WO2015176421A1 - 功率调整及参数配置方法、相关设备、系统、存储介质 - Google Patents

功率调整及参数配置方法、相关设备、系统、存储介质 Download PDF

Info

Publication number
WO2015176421A1
WO2015176421A1 PCT/CN2014/086312 CN2014086312W WO2015176421A1 WO 2015176421 A1 WO2015176421 A1 WO 2015176421A1 CN 2014086312 W CN2014086312 W CN 2014086312W WO 2015176421 A1 WO2015176421 A1 WO 2015176421A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
pcmax
cell group
power
pcmax2
Prior art date
Application number
PCT/CN2014/086312
Other languages
English (en)
French (fr)
Inventor
郭森宝
陈光磊
刘轶
左志松
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015176421A1 publication Critical patent/WO2015176421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communications, and in particular, a method for power adjustment of a dual-link multi-carrier transmission in an LTE-A (Long Term Evolution Advanced) system, a method for configuring power parameters, a terminal, a base station, a system, and a related computer Storage medium.
  • LTE-A Long Term Evolution Advanced
  • an uplink channel of a terminal includes a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), and a Physical Random Access Channel (PUC).
  • PRACH Physical Random Access Channel
  • the PUSCH can transmit data information, scheduling request (SR, Scheduling Request), hybrid automatic repeat request (HARQ), and channel state information (CSI).
  • SR scheduling request
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • the PUCCH can transmit SR and HARQ.
  • the CSI the PRACH is mainly used for uplink access of the terminal, and includes sending a preamble (Preamble) for random access on the configured time-frequency resource.
  • the receiving, by the base station, the Preamble sent by the terminal needs to send the Msg2 message to the terminal for the random access response.
  • the terminal If the terminal is based on the non-contention random access, the terminal considers that the random access is successful after receiving the Msg2 message. If the terminal is based on the contention-based random access, the terminal needs to send the Msg3 message for the random access conflict resolution after receiving the Msg2 message. After receiving the Msg3, the base station needs to send the Msg4 to the terminal for the shorthand access conflict resolution indication. When the contention resolution flag in the Msg4 sent by the base station is consistent with the contention resolution flag in the Msg3, the terminal considers that the contention resolution is successful.
  • CA carrier aggregation
  • the PUCCH is only sent on the Pcell.
  • a process of simultaneously transmitting a random access channel and a PUCCH on multiple carriers may occur.
  • the PUSCH of multiple carriers is transmitted simultaneously, if the power is limited, the power of multiple PUSCHs exceeds the maximum power value supported by the terminal, and the power of the PUSCH with uplink control information (UCI, Uplink Control Information) is preferentially guaranteed, and then other The PUSCH of the carrier uses equal power allocation.
  • UCI Uplink Control Information
  • the power of the PUCCH and the PUSCH are simultaneously transmitted, if the power is limited, the power of the PUCCH and the one or more PUSCHs exceeds the maximum power value supported by the terminal, first, the power of the PUCCH is guaranteed, and secondly, the power of the PUSCH with the UCI is guaranteed, and then other
  • the PUSCH uses equal power allocation. Since the CA scenario mainly considers an ideal backhaal connection, scheduling information between multiple carriers is shared with each other, and power allocation information is also mutually Time sharing, in which multiple carriers can cooperate with each other to avoid exceeding the maximum power of the terminal. When the maximum power of the terminal is exceeded, multiple carrier machines can predict and calculate the adjustment values of the corresponding terminals for each carrier and channel.
  • the introduction of the dual link technology is considered.
  • the biggest difference between the dual link technology and the CA is that the two eNBs of the dual link adopt a non-ideal backhual connection, and the scheduling between the two nodes is independent. Since the independent scheduling is introduced, the two carriers cannot dynamically share the uplink scheduling information and the corresponding power control information. If the two carriers are independently configured with the maximum power value, the uplink power is limited. If independent restrictions are not imposed, the channels configured by the two eNBs will cause the terminal to transmit the channel power on the two eNBs and exceed the maximum power value supported by the terminal. At this time, a solution mechanism needs to be introduced to ensure that the terminal can handle such a power-limited multi-uplink channel transmission scheme in a dual-link scenario.
  • the embodiment of the present invention is directed to the improvement of the foregoing problem in the dual-link base station scenario in the LTE-A system, that is, the technical problem to be solved by the embodiment of the present invention is to provide a power adjustment method, a power parameter configuration method, a terminal, and a base station. And the system and related computer storage media can effectively solve the power limitation problem existing in the double link scenario in the LTE-A system.
  • An embodiment of the present invention provides a method for power adjustment, where the method includes:
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the power configuration value P0 of the first cell group CG0 and/or the power configuration value P1 of the second cell group CG1 are obtained by the terminal receiving the high layer signaling configured by the base station.
  • the power value of the overlapping part of the time domain includes:
  • the power values of one subframe Subframe i of the first cell group CG0 and the two subframe Subframe j and Subframe j+1 overlapping portions Part1 and Part2 of the second cell group CG1 are P1P1 and P2P1, respectively;
  • the power values of the sub-frames Subframe j of the CG1 and the two sub-frames Subframe i and Subframe i+1 of the CG0 are respectively P1P0 and P2P0, where i and j are non-negative integers.
  • the power value of the overlapping part of the time domain includes:
  • the power value of one subframe Subframe i of the first cell group CG0 and one subframe Subframe j of the second cell group CG1 is P1P1;
  • the sum of the uplink transmission power set by the first cell group for the terminal and the uplink transmission power set by the second cell group for the terminal is greater than the maximum transmission supported by the terminal.
  • Power including:
  • SP0 and P1P1 are greater than PCMAX1; or,
  • SP0 and P2P1 are greater than PCMAX2; or,
  • SP1 and P1P0 are greater than PCMAX1; or,
  • SP1 and P2P0 are greater than PCMAX2;
  • the SP0 and the SP1 are the scheduled power values of the first cell group CG0 and the second cell group CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of the terminal at Part1 and Part2, respectively.
  • the uplink transmit power of the first cell group and the second cell group are adjusted, including:
  • the performing the first level power adjustment includes:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • PCMAX is the smaller value of PCMAX1 and PCMAX2; or PCMAX is taken as any value of PCMAX1 and PCMAX2;
  • the value of PX1 is P1P1 and P2P1. Larger value;
  • PX0 is the larger of P1P0 and P2P0;
  • PCMAX1-P1P1 When determining the value of the adjusted uplink power TP0 of CG0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes PCMAX2 Value, PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of the uplink transmit power TP1 of the adjusted CG1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes PCMAX2 Value, PX0 takes the value of P2P0.
  • the method further includes:
  • the first stage power adjustment is performed
  • Performing the first level power adjustment including:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • TP0 max[min(P0,SP0),PCMAX-PX1];
  • TP1 min[SP1, PCMAX-min(P0, PX0)];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • TP0 is the uplink transmit power value of the adjusted CG0;
  • TP1 is the uplink transmit power value of the adjusted CG1;
  • PCMAX is the smaller of PCMAX1 and PCMAX2. Value; or, PCMAX takes any value of PCMAX1, PCMAX2;
  • PX1 takes the larger value of P1P1, P2P1;
  • PX0 is the larger value of P1P0, P2P0;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1. ;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the second-level power adjustment is performed; wherein the second-level power adjustment is according to the uplink channel in the first cell group CG0 and the second cell group CG1 group.
  • the priority and/or the priority of the cell group are performed.
  • the embodiment of the invention further provides a method for configuring a power parameter, the method comprising:
  • the base station Determining, by the terminal, the uplink channel to the first cell group corresponding to the first base station, and the terminal transmitting the uplink channel to the presence time domain overlap portion of the second cell group corresponding to the second cell group, and determining the first
  • the base station sends the predefined information to the terminal, Adjusting the uplink transmit power of the first cell group and the second cell group by using the predefined information of the terminal;
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the base station configures, by the high layer signaling, the power configuration value P0 of the first cell group CG0 and/or the power configuration value P1 of the second cell group CG1.
  • the power value of the overlapping part of the time domain includes:
  • the power values of one subframe Subframe i of the first cell group CG0 and the two subframe Subframe j and Subframe j+1 overlapping portions Part1 and Part2 of the second cell group CG1 are P1P1 and P2P1, respectively;
  • the power values of the sub-frames Subframe j of the CG1 and the two sub-frames Subframe i and Subframe i+1 of the CG0 are respectively P1P0 and P2P0, where i and j are non-negative integers.
  • the power value of the overlapping part of the time domain includes:
  • the power value of one subframe Subframe i of the first cell group CG0 and one subframe Subframe j of the second cell group CG1 is P1P1;
  • the power value of one sub-frame Subframe j of CG1 and one sub-frame Subframe i of CG0 is P1P0, where i and j are non-negative integers.
  • determining that the sum of the uplink transmit power set by the first cell group for the terminal and the uplink transmit power set by the second cell group for the terminal is greater than the maximum transmit power supported by the terminal including:
  • SP0 and P1P1 are greater than PCMAX1; or,
  • SP0 and P2P1 are greater than PCMAX2; or,
  • SP1 and P1P0 are greater than PCMAX1; or,
  • SP1 and P2P0 are greater than PCMAX2;
  • the SP0 and the SP1 are the scheduled power values of the first cell group CG0 and the second cell group CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of the terminal at Part1 and Part2, respectively.
  • the uplink transmit power of the first cell group and the second cell group are adjusted, including:
  • the performing the first level power adjustment includes:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • PCMAX is the smaller value of PCMAX1 and PCMAX2; or PCMAX is taken as any value of PCMAX1 and PCMAX2;
  • the value of PX1 is P1P1 and P2P1. Larger value;
  • PX0 is the larger of P1P0 and P2P0;
  • PCMAX1-P1P1 When determining the value of the adjusted uplink power TP0 of CG0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes PCMAX2 Value, PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of the uplink transmit power TP1 of the adjusted CG1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes PCMAX2 Value, PX0 takes the value of P2P0.
  • the method further includes:
  • the triggering terminal When the base station determines that the priority of the first cell group CG0 is higher than the second cell group CG1, the triggering terminal performs the first-level power adjustment;
  • the terminal performs first-level power adjustment, including:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • TP0 max[min(P0,SP0),PCMAX-PX1];
  • TP1 min[SP1, PCMAX-min(P0, PX0)];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • TP0 is the uplink transmit power value of the adjusted CG0;
  • TP1 is the uplink transmit power value of the adjusted CG1;
  • PCMAX is the smaller of PCMAX1 and PCMAX2. Value; or, PCMAX takes any value of PCMAX1, PCMAX2;
  • PX1 takes the larger value of P1P1, P2P1;
  • PX0 is the larger value of P1P0, P2P0;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1. ;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the method further includes:
  • the triggering terminal When the base station determines that the sum of TP0 and TP1 is greater than PCMAX, the triggering terminal performs the second-level power adjustment; the second-stage power adjustment of the terminal is performed according to the uplink channel in the first cell group CG0 and the second cell group CG1 group. Priority and/or priority of the cell group to be performed.
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a learning module, an obtaining module, and an adjusting module;
  • the learning module is configured to: when the subframe in which the uplink channel is sent to the first cell group corresponding to the first base station, and the subframe in which the uplink channel is transmitted to the second cell group corresponding to the second base station, the time domain overlap portion is configured, And acquiring, when the sum of the uplink transmit power set by the first cell group and the uplink transmit power set by the second cell group is greater than the maximum transmit power supported by the terminal, triggering the acquiring module;
  • the obtaining module is configured to obtain predefined information
  • the adjusting module is configured to adjust uplink transmit power of the first cell group and the second cell group according to the predefined information
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the terminal further includes:
  • the receiving module is configured to receive the high layer signaling configured by the base station, so as to obtain the power configuration value P0 of the first cell group CG0 and the power configuration value P1 of the second cell group CG1.
  • the power value of the time domain overlapping portion acquired by the acquiring module includes:
  • the power values of one subframe Subframe i of the first cell group CG0 and the two subframe Subframe j and Subframe j+1 overlapping portions Part1 and Part2 of the second cell group CG1 are P1P1 and P2P1, respectively;
  • the power values of the sub-frames Subframe j of the CG1 and the two sub-frames Subframe i and Subframe i+1 of the CG0 are respectively P1P0 and P2P0; wherein i and j are non-negative integers.
  • the power value of the time domain overlapping portion acquired by the acquiring module includes:
  • the power value of one subframe Subframe i of the first cell group CG0 and one subframe Subframe j of the second cell group CG1 is P1P1; and one subframe Subframe j of CG1 overlaps with one subframe Subframe i of CG0
  • the power value of Part1 is P1P0, where i and j are non-negative integers.
  • the learning module is further configured to:
  • the SP0 and the SP1 are the scheduled power values of the first cell group CG0 and the second cell group CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of the first group and the part 2, respectively.
  • the adjustment module is further configured to:
  • the adjustment module is further configured to:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1, respectively; It is the smaller value of PCMAX1 and PCMAX2; or PCMAX takes any value of PCMAX1 and PCMAX2; the value of PX1 is the larger value of P1P1 and P2P1; PX0 is the larger value of P1P0 and P2P0;
  • PCMAX1-P1P1 When determining the value of the adjusted uplink power TP0 of CG0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes PCMAX2 Value, PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of the uplink transmit power TP1 of the adjusted CG1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes PCMAX2 Value, PX0 takes the value of P2P0.
  • the adjusting module is further configured to perform a first-level power adjustment when the priority of the CG0 is higher than the CG1;
  • the adjustment module is further configured to:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • TP0 is the uplink transmit power value of the adjusted CG0;
  • TP1 is the uplink transmit power value of the adjusted CG1;
  • PCMAX is the smaller of PCMAX1 and PCMAX2. Value; or, PCMAX takes any value of PCMAX1, PCMAX2;
  • PX1 takes the larger value of P1P1, P2P1;
  • PX0 is the larger value of P1P0, P2P0;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1. ;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the adjusting module is configured to perform a second-level power adjustment when the sum of TP0 and TP1 is greater than PCMAX;
  • the second level power adjustment is performed according to the uplink channel priority and/or the priority of the cell group in the first cell group CG0 and the second cell group CG1 group.
  • An embodiment of the present invention further provides a base station, where the base station includes: a determining unit, a first sending unit, where
  • the determining unit is configured to: when determining that the terminal sends the uplink channel to the first cell group corresponding to the first base station, and the terminal transmits the uplink channel to the second cell group corresponding to the second cell group, the existing time domain overlap portion And determining that the sum of the uplink transmit power set by the first cell group for the terminal and the uplink transmit power set by the second cell group for the terminal is greater than the maximum transmit power supported by the terminal, triggering the First sending unit;
  • the first sending unit is configured to send the predefined information to the terminal, so that the predefined information of the terminal adjusts the uplink sending power of the first cell group and the second cell group;
  • the predefined information includes: a power configuration of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the base station further includes a second sending unit and a receiving unit;
  • the second sending unit is configured to send the power configuration value configured by the cell group to the terminal by using the high layer signaling to the terminal;
  • the receiving unit is configured to receive uplink channel data according to the predefined information.
  • the predefined information sent by the first sending unit includes a power value of a time domain overlapping portion: a power value of the time domain overlapping portion, including:
  • the power values of one subframe Subframe i of the first cell group CG0 and the two subframe Subframe j and Subframe j+1 overlapping portions Part1 and Part2 of the second cell group CG1 are P1P1 and P2P1, respectively;
  • the power values of the sub-frames Subframe j of the CG1 and the two sub-frames Subframe i and Subframe i+1 of the CG0 are respectively P1P0 and P2P0, where i and j are non-negative integers.
  • the predefined information sent by the first sending unit includes a power value of a time domain overlapping portion; and the power value of the time domain overlapping portion includes:
  • the power value of one subframe Subframe i of the first cell group CG0 and one subframe Subframe j of the second cell group CG1 is P1P1;
  • a sub-frame Subframe j of CG1 and a sub-frame Subframe i of CG0 overlap the power value P1P0 of the portion Part1, where i and j are non-negative integers.
  • the determining unit is further configured to:
  • the SP0 and the SP1 are the scheduled power values of the first cell group CG0 and the second cell group CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of the terminal at Part1 and Part2, respectively.
  • the terminal includes:
  • the learning module is configured to have a time domain overlap portion in a subframe in which the uplink channel is transmitted to the first cell group corresponding to the first base station, and a subframe in which the uplink channel is transmitted to the second cell group corresponding to the second base station, and the time domain overlap is obtained.
  • the acquiring module is triggered when the sum of the uplink transmission power set by the first cell group and the uplink transmission power set by the second cell group is greater than the maximum transmission power supported by the terminal;
  • the adjusting module is configured to adjust uplink transmit power of the first cell group and the second cell group according to the predefined information
  • the adjusting module is further configured to: perform first-level power adjustment, or perform first-level power adjustment and second-level power adjustment.
  • the adjustment module is further configured to perform first-level power adjustment
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • PCMAX is the smaller value of PCMAX1 and PCMAX2; or PCMAX is taken as any value of PCMAX1 and PCMAX2;
  • the value of PX1 is P1P1 and P2P1. Larger value;
  • PX0 is the larger of P1P0 and P2P0;
  • PCMAX1-P1P1 When determining the value of the adjusted uplink power TP0 of CG0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes PCMAX2 Value, PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of the uplink transmit power TP1 of the adjusted CG1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes PCMAX2 Value, PX0 takes the value of P2P0.
  • the adjusting module is further configured to: when the determining unit determines that the priority of the first cell group CG0 is higher than the second cell group CG1, perform the first level power adjustment;
  • the adjustment module is further configured to:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • TP0 is the uplink transmit power value of the adjusted CG0;
  • TP1 is the uplink transmit power value of the adjusted CG1;
  • PCMAX is the smaller of PCMAX1 and PCMAX2. Value; or, PCMAX takes any value of PCMAX1, PCMAX2;
  • PX1 takes the larger value of P1P1, P2P1;
  • PX0 is the larger value of P1P0, P2P0;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the determining unit is configured to determine that the sum of TP0 and TP1 is greater than PCMAX, triggering the first sending unit;
  • the first sending unit is configured to send the predefined information, so that the terminal performs power adjustment of the first level and the second level; wherein the second level power adjustment of the terminal is performed according to the first cell group CG0 and the first The uplink channel priority and/or the cell group priority in the CG1 group of the two cell group is performed.
  • the embodiment of the present invention further provides a power adjustment system, where the system includes: a base station and a terminal; the base station includes at least a first base station and a second base station;
  • the base station is configured to: in a subframe in which the terminal transmits the uplink channel to the first cell group corresponding to the first base station, and a subframe in which the terminal transmits the uplink channel to the second cell group corresponding to the second base station, and has a time domain overlapping portion, and Sending a predefined when the sum of the uplink transmit power set by the first cell group for the terminal and the uplink transmit power set by the second cell group for the terminal is greater than the maximum transmit power supported by the terminal information;
  • the terminal is configured to adjust uplink transmit power of the first cell group and the second cell group according to the predefined information
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a first set of computer executable instructions, and the first set of computer executable instructions are used for the foregoing method of power adjustment.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a second set of computer executable instructions, and the second set of computer executable instructions are used to execute the foregoing power parameter configuration method.
  • the uplink power of each cell group is adjusted according to the power configuration value of the cell group and the power value of the overlapping portion of the cell group corresponding to the cell group, and the power limitation of the dual-link base station scenario in the LTE-A system is solved.
  • the problem has reached a flexible adjustment of power.
  • FIG. 1 is a flowchart of an implementation of a method for power adjustment according to an embodiment of the present invention
  • 2a is a schematic diagram of a scene 1 of a cell group CG0 and CG1 subframe overlap
  • 2b is a schematic diagram of a scenario 2 of cell group CG0 and CG1 subframe overlap
  • 2c is a schematic diagram of a cell group CG0 and CG1 subframe overlap scenario 3;
  • 2d is a schematic diagram of a cell group CG0 and CG1 subframe overlap scene 4;
  • FIG. 3a is a schematic diagram of a scenario 1 according to Embodiment 1 of the present invention.
  • FIG. 3b is a schematic diagram of a second scenario according to Embodiment 1 of the present invention.
  • 4a is a schematic diagram of scenario 1 of Embodiment 2 of the present invention.
  • 4b is a schematic diagram of scenario 2 of Embodiment 2 of the present invention.
  • FIG. 5a is a schematic diagram of scenario 1 of Embodiment 3 of the present invention.
  • FIG. 5b is a schematic diagram of scenario 2 of Embodiment 3 of the present invention.
  • FIG. 6a is a schematic diagram of scenario 1 of Embodiment 4 of the present invention.
  • 6b is a schematic diagram of scenario 2 of Embodiment 4 of the present invention.
  • FIG. 7a is a schematic diagram of scenario 1 of Embodiment 5 of the present invention.
  • FIG. 7b is a schematic diagram of scenario 2 of Embodiment 5 of the present invention.
  • FIG. 8a is a schematic diagram of scenario 1 of Embodiment 6 of the present invention.
  • FIG. 8b is a schematic diagram of scenario 2 of Embodiment 6 of the present invention.
  • FIG. 9a is a schematic diagram of scenario 1 of Embodiment 7 of the present invention.
  • 9b is a schematic diagram of scenario 2 of Embodiment 7 of the present invention.
  • FIG. 10a is a schematic diagram of scenario 1 of Embodiment 8 of the present invention.
  • Figure 10b is a schematic diagram of the second scenario of the eighth embodiment of the present invention.
  • Figure 11a is a schematic diagram of scenario 1 of Embodiment 9 of the present invention.
  • 11b is a schematic diagram of scenario 2 of Embodiment 9 of the present invention.
  • Figure 12a is a schematic diagram of scenario 1 of the tenth embodiment of the present invention.
  • 12b is a schematic diagram of scenario 2 of the tenth embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a base station according to an embodiment of the present invention.
  • 15 is a schematic diagram of a power adjustment system provided in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of an implementation of a power adjustment method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • step S01 the subframe in which the terminal transmits the uplink channel to the first cell group corresponding to the first base station and the subframe in which the terminal transmits the uplink channel to the second cell group corresponding to the second base station have a time domain overlapping portion, and the obtained Obtaining predefined information when the sum of the uplink transmit power set by the first cell group and the uplink transmit power set by the second cell group for the terminal is greater than the maximum transmit power supported by the terminal;
  • the first cell group corresponding to the first base station is regarded as the cell group CG0; the second cell group corresponding to the second base station is regarded as the cell group CG1.
  • Step S02 uplinking the first cell group and the second cell group according to the predefined information.
  • the power is adjusted.
  • the predefined information includes: a power configuration value P0 of the first cell group and/or a power configuration value P1 of the second cell group, and a power value of the time domain overlapping portion.
  • the power configuration values of the cell group CG0 and/or the cell group CG1 are obtained by the terminal by receiving high-level signaling configured by the base station.
  • FIG. 2a, 2b, 2c, 2d show scenarios in which cell groups CG0 and CG1 subframes overlap.
  • one subframe Subframe i of CG0 overlaps with two subframes Subframe j and Subframe j+1 of CG1, and the overlapping portions are Part1 and Part2 respectively; wherein the power value of CG1 Part1 is recorded as P1P1, CG1 Part2 The power value is recorded as P2P1;
  • one subframe Subframe j of CG1 overlaps with two subframes Subframe i and Subframei+1 of CG0, and the overlapping portions are Part1 and Part2 respectively; wherein the power value of CG0 Part1 is P1P0, and the power value of CG1 Part2 is Is P2P0.
  • the values of P1P1, P2P1, P1P0, and P2P0 may be determined by the terminal based on one or more reference power values configured by the receiving base station.
  • one subframe Subframe i of CG0 overlaps with one subframe Subframe j of CG1, and the overlapping portion is Part1, and its power value is P1P1;
  • one subframe Subframe j of CG1 overlaps with one subframe Subframe i of CG0, and the power value P1P0 of the overlapping portion Part1, where i and j are non-negative integers.
  • SP0 and SP1 are respectively scheduled power values of CG0 and CG1 in the corresponding subframe
  • P0 and P1 are power values assigned to the terminals by CG0 and CG1, respectively, and are also referred to as configured power values of CG0 and CG1.
  • the terminal can obtain P0 and P1 by receiving high layer signaling configured by the base station.
  • the two cell groups CG0 and CG1 are the uplink transmit power set by the terminal and the maximum transmit power supported by the terminal, including:
  • SP0 and P1P1 are greater than PCMAX1; or,
  • SP0 and P2P1 are greater than PCMAX2; or,
  • SP1 and P1P0 are greater than PCMAX1; or,
  • SP1 and P2P0 are greater than PCMAX2;
  • SP0 and SP1 are the scheduled power values of CG0 and CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of Part1 and Part2 respectively configured by the terminal.
  • the second stage power adjustment can be performed; or, when CG0 and CG1 have priority order, the power adjustment is comprehensively performed.
  • the first level of power adjustment includes:
  • the determining step of the uplink transmission power value TP0 of CG0 is:
  • the determining step of the uplink transmission power value TP1 of the CG1 is:
  • the determining step of the uplink transmission power value TP0 of CG0 is:
  • the larger value of min(P0, SP0) and PCMAX-PX1 is determined as the adjusted uplink transmission power value TP0.
  • the determining step of the uplink transmission power value TP1 of the CG1 is:
  • the larger value of min(P1, SP1) and PCMAX-PX0 is determined as the adjusted uplink transmission power value TP1.
  • PCMAX takes the smaller value of PCMAX1 and PCMAX2; or PCMAX takes any value of PCMAX1 and PCMAX2; PX1 takes the larger value of P1P1 and P2P1; PX0 is P1P0, and P2P0 is larger. value;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1. ;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the second level power adjustment may be performed; the second level power adjustment may be performed according to the CG0 and CG1 groups.
  • the uplink channel priority is used, and the channel priority allocation power with a high uplink channel priority may also be performed according to the cell group priority. For example, when the priority of CG0 is higher than the priority of CG1, the transmission power of CG0 is preferentially guaranteed. .
  • TP0 and TP1 can be determined according to the following formula:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • TP0 max[min(P0,SP0),PCMAX-PX1];
  • TP1 min[SP1, PCMAX-min(P0, PX0)];
  • TP0 and TP1 can be determined by the following formula:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 and TP1 can be determined by the following formula:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • PCMAX, PX1, and PX0 are the same as described above.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • P0+P1 ⁇ PCMAX, CG0 and CG1 are the uplink transmission power set by the UE and greater than the maximum transmission power supported by the UE, and the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • P0+P1 ⁇ PCMAX, CG0 and CG1 are the uplink transmission power set by the UE and greater than the maximum transmission power supported by the UE, and the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • the value of the transmit power TP0 is equal to the value of SP0.
  • P0+P1 ⁇ PCMAX, CG0 and CG1 are the uplink transmit power set by the terminal and greater than the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • P0+P1 ⁇ PCMAX, CG0 and CG1 set the uplink transmit power to the terminal and the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • P0+P1 PCMAX
  • CG0 and CG1 set the uplink transmit power to the terminal and the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • the value of the transmission power TP0 of the uplink channel corresponding to the subsequent CG0 is equal to the difference between PCMAX and PX1.
  • P0+P1 PCMAX
  • CG0 and CG1 are the uplink transmission power set by the terminal and greater than the maximum transmission power supported by the UE, and the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • CG0 and CG1 are the uplink transmission power set by the terminal and greater than the maximum transmission power supported by the UE, and the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • CG0 and CG1 are the uplink transmit power set by the terminal and greater than the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • CG0 and CG1 are the uplink transmission power set by the terminal and greater than the maximum transmission power supported by the UE, and the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • P0+P1>PCMAX, CG0 and CG1 are set for the terminal.
  • the uplink transmit power is greater than the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • the value of the transmission power TP0 of the uplink channel corresponding to the adjusted CG0 is equal to the difference between PCMAX and PX1.
  • two base stations are assumed to be a primary base station MeNB (Master eNB) and a secondary base station SeNB (Slave eNB), and the MeNB and the SeNB are dual-link eNBs, and the corresponding two cell groups are CG0 and CG1, respectively.
  • Dual-link UE User Terminal
  • the UE establishes a dual link on the MeNB and the SeNB.
  • the cell group CG0 and CG1 set the uplink transmission power for the UE and is greater than the UE supports.
  • the UE needs to adjust the transmit power of the uplink channel corresponding to the two cell groups, and the adjustment may be divided into two levels of adjustment, namely, the first-level power adjustment and the second-level power adjustment.
  • the first-stage power adjustment is performed according to the power configuration value P0 of the cell group CG0 and/or the power configuration value P1 of the cell group CG1 and the power value of the time-domain overlapping portion, and the UE may receive a high-level letter configured by the base station. Let P0 and P1 be obtained; the second-level power adjustment is adjusted according to the uplink channel priority rule predefined by the terminal and the base station or the priority rule of the cell group.
  • the UE Before performing the first power adjustment, the UE also needs to obtain the power scheduling value SP0 of the CG0 in the corresponding subframe, the power scheduling value SP1 of the CG1 in the corresponding subframe, and PX0 and PX1, where PX0 is the power about the CG0.
  • the value specifically, the maximum power value of the overlap of CG0 and CG1 in the time domain.
  • PX1 is the power value with respect to CG1, specifically, the maximum power value of the overlapping portion of CG1 and CG0 in the time domain.
  • the specific scenario may be: one subframe of CG0 overlaps with at most two subframes of CG1, corresponding to two overlapping portions; one subframe of CG1 overlaps with at most two subframes of CG0, corresponding to two overlapping portions.
  • One sub-frame overlaps with two sub-frames of CG0.
  • the two parts are Part1 and Part2 respectively.
  • the power value of CG0 Part1 is P1P0
  • the power value of CG0 Part2 is P2P0
  • PX0 max(P1P0, P2P0)
  • P1P1P0, P2P0 the power received by the terminal to receive the base station.
  • the specific first level power adjustment can be:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[SP1, PCMAX-min(P0, PX0)];
  • TP0 max[min(P0,SP0),PCMAX-PX1];
  • TP1 max[min(P1,SP1),PCMAX-PX0];
  • TP0 and TP1 are the uplink transmission power values of CG0 and CG1 after the terminal performs the first adjustment.
  • the second stage power adjustment is not performed.
  • TP0+TP1>PCMAX it indicates that there is still power limitation, and the second-level power adjustment is needed.
  • the second-stage power adjustment may perform power adjustment according to the uplink channel priority in the cell group, that is, the uplink channel priority in the CG0 and the CG1, and the channel priority is allocated in the uplink channel with a higher priority;
  • the power adjustment may also be performed according to the channel priority of the cell group, wherein the cell group with high priority is preferentially guaranteed to transmit power. For example, when the channel priority of CG0 is high, the transmission power of CG0 is preferentially guaranteed.
  • the two-level power adjustment may be combined into a first-level power adjustment, that is, only the first-level power adjustment is performed.
  • the adjustment method may be: (with CG0 Priority is higher than CG1 as an example)
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • TP0 max[min(P0,SP0),PCMAX-PX1];
  • TP1 min[SP1, PCMAX-min(P0, PX0)];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1,P1),PCMAX-PX0];
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0,P1), SP1];
  • P1, CG0 and CG1 are set for the terminal.
  • the uplink transmit power and the overlap region are larger than the maximum transmit power supported by the UE, and the terminal needs to adjust the transmit power of the uplink channel corresponding to CG0 and CG1.
  • TP0 adjust according to the following formula:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 min[max(PCMAX-PX0, P1), SP1].
  • the terminal needs to adjust the transmission power of the uplink channel corresponding to CG0 and CG1.
  • TP0 adjust according to the following formula:
  • TP0 min[SP0,PCMAX-min(P1,PX1)];
  • TP1 max[min(SP1, P1), PCMAX-PX0].
  • the uplink transmission power set by the CG0 and CG1 to the terminal is greater than the maximum transmission power supported by the UE, and the terminal needs the uplink channel corresponding to CG0 and CG1.
  • Transmit power is adjusted.
  • the uplink transmission power set by the CG0 and CG1 to the terminal and the overlapped part are greater than the maximum transmission power supported by the UE, and the terminal needs to correspond to CG0 and CG1.
  • the transmission power of the uplink channel is adjusted.
  • a method for configuring a power parameter according to an embodiment of the present invention is applied to a base station side, and includes: determining, in a subframe, transmitting, by the terminal, an uplink channel to a first cell group corresponding to the first base station, and transmitting, by the terminal, an uplink channel to the second base station.
  • the time domain overlap portion of the subframe of the second cell group is determined, and the sum of the uplink transmit power set by the first cell group for the terminal and the uplink transmit power set by the second cell group for the terminal is determined.
  • the base station When the maximum transmit power supported by the terminal is greater, the base station The terminal sends the predefined information, so that the terminal adjusts the uplink sending power of the first cell group and the second cell group according to the predefined information, where the predefined information includes: the first The power configuration value P0 of the cell group CG0 and/or the power configuration value P1 of the second cell group CG1 and the power value of the time domain overlap portion.
  • the first cell group corresponding to the first base station is regarded as the cell group CG0; the second cell group corresponding to the second base station is regarded as the cell group CG1.
  • the embodiment of the present invention further provides a terminal.
  • the terminal includes a learning module 131, an obtaining module 132, and an adjusting module 133.
  • the learning module 131 is configured to: when the subframe in which the uplink channel is sent to the first cell group corresponding to the first base station, and the subframe in which the uplink channel is transmitted to the second cell group corresponding to the second base station, the time domain overlap portion is configured. And acquiring the triggering module 132 when the sum of the uplink transmission power set by the first cell group and the uplink transmission power set by the second cell group is greater than the maximum transmission power supported by the terminal;
  • the obtaining module 132 is configured to obtain predefined information.
  • the adjusting module 133 is configured to adjust uplink transmit power of the first cell group and the second cell group according to the predefined information
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the terminal further includes:
  • the receiving module (not shown in FIG. 13) is configured to receive the high layer signaling configured by the base station, thereby obtaining the power configuration value P0 of the first cell group CG0 and the power configuration value P1 of the second cell group CG1.
  • the power value of the time domain overlapping portion acquired by the obtaining module 132 includes:
  • the power values of one subframe Subframe i of the first cell group CG0 and the two subframe Subframe j and Subframe j+1 overlapping portions Part1 and Part2 of the second cell group CG1 are P1P1 and P2P1, respectively;
  • the power value of one subframe Subframe i of the first cell group CG0 and one subframe Subframe j of the second cell group CG1 is P1P1; and one subframe Subframe j of CG1 overlaps with one subframe Subframe i of CG0
  • the power value of Part1 is P1P0, where i and j are non-negative integers.
  • the learning module 132 is further configured to:
  • the uplink transmission power set by the first cell group for the terminal and the uplink transmission set by the second cell group for the terminal are learned.
  • the sum of the powers is greater than the maximum transmit power supported by the terminal;
  • the SP0 and the SP1 are the scheduled power values of the first cell group CG0 and the second cell group CG1 in the corresponding subframes respectively;
  • PCMAX1 and PCMAX2 are the maximum supported powers of the first group and the part 2, respectively.
  • the adjustment module 133 is further configured to: perform first-level power adjustment, or perform first-level power adjustment and second-level power adjustment.
  • the adjustment module 133 is further configured to:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • PCMAX is the smaller value of PCMAX1 and PCMAX2; or PCMAX is taken as any value of PCMAX1 and PCMAX2;
  • the value of PX1 is P1P1 and P2P1. Larger value;
  • PX0 is the larger of P1P0 and P2P0;
  • PCMAX1-P1P1 When determining the value of the adjusted uplink power TP0 of CG0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes PCMAX2 Value, PX1 takes the value of P2P1;
  • PCMAX1-P1P0 When determining the value of the uplink transmit power TP1 of the adjusted CG1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes PCMAX2 Value, PX0 takes the value of P2P0.
  • the adjusting module 133 is further configured to perform first-level power adjustment when the priority of the CG0 is higher than CG1;
  • the adjustment module 133 is further configured to:
  • P0 and P1 are the power values assigned to the terminal by CG0 and CG1 respectively;
  • TP0 is the uplink transmit power value of the adjusted CG0;
  • TP1 is the uplink transmit power value of the adjusted CG1;
  • PCMAX is the smaller of PCMAX1 and PCMAX2. Value; or, PCMAX takes any value of PCMAX1, PCMAX2;
  • PX1 takes the larger value of P1P1, P2P1;
  • PX0 is the larger value of P1P0, P2P0;
  • PCMAX1-P1P1 When determining the value of TP0, if PCMAX1-P1P1 is smaller than PCMAX2-P2P1, PCMAX takes the value of PCMAX1, PX1 takes the value of P1P1; if PCMAX1-P1P1 is greater than PCMAX2-P2P1, PCMAX takes the value of PCMAX2, and PX1 takes the value of P2P1. ;
  • PCMAX1-P1P0 When determining the value of TP1, if PCMAX1-P1P0 is smaller than PCMAX2-P2P0, PCMAX takes the value of PCMAX1, PX0 takes the value of P1P0; if PCMAX1-P1P0 is greater than PCMAX2-P2P0, PCMAX takes the value of PCMAX2, and PX0 takes the value of P2P0 .
  • the adjusting module 133 is configured to perform the second-level power adjustment when the sum of the TP0 and the TP1 is greater than the PCMAX; the second-level power adjustment is performed according to the uplink in the first cell group CG0 and the second cell group CG1 group The channel priority and/or the priority of the cell group are performed.
  • the learning module 131, the obtaining module 132, the adjusting module 133, and the receiving module can be centrally processed by a central processing unit (CPU), or a digital signal processing (DSP), or field programmable.
  • a central processing unit CPU
  • DSP digital signal processing
  • An FPGA Field Programmable Gate Array
  • the CPU, the DSP, and the FPGA may be built in the terminal.
  • the embodiment of the present invention further provides a base station.
  • the base station includes: a determining unit 141, a first sending unit 142, where
  • the determining unit 141 is configured to: when determining that the terminal sends the uplink channel to the first cell group corresponding to the first base station, and the terminal transmits the uplink channel to the second cell group corresponding to the second cell group. Part, and determining that the first cell group is configured for the uplink of the terminal. The first sending unit 141 is triggered when the sum of the transmit power and the uplink transmit power set by the second cell group is greater than the maximum transmit power supported by the terminal;
  • the first sending unit 142 is configured to send the predefined information to the terminal, so that the predefined information of the terminal adjusts the uplink sending power of the first cell group and the second cell group;
  • the predefined information includes: a power configuration of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the base station further includes a second sending unit and a receiving unit (not illustrated in FIG. 14);
  • the second sending unit is configured to send the power configuration value configured by the cell group to the terminal by using the high layer signaling
  • the receiving unit is configured to receive the uplink channel data according to the predefined information.
  • the determining unit 141, the first sending unit 142, the second sending unit, and the receiving unit may each be a central processing unit (CPU), or a digital signal processor (DSP), or Field Programmable Gate Array (FPGA) is implemented; the CPU, DSP, and FPGA can be built in the base station.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the present invention further provides a power adjustment system.
  • the system includes: a base station and a terminal; the base station includes at least a first base station and a second base station;
  • the base station is configured to: in a subframe in which the terminal transmits the uplink channel to the first cell group corresponding to the first base station, and a subframe in which the terminal transmits the uplink channel to the second cell group corresponding to the second base station, and has a time domain overlapping portion, and Sending a predefined when the sum of the uplink transmit power set by the first cell group for the terminal and the uplink transmit power set by the second cell group for the terminal is greater than the maximum transmit power supported by the terminal information;
  • the terminal is configured to adjust uplink transmit power of the first cell group and the second cell group according to the predefined information
  • the predefined information includes: a power configuration value of the first cell group and/or a power configuration value of the second cell group, and a power value of the time domain overlapping portion.
  • the first base station is preferably an MeNB, and the second base station is preferably an SeNB.
  • the uplink power of the cell groups CG0 and CG1 is adjusted.
  • the multiple CCs in a cell group can be adjusted according to the 3GPP standard protocol LTE R11 CA (Carrier Aggregation, carrier) according to the adjusted power of the cell group.
  • LTE R11 CA Carrier Aggregation, carrier
  • the embodiment of the present invention further provides a first computer storage medium, where the computer storage medium stores a first set of computer executable instructions, and the first set of computer executable instructions are used to perform the foregoing power adjustment method. .
  • the embodiment of the present invention further provides a second computer storage medium, wherein the computer storage medium stores a second set of computer executable instructions, and the second set of computer executable instructions are used to execute the foregoing configuration method of the power parameters.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种功率调整的方法,所述方法包括:在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,获取预定义信息;根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。同时,本发明还公开了一种功率参数配置方法、终端、基站、系统及相关存储介质。

Description

功率调整及参数配置方法、相关设备、系统、存储介质 技术领域
本发明涉及无线通信领域,特别是高级长期演进(LTE-A,Long Term Evolution Advanced)系统在双链接多载波传输时功率调整的方法、功率参数的配置的方法、终端、基站和系统、相关计算机存储介质。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,终端的上行信道包括物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、物理上行控制信道(PUCCH,Physical Uplink Control Channel)和物理随机接入信道(PRACH,Physical Random Access Channel)。其中,PUSCH中可以传输数据信息、调度请求(SR,Scheduling Request)、混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)和信道状态信息(CSI,Channel State Information),PUCCH中可以传输SR、HARQ和CSI;PRACH主要用于终端的上行接入,包括在配置的时频资源上发送前导(Preamble)进行随机接入。基站接收到终端发送的Preamble需要给终端发送Msg2消息用于随机接入响应,如果终端为基于非竞争随机接入,终端接收到Msg2消息即认为随机接入成功。如果终端为基于竞争随机接入,终端接收到Msg2消息后还需要发送Msg3消息用于随机接入冲突解决,基站接收到终端发送Msg3后需要给终端发送Msg4用于速记接入冲突解决指示,终端接收到基站发送的Msg4中的竞争解决标示和Msg3中的竞争解决标示一致时,终端认为竞争解决成功。
在相关技术中,载波聚合(CA,Carrier Aggregation)场景下,如果多个分量载波出现聚合发送,由于随机接入仅仅在主小区(Pcell)上发送,PUCCH也仅仅在Pcell上发送,这时不会出现多个载波上同时发送随机接入信道以及PUCCH的过程。当多个载波的PUSCH同时传输,如果功率受限,多个PUSCH的功率和超出了终端支持的最大功率值,优先保证带有上行控制信息(UCI,Uplink Control Information)的PUSCH的功率,然后其他载波的PUSCH采用等功率分配。当PUCCH和PUSCH同时传输时,如果功率受限,PUCCH和一个或者多个PUSCH的功率和超出了终端支持的最大功率值,首先保证PUCCH的功率,其次保证带有UCI的PUSCH的功率,然后其他PUSCH采用等功率分配。由于CA场景主要考虑理想后端连接(backhual),多个载波间的调度信息相互共享,功率分配信息也相互及 时共享,这时多个载波间可以相互协作避免超出终端的最大功率,当超出终端最大功率时,多个载波机可以预测并且计算对应的终端对于各个载波和信道的调整值。
在第三代合作伙伴计划3GPP协议R12阶段考虑引入双链接技术,双链接技术与CA的最大区别在于双链接的两个eNB采用了非理想backhual连接,两个节点之间的调度独立。由于引入了独立调度,两个载波不能动态的共享上行调度信息以及对应的功率控制信息,这时如果两个载波独立配置最大功率值,会导致上行功率受限浪费。如果不进行独立限制,两个eNB配置的信道会导致终端发送两个eNB上的信道功率和超出终端支持的最大功率值。这时需要引入一种解决机制,来保证终端在双链接场景下,可以处理这种功率受限的多上行信道发送的方案。
发明内容
本发明实施例针对LTE-A系统中双链接基站场景下的上述问题做出改进,即本发明实施例要解决的技术问题是提供一种功率调整的方法、功率参数配置的方法、终端、基站和系统、相关计算机存储介质,能够有效的解决LTE-A系统中双链接场景下存在的功率受限问题。
本发明实施例提供了一种功率调整的方法,所述方法包括:
在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,获取预定义信息;
根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
上述方案中,所述第一小区组CG0的功率配置值P0和/或所述第二小区组CG1的功率配置值P1是终端通过接收基站配置的高层信令而获得的。
上述方案中,所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、j为非负整数。
上述方案中,所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0;
其中,i、j为非负整数。
上述方案中,所述获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,包括:
SP0与P1P1的和大于PCMAX1;或者,
SP0与P2P1的和大于PCMAX2;或者,
SP1与P1P0的和大于PCMAX1;或者,
SP1与P2P0的和大于PCMAX2;
其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2的最大支持功率。
上述方案中,所述对第一小区组和第二小区组的上行发送功率进行调整,包括:
进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
上述方案中,所述进行第一级功率调整,包括:
当P0+P1<=PCMAX时,
确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
当P0+P1>PCMAX时,
确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
或者,
在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述方法还包括:
当第一小区组CG0的优先级高于第二小区组CG1时,进行第一级功率调整;
所述进行第一级功率调整,包括:
当P0+P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX时,
TP0=max[min(P0,SP0),PCMAX-PX1];
TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
或者,
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,当TP0与TP1之和大于PCMAX时,进行所述第二级功率调整;其中,所述第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级而进行。
本发明实施例还提供了一种功率参数的配置方法,所述方法包括:
当确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,基站向所述终端发送预定义信息,以使所述终端所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:所述第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
上述方案中,基站通过高层信令给终端配置所述第一小区组CG0的功率配置值P0和/或第二小区组CG1的功率配置值P1。
上述方案中,所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、j为非负整数。
上述方案中,所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0,其中,i、j为非负整数。
上述方案中,确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,包括:
SP0与P1P1的和大于PCMAX1;或者,
SP0与P2P1的和大于PCMAX2;或者,
SP1与P1P0的和大于PCMAX1;或者,
SP1与P2P0的和大于PCMAX2;
其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2的最大支持功率。
上述方案中,所述对第一小区组和第二小区组的上行发送功率进行调整,包括:
进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
上述方案中,所述进行第一级功率调整,包括:
当P0+P1<=PCMAX时,
确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
当P0+P1>PCMAX时,
确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
或者,
在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述方法还包括:
当基站确定为第一小区组CG0的优先级高于第二小区组CG1时,触发终端进行第一级功率调整;
所述终端进行第一级功率调整,包括:
当P0+P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX时
TP0=max[min(P0,SP0),PCMAX-PX1];
TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
或者,
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述方法还包括:
基站确定为TP0与TP1的和大于PCMAX时,触发终端进行所述第二级功率调整;所述终端进行第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级来进行的。
本发明实施例还提供了一种终端,所述终端包括:获知模块、获取模块和调整模块;其中,
所述获知模块,配置为在获知自身发送上行信道至第一基站对应的第一小区组的子帧和自身发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为自身设定的上行发送功率与所述第二小区组为自身设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发获取模块;
所述获取模块,配置为获取预定义信息;
所述调整模块,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
上述方案中,所述终端还包括:
接收模块,配置为接收基站配置的高层信令,从而获得第一小区组CG0的功率配置值P0和第二小区组CG1的功率配置值P1。
上述方案中,所述获取模块所获取到的时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0;其中,i、j为非负整数。
上述方案中,所述获取模块所获取到的时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0,其中,i、j为非负整数。
上述方案中,所述获知模块,还配置为:
获知到SP0与P1P1的和大于PCMAX1;或者,
获知到SP0与P2P1的和大于PCMAX2;或者,
获知到SP1与P1P0的和大于PCMAX1;或者,
获知到SP1与P2P0的和大于PCMAX2时,获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率;
其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为自身在Part1和Part2的最大支持功率。
上述方案中,所述调整模块,还配置为:
进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
上述方案中,所述调整模块,还配置为:
当P0+P1<=PCMAX时,
确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
当P0+P1>PCMAX时,
确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值 为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
或者,
在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述调整模块,还配置为当获知CG0的优先级高于CG1时,进行第一级功率调整;
较佳的,所述调整模块,还配置为:
当P0+P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX时,
调整TP0=max[min(P0,SP0),PCMAX-PX1];
调整TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
或者,
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述调整模块,配置为获知到TP0与TP1之和大于PCMAX时,进行第二级功率调整;
所述第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级而进行。
本发明实施例还提供了一种基站,所述基站包括:确定单元、第一发送单元;其中,
所述确定单元,配置为当确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发所述第一发送单元;
所述第一发送单元,配置为向所述终端发送预定义信息,以使所述终端所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
上述方案中,所述基站还包括第二发送单元和接收单元;
所述第二发送单元,配置为通过高层信令给终端发送小区组为所述终端配置的功率配置值;
所述接收单元,配置为根据所述预定义信息接收上行信道数据。
上述方案中,所述第一发送单元所发送的预定义信息包括时域重叠部分的功率值:所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、j为非负整数。
上述方案中,所述第一发送单元所发送的预定义信息包括时域重叠部分的功率值;所述时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值P1P0,其中,i、j为非负整数。
上述方案中,所述确定单元,还配置为:
确定SP0与P1P1的和大于PCMAX1;或者,
确定SP0与P2P1的和大于PCMAX2;或者,
确定S P1与P1P0的和大于PCMAX1;或者,
确定SP1与P2P0的和大于PCMAX2时,确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,并通知至所述终端;
其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2的最大支持功率。
上述方案中,所述终端包括:
获知模块,配置为在获知自身发送上行信道至第一基站对应的第一小区组的子帧和自身发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为自身设定的上行发送功率与所述第二小区组为自身设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发获取模块;
获取模块,配置为获取预定义信息;
调整模块,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述调整模块,还配置为:进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
上述方案中,所述调整模块,还配置为进行第一级功率调整;
当P0+P1<=PCMAX时,
确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
当P0+P1>PCMAX时,
确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
或者,
在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述调整模块,还配置为当所述确定单元确定为第一小区组CG0的优先级高于第二小区组CG1时,进行第一级功率调整;
其中,所述调整模块,还配置为:
当P0+P1<=PCMAX
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX
调整TP0=max[min(P0,SP0),PCMAX-PX1];
调整TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当P1<=PCMAX
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
或者,
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于 PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
上述方案中,所述确定单元,配置为确定TP0与TP1之和大于PCMAX时,触发第一发送单元;
所述第一发送单元,配置为发送所述预定义信息,以使终端进行第一级和第二级功率调整;其中,所述终端进行第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组优先级而进行。
本发明实施例还提供一种功率调整系统,所述系统包括:基站和终端;所述基站至少包括第一基站及第二基站;其中,
所述基站,配置为在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,发送预定义信息;
所述终端,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于前述的功率调整的方法。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行前述的功率参数的配置方法。
通过本发明实施例,依据小区组的功率配置值和小区组对应子帧重叠部分的功率值,来调整各小区组的上行功率,解决了LTE-A系统中双链接基站场景下功率受限的问题,达到了对功率的灵活调整。
附图说明
图1是本发明实施例提供的功率调整的方法的实现流程图;
图2a是小区组CG0和CG1子帧重叠场景一的示意图;
图2b是小区组CG0和CG1子帧重叠场景二的示意图;
图2c是小区组CG0和CG1子帧重叠场景三的示意图;
图2d是小区组CG0和CG1子帧重叠场景四的示意图;
图3a是本发明实施例一场景一的示意图;
图3b是本发明实施例一场景二的示意图;
图4a是本发明实施例二场景一的示意图;
图4b是本发明实施例二场景二的示意图;
图5a是本发明实施例三场景一的示意图;
图5b是本发明实施例三场景二的示意图;
图6a是本发明实施例四场景一的示意图;
图6b是本发明实施例四场景二的示意图;
图7a是本发明实施例五场景一的示意图;
图7b是本发明实施例五场景二的示意图;
图8a是本发明实施例六场景一的示意图;
图8b是本发明实施例六场景二的示意图;
图9a是本发明实施例七场景一的示意图;
图9b是本发明实施例七场景二的示意图;
图10a是本发明实施例八场景一的示意图;
图10b是本发明实施例八场景二的示意图;
图11a是本发明实施例九场景一的示意图;
图11b是本发明实施例九场景二的示意图;
图12a是本发明实施例十场景一的示意图;
图12b是本发明实施例十场景二的示意图;
图13是根据本发明实施例提供的终端的结构框图;
图14是根据本发明实施例提供的基站的结构框图;
图15是根据本发明实施例提供的功率调整系统的示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1是本发明实施例提供的功率调整方法的实现流程图,如图1所示,所述方法包括如下步骤:
步骤S01,在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,获取预定义信息;
这里,第一基站对应的第一小区组视为小区组CG0;第二基站对应的第二小区组视为小区组CG1。
步骤S02,根据所述预定义信息,对第一小区组和第二小区组的上行发 送功率进行调整;其中,所述预定义信息包括:所述第一小区组的功率配置值P0和/或第二小区组的功率配置值P1、以及所述时域重叠部分的功率值。
在具体实现过程中,小区组CG0和/或小区组CG1的功率配置值是终端通过接收基站配置的高层信令获得的。
图2a、2b、2c、2d示出了小区组CG0和CG1子帧重叠的场景。如图2a所示:CG0的一个子帧Subframe i与CG1的两个子帧Subframe j和Subframe j+1重叠,重叠的部分分别为Part1、Part2;其中CG1 Part1的功率值记为P1P1,CG1 Part2的功率值记为P2P1;
如图2b所示:CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframei+1重叠,重叠的部分分别为Part1、Part2;其中CG0 Part1的功率值为P1P0,CG1 Part2的功率值为P2P0。P1P1、P2P1、P1P0和P2P0的值可以由终端根据接收基站配置的一个或多个参考功率值来确定。
如图2c所示:CG0的一个子帧Subframe i与CG1的一个子帧Subframe j重叠,重叠部分为Part1,其功率值P1P1;
如图2d所示:CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠,重叠部分Part1的功率值P1P0,其中,i、j为非负整数。
本发明实施例中,SP0、SP1分别为CG0、CG1在对应子帧中的调度功率值,P0、P1分别为CG0、CG1配置给终端的功率值,也称为CG0、CG1的配置功率值。终端可以通过接收基站配置的高层信令获得P0和P1。
两个小区组CG0、CG1为终端设定的上行发送功率和大于所述终端支持的最大发送功率,包括:
SP0与P1P1的和大于PCMAX1;或者,
SP0与P2P1的和大于PCMAX2;或者,
SP1与P1P0的和大于PCMAX1;或者,
SP1与P2P0的和大于PCMAX2;
其中,SP0、SP1分别为CG0、CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为终端配置的在Part1和Part2的最大支持功率。
对CG0和CG1的上行发送功率进行调整,包括:进行第一级功率调整,或者进行第一级功率调整和第二级功率调整;也就是说进行第一级功率调整后,如果仍出现功率受限,可以进行第二级功率调整;或者,在CG0、CG1具有优先级顺序时综合进行一次功率调整。
第一级功率调整包括:
当P0与P1的和小于等于PCMAX时,CG0的上行发送功率值TP0的确定步骤为:
确定P1和PX1中较小的值,记为min(P1,PX1);
确定PCMAX和min(P1,PX1)的差值,记为PCMAX-min(P1,PX1);
确定SP0和PCMAX-min(P1,PX1)中较小的值作为调整后的上行发 送功率值TP0。
CG1的上行发送功率值TP1的确定步骤为:
确定P0和PX0中较小的值,记为min(P0,PX0);
确定PCMAX和min(P0,PX0)的差值,记为PCMAX-min(P0,PX0);
确定SP1和PCMAX-min(P0,PX0)中较小的值作为调整后的上行发送功率值TP1。
当P0与P1的和大于PCMAX时,CG0的上行发送功率值TP0的确定步骤为:
确定P0和SP0中较小的值,记为min(P0,SP0);
确定PCMAX和PX1的差值,记为PCMAX-PX1;
确定min(P0,SP0)和PCMAX-PX1中较大的值作为调整后的上行发送功率值TP0。
CG1的上行发送功率值TP1的确定步骤为:
确定P1和SP1中较小的值,记为min(P1,SP1);
确定PCMAX和PX0的差值,记为PCMAX-PX0;
确定min(P1,SP1)和PCMAX-PX0中较大的值作为调整后的上行发送功率值TP1。
上述调整方法,可以用公式表示为:
当P0+P1<=PCMAX时,确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];当P0+P1>PCMAX时,确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
如果在进行第一级功率调整后仍出现功率受限,例如仍出现TP0与TP1的和大于PCMAX时,可以进行所述第二级功率调整;第二级功率调整可以按照CG0和CG1组内的上行信道优先级来进行,上行信道优先级高的信道优先级分配功率,也可以按照小区组优先级来进行,例如:在CG0的优先级高于CG1的优先级时,优先保证CG0的发送功率。
当按照小区组优先级别来进行功率调整,即在CG0、CG1具有优先级 顺序时,也可以采用如下调整方式:
以CG0的优先级高于CG1为例,当P0+P1<=PCMAX,TP0和TP1的值可以按照以下公式确定:
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX,TP0和TP1的值可以按照以下公式确定:
TP0=max[min(P0,SP0),PCMAX-PX1];
TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当仅仅配置P1时,TP0和TP1的值可以按照以下公式确定:
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当仅仅配置P1时,TP0和TP1的值可以按照以下公式确定:
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
PCMAX、PX1、PX0的取值方式同上所述。
下文中将结合附图进一步给出本发明实施例提供的功率调整及功率参数配置方法的实施例:
实施例一:
如图3a和图3b所示,P0+P1<PCMAX,CG0和CG1为UE设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图3a中,SP0+PX1>PCMAX,P1和PX1中较小的一个为PX1,而PCMAX与PX1的差值小于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1)],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与PX1的差值。在图3b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与PX0的差值大于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例二
如图4a和图4b所示,P0+P1<PCMAX,CG0和CG1为UE设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图4a中,SP0+PX1>PCMAX,P1和PX1中较小的一个为P1,而PCMAX与P1的差值大于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1)],调整后的CG0对应的上行信道的发 送功率TP0的值就等于SP0的值。在图4b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与P0的差值大于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例三
如图5a和图5b所示,P0+P1<PCMAX,CG0和CG1为终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图5a中,SP0+PX1>PCMAX,P1和PX1中较小的一个为P1,而PCMAX与P1的差值大于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1)],调整后的CG0对应的上行信道的发送功率TP0的值就等于SP0的值。在图5b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与P0的差值小于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于PCMAX与P0的差值。
实施例四
如图6a和图6b所示,P0+P1<PCMAX,CG0和CG1给终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图6a中,SP0+PX1>PCMAX,P1和PX1中较小的一个为P1,而PCMAX与P1的差值小于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1)],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与P1的差值。在图6b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与P0的差值小于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于PCMAX与P0的差值。
实施例五
如图7a和图7b所示,P0+P1=PCMAX,CG0和CG1给终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图7a中,SP0+PX1>PCMAX,P1和PX1中较小的一个为PX1,而PCMAX与PX1的差值小于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1),调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与PX1的差值。在图7b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与P0的差值大于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例六
如图8a和图8b所示,P0+P1=PCMAX,CG0和CG1为终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图8a中,SP0+PX1>PCMAX,P1 和PX1中较小的一个为P1,而PCMAX与P1的差值小于SP0,所以根据TP0=min[SP0,PCMAX-min(P1,PX1)],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与P1的差值。在图8b中,SP1+PX0>PCMAX,P0和PX0中较小的一个为P0,而PCMAX与P0的差值小于SP1,所以根据TP1=min[SP1,PCMAX-min(P0,PX0)],调整后的CG1对应的上行信道的发送功率TP1的值就等于PCMAX与P0的差值。
实施例七
如图9a和图9b所示,P0+P1>PCMAX,CG0和CG1为终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图9a中,SP0+PX1>PCMAX,P0和SP0中较小的一个为P0,而PCMAX与PX1的差值大于P0,所以根据TP0=max[min(P0,SP0),PCMAX-PX1],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与PX1的差值。在图9b中,SP1+PX0>PCMAX,P1和SP1中较小的一个为SP1,而PCMAX与PX0的差值小于SP1,所以根据TP1=max[min(P1,SP1),PCMAX-PX0],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例八
如图10a和图10b所示,P0+P1>PCMAX,CG0和CG1为终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图10a中,SP0+PX1>PCMAX,P0和SP0中较小的一个为SP0,而PCMAX与PX1的差值小于SP0,所以根据TP0=max[min(P0,SP0),PCMAX-PX1],调整后的CG0对应的上行信道的发送功率TP0的值就等于SP0的值。在图10b中,SP1+PX0>PCMAX,P1和SP1中较小的一个为SP1,而PCMAX与PX0的差值小于SP1,所以根据TP1=max[min(P1,SP1),PCMAX-PX0],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例九
如图11a和图11b所示,P0+P1>PCMAX,CG0和CG1为终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图11a中,SP0+PX1>PCMAX,P0和SP0中较小的一个为P0,而PCMAX与PX1的差值小于P0,所以根据TP0=max[min(P0,SP0),PCMAX-PX1],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与PX1的差值。在图11b中,SP1+PX0>PCMAX,P1和SP1中较小的一个为SP1,而PCMAX与PX0的差值小于SP1,所以根据TP1=max[min(P1,SP1),PCMAX-PX0],调整后的CG1对应的上行信道的发送功率TP1的值就等于SP1的值。
实施例十
如图12a和图12b所示,P0+P1>PCMAX,CG0和CG1为终端设定 的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。在图12a中,SP0+PX1>PCMAX,P0和SP0中较小的一个为P0,而PCMAX与PX1的差值小于P0,所以根据TP0=max[min(P0,SP0),PCMAX-PX1],调整后的CG0对应的上行信道的发送功率TP0的值就等于PCMAX与PX1的差值。在图12b中,SP1+PX0>PCMAX,P1和SP1中较小的一个为P1,而PCMAX与PX0的差值大于P1,所以根据TP1=max[min(P1,SP1),PCMAX-PX0],调整后的CG1对应的上行信道的发送功率TP1的值就等于PCMAX与PX0的差值。
实施例十一:
本实施例中假设两个基站分别为主基站MeNB(Master eNB)和辅基站SeNB(Slave eNB),MeNB和SeNB为双链接eNB,其对应的两个小区组分别为CG0和CG1。双链接UE(用户终端),UE在MeNB和SeNB上建立双链接。在该UE发送上行信道给CG0的子帧和该UE发送上行信道给CG1的子帧的时域存在重叠部分,且小区组CG0和CG1为该UE设定的上行发送功率和大于该UE支持的最大发送功率时,UE需要对两个小区组对应的上行信道的发送功率进行调整,所述调整可以分为两级调整,分别为第一级功率调整和第二级功率调整。
其中,第一级功率调整是根据小区组CG0的功率配置值P0和/或小区组CG1的功率配置值P1、以及上述时域重叠部分的功率值进行的,UE可以通过接收基站配置的高层信令来获得P0和P1;第二级功率调整是按照终端和基站预定义的上行信道优先级规则或者小区组的优先级规则进行调整的。
UE在进行第一次功率调整之前,还需要获得CG0在对应子帧中的功率调度值SP0,CG1在对应子帧中的功率调度值SP1;以及PX0和PX1,其中,PX0为关于CG0的功率值,具体来说是CG0与CG1在时域重叠部分的最大功率值。PX1为关于CG1的功率值,具体来说是CG1与CG0在时域重叠部分的最大功率值。
具体场景可以是;CG0的一个子帧与CG1最多两个子帧重叠,对应两个重叠部分;CG1的一个子帧与CG0最多两个子帧重叠,对应两个重叠部分。设CG0的一个子帧与CG1的两个子帧重叠两个部分分别为Part1和Part2,CG1 Part1的功率值为P1P1,CG1 Part2的功率值为P2P1,那么PX1=max(P1P1,P2P1);设CG1的一个子帧与CG0的两个子帧重叠两个部分分别为Part1和Part2,CG0 Part1的功率值为P1P0,CG0 Part2的功率值为P2P0,那么PX0=max(P1P0,P2P0),所述P1P1、P2P1、P1P0和P2P0的值由终端接收基站通知的功率值得出。具体的第一级功率调整可以为:
当:P0+P1<=PCMAX
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[SP1,PCMAX-min(P0,PX0)];
当:P0+P1>PCMAX
TP0=max[min(P0,SP0),PCMAX-PX1];
TP1=max[min(P1,SP1),PCMAX-PX0];
其中,TP0和TP1分别为终端进行第一次调整后CG0与CG1的上行发送功率值。
优选的,当TP0+TP1<PCMAX时,不进行第二级功率调整。当TP0+TP1>PCMAX时,说明仍存在功率受限,需要进行第二级功率调整。
第二级功率调整可以按照小区组内的上行信道优先级来进行功率调整,即CG0、CG1内的上行信道优先级来进行功率调整,其中上行信道优先级高的信道优先级分配功率;
也可以按照小区组的信道优先级来进行功率调整,其中优先保证优先级高的小区组发送功率。例如当CG0的信道优先级较高时,优先保证CG0的发送功率。
在具体实现过程中,如果小区组进行了优先级排序时,两级功率调整可以合并为一级功率调整,即只进行第一级功率调整,这时,调整的方法可以是:(以CG0的优先级高于CG1为例)
当P0+P1<=PCMAX
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX
TP0=max[min(P0,SP0),PCMAX-PX1];
TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当仅仅配置了P1时,
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX
TP0=min[SP0,PCMAX-min(P1,PX1)];
TP1=min[max(PCMAX-PX0,P1),SP1];
实施例十二
当基站仅仅给终端通过高层信令配置了P1,CG0和CG1给终端设定的 上行发送功率和在重叠区域大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。对于TP0根据如下公式步骤调整:
TP0=min[SP0,PCMAX-min(P1,PX1)];
对于TP1根据如下公式步骤调整:
TP1=min[max(PCMAX-PX0,P1),SP1]。
实施例十三
当基站仅仅给终端通过高层信令配置了P1,CG0和CG1给终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。对于TP0根据如下公式步骤调整:
TP0=min[SP0,PCMAX-min(P1,PX1)];
对于TP1根据如下公式步骤调整:
TP1=max[min(SP1,P1),PCMAX-PX0]。
实施例十四
当基站给终端配置了P0和P1,且P0+P1<=PCMAX时,CG0和CG1给终端设定的上行发送功率和大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。根据TP0=min[SP0,PCMAX-min(P1,PX1)]调整CG0对应的上行信道的发送功率TP0的值。根据TP1=min[max(PCMAX-PX0,P1),SP1]调整CG1对应的上行信道的发送功率TP1的值。当基站给终端配置了P0和P1,且P0+P1>PCMAX时,根据TP0=max[min(P0,SP0),PCMAX-PX1]调整CG0对应的上行信道的发送功率TP0的值,根据TP1=min[SP1,PCMAX-min(P0,PX0)]调整CG1对应的上行信道的发送功率TP1的值。
实施例十五
当基站给终端配置了P0和P1,且P0+P1<=PCMAX时,CG0和CG1给终端设定的上行发送功率和在重叠部分大于UE支持的最大发送功率,终端需要对CG0和CG1对应的上行信道的发送功率进行调整。根据TP0=min[SP0,PCMAX-min(P1,PX1)]调整CG0对应的上行信道的发送功率TP0的值。根据TP1=max[min(SP1,P1),PCMAX-PX0]调整CG1对应的上行信道的发送功率TP1的值。当基站给终端配置了P0和P1,且P0+P1>PCMAX时,根据TP0=max[min(P0,SP0),PCMAX-PX1]调整CG0对应的上行信道的发送功率TP0的值,根据TP1=min[SP1,PCMAX-min(P0,PX0)]调整CG1对应的上行信道的发送功率TP1的值。
本发明实施例提供的一种功率参数的配置方法,应用于基站侧,包括:在确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,基站向 所述终端发送预定义信息,以使所述终端根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整,其中,所述预定义信息包括:所述第一小区组CG0的功率配置值P0和/或第二小区组CG1的功率配置值P1、以及所述时域重叠部分的功率值。
这里,第一基站对应的第一小区组视为小区组CG0;第二基站对应的第二小区组视为小区组CG1。
本发明实施例还提供了一种终端,如图13所示,所述终端,包括获知模块131、获取模块132和调整模块133;其中,
所述获知模块131,配置为在获知自身发送上行信道至第一基站对应的第一小区组的子帧和自身发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为自身设定的上行发送功率与所述第二小区组为自身设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发获取模块132;
所述获取模块132,配置为获取预定义信息;
所述调整模块133,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
其中,所述终端还包括:
接收模块(图13中未示意出),配置为接收基站配置的高层信令,从而获得第一小区组CG0的功率配置值P0和第二小区组CG1的功率配置值P1。
其中,所述获取模块132所获取到的时域重叠部分的功率值,包括:
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0;
第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0,其中,i、j为非负整数。
其中,所述获知模块132,还配置为:
获知到SP0与P1P1的和大于PCMAX1;或者,
获知到SP0与P2P1的和大于PCMAX2;或者,
获知到SP1与P1P0的和大于PCMAX1;或者,
获知到SP1与P2P0的和大于PCMAX2时,获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送 功率之和大于所述终端支持的最大发送功率;
其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为自身在Part1和Part2的最大支持功率。
其中,所述调整模块133,还配置为:进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
所述调整模块133,还配置为:
当P0+P1<=PCMAX时,
确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
当P0+P1>PCMAX时,
确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
或者,
在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
所述调整模块133,还配置为当获知CG0的优先级高于CG1时,进行第一级功率调整;
较佳的,所述调整模块133,还配置为:
当P0+P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P0+P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
当P0+P1>PCMAX时,
调整TP0=max[min(P0,SP0),PCMAX-PX1];
调整TP1=min[SP1,PCMAX-min(P0,PX0)];
或者,
当P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=max[min(SP1,P1),PCMAX-PX0];
或者,
当P1<=PCMAX时,
调整TP0=min[SP0,PCMAX-min(P1,PX1)];
调整TP1=min[max(PCMAX-PX0,P1),SP1];
其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
或者,
在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
所述调整模块133,配置为获知到TP0与TP1之和大于PCMAX时,进行第二级功率调整;所述第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级而进行。
在实际应用中,所述获知模块131、获取模块132、调整模块133及接收模块均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述CPU、DSP、FPGA均可内置于终端中。
本发明实施例还提供了一种基站,如图14所示,所述基站包括:确定单元141、第一发送单元142;其中,
所述确定单元141,配置为当确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发 送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发所述第一发送单元141;
所述第一发送单元142,配置为向所述终端发送预定义信息,以使所述终端所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
其中,所述基站还包括第二发送单元和接收单元(图14中未示意出);
所述第二发送单元,配置为通过高层信令给终端发送小区组为所述终端配置的功率配置值;所述接收单元,配置为根据所述预定义信息接收上行信道数据。
本实施例中所提及到的终端的功能及其各部分组成具体请参见前述图13中的说明,这里不再赘述。
在实际应用中,所述确定单元141、第一发送单元142、第二发送单元及接收单元均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述CPU、DSP、FPGA均可内置于基站中。
本发明实施例还提供了一种功率调整系统,如图15所示,所述系统包括:基站及终端;所述基站至少包括第一基站及第二基站;其中,
所述基站,配置为在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,发送预定义信息;
所述终端,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
第一基站优选为MeNB、第二基站优选为SeNB。
本实施例中,所涉及到的基站请参见前述对图14的说明,所涉及到的终端请参见前述对图13的说明,不再赘述。
本发明实施例对小区组CG0和CG1的上行功率进行了调整,调整后,一个小区组内的多个CCs根据本小区组调整后的功率,可以按照3GPP标准协议LTE R11 CA(Carrier Aggregation,载波聚合)的多个CCs功率调整的方法进行进一步调整。
需要说明的是,对于终端、基站及系统的说明请参见前述对方法的说明,这里不再赘述。
同时,本发明实施例还提供了第一种计算机存储介质,所述计算机存储介质中存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于执行前述的功率调整的方法。
本发明实施例还提供了第二种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行前述的功率参数的配置方法。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 一种功率调整的方法,所述方法包括:
    在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,获取预定义信息;
    根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
  2. 根据权利要求1所述的方法,其中,所述第一小区组CG0的功率配置值P0和/或所述第二小区组CG1的功率配置值P1是终端通过接收基站配置的高层信令而获得的。
  3. 根据权利要求1所述的方法,其中,所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
    以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、j为非负整数。
  4. 根据权利要求3所述的方法,其中,所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
    以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0;
    其中,i、j为非负整数。
  5. 根据权利要求4所述的方法,其中,所述获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,包括:
    SP0与P1P1的和大于PCMAX1;或者,
    SP0与P2P1的和大于PCMAX2;或者,
    SP1与P1P0的和大于PCMAX1;或者,
    SP1与P2P0的和大于PCMAX2;
    其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2的最大支持功率。
  6. 根据权利要求5所述的方法,其中,所述对第一小区组和第二小区组的上行发送功率进行调整,包括:
    进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
  7. 根据权利要求6所述的方法,其中,所述进行第一级功率调整,包括:
    当P0+P1<=PCMAX时,
    确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
    确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
    当P0+P1>PCMAX时,
    确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
    确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
    或者,
    在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  8. 根据权利要求6所述方法,其中,所述方法还包括:
    当第一小区组CG0的优先级高于第二小区组CG1时,进行第一级功率调整;
    所述进行第一级功率调整,包括:
    当P0+P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P0+P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=min[max(PCMAX-PX0,P1),SP1];
    当P0+P1>PCMAX时,
    TP0=max[min(P0,SP0),PCMAX-PX1];
    TP1=min[SP1,PCMAX-min(P0,PX0)];
    或者,
    当P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=min[max(PCMAX-PX0,P1),SP1];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
    或者,
    在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则 PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  9. 根据权利要求7所述的方法,其中,当TP0与TP1之和大于PCMAX时,进行所述第二级功率调整;其中,所述第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级而进行。
  10. 一种功率参数的配置方法,所述方法包括:
    当确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,基站向所述终端发送预定义信息,以使所述终端所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述预定义信息包括:所述第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
  11. 根据权利要求10所述的方法,其中,基站通过高层信令给终端配置所述第一小区组CG0的功率配置值P0和/或第二小区组CG1的功率配置值P1。
  12. 根据权利要求10所述的方法,其中,所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
    以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、 j为非负整数。
  13. 根据权利要求12所述的方法,其中,所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
    以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0,其中,i、j为非负整数。
  14. 根据权利要求13所述的方法,其中,确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,包括:
    SP0与P1P1的和大于PCMAX1;或者,
    SP0与P2P1的和大于PCMAX2;或者,
    SP1与P1P0的和大于PCMAX1;或者,
    SP1与P2P0的和大于PCMAX2;
    其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2的最大支持功率。
  15. 根据权利要求14所述的方法,其中,所述对第一小区组和第二小区组的上行发送功率进行调整,包括:
    进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
  16. 根据权利要求15所述的方法,其中,所述进行第一级功率调整,包括:
    当P0+P1<=PCMAX时,
    确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
    确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
    当P0+P1>PCMAX时,
    确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
    确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
    或者,
    在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  17. 根据权利要求15所述方法,其中,所述方法还包括:
    当基站确定为第一小区组CG0的优先级高于第二小区组CG1时,触发终端进行第一级功率调整;
    所述终端进行第一级功率调整,包括:
    当P0+P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P0+P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=min[max(PCMAX-PX0,P1),SP1];
    当P0+P1>PCMAX时
    TP0=max[min(P0,SP0),PCMAX-PX1];
    TP1=min[SP1,PCMAX-min(P0,PX0)];
    或者,
    当P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P1<=PCMAX时,
    TP0=min[SP0,PCMAX-min(P1,PX1)];
    TP1=min[max(PCMAX-PX0,P1),SP1];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
    或者,
    在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于 PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  18. 根据权利要求16所述的方法,其中,所述方法还包括:
    基站确定为TP0与TP1的和大于PCMAX时,触发终端进行所述第二级功率调整;所述终端进行第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级来进行的。
  19. 一种终端,所述终端包括:获知模块、获取模块和调整模块;其中,
    所述获知模块,配置为在获知自身发送上行信道至第一基站对应的第一小区组的子帧和自身发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为自身设定的上行发送功率与所述第二小区组为自身设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发获取模块;
    所述获取模块,配置为获取预定义信息;
    所述调整模块,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
  20. 根据权利要求19所述的终端,其中,所述终端还包括:
    接收模块,配置为接收基站配置的高层信令,从而获得第一小区组CG0的功率配置值P0和第二小区组CG1的功率配置值P1。
  21. 根据权利要求19所述的终端,其中,所述获取模块所获取到的时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
    以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0;其中,i、j为非负整数。
  22. 根据权利要求21所述的终端,其中,所述获取模块所获取到的时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值为P1P0,其中,i、j为非负整数。
  23. 根据权利要求22所述的终端,其中,所述获知模块,还配置为:
    获知到SP0与P1P1的和大于PCMAX1;或者,
    获知到SP0与P2P1的和大于PCMAX2;或者,
    获知到SP1与P1P0的和大于PCMAX1;或者,
    获知到SP1与P2P0的和大于PCMAX2时,获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率;
    其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为自身在Part1和Part2的最大支持功率。
  24. 根据权利要求23所述的终端,其中,所述调整模块,还配置为:
    进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
  25. 根据权利要求24所述的终端,其中,所述调整模块,还配置为:
    当P0+P1<=PCMAX时,
    确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
    确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
    当P0+P1>PCMAX时,
    确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
    确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0、P2P0中较大的值;
    或者,
    在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  26. 根据权利要求24所述的终端,其中,所述调整模块,还配置为当获知CG0的优先级高于CG1时,进行第一级功率调整;
    较佳的,所述调整模块,还配置为:
    当P0+P1<=PCMAX时,
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P0+P1<=PCMAX时,
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=min[max(PCMAX-PX0,P1),SP1];
    当P0+P1>PCMAX时,
    调整TP0=max[min(P0,SP0),PCMAX-PX1];
    调整TP1=min[SP1,PCMAX-min(P0,PX0)];
    或者,
    当P1<=PCMAX时,
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P1<=PCMAX时,
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=min[max(PCMAX-PX0,P1),SP1];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
    或者,
    在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  27. 根据权利要求25所述的终端,其中,所述调整模块,配置为获知到TP0与TP1之和大于PCMAX时,进行第二级功率调整;
    所述第二级功率调整是按照第一小区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组的优先级而进行。
  28. 一种基站,所述基站包括:确定单元、第一发送单元;其中,
    所述确定单元,配置为当确定终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧的存在时域重叠部分,且确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发所述第一发送单元;
    所述第一发送单元,配置为向所述终端发送预定义信息,以使所述终端所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述预定义信息包括:第一小区组的功率配置和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
  29. 根据权利要求28所述的基站,其中,所述基站还包括第二发送单元和接收单元;
    所述第二发送单元,配置为通过高层信令给终端发送小区组为所述终端配置的功率配置值;
    所述接收单元,配置为根据所述预定义信息接收上行信道数据。
  30. 根据权利要求28所述的基站,其中,所述第一发送单元所发送的预定义信息包括时域重叠部分的功率值:所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的两个子帧Subframe j和Subframe j+1重叠部分Part1、Part2的功率值分别为P1P1、P2P1;
    以及CG1的一个子帧Subframe j与CG0的两个子帧Subframe i和Subframe i+1重叠部分Part1、Part2的功率值分别为P1P0、P2P0,其中,i、j为非负整数。
  31. 根据权利要求30所述的基站,其中,所述第一发送单元所发送的预定义信息包括时域重叠部分的功率值;所述时域重叠部分的功率值,包括:
    第一小区组CG0的一个子帧Subframe i与第二小区组CG1的一个子帧Subframe j重叠部分Part1的功率值为P1P1;
    以及CG1的一个子帧Subframe j与CG0的一个子帧Subframe i重叠部分Part1的功率值P1P0,其中,i、j为非负整数。
  32. 根据权利要求31所述的基站,其中,所述确定单元,还配置为:
    确定SP0与P1P1的和大于PCMAX1;或者,
    确定SP0与P2P1的和大于PCMAX2;或者,
    确定S P1与P1P0的和大于PCMAX1;或者,
    确定SP1与P2P0的和大于PCMAX2时,确定所述第一小区组为所述终端设定的上行发送功率与第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率,并通知至所述终端;
    其中,SP0、SP1分别为第一小区组CG0、第二小区组CG1在对应子帧中的调度功率值;PCMAX1、PCMAX2分别为所述终端在Part1和Part2 的最大支持功率。
  33. 根据权利要求32所述的基站,其中,所述终端包括:
    获知模块,配置为在获知自身发送上行信道至第一基站对应的第一小区组的子帧和自身发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为自身设定的上行发送功率与所述第二小区组为自身设定的上行发送功率之和大于所述终端支持的最大发送功率时,触发获取模块;
    获取模块,配置为获取预定义信息;
    调整模块,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述调整模块,还配置为:进行第一级功率调整,或者进行第一级功率调整和第二级功率调整。
  34. 根据权利要求33所述基站,其中,所述调整模块,还配置为进行第一级功率调整;
    当P0+P1<=PCMAX时,
    确定调整后CG0的上行发送功率TP0=min[SP0,PCMAX-min(P1,PX1)];
    确定调整后CG1的上行发送功率TP1=min[SP1,PCMAX-min(P0,PX0)];
    当P0+P1>PCMAX时,
    确定调整后CG0的上行发送功率TP0=max[min(P0,SP0),PCMAX-PX1];
    确定调整后CG1的上行发送功率TP1=max[min(P1,SP1),PCMAX-PX0];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;PCMAX取值 为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
    或者,
    在确定调整后CG0的上行发送功率TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定调整后CG1的上行发送功率TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  35. 根据权利要求33所述的基站,其中,所述调整模块,还配置为当所述确定单元确定为第一小区组CG0的优先级高于第二小区组CG1时,进行第一级功率调整;
    其中,所述调整模块,还配置为:
    当P0+P1<=PCMAX
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P0+P1<=PCMAX
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=min[max(PCMAX-PX0,P1),SP1];
    当P0+P1>PCMAX
    调整TP0=max[min(P0,SP0),PCMAX-PX1];
    调整TP1=min[SP1,PCMAX-min(P0,PX0)];
    或者,
    当P1<=PCMAX
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=max[min(SP1,P1),PCMAX-PX0];
    或者,
    当P1<=PCMAX
    调整TP0=min[SP0,PCMAX-min(P1,PX1)];
    调整TP1=min[max(PCMAX-PX0,P1),SP1];
    其中,P0、P1分别为CG0、CG1配置给终端的功率值;TP0为调整后CG0的上行发送功率值;TP1为调整后CG1的上行发送功率值;PCMAX取值为PCMAX1、PCMAX2中较小的值;或者,PCMAX取PCMAX1、PCMAX2中任意一个值;PX1的取值为P1P1、P2P1中较大的值;PX0为P1P0,P2P0中较大的值;
    或者,
    在确定TP0的值时,若PCMAX1-P1P1小于PCMAX2-P2P1,则PCMAX取PCMAX1的值,PX1取P1P1的值;若PCMAX1-P1P1大于PCMAX2-P2P1,则PCMAX取PCMAX2的值,PX1取P2P1的值;
    在确定TP1的值时,若PCMAX1-P1P0小于PCMAX2-P2P0,则PCMAX取PCMAX1的值,PX0取P1P0的值;若PCMAX1-P1P0大于PCMAX2-P2P0,则PCMAX取PCMAX2的值,PX0取P2P0的值。
  36. 根据权利要求34所述的基站,其中,所述确定单元,配置为确定TP0与TP1之和大于PCMAX时,触发第一发送单元;
    所述第一发送单元,配置为发送所述预定义信息,以使终端进行第一级和第二级功率调整;其中,所述终端进行第二级功率调整是按照第一小 区组CG0和第二小区组CG1组内的上行信道优先级和/或小区组优先级而进行。
  37. 一种功率调整系统,所述系统包括:基站和终端;所述基站至少包括第一基站及第二基站;其中,
    所述基站,配置为在获知终端发送上行信道至第一基站对应的第一小区组的子帧和终端发送上行信道至第二基站对应的第二小区组的子帧存在时域重叠部分,且获知所述第一小区组为所述终端设定的上行发送功率与所述第二小区组为所述终端设定的上行发送功率之和大于所述终端支持的最大发送功率时,发送预定义信息;
    所述终端,配置为根据所述预定义信息,对第一小区组和第二小区组的上行发送功率进行调整;
    其中,所述预定义信息包括:第一小区组的功率配置值和/或第二小区组的功率配置值、以及所述时域重叠部分的功率值。
  38. 一种计算机存储介质,所述计算机存储介质中存储有第一组计算机可执行指令,所述第一组计算机可执行指令用于执行权利要求1至9任一项所述的方法。
  39. 一种计算机存储介质,所述计算机存储介质中存储有第二组计算机可执行指令,所述第二组计算机可执行指令用于执行权利要求10至18任一项所述的方法。
PCT/CN2014/086312 2014-05-17 2014-09-11 功率调整及参数配置方法、相关设备、系统、存储介质 WO2015176421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410209994.8A CN105101374A (zh) 2014-05-09 2014-05-17 一种功率调整及功率参数配置的方法、终端和基站设备
CN201410209994.8 2014-05-17

Publications (1)

Publication Number Publication Date
WO2015176421A1 true WO2015176421A1 (zh) 2015-11-26

Family

ID=54553314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086312 WO2015176421A1 (zh) 2014-05-17 2014-09-11 功率调整及参数配置方法、相关设备、系统、存储介质

Country Status (2)

Country Link
CN (1) CN105101374A (zh)
WO (1) WO2015176421A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389318B1 (en) 2015-12-31 2020-09-16 Huawei Technologies Co., Ltd. Power information transmission method, terminal device, and network device
US10117188B2 (en) * 2016-04-01 2018-10-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
CN108632966B (zh) * 2017-03-23 2022-05-06 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
CN109151978B (zh) * 2017-06-16 2023-06-06 华为技术有限公司 通信方法、网络设备和终端
KR102361223B1 (ko) * 2017-08-09 2022-02-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 상향 전송 방법 및 단말기 디바이스
CN109996323B (zh) * 2017-12-29 2022-05-13 中兴通讯股份有限公司 传输的功率确定方法及装置、传输的解调方法及装置
CN110113810B (zh) * 2018-02-01 2021-02-26 华为技术有限公司 一种功率控制方法、相关装置及产品
WO2020061774A1 (zh) * 2018-09-25 2020-04-02 Oppo广东移动通信有限公司 一种功率分配方法、终端设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220768A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 一种载波聚合系统中上行信号功率削减方法及装置
EP2712245A1 (en) * 2011-06-23 2014-03-26 Huawei Technologies Co., Ltd Method and user equipment for power control in uplink multiple-input multiple-output channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712245A1 (en) * 2011-06-23 2014-03-26 Huawei Technologies Co., Ltd Method and user equipment for power control in uplink multiple-input multiple-output channel
CN103220768A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 一种载波聚合系统中上行信号功率削减方法及装置

Also Published As

Publication number Publication date
CN105101374A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015176421A1 (zh) 功率调整及参数配置方法、相关设备、系统、存储介质
TWI758347B (zh) 波形相關的隨機存取通道程序
US11641262B2 (en) Strategic mapping of uplink resources
TWI749121B (zh) 用於無線通訊的方法、裝置與非暫時性電腦可讀取媒體
TW202110249A (zh) 實體共享通道參考信號附隨
WO2019047599A1 (zh) 一种ra-rnti确定方法及装置
JP2015510378A (ja) Lteデバイスのためのランダムアクセスチャネル拡張
US10362597B2 (en) Periodic uplink grant alignment in a cellular network
US11843938B2 (en) Sensing procedures in a wireless communication network
US10356833B2 (en) Resource allocation method, resource contention method, and related apparatus
WO2015139435A1 (zh) 一种上行控制信道聚合发送和接收方法、终端和基站
TW201538024A (zh) 處理裝置對裝置運作的方法
WO2015139440A1 (zh) 一种上行功率控制的方法、系统、以及终端和基站
JP2023517427A (ja) 固定および低モビリティのユーザ機器のためのタイミングアドバンスの簡略化
EP3694278B1 (en) Information sending and receiving method and apparatus
JP2021522748A (ja) 通信方法および通信装置
US20170141904A1 (en) Method and apparatus for transmitting ack/nack
CN107079487B (zh) 与同步传送的冲突避免
JP2016540447A (ja) 電力使用状態情報伝送方法および装置
JP2021503216A (ja) ランダムアクセスのための方法、デバイス、コンピュータ可読ストレージ、およびキャリア
JP2023164806A (ja) 端末デバイス、及びネットワークデバイス
WO2021227036A1 (en) Energy detection threshold for wireless communication
JP2022526560A (ja) 送信の電力をハンドリングするための無線デバイス、第1のネットワークノード、第2のネットワークノード、およびそれらによって実施される方法
WO2020168469A1 (en) Communicating between a terminal and a wireless network node
KR20170109536A (ko) 채널 선택을 갖는 전력 헤드룸 리포트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892556

Country of ref document: EP

Kind code of ref document: A1