WO2015176617A1 - 上行频选调度方法和装置 - Google Patents

上行频选调度方法和装置 Download PDF

Info

Publication number
WO2015176617A1
WO2015176617A1 PCT/CN2015/078777 CN2015078777W WO2015176617A1 WO 2015176617 A1 WO2015176617 A1 WO 2015176617A1 CN 2015078777 W CN2015078777 W CN 2015078777W WO 2015176617 A1 WO2015176617 A1 WO 2015176617A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
interfered
scheduling
interference strength
average power
Prior art date
Application number
PCT/CN2015/078777
Other languages
English (en)
French (fr)
Inventor
陈先国
林卫
董书霞
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP15795694.7A priority Critical patent/EP3148278B1/en
Priority to JP2017513297A priority patent/JP6446129B2/ja
Priority to US15/311,347 priority patent/US10251190B2/en
Publication of WO2015176617A1 publication Critical patent/WO2015176617A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an uplink frequency selection scheduling method and apparatus.
  • the uplink of the Time-Division Long-Term Evolution (TD-LTE) base station may be affected by neighboring heterogeneous system base stations (for example, Global System for Mobile communication (GSM) 900, distributed control System (Distributed Control System, DCS) 1800, Personal Handy-phone System (PHS) base station) blocking interference, intermodulation interference and spurious interference, therefore, the uplink receiving signal of TD-LTE system may Will be strongly interfered, which will seriously affect the uplink performance of TD-LTE base stations.
  • GSM Global System for Mobile communication
  • DCS distributed Control System
  • PHS Personal Handy-phone System
  • engineering methods for example, antenna isolation, antenna replacement, adjustment of the sky surface, or installation of anti-blocking filters, etc.
  • engineering methods for example, antenna isolation, antenna replacement, adjustment of the sky surface, or installation of anti-blocking filters, etc.
  • Due to factors such as engineering quantity, engineering difficulty, and impact on the GSM live network operators are reluctant to solve the interference problems of different systems through engineering methods.
  • the uplink performance of the TD-LTE system can be improved by means of frequency selective scheduling.
  • the frequency selective scheduling in the LTE system can effectively solve the problem of the degradation of the wireless transmission performance caused by the frequency selective fading of the wireless channel environment.
  • the basic principle of frequency-selective scheduling is to allocate a physical resource block (PRB) resource with the best channel quality to each user equipment (User Equipment, UE) in each scheduling period, thereby improving the cell throughput rate and User perception.
  • the base station (eNodeB) performs SRS channel estimation according to the Sounding Reference Signal (SRS) signal sent by the UE, measures the channel quality of each sub-band through channel estimation, and then performs channel quality information according to each sub-band.
  • SRS Sounding Reference Signal
  • the SRS is sent periodically by the UE or sent aperiodically.
  • Third generation partner The 3rd Generation Partnership Project (3GPP) protocol stipulates that the minimum transmission period for periodic transmission is 5 milliseconds (ms), and the interval for non-periodic transmission is generally longer.
  • 3GPP 3rd Generation Partnership Project
  • the interference characteristics are random, pulsed, and high-intensity.
  • Interference signals last for a short period of time and generally occur in certain fixed frequency ranges. The interference signal is not flat and it is not possible to cover the entire SRS transmission period.
  • the Signal to Interference plus Noise Ratio (SINR) based on the SRS channel estimation cannot reflect the influence of narrowband interference, and the uplink frequency selection scheduling based on the SRS channel estimation cannot suppress the narrowband interference from the different system. Therefore, the problem of different system interference cannot be solved using the prior art.
  • SINR Signal to Interference plus Noise Ratio
  • the technical problem to be solved by the embodiments of the present invention is to provide an uplink frequency selection scheduling method and apparatus, which can improve the uplink performance of the TD-LTE system in a different system interference scenario.
  • an uplink frequency selection scheduling method which includes: receiving, by a base station, a sounding reference signal SRS sent by a user equipment UE; determining an interference strength of a physical resource block PRB; and performing interference according to SRS channel quality and PRB Strength, determine the scheduling priority of the PRB; perform uplink frequency selection scheduling according to the scheduling priority.
  • the scheduling priority of the PRB is determined according to the SRS channel quality and the interference strength of the PRB, including:
  • the SP is the scheduling priority
  • the SINR is the SRS channel quality
  • the PN is the average noise power
  • the PI is the interference strength of the PRB.
  • determining the interference strength of the physical resource block PRB includes: calculating the interference strength of the PRB according to the average power of the PRB and the average power of the PRB in the full bandwidth.
  • the interfered PRB is identified by:
  • the difference between the average power of a subcarrier in a certain time slot and the average power of the subcarriers in the full bandwidth is greater than or equal to a predetermined interference detection threshold, and the average power of the subcarrier in the time slot is greater than or equal to a predetermined uplink received power threshold , determining that the subcarrier is interfered in the time slot;
  • the subcarrier is determined to be the interfered subcarrier, where P is less than or equal to N;
  • the interfered PRB is identified based on the distribution of the interfered subcarriers in the full bandwidth.
  • determining the interference strength of the physical resource block PRB includes: calculating an interference strength of the interfered PRB according to the average power of the interfered PRB and the average power of the PRB in the full bandwidth; determining the full bandwidth except the interfered PRB
  • the PRB is an uninterrupted PRB, and the interference strength of the uninterrupted PRB is determined to be zero.
  • the uplink frequency selection scheduling is performed according to the scheduling priority, including: allocating, to the UE, the M PRBs with the highest scheduling priority as the uplink transmission resources, where M is a positive integer.
  • the SRS channel quality is determined based on the SRS channel estimation result.
  • an uplink frequency selection scheduling apparatus including: a receiving module, configured to receive a sounding reference signal SRS sent by a user equipment UE; and a first determining module configured to determine an interference strength of the PRB;
  • the second determining module is configured to determine a scheduling priority of the PRB according to the SRS channel quality and the interference strength of the PRB, and the scheduling module is configured to perform uplink frequency selection scheduling according to the scheduling priority.
  • the second determining module is configured to determine a scheduling priority of the PRB by the following formula:
  • the SP is the scheduling priority
  • the SINR is the SRS channel quality
  • the PN is the average noise power
  • the PI is the interference strength of the PRB.
  • the first determining module is configured to calculate the interference strength of the PRB according to the average power of the PRB and the average power of the PRB in the full bandwidth.
  • the apparatus further includes: an identification module configured to identify the interfered PRB by: before determining the interference strength of the physical resource block PRB:
  • the difference between the average power of a subcarrier in a certain time slot and the average power of the subcarriers in the full bandwidth is greater than or equal to a predetermined interference detection threshold, and the average power of the subcarrier in the time slot is greater than or equal to a predetermined uplink received power threshold , determining that the subcarrier is interfered in the time slot;
  • the subcarrier is determined to be the interfered subcarrier, where P is less than or equal to N;
  • the interfered PRB is identified based on the distribution of the interfered subcarriers in the full bandwidth.
  • the first determining module is configured to: calculate an interference strength of the interfered PRB according to the average power of the interfered PRB and the average power of the PRB in the full bandwidth; and determine that the PRB except the interfered PRB in the full bandwidth is not The interfered PRB determines that the interference strength of the uninterrupted PRB is zero.
  • the scheduling module is configured to allocate, to the UE, M PRBs with the highest scheduling priority as uplink transmission resources, where M is a positive integer.
  • the SRS channel quality is determined based on the SRS channel estimation result.
  • an embodiment of the present invention further discloses a computer program comprising computer readable code, when the computer readable code is run on a base station, causing the base station to perform any one of the claims The uplink frequency selection scheduling method.
  • embodiments of the present invention also disclose a computer readable medium storing the computer program as claimed in the claims.
  • the embodiment of the invention has the following advantages:
  • the uplink frequency selection scheduling is performed according to the SRS channel estimation. Since the SINR based on the SRS channel estimation cannot reflect the influence of the narrowband interference, the uplink frequency selection method cannot suppress the narrowband interference from the different system.
  • the base station determines the scheduling priority of the PRB according to the SRS channel quality and the interference strength of the PRB, and performs the uplink frequency selection scheduling accordingly, because the interference strength of the PRB can reflect the narrowband interference situation, therefore, the implementation of the present invention
  • the uplink frequency selective scheduling method provided by the example can suppress narrowband interference from different systems, thereby improving the uplink performance of the TD-LTE system.
  • FIG. 1 is a flowchart of an uplink frequency selection scheduling method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an uplink frequency selection scheduling method according to Embodiment 2 of the present invention.
  • FIG. 3 is a structural block diagram of an uplink frequency selection scheduling apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a block diagram showing a preferred structure of an uplink frequency selection scheduling apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a structural block diagram of a base station for performing an uplink frequency selection scheduling method according to an embodiment of the present invention.
  • FIG. 6 is a storage unit for maintaining or carrying program code for implementing an uplink frequency selection scheduling method according to an embodiment of the present invention.
  • an uplink frequency selection scheduling method includes:
  • Step 102 The base station receives the SRS sent by the UE; the base station may be a TD-LTE base station.
  • Step 104 Determine an interference strength of the PRB.
  • the interference strength of the PRB may be calculated according to the average power of the PRB and the average power of the PRB in the full bandwidth.
  • PRBs are interfered PRBs, and then, according to the average power of the interfered PRBs and the average power of the PRBs in the full bandwidth, the interference strength of the interfered PRBs is calculated;
  • the interference strength of the interfered PRB is considered to be zero. In this way, the calculation process of the interference strength of the undisturbed PRB is simplified, thereby improving the efficiency of determining the PRB priority according to the interference strength.
  • the interfered PRB may be identified by performing interference detection in the full bandwidth of the frequency domain, and the process of identifying may include: performing interference detection on the entire broadband in the frequency domain by the base station, if The difference between the average power of a certain subcarrier in a certain time slot and the average power of the subcarriers in the full bandwidth is greater than or equal to a predetermined interference detection threshold, and the average power of the subcarrier in the time slot is greater than or equal to a predetermined uplink reception.
  • the interfered PRB is identified according to the distribution of the interfered subcarriers in the full bandwidth.
  • Step 106 Determine a scheduling priority of the PRB according to the SRS channel quality and the interference strength of the PRB.
  • the SRS channel quality may be determined according to the SRS channel estimation result.
  • the determining manner may be: after receiving the SRS signal, the base station compares the SRS signal with the locally stored SRS reference sequence to estimate the SRS channel quality.
  • the scheduling priority of the PRB can be determined by the following formula:
  • the SP is the scheduling priority
  • the SINR is the SRS channel quality
  • the PN is the average noise power
  • the PI is the interference strength of the PRB.
  • the base station may perform channel estimation according to the received SRS, and determine an SRS channel quality, where the SRS channel quality may be an uplink SINR; and determine a scheduling priority of the PRB according to an uplink SINR of the PRB and an interference strength.
  • the principle of determining the PRB scheduling priority is: if the uplink SINR of the PRB is the same, and the interference strength of the PRB is larger, the scheduling priority of the PRB is lower, and the interference strength of the PRB is smaller, the higher the scheduling priority of the PRB is.
  • the scheduling priority of the uninterrupted PRB is higher than the scheduling priority of the interfered PRB.
  • the scheduling priority of the PRB is larger, and the uplink SINR of the PRB is higher. Small, the lower the scheduling priority of the PRB.
  • the scheduling priority determined in this manner can reflect the interference degree of the narrowband, and the uplink frequency selective scheduling performed according to this can improve the uplink performance in the heterogeneous system interference scenario.
  • Step 108 Perform uplink frequency selection scheduling according to the scheduling priority.
  • the base station allocates, to the UE, the M PRBs with the highest scheduling priority as the uplink transmission resources in the full bandwidth, where M is a positive integer.
  • the uplink frequency selection scheduling may be performed in other manners. For example, a threshold is set in advance, and M PRBs with a priority higher than the threshold are selected as uplink transmission resources to be allocated to the UE.
  • the uplink frequency selection scheduling is performed according to the SRS channel estimation. Since the SINR based on the SRS channel estimation cannot reflect the influence of the narrowband interference, the uplink frequency selection method cannot suppress the narrowband interference from the different system.
  • the base station estimates based on the SRS channel. The interference strength of the PRB is used to determine the scheduling priority of the PRB, and the uplink frequency selection scheduling is performed accordingly. Since the interference strength of the PRB can reflect the narrowband interference situation, the uplink frequency selection method provided in this embodiment can suppress the difference from the different system. Narrowband interference can improve the uplink performance of the TD-LTE system.
  • the embodiment of the invention further provides an uplink frequency selection scheduling method, which can be applied to a base station of an F-band TD-LTE, for example, an F-band TD-LTE evolved Node B (eNodeB).
  • the uplink baseband processing module in the base station performs real-time interference detection based on the narrowband interference feature in the full bandwidth of the frequency domain, identifies the narrowband interference and the interfered PRB, and calculates the interference intensity information of the interfered PRB.
  • the uplink scheduling module in the base station performs uplink frequency selection scheduling based on the SRS channel quality information and the interference strength information of the interfered PRB.
  • FIG. 2 is a schematic diagram of an uplink frequency selection scheduling method according to Embodiment 2 of the present invention. The flow of this embodiment is specifically described below with reference to FIG. 2 .
  • the base station receives a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), and an SRS signal, and performs a Fast Fourier Transform (FFT) on the base station. Then, the uplink baseband processing module performs SRS channel estimation based on the SRS signal sent by the UE, calculates uplink SINR information of each PRB, and then transmits the uplink SINR information of each PRB to the uplink scheduling module.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • FFT Fast Fourier Transform
  • the uplink baseband processing module performs real-time interference detection based on the narrowband interference feature in the full bandwidth of the frequency domain, identifies the narrowband interference and the interfered PRB, and calculates the interference intensity information of the interfered PRB.
  • the narrowband interference detecting method in this embodiment will be specifically described below.
  • the interfered PRB is determined according to the distribution information of the interfered subcarriers in the full bandwidth.
  • the PRB may be interfered according to the number of the interfered subcarriers in a PRB exceeding a preset threshold.
  • the interference strength of the PRB is calculated according to the average power of the interfered PRB and the average power of the PRB in the full bandwidth.
  • the average subcarrier average power in the full bandwidth is defined as the average value of the average power of each subcarrier included in the full bandwidth;
  • the average power of the interfered PRB is defined as the average value of the average power of each subcarrier included in the interfered PRB;
  • full bandwidth The average internal PRB power is equal to the average subcarrier power in the full bandwidth.
  • the uplink baseband processing module After detecting the narrowband interference, the uplink baseband processing module transmits the information of the interfered PRB and the interference strength information to the uplink scheduling module.
  • the uplink scheduling module determines the scheduling priority of each PRB based on the uplink SINR information of each PRB and the interference strength information of the interfered PRB, and allocates PRB resources to the UE based on the PRB scheduling priority, thereby implementing SRS information and interference information.
  • Uplink frequency selection scheduling In this embodiment, the PRB scheduling priority can reflect the interfered strength of the PRB. Under the same SRS channel quality, the greater the interference strength of the PRB, the lower the scheduling priority; the smaller the interference strength of the PRB, the higher the scheduling priority.
  • the scheduling priority of the PRB can be calculated as follows:
  • the SP is the scheduling priority of the PRB
  • the SINR is the SRS channel quality
  • the PN is the average noise power
  • the PI is the interference strength of the PRB (ie, the interference power).
  • the prior art SRS-based frequency selective scheduling method is difficult to reflect the influence of narrowband interference, and the PRB that is strongly interfered may have a higher scheduling priority, thereby seriously affecting the uplink performance.
  • the uplink frequency selection scheduling method of this embodiment considers the interference strength information of the PRB. For each UE, if the PRB to be allocated is more strongly interfered by the different system, the scheduling priority is lower, and vice versa. In this way, the PRB resources allocated to each UE in each scheduling period are the best PRB resources of the channel quality, thereby effectively suppressing strong interference of different systems, especially suppressing intermodulation interference and not causing the radio remote unit (Radio Remote Unit (RRU) is an abnormal blocking interference. Therefore, compared with the existing SRS-based frequency selective scheduling method, this embodiment can effectively suppress the strongening of different systems. Disturbance, improve cell uplink throughput and user experience.
  • Radio Remote Unit Radio Remote Unit
  • FIG. 3 is a structural block diagram of an uplink frequency selection scheduling apparatus according to Embodiment 3 of the present invention. As shown in FIG. 3, the apparatus includes:
  • the receiving module 302 is configured to receive an SRS sent by the UE.
  • the first determining module 304 is configured to determine an interference strength of the PRB
  • the second determining module 306 is configured to determine a scheduling priority of the PRB according to the SRS channel quality and the interference strength of the interfered PRB.
  • the scheduling module 308 is configured to perform uplink frequency selection scheduling according to the scheduling priority.
  • the second determining module 306 is configured to determine the scheduling priority of the PRB by the following formula:
  • the SP is the scheduling priority
  • the SINR is the SRS channel quality
  • the PN is the average noise power
  • the PI is the interference strength of the PRB.
  • the first determining module 304 is configured to calculate the interference strength of the PRB according to the average power of the PRB and the average power of the PRB in the full bandwidth.
  • FIG. 4 is a block diagram of a preferred structure of an uplink frequency selection scheduling apparatus according to Embodiment 3 of the present invention. As shown in FIG. 4, the apparatus further includes: an identification module 402 configured to Before determining the interference strength of the PRB, the interfered PRB is identified by:
  • the difference between the average power of a subcarrier in a certain time slot and the average power of the subcarriers in the full bandwidth is greater than or equal to a predetermined interference detection threshold, and the average power of the subcarrier in the time slot is greater than or equal to a predetermined uplink received power threshold , determining that the subcarrier is interfered in the time slot;
  • the subcarrier is determined to be the interfered subcarrier, where P is less than or equal to N;
  • the interfered PRB is identified based on the distribution of the interfered subcarriers in the full bandwidth.
  • the first determining module 304 is configured to: according to the interfered The average power of the PRB and the average power of the PRB in the full bandwidth, calculate the interference strength of the interfered PRB; determine the PRB of the full bandwidth except the interfered PRB as the uninterrupted PRB, and determine the interference strength of the uninterrupted PRB. Is 0.
  • the scheduling module 308 is configured to allocate, to the UE, M PRBs with the highest scheduling priority as uplink transmission resources, where M is a positive integer.
  • the SRS channel quality is determined based on the SRS channel estimation results.
  • the uplink frequency selection scheduling is performed according to the SRS channel estimation. Since the SINR based on the SRS channel estimation cannot reflect the influence of the narrowband interference, the uplink frequency selection method cannot suppress the narrowband interference from the different system.
  • the base station determines the scheduling priority of the PRB according to the SRS channel quality and the interference strength of the PRB, and performs the uplink frequency selection scheduling according to the method, and the interference strength of the PRB can reflect the narrowband interference situation. Therefore, the embodiment provides The uplink frequency selection method can suppress narrowband interference from different systems, thereby improving the uplink performance of the TD-LTE system.
  • modules in the devices of the embodiments can be adaptively changed and placed in one or more devices different from the embodiment.
  • the modules or units or components of the embodiments may be combined into one module or unit or component, and further they may be divided into a plurality of sub-modules or sub-units or sub-components.
  • any combination of the features disclosed in the specification, including the accompanying claims, the abstract and the drawings, and any methods so disclosed, or All processes or units of the device are combined.
  • Each feature disclosed in this specification (including the accompanying claims, the abstract and the drawings) may be replaced by alternative features that provide the same, equivalent or similar purpose.
  • the various component embodiments of the present invention may be implemented in hardware, or in a software module running on one or more processors, or in a combination thereof.
  • a microprocessor or digital signal processor may be used in practice to implement some or all of the functionality of some or all of the components of the uplink frequency selective scheduling device in accordance with embodiments of the present invention.
  • the invention can also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing some or all of the methods described herein.
  • a program implementing the present invention may be stored on a computer readable medium or may have one or more letters The form of the number.
  • Such signals may be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
  • FIG. 5 shows a structural block diagram of a base station for performing an uplink frequency selection scheduling method according to an embodiment of the present invention.
  • the base station conventionally includes a processor 510 and a computer program product or computer readable medium in the form of a memory 520.
  • the memory 520 may be an electronic memory such as a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), an EPROM, a hard disk, or a ROM.
  • Memory 520 has a memory space 530 for program code 531 for performing any of the method steps described above.
  • storage space 530 for program code may include various program code 531 for implementing various steps in the above methods, respectively.
  • the program code can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such computer program products are typically portable or fixed storage units as described with reference to FIG.
  • the storage unit may have a storage section, a storage space, and the like arranged similarly to the storage 520 in the base station of FIG.
  • the program code can be compressed, for example, in an appropriate form.
  • the storage unit includes computer readable code 531', code that can be read by a processor, such as 510, which, when executed by a base station, causes the base station to perform various steps in the methods described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种上行频选调度方法和装置,其中,方法包括:基站接收用户设备UE发送的探测参考信号SRS;确定PRB的干扰强度;根据SRS信道质量和PRB的干扰强度,确定PRB的调度优先级;根据调度优先级,进行上行频选调度。本发明实施例能够提高TD-LTE系统的上行性能。

Description

上行频选调度方法和装置 技术领域
本发明实施例涉及通信技术领域,特别是涉及一种上行频选调度方法和装置。
背景技术
F频段时分长期演进(Time-Division Long-Term Evolution,TD-LTE)基站的上行可能会受到邻近的异系统基站(例如,全球移动通信系统(Global System for Mobile communication,GSM)900、分布式控制系统(Distributed Control System,DCS)1800、个人手持式电话系统(Personal Handy-phone System,PHS)基站)下行的阻塞干扰、互调干扰和杂散干扰,因此,TD-LTE系统的上行接收信号可能会受到强烈的干扰,这将严重影响TD-LTE基站的上行性能。
在现有技术中,可以采用工程方式(例如,天线隔离、更换天线、调整天面或加装抗阻塞滤波器等)解决某些站址的异系统干扰问题,但是,很多站址由于涉及到工程量、工程难度以及对GSM现网影响等因素,运营商不愿意通过工程方式来解决异系统的干扰问题。另外,还有一些异系统干扰来自其他运营商的基站,由于不同运营商是单独组网的,因此,来自其他运营商基站的干扰,是无法通过工程方式来解决的。
在现有技术中,可以通过频选调度的方式来提高TD-LTE系统的上行性能。LTE系统中的频选调度可以有效解决无线信道环境的频率选择性衰落造成的无线传输性能下降问题。频选调度的基本原理是在每个调度周期内给每个用户设备(User Equipment,UE)分配子带信道质量最好的物理资源块(Physical Resource Block,PRB)资源,从而提升小区吞吐率和用户感知。具体地,基站(eNodeB)根据UE发送的探测参考信号(Sounding Reference Signal,SRS)信号进行SRS信道估计,通过信道估计测量出每个子带的信道质量,然后,根据每个子带的信道质量信息进行上行频选调度。
但是,SRS是由UE周期性发送或非周期性发送的。第三代合作伙伴计 划(3rd Generation Partnership Project,3GPP)协议规定周期性发送的最小发送周期为5毫秒(ms),而非周期性发送的间隔一般会更长。对于来自异系统的窄带干扰,其干扰特征是随机的、脉冲式的、高强度的,干扰信号持续的时间很短,而且一般发生在某些固定频率范围。该干扰信号不是平坦的,不可能覆盖整个SRS发送周期。因此,基于SRS信道估计得到的信干燥比(Signal to Interference plus Noise Ratio,SINR)不能反映出窄带干扰的影响,基于SRS信道估计进行的上行频选调度也就不能抑制来自异系统的窄带干扰,因此,使用现有技术无法解决异系统干扰问题。
发明内容
本发明实施例所要解决的技术问题是提供一种上行频选调度方法和装置,在异系统干扰场景下,能够提高TD-LTE系统的上行性能。
为了解决上述问题,本发明实施例公开了一种上行频选调度方法,包括:基站接收用户设备UE发送的探测参考信号SRS;确定物理资源块PRB的干扰强度;根据SRS信道质量和PRB的干扰强度,确定PRB的调度优先级;根据调度优先级,进行上行频选调度。
优选地,根据SRS信道质量和PRB的干扰强度,确定PRB的调度优先级,包括:
SP=SINR/(1+PI/PN)
其中,SP为调度优先级,SINR为SRS信道质量,PN为平均噪声功率,PI为PRB的干扰强度。
优选地,确定物理资源块PRB的干扰强度,包括:根据PRB的平均功率和全带宽内PRB平均功率,计算PRB的干扰强度。
优选地,在确定物理资源块PRB的干扰强度之前,通过以下方式识别出被干扰的PRB,包括:
如果某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且子载波在时隙内的平均功率大于或等于预定上行接收功率门限,则确定子载波在时隙内被干扰;
在预定检测周期内,如果在N个时隙的测量周期内有P次测量到子载波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于N;
根据全带宽内被干扰子载波的分布,识别出被干扰的PRB。
优选地,确定物理资源块PRB的干扰强度,包括:根据被干扰的PRB的平均功率和全带宽内PRB平均功率,计算被干扰的PRB的干扰强度;确定全带宽中除被干扰的PRB之外的PRB为未被干扰的PRB,确定未被干扰的PRB的干扰强度为0。
优选地,根据调度优先级,进行上行频选调度,包括:为UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。
优选地,SRS信道质量是根据SRS信道估计结果确定的。
为了解决上述问题,本发明实施例公开了一种上行频选调度装置,包括:接收模块,配置为接收用户设备UE发送的探测参考信号SRS;第一确定模块,配置为确定PRB的干扰强度;第二确定模块,配置为根据SRS信道质量和PRB的干扰强度,确定PRB的调度优先级;调度模块,配置为根据调度优先级,进行上行频选调度。
优选地,第二确定模块配置为通过以下公式确定PRB的调度优先级:
SP=SINR/(1+PI/PN)
其中,SP为调度优先级,SINR为SRS信道质量,PN为平均噪声功率,PI为PRB的干扰强度。
优选地,第一确定模块配置为根据PRB的平均功率和全带宽内PRB平均功率,计算PRB的干扰强度。
优选地,上述装置还包括:识别模块,配置为在确定物理资源块PRB的干扰强度之前,通过以下方式识别出被干扰的PRB:
如果某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且子载波在时隙内的平均功率大于或等于预定上行接收功率门限,则确定子载波在时隙内被干扰;
在预定检测周期内,如果在N个时隙的测量周期内有P次测量到子载 波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于N;
根据全带宽内被干扰子载波的分布,识别出被干扰的PRB。
优选地,第一确定模块配置为:根据被干扰的PRB的平均功率和全带宽内PRB平均功率,计算被干扰的PRB的干扰强度;确定全带宽中除被干扰的PRB之外的PRB为未被干扰的PRB,确定未被干扰的PRB的干扰强度为0。
优选地,调度模块配置为为UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。
优选地,SRS信道质量是根据SRS信道估计结果确定的。
为了解决上述问题,本发明实施例还公开了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在基站上运行时,导致所述基站执行权利要求书中的任一个所述的上行频选调度方法。
为了解决上述问题,本发明实施例还公开了一种计算机可读介质,其中存储了权利要求书中要求保护的所述计算机程序。
与现有技术相比,本发明实施例具有以下优点:
在现有技术中,根据SRS信道估计来进行上行频选调度,由于基于SRS信道估计得到的SINR不能反映出窄带干扰的影响,因此,这种上行频选方法不能抑制来自异系统的窄带干扰。在本发明实施例中,基站根据SRS信道质量和PRB的干扰强度,来确定PRB的调度优先级,据此进行上行频选调度,由于PRB的干扰强度能够反映窄带干扰情况,因此,本发明实施例提供的上行频选调度方法能够抑制来自异系统的窄带干扰,从而能够提高TD-LTE系统的上行性能。
附图说明
图1是根据本发明实施例一的一种上行频选调度方法的流程图;
图2是根据本发明实施例二的一种上行频选调度方法的示意图;
图3是根据本发明实施例三的一种上行频选调度装置的结构框图;
图4是根据本发明实施例三的一种上行频选调度装置的优选的结构框图;
图5是根据本发明实施例的一种用于执行上行频选调度方法的基站的结构框图;以及,
图6是根据本发明实施例的一种用于保持或者携带实现上行频选调度方法的程序代码的存储单元。
具体实施方式
为使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明实施例作进一步详细的说明。
实施例一
参照图1,示出了根据本发明实施例一的一种上行频选调度方法,包括:
步骤102,基站接收UE发送的SRS;该基站可以是TD-LTE基站。
步骤104,确定PRB的干扰强度;
在具体实现时,可以根据PRB的平均功率和全带宽内PRB平均功率,计算PRB的干扰强度。
在本发明的一个优选实例中,也可以先识别出哪些PRB是被干扰的PRB,然后,根据被干扰的PRB的平均功率和全带宽内PRB平均功率,计算被干扰的PRB的干扰强度;未被干扰的PRB的干扰强度视为0。通过该种方式,简化了未被干扰的PRB的干扰强度的计算过程,从而提高了根据干扰强度确定PRB优先级的效率。
在本发明实施例的一个优选实例中,可以通过在频域全带宽内进行干扰检测,识别出被干扰的PRB,识别的流程可以包括:基站在频域上对整个宽带进行干扰检测,如果检测到某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且该子载波在该时隙内的平均功率大于或等于预定上行接收功率门限,则确定该子载波在该时隙内被干扰;在预定检测周期内,如果在N个时隙的测量周期内有P次测量到该子载波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于 N;根据全带宽内被干扰子载波的分布,识别出被干扰的PRB。
步骤106,根据SRS信道质量和PRB的干扰强度,确定PRB的调度优先级;
其中,SRS信道质量可以是根据SRS信道估计结果确定的,确定的方式可以是:基站接收SRS信号之后,将该SRS信号和本地存储的SRS参考序列进行比较,估计出SRS信道质量。
在具体实现时,可以通过以下公式确定出PRB的调度优先级:
SP=SINR/(1+PI/PN)
其中,SP为调度优先级,SINR为SRS信道质量,PN为平均噪声功率,PI为PRB的干扰强度。通过上述公式,可以快速确定出PRB的调度优先级。
在本发明的一个优选实例中,基站可以根据接收到的SRS进行信道估计,确定出SRS信道质量,该SRS信道质量可以是上行SINR;根据PRB的上行SINR和干扰强度,确定PRB的调度优先级;确定PRB调度优先级的原则为:如果PRB的上行SINR相同,PRB的干扰强度越大,则该PRB的调度优先级越低,PRB的干扰强度越小,则该PRB的调度优先级越高,未被干扰的PRB的调度优先级高于被干扰的PRB的调度优先级;如果PRB的干扰强度相同,PRB的上行SINR越大,则该PRB的调度优先级越大,PRB的上行SINR越小,则该PRB的调度优先级越低。通过这样的方式确定出的调度优先级能够反映窄带的干扰程度,据此进行的上行频选调度能够提高异系统干扰场景下的上行性能。
步骤108,根据调度优先级,进行上行频选调度。
例如,基站在全带宽内为UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。在具体实现过程中,也可以采用其他方式进行上行频选调度,例如,预先设置一个阈值,选择优先级高于该阈值的M个PRB作为上行传输资源分配给UE。
在现有技术中,根据SRS信道估计来进行上行频选调度,由于基于SRS信道估计得到的SINR不能反映出窄带干扰的影响,因此,这种上行频选方法不能抑制来自异系统的窄带干扰。在本实施例中,基站根据SRS信道估计 和PRB的干扰强度,来确定PRB的调度优先级,据此进行上行频选调度,由于PRB的干扰强度能够反映窄带干扰情况,因此,本实施例提供的上行频选方法能够抑制来自异系统的窄带干扰,从而能够提高TD-LTE系统的上行性能。
实施例二
本发明实施例还提供了一种上行频选调度方法,该方法可以应用于F频段TD-LTE的基站中,例如,F频段TD-LTE演进节点B(eNodeB)。在该方法中,基站中的上行基带处理模块在频域全带宽内基于窄带干扰特征进行实时干扰检测,识别出窄带干扰以及被干扰的PRB,计算出被干扰的PRB的干扰强度信息。然后,基站中的上行调度模块基于SRS信道质量信息和被干扰的PRB的干扰强度信息,进行上行频选调度。图2是根据本发明实施例二的一种上行频选调度方法的示意图,下面结合图2对本实施例的流程进行具体说明。
基站接收UE上传的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和SRS信号,将其进行快速傅里叶变换(Fast Fourier Transform,FFT),然后,上行基带处理模块基于UE发送的SRS信号进行SRS信道估计,计算出每个PRB的上行SINR信息,然后,将每个PRB的上行SINR信息传送给上行调度模块。
上行基带处理模块在频域全带宽内基于窄带干扰特征进行实时干扰检测,识别出窄带干扰以及被干扰的PRB,并计算出被干扰的PRB的干扰强度信息。下面对本实施例中的窄带干扰检测方法进行具体说明。
以子载波为粒度进行检测,对一个子载波在一个时隙内的所有符号上的功率进行平均,得到该子载波在这个时隙内的平均功率,如果该平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且该子载波在这个时隙内的平均功率大于或等于预定上行接收功率门限,则判定该子载波在这个时隙内被干扰。在一个设定的检测周期内,如果在N个时隙的测量周期内有P(P小于或等于N)次测量到该子载波被干扰,则判定该子载波 为被干扰子载波。根据全带宽内被干扰子载波的分布信息,确定出被干扰的PRB,具体实现时,可以根据一个PRB内的被干扰子载波数目超过预设的门限值,来判决该PRB被干扰。根据被干扰的PRB平均功率和全带宽内PRB平均功率,计算PRB的干扰强度。
全带宽内子载波平均功率定义为全带宽内包含的每一个子载波平均功率的平均值;被干扰的PRB平均功率定义为被干扰的PRB内包含的每一个子载波平均功率的平均值;全带宽内PRB平均功率等于全带宽内子载波平均功率。
上行基带处理模块一旦检测到窄带干扰,即将被干扰的PRB的信息及其干扰强度信息传送给上行调度模块。
上行调度模块基于每个PRB的上行SINR信息和被干扰的PRB的干扰强度信息,确定每个PRB的调度优先级,基于PRB调度优先级为UE分配PRB资源,从而实现基于SRS信息和干扰信息的上行频选调度。在本实施例中,PRB调度优先级能够反映出PRB的被干扰强度。在相同的SRS信道质量下,PRB被干扰强度越大,其调度优先级越低;PRB被干扰强度越小,其调度优先级越高。
具体实现时,PRB的调度优先级可采用如下方法计算:
SP=SINR/(1+PI/PN)
其中,SP为PRB的调度优先级,SINR为SRS信道质量,PN为平均噪声功率,PI为PRB的干扰强度(即干扰功率)。
现有技术的基于SRS的频选调度方法很难体现出窄带干扰的影响,被强干扰的PRB有可能调度优先级较高,从而对上行性能造成严重影响。而本实施例的上行频选调度方法考虑了PRB的干扰强度信息。对于每个UE,如果待分配的PRB受到异系统干扰的强度越大,其调度优先级越低,反之亦然。这样在每个调度周期内为每个UE分配到的PRB资源是信道质量最好的PRB资源,从而有效抑制异系统的强干扰,特别是抑制互调干扰和未造成射频拉远单元((Radio Remote Unit,RRU)非正常工作的阻塞干扰。因此,相对于现有的基于SRS的频选调度方法,本实施例可以有效抑制异系统的强干 扰,提升小区上行吞吐率和用户体验。
实施例三
本发明实施例还提供了一种上行频选调度装置,该装置可以用于实现上述方法,因此,上述方法实施例中的特征可以应用到本实施例中。该装置可以是基站,也可以是基站中的一部分。图3是根据本发明实施例三的一种上行频选调度装置的结构框图,如图3所示,该装置包括:
接收模块302,配置为接收UE发送的SRS;
第一确定模块304,配置为确定PRB的干扰强度;
第二确定模块306,配置为根据SRS信道质量和被干扰的PRB的干扰强度,确定PRB的调度优先级;
调度模块308,配置为根据调度优先级,进行上行频选调度。
在本发明实施例的一个优选实例中,第二确定模块306配置为通过以下公式确定PRB的调度优先级:
SP=SINR/(1+PI/PN)
其中,SP为调度优先级,SINR为SRS信道质量,PN为平均噪声功率,PI为PRB的干扰强度。
在本发明实施例的一个优选实例中,第一确定模块304配置为根据PRB的平均功率和全带宽内PRB平均功率,计算PRB的干扰强度。
在本发明的一个优选实例中,图4是根据本发明实施例三的一种上行频选调度装置的优选的结构框图,如图4所示,上述装置还包括:识别模块402,配置为在确定PRB的干扰强度之前,通过以下方式识别出被干扰的PRB:
如果某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且子载波在时隙内的平均功率大于或等于预定上行接收功率门限,则确定子载波在时隙内被干扰;
在预定检测周期内,如果在N个时隙的测量周期内有P次测量到子载波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于N;
根据全带宽内被干扰子载波的分布,识别出被干扰的PRB。
在本发明的一个优选实例中,第一确定模块304配置为:根据被干扰的 PRB的平均功率和全带宽内PRB平均功率,计算被干扰的PRB的干扰强度;确定全带宽中除被干扰的PRB之外的PRB为未被干扰的PRB,确定未被干扰的PRB的干扰强度为0。
在本发明的一个优选实例中,调度模块308配置为为UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。
在本发明的一个优选实例中,SRS信道质量是根据SRS信道估计结果确定的。
在现有技术中,根据SRS信道估计来进行上行频选调度,由于基于SRS信道估计得到的SINR不能反映出窄带干扰的影响,因此,这种上行频选方法不能抑制来自异系统的窄带干扰。在本实施例中,基站根据SRS信道质量和PRB的干扰强度,来确定PRB的调度优先级,据此进行上行频选调度,由于PRB的干扰强度能够反映窄带干扰情况,因此,本实施例提供的上行频选方法能够抑制来自异系统的窄带干扰,从而能够提高TD-LTE系统的上行性能。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于系统实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个 或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的上行频选调度的设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信 号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了用于执行根据本发明实施例的上行频选调度方法的基站的结构框图。该基站传统上包括处理器510和以存储器520形式的计算机程序产品或者计算机可读介质。存储器520可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器520具有用于执行上述方法中的任何方法步骤的程序代码531的存储空间530。例如,用于程序代码的存储空间530可以包括分别用于实现上面的方法中的各种步骤的各个程序代码531。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的基站中的存储器520类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码531’,即可以由例如诸如510之类的处理器读取的代码,这些代码当由基站运行时,导致该基站执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
以上对本发明实施例所提供的一种上行频选调度方法和装置,进行了详细介绍,本文中应用了具体个例对本发明实施例的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明实施例的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明实施例的限制。

Claims (16)

  1. 一种上行频选调度方法,包括:
    基站接收用户设备UE发送的探测参考信号SRS;
    确定物理资源块PRB的干扰强度;
    根据SRS信道质量和所述PRB的干扰强度,确定PRB的调度优先级;
    根据所述调度优先级,进行上行频选调度。
  2. 如权利要求1所述的方法,其中,根据SRS信道质量和所述PRB的干扰强度,确定PRB的调度优先级,包括:
    SP=SINR/(1+PI/PN)
    其中,SP为所述调度优先级,SINR为所述SRS信道质量,PN为平均噪声功率,PI为所述PRB的干扰强度。
  3. 如权利要求1所述的方法,其中,确定物理资源块PRB的干扰强度,包括:
    根据所述PRB的平均功率和全带宽内PRB平均功率,计算所述PRB的干扰强度。
  4. 如权利要求1所述的方法,其中,在确定物理资源块PRB的干扰强度之前,通过以下方式识别出被干扰的PRB,包括:
    如果某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且所述子载波在所述时隙内的平均功率大于或等于预定上行接收功率门限,则确定所述子载波在所述时隙内被干扰;
    在预定检测周期内,如果在N个时隙的测量周期内有P次测量到所述子载波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于N;
    根据全带宽内被干扰子载波的分布,识别出所述被干扰的PRB。
  5. 如权利要求4所述的方法,其中,确定物理资源块PRB的干扰强度, 包括:
    根据所述被干扰的PRB的平均功率和全带宽内PRB平均功率,计算所述被干扰的PRB的干扰强度;
    确定全带宽中除所述被干扰的PRB之外的PRB为未被干扰的PRB,确定所述未被干扰的PRB的干扰强度为0。
  6. 如权利要求1至5中任一项所述的方法,其中,根据所述调度优先级,进行上行频选调度,包括:
    为所述UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。
  7. 如权利要求1至5中任一项所述的方法,其中,所述SRS信道质量是根据所述SRS信道估计结果确定的。
  8. 一种上行频选调度装置,包括:
    接收模块,配置为接收用户设备UE发送的探测参考信号SRS;
    第一确定模块,配置为确定PRB的干扰强度;
    第二确定模块,配置为根据SRS信道质量和所述PRB的干扰强度,确定PRB的调度优先级;
    调度模块,配置为根据所述调度优先级,进行上行频选调度。
  9. 如权利要求8所述的装置,其中,所述第二确定模块配置为通过以下公式确定PRB的调度优先级:
    SP=SINR/(1+PI/PN)
    其中,SP为所述调度优先级,SINR为所述SRS信道质量,PN为平均噪声功率,PI为所述PRB的干扰强度。
  10. 如权利要求8所述的方法,其中,所述第一确定模块配置为根据所 述PRB的平均功率和全带宽内PRB平均功率,计算所述PRB的干扰强度。
  11. 如权利要求8所述的装置,其中,所述装置还包括:识别模块,配置为在确定物理资源块PRB的干扰强度之前,通过以下方式识别出被干扰的PRB:
    如果某一子载波在某一时隙内的平均功率与全带宽内子载波平均功率之差大于或等于预定干扰检测门限值,且所述子载波在所述时隙内的平均功率大于或等于预定上行接收功率门限,则确定所述子载波在所述时隙内被干扰;
    在预定检测周期内,如果在N个时隙的测量周期内有P次测量到所述子载波被干扰,则确定该子载波为被干扰子载波,其中,P小于或等于N;
    根据全带宽内被干扰子载波的分布,识别出所述被干扰的PRB。
  12. 如权利要求11所述的装置,其中,所述第一确定模块配置为:
    根据所述被干扰的PRB的平均功率和全带宽内PRB平均功率,计算所述被干扰的PRB的干扰强度;
    确定全带宽中除所述被干扰的PRB之外的PRB为未被干扰的PRB,确定所述未被干扰的PRB的干扰强度为0。
  13. 如权利要求8至12中任一项所述的装置,其中,所述调度模块配置为为所述UE分配调度优先级最高的M个PRB作为上行传输资源,其中,M为正整数。
  14. 如权利要求8至12中任一项所述的装置,其中,所述SRS信道质量是根据所述SRS信道估计结果确定的。
  15. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在基站上运行时,导致所述基站执行根据权利要求1-7中的任一个所述的上行 频选调度方法。
  16. 一种计算机可读介质,其中存储了如权利要求15所述的计算机程序。
PCT/CN2015/078777 2014-05-23 2015-05-12 上行频选调度方法和装置 WO2015176617A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15795694.7A EP3148278B1 (en) 2014-05-23 2015-05-12 Uplink frequency selection scheduling method and device
JP2017513297A JP6446129B2 (ja) 2014-05-23 2015-05-12 アップリンク周波数選択スケジューリング方法と装置
US15/311,347 US10251190B2 (en) 2014-05-23 2015-05-12 Uplink frequency selection scheduling method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410223011.6 2014-05-23
CN201410223011.6A CN104023407B (zh) 2014-05-23 2014-05-23 上行频选调度方法和装置

Publications (1)

Publication Number Publication Date
WO2015176617A1 true WO2015176617A1 (zh) 2015-11-26

Family

ID=51439921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078777 WO2015176617A1 (zh) 2014-05-23 2015-05-12 上行频选调度方法和装置

Country Status (5)

Country Link
US (1) US10251190B2 (zh)
EP (1) EP3148278B1 (zh)
JP (1) JP6446129B2 (zh)
CN (1) CN104023407B (zh)
WO (1) WO2015176617A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438673A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438671A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438677A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023407B (zh) 2014-05-23 2017-09-29 大唐移动通信设备有限公司 上行频选调度方法和装置
EP3212315A4 (en) 2014-10-31 2018-07-11 Massachusetts Institute of Technology Compositions and methods for forming emulsions
CN104411005B (zh) * 2014-11-05 2018-07-31 大唐移动通信设备有限公司 一种上行发射功率控制方法、装置和一种基站
CN106413108B (zh) * 2015-07-30 2019-10-25 华为技术有限公司 资源调度方法和装置
CN106788587B (zh) * 2015-11-16 2020-04-17 亿阳信通股份有限公司 一种干扰类型的确定方法及装置
US10681573B2 (en) * 2018-05-07 2020-06-09 Verizon Patent And Licensing Inc. System and methods for identifying and locating distinct interference sources in a wireless network
KR102072307B1 (ko) * 2018-09-21 2020-04-02 동국대학교 산학협력단 고신뢰 저지연 통신을 위한 통신 방법 및 장치
CN111107652A (zh) * 2018-10-26 2020-05-05 普天信息技术有限公司 一种lte系统中基于rip的资源分配方法及装置
EP3949210A1 (en) * 2019-03-25 2022-02-09 Telefonaktiebolaget LM Ericsson (publ) Configuring a plurality of user equipments
CN111465103A (zh) * 2020-03-02 2020-07-28 浙江华云信息科技有限公司 一种基于智能电网的数据收发方法
CN113727454B (zh) * 2021-07-09 2024-04-26 深圳金信诺高新技术股份有限公司 一种基于srs差异化调度的方法与系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588590A (zh) * 2008-05-20 2009-11-25 中国移动通信集团公司 上行数据信道的信道质量估计方法及设备
CN101820685A (zh) * 2010-04-15 2010-09-01 新邮通信设备有限公司 一种频率选择性调度方法和一种基站
WO2013048143A2 (en) * 2011-09-27 2013-04-04 Samsung Electronics Co., Ltd. A method and appratus for transmission power control for a sounding reference signal
CN103702431A (zh) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 上行调度的方法及设备
CN104023407A (zh) * 2014-05-23 2014-09-03 大唐移动通信设备有限公司 上行频选调度方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7933350B2 (en) * 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
CN101835199A (zh) * 2009-03-10 2010-09-15 中兴通讯股份有限公司 一种过载指示器报告的触发方法和系统
CN102088762B (zh) * 2009-12-04 2014-02-05 中兴通讯股份有限公司 一种利用信道对称性的频选调度方法及装置
CN102098785B (zh) * 2009-12-14 2014-05-28 中兴通讯股份有限公司 无线通讯资源分配方法及装置
CN102238582B (zh) * 2010-04-23 2016-09-28 电信科学技术研究院 一种确定邻区干扰的方法、系统和装置
CN103391552B (zh) * 2012-05-11 2016-04-13 北京邮电大学 分层异构无线网络系统上行干扰协调方法和装置
US9172515B2 (en) * 2013-02-05 2015-10-27 Wipro Limited Method and system for inter-cell interference coordination in wireless networks
WO2014127539A1 (en) * 2013-02-25 2014-08-28 Empire Technology Development Llc Scheduling communication resources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588590A (zh) * 2008-05-20 2009-11-25 中国移动通信集团公司 上行数据信道的信道质量估计方法及设备
CN101820685A (zh) * 2010-04-15 2010-09-01 新邮通信设备有限公司 一种频率选择性调度方法和一种基站
WO2013048143A2 (en) * 2011-09-27 2013-04-04 Samsung Electronics Co., Ltd. A method and appratus for transmission power control for a sounding reference signal
CN103702431A (zh) * 2013-12-31 2014-04-02 大唐移动通信设备有限公司 上行调度的方法及设备
CN104023407A (zh) * 2014-05-23 2014-09-03 大唐移动通信设备有限公司 上行频选调度方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148278A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438673A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438671A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438677A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438673B (zh) * 2021-06-24 2022-09-27 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438671B (zh) * 2021-06-24 2022-09-27 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备
CN113438677B (zh) * 2021-06-24 2022-09-27 中国联合网络通信集团有限公司 一种干扰处理方法、装置及设备

Also Published As

Publication number Publication date
CN104023407B (zh) 2017-09-29
EP3148278A1 (en) 2017-03-29
JP6446129B2 (ja) 2018-12-26
EP3148278A4 (en) 2018-01-03
US20170079057A1 (en) 2017-03-16
EP3148278B1 (en) 2020-02-19
JP2017522834A (ja) 2017-08-10
CN104023407A (zh) 2014-09-03
US10251190B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2015176617A1 (zh) 上行频选调度方法和装置
JP5726442B2 (ja) 基地局及び動作方法
US9882622B2 (en) Apparatus and method for adjusting receive beam gain in a wireless communication system
JP5590973B2 (ja) 通信ネットワークにおける方法及び装置
US9668268B2 (en) Method, computer program, controller and network node
US9674820B2 (en) Adaptive beacon transmission
CN109479044B (zh) 动态循环前缀配置
TW201836405A (zh) 用於傳送功率控制的方法與裝置
CN112600773A (zh) 信道估计方法及装置、计算机可读存储介质、终端
WO2017097055A1 (zh) 一种随机接入信道的方法及装置
US20180191482A1 (en) Adjacent frequency bands
US20150163820A1 (en) Radio terminal, base station apparatus, radio communication system, and computer program
KR20130119269A (ko) 단말, 그의 사운딩 참조 신호 전송 방법 및 기지국의 srs 전송 정보 설정 방법
JP2013106210A (ja) 通信端末、基地局及び無線通信方法
CN107735971B (zh) 基于干扰的资源分配
WO2015146551A1 (en) Wireless network interference effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311347

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017513297

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015795694

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795694

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE