característica común a todos ellos es su baja conductividad térmica, hecho que limita la eficiencia de los sistemas de intercambio de calor que los utilizan. STATE OF THE TECHNIQUE Heat exchange fluids are fluids used for heat transport in many industrial applications. These fluids are used to transport energy in the form of heat from the point of heat generation (burners, nuclear reactor cores, solar fields, etc.) to the system that will use it (thermal storage systems, steam generators, etc.). ). The most commonly used thermal fluids are water, ethylene glycol, thermal oils and molten salts. A characteristic common to all of them is their low thermal conductivity, a fact that limits the efficiency of the heat exchange systems that use them.
La idea de añadir micropartículas sólidas de alta conductividad térmica a los fluidos térmicos con el fin de aumentar la conductividad térmica de la mezcla es antigua y los primeros modelos son de Maxwell en 1873. Sin embargo, hasta hace pocas décadas este enfoque presentaba problemas prácticos para su posible aplicación industrial debido a la poca estabilidad de la mezcla y a la abrasión por parte de las micropartículas. En 1995 Choi propuso la utilización de nanopartículas para mejorar las propiedades térmicas de fluidos térmicos y a estos fluidos se les denominó nanofluidos. The idea of adding solid microparticles of high thermal conductivity to thermal fluids in order to increase the thermal conductivity of the mixture is old and the first models are from Maxwell in 1873. However, until a few decades ago this approach presented practical problems for its possible industrial application due to the poor stability of the mixture and abrasion by the microparticles. In 1995 Choi proposed the use of nanoparticles to improve the thermal properties of thermal fluids and these fluids were called nanofluids.
En la mayoría de las ocasiones las nanopartículas en el interior del nanofluido forman cúmulos. El tamaño y forma de estos cúmulos determinan en gran manera la conductividad térmica, viscosidad y estabilidad del nanofluido. La estabilidad de un nanofluido se define como la falta de sedimentación de las nanopartículas o cúmulos de nanopartículas en su interior. In most cases the nanoparticles inside the nanofluid form clusters. The size and shape of these clusters largely determine the thermal conductivity, viscosity and stability of the nanofluid. The stability of a Nanofluid is defined as the lack of sedimentation of nanoparticles or clusters of nanoparticles inside.
Es fundamental para el correcto funcionamiento de un nanofluido evitar que las nanopartículas o cúmulos de nanopartículas se queden adheridos cuando choquen porque esto haría que aumentara el tamaño de los cúmulos y afectaría a la estabilidad del mismo. Los nanofluidos pueden ser estabilizados mediante sistemas de repulsión entre nanopartículas. Estabilizados correctamente, pueden ser utilizados en sistemas de intercambio de calor diseñados inicialmente para fluidos térmicos sin partículas, aumentando así su rendimiento. It is essential for the proper functioning of a nanofluid to prevent nanoparticles or clusters of nanoparticles from sticking together when they collide because this would increase the size of the clusters and affect the stability of the clusters. Nanofluids can be stabilized by repulsion systems between nanoparticles. Stabilized correctly, they can be used in heat exchange systems initially designed for thermal fluids without particles, thus increasing their performance.
Los nanofluidos basados en aceites térmicos pueden alcanzar altas temperaturas de trabajo y por tanto tienen mayor interés industrial. Algunos de los problemas actuales son los siguientes: Nanofluids based on thermal oils can reach high working temperatures and therefore have greater industrial interest. Some of the current problems are the following:
- Estabilidad del nanofluido basado en compuestos orgánicos: es necesario utilizar aditivos que modifiquen superficialmente las nanopartículas y que eviten su adhesión cuando choquen; - Stability of the nanofluid based on organic compounds: it is necessary to use additives that superficially modify the nanoparticles and prevent their adhesion when they collide;
- estabilidad del nanofluido a alta temperatura: a mayor temperatura, mayor probabilidad de choque de nanopartículas y por tanto mayor dificultad para estabilizar, además, los aditivos utilizados en nanofluidos orgánicos suelen ser válidos para intervalos de temperatura reducidos;  - high temperature nanofluid stability: the higher the temperature, the greater the likelihood of nanoparticle collision and therefore more difficult to stabilize, in addition, the additives used in organic nanofluids are usually valid for reduced temperature ranges;
- disponibilidad del material de las nanopartículas, debe ser preferiblemente abundante, fácil de obtener y de bajo coste.  - Availability of the nanoparticle material, should preferably be abundant, easy to obtain and low cost.
- maximizar la conductividad térmica sin incrementar la viscosidad de forma excesiva. - Maximize thermal conductivity without increasing viscosity excessively.
La patente US6432320B1 describe nanofluidos estabilizados químicamente, donde el fluido es un fluido de transferencia de calor seleccionado de agua, glicoles, aceites minerales y sintéticos, parafinas y eutécticos orgánicos e inorgánicos, las nanopartículas son metálicas o de carbono. El aditivo utilizado es un aditivo del grupo de los azoles más preferiblemente utilizado en un 10% en peso. US6432320B1 describes chemically stabilized nanofluids, where the fluid is a heat transfer fluid selected from water, glycols, mineral and synthetic oils, organic and inorganic paraffins and eutectic, the nanoparticles are metallic or carbon. The additive used is an additive of the azole group most preferably used at 10% by weight.
La solicitud internacional WO2007103497 describe un nanofluido como aceite para engranajes que presenta viscosidad y conductividad térmica superiores al fluido base. Las nanopartículas utilizadas son nanopartículas de grafito de morfología no esférica y se utilizan dispersantes o alternativamente tensioactivos no iónicos o una mezcla de no iónicos e iónicos. International application WO2007103497 describes a nanofluid as a gear oil that exhibits viscosity and thermal conductivity higher than the base fluid. The nanoparticles used are graphite nanoparticles of non-spherical morphology and dispersants or alternatively non-ionic surfactants or a mixture of non-ionic and ionic are used.
Hay diversos documentos que citan la extensa variedad de los componentes presentes en un nanofluido, es decir fluido base, nanopartículas y aditivos como tensioactivos. Por ejemplo, las patentes US20090298725, WO2003004944A2 y US20070158609 describen nanofluidos donde el fluido base puede ser un aceite orgánico sintético y las nanopartículas pueden se nanopartículas de carbono, y donde se utilizan aditivos como tensioactivos para su estabilización. En la revisión de Ghadimi et al. (\nternational Journal of Heat and Mass Transfer 54 (201 1 ) 4051-4068) se repasan las diferentes técnicas de preparación de nanofluidos y métodos de estabilización. There are several documents that cite the wide variety of components present in a nanofluid, that is, base fluid, nanoparticles and additives as surfactants. For example, patents US20090298725, WO2003004944A2 and US20070158609 describe nanofluids where the base fluid can be a synthetic organic oil and the nanoparticles can be carbon nanoparticles, and where additives are used as surfactants for stabilization. In the review by Ghadimi et al. (The National Journal of Heat and Mass Transfer 54 (201 1) 4051-4068) reviews the different nanofluid preparation techniques and stabilization methods.
Sin embargo, sigue habiendo una gran necesidad de desarrollar un aceite térmico con el que se obtengan conductividades térmicas mejoradas junto con una viscosidad y estabilidad adecuada en un intervalo de temperaturas similares a las cubiertas por las condiciones de operación previstas para los aceites térmicos. However, there is still a great need to develop a thermal oil with which improved thermal conductivities are obtained along with an adequate viscosity and stability in a range of temperatures similar to those covered by the operating conditions provided for thermal oils.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere un nanofluido que comprende un fluido de transferencia térmica a alta temperatura y nanopartículas que comprenden carbón. El nanofluido de la invención presenta las siguientes ventajas: - El nanofluido de la invención puede utilizarse en un amplio intervalo de temperaturas (de 15°C a 400°C); The present invention relates to a nanofluid comprising a high temperature thermal transfer fluid and nanoparticles comprising carbon. The nanofluid of the invention has the following advantages: - The nanofluid of the invention can be used in a wide range of temperatures (from 15 ° C to 400 ° C);
- el nanofluido de la invención presenta una buena estabilidad en el tiempo en el intervalo operativo de temperaturas;  - the nanofluid of the invention has a good stability over time in the operating temperature range;
- la viscosidad del nanofluido no varía significativamente comparada con la del fluido base;  - the viscosity of the nanofluid does not vary significantly compared to that of the base fluid;
- el nanofluido de la invención presenta propiedades mejoradas de conductividad térmica;  - the nanofluid of the invention has improved thermal conductivity properties;
- el uso del nanofluido de la invención no cambios significativos en las instalaciones donde ya se usa el fluido base; - los materiales necesarios para la preparación del nanofluido son abundantes y fácilmente accesibles. - the use of the nanofluid of the invention not significant changes in the facilities where the base fluid is already used; - The materials necessary for the preparation of the nanofluid are abundant and easily accessible.
En un primer aspecto, la presente invención se refiere a un nanofluido que comprende: a) un aceite sintético orgánico que es un polifenilo; In a first aspect, the present invention relates to a nanofluid comprising: a) an organic synthetic oil that is a polyphenyl;
b) nanopartículas que comprenden carbono; y b) nanoparticles comprising carbon; Y
c) al menos una sulfona. c) at least one sulfone.
Por polifenilo se entiende un compuesto que comprende de 2 o más fenilos. El polifenilo se selecciona de difenilos, terfenilos, polifenilos alquilados y sus óxidos. By polyphenyl is meant a compound comprising 2 or more phenyls. The polyphenyl is selected from diphenyls, terphenyls, alkylated polyphenyls and their oxides.
Por nanopartícula se entiende una partícula con un tamaño por debajo de los 500 nm. Las nanopartículas de la invención comprenden carbono. Concretamente, las nanopartículas de la invención son nanopartículas de carbono o son nanopartículas recubiertas de carbono. A nanoparticle means a particle with a size below 500 nm. The nanoparticles of the invention comprise carbon. Specifically, the nanoparticles of the invention are carbon nanoparticles or are carbon coated nanoparticles.
En el contexto de la invención, una sulfona es un compuesto de fórmula (I):
Figure imgf000005_0001
In the context of the invention, a sulfone is a compound of formula (I):
Figure imgf000005_0001
) donde R y R' son independientemente C"|-C10 alquilo, C3-C10 cicloalquilo, C5-C7 heteroarilo, fenilo, bifenilo, terfenilo, naftilo, fenantrilo o antracilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más substituyentes seleccionados de C-|-C4 alquilo, -0-CVC4 alquilo y -OH. ) where R and R 'are independently C "| -C 10 alkyl, C 3 -C 10 cycloalkyl, C 5 -C 7 heteroaryl, phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of its positions by 1 or more substituents selected from C- | -C 4 alkyl, -0-CVC 4 alkyl and -OH.
En una realización del primer aspecto de la presente invención el aceite sintético orgánico se selecciona de difenilo, óxido de difenilo, o-terfenilo, m-terfenilo, p-terfenilo y cualquiera de sus mezclas, preferiblemente el aceite sintético orgánico se selecciona de difenilo, óxido de difenilo y cualquiera de sus mezclas y aún más preferiblemente el aceite sintético orgánico consiste en 50% a 99% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico. En una realización preferida del primer aspecto de la presente invención, el aceite sintético orgánico consiste en 73% a 73,5% en peso de óxido de difenilo y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico. Es decir, el aceite sintético orgánico es la mezcla eutéctica de óxido de difenilo y difenilo. Este aceite sintético presenta un amplio intervalo de temperaturas operativas (entre 15°C y 400°C) y una baja viscosidad para todo el intervalo operativo del fluido. In an embodiment of the first aspect of the present invention the organic synthetic oil is selected from diphenyl, diphenyl oxide, o-terphenyl, m-terphenyl, p-terphenyl and any of its mixtures, preferably the organic synthetic oil is selected from diphenyl, diphenyl oxide and any of its mixtures and even more preferably the organic synthetic oil consists of 50% to 99% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of organic synthetic oil. In a preferred embodiment of the first aspect of the present invention, the organic synthetic oil consists of 73% to 73.5% by weight of diphenyl and diphenyl oxide to complete 100% by weight with respect to the total weight of the organic synthetic oil. That is, the organic synthetic oil is the eutectic mixture of diphenyl oxide and diphenyl. This synthetic oil has a wide range of operating temperatures (between 15 ° C and 400 ° C) and a low viscosity for the entire operating range of the fluid.
En una realización del primer aspecto de la presente invención, el nanofluido comprende: In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 50% a 99% en peso de óxido de difenilo y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 50% to 99% by weight of diphenyl and diphenyl oxide to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas que comprenden carbono; y b) nanoparticles comprising carbon; Y
c) al menos una sulfona. c) at least one sulfone.
En una realización del primer aspecto de la presente invención, el nanofluido comprende: In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 73% a 73,5% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas que comprenden carbono; y b) nanoparticles comprising carbon; Y
c) al menos una sulfona. c) at least one sulfone.
En una realización del primer aspecto de la presente invención, las nanopartículas se seleccionan de nanotubos de carbono, nanopartículas de grafito, nanofibras de carbono, nanoesferas de carbono amorfo, fulerenos, nanopartículas de diamante, nanopartículas recubiertas de carbono y cualquiera de sus mezclas. In an embodiment of the first aspect of the present invention, the nanoparticles are selected from carbon nanotubes, graphite nanoparticles, carbon nanofibers, amorphous carbon nanospheres, fulerenes, diamond nanoparticles, carbon coated nanoparticles and any mixture thereof.
En una realización del primer aspecto de la presente invención, las nanopartículas son nanoesferas de carbono amorfo, preferiblemente las nanopartículas son negro de humo, El negro de humo es un material producido por la combustión parcial de los productos orgánicos derivados del petróleo, y está formado por nanoesferas de carbono amorfo que se pueden aglomerar formando clústeres. Los nanofluidos de la invención que comprenden negro de humo han proporcionado excelentes resultados de conductividad térmica y de estabilidad. Tienen además la ventaja de que el negro de humo es abundante y fácilmente obtenible. In an embodiment of the first aspect of the present invention, the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black, carbon black is a material produced by the partial combustion of organic products derived from petroleum, and is formed by amorphous carbon nanospheres that can agglomerate forming clusters. The nanofluids of the invention comprising carbon black have provided excellent results. of thermal conductivity and stability. They also have the advantage that carbon black is abundant and easily obtainable.
En una realización del primer aspecto de la presente invención, el nanofluido comprende: In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 73% a 73,5% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas que comprenden carbono, donde las nanopartículas son nanoesferas de carbono amorfo, preferiblemente las nanopartículas son negro de humo; y b) nanoparticles comprising carbon, where the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black; Y
c) al menos una sulfona. c) at least one sulfone.
En una realización del primer aspecto de la presente invención, la concentración de las nanopartículas que comprenden carbono en el nanofluido es de 0,1 % a 10% en volumen respecto al volumen total del nanofluido, preferiblemente, la concentración de nanopartículas en el nanofluido es de 1 % a 8% en volumen respecto al volumen total del nanofluido, más preferiblemente la concentración de nanopartículas en el nanofluido es de 3% a 5% en volumen respecto al volumen total del nanofluido. In an embodiment of the first aspect of the present invention, the concentration of the nanoparticles comprising carbon in the nanofluid is from 0.1% to 10% by volume with respect to the total volume of the nanofluid, preferably, the concentration of nanoparticles in the nanofluid is from 1% to 8% by volume with respect to the total volume of the nanofluid, more preferably the concentration of nanoparticles in the nanofluid is 3% to 5% by volume with respect to the total volume of the nanofluid.
En una realización del primer aspecto de la presente invención, el nanofluido comprende: In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 73% a 73,5% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas que comprenden carbono, donde las nanopartículas son nanoesferas de carbono amorfo, preferiblemente las nanopartículas son negro de humo; y b) nanoparticles comprising carbon, where the nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black; Y
c) al menos una sulfona; donde la concentración de las nanopartículas es de 0,1 % a 10% en volumen respecto al volumen total del nanofluido, preferiblemente, de 1 % a 8% en volumen, más de 3% a 5% en volumen respecto al volumen total del nanofluido. Preferiblemente la sulfona es un compuesto de fórmula (I) donde R y R' son independientemente C5-C7 heteroarilo, fenilo, bifenilo, terfenilo, naftilo, fenantrilo o antracilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más sustituyentes seleccionados de C1-C4 alquilo, -O-C1-C4 alquilo y -OH, más preferiblemente R y R' son independientemente fenilo, bifenilo, terfenilo, naftilo, fenantrilo o antracilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más sustituyentes seleccionados de C-|-C4 alquilo, -O-CVC4 alquilo y -OH, y aún más preferiblemente R y R' son fenilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más sustituyentes seleccionados de C1-C4 alquilo, -O-C1-C4 alquilo y -OH. c) at least one sulfone; where the concentration of the nanoparticles is 0.1% to 10% by volume with respect to the total volume of the nanofluid, preferably, from 1% to 8% by volume, more than 3% to 5% by volume with respect to the total volume of the nanofluid . Preferably sulfone is a compound of formula (I) where R and R 'are independently C5-C7 heteroaryl, phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of their positions by 1 or more substituents selected from C1-C4 alkyl, -O-C1-C4 alkyl and -OH, more preferably R and R 'are independently phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of its positions by 1 or more substituents selected from C- | -C 4 alkyl, -O-CVC 4 alkyl and -OH, and even more preferably R and R 'are phenyl, where R and R' can be independently substituted in any of its positions by 1 or more substituents selected from C1-C4 alkyl, -O-C1-C4 alkyl and -OH.
En una realización del primer aspecto de la presente invención, la sulfona es difenil sulfona. In one embodiment of the first aspect of the present invention, the sulfone is diphenyl sulfone.
En una realización del primer aspecto de la presente invención, el nanofluido comprende: In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 73% a 73,5% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas son nanoesferas de carbono amorfo, preferiblemente las nanopartículas son negro de humo; y b) nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black; Y
c) difenil sulfona. En una realización del primer aspecto de la presente invención, el nanofluido comprende: c) diphenyl sulfone. In an embodiment of the first aspect of the present invention, the nanofluid comprises:
a) un aceite sintético orgánico que consiste en 73% a 73,5% en peso de óxido de difenilo; y difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico; a) an organic synthetic oil consisting of 73% to 73.5% by weight of diphenyl oxide; and diphenyl to complete 100% by weight with respect to the total weight of the organic synthetic oil;
b) nanopartículas son nanoesferas de carbono amorfo, preferiblemente las nanopartículas son negro de humo; y b) nanoparticles are amorphous carbon nanospheres, preferably the nanoparticles are carbon black; Y
c) difenil sulfona; donde la concentración de las nanopartículas es de 0,1 % a 10% en volumen respecto al volumen total del nanofluido, preferiblemente, de 1 % a 8% en volumen, más de 3% a 5% en volumen respecto al volumen total del nanofluido. En una realización del primer aspecto de la presente invención, la proporción en peso nanopartículas:sulfona es de 2:1 a 1 :2, preferiblemente la proporción en peso nanopartículas:sulfona es 1 :1. c) diphenyl sulfone; where the concentration of the nanoparticles is 0.1% to 10% by volume with respect to the total volume of the nanofluid, preferably, from 1% to 8% by volume, more than 3% to 5% by volume with respect to the total volume of the nanofluid . In an embodiment of the first aspect of the present invention, the nanoparticles: sulfone weight ratio is 2: 1 to 1: 2, preferably the nanoparticles: sulfone weight ratio is 1: 1.
Un segundo aspecto de la presente invención se refiere al uso del nanofluido tal y como se ha descrito anteriormente como fluido de intercambio térmico. A second aspect of the present invention relates to the use of nanofluid as described above as a heat exchange fluid.
Un tercer aspecto de la presente invención se refiere a un procedimiento de obtención del nanofluido tal y como se ha descrito anteriormente que comprende las etapas de: a) mezclar homogéneamente con agitación el aceite sintético orgánico y la sulfona; y b) dispersar las nanopartículas en la mezcla obtenida en la etapa (a) con agitación. Esta agitación se lleva a cabo durante un periodo entre 30 min y 2 horas, preferiblemente durante 1 hora. A third aspect of the present invention relates to a process for obtaining the nanofluid as described above which comprises the steps of: a) homogeneously mixing with stirring the organic synthetic oil and the sulfone; and b) dispersing the nanoparticles in the mixture obtained in step (a) with stirring. This stirring is carried out for a period between 30 min and 2 hours, preferably for 1 hour.
En una realización del tercer aspecto de la presente invención, la agitación de la etapa (b) es agitación con ultrasonidos. El ultrasonidos es un método poco destructivo para las estructuras de nanopartículas de carbono y es preferible que se emplee durante periodos cortos e intermitentes para evitar sobrecalentamientos en la suspensión. Preferiblemente la agitación con ultrasonidos se lleva a cabo durante un minuto. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. In an embodiment of the third aspect of the present invention, the stirring of step (b) is ultrasonic stirring. Ultrasound is a low destructive method for carbon nanoparticle structures and it is preferable that it be used for short and intermittent periods to avoid overheating in the suspension. Preferably the ultrasonic stirring is carried out for one minute. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
FIG. 1. Variación de la conductividad térmica con la temperatura. kn/kbf: relación conductividad del nanofluido:conductividad del fluido base. T: temperatura en °C; 3%, 5%: nanofluidos de la invención, con concentraciones de nanopartículas de 3% y 5% en volumen respecto al volumen total del nanofluido, respectivamente. FIG. 1. Variation of thermal conductivity with temperature. k n / k bf : nanofluid conductivity ratio: base fluid conductivity. T: temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticles concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
FIG. 2. Variación de la viscosidad con la temperatura. μπ^: relación viscosidad del nanofluido:viscosidad del fluido base; T: temperatura en °C; 3%, 5%: nanofluidos de la invención, con concentraciones de nanopartículas de 3% y 5% en volumen respecto al volumen total del nanofluido, respectivamente. FIG. 2. Variation of viscosity with temperature. μ π ^: nanofluid viscosity ratio: base fluid viscosity; T: temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticle concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
FIG. 3. Variación del calor específico con la temperatura. Cpn/Cpbf:relación calor específico del nanofluido:calor específico del fluido base; T: temperatura en °C; 3%, 5%: nanofluidos de la invención, con concentraciones de nanopartículas de 3% y 5% en volumen respecto al volumen total del nanofluido, respectivamente. FIG. 3. Variation of specific heat with temperature. Cp n / Cp b f: specific heat ratio of the nanofluid: specific heat of the base fluid; T: temperature in ° C; 3%, 5%: nanofluids of the invention, with nanoparticle concentrations of 3% and 5% by volume with respect to the total volume of the nanofluid, respectively.
FIG. 4. Comparación de la estabilidad de los nanofluidos de la invención. L: Luz transmitida (%); D: días; 1 : nanofluido de la invención; 2: nanofluido con nanopartículas y sin sulfona u otro aditivo; 3: nanofluido con nanopartículas y con SDS; 4: nanofluido con nanopartículas y con SDBS. FIG. 4. Comparison of the stability of the nanofluids of the invention. L: Transmitted light (%); D: days; 1: nanofluid of the invention; 2: nanofluid with nanoparticles and without sulfone or other additive; 3: nanofluid with nanoparticles and with SDS; 4: nanofluid with nanoparticles and with SDBS.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the effectiveness of the product of the invention.
Ejemplo 1. Procedimiento de obtención de un nanofluido de la invención Example 1. Procedure for obtaining a nanofluid of the invention
Se prepararon nanofluidos con una concentración de negro de humo de 5% y 3% en volumen respecto al volumen total de nanofluido (densidad a 20°C = 1 ,8 g/ml). En primer lugar se disolvió la difenil sulfona en Therminol VP1 o DowTherm A (mezcla eutéctica de difenil y óxido de fenil) mediante agitación magnética durante 1 hora. A continuación se añadió el negro de humo y se dispersó mediante la aplicación de ultrasonidos (sonda de ultrasonidos Sonoplus HD2200, Bandelin) durante 1 minuto. Nanofluids were prepared with a carbon black concentration of 5% and 3% by volume with respect to the total nanofluid volume (density at 20 ° C = 1.8 g / ml). First, diphenyl sulfone was dissolved in Therminol VP1 or DowTherm A (eutectic mixture of diphenyl and phenyl oxide) by magnetic stirring for 1 hour. The carbon black was then added and dispersed by the application of ultrasound (Sonoplus HD2200 ultrasonic probe, Bandelin) for 1 minute.
Concentración en volumen ^mezcla eutéctica Tlnegro de humo Tldifenil sulfona Volume concentration ^ Tlnegro eutectic mixture of smoke Tldiphenyl sulfone
(mi) (g) (g)  (mi) (g) (g)
3% 100 5,57 5,57 5% 100 9,47 9,473% 100 5.57 5.57 5% 100 9.47 9.47
Tabla 1 . Composición de dos nanofluidos de la invención. Table 1 . Composition of two nanofluids of the invention.
Ejemplo 2. Conductividad térmica de los nanofluidos del Ejemplo 1. La conductividad térmica se midió mediante transitorio de hilo caliente, haciendo uso de un dispositivo comercial (KD2 Pro, Decagon Devices Inc.). Dicho dispositivo consiste en un sensor/termopar que es introducido en la muestra y genera un pulso de calor a la vez que registra la evolución de la temperatura de la muestra con el tiempo. Se obtuvieron los siguientes resultados: Example 2. Thermal conductivity of the nanofluids of Example 1. The thermal conductivity was measured by transient hot wire, using a commercial device (KD2 Pro, Decagon Devices Inc.). Said device consists of a sensor / thermocouple that is introduced into the sample and generates a heat pulse while recording the evolution of the temperature of the sample over time. The following results were obtained:
Figure imgf000011_0001
Figure imgf000011_0001
Ejemplo 1. kn/kbf: relación conductividad del nanofluido:conductividad del fluido base. Example 1. k n / k bf : nanofluid conductivity ratio: base fluid conductivity.
Se puede observar que el aumento es constante con la temperatura y que depende de la cantidad de nanopartículas. Estos resultados están representados en la figura 1 . It can be seen that the increase is constant with temperature and that it depends on the amount of nanoparticles. These results are represented in figure 1.
Ejemplo 3. Viscosidad de los nanofluidos del Ejemplo 1. Example 3. Viscosity of the nanofluids of Example 1.
La viscosidad de las muestras se mide haciendo uso de un reómetro con una configuración de cilindros concéntricos. Se obtuvo el reograma completo haciendo un barrido de gradientes de velocidad desde 1 a 100s"1. El valor de viscosidad tomado como representativo de la muestra es el que se alcanza a elevadas cizallas y gradientes de velocidad. Se obtuvieron los siguientes resultados: The viscosity of the samples is measured using a rheometer with a concentric cylinder configuration. The complete rheogram was obtained by sweeping velocity gradients from 1 to 100s "1. The viscosity value taken as representative of the sample is that achieved at high shears and velocity gradients. The following results were obtained:
Temperatura μπ^ί nanofluido 3% v/v μπ^ί nanofluido 5% v/v Temperature μ π ^ ί nanofluid 3% v / v μ π ^ ί nanofluid 5% v / v
25°C 6,086 8,189  25 ° C 6,086 8,189
40°C 7,423 9,128  40 ° C 7,423 9,128
60°C 9,120 10,358 80°C 9,379 9,158 60 ° C 9,120 10,358 80 ° C 9,379 9,158
Tabla 3. Viscosidad a diferentes temperaturas de los nanofluidos del Ejemp o 1 relación viscosidad del nanofluido:viscosidad del fluido base.  Table 3. Viscosity at different temperatures of the nanofluids of the Exemp or 1 nanofluid viscosity ratio: viscosity of the base fluid.
Estos resultados están representados en la figura 2. Se observa que la viscosidad aumenta y es proporcional a la cantidad de nanopartículas hasta 60°C. A partir de esta temperatura la viscosidad del nanofluido no depende de la cantidad de nanopartículas y disminuye con la temperatura. These results are represented in Figure 2. It is observed that the viscosity increases and is proportional to the amount of nanoparticles up to 60 ° C. From this temperature the viscosity of the nanofluid does not depend on the amount of nanoparticles and decreases with temperature.
Ejemplo 4. Calor específico de los nanofluidos del Ejemplo 1. Example 4. Specific heat of the nanofluids of Example 1.
El calor específico se midió mediante calorimetría diferencial de barrido, siguiendo la norma DIN51007. Las muestras son sometidas a un ciclo de temperaturas que consta de un tramo isotermo durante 5 minutos a 60°C, una rampa de calentamiento de 60°C a 150°C a 20°C/min, un tramo isotermo durante 5 minutos a 150°C y una rampa de enfriamiento de 150°C a 60°C a 20°C/min. Se obtuvieron los siguientes resultados: Specific heat was measured by differential scanning calorimetry, following DIN51007. The samples are subjected to a temperature cycle consisting of an isothermal section for 5 minutes at 60 ° C, a heating ramp from 60 ° C to 150 ° C at 20 ° C / min, an isothermal section for 5 minutes at 150 ° C and a cooling ramp from 150 ° C to 60 ° C at 20 ° C / min. The following results were obtained:
Figure imgf000012_0001
Figure imgf000012_0001
Cpn/Cpbf:relación calor específico del nanofluido:calor específico del fluido base. Estos resultados están representados en la figura 3. Se observa un menor calor específico en el nanofluido con 5% v/v de negro de humo que en el de 3% v/v. Cp n / Cp bf : specific heat ratio of the nanofluid: specific heat of the base fluid. These results are represented in Figure 3. A lower specific heat is observed in the nanofluid with 5% v / v carbon black than in 3% v / v.
Ejemplo 5. Estabilidad del nanofluido 5% del Ejemplo 1. El nanofluido se sometió a ciclos térmicos de 200°C-400°C. Los ciclos térmicos se efectuaron en un sistema que consta de una cubeta de aluminio cerrada herméticamente que se calienta por un anillo calefactor. Debido a la baja presión de vapor de algunos de los aceites térmicos utilizados es necesario presurizar el sistema a 15 bar para evitar la ebullición del mismo. El sistema cuenta con un transductor de presión para regular la presión de presurización y dos termopares de tipo K, uno en la pared y otro en el centro de la cubeta para medir la temperatura del fluido. Todo el sistema está regulado por un sistema PID (Proporcional Integrado Derivativo) para controlar la potencia eléctrica suministrada al anillo calefactor a partir de la medida de la temperatura de la pared y del fluido. Los nanofluidos fueron sometidos a diez ciclos térmicos entre 200°C-400°C, con una rampa de calentamiento de 20°C/min y de enfriamiento de 10°C/min. Posteriormente se midió la estabilidad en el tiempo. Example 5. Stability of the nanofluid 5% of Example 1. The nanofluid was subjected to thermal cycles of 200 ° C-400 ° C. The thermal cycles were carried out in a system consisting of a closed aluminum bowl Hermetically heated by a heating ring. Due to the low vapor pressure of some of the thermal oils used, it is necessary to pressurize the system to 15 bar to avoid boiling it. The system has a pressure transducer to regulate the pressurization pressure and two K-type thermocouples, one on the wall and one in the center of the cuvette to measure the temperature of the fluid. The entire system is regulated by a PID (Proportional Integrated Derivative) system to control the electrical power supplied to the heating ring from the measurement of the wall and fluid temperature. The nanofluids were subjected to ten thermal cycles between 200 ° C-400 ° C, with a heating ramp of 20 ° C / min and cooling ramp of 10 ° C / min. Subsequently, the stability over time was measured.
Se comparó la estabilidad del nanofluido de la invención con una concentración en volumen de 5% de negro de humo con otros nanofluidos que utilizan el mismo fluido base, la misma concentración y el mismo tipo de nanopartículas, pero un aditivo diferente. The stability of the nanofluid of the invention was compared with a 5% volume concentration of carbon black with other nanofluids using the same base fluid, the same concentration and the same type of nanoparticles, but a different additive.
La estabilidad del nanofluido se comprueba a partir de la intensidad de la radiación láser transmitida por el nanofluido en una cubeta de vidrio con el nanofluido. La radiación proviene de un diodo láser que emite en 610 nm. La radiación tiene forma de haz de 3 mm de diámetro. La radiación láser se mide mediante un fotodiodo con lente de focalización y filtro. El haz láser pasa por la parte superior del nanofluido de forma que si el nanofluido es estable debe ser constante a lo largo del tiempo. Si el nanofluido no es estable se produce aglomeración de nanopartículas y sedimentación. Si existe sedimentación la intensidad transmitida en la parte superior del nanofluido aumenta con el tiempo ya que los cúmulos de nanopartículas formados sedimentan y se concentran en la parte inferior de la cubeta. En la figura 4 se representa la luz transmitida de 4 fluidos, en todos ellos el fluido base es la mezcla eutéctica de difenil y óxido de fenil, y todos ellos contienen 5% de negro de humo. The stability of the nanofluid is checked from the intensity of the laser radiation transmitted by the nanofluid in a glass cuvette with the nanofluid. The radiation comes from a laser diode that emits at 610 nm. The radiation has a 3 mm diameter beam shape. Laser radiation is measured by a photodiode with focusing lens and filter. The laser beam passes through the upper part of the nanofluid so that if the nanofluid is stable it must be constant over time. If the nanofluid is not stable, nanoparticle agglomeration and sedimentation occur. If there is sedimentation, the intensity transmitted in the upper part of the nanofluid increases with time since the clusters of nanoparticles formed settle and concentrate in the lower part of the cuvette. The transmitted light of 4 fluids is represented in Figure 4, in all of them the base fluid is the eutectic mixture of diphenyl and phenyl oxide, and all of them contain 5% carbon black.
Figure imgf000013_0001
2 SDBS - dodecilbenceno sulfonato sódico
Figure imgf000013_0001
2 SDBS - sodium dodecylbenzene sulfonate
3 SDS - Dodecilsulfato sódico  3 SDS - Sodium Dodecyl Sulfate
4 sin sulfona u otro aditivo  4 without sulfone or other additive
Tabla 5. Nanofluidos cuya luz transmitida se representa en la figura 4.  Table 5. Nanofluids whose transmitted light is represented in Figure 4.
Se puede apreciar que en el nanofluido de la invención no hay variación en la luz transmitida durante al menos 5 días, y que por tanto, es más estable que los fluidos 2 y 3 que comprenden sulfonato o sulfato en vez de sulfona, y más que el nanofluido sin aditivos. It can be seen that in the nanofluid of the invention there is no variation in the transmitted light for at least 5 days, and that it is therefore more stable than fluids 2 and 3 comprising sulphonate or sulfate instead of sulfone, and more than The nanofluid without additives.

Claims

REIVINDICACIONES
1. - Nanofluido que comprende: 1. - Nanofluid comprising:
a) un aceite sintético orgánico que es un polifenilo; a) an organic synthetic oil that is a polyphenyl;
b) nanopartículas que comprenden carbono; y b) nanoparticles comprising carbon; Y
c) al menos una sulfona. c) at least one sulfone.
2. - El nanofluido según la reivindicación anterior, donde el aceite sintético orgánico se selecciona de difenilo, óxido de difenilo, o-terfenilo, m-terfenilo, p-terfenilo y cualquiera de sus mezclas. 2. - The nanofluid according to the preceding claim, wherein the organic synthetic oil is selected from diphenyl, diphenyl oxide, o-terphenyl, m-terphenyl, p-terphenyl and any of their mixtures.
3. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde el aceite sintético orgánico se selecciona de difenilo, óxido de difenilo y cualquiera de sus mezclas. 3. - The nanofluid according to any of the preceding claims, wherein the organic synthetic oil is selected from diphenyl, diphenyl oxide and any of its mixtures.
4. - El nanofluido según la reivindicación anterior, donde el aceite sintético orgánico consiste en: 4. - The nanofluid according to the preceding claim, wherein the organic synthetic oil consists of:
- 50% a 99% en peso de óxido de difenilo; y  - 50% to 99% by weight of diphenyl oxide; Y
- difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico.  - diphenyl to 100% by weight with respect to the total weight of organic synthetic oil.
5. - El nanofluido según la reivindicación anterior, donde el aceite sintético orgánico consiste en: 5. - The nanofluid according to the preceding claim, wherein the organic synthetic oil consists of:
- 73% a 73,5% en peso de óxido de difenilo; y  - 73% to 73.5% by weight of diphenyl oxide; Y
- difenilo hasta completar el 100% en peso respecto al peso total del aceite sintético orgánico. - diphenyl to 100% by weight with respect to the total weight of organic synthetic oil.
6. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde las nanopartículas se seleccionan de nanotubos de carbono, nanopartículas de grafito, nanofibras de carbono, nanoesferas de carbono amorfo, fulerenos, nanopartículas de diamante, nanopartículas recubiertas de carbono y cualquiera de sus mezclas. 6. - The nanofluid according to any of the preceding claims, wherein the nanoparticles are selected from carbon nanotubes, graphite nanoparticles, carbon nanofibers, amorphous carbon nanospheres, fulerenes, diamond nanoparticles, carbon coated nanoparticles and any of their mixtures .
7. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde las nanopartículas son nanoesferas de carbono amorfo. 7. - The nanofluid according to any of the preceding claims, wherein the nanoparticles are amorphous carbon nanospheres.
8. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde la concentración de las nanopartículas es de 0,1 % a 10% en volumen respecto al peso total del nanofluido. 8. - The nanofluid according to any of the preceding claims, wherein the concentration of the nanoparticles is from 0.1% to 10% by volume with respect to the total weight of the nanofluid.
9. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde la al menos una sulfona es un compuesto de fórmula (I):
Figure imgf000016_0001
donde R y R' son independientemente C5-C7 heteroarilo, fenilo, bifenilo, terfenilo, naftilo, fenantrilo o antracilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más sustituyentes seleccionados de C1-C4 alquilo, -O-C1-C4 alquilo y -OH,
9. - The nanofluid according to any of the preceding claims, wherein the at least one sulfone is a compound of formula (I):
Figure imgf000016_0001
where R and R 'are independently C 5 -C 7 heteroaryl, phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' can be independently substituted in any of their positions by 1 or more substituents selected from C1-C4 alkyl, -O-C1-C4 alkyl and -OH,
10. - El nanofluido según la reivindicación anterior, donde la al menos una sulfona es un compuesto de fórmula (I) donde R y R' son independientemente fenilo, bifenilo, terfenilo, naftilo, fenantrilo o antracilo, donde R y R' pueden estar independientemente substituidos en cualquiera de sus posiciones por 1 o más sustituyentes seleccionados de C1-C4 alquilo, -O-C1-C4 alquilo y -OH. 10. - The nanofluid according to the preceding claim, wherein the at least one sulfone is a compound of formula (I) wherein R and R 'are independently phenyl, biphenyl, terphenyl, naphthyl, phenanthryl or anthracil, where R and R' may be independently substituted in any of their positions by 1 or more substituents selected from C1-C4 alkyl, -O-C1-C4 alkyl and -OH.
1 1 . - El nanofluido según cualquiera de las reivindicaciones anteriores, donde la sulfona es difenil sulfona. eleven . - The nanofluid according to any of the preceding claims, wherein the sulfone is diphenyl sulfone.
12. - El nanofluido según cualquiera de las reivindicaciones anteriores, donde la proporción en peso nanopartículas:sulfona es de 2:1 a 1 :2. 12. - The nanofluid according to any of the preceding claims, wherein the weight ratio nanoparticles: sulfone is from 2: 1 to 1: 2.
13. - El nanofluido según la reivindicación anterior, donde la proporción en peso nanopartículas:sulfona es 1 :1. 13. - The nanofluid according to the preceding claim, wherein the proportion by weight nanoparticles: sulfone is 1: 1.
14. - Uso del nanofluido según cualquiera de las reivindicaciones anteriores como fluido de intercambio térmico. 14. - Use of the nanofluid according to any of the preceding claims as a heat exchange fluid.
15.- Procedimiento de obtención del nanofluido según las reivindicaciones 1 a 13 que comprende las etapas de: a) mezclar homogéneamente con agitación el aceite sintético orgánico y la sulfona; y b) dispersar las nanopartículas en la mezcla obtenida en la etapa (a) con agitación. 15. Procedure for obtaining the nanofluid according to claims 1 to 13, comprising the steps of: a) mix the organic synthetic oil and sulfone homogeneously with stirring; and b) dispersing the nanoparticles in the mixture obtained in step (a) with stirring.
16.- El procedimiento según la reivindicación anterior, donde la agitación de la etapa (b) es agitación con ultrasonidos. 16. The method according to the preceding claim, wherein the stirring of step (b) is ultrasonic stirring.
PCT/ES2015/070393 2014-05-20 2015-05-19 Heat exchange nanofluid WO2015177392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430736A ES2554651B1 (en) 2014-05-20 2014-05-20 THERMAL EXCHANGE NANOFLUID
ESP201430736 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015177392A1 true WO2015177392A1 (en) 2015-11-26

Family

ID=54553464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070393 WO2015177392A1 (en) 2014-05-20 2015-05-19 Heat exchange nanofluid

Country Status (2)

Country Link
ES (1) ES2554651B1 (en)
WO (1) WO2015177392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079278A (en) * 2019-04-30 2019-08-02 国电南瑞科技股份有限公司 A kind of compound hydrated salt phase-change heat-storage material of high thermal conductivity and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158609A1 (en) * 2006-01-12 2007-07-12 Haiping Hong Carbon nanoparticle-containing lubricant and grease
US20110003721A1 (en) * 2006-01-12 2011-01-06 Haiping Hong Carbon nanoparticle-containing nanofluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158609A1 (en) * 2006-01-12 2007-07-12 Haiping Hong Carbon nanoparticle-containing lubricant and grease
US20110003721A1 (en) * 2006-01-12 2011-01-06 Haiping Hong Carbon nanoparticle-containing nanofluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAYLOR R A ET AL.: "Nanofluid optical property characterization: towards efficient direct absorption solar collectors.", NANO SCALE RESEARCH LETTERS, vol. 6, 30 November 2010 (2010-11-30), USA, pages 225, XP055237787, ISSN: 1931-7573 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079278A (en) * 2019-04-30 2019-08-02 国电南瑞科技股份有限公司 A kind of compound hydrated salt phase-change heat-storage material of high thermal conductivity and preparation method thereof

Also Published As

Publication number Publication date
ES2554651B1 (en) 2016-10-05
ES2554651A1 (en) 2015-12-22

Similar Documents

Publication Publication Date Title
Beaupere et al. Nucleation triggering methods in supercooled phase change materials (PCM), a review
Michael et al. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations
Kumar et al. Review of stability and thermal conductivity enhancements for salt hydrates
Bose et al. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material
Nourani et al. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity
ES2555453T3 (en) Mixture of inorganic nitrate salts
Albdour et al. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: Fundamentals, recent advances, and future directions
He et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage
Siegel et al. Thermophysical property measurement of nitrate salt heat transfer fluids
Fauzi et al. Sodium laurate enhancements the thermal properties and thermal conductivity of eutectic fatty acid as phase change material (PCM)
Putra et al. Characterization of the thermal stability of RT 22 HC/graphene using a thermal cycle method based on thermoelectric methods
Gulzar et al. Experimental study on thermal conductivity of mono and hybrid Al2O3–TiO2 nanofluids for concentrating solar collectors
WO2013116510A1 (en) Thermal energy storage with molten salt
Kumar et al. Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material
Zhang et al. Enhanced thermal properties of Li 2 CO 3–Na 2 CO 3–K 2 CO 3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems
Sivasamy et al. Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage
Tebaldi et al. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials
Zhang et al. Mechano‐Responsive, Thermo‐Reversible, Luminescent Organogels Derived from a Long‐Chained, Naturally Occurring Fatty Acid
ES2554651B1 (en) THERMAL EXCHANGE NANOFLUID
Nourani et al. Preparation of a stable nanocomposite phase change material (NCPCM) using sodium stearoyl lactylate (SSL) as the surfactant and evaluation of its stability using image analysis
Harikrishnan et al. Improved thermal energy storage behavior of a novel nanofluid as phase change material (PCM)
Mausam et al. Solicitation of nanoparticles/fluids in solar thermal energy harvesting: A review
Ahmed Nanofluid: new fluids by nanotechnology
Sundaram et al. Synthesis, stability, and heat transfer behavior of water and graphene nanoplatelet-based nanofluid for cool thermal storage applications
Jacob et al. Quantifying thermophysical properties, characterization, and thermal cycle testing of nano-enhanced organic eutectic phase change materials for thermal energy storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796460

Country of ref document: EP

Kind code of ref document: A1