WO2015176476A1 - 数据传输方法、装置及相关计算机存储介质 - Google Patents

数据传输方法、装置及相关计算机存储介质 Download PDF

Info

Publication number
WO2015176476A1
WO2015176476A1 PCT/CN2014/088779 CN2014088779W WO2015176476A1 WO 2015176476 A1 WO2015176476 A1 WO 2015176476A1 CN 2014088779 W CN2014088779 W CN 2014088779W WO 2015176476 A1 WO2015176476 A1 WO 2015176476A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data
transmission
predefined
information
Prior art date
Application number
PCT/CN2014/088779
Other languages
English (en)
French (fr)
Inventor
戴博
梁春丽
杨维维
李儒岳
郁光辉
胡留军
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14892311.3A priority Critical patent/EP3133765B1/en
Priority to US15/312,511 priority patent/US10165557B2/en
Publication of WO2015176476A1 publication Critical patent/WO2015176476A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to data transmission technologies, and in particular, to a data transmission method and apparatus, and related computer storage media.
  • Frequency division duplex Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the FDD needs to use the paired uplink and downlink frequencies.
  • the symmetric service represented by the voice service is supported, the uplink and downlink spectrum can be fully utilized.
  • the asymmetric services represented by the IP service such as online video and software download, are performed.
  • the downlink rate is the main factor, the spectrum utilization is greatly reduced, the uplink spectrum resources are not used, and the uplink spectrum resources are wasted. Therefore, how to effectively improve the spectrum utilization becomes an urgent problem to be solved. problem.
  • embodiments of the present invention provide a data transmission method, apparatus, and computer storage medium, which can improve spectrum efficiency and thereby improve system throughput.
  • An embodiment of the present invention provides a data transmission method, which is applied to a first transmission node, where the method includes:
  • the subframe type includes at least a regular subframe type and a predefined subframe type, and configures a regular subframe corresponding to the regular subframe type and the predefined by at least one of the following
  • the subframe type includes at least the first predefined subframe type and the first regular subframe type, configuring a transmission structure of the first predefined subframe and the first regular subframe to have different values of elements
  • the element includes one of: a transmission mode of data, a cyclic prefix length, an OFDM symbol number of orthogonal frequency division multiplexing, a subcarrier spacing, a resource unit of data transmission;
  • the subframe type includes at least the second predefined subframe type and the second regular subframe type, configuring the second regular subframe to be an uplink subframe or a downlink subframe in a preset time;
  • the predefined subframe is switched between uplink and downlink for the preset time;
  • the subframe type includes at least a third predefined subframe type and a third regular subframe type
  • configuring a maximum transmission power of the third predefined subframe is smaller than a maximum transmission power of the third regular subframe.
  • the method before acquiring the subframe type of the subframe used for carrying the data transmission, the method further includes:
  • the related information includes at least one of the following:
  • the method before the first transmission node transmits the data on the subframe according to the subframe type, the method further includes:
  • the configuration information includes at least one of: time domain location information of the predefined subframe , data transmission structure, maximum transmission power.
  • the method further includes:
  • the first transmitting node sends configuration information of the predefined subframe to the second transit node by using high layer signaling or physical layer signaling.
  • the method further includes:
  • the maximum transmit power configured for the TDD system is smaller than the TDD system in the TDD The maximum transmit power of the downlink data in the spectrum;
  • the maximum transmit power configured for the TDD system is smaller than the TDD system in the TDD spectrum. Downstream data maximum transmit power;
  • the maximum transmit power configured for the FDD system is smaller than the FDD system is down the FDD system.
  • the maximum transmit power configured for the LTE system is smaller than the LTE licensed spectrum in the LTE system. Maximum transmit power.
  • the first transmission node is on the subframe according to the subframe type.
  • the method further includes:
  • the first transmitting node transmits the data at the transmission power on the predefined subframe.
  • the method further includes:
  • the channel used to carry the data is a physical downlink shared channel PDSCH
  • the predefined subframe that transmits the data is a sounding reference signal SRS subframe
  • the data is not transmitted on the last OFDM symbol in the predefined subframe
  • the data is transmitted on the last OFDM symbol of the predefined subframe.
  • the method further includes:
  • the starting time domain OFDM symbol of the PDSCH or ePDCCH is the first OFDM symbol of the predefined subframe.
  • the method before the first transmission node transmits the data by using a subframe having the subframe type, the method includes:
  • the control information is located in a control channel used by a transmission band in which the predefined subframe is located; or
  • the control information is located in a control channel used by a subframe having the same number as the predefined subframe on a transmission frequency band corresponding to the transmission frequency band;
  • the control information is located at a pre-agreed location with the data.
  • control channel includes at least one of the following: an ePDCCH, a PUSCH, and a physical downlink control channel PDCCH.
  • the method before the first transmission node transmits the data on the subframe according to the subframe type, the method further includes:
  • the first transmitting node transmits the data in the multiple access manner on the predefined subframe.
  • the method further includes:
  • the multiple access method used by the data or according to the type of the data, or according to the Determining, by the resource in which the data is located, or determining a data transmission manner for the data according to a correspondence between the set data and a data transmission manner used by the data;
  • the first transmitting node transmits the data in the data transmission manner on the predefined subframe.
  • An embodiment of the present invention further provides a data transmission method, which is applied to at least one fourth transmission node, where the method includes:
  • the subframe type includes at least a regular subframe type and a predefined subframe type, where a regular subframe corresponding to the regular subframe type and a predefined corresponding to the predefined subframe type are configured.
  • the subframe includes at least one of the following:
  • the subframe type includes at least the first predefined subframe type and the first regular subframe type, configuring a transmission structure of the first predefined subframe and the first regular subframe to have different values of elements
  • the element includes one of: a transmission mode of data, a cyclic prefix length, an OFDM symbol number, a subcarrier spacing, a resource unit of data transmission;
  • the subframe type includes at least the second predefined subframe type and the second regular subframe type, configuring the second regular subframe to be an uplink subframe or a downlink subframe in a preset time;
  • the predefined subframe is switched between uplink and downlink for the preset time;
  • the subframe type includes at least a third predefined subframe type and a third regular subframe type
  • configuring a maximum transmission power of the third predefined subframe is smaller than a maximum transmission power of the third regular subframe.
  • the related information when the related information is related information of the predefined subframe type, the related information includes at least one of the following:
  • An embodiment of the present invention further provides a data transmission method, which is applied to a second transmission node, where the method includes:
  • the second transmission node receives information of a predefined subframe configured by the first transmission node.
  • the method further includes:
  • the second transmission node feeds back path loss information and/or interference information to the first transmission node.
  • the embodiment of the invention further provides a data transmission device, which is applied to a transmission node, and the device includes:
  • a first acquiring unit configured to acquire a subframe type of a subframe used for carrying data transmission
  • a first transmission unit configured to transmit the data on the subframe according to the subframe type
  • a first configuration unit configured to configure, by at least one of the following, a regular subframe corresponding to the regular subframe type and a predefined subframe corresponding to the predefined subframe type: where
  • the sub-frame type includes at least a regular sub-frame type and a predefined sub-frame type;
  • the first configuration unit is configured to configure, when the subframe type includes at least a first predefined subframe type and a first regular subframe type, respectively, where the first predefined subframe and the first regular subframe are used
  • the transmission structure has different values of elements; the element includes one of: a transmission mode of data, a cyclic prefix length, an OFDM symbol number of orthogonal frequency division multiplexing, a subcarrier spacing, and a resource unit for data transmission;
  • the first configuration unit is configured to configure, when the subframe type includes at least a second predefined subframe type and a second regular subframe type, the second regular subframe is an uplink subframe in a preset time, Or being a downlink subframe; configuring the second predefined subframe to be switched between uplink and downlink in the preset time;
  • the first configuration unit is configured to configure, when the subframe type includes at least a third predefined subframe type and a third regular subframe type, a maximum transmit power of the third predefined subframe is smaller than a third regular subframe. Maximum transmit power.
  • the device further includes:
  • a second acquiring unit configured to acquire related information related to the predefined subframe of the at least one fourth transmitting node, and/or physical control channel frequency domain location information, so that the first configuration unit pairs the pre- Define sub-frames for configuration.
  • the related information includes:
  • the first transmission unit is further configured to send the configured configuration information of the predefined subframe to another transit node,
  • the configuration information includes at least one of the following: time domain location information of the predefined subframe, a data transmission structure, and a maximum transmission power.
  • the first transmission unit is configured to send configuration information of the predefined subframe to the other transmission node by using high layer signaling or physical layer signaling.
  • the device further includes:
  • a second configuration unit configured to configure, according to the frequency point information and the system type of the system where the predefined subframe is located, the maximum transmit power used by the predefined subframe when transmitting the data rate
  • the second configuration unit is configured to: when the system where the predefined subframe is located is a TDD system, and the TDD system works on an uplink spectrum of the FDD system, the maximum transmit power configured for the TDD system Less than the maximum transmit power of the downlink data in the TDD spectrum of the TDD system;
  • the second configuration unit is configured to: when the system in which the predefined subframe is located is a TDD system, and the spectrum of the TDD system uses full downlink data transmission, the maximum transmit power configured for the TDD system is smaller than Determining a maximum transmit power of downlink data in the TDD spectrum of the TDD system;
  • the second configuration unit is configured to: when the system in which the predefined subframe is located is an FDD system, and the FDD system works on a spectrum of the TDD system, the maximum transmit power configured for the FDD system is less than The maximum transmit power of the data on the FDD downlink spectrum of the FDD system;
  • the second configuration unit is configured to: when the system in which the predefined subframe is located is a long term evolution LTE system, and the LTE system works on an unlicensed spectrum, the maximum transmit power configured for the LTE system Less than the maximum transmit power of the LTE system on the LTE licensed spectrum.
  • the device further includes:
  • a first determining unit configured to determine, according to path loss information and/or interference information reported by the second transmission node, a transmission power used by the predefined subframe to transmit the data
  • the first transmission unit is configured to transmit the data at the transmission power on the predefined subframe.
  • the first transmission unit is further configured to: when the data is transmitted on the predefined subframe by using a transmission mode based on a user-specific reference signal, and the channel used to carry the data is a physical downlink shared channel PDSCH ,
  • the predefined subframe that transmits the data is a sounding reference signal SRS subframe
  • the data is not transmitted on the last OFDM symbol in the predefined subframe
  • the data is transmitted on the last OFDM symbol of the predefined subframe.
  • the first transmission unit is further configured to transmit the data on the predefined subframe when using a transmission mode based on a user-specific reference signal, and the channel used to carry the data is a physical downlink shared channel PDSCH or When the enhanced physical downlink control channel ePDCCH, the start time domain OFDM symbol of the PDSCH or ePDCCH is determined to be the first OFDM symbol of the predefined subframe.
  • the device further includes:
  • a scheduling unit configured to schedule the data by control information
  • the control information is located in a control channel used by a transmission band in which the predefined subframe is located Medium; or,
  • the control information is located in a control channel used by a subframe having the same number as the predefined subframe on a transmission frequency band corresponding to the transmission frequency band;
  • the control information is located at a pre-agreed location with the data.
  • control channel includes at least one of the following: an ePDCCH, a PUSCH, and a physical downlink control channel PDCCH.
  • the device further includes:
  • a second determining unit configured to determine to transmit the data according to a frequency band resource in which the data is located, or according to a type of the data, or according to a correspondence between an uplink and downlink resource and a multiple access mode set for the data Multiple access method used at the time;
  • the first transmission unit is configured to transmit the data in the multiple access manner on the predefined subframe.
  • the device further includes:
  • a third determining unit configured to perform, according to the multiple access manner used by the data, or according to the type of the data, or according to the resource where the data is located, or the data used according to the set data and the data Corresponding relationship between transmission modes, determining a data transmission mode for the data;
  • the first transmission unit is configured to transmit the data in the data transmission manner on the predefined subframe.
  • An embodiment of the present invention provides a first computer storage medium, where the computer storage medium stores a first set of computer executable instructions, and the first set of computer executable instructions are used to execute the foregoing application to the first transit node. Data transmission method.
  • An embodiment of the present invention provides a second computer storage medium, where the computer storage medium stores a second set of computer executable instructions, and the second set of computer executable instructions are used to execute the foregoing application to the fourth transport node. Data transmission method.
  • the embodiment of the present invention provides a third computer storage medium, where the computer storage medium stores a third set of computer executable instructions, and the third set of computer executable instructions are used to execute the foregoing application to the second transport node. Data transmission method.
  • the data transmission method and device and the related computer storage medium provided by the embodiments of the present invention are applicable to the first transmission node, including: acquiring a subframe type of a subframe used for carrying data transmission; Determining a subframe type, transmitting the data on the subframe; wherein the subframe type includes at least a regular subframe type and a predefined subframe type, and configured and described by at least one of the following a regular subframe corresponding to a regular subframe type and a predefined subframe corresponding to the predefined subframe type: when the subframe type includes at least a first predefined subframe type and a first regular subframe type Configuring the first predefined subframe to be different from the value of the element used by each of the first regular subframes; the element includes one of: a transmission mode of the data, a cyclic prefix length, and an OFDM symbol number.
  • a sub-carrier interval a resource unit for data transmission
  • the subframe type includes at least a second predefined subframe type and In the case of the second normal subframe type, the second regular subframe is configured as an uplink subframe or a downlink subframe in a preset time; the second predefined subframe is configured to be switched between uplink and downlink in the preset time;
  • the subframe type includes at least a third predefined subframe type and a third regular subframe type, configuring a maximum transmission power of the third predefined subframe is smaller than a maximum transmission power of the third regular subframe.
  • the pre-defined subframe can ensure that the first transmission node transmits downlink data in the uplink spectrum, and/or improves uplink spectrum data while reducing uplink resources while transmitting uplink data in the downlink spectrum;
  • the existence of data transmission interference problems increases the throughput of the system.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an application scenario 2 according to an embodiment of the present disclosure.
  • Figure 4-1 (a) - Figure 4-1 (d)
  • Figure 4-2 (a) - Figure 4-2 (d) is a schematic diagram of the position of the reference signal according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a subframe configuration on an FDD transmission frequency band according to an embodiment of the present disclosure
  • FIG. 6-1 and FIG. 6-2 are schematic diagrams 2 of a reference signal position according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • all subframes in the Long Term Evolution (LTE) system use the same transmission structure for a certain period of time, such as: using the same transmission mode, the same cyclic prefix length, and the same orthogonality in the time.
  • the number of symbols of OFDM (Orthogonal Frequency Division Multiplexing), the same subcarrier spacing, the same resource unit of data transmission, etc. invisibly limit the flexibility of data scheduling and reduce the efficiency of spectrum use;
  • the spectrum utilization is improved by using the idle upper (lower) row spectrum resources for the lower (upper) line transmission, but this method causes interference to the upper (lower) line data on the adjacent spectrum. Or, for the upper (lower) row data interference on the same resource of the neighboring cell.
  • the embodiment of the present invention provides a duplex mode of flexible duplex (FD), which is actually a fusion of FDD and TDD, that is, a predefined sub-configuration is configured in the frame structure of the FD.
  • the frame can dynamically convert the uplink and downlink subframes by using the predefined subframes, so that when the FDD performs the asymmetric service, the downlink data is transmitted on the uplink transmission frequency band, and the uplink data can be transmitted on the downlink transmission frequency band. Thereby increasing the frequency utilization.
  • different subframe types are configured, for example, the configuration may be
  • the conventional sub-frame type of the existing user equipment is also configured with a predefined sub-frame type that is incompatible with the existing user equipment. Therefore, in actual applications, different types of services and/or different types of user equipment may be used. Flexible scheduling of sub-frames, thereby improving spectrum efficiency; in addition, by configuring different maximum transmit powers for different types of subframes, the same-frequency interference of adjacent cells can be reduced, interference to adjacent-frequency systems can be reduced, and spectral efficiency can be further improved.
  • the conventional subframe and the predefined subframe provided by the embodiment of the present invention, refer to the following technical solutions.
  • FIG. 1 is a schematic flowchart of a method for a data transmission method provided by the present invention; as shown in FIG. 1, the method includes:
  • Step 101 Acquire a subframe type of a subframe used to carry data transmission.
  • the embodiment of the present invention provides two types of subframes: a normal subframe and a predefined subframe; and determining which type of subframe the subframe is by determining the identification information of the subframe used for carrying the data transmission in the frame structure.
  • each subframe in the configuration frame structure corresponds to one identification information, such as the identifier 0 is a regular subframe, and the identifier 1 is a predefined subframe; or, according to the configured subframe index (number) information and the subframe type
  • the corresponding relationship for example, the subframe with the subframe index of 1 to 10 can be used as the normal subframe, and the subframes of the subframe index 11 to 20 are the predefined subframes.
  • the data transmission is first acquired.
  • the sub-frame index of the current sub-frame is determined according to the corresponding relationship, and the type of the current sub-frame is determined.
  • the regular sub-frame and the predefined sub-frame refer to the following description.
  • step 101 the method further includes:
  • At least two subframe types and subframes corresponding to the subframe type are configured for the first transmission node.
  • the subframe type configured for the first transmission node includes two types: a predefined subframe type and a regular subframe type
  • the subframe corresponding to the predefined subframe type is a predefined subframe
  • the subframe corresponding to the regular subframe type is a regular subframe.
  • At least one of the foregoing configuration manners of the predefined subframe and the regular subframe may be adopted:
  • Manner 1 When the subframe type includes at least the first predefined subframe type and the first regular subframe type, configuring an element of the transmission structure adopted by each of the first predefined subframe and the first regular subframe The values are different; the elements include one of the following: a transmission mode of data, a cyclic prefix length, an OFDM symbol number, a subcarrier spacing, and a resource unit of data transmission.
  • Manner 2 When the subframe type includes at least a second predefined subframe type and a second regular subframe type, configuring the second regular subframe to be an uplink subframe or a downlink subframe in a preset time;
  • the second pre-defined subframe is configured to be switched between uplink and downlink in the preset time, that is, as an uplink subframe or a downlink subframe in the two hours.
  • Manner 3 When the subframe type includes at least a third predefined subframe type and a third regular subframe type, configuring a maximum transmission power of the third predefined subframe is smaller than a maximum transmission power of the third regular subframe.
  • the predefined subframes mentioned in the following schemes may be The first predefined subframe, and/or the second predefined subframe, and/or the third predefined subframe are considered.
  • the method further includes:
  • PDSCH Physical Downlink Shared Channel
  • the pre-defined subframe that is to transmit the data is a sounding reference signal (SRS) subframe, not transmitting data on a last OFDM symbol in the predefined subframe;
  • SRS sounding reference signal
  • the method further includes: after configuring the predefined subframe as the uplink and downlink handover in the time, the method further includes:
  • Determining the physical downlink sharing when the data is transmitted on the predefined subframe by using a transmission mode based on a user-specific reference signal, and the channel used to carry the data is a PDSCH or an enhanced physical downlink control channel ePDCCH.
  • the start time domain OFDM symbol of the channel PDSCH or the enhanced-physical downlink control channel (ePDCCH) is the first OFDM symbol of the predefined subframe; where the initial time domain OFDM symbol is The first OFDM symbol of the predefined subframe.
  • the start time domain OFDM symbol may be a second OFDM symbol of the predefined subframe;
  • the first OFDM symbol of the predefined subframe is used as a guard interval or other purpose;
  • the subframe type configured for the first transmission node includes only the predefined subframe type, configuring a maximum transmission power for the predefined subframe corresponding to the predefined subframe type, so that the first transmission node utilizes The maximum transmit power transmits data.
  • the maximum transmit power used by the predefined subframe when transmitting the data is configured according to frequency point information of the system where the predefined subframe is located and a system type;
  • the maximum transmit power configured for the TDD system is smaller than the TDD system in the TDD
  • the downlink data of the spectrum is the maximum transmission power; in this case, the regular subframe is equivalent to the downlink subframe of the TDD system in the TDD spectrum;
  • the maximum transmit power configured for the TDD system is smaller than the TDD system in the TDD spectrum.
  • the downlink data has a maximum transmit power; at this time, the regular subframe is equivalent to the downlink subframe of the TDD system in the TDD spectrum;
  • the maximum transmit power configured for the TDD system is smaller than the FDD system is down the FDD system.
  • the maximum transmit power configured for the LTE system is smaller than the maximum LTE licensed spectrum of the LTE system. Transmit power; at this time, the regular subframe is equivalent to the downlink subframe of the LTE system in the LTE licensed spectrum.
  • the method for using the configured maximum transmit power is: obtaining the transmit power used by the current first transit node to transmit data, and comparing the used transmit power with the maximum transmit power, if used. Transmitting power exceeds the maximum transmit power, the first transmitting node sends the data at the maximum transmit power, and if the used transmit power does not exceed the maximum transmit power, the first transit node uses The transmit power sends data.
  • Step 102 The first transmission node transmits the data on the subframe according to the subframe type.
  • the first transmission node uses the determined multiple access manner, and/or transmission power, and / on the predefined subframe.
  • the data transmission method transmits the data.
  • the method for determining the transmission power may be: determining, according to path loss information and/or interference information reported by the second transmission node, a transmission power used when the subframe transmits the data; wherein the path is The loss information is a path loss generated on a transmission path from the first transmission node to the second transmission node; the interference information is interference generated on a transmission path of the first transmission node to the second transmission node.
  • the method for determining the multiple access method may be: determining, according to the frequency band resource where the data is located, a multiple access method used when transmitting the data, for example, when the uplink frequency band resource sends downlink data, the downlink data is used according to Single-carrier frequency-division multiple access (SC-FDMA) transmission is performed.
  • SC-FDMA Single-carrier frequency-division multiple access
  • the downlink data is sent according to the OFDM method, and the uplink data is sent on the downlink frequency band resource.
  • the uplink data is transmitted in accordance with the SC-FDMA method.
  • the multiple access mode used when transmitting the data for example, when the uplink frequency band resource sends downlink data, the downlink data is according to the SC.
  • -FDMA mode transmission when uplink data is transmitted on the downlink frequency band resource, the uplink data is transmitted according to the SC-FDMA method; or when the uplink frequency band resource transmits the downlink data, the downlink data is transmitted according to the OFDM method, and the uplink data is transmitted on the downlink frequency band resource.
  • the method for determining the data transmission manner may be: determining a data transmission manner for the data according to a multiple access manner used by the data, for example, a multiple access method such as SC-FDMA
  • the data transmission mode adopted by the method is a Physical Uplink Shared Channel (PUSCH)/SRS/Demodulation Reference Signal DMRS structure
  • the data transmission mode adopted in the multiple access mode of OFDM is a physical downlink shared channel (PDSCH (Physical Downlink Shared Channel)/Channel State Indication RS (CSI-RS)/DRS;
  • the data transmission structure adopted by the uplink data is a PUSCH/SRS/DMRS structure
  • the data transmission structure adopted by the downlink data is a PDSCH/CSI-RS/DRS. structure
  • the data transmission structure adopted by the uplink frequency band resource is a PUSCH/SRS/DMRS structure
  • the data transmission structure adopted by the downlink frequency band resource is a PDSCH/ CSI-RS/DRS structure
  • determining a data transmission manner for the data according to a correspondence between the configured data and a data transmission manner used by the data for example, the corresponding relationship is that the data transmission mode adopted by the data is PDSCH. /PUSCH/new format structure, or SRS/CSI-RS/DMRS/DRS/new RS structure.
  • the problem of low spectrum utilization rate when the problem of low spectrum utilization rate is solved, the problem of data transmission interference existing between adjacent transmission nodes can also be solved, and the following scheme illustrates how to solve the transmission interference problem.
  • the technical solution of the embodiment of the present invention is also explained one step.
  • the downlink data is transmitted in the uplink transmission band of the FDD and/or the uplink data is transmitted in the downlink transmission band of the FDD.
  • the figures 2 and 3 provided in the embodiment of the present invention are used for uplink transmission in the FDD.
  • the downlink data of the frequency band transmission is taken as an example; and the descriptions of FIGS. 2 and 3 are performed by the following schemes,
  • a transmission node T (macro base station Macro), a transmission node T1 (a cell Small Cell/radio remote head RRH), and a transmission node T2 (a cell Small cell) /RF remote head RRH) is an adjacent transmission node using the same transmission band, specifically the same uplink transmission band;
  • the terminal B and the terminal D transmit the uplink data to the transmission node T by using the uplink transmission frequency band
  • the transmission node T1 transmits the downlink data to the terminal A by using the uplink transmission frequency band
  • the transmission node T2 also transmits the downlink data to the terminal C by using the uplink transmission frequency band;
  • the terminal D is relatively close to the location of the transmission node T, so that the uplink data sent by the terminal D to the transmission node T has less interference to the downlink data transmitted by the transmission node T1 (T2) to the terminal A (C); and the terminal B
  • the distance from the transmission node T is relatively long, and the uplink data sent by the terminal B to the transmission node T is relatively large for the downlink data transmitted from the transmission node T1 (T2) to the terminal A (C).
  • the transmission node T1 is used as the target transmission node
  • the interference faced in this application scenario is mainly the interference of the transmission node T to the target transmission node (transmission node T1/T2).
  • FIG. 3 is a schematic diagram of an application scenario 2 according to an embodiment of the present invention.
  • a transit node TT micro base station Macro
  • transmission node T11 cell Small Cell/radio remote head RRH
  • transmission node T21 cell Small Cell/radio remote head RRH
  • the terminal A1 transmits uplink data to the transmission node T11 by using the uplink transmission frequency band
  • the terminal C1 transmits uplink data to the transmission node T21 by using the uplink transmission frequency band
  • the transmission node TT uses the uplink transmission frequency band to provide the terminal B1.
  • the terminal D1 transmits the downlink data; wherein the terminal D1 is closer to the transmission node TT, so that the downlink data of the transmission node TT transmitting the terminal D1 has less interference to the transmission of the uplink data received by the transmission nodes T11 and T21; and the terminal B1 is away from the transmission node TT. If the transmission node TT is the target transmission node, then the downlink data of the transmission node TT transmitting the terminal B1 is relatively large; The interference faced is mainly the interference of the target transmission node to the transmission nodes T11 and T21.
  • the method further includes:
  • the at least one fourth transmission node transmits its own related information related to the subframe type, and/or its own physical control channel frequency domain location information to the first transmission node.
  • the at least one fourth transmission node is another transmission node that uses the same transmission band as the first transmission node.
  • the same transmission frequency band includes: the same uplink transmission frequency band or the same downlink transmission frequency band; and an adjacent transmission node between the first transmission node and other transmission nodes that use the same transmission frequency band.
  • the first transmission node may transmit downlink data on the predefined subframe of the uplink transmission band; when the same When the transmission frequency band is a downlink transmission frequency band, the first transmission node may transmit uplink data on the predefined subframe of the downlink transmission frequency band.
  • the physical control channel frequency domain location includes: a Physical Uplink Control Channel (PUCCH), and/or a Physical Downlink Control Channel (PDCCH).
  • PUCCH Physical Uplink Control Channel
  • PDCH Physical Downlink Control Channel
  • the related information includes at least one of the following:
  • the transmission method includes: data coding modulation information.
  • the first transmitting node configures a predefined subframe for itself according to the obtained related information and the frequency domain location information.
  • the related information acquired by the first transmission node is the switch information of the cell where the other transmission node is located, and the cells of all the other transmission nodes are determined to be in a closed state, Any one of the subframes divided on the transmission band used by the first transmission node serves as a predefined subframe of the first transmission node.
  • the related information acquired by the first transmission node is the switch information of the cell where the other transmission node is located, and it is determined that at least one of the cells of all the other transmission nodes is in a non-off state, according to the following method 1 to method 5 One of them is processed:
  • Method 1 when the related information acquired by the first transmission node has both the time domain information and the frequency domain information, the subframe that determines the minimum time domain interference and the smallest spectrum interference is the predefined subframe of the first transmission node;
  • Method 2 When the related information acquired by the first transit node is a subframe set in the time domain information, determining that the subframe set with the smallest power is the predefined subframe of the first transit node;
  • Method 3 When the related information acquired by the first transit node is time domain interference information in the time domain information, determining that the subframe with the smallest time domain interference is a predefined subframe of the first transit node;
  • Method 4 When the information acquired by the first transmission node is a frequency domain location of the PUCCH, determine, in the transmission frequency band used by the first transmission node, a frequency domain resource division other than the PUCCH frequency domain resource a frame as a predefined subframe of the first transmission node;
  • Method 5 When the related information acquired for the first transmission node is HI (High interference) information and/or Overload indicator (OI) information in the interference information, according to the HI information and/or the OI information. Determining a subframe with the smallest spectrum interference and using the subframe as a predefined subframe of the first transmission node.
  • HI High interference
  • OI Overload indicator
  • the resource information in the foregoing method 1 to method 5 is resource information of a transmission node in which the cell is in a non-off state.
  • the first transmitting node such as a base station
  • a second transmitting node such as a terminal
  • the second transmitting node receives the configuration information, to transmit the data on the predefined subframe by using the configuration information, where the configuration information includes at least one of the following: Pre-defined sub-frame position information, data transmission structure, maximum transmission power.
  • the first transmission node such as a base station, sends the configuration information of the predefined subframe to the second transmission node, such as a terminal, in a subframe set manner by using high layer signaling or physical layer signaling;
  • the following technical solution provided by the embodiment of the present invention is to solve the problem of data transmission interference existing between adjacent transmission nodes; that is, the following technical solution can solve the problem in FIG. 2
  • the non-target transmission node (transport node T) interferes with the target transmission node (transport node T1/T2), and solves the target transmission node (transport node TT) in FIG. 3 to the non-target transmission node (transport node T11/T21) Interference.
  • the interference faced by FIG. 2 is mainly the interference of the transmission node T (fourth transmission node) to the target transmission node, and the transmission node T1 in FIG. 2 is the first transmission node (target transmission node).
  • the processing of the transmission node T2 is the same as that of the transmission node T1.
  • the transmission node T and the transmission node T1 are adjacent transmission nodes that use the same uplink transmission frequency band.
  • the acquired related information is the switch state information of the cell where the adjacent transmission node T of the transmission node T1 is located, and the cell is in the off state
  • any one of the subframes is selected as the predefined subframe of the transmission node T1
  • the transmission node T1 transmits the downlink data to the terminal A by using the predefined subframe on the uplink transmission frequency band.
  • the downlink data can be transmitted in the uplink transmission frequency band by using the determined predefined subframe, which greatly improves the spectrum utilization; meanwhile, since the transmission node T is closed, the transmission node T1 does not interfere with the transmission node T, and the transmission node T1 also There is no need to consider the interference problem with the transmission node T.
  • the transmitting node T and the transmitting node T1 are adjacent transmitting nodes that use the same uplink transmission band, and the transmitting node T receives the uplink data sent by the terminal B in the uplink transmission frequency band, and the related information acquired by the transmitting node T1 is the transmitting node T.
  • the subframe that determines the minimum time domain interference and the smallest spectrum interference is the predefined subframe of the transmission node T1; the transmission node T1 transmits the downlink through the predefined subframe on the uplink transmission frequency band. Data to terminal A.
  • the downlink data can be transmitted in the uplink transmission band by using the determined predefined subframe, which greatly improves the spectrum utilization; meanwhile, although the data transmission is performed in the uplink transmission band, the transmission node T1 is in the subframe with the least interference. The transmission is performed to reduce the interference of the uplink data sent by the terminal B on the downlink data transmitted by the transmission node T1.
  • the transmitting node T and the transmitting node T1 are adjacent transmitting nodes using the same uplink transmission frequency band, and the transmitting node T receives the uplink data sent by the terminal B in the uplink transmission frequency band, and the transmitting node T will go up according to the position of the terminal B in the macro cell.
  • the uplink subframe in the transmission band is divided into two or more sets, such as two sets: a cell edge subframe set and a cell center subframe set; and the related information acquired for the transit node T1 is time domain information.
  • the set of subframes because the transmission power of the corresponding terminal on the cell center subframe set is relatively small, the cell center subframe set is a predefined subframe of the transmission node T1, and the transmission node T1 passes through the uplink transmission band.
  • the predefined subframe transmits downlink data to terminal A.
  • the downlink data can be transmitted in the uplink transmission band by using the determined predefined subframe, which greatly improves the spectrum utilization.
  • the corresponding UE transmits power on the cell center subframe set is relatively small, the macro cell is reduced.
  • the uplink data sent by the terminal B interferes with the transmission of the downlink data sent by the transmission node T1; thus, the interference problem between the uplink and downlink data between different transmission nodes is solved.
  • the transmitting node T and the transmitting node T1 are adjacent transmitting nodes that use the same uplink transmission band, and the transmitting node T receives the uplink data sent by the terminal B in the uplink transmission frequency band, and the related information acquired by the transmitting node T1 is the transmitting node T.
  • the domain interference information, the subframe in which the minimum time domain interference is determined is a predefined subframe of the transmission node T1; the transmission node T1 transmits the downlink data to the terminal A through the predefined subframe on the uplink transmission frequency band.
  • the determined predefined subframe is utilized Downlink data can be transmitted in the uplink transmission band, which greatly improves spectrum utilization.
  • the transmitting node T and the transmitting node T1 are adjacent transmitting nodes that use the same uplink transmission frequency band, and the transmitting node T receives the uplink data sent by the terminal B in the uplink transmission frequency band, and the information acquired by the transmitting node T1 is the PUCCH frequency domain location, and is selected. a subframe on a frequency domain resource other than the PUCCH frequency domain resource as a predefined subframe of the transmission node T1; the transmission node T1 transmits downlink data to the terminal A through the predefined subframe on the uplink transmission frequency band .
  • the determined predefined subframe can transmit downlink data in the uplink transmission band, which greatly improves the spectrum utilization rate; at the same time, the transmission node T1 avoids the uplink control channel of the terminal B when transmitting the downlink data, and further The transmission interference of the uplink control channel of the terminal B to the downlink data of the transmission node T1 and the interference of the downlink data to the uplink control channel are reduced, thereby solving the interference problem between the uplink and downlink data between different transmission nodes.
  • the transmitting node T and the transmitting node T1 are adjacent transmitting nodes that use the same uplink transmission frequency band, and the transmitting node T receives the uplink data sent by the terminal B in the uplink transmission frequency band, and the information acquired for the transmitting node T1 is the HI information in the interference information.
  • the OI information the spectrum interference situation is determined according to the HI information and the OI information, and the subframe with the smallest spectrum interference is used as the predefined subframe of the transmission node T1, and the transmission node T1 passes the predefined subframe on the uplink transmission frequency band. Transmit downlink data to terminal A.
  • the downlink data can be transmitted in the uplink transmission band by using the determined predefined subframe, which greatly improves the spectrum utilization.
  • the configuration information of the predefined subframe is notified to the terminal A.
  • the FDD may send the configuration information to the terminal A in the following manner:
  • Bitmap bitmap mode such as one bit corresponding to a predefined subframe
  • a method of using a set of subframes such as numbering the subframes by odd and even numbers, and configuring the odd-numbered or even-numbered subframes as a predefined subframe set, in one embodiment of the present invention
  • the signaling such as RRC (Radio Resource Control) signaling, or physical layer signaling, is notified to the terminal A by the following row/uplink control signaling;
  • the resources in which the OFDM symbols are located are merged into a virtual resource, and the virtual resource is notified to the terminal A as a predefined subframe resource; or the resource in which the OFDM symbol of the middle portion of one subframe is located and the other is associated with the subframe.
  • the resources in which the middle part of the adjacent or non-adjacent subframes are located are combined into a virtual resource, and the virtual resource is used as a predefined subframe resource.
  • the pre-defined subframe is configured by the reference timing of the hybrid automatic repeat request (HARQ), and is notified to the terminal A.
  • HARQ hybrid automatic repeat request
  • the data may be transmitted by using the determined transmission power.
  • the method for determining the transmission power includes:
  • the interference faced by FIG. 3 is mainly the interference of the target transmission node to the transmission node T11 (the second transmission node), and the first transmission node (the target transmission node) described by the transmission node TT in FIG. 3 is
  • the embodiments of the present invention are further described in conjunction with the application scenario shown in FIG.
  • the transmission node TT and the transmission node T11 are adjacent transmission nodes using the same uplink transmission band.
  • the transmitting node T11 receives the data sent by the terminal A1 on the uplink transmission frequency band, and the transmitting node TT transmits the downlink data to the terminal B1 on the uplink transmission frequency band; and acquires the transmission node TT that the terminal B1 feeds back to the transmission node TT to the terminal.
  • the downlink path loss information of the B1 wherein the downlink path loss information includes at least one of the following: path loss information generated when the downlink signal is transmitted on the uplink transmission band, and when the downlink signal is sent on the downlink transmission band corresponding to the uplink transmission band
  • the generated path loss information is determined according to the downlink path loss information, and the corresponding transmission power is determined for the transmission node TT. For example, when the downlink path loss exceeds a preset path loss threshold, the determined transmission power is large, and the downlink path loss is not The transmission power determined when the path loss threshold is exceeded is small. In this way, the problem of transmission interference of downlink data to uplink data due to excessive transmission power of the transmission node TT is avoided.
  • the transmission node TT and the transmission node T11 are adjacent transmission nodes using the same uplink transmission band.
  • the transmitting node T11 receives the data sent by the terminal A1 on the uplink transmission frequency band, and the transmitting node TT transmits the downlink data to the terminal B1 on the uplink transmission frequency band; the terminal B1 sends the uplink signal according to the absolute power configured by the base station.
  • the transmission power determined when the path loss exceeds the path loss threshold is large, and the determined transmission power is small when the path loss does not exceed the path loss threshold. In this way, the problem of transmission interference of downlink data to uplink data due to excessive transmission power of the transmission node TT is avoided.
  • the method further includes: determining the determined transmission power and the transmission power upper limit value set for the transmission node TT Comparing the power thresholds, when the comparison determines that the transmission power does not exceed the power threshold, the transmission node TT transmits data on the predefined subframe by using the determined transmission power; when the comparison exceeds the determined transmission power
  • the transmission node TT uses the power threshold to transmit data on a predefined subframe.
  • the transmission node TT and the transmission node T11 are adjacent transmission nodes using the same uplink transmission band.
  • the transmission node T11 receives the data sent by the terminal A1 on the uplink transmission frequency band, and the transmission node TT transmits the downlink data to the terminal B1 on the uplink transmission frequency band; the transmission node T11 measures the transmission node TT when the downlink data is sent.
  • Generating the interference and forming the interference measurement information acquiring the interference measurement information for the transmission node TT, and determining, according to the interference measurement information, the corresponding transmission power for the transmission node TT, such as when the measured interference exceeds the pre-
  • the transmission power determined when the interference threshold is set is large, and the determined transmission power is small when the measured interference does not exceed the interference threshold. In this way, the problem of transmission interference of downlink data to uplink data due to excessive transmission power of the transmission node TT is avoided.
  • the transmission node TT and the transmission node T11 are adjacent transmission nodes using the same uplink transmission band.
  • the transmitting node T11 receives the data sent by the terminal A1 on the uplink transmission frequency band, and the transmitting node TT transmits the downlink data to the terminal B1 in the uplink transmission frequency band; and acquires the downlink data that is transmitted by the current transmitting node.
  • the correlation modulation and demodulation information includes: a modulation mode, a transmission block size, a time-frequency position, a power information, a transmission mode, and a scrambling code identifier; and the transmission node TT transmits the correlation
  • the modulation and demodulation information is transmitted to the transmission node T11 so that the transmission node T11 uses the correlation modulation and demodulation information to cancel interference between the transmission node TT and itself.
  • the transmission node T11 may use the interference cancellation or suppression method by using the relevant modulation and demodulation information to eliminate the interference method, and may also adopt a multiple-input multiple-output (MIMO) technology; for the specific implementation of these methods, please refer to the existing The relevant description will not be repeated here.
  • MIMO multiple-input multiple-output
  • step 102 data may be transmitted on the predefined subframe by using a transmission mode based on a user-specific reference signal, and the receiver, if the terminal receives the data, demodulates the useful data by using the reference signal, so In the transmission mode of the reference signal, the position selection of the reference signal plays a role in avoiding interference of the downlink (uplink) data to the uplink (downlink) data reference signal.
  • the location of the configured reference signal may be a special TDD system in the regular cyclic prefix scenario.
  • the position of the reference signal used when the subframe is configured as 3, 4, 8, and 9, as shown in Figure 4-1(a) to Figure 4-1(d); the position of the configured reference signal can also be as shown in Figure 4- 2(a) to 4-2(d).
  • R7 to R10 represent reference signals corresponding to different antenna ports, and the remaining resources are resources for transmitting data, as shown in FIG. 4-2(a) to FIG. 4-2(d).
  • the reference signal can avoid overlapping with the position of the uplink demodulation reference signal.
  • the initial time domain of the PDSCH channel or ePDCCH is determined.
  • the OFDM symbol is the first OFDM symbol of the predefined subframe, and the pre-defined subframe in which the downlink (uplink) data is transmitted is determined to be an SRS subframe, and the last OFDM symbol in the predefined subframe is deleted.
  • Downstream (uplink) data that is, not transmitting the data on the last OFDM symbol in the predefined subframe; determining that the predefined subframe that transmits downlink (uplink) data is not an SRS subframe, in the predefined subframe Downlink (uplink) data is transmitted on the last OFDM symbol. Avoid collision of downlink data with SRS of neighboring cells, or avoid collision of downlink data with SRS of other UEs in the local cell.
  • the SRS subframe may be an SRS subframe actually configured by the transit node, or may be a virtual SRS subframe.
  • LTE Long Term Evolution
  • the configured reference signal in the transmission mode based on the user-specific reference signal, when the channel used for carrying the data is the PUSCH, the configured reference signal may adopt the position of the reference signal corresponding to the PUSCH channel.
  • the method before controlling the current transmission node to transmit the data, the method further includes: scheduling the data by using control information of the current transmission node on the transmission frequency band.
  • the location of the control information may be:
  • the control information is located in a control channel used by the predefined subframe in a transmission band;
  • the control information is located in a control channel used in a subframe having the same number as the predefined subframe on a transmission band corresponding to the transmission band;
  • the control information is located at a pre-agreed location with the data.
  • the transmission frequency band is an uplink transmission frequency band
  • the current transmission node transmits downlink data in a predefined subframe of the uplink transmission frequency band as an example, and the location of downlink control information used for scheduling the downlink data is illustrated in conjunction with FIG. 5. .
  • the uplink and downlink transmission bands of the FDD each have 10 subframes: the uplink subframe numbers are UF1 to UF10, and the downlink subframe numbers are DF1 to DF10, assuming that the predefined sub-frames are determined on the uplink transmission band.
  • the frame is UF2;
  • Position 1 the downlink control information is located in the downlink control signal used by the predefined subframe
  • UF2 is a predefined subframe of the uplink transmission band
  • the downlink control information is located in the downlink control channel used by the predefined subframe.
  • Position 2 searching for a subframe having the same number as the predefined subframe on a transmission bandwidth corresponding to the uplink transmission frequency band, that is, the downlink control information is used by the found subframe.
  • the UF2 is a predefined subframe of the uplink transmission band
  • the subframe having the same subframe number as the UF2 in the downlink transmission band is the DF2 subframe
  • the downlink control information is located in the downlink control used by the DF2 subframe. In the channel.
  • Position 3 The downlink control information is located at a predetermined position with the downlink data; UF6 is a predefined subframe of the uplink transmission band, and the downlink data is transmitted in the UF6, and the downlink control information is located when the downlink data is transmitted in the UF6. In the UF2 subframe of the downlink transmission band, a scheduling timing between the uplink data transmission and the downlink control information corresponding to the uplink data is used.
  • the channel used to carry the downlink control information may be that the used downlink control channel may be an ePDCCH channel or a PUSCH channel, or may be a PUSCH channel. Is the PDCCH channel.
  • the location of the configured reference signal may be a dedicated reference signal position used by TDD when the special cyclic prefix scene special subframe is configured as 3, 4, 8, and 9, as shown in FIG. 4-1 ( a) to 4-1 (d); or the position shown in Fig. 4-2 (a) to 4-2 (d).
  • the data processing on the last OFDM symbol of the predefined subframe is also determined according to whether the predefined subframe is an SRS subframe type. For the specific procedure, refer to the foregoing description.
  • the location of the configured reference signal may be a user-specific reference signal position used when TDD is configured as 3, 4, 8, and 9 in the special cyclic prefix scene special subframe, as shown in FIG. 6-1. As shown; the position of the reference signal shown in Figure 6-2 can also be used. It can be seen from the foregoing that the selection of the reference location plays a role in avoiding the interference of the downlink (uplink) data to the uplink (downlink) data reference signal. Therefore, in the embodiment of the present invention, the control channel carried in the downlink control information is a PUSCH channel.
  • the positions of the two reference signals shown in Figures 6-1 and 6-2 are provided.
  • the downlink data transmitted in the FDD uplink transmission band is taken as an example.
  • the process of transmitting the uplink data in the downlink transmission band of the FDD/TDD and the downlink data in the TDD uplink transmission band is similar to the above process, and is not described again. .
  • the TDD/FDD-LTE system may perform subframe definition according to subcarrier spacing, cyclic prefix length, resource block size, subframe length, and the like; to meet this characteristic of the LTE system, the present invention
  • the predefined subframe determined by the embodiment may also be regarded as a non-compatible subframe, and the division of the structure may be configured according to an actual application.
  • the newly defined transmission mode transmits data on the non-compatible subframe
  • the newly defined transmission mode includes: a new reference signal pattern, and/or an antenna port
  • the conventional subframe uses the transmission mode defined by the existing LTE R12 to transmit data.
  • the newly defined cyclic prefix is used on the incompatible subframe, and/or the newly defined subcarrier interval is transmitted.
  • the data is transmitted, for example, a cyclic prefix shorter than the cyclic prefix of the LTE system, a subcarrier spacing larger than the LTE system subcarrier spacing, or a cyclic prefix and a subcarrier spacing of other sizes, and the data transmitted by the regular subframe is adopted.
  • the newly defined resource unit transmits data on the non-compatible subframe, such as a resource unit with a time domain length of 0.1 ms and a frequency domain length of 200 kHz, or a resource unit of other sizes, and the data transmitted by the regular subframe uses the existing LTE.
  • the defined resource unit transmits data, such as a resource unit with a time domain length of 0.5 ms and a frequency domain length of 180 kHz.
  • the embodiment of the present invention further provides a data transmission apparatus, which is applied to a transmission node, specifically the foregoing first transmission node.
  • the apparatus includes: a first acquisition unit. 701, the first transmission unit 702 and the first configuration unit 703; wherein
  • the first obtaining unit 701 is configured to acquire a subframe type of a subframe used for carrying data transmission;
  • the first transmission unit 702 is configured to transmit the data on the subframe according to the subframe type
  • the first configuration unit 703 is configured to configure a regular subframe corresponding to the regular subframe type and a predefined subframe corresponding to the predefined subframe type by using at least one of the following:
  • the subframe type includes at least a regular subframe type and a predefined subframe type.
  • the first configuration unit 703 is configured to configure, when the subframe type includes at least a first predefined subframe type and a first regular subframe type, each of the first predefined subframe and the first regular subframe.
  • the transmission structure has different values of elements; the element includes one of the following: a transmission mode of data, a cyclic prefix length, a number of OFDM symbols, a subcarrier spacing, and a resource unit for data transmission;
  • the first configuration unit 703 is configured to configure, when the subframe type includes at least a second predefined subframe type and a second regular subframe type, the second regular subframe is an uplink subframe in a preset time. Or a downlink subframe; configuring a second predefined subframe to switch between uplink and downlink in the preset time;
  • the first configuration unit 703 is configured to configure, when the subframe type includes at least a third predefined subframe type and a third regular subframe type, a maximum transmit power of the third predefined subframe is smaller than a third regular subframe. The maximum transmit power of the frame.
  • the apparatus further includes: a second obtaining unit 704, configured to acquire related information related to the predefined subframe of the at least one fourth transmitting node, and/or physical control channel frequency domain location information So that the first configuration unit 703 configures the predefined subframe.
  • a second obtaining unit 704 configured to acquire related information related to the predefined subframe of the at least one fourth transmitting node, and/or physical control channel frequency domain location information So that the first configuration unit 703 configures the predefined subframe.
  • the related information includes: time domain information of the predefined subframe, frequency domain information of the predefined subframe, data type information of the predefined subframe transmission, and a cell where the fourth transmission node is located.
  • Switch information transmit power information used when transmitting data on the predefined subframe, interference information received by the predefined subframe, data transmission mode used by the predefined subframe, cyclic prefix length, Orthogonal Frequency Division Multiplexing OFDM Symbols Included in Predefined Subframes Quantity, subcarrier spacing, resource unit for data transmission.
  • the first transmission unit 702 is further configured to send configuration information of the configured predefined subframe to another transit node, specifically a second transit node, where the configuration information includes at least one of the following: The time domain location information, the data transmission structure, and the maximum transmission power of the predefined subframe; wherein the first transmission unit 702 sends the configuration information of the predefined subframe to the high layer signaling or physical layer signaling to The second transmission node.
  • the apparatus further includes: a second configuration unit 705, configured to configure the predefined subframe to transmit the data according to frequency point information and a system type of a system where the predefined subframe is located The maximum transmit power used;
  • a second configuration unit 705, configured to: when the system where the predefined subframe is located is a TDD system, and the TDD system works on an uplink spectrum of the FDD system, the maximum transmit power configured for the TDD system is less than The maximum transmit power of the downlink data in the TDD spectrum of the TDD system;
  • a second configuration unit 705, configured to: when the system in which the predefined subframe is located is a TDD system, where the spectrum of the TDD system is transmitted by using a full downlink data, the maximum transmit power configured for the TDD system is less than the The maximum transmit power of the downlink data of the TDD system in the TDD spectrum;
  • a second configuration unit 705, configured to: when the system where the predefined subframe is located is an FDD system, and the FDD system works on a spectrum of the TDD system, the maximum transmit power configured for the FDD system is smaller than Describe the maximum transmit power of the data on the FDD downlink spectrum of the FDD system;
  • the second configuration unit 705 is configured to: when the system where the predefined subframe is located is a long term evolution LTE system, and the LTE system works on an unlicensed spectrum, the maximum transmit power configured for the LTE system is less than The LTE system transmits the maximum power on the LTE licensed spectrum.
  • the apparatus further includes: a first determining unit 706, configured to determine, according to path loss information and/or interference information reported by the second transmission node, that the predefined subframe is used when transmitting the data.
  • Transmission power a first determining unit 706, configured to determine, according to path loss information and/or interference information reported by the second transmission node, that the predefined subframe is used when transmitting the data.
  • the first transmission unit 702 is configured to transmit the data by using the transmission power on the predefined subframe.
  • the first transmission unit 702 is further configured to transmit the data on the predefined subframe when using a transmission mode based on a user-specific reference signal, and the channel used to carry the data is physical.
  • the downlink shared channel PDSCH is used,
  • the predefined subframe that transmits the data is a sounding reference signal SRS subframe
  • the data is not transmitted on the last OFDM symbol in the predefined subframe
  • the data is transmitted on the last OFDM symbol of the predefined subframe.
  • the first transmission unit 702 is further configured to transmit the data on the predefined subframe when using a transmission mode based on a user-specific reference signal, and to carry the data.
  • the channel is the physical downlink shared channel (PDSCH) or the enhanced physical downlink control channel (ePDCCH)
  • the start time domain OFDM symbol of the PDSCH or ePDCCH is determined to be the first OFDM symbol of the predefined subframe.
  • the apparatus further includes: a scheduling unit 707 configured to schedule the data by using control information;
  • the control information is located in a control channel used by a transmission band in which the predefined subframe is located; or
  • the control information is located in a control channel used by a subframe having the same number as the predefined subframe on a transmission frequency band corresponding to the transmission frequency band;
  • the control information is located at a pre-agreed location with the data; wherein the control channel is included in at least one of the following: ePDCCH, PUSCH, PDCCH.
  • the apparatus further includes: a second determining unit 708 configured to: according to the frequency band resource where the data is located, or according to the type of the data, or according to uplink and downlink resources set for the data Corresponding relationship between the address modes, determining the multiple access mode used when transmitting the data;
  • the first transmission unit 702 is configured to transmit the data in the multiple access manner on the predefined subframe.
  • the apparatus further includes: a third determining unit 709 configured to use, according to the multiple access manner used by the data, or according to the type of the data, or according to the resource where the data is located, or according to Corresponding relationship between the set data and the data transmission mode used by the data, determining a data transmission mode for the data;
  • the first transmission unit 702 is configured to transmit the data in the data transmission manner on the predefined subframe.
  • the unit 708 and the third determining unit 709 may each be a central processing unit (CPU), or a digital signal processing (DSP), or a microprocessor (MPU, Micro Processor Unit), or a field programmable gate.
  • CPU central processing unit
  • DSP digital signal processing
  • MPU Micro Processor Unit
  • An FPGA Field Programmable Gate Array
  • the CPU, the DSP, the MPU, and the FPGA may be built in the first transmission node.
  • the first transit node, the second transit node, the third transit node, and the fourth transit node may be: a base station, a terminal, a wireless gateway, a router, a relay node, and the like.
  • Embodiments of the present invention provide a first type of computer storage medium in which the computer storage medium A first set of computer executable instructions are stored, the first set of computer executable instructions for performing the aforementioned data transfer method applied to the first transfer node.
  • An embodiment of the present invention provides a second computer storage medium, where the computer storage medium stores a second set of computer executable instructions, and the second set of computer executable instructions are used to execute the foregoing application to the fourth transport node. Data transmission method.
  • the embodiment of the present invention provides a third computer storage medium, where the computer storage medium stores a third set of computer executable instructions, and the third set of computer executable instructions are used to execute the foregoing application to the second transport node. Data transmission method.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, embodiments of the invention may take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the data transmission method and device and the related computer storage medium provided by the embodiments of the present invention, wherein the method is applied to the first transmission node, including: acquiring a subframe type of a subframe used for carrying data transmission; Transmitting the said subframe on the subframe according to the subframe type Data; wherein the subframe type includes at least a regular subframe type and a predefined subframe type, and configured by using at least one of the following, a conventional subframe corresponding to the regular subframe type and a predefined subframe corresponding to the predefined subframe type: configuring the first predefined subframe and the first regular subframe when the subframe type includes at least the first predefined subframe type and the first regular subframe type
  • Each of the transmission structures employed has a different value of an element; the element includes one of: a transmission mode of data, a cyclic prefix length, a number of OFDM symbols, a subcarrier spacing, a resource unit of data transmission;
  • the subframe type includes at least the second predefined subframe type and
  • the pre-defined subframe can ensure that the first transmission node transmits downlink data in the uplink spectrum, and/or improves uplink spectrum data while reducing uplink resources while transmitting uplink data in the downlink spectrum;
  • the existence of data transmission interference problems increases the throughput of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法,包括:获取用于承载数据传输的子帧的子帧类型(101);根据子帧类型,在子帧上传输数据;当子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为预设的时间内在上、下行切换;当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率(102)。还公开了另两种数据传输方法、装置及相关存储介质。

Description

数据传输方法、装置及相关计算机存储介质 技术领域
本发明涉及到数据传输技术,具体涉及数据传输方法、装置及相关计算机存储介质。
背景技术
频分双工(FDD,Frequency Division Duplexing)与时分双工(TDD,Time Division Duplexing)两种双工方式广泛应用于通信系统中。其中,FDD需使用成对的上下行频率,在支持以语音业务为代表的对称业务时能充分利用上下行的频谱;但在进行以IP业务为代表的非对称业务如在线视频、软件下载、网页浏览等下行速率占主要因素的业务时,频谱利用率则大为降低,上行频谱资源没有被使用,存在有上行频谱资源浪费的现象,因此,如何有效的提高频谱利用率成为了亟待解决的问题。
发明内容
为解决现有存在的技术问题,本发明实施例提供数据传输方法、装置及计算机存储介质,能够提高频谱效率,进而提高系统吞吐量。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种数据传输方法,应用于第一传输节点中,所述方法包括:
获取用于承载数据传输的子帧的子帧类型;
第一传输节点根据所述子帧类型,在所述子帧上传输所述数据;
其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,并通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:
当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元;
当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
上述方案中,在获取用于承载数据传输的子帧的子帧类型之前,所述方法还包括:
获取至少一个第四传输节点的与所述预定义子帧相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一传输节点对所述预定义子帧进行配置。
上述方案中,所述相关信息包括以下至少其中之一:
所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的OFDM符号数量、子载波间隔、数据传输的资源单元。
上述方案中,在第一传输节点根据所述子帧类型,在所述子帧上传输所述数据之前,所述方法还包括:
所述第一传输节点将所配置的所述预定义子帧的配置信息发送给第二传输节点,其中,所述配置信息包括以下至少其中之一:所述预定义子帧的时域位置信息、数据传输结构、最大传输功率。
上述方案中,所述方法还包括:
所述第一传输节点通过高层信令或物理层信令将所述预定义子帧的配置信息发送至所述第二传输节点。
上述方案中,所述方法还包括:
依据所述预定义子帧所在系统的频点信息与系统类型,配置所述预定义子帧在传输所述数据时所使用的所述最大发送功率;
当所述预定义子帧所在的系统为TDD系统,且所述TDD系统在FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
当所述预定义子帧所在的系统为TDD系统,所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD系统的频谱上工作时,为所述FDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;
当所述预定义子帧所在的系统为长期演进LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率。
上述方案中,在所述第一传输节点根据所述子帧类型,在所述子帧上 传输所述数据之前,所述方法还包括:
依据第二传输节点上报的路损信息和/或干扰信息,确定所述预定义子帧传输所述数据时所使用的传输功率;
相应的,所述第一传输节点在所述预定义子帧上以所述传输功率传输所述数据。
上述方案中,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH时,
当传输所述数据的所述预定义子帧为探测参考信号SRS子帧时,不在所述预定义子帧中最后一个OFDM符号上传输所述数据;
当传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
上述方案中,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH或增强型物理下行控制信道ePDCCH时,确定所述PDSCH或ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。
上述方案中,在所述第一传输节点利用具有所述子帧类型的子帧传输所述数据之前,所述方法包括:
通过控制信息来调度所述数据;
所述控制信息位于所述预定义子帧所在传输频带所使用的控制信道中;或者,
所述控制信息位于与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
所述控制信息位于与所述数据之间预先约定好的位置。
上述方案中,所述控制信道包括为以下其中至少一种:ePDCCH、PUSCH、物理下行控制信道PDCCH。
上述方案中,在所述第一传输节点根据所述子帧类型,在所述子帧上传输所述数据之前,所述方法还包括:
根据所述数据所在的频带资源、或根据所述数据的类型、或根据为所述数据设置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式;
相应的,所述第一传输节点在所述预定义子帧上以所述多址方式传输所述数据。
上述方案中,所述方法还包括:
根据所述数据所使用的多址方式、或根据所述数据的类型、或根据所 述数据所在的资源、或根据设置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式;
相应的,所述第一传输节点在所述预定义子帧上以所述数据传输方式传输所述数据。
本发明实施例还提供了一种数据传输方法,应用于至少一个第四传输节点中,所述方法包括:
所述至少一个第四传输节点发送所述第四传输节点的与子帧类型相关的相关信息、和/或所述第四传输节点的物理控制信道频域位置信息至所述第一传输节点;
其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,其中,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧包括以下至少其中之一:
当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、OFDM符号数量、子载波间隔、数据传输的资源单元;
当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
上述方案中,当所述相关信息为所述预定义子帧类型的相关信息时,所述相关信息包括以下至少其中之一:
所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元。
本发明实施例还提供了一种数据传输方法,应用于第二传输节点中,所述方法包括:
所述第二传输节点接收第一传输节点所配置的预定义子帧的信息。
上述方案中,所述方法还包括:
所述第二传输节点向第一传输节点反馈路损信息和/或干扰信息。
本发明实施例还提供了一种数据传输装置,应用于传输节点中,所述装置包括:
第一获取单元,配置为获取用于承载数据传输的子帧的子帧类型;
第一传输单元,配置为根据所述子帧类型,在所述子帧上传输所述数据;
第一配置单元,配置为通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型;
所述第一配置单元,配置为当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元;
所述第一配置单元,配置为当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
所述第一配置单元,配置为当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
上述方案中,所述装置还包括:
第二获取单元,配置为获取至少一个第四传输节点的与所述预定义子帧相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一配置单元对所述预定义子帧进行配置。
上述方案中,所述相关信息包括:
所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的OFDM符号数量、子载波间隔、数据传输的资源单元。
上述方案中,
所述第一传输单元,还配置为将所配置的所述预定义子帧的配置信息发送给其他传输节点,
其中,所述配置信息包括以下至少其中之一:所述预定义子帧的时域位置信息、数据传输结构、最大传输功率。
上述方案中,
所述第一传输单元,配置为通过高层信令或物理层信令将所述预定义子帧的配置信息发送至所述其他传输节点。
上述方案中,所述装置还包括:
第二配置单元,配置为依据所述预定义子帧所在系统的频点信息与系统类型,配置所述预定义子帧在传输所述数据时所使用的所述最大发送功 率;
所述第二配置单元,配置为当所述预定义子帧所在的系统为TDD系统,且所述TDD系统在FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
所述第二配置单元,配置为当所述预定义子帧所在的系统为TDD系统,所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
所述第二配置单元,配置为当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD系统的频谱上工作时,为所述FDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;
所述第二配置单元,配置为当所述预定义子帧所在的系统为长期演进LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率。
上述方案中,所述装置还包括:
第一确定单元,配置为依据第二传输节点上报的路损信息和/或干扰信息,确定所述预定义子帧传输所述数据时所使用的传输功率;
相应的,所述第一传输单元,配置为在所述预定义子帧上以所述传输功率传输所述数据。
上述方案中,
所述第一传输单元,还配置为当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH时,
当传输所述数据的所述预定义子帧为探测参考信号SRS子帧时,不在所述预定义子帧中最后一个OFDM符号上传输所述数据;
当传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
上述方案中,
所述第一传输单元,还配置为当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH或增强型物理下行控制信道ePDCCH时,确定所述PDSCH或ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。
上述方案中,所述装置还包括:
调度单元,配置为通过控制信息来调度所述数据;
所述控制信息位于所述预定义子帧所在传输频带所使用的控制信道 中;或者,
所述控制信息位于与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
所述控制信息位于与所述数据之间预先约定好的位置。
上述方案中,所述控制信道包括为以下其中至少一种:ePDCCH、PUSCH、物理下行控制信道PDCCH。
上述方案中,所述装置还包括:
第二确定单元,配置为根据所述数据所在的频带资源、或根据所述数据的类型、或根据为所述数据设置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式;
相应的,所述第一传输单元,配置为在所述预定义子帧上以所述多址方式传输所述数据。
上述方案中,所述装置还包括:
第三确定单元,配置为根据所述数据所使用的多址方式、或根据所述数据的类型、或根据所述数据所在的资源、或根据设置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式;
相应的,所述第一传输单元,配置为在所述预定义子帧上以所述数据传输方式传输所述数据。
本发明实施例提供了第一种计算机存储介质,所述计算机存储介质中存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于执行前述的应用于第一传输节点的数据传输方法。
本发明实施例提供了第二种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行前述的应用于第四传输节点的数据传输方法。
本发明实施例提供了第三种计算机存储介质,所述计算机存储介质中存储有第三组计算机可执行指令,所述第三组计算机可执行指令用于执行前述的应用于第二传输节点的数据传输方法。
本发明实施例提供的数据传输方法、装置及相关计算机存储介质,所述方法应用于第一传输节点中,包括:获取用于承载数据传输的子帧的子帧类型;第一传输节点根据所述子帧类型,在所述子帧上传输所述数据;其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,并通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、OFDM符号数量、子载波间隔、数据传输的资源单元;当所述子帧类型至少包括第二预定义子帧类型及第 二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。利用所述预定义子帧,能保证第一传输节点在上行频谱传输下行数据,和/或在下行频谱传输上行数据的同时,提高频谱效率,降低空闲资源;同时,解决相邻传输节点之间存在的数据传输干扰的问题,提高了系统的吞吐量。
附图说明
图1为本发明实施例提供的数据传输方法的流程示意图;
图2为本发明实施例提供的应用场景一示意图;
图3为本发明实施例提供的应用场景二示意图;
图4-1(a)~图4-1(d)、图4-2(a)~图4-2(d)为本发明实施例提供的参考信号位置示意图一;
图5为本发明实施例提供的FDD传输频带上的子帧配置示意图;
图6-1、图6-2为本发明实施例提供的参考信号位置示意图二;
图7为本发明实施例提供的数据传输装置的组成示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
目前,长期演进(LTE,Long Term Evolution)系统中在一定时间内所有子帧采用相同的传输结构,如:在所述时间内均采用相同的传输模式、相同的循环前缀长度、相同的正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号数量、相同的子载波间隔、相同的数据传输的资源单元等,无形当中限制了数据调度的灵活性,降低了频谱的使用效率;此外,现有解决方法中通过将空闲上(下)行频谱资源用于下(上)行传输这种方法提高频谱利用率,但是该种方法导致了对相邻频谱上的上(下)行数据干扰,或者,对于相邻小区相同资源上的上(下)行数据干扰。
本发明实施例提供的以下技术方案在解决了频谱利用率较低的同时,还解决相邻传输节点之间的数据传输干扰的问题。
本发明实施例提供了一种灵活双工(FD,Flexible Duplex)的双工方式,该灵活双工实际上就是FDD和TDD的一种融合,即:在FD的帧结构中配置了预定义子帧,通过所述预定义子帧能实现上、下行子帧的动态切换,从而可以在FDD进行非对称业务时,在上行传输频带上传输下行数据,可以在下行传输频带上传输上行数据等,从而提高频率利用率。
同时,本发明实施例中,通过配置不同的子帧类型,如:配置有可兼 容现有用户设备的常规子帧类型,还配置有可不兼容现有用户设备的预定义子帧类型,从而,在实际应用中,可以根据业务的不同需求和/或用户设备的不同类型,进行子帧的灵活调度,进而提高频谱效率;此外,通过为不同类型子帧配置不同的最大发送功率,可以降低相邻小区的同频干扰,也可以降低对于邻频系统的干扰,进一步提高频谱效率;对于本发明实施例提供的常规子帧及预定义子帧的进一步说明请参见后续技术方案。
图1为本发明提供的数据传输方法的方法的流程示意图;如图1所示,所述方法包括:
步骤101:获取用于承载数据传输的子帧的子帧类型;
这里,本发明实施例提供常规子帧、预定义子帧两种子帧类型;通过判断用于承载数据传输的子帧在帧结构中的标识信息来判断所述子帧为哪种类型的子帧,如:配置帧结构中每个子帧对应一个标识信息,如标识0为常规子帧、标识1为预定义子帧;或者,根据已经配置的子帧索引(编号)信息与子帧类型之间的对应关系,例如:子帧索引为1~10的子帧可以作为常规子帧,子帧索引11~20的子帧为预定义子帧;本发明实施例中,先获取用于承载数据传输的当前子帧的子帧索引,再根据所述对应关系,确定当前子帧是哪种类型的子帧;其中,对常规子帧及预定义子帧的描述请参见后续说明。
这里,在步骤101之前,所述方法还包括:
为第一传输节点配置至少两个子帧类型及与所述子帧类型相对应的子帧。
其中,当为第一传输节点配置的子帧类型包括预定义子帧类型和常规子帧类型两种类型时,与所述预定义子帧类型相对应的子帧为预定义子帧,与所述常规子帧类型相对应的子帧为常规子帧。
本发明实施例中,对上述预定义子帧、常规子帧的配置方式可采用至少其中之一:
方式一:当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、OFDM符号数量、子载波间隔、数据传输的资源单元。
方式二:当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换,即在所述两个小时内既可以作为上行子帧也可以作为下行子帧。
方式三:当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
这里,为方便后续技术方案的说明,后续方案所提及的预定义子帧可 以为第一预定义子帧,和/或第二预定义子帧,和/或第三预定义子帧。
上述方案中,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道(PDSCH,Physical Downlink Shared Channel)时,
判断为传输所述数据的所述预定义子帧为探测参考信号(SRS,Sounding Reference Signal)子帧时,不在所述预定义子帧中最后一个OFDM符号上的传输数据;判断为传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
或者,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为PDSCH或增强物理下行控制信道ePDCCH时,确定所述物理下行共享信道PDSCH或增强物理下行控制信道(ePDCCH,enhanced-Physical Downlink Shared Channel)的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号;这里,所述起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。在本发明一个实施例中,当子帧与该子帧的前一个子帧之间需要保护间隔时,所述起始时域OFDM符号可以为所述预定义子帧的第二个OFDM符号;所述预定义子帧的第一个OFDM符号用作保护间隔或其他用途;
当为第一传输节点配置的子帧类型仅包括预定义子帧类型时,为与所述预定义子帧类型相对应的预定义子帧配置一最大发送功率,使得所述第一传输节点利用所述最大发送功率传输数据。其中,依据所述预定义子帧所在系统的频点信息与系统类型而配置所述预定义子帧在传输所述数据时所使用的所述最大发送功率;
在本发明一个实施例中,
当所述预定义子帧所在的系统为TDD系统,且所述TDD系统在FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;此时,常规子帧相当于所述TDD系统在所述TDD频谱中的下行子帧;
当所述预定义子帧所在的系统为TDD系统,所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;此时,常规子帧相当于所述TDD系统在所述TDD频谱中的下行子帧;
当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD系统的频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;此时,常规子帧相 当于所述FDD系统在FDD频谱中的下行子帧;
当所述预定义子帧所在的系统为LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率;此时,常规子帧相当于所述LTE系统在LTE授权频谱中的下行子帧。
具体的,对所配置的所述最大发送功率的使用方法是:获得当前第一传输节点传输数据时所使用的发送功率,比较所使用的发送功率与所述最大发送功率的大小,如果所使用的发送功率超过所述最大发送功率,所述第一传输节点以所述最大发送功率发送所述数据,如果所使用的发送功率没有超过所述最大发送功率,所述第一传输节点以所使用的发送功率发送数据。
上述方案中,对常规子帧的说明请参见现有相关描述,这里不再赘述。
步骤102:第一传输节点根据所述子帧类型,在所述子帧上传输所述数据。
这里,当具有所述子帧类型的子帧为预定义子帧时,所述第一传输节点在所述预定义子帧上以所确定出的多址方式、和/或传输功率、和/或数据传输方式传输所述数据。
其中,确定所述传输功率的方法,可以为:依据第二传输节点上报的路损信息和/或干扰信息,确定所述子帧传输所述数据时所使用的传输功率;其中,所述路损信息为第一传输节点至第二传输节点的传输路径上所产生的路损;所述干扰信息为第一传输节点至第二传输节点的传输路径上所产生的干扰。
其中,确定所述多址方式的方法,可以为:根据所述数据所在的频带资源,确定传输所述数据时所使用的多址方式,例如:在上行频带资源发送下行数据时,下行数据按照单载波分频多址(SC-FDMA,Single-carrier Frequency-Division Multiple Access)方式发送,在下行频带资源上发送上行数据时,上行数据按照OFDM多址方式发送。
或者,根据所述数据的类型,确定传输所述数据时所使用的多址方式,例如:在上行频带资源发送下行数据时,该下行数据按照OFDM方式发送,在下行频带资源上发送上行数据,上行数据按照SC-FDMA方式发送。
或者,根据为所述数据配置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式,例如:在上行频带资源发送下行数据时,下行数据按照SC-FDMA方式发送,在下行频带资源上发送上行数据时,上行数据按照SC-FDMA方式发送;或者,在上行频带资源发送下行数据时,下行数据按照OFDM方式发送,在下行频带资源上发送上行数据时,上行数据按照OFDM方式发送。
其中,确定所述数据传输方式的方法,可以为:根据所述数据所使用的多址方式,为所述数据确定数据传输方式,例如,SC-FDMA这种多址方 式下所采用的数据传输方式为物理上行共享信道(PUSCH,Physical Uplink Shared Channel)/SRS/解调参考信号DMRS结构,OFDM这种多址方式下所采用的数据传输方式为物理下行共享信道(PDSCH,Physical Downlink Shared Channel)/信道状态指示参考信号(CSI-RS,Channel State Indication RS)/DRS;
或者,根据所述数据的类型,为所述数据确定数据传输方式,例如,上行数据采用的数据传输结构为PUSCH/SRS/DMRS结构,下行数据采用的数据传输结构为PDSCH/CSI-RS/DRS结构;
或者,根据所述数据所在的资源,为所述数据确定数据传输方式,例如:上行频带资源所采用的数据传输结构为PUSCH/SRS/DMRS结构,下行频带资源所采用的数据传输结构为PDSCH/CSI-RS/DRS结构;
或者,根据配置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式,例如:所述对应关系为所述数据采用的数据传输方式为PDSCH/PUSCH/新格式结构,或者为SRS/CSI-RS/DMRS/DRS/新RS结构。
在本发明实施例提供的灵活双工方式中,在解决了频谱利用率低的问题时,还能够解决相邻传输节点之间存在的数据传输干扰问题,以下方案在说明如何解决这个传输干扰问题的同时也对本发明实施例的技术方案做一步的说明。
在灵活双工方式中,以在FDD的上行传输频带传输下行数据和/或在FDD的下行传输频带传输上行数据最为典型,本发明实施例中提供的图2、3就是以在FDD的上行传输频带传输下行数据为例;并通过后续方案对图2、3的描述,
图2为本发明实施例提供的应用场景一示意图;在图2中,传输节点T(宏基站Macro)、传输节点T1(小区Small Cell/射频拉远头RRH)、传输节点T2(小区Small cell/射频拉远头RRH)为使用同一传输频带、具体是同一上行传输频带的相邻传输节点;
终端B和终端D利用上行传输频带向传输节点T发送上行数据,传输节点T1利用所述上行传输频带发送下行数据至终端A,传输节点T2也利用所述上行传输频带发送下行数据至终端C;
其中,由于终端D距离传输节点T的位置比较近,导致终端D向传输节点T发送的上行数据对传输节点T1(T2)向终端A(C)发送的下行数据的干扰比较小;而终端B距离传输节点T比较远,导致终端B向传输节点T发送的上行数据对于传输节点T1(T2)向终端A(C)发送的下行数据干扰比较大。在图2中,若以传输节点T1为目标传输节点,那么,此应用场景下,所面临的干扰主要是传输节点T对目标传输节点(传输节点T1/T2)的干扰。
图3为本发明实施例提供的应用场景二示意图;在图3中,传输节点 TT(宏基站Macro)、传输节点T11(小区Small Cell/射频拉远头RRH)、传输节点T21(小区Small Cell/射频拉远头RRH)为使用同一传输频带、具体是同一上行传输频带的相邻传输节点。
在图3中,终端A1利用所述上行传输频带向传输节点T11发送上行数据,终端C1利用所述上行传输频带向传输节点T21发送上行数据,传输节点TT利用所述上行传输频带给终端B1、终端D1传输下行数据;其中,终端D1距离传输节点TT较近,导致传输节点TT发送终端D1的下行数据对于传输节点T11、T21接收的上行数据的传输干扰较小;而终端B1距离传输节点TT比较远,导致传输节点TT发送终端B1的下行数据对于传输节点T11、T21接收的上行数据的传输干扰较大;在图3中,若以传输节点TT为目标传输节点,那么此应用场景下,所面临的干扰主要是目标传输节点对传输节点T11、T21的干扰。
上述方案中,所述方法还包括:
获取至少一个第四传输节点的与所述子帧类型相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一传输节点对所述预定义子帧进行配置。
相应的,所述至少一个第四传输节点发送其自身的与子帧类型相关的相关信息、和/或其自身的物理控制信道频域位置信息至所述第一传输节点。
其中,所述至少一个第四传输节点为与所述第一传输节点使用同一传输频带的其它传输节点。所述同一传输频带包括:同一上行传输频带或同一下行传输频带;视所述第一传输节点和使用同一传输频带传输的其它传输节点之间为相邻传输节点。
当第一传输节点与第四传输节点使用的同一传输频带为上行传输频带时,所述第一传输节点可在所述上行传输频带的所述预定义子帧上传输下行数据;当所述同一传输频带为下行传输频带时,所述第一传输节点可在所述下行传输频带的所述预定义子帧上传输上行数据。
其中,所述物理控制信道频域位置包括:物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、和/或物理下行链路控制信道(PDCCH,Physical Downlink Control Channel);本发明实施例中,通过传输节点物理控制信道频域位置信息,可以通过频域调度,避免所述数据传输对于相邻传输节点的物理控制信道的影响。
所述相关信息包括以下至少其中之一:
所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧的数据类型信息、所述至少一个第四传输节点所在小区的开关信息、所述预定义帧传输数据时所述使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的OFDM符号数量、子载波间隔、数据传输的资源单元;其中,所述数据类型信息为上行数据传输、或下行数据传输;所述数据传 输方式包括:数据编码调制信息。
所述第一传输节点依据所获取的所述相关信息、所述频域位置信息,为自身配置一预定义子帧。
在本发明一个实施例中,当第一传输节点所获取的相关信息为所述其它传输节点所在小区的开关信息,且确定所有所述其它传输节点的小区均为关闭状态时,选择为所述第一传输节点所使用的传输频带上划分的任意一个子帧作为第一传输节点的预定义子帧。
当第一传输节点所获取的相关信息为所述其它传输节点所在小区的开关信息,且确定所有所述其它传输节点的小区至少一个为非关闭状态时,按照下述方法一至方法五中的其中之一进行处理:
方法一:当第一传输节点所获取的相关信息既有时域信息又有频域信息时,确定时域干扰最小同时频谱干扰也最小的子帧为所述第一传输节点的预定义子帧;
方法二:当第一传输节点所获取的相关信息为时域信息中的子帧集合时,确定功率最小的子帧集合为所述第一传输节点的预定义子帧;
方法三:当第一传输节点所获取的相关信息为时域信息中的时域干扰信息时,确定时域干扰最小的子帧为所述第一传输节点的预定义子帧;
方法四:当第一传输节点所获取的信息为PUCCH的频域位置时,确定在所述第一传输节点所使用的传输频带上为除了PUCCH频域资源之外的其它频域资源划分的子帧作为所述第一传输节点的预定义子帧;
方法五:当为第一传输节点所获取的相关信息为干扰信息中的高干扰(HI,High interference)信息和/或过载指示(OI,Overload indicator)信息时,依据HI信息和/或OI信息,确定频谱干扰最小的子帧,并将该子帧作为所述第一传输节点的预定义子帧。
需要说明的是,上述方法一至方法五所述的资源信息为小区处于非关闭状态的传输节点的资源信息。
在利用上述技术方案配置所述预定义子帧之后,所述第一传输节点如基站将所配置的预定义子帧的配置信息发送给第二传输节点如终端;
相应的,所述第二传输节点接收所述配置信息,以便利用所述配置信息,在所述预定义子帧上传输所述数据;其中,所述配置信息包括以下至少其中之一:所述预定义子帧的位置信息、数据传输结构、最大传输功率。所述第一传输节点如基站通过高层信令或物理层信令将所述预定义子帧的配置信息以子帧集合的方式发送至所述第二传输节点如终端;
在本发明实施例提供的双工方式中,本发明实施例提供的以下技术方案是为了解决相邻传输节点之间存在的数据传输干扰的问题;也就是说,以下技术方案可解决图2中的非目标传输节点(传输节点T)对目标传输节点(传输节点T1/T2)的干扰,以及解决图3中的目标传输节点(传输节点TT)对非目标传输节点(传输节点T11/T21)的干扰。
由前述内容可知,图2所面临的干扰主要是传输节点T(第四传输节点)对目标传输节点的干扰,以图2中的传输节点T1为所述第一传输节点(目标传输节点)为例(对传输节点T2的处理与传输节点T1相同);下面结合图2所示的应用场景,对本发明实施例作进一步说明。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,当获取到的相关信息为传输节点T1的相邻传输节点T的所在小区的开关状态信息,且该小区为关闭状态时,在传输频带如上行传输频带划分的子帧中,选取任意一个作为传输节点T1的预定义子帧,传输节点T1利用上行传输频带上的该预定义子帧发送下行数据至终端A。这里,利用确定出的预定义子帧可在上行传输频带传输下行数据,大大提高了频谱利用率;同时,由于传输节点T关闭,传输节点T1不会对传输节点T产生干扰,传输节点T1也不需要考虑对传输节点T的干扰问题。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,传输节点T在上行传输频带上接收终端B发送的上行数据,为传输节点T1获取到的相关信息为传输节点T的时域信息与频域信息时,确定时域干扰最小同时频谱干扰也最小的子帧为传输节点T1的预定义子帧;传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A。这里,利用确定出的预定义子帧可在上行传输频带传输下行数据,大大提高了频谱利用率;同时,虽然均是在上行传输频带进行数据传输,但是由于传输节点T1在干扰最小的子帧进行传输,降低了终端B发送的上行数据对传输节点T1传输的下行数据的干扰。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,传输节点T在上行传输频带上接收终端B发送的上行数据,按照终端B在宏小区中的位置,传输节点T将上行传输频带中的上行子帧划分为两个或两个以上集合,如划分为两个集合:小区边缘子帧集合和小区中心子帧集合;为传输节点T1获取到的相关信息为时域信息中的子帧集合,因为小区中心子帧集合上对应的终端的发送功率相对较少,所以小区中心子帧集合为传输节点T1的预定义子帧,传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A。这里,利用确定出的预定义子帧可在上行传输频带传输下行数据,大大提高了频谱利用率;同时,因为小区中心子帧集合上对应的UE发送功率相对较少,所以降低了宏小区中终端B发送的上行数据对于传输节点T1发送的下行数据的传输干扰;由此,解决了不同传输节点之间上下行数据之间的干扰问题。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,传输节点T在上行传输频带上接收终端B发送的上行数据,为传输节点T1获取到的相关信息为传输节点T的时域干扰信息,确定时域干扰最小的子帧为传输节点T1的预定义子帧;传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A。这里,利用确定出的预定义子帧 可在上行传输频带传输下行数据,大大提高了频谱利用率。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,传输节点T在上行传输频带上接收终端B发送的上行数据,为传输节点T1获取到的信息为PUCCH频域位置,选取在除了PUCCH频域资源之外的其它频域资源上的子帧作为传输节点T1的预定义子帧;传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A。这里,这里,利用确定出的预定义子帧可在上行传输频带传输下行数据,大大提高了频谱利用率;同时,传输节点T1在传输下行数据时,避开了终端B的上行控制信道,进而降低了终端B的上行控制信道对于传输节点T1下行数据的传输干扰、以及下行数据对于上行控制信道的干扰,由此解决了不同传输节点之间上下行数据之间的干扰问题。
传输节点T和传输节点T1为使用同一上行传输频带的相邻传输节点,传输节点T在上行传输频带上接收终端B发送的上行数据,为传输节点T1获取到的信息为干扰信息中的HI信息和OI信息时,依据HI信息和OI信息确定频谱干扰情况,将频谱干扰最小的子帧作为传输节点T1的预定义子帧,传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A。这里,利用确定出的预定义子帧可在上行传输频带传输下行数据,大大提高了频谱利用率。其中,依据HI信息和OI信息确定频谱干扰情况的具体实现过程请参见现有相关说明,这里不再赘述。
上述方案中,在控制传输节点T1通过所述上行传输频带上的所述预定义子帧传输下行数据至终端A之前,将预定义子帧的配置信息通知给了终端A。
其中,在FDD中,传输节点T1对所述配置信息可以通过下面方式发送给终端A:
比特映射bitmap方式,如一个比特对应一个预定义子帧;
和/或,可采用子帧集合的方式,如将子帧按照奇数、偶数进行编号,并配置奇数或偶数编号的子帧为预定义子帧集合,在本发明一个实施例中,可通过高层信令如无线资源控制协议层(RRC,Radio Resource Control)信令、或物理层信令如下行/上行控制信令将该预定义子帧集合通知给终端A;
和/或,将离散的频带资源合并形成虚拟资源,并将虚拟资源作为预定义子帧资源通知给终端A,如将一个子帧的后部分OFDM符号和与其相邻的另一个子帧的前部分OFDM符号所在的资源合并为一虚拟资源,并将该虚拟资源作为预定义子帧资源,通知给终端A;或者,将一个子帧中间部分OFDM符号所在的资源和另一个与该子帧相邻或不相邻的子帧的中间部分OFDM符号所在的资源合并为一虚拟资源,并将该虚拟资源作为预定义子帧资源。
在TDD中,除了可以采用上述方式,还可以采用:
通过所使用的子帧在上下行传输频带上的当前配比来配置预定义子 帧,并通知给终端A;
和/或,通过混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)反馈的参考定时来配置预定义子帧,并通知给终端A;该两种配置方式的具体实现请参见相关说明,这里不再赘述。
所述第一传输节点利用所述预定义子帧传输数据时,还可以以所确定出的传输功率来传输所述数据;其中,所述确定出所述传输功率的方法,包括:
依据第二传输节点如终端上报的路损信息和/或干扰信息,确定所述子帧传输所述数据时所使用的传输功率;其中,所述路损信息为第一传输节点传输至第二传输节点时的通信链路上所产生的路损;所述干扰信息为第一传输节点传输至第二传输节点时的通信链路上所产生的干扰。
获取第一传输节点的传输的所述数据的相关调制解调信息;
所述第一传输节点传输所述相关调制解调信息至所述第二传输节点,以使得所述第二传输节点利用所述相关调制解调信息消除所述第一传输节点与所述第二传输节点之间的干扰。
由前述内容可知,图3所面临的干扰主要是目标传输节点对传输节点T11(第二传输节点)的干扰,以图3中的传输节点TT所述的第一传输节点(目标传输节点)为例,结合图3所示的应用场景对本发明实施例作进一步说明。
传输节点TT和传输节点T11为使用同一上行传输频带的相邻传输节点。其中,传输节点T11在所述上行传输频带上接收终端A1发送的数据,传输节点TT在所述上行传输频带上传输下行数据给终端B1;获取终端B1向传输节点TT反馈的传输节点TT到终端B1的下行路损信息;其中,该下行路损信息包括以下至少一种:在上行传输频带上发送下行信号时所产生的路损信息、在上行传输频带对应的下行传输频带上发送下行信号时所产生的路损信息;并根据所述下行路损信息,为传输节点TT确定相应的传输功率,如当下行路损超过预设的路损阈值时所确定的传输功率较大,下行路损未超过所述路损阈值时所确定的传输功率较小。以此,来避免由于传输节点TT的传输功率过大带来的下行数据对上行数据的传输干扰问题。
传输节点TT和传输节点T11为使用同一上行传输频带的相邻传输节点。其中,传输节点T11在所述上行传输频带上接收终端A1发送的数据,传输节点TT在所述上行传输频带上传输下行数据给终端B1;终端B1根据基站为自身配置的绝对功率发送上行信号,获取所述绝对功率,并根据终端B1发送所述上行信号时所使用的绝对功率为传输节点TT估算路径损耗,根据所估算的路径损耗,为传输节点TT确定相应的传输功率,如当所述路径损耗超过所述路损阈值时所确定的传输功率较大,当所述路径损耗未超过所述路损阈值时所确定的传输功率较小。以此,来避免由于传输节点TT的传输功率过大带来的下行数据对上行数据的传输干扰问题。
在上述方案中,在根据所述路损信息,为传输节点TT确定相应的传输功率之后,还可以包括:将所确定的传输功率与为所述传输节点TT设置的传输功率上限值即所述功率阈值进行比较,当比较为所确定的传输功率未超过所述功率阈值时,传输节点TT利用所确定的传输功率在预定义子帧上传输数据;当比较为所确定的传输功率超过所述功率阈值时,传输节点TT利用所述功率阈值在预定义子帧上传输数据。
传输节点TT和传输节点T11为使用同一上行传输频带的相邻传输节点。其中,传输节点T11在所述上行传输频带上接收终端A1发送的数据,传输节点TT在所述上行传输频带上传输下行数据给终端B1;传输节点T11测量传输节点TT发送所述下行数据时所产生的干扰,并形成所述干扰测量信息,为传输节点TT获取所述干扰测量信息,并根据所述干扰测量信息,为所述传输节点TT确定相应的传输功率,如当所测量的干扰超过预设的干扰阈值时所确定的传输功率较大,当所测量的干扰未超过所述干扰阈值时所确定的传输功率较小。以此,来避免由于传输节点TT的传输功率过大带来的下行数据对上行数据的传输干扰问题。
传输节点TT和传输节点T11为使用同一上行传输频带的相邻传输节点。其中,传输节点T11在所述上行传输频带上接收终端A1发送的数据,传输节点TT在所述上行传输频带上传输下行数据给终端B1;获取所述当前传输节点在传输的所述下行数据时所产生的相关调制解调信息;其中,所述相关调制解调信息包括:调制方式、传输块大小、时频位置、功率信息、传输模式、扰码标识;所述传输节点TT传输所述相关调制解调信息至所述传输节点T11,以便传输节点T11利用所述相关调制解调信息消除传输节点TT与自身之间的干扰。
其中,传输节点T11利用相关调制解调信息消除干扰方法可以采用干扰消除或抑制方法,也可以采用多输入多输出(MIMO,Multiple-Input Multiple-Output)技术;这些方法的具体实现请参见现有相关说明,这里不再赘述。
在步骤102中,可采用基于用户专有参考信号的传输模式在所述预定义子帧上传输数据,接收方如终端接收到该数据,利用参考信号解调出有用数据,所以在基于专有参考信号的传输模式中,参考信号的位置选取对于避免下行(上行)数据对上行(下行)数据参考信号的干扰起到一定作用。
本发明实施例中,在基于用户专有参考信号的传输模式中,当采用用于承载所述数据的信道为PDSCH信道时,所配置的参考信号的位置可以为TDD系统在常规循环前缀场景特殊子帧配置为3、4、8、9时采用的参考信号位置,如图4-1(a)~图4-1(d)所示;所配置的参考信号的位置还可以如图4-2(a)~图4-2(d)所示。其中,R7到R10代表不同天线端口对应的参考信号,剩余资源为发送数据的资源,图4-2(a)~图4-2(d)所示 的参考信号可以避免和上行解调参考信号位置重叠。
同时,为避免在同一传输频带上传输的下行(上行)数据对在该传输频带上传输的上行(下行)数据的干扰,当采用PDSCH信道或者ePDCCH时,确定PDSCH信道或者ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号,且判断为发送下行(上行)数据的预定义子帧是SRS子帧时,打掉该预定义子帧中最后一个OFDM符号上的下行(上行)数据,即不在所述预定义子帧中最后一个OFDM符号上传输所述数据;判断为发送下行(上行)数据的预定义子帧不是SRS子帧时,在该预定义子帧的最后一个OFDM符号上发送下行(上行)数据。避免下行数据和相邻小区的SRS的碰撞,或者,避免下行数据和本小区其他UE的SRS碰撞。其中,所述SRS子帧可以是传输节点实际配置的SRS子帧,也可以是虚拟的SRS子帧。
为方便说明,图4-1(a)~图4-1(d)、图4-2(a)~图4-2(d)所示的参考信号的位置以及后续的图6-1、图6-2所示的参考信号的位置均是以长期演进(LTE,Long Term Evolution)系统为例,由于LTE系统中一个子帧包括14个OFDM符号,一个物理资源块(RB,Resource Block)包括有12个载波,所以,图中横向14个小格,纵向有12个小格,由图4-1(a)~图4-1(d)及图4-2(a)~图4-2(d)可看出参考信号Rn(n=7、8、9、10)在LTE子帧中的位置。
本发明实施例中,在基于用户专有参考信号的传输模式中,当采用用于承载所述数据的信道为PUSCH时,所配置的参考信号可以采用PUSCH信道对应的参考信号的位置。
在本发明一个实施例中,在控制所述当前传输节点传输所述数据之前,所述方法还包括:通过所述当前传输节点在所述传输频带上的控制信息来调度所述数据。
其中,所述控制信息的位置,可以为:
所述控制信息位于所述预定义子帧在传输频带所使用的控制信道中;或者,
所述控制信息位于在与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
所述控制信息位于与所述数据之间预先约定好的位置。
以FDD,所述传输频带为上行传输频带且当前传输节点在所述上行传输频带的预定义子帧上传输下行数据为例,结合图5说明用于调度所述下行数据的下行控制信息的位置。
在图5中,以FDD的上、下行传输频带均具有10子帧:上行子帧编号分别为UF1~UF10、下行子帧编号为DF1~DF10,假设在上行传输频带上所确定的预定义子帧为UF2;
位置一:所述下行控制信息位于所述预定义子帧所使用的下行控制信 道中;UF2为上行传输频带的预定义子帧,所述下行控制信息就位于该预定义子帧所使用的下行控制信道中。
位置二:在与所述上行传输频带所对应的传输频带即下行传输频带上查找与所述预定义子帧具有相同编号的子帧,所述下行控制信息位于所查找到的子帧所使用的下行控制信道中;UF2为上行传输频带的预定义子帧,在下行传输频带中与UF2具有相同子帧编号的子帧为DF2子帧,所述下行控制信息位于DF2子帧所使用的下行控制信道中。
位置三:所述下行控制信息位于与下行数据之间约定好的位置;UF6为上行传输频带的预定义子帧,下行数据在UF6传输,约定为当下行数据在UF6传输时,下行控制信息位于下行传输频带的UF2子帧中,采用类似上行数据传输和所述上行数据对应的下行控制信息之间调度定时。
当所述下行控制信息的位置为位置一或二或三时,用于承载所述下行控制信息的信道可以为所述所使用的下行控制信道可以为ePDCCH信道,也可以为PUSCH信道,还可以为PDCCH信道。
其中,在为ePDCCH信道时,所配置的参考信号的位置可以为TDD在常规循环前缀场景特殊子帧配置为3、4、8、9时采用的专有参考信号位置,如图4-1(a)~4-1(d)所示;也可以为图4-2(a)~4-2(d)所示的位置。这里,关于预定义子帧的最后一个OFDM符号上的数据处理,也是根据预定义子帧是否是SRS子帧类型来判断,具体过程请参见前述说明。
其中,在为PUSCH信道时,所配置的参考信号的位置可以为TDD在常规循环前缀场景特殊子帧配置为3、4、8、9时采用的用户专有参考信号位置,如图6-1所示;也可以采用图6-2所示的参考信号的位置。由前述内容可知,参考位置的选取对于避免下行(上行)数据对上行(下行)数据参考信号的干扰起到一定作用,所以,本发明实施例中,在下行控制信息承载的控制信道为PUSCH信道时,提供了图6-1、6-2所示的两种参考信号的位置。
以上方案中,均是以在FDD上行传输频带传输下行数据为例,在FDD/TDD的下行传输频带传输上行数据,以及在TDD上行传输频带传输下行数据的过程与上述过程相类似,不再赘述。
作为本发明一实施例,由于TDD/FDD-LTE系统可以按照子载波间隔、循环前缀长度、资源块大小、子帧长度等方面分别进行子帧定义;为迎合LTE系统的这一特性,本发明实施例所确定的预定义子帧还可以视为非兼容性子帧,其结构的划分可以根据实际应用情况进行配置。
如:
非兼容性子帧上新定义的传输模式传输数据,所述新定义的传输模式包括:新的参考信号图案、和/或天线端口,而常规子帧上采用现有LTE R12定义的传输模式传输数据。
非兼容性子帧上采用新定义的循环前缀、和/或新定义的子载波间隔传 输数据,如:比LTE系统循环前缀短的循环前缀,比LTE系统子载波间隔大的子载波间隔,或者,采用其他大小的循环前缀、子载波间隔,而常规子帧传输的数据采用现有LTE定义的循环前缀、和/或子载波间隔。
非兼容性子帧上采用新定义的资源单元传输数据,如:时域长度为0.1ms频域长度为200kHz的资源单元,或者,其他大小的资源单元,而常规子帧传输的数据采用现有LTE定义的资源单元传输数据,如:时域长度为0.5ms频域长度为180kHz的资源单元。
其中,非兼容性子帧的定义请参见现有说明,这里不再赘述。
基于上述数据传输方法,本发明实施例还提供了一种数据传输装置,应用于传输节点中、具体是前述的第一传输节点中,如图7所示,所述装置包括:第一获取单元701、第一传输单元702及第一配置单元703;其中,
所述第一获取单元701,配置为获取用于承载数据传输的子帧的子帧类型;
所述第一传输单元702,配置为根据所述子帧类型,在所述子帧上传输所述数据;
所述第一配置单元703,配置为通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型;
所述第一配置单元703,配置为当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、OFDM符号数量、子载波间隔、数据传输的资源单元;
所述第一配置单元703,配置为当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
所述第一配置单元703,配置为当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
如图7所示,所述装置还包括:第二获取单元704,配置为获取至少一个第四传输节点的与所述预定义子帧相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一配置单元703对所述预定义子帧进行配置。
其中,所述相关信息包括:所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的正交频分复用OFDM符号 数量、子载波间隔、数据传输的资源单元。
所述第一传输单元702,还配置为将所配置的所述预定义子帧的配置信息发送给其他传输节点、具体是第二传输节点,其中,所述配置信息包括以下至少其中之一:所述预定义子帧的时域位置信息、数据传输结构、最大传输功率;其中,所述第一传输单元702通过高层信令或物理层信令将所述预定义子帧的配置信息发送至所述第二传输节点。
如图7所示,所述装置还包括:第二配置单元705,配置为依据所述预定义子帧所在系统的频点信息与系统类型,配置所述预定义子帧在传输所述数据时所使用的所述最大发送功率;
第二配置单元705,配置为当所述预定义子帧所在的系统为TDD系统,且所述TDD系统在FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
第二配置单元705,配置为当所述预定义子帧所在的系统为TDD系统,所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
第二配置单元705,配置为当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD系统的频谱上工作时,为所述FDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;
第二配置单元705,配置为当所述预定义子帧所在的系统为长期演进LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率。
如图7所示,所述装置还包括:第一确定单元706,配置为依据第二传输节点上报的路损信息和/或干扰信息,确定所述预定义子帧传输所述数据时所使用的传输功率;
相应的,所述第一传输单元702,配置为在所述预定义子帧上以所述传输功率传输所述数据。
上述方案中,所述第一传输单元702,还配置为当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH时,
当传输所述数据的所述预定义子帧为探测参考信号SRS子帧时,不在所述预定义子帧中最后一个OFDM符号上传输所述数据;
当传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
和/或,所述第一传输单元702,还配置为当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的 信道为物理下行共享信道PDSCH或增强型物理下行控制信道ePDCCH时,确定所述PDSCH或ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。
如图7所示,所述装置还包括:调度单元707,配置为通过控制信息来调度所述数据;
所述控制信息位于所述预定义子帧所在传输频带所使用的控制信道中;或者,
所述控制信息位于与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
所述控制信息位于与所述数据之间预先约定好的位置;其中,所述控制信道包括为以下其中至少一种:ePDCCH、PUSCH、PDCCH。
如图7所示,所述装置还包括:第二确定单元708,配置为根据所述数据所在的频带资源、或根据所述数据的类型、或根据为所述数据设置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式;
相应的,所述第一传输单元702,配置为在所述预定义子帧上以所述多址方式传输所述数据。
如图7所示,所述装置还包括:第三确定单元709,配置为根据所述数据所使用的多址方式、或根据所述数据的类型、或根据所述数据所在的资源、或根据设置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式;
相应的,所述第一传输单元702,配置为在所述预定义子帧上以所述数据传输方式传输所述数据。
本领域技术人员应当理解,图7中所示的数据传输装置中的各处理单元的实现功能可参照前述数据传输方法的相关描述而理解。本领域技术人员应当理解,图7所示的数据传输装置中各处理单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
在实际应用中,所述第一获取单元701、第一传输单元702、第一配置单元703、第二获取单元704、第二配置单元705、第一确定单元706、调度单元707、第二确定单元708、第三确定单元709均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或微处理器(MPU,Micro Processor Unit)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述CPU、DSP、MPU、FPGA均可内置于第一传输节点中。
需要说明的是,本发明实施例中,第一传输节点、第二传输节点、第三传输节点及第四传输节点可以为:基站、终端、无线网关、路由器、中继节点等。
本发明实施例提供了第一种计算机存储介质,所述计算机存储介质中 存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于执行前述的应用于第一传输节点的数据传输方法。
本发明实施例提供了第二种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行前述的应用于第四传输节点的数据传输方法。
本发明实施例提供了第三种计算机存储介质,所述计算机存储介质中存储有第三组计算机可执行指令,所述第三组计算机可执行指令用于执行前述的应用于第二传输节点的数据传输方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明各实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例提供的数据传输方法、装置及相关计算机存储介质,其中,所述方法应用于第一传输节点中,包括:获取用于承载数据传输的子帧的子帧类型;第一传输节点根据所述子帧类型,在所述子帧上传输所述 数据;其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,并通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、OFDM符号数量、子载波间隔、数据传输的资源单元;当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。利用所述预定义子帧,能保证第一传输节点在上行频谱传输下行数据,和/或在下行频谱传输上行数据的同时,提高频谱效率,降低空闲资源;同时,解决相邻传输节点之间存在的数据传输干扰的问题,提高了系统的吞吐量。

Claims (33)

  1. 一种数据传输方法,应用于第一传输节点中,所述方法包括:
    获取用于承载数据传输的子帧的子帧类型;
    根据所述子帧类型,在所述子帧上传输所述数据;
    其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,并通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:
    当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元;
    当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
    当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
  2. 根据权利要求1所述的方法,其中,在获取用于承载数据传输的子帧的子帧类型之前,所述方法还包括:
    获取至少一个第四传输节点的与所述预定义子帧相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一传输节点对所述预定义子帧进行配置。
  3. 根据权利要求2所述的方法,其中,所述相关信息包括以下至少其 中之一:
    所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的OFDM符号数量、子载波间隔、数据传输的资源单元。
  4. 根据权利要求1所述的方法,其中,在第一传输节点根据所述子帧类型,在所述子帧上传输所述数据之前,所述方法还包括:
    所述第一传输节点将所配置的所述预定义子帧的配置信息发送给第二传输节点,其中,所述配置信息包括以下至少其中之一:所述预定义子帧的时域位置信息、数据传输结构、最大传输功率。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述第一传输节点通过高层信令或物理层信令将所述预定义子帧的配置信息发送至所述第二传输节点。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    依据所述预定义子帧所在系统的频点信息与系统类型,配置所述预定义子帧在传输所述数据时所使用的所述最大发送功率;
    当所述预定义子帧所在的系统为时分双工TDD系统,且所述TDD系统在频分双工FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
    当所述预定义子帧所在的系统为TDD系统,所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
    当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD 系统的频谱上工作时,为所述FDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;
    当所述预定义子帧所在的系统为长期演进LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率。
  7. 根据权利要求1所述的方法,其中,在所述第一传输节点根据所述子帧类型,在所述子帧上传输所述数据之前,所述方法还包括:
    依据第二传输节点上报的路损信息和/或干扰信息,确定所述预定义子帧传输所述数据时所使用的传输功率;
    相应的,所述第一传输节点在所述预定义子帧上以所述传输功率传输所述数据。
  8. 根据权利要求1所述的方法,其中,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
    当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH时,
    当传输所述数据的所述预定义子帧为探测参考信号SRS子帧时,不在所述预定义子帧中最后一个OFDM符号上传输所述数据;
    当传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
  9. 根据权利要求1所述的方法,其中,当配置所述预定义子帧为所述时间内在上、下行切换之后,所述方法还包括:
    当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH或增强型物理下行控制信道ePDCCH时,确定所述PDSCH或ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。
  10. 根据权利要求1所述的方法,其中,在所述第一传输节点利用具有所述子帧类型的子帧传输所述数据之前,所述方法包括:
    通过控制信息来调度所述数据;
    所述控制信息位于所述预定义子帧所在传输频带所使用的控制信道中;或者,
    所述控制信息位于与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
    所述控制信息位于与所述数据之间预先约定好的位置。
  11. 根据权利要求10所述的方法,其中,所述控制信道包括为以下其中至少一种:ePDCCH、PUSCH、物理下行控制信道PDCCH。
  12. 根据权利要求1所述的方法,其中,在所述第一传输节点根据所述子帧类型,在所述子帧上传输所述数据之前,所述方法还包括:
    根据所述数据所在的频带资源、或根据所述数据的类型、或根据为所述数据设置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式;
    相应的,所述第一传输节点在所述预定义子帧上以所述多址方式传输所述数据。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述数据所使用的多址方式、或根据所述数据的类型、或根据所述数据所在的资源、或根据设置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式;
    相应的,所述第一传输节点在所述预定义子帧上以所述数据传输方式传输所述数据。
  14. 一种数据传输方法,应用于至少一个第四传输节点中,所述方法包括:
    所述至少一个第四传输节点发送所述第四传输节点的与子帧类型相关的相关信息、和/或所述第四传输节点的物理控制信道频域位置信息至第一传输节点;
    其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型,其中,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧包括以下至少其中之一:
    当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元;
    当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
    当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
  15. 根据权利要求14所述的方法,其中,当所述相关信息为所述预定义子帧类型的相关信息时,所述相关信息包括以下至少其中之一:
    所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元。
  16. 一种数据传输方法,应用于第二传输节点中,所述方法包括:
    所述第二传输节点接收第一传输节点所配置的预定义子帧的信息。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    所述第二传输节点向第一传输节点反馈路损信息和/或干扰信息。
  18. 一种数据传输装置,应用于传输节点中,所述装置包括:
    第一获取单元,配置为获取用于承载数据传输的子帧的子帧类型;
    第一传输单元,配置为根据所述子帧类型,在所述子帧上传输所述数据;
    第一配置单元,配置为通过以下至少其中之一所述,配置与所述常规子帧类型相对应的常规子帧及与所述预定义子帧类型相对应的预定义子帧:其中,所述子帧类型至少包括常规子帧类型及预定义子帧类型;
    所述第一配置单元,配置为当所述子帧类型至少包括第一预定义子帧类型及第一常规子帧类型时,配置第一预定义子帧与第一常规子帧各自所采用的传输结构具有的元素的取值不同;所述元素包括为以下其中之一:数据的传输模式、循环前缀长度、正交频分复用OFDM符号数量、子载波间隔、数据传输的资源单元;
    所述第一配置单元,配置为当所述子帧类型至少包括第二预定义子帧类型及第二常规子帧类型时,配置第二常规子帧在预设的时间内为上行子帧、或者为下行子帧;配置第二预定义子帧为所述预设的时间内在上、下行切换;
    所述第一配置单元,配置为当所述子帧类型至少包括第三预定义子帧类型及第三常规子帧类型时,配置第三预定义子帧的最大发送功率小于第三常规子帧的最大发送功率。
  19. 根据权利要求18所述的装置,其中,所述装置还包括:
    第二获取单元,配置为获取至少一个第四传输节点的与所述预定义子 帧相关的相关信息、和/或物理控制信道频域位置信息,以使所述第一配置单元对所述预定义子帧进行配置。
  20. 根据权利要求19所述的装置,其中,所述相关信息包括:
    所述预定义子帧的时域信息、所述预定义子帧的频域信息、所述预定义子帧传输的数据类型信息、所述第四传输节点所在小区的开关信息、所述预定义子帧上传输数据时所使用的发送功率信息、所述预定义子帧受到的干扰信息、所述预定义子帧采用的数据传输方式、循环前缀长度、所述预定义子帧中包括的OFDM符号数量、子载波间隔、数据传输的资源单元。
  21. 根据权利要求18所述的装置,其中,
    所述第一传输单元,还配置为将所配置的所述预定义子帧的配置信息发送给其他传输节点,
    其中,所述配置信息包括以下至少其中之一:所述预定义子帧的时域位置信息、数据传输结构、最大传输功率。
  22. 根据权利要求21所述的装置,其中,
    所述第一传输单元,配置为通过高层信令或物理层信令将所述预定义子帧的配置信息发送至所述其他传输节点。
  23. 根据权利要求18所述的装置,其中,所述装置还包括:
    第二配置单元,配置为依据所述预定义子帧所在系统的频点信息与系统类型,配置所述预定义子帧在传输所述数据时所使用的所述最大发送功率;
    所述第二配置单元,配置为当所述预定义子帧所在的系统为时分双工TDD系统,且所述TDD系统在频分双工FDD系统的上行频谱上工作时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
    所述第二配置单元,配置为当所述预定义子帧所在的系统为TDD系统, 所述TDD系统的频谱采用全下行数据传输时,为所述TDD系统配置的所述最大发送功率小于所述TDD系统在所述TDD频谱中的下行数据最大发送功率;
    所述第二配置单元,配置为当所述预定义子帧所在的系统为FDD系统,且所述FDD系统在TDD系统的频谱上工作时,为所述FDD系统配置的所述最大发送功率小于所述FDD系统在所述FDD下行频谱上数据的最大发送功率;
    所述第二配置单元,配置为当所述预定义子帧所在的系统为长期演进LTE系统,且所述LTE系统在非授权频谱上工作时,为所述LTE系统配置的所述最大发送功率小于所述LTE系统在LTE授权频谱上最大发送功率。
  24. 根据权利要求18所述的装置,其中,所述装置还包括:
    第一确定单元,配置为依据第二传输节点上报的路损信息和/或干扰信息,确定所述预定义子帧传输所述数据时所使用的传输功率;
    相应的,所述第一传输单元,配置为在所述预定义子帧上以所述传输功率传输所述数据。
  25. 根据权利要求18所述的装置,其中,
    所述第一传输单元,还配置为当采用基于用户专有参考信号的传输模式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH时,
    当传输所述数据的所述预定义子帧为探测参考信号SRS子帧时,不在所述预定义子帧中最后一个OFDM符号上传输所述数据;
    当传输所述数据的所述预定义子帧为非SRS子帧时,在所述预定义子帧的最后一个OFDM符号上传输所述数据。
  26. 根据权利要求18所述的装置,其中,
    所述第一传输单元,还配置为当采用基于用户专有参考信号的传输模 式在所述预定义子帧上传输所述数据,且用于承载所述数据的信道为物理下行共享信道PDSCH或增强型物理下行控制信道ePDCCH时,确定所述PDSCH或ePDCCH的起始时域OFDM符号为所述预定义子帧的第一个OFDM符号。
  27. 根据权利要求18所述的装置,其中,所述装置还包括:
    调度单元,配置为通过控制信息来调度所述数据;
    所述控制信息位于所述预定义子帧所在传输频带所使用的控制信道中;或者,
    所述控制信息位于与所述传输频带对应的传输频带上的与所述预定义子帧具有相同编号的子帧所使用的控制信道中;或者,
    所述控制信息位于与所述数据之间预先约定好的位置。
  28. 根据权利要求27所述的装置,其中,所述控制信道包括为以下其中至少一种:ePDCCH、PUSCH、物理下行控制信道PDCCH。
  29. 根据权利要求18所述的装置,其中,所述装置还包括:
    第二确定单元,配置为根据所述数据所在的频带资源、或根据所述数据的类型、或根据为所述数据设置的上下行资源与多址方式之间的对应关系,确定传输所述数据时所使用的多址方式;
    相应的,所述第一传输单元,配置为在所述预定义子帧上以所述多址方式传输所述数据。
  30. 根据权利要求18所述的装置,其中,所述装置还包括:
    第三确定单元,配置为根据所述数据所使用的多址方式、或根据所述数据的类型、或根据所述数据所在的资源、或根据设置的所述数据与所述数据所使用的数据传输方式之间的对应关系,为所述数据确定数据传输方式;
    相应的,所述第一传输单元,配置为在所述预定义子帧上以所述数据传 输方式传输所述数据。
  31. 一种计算机存储介质,所述计算机存储介质中存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于执行前述的权利要求1至13任一项所述的数据传输方法。
  32. 一种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行前述的权利要求14或15所述的数据传输方法。
  33. 一种计算机存储介质,所述计算机存储介质中存储有第三组计算机可执行指令,所述第三组计算机可执行指令用于执行前述的权利要求16或17所述的数据传输方法。
PCT/CN2014/088779 2014-05-19 2014-10-16 数据传输方法、装置及相关计算机存储介质 WO2015176476A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14892311.3A EP3133765B1 (en) 2014-05-19 2014-10-16 Data transmission method and device, and related computer storage medium
US15/312,511 US10165557B2 (en) 2014-05-19 2014-10-16 Data transmission method and device, and related computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410211457.7A CN105099642B (zh) 2014-05-19 2014-05-19 一种数据传输方法、装置及计算机存储介质
CN201410211457.7 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015176476A1 true WO2015176476A1 (zh) 2015-11-26

Family

ID=54553348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088779 WO2015176476A1 (zh) 2014-05-19 2014-10-16 数据传输方法、装置及相关计算机存储介质

Country Status (4)

Country Link
US (1) US10165557B2 (zh)
EP (1) EP3133765B1 (zh)
CN (1) CN105099642B (zh)
WO (1) WO2015176476A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475357A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 帧结构的指示方法及装置、存储介质、处理器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089261A1 (en) * 2014-12-02 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Detection of sleeping cells in a communication network
CN107580797B (zh) * 2015-05-10 2020-12-22 Lg 电子株式会社 无线通信系统中适配用于上行链路传输的重复等级的方法和装置
CN106804041B (zh) * 2015-11-26 2019-12-27 上海诺基亚贝尔股份有限公司 一种无线通信方法和设备
CN106851827A (zh) * 2015-12-04 2017-06-13 北京信威通信技术股份有限公司 用于非授权频谱的下行传输方法及系统
CN107026719B (zh) * 2016-01-29 2021-02-23 华为技术有限公司 信号传输方法和通信设备
CN107204825B (zh) * 2016-03-16 2019-07-12 华为技术有限公司 数据发送方法、数据接收方法、发送端设备及接收端设备
CN107634925B (zh) * 2016-07-18 2020-10-02 中兴通讯股份有限公司 同步信道的发送、接收方法及装置、传输系统
WO2018027795A1 (en) * 2016-08-11 2018-02-15 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
CN107733831B (zh) * 2016-08-12 2021-06-15 中兴通讯股份有限公司 无线信号传输方法及装置
CN107872415B (zh) * 2016-09-23 2022-07-15 中兴通讯股份有限公司 一种数据传输方法及装置
CN106358303A (zh) * 2016-09-26 2017-01-25 珠海市魅族科技有限公司 灵活双工的fdd系统的子帧配置方法、装置、基站及终端
CN107888528B (zh) * 2016-09-29 2020-06-02 电信科学技术研究院 一种数据发送方法、接收方法及装置
CN107888356B (zh) 2016-09-30 2021-05-07 华为技术有限公司 设置符号的方法和装置
WO2018129739A1 (zh) * 2017-01-16 2018-07-19 华为技术有限公司 一种确定发射功率的方法及无线通讯设备
CN108632790B (zh) * 2017-03-24 2023-06-13 中兴通讯股份有限公司 一种资源配置方法及装置
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置
WO2019029464A1 (zh) * 2017-08-07 2019-02-14 华为技术有限公司 用于灵活双工系统的数据传输方法及设备
CN111182633B (zh) * 2018-11-13 2022-06-10 华为技术有限公司 一种通信方法及装置
US11363050B1 (en) 2021-03-25 2022-06-14 Bank Of America Corporation Information security system and method for incompliance detection in data transmission
CN113556795B (zh) * 2021-07-20 2023-03-24 哈尔滨海能达科技有限公司 首次转发设备的确定方法、相关装置及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588201A (zh) * 2008-05-22 2009-11-25 展讯通信(上海)有限公司 频分双工系统、设备及方法
US20110096717A1 (en) * 2008-10-10 2011-04-28 Eun Sun Kim Method for transmitting relay node-specific control channel
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
CN102572920A (zh) * 2010-12-23 2012-07-11 普天信息技术研究院有限公司 异构网下的干扰协调方法
CN102740477A (zh) * 2011-03-31 2012-10-17 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110584A2 (en) * 2009-03-24 2010-09-30 Lg Electronics Inc. The method for identifying a mbsfn subframe at a user equipment (ue) in a wireless communication system
US9374148B2 (en) * 2009-11-17 2016-06-21 Qualcomm Incorporated Subframe dependent transmission mode in LTE-advanced
CN103404047B (zh) 2011-02-10 2016-10-19 Lg电子株式会社 在载波聚合系统中调度的方法和装置
US20130188533A1 (en) * 2012-01-23 2013-07-25 Hong He Dynamic Direction Changing in Time Division Duplex Radios
US8995377B2 (en) * 2012-05-11 2015-03-31 Blackberry Limited PHICH resource provisioning in time division duplex systems
US9769807B2 (en) * 2012-09-28 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, radio network node and methods therein
CN104904135A (zh) * 2012-10-05 2015-09-09 美国博通公司 用于半双工频分双工的方法、设备以及计算机程序

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588201A (zh) * 2008-05-22 2009-11-25 展讯通信(上海)有限公司 频分双工系统、设备及方法
US20110096717A1 (en) * 2008-10-10 2011-04-28 Eun Sun Kim Method for transmitting relay node-specific control channel
CN102572920A (zh) * 2010-12-23 2012-07-11 普天信息技术研究院有限公司 异构网下的干扰协调方法
CN102740477A (zh) * 2011-03-31 2012-10-17 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133765A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475357A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 帧结构的指示方法及装置、存储介质、处理器

Also Published As

Publication number Publication date
US10165557B2 (en) 2018-12-25
CN105099642A (zh) 2015-11-25
US20170094655A1 (en) 2017-03-30
EP3133765A4 (en) 2017-03-22
EP3133765A1 (en) 2017-02-22
CN105099642B (zh) 2019-06-07
EP3133765B1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
WO2015176476A1 (zh) 数据传输方法、装置及相关计算机存储介质
KR102507150B1 (ko) 승인 불요 구성
JP7134171B2 (ja) ワイヤレス通信における同期およびデータチャネルヌメロロジー
US11363572B2 (en) Uplink channel dynamic waveform switching
US10425962B2 (en) PUCCH design with flexible symbol configuration
JP6389905B2 (ja) 無線通信システムにおけるデータ送受信方法及びその装置
JP6615874B2 (ja) 強化されたコンポーネントキャリアのためのスケジューリングリクエストモード
WO2018174257A1 (ja) 端末装置、通信方法、および、集積回路
TW201939994A (zh) 上行鏈路和下行鏈路搶佔指示
WO2018174271A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2016187230A (ja) 無線通信システムのための動的時分割複信データチャンネル送信方法及び装置
KR20170056527A (ko) 비면허 스펙트럼 상에서의 셀 검출, 동기화 및 측정
US10903965B2 (en) Virtual time-domain multiplexing for reference signals and data with modified cyclic prefix
KR20200030026A (ko) 차세대 무선 통신 시스템에서의 광대역 부분을 고려한 동작 방법 및 장치
EP3573280B1 (en) Method for efficient transmission of uplink control channel information and a corresponding device
CN104798329A (zh) 用于发送数据的方法和设备以及用于发送数据的方法和设备
JP6753509B2 (ja) 通信を実行するための方法および装置
US11153905B2 (en) Method for supporting full duplex radio (FDR) operation in wireless communication system and apparatus therefor
TWI825848B (zh) 處理量測的通訊裝置及方法
TW202141942A (zh) 管理第五代(5g)新無線電(nr)天線切換併發性
TW202116095A (zh) 針對重複的上行鏈路傳輸的功率控制
JP2015089023A (ja) 無線基地局、ユーザ端末および無線通信方法
AU2017334335A1 (en) Virtual symbol splitting techniques in wireless communications
US11622365B1 (en) On-off transient power time mask at a UE supporting full-duplex GNB operation
JP6933283B2 (ja) 通信を実行するための方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892311

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312511

Country of ref document: US

Ref document number: 2014892311

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE