WO2015174543A1 - 測定プローブおよび光学測定システム - Google Patents

測定プローブおよび光学測定システム Download PDF

Info

Publication number
WO2015174543A1
WO2015174543A1 PCT/JP2015/064188 JP2015064188W WO2015174543A1 WO 2015174543 A1 WO2015174543 A1 WO 2015174543A1 JP 2015064188 W JP2015064188 W JP 2015064188W WO 2015174543 A1 WO2015174543 A1 WO 2015174543A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
contact detection
contact
detection electrodes
unit
Prior art date
Application number
PCT/JP2015/064188
Other languages
English (en)
French (fr)
Inventor
誠悟 伊藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015558296A priority Critical patent/JPWO2015174543A1/ja
Publication of WO2015174543A1 publication Critical patent/WO2015174543A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to a measurement probe that irradiates a sample with irradiation light and receives light emitted from the sample by the irradiation, and an optical measurement system including the measurement probe.
  • an optical measurement system that irradiates a sample such as a biological tissue with illumination light and estimates the property of the sample based on a measurement value of detection light reflected or scattered from the sample.
  • Such an optical measurement system is detachable from the optical measurement device having a light source that emits illumination light to the sample and a detection unit that detects detection light from the sample, and irradiation of the sample. It is configured using light irradiation and a measurement probe that receives light from the sample.
  • the measurement probe has one end connected to a light source, an illumination fiber for irradiating the living tissue with illumination light from the other end, and one end connected to the detection unit, and the other end receiving light emitted from the living tissue by irradiation with the illumination fiber.
  • a fiber unit including a light receiving fiber for receiving light.
  • the property of the living tissue is detected in a state where the tip surface of the measurement probe is in contact with the living tissue (contact target). For this reason, the technique which makes the front-end
  • a measurement probe in which a plurality of detection sensors are provided on the distal end surface is disclosed as a means for determining whether or not the distal end surface of the measurement probe is in contact with a living tissue (see, for example, Patent Document 2). According to Patent Document 2, it is possible to determine whether or not the tip surface of the measurement probe is in contact with the living tissue from the detection results by each of the plurality of detection sensors.
  • the measurement probe disclosed in Patent Document 2 is such that each detection sensor detects an electrical characteristic independently, so even if the contact state with a living tissue in the vicinity of the detection sensor can be detected, the tip between detection sensors or the like The contact state at the center of the surface could not be detected. For this reason, it may not be possible to determine whether or not the distal end surface of the measurement probe and the living tissue are actually in proper contact.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a measurement probe and an optical measurement system that can determine whether or not the tip surface is in proper contact with a contact target.
  • a measurement probe is a measurement probe that is detachably connected to an optical measurement device that performs optical measurement on a biological tissue, and the biological tissue
  • Contact detection means having two or more pairs of two contact detection electrodes formed, and a straight line passing through the two contact detection electrodes forming the pair passes through the center of gravity of the tip.
  • a plurality of pairs of the two contact detection electrodes forming the pair are provided, and a straight line passing through the two contact detection electrodes forming the pair is another pair. And a straight line passing through the two contact detection electrodes forming a crossing point in the vicinity of the center of the tip surface.
  • An optical measurement system is an optical measurement system including an optical measurement device that performs optical measurement on a living tissue, and a measurement probe that is detachably connected to the optical measurement device,
  • the measurement probe includes an illumination fiber that illuminates the living tissue with illumination light, a light receiving fiber that receives return light of the illumination light reflected and / or scattered by the biological tissue, and a peripheral edge of a plane through which the tip of the measurement probe passes.
  • a contact detection means provided with a pair of two or more pairs of contact detection electrodes, and a straight line passing through the two pair of contact detection electrodes forms the center of gravity of the tip.
  • the optical measurement device includes a measurement unit that measures a resistance value between the two contact detection electrodes forming the pair.
  • the optical measurement device is configured to determine a contact state between the living tissue and the tip based on the resistance value measured by the measurement unit; And an output unit that outputs a determination result by the determination unit.
  • the present invention it is possible to determine whether or not the tip surface of the measurement probe is in proper contact with the contact target.
  • FIG. 1 is a block diagram schematically showing a configuration of an optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a cross section of the distal end portion of the measurement probe including the optical element of the optical measurement system according to the embodiment of the present invention along the longitudinal direction.
  • FIG. 3 is a plan view schematically showing the measurement probe in the direction of arrow A in FIG.
  • FIG. 4 is a diagram schematically illustrating the configuration of the distal end portion and the measurement unit of the optical measurement system according to the embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which the entire distal end surface of the distal end portion is in contact with the biological tissue. It is a figure explaining the state which exists.
  • FIG. 6 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which the distal end surface of the distal end portion and the biological tissue are not in contact with each other.
  • FIG. 7 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which a part of the distal end surface of the distal end portion is in contact with the biological tissue. It is a figure explaining the state which is carrying out.
  • FIG. 8 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which a part of the distal end surface of the distal end portion is in contact with the biological tissue. It is a figure explaining the state which is carrying out.
  • FIG. 9 is a diagram illustrating a situation when the optical measurement system according to the embodiment of the present invention is used in an endoscope system.
  • FIG. 10 is a plan view schematically showing a measurement probe according to the first modification of the embodiment of the present invention.
  • FIG. 11 is a diagram schematically illustrating the configuration of the distal end portion and the measurement unit of the optical measurement system according to the first modification of the embodiment of the present invention.
  • FIG. 12 is a diagram schematically illustrating the configuration of the distal end portion and the measurement unit of the optical measurement system according to the second modification of the embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing a configuration of an optical measurement system according to an embodiment of the present invention.
  • An optical measurement system 1 illustrated in FIG. 1 includes an optical measurement device 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer, and detects a property (characteristic) of the measurement object, and an optical measurement device 2.
  • a measurement probe that is detachably attached to the subject and that receives irradiation light and light (return light) from the living tissue while being in contact with the living tissue (for example, the living tissue 200 shown in FIG. 5). 3.
  • the optical measuring device 2 includes a power source 21, a light source unit 22, a connection unit 23, a light receiving unit 24, an input unit 25, an output unit 26, a measurement unit 27, a recording unit 28, a control unit 29, Is provided.
  • the power source 21 supplies power to each component of the optical measuring device 2.
  • the light source unit 22 uses an incoherent light source such as a white LED (Light Emitting Diode), a xenon lamp, a tungsten lamp, and a halogen lamp, and one or a plurality of lenses, for example, a condensing lens, a collimating lens, etc. Realized.
  • the light source unit 22 outputs to the measurement probe 3 incoherent light having at least one spectral component that is irradiated onto the measurement object via the connection unit 23.
  • connection unit 23 detachably connects the connector unit 31 of the measurement probe 3 to the optical measurement device 2.
  • the connection unit 23 outputs light emitted from the light source unit 22 to the measurement probe 3 and outputs return light of illumination light emitted from the measurement probe 3 and reflected and / or scattered by the measurement object to the light receiving unit 24.
  • the connection unit 23 outputs information related to whether or not the measurement probe 3 is connected to the control unit 29.
  • the light receiving unit 24 receives and measures the return light of the illumination light emitted from the measurement probe 3 and reflected and / or scattered by the measurement object.
  • the light receiving unit 24 is realized by using a plurality of spectrometers, light receiving sensors, and the like. Specifically, the light receiving unit 24 is provided according to the number of light receiving fibers of the measurement probe 3 described later by the spectroscopic measuring device.
  • the light receiver 24 measures each wavelength by measuring the spectral component and the intensity distribution of the scattered light incident from the measurement probe 3.
  • the light receiving unit 24 outputs the measurement result to the control unit 29.
  • the input unit 25 is realized by using a push-type switch, a touch panel, or the like, and receives an input of an instruction signal for instructing activation of the optical measurement device 2 or an instruction signal for instructing various other operations and outputs the instruction signal to the control unit 29. To do.
  • the output unit 26 is realized by using a liquid crystal or organic EL (Electro Luminescence) display, a light source such as an LED, a speaker, and the like, and outputs information on various processes in the optical measurement apparatus 2. Further, under the control of the control unit 29, the output unit 26 displays numerical values such as the intensity of light received by the light receiving unit 24 (characteristic value calculated by the calculation unit 29a described later) on the display.
  • a liquid crystal or organic EL Electro Luminescence
  • the measuring unit 27 measures a resistance value between contact detection electrodes (contact detection electrodes 35 and 36 described later) provided in the measurement probe 3.
  • the measuring unit 27 outputs the measured resistance value to the control unit 29.
  • the recording unit 28 is realized by using a volatile memory or a non-volatile memory, and records various programs for operating the optical measurement device 2, various data used for optical measurement processing, and various parameters. Further, the recording unit 28 records a threshold value for determining whether or not the distal end surface of the measurement probe 3 is in contact with the living tissue 200 from the resistance value measured by the measuring unit 27. The recording unit 28 temporarily records information being processed by the optical measuring device 2. The recording unit 28 records the measurement result of the optical measurement device 2 in association with the subject to be measured. Note that the recording unit 28 may be configured using a memory card or the like attached from the outside of the optical measurement device 2.
  • the control unit 29 is configured using a CPU (Central Processing Unit) or the like.
  • the control unit 29 controls the processing operation of each unit of the optical measuring device 2.
  • the control unit 29 controls the operation of the optical measurement apparatus 2 by transferring instruction information and data corresponding to each unit of the optical measurement apparatus 2.
  • the control unit 29 records the measurement result by the light receiving unit 24 in the recording unit 28.
  • the control unit 29 includes a calculation unit 29a and a determination unit 29b.
  • the calculation unit 29a performs a plurality of calculation processes based on the measurement result by the light receiving unit 24, and calculates a characteristic value related to the property of the measurement object.
  • the type of the characteristic value is set according to an instruction signal received by the input unit 25, for example.
  • the determination unit 29 b determines whether or not the distal end surface of the measurement probe 3 is in contact with the living tissue 200 based on the measurement result by the measurement unit 27. Specifically, the determination unit 29 b determines whether or not the distal end surface of the measurement probe 3 is in contact with the living tissue 200 based on the resistance value output from the measurement unit 27.
  • the measurement probe 3 is realized by arranging a plurality of optical fibers therein.
  • the measurement probe 3 includes an illumination fiber that emits illumination light to the measurement object, and a plurality of light receiving fibers that receive return light of the illumination light reflected and / or scattered by the measurement object at different angles.
  • the measurement probe 3 irradiates the illumination light supplied from the connector part 31 detachably connected to the connection part 23 of the optical measurement device 2, the flexible part 32 having flexibility, and the light source part 22, And a tip portion 33 that receives return light from the measurement object.
  • FIG. 2 is a diagram schematically showing a cross section of the distal end portion 33 of the measurement probe 3 cut along the longitudinal direction.
  • FIG. 3 is a plan view schematically showing the measurement probe 3 in the direction of arrow A in FIG.
  • the tip portion 33 is provided with an optical element 34 that forms a part of the outer surface of the measurement probe 3.
  • the measurement probe 3 includes an illumination fiber 311 that irradiates the measurement object with illumination light, a first light receiving fiber 312, a second light receiving fiber 313, and a third light receiving light that are reflected and / or scattered by the measurement object.
  • a fiber unit 310 composed of a light receiving fiber 314, an illumination fiber 311, a first light receiving fiber 312, a second light receiving fiber 313, and a coating member 315 made of glass or resin for fixing the scratches and positions of the third light receiving fiber 314;
  • a protection unit 316 made of glass or brass that protects the covering member 315 from an external force, and a probe skin 317 made of SUS and covering the outer peripheral surface of the optical element 34 are provided.
  • the illumination fiber 311 propagates the illumination light output from the light source unit 22 and irradiates the measurement object with the illumination light via the optical element 34. Note that the number of illumination fibers 311 can be changed as appropriate according to the type of inspection item or measurement object, for example, blood flow or site.
  • the illumination fiber 311 is configured using, for example, a step index type single core fiber.
  • the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 propagate the return light of the illumination light reflected and / or scattered by the measurement object incident from the respective tips via the optical element 34, Output to the light receiving unit 24 of the optical measuring device 2.
  • the number of light receiving fibers can be appropriately changed according to the inspection item or the type of measurement object, for example, blood flow or site.
  • the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 are configured by using, for example, a step index type single core fiber.
  • the illumination fiber 311, the first light receiving fiber 312, the second light receiving fiber 313, and the third light receiving fiber 314 of the measurement probe 3 are arranged so that the distance from the adjacent fiber at the distal end portion 33 is short, and contact the optical element 34. It touches.
  • the protective portion 316 is provided with groove portions 316a and 316b that are provided on the outer peripheral side and have a notch shape that is notched along the longitudinal direction.
  • the groove portions 316a and 316b are formed at positions opposite to each other with respect to the central axis of the protective portion 316 (for example, an axis passing through the center of the tip portion 33).
  • the optical element 34 has a cylindrical shape and is configured using transmissive glass having a predetermined refractive index.
  • the optical element 34 is formed so as to be able to irradiate light with a fixed spatial coherent length while fixing the distance between the illumination fiber 311 and a measurement object (for example, a biological surface layer).
  • the optical element 34 fixes the distance between the first light receiving fiber 312 and the measurement object, the distance between the second light receiving fiber 313 and the measurement object, and the distance between the third light receiving fiber 314 and the measurement object, respectively. It is formed so that the return light having a predetermined scattering angle can be received stably.
  • the optical element 34 is provided with grooves 341 and 342 which are provided at the peripheral edge and have a cutout shape cut out along the longitudinal direction.
  • the groove portions 341 and 342 are formed at positions that are opposite to each other with respect to the central axis of the optical element 34 and that communicate with the groove portions 316a and 316b, respectively.
  • the straight lines that pass through the centers of the groove portions 341 and 342 intersect the central axis of the optical element 34.
  • the groove portion 316 a and the groove portion 341 form a groove extending along the flexible portion 32 and the distal end portion 33 by communicating with each other.
  • the groove portion 316 b and the groove portion 342 form a groove extending along the flexible portion 32 and the distal end portion 33 by communicating with each other.
  • groove portions 341 and 342 are described as being provided on the opposite side with respect to the central axis of the optical element 34, the groove portions 341 and 342 are not limited to this and are not limited to this, and in the direction orthogonal to the longitudinal direction of the optical element 34. Any straight line passing through the center of the optical element 34 may be used as long as it passes through the center of the optical element 34 (region where contact detection is performed).
  • the groove portions 341 and 342 of the optical element 34 are respectively provided in the opening on the distal end surface side of the optical element 34, and form part of the distal end surface of the optical element 34 to form the pair of contact detection electrodes 35 and 36.
  • the contact detection electrodes 35 and 36 are electrically connected to the measurement unit 27 via signal lines 35 a and 36 a disposed along the groove and the connector unit 31.
  • a straight line passing through the center of the outer surface of the contact detection electrodes 35 and 36 will be described as passing through the center of the tip surface of the optical element 34 (tip portion 33).
  • between the groove part 341 and the contact detection electrode 35 and between the groove part 342 and the contact detection electrode 36 have watertightness.
  • the contact detection means is constituted by the contact detection electrodes 35 and 36 and the signal lines 35a and 36a.
  • FIG. 4 is a diagram schematically showing the configuration of the distal end portion and the measurement portion of the optical measurement system according to the embodiment of the present invention.
  • the contact detection electrodes 35 and 36 are connected via signal lines (including signal lines 35 a and 36 a) that pass through the measurement unit 27.
  • the signal line is provided with a constant voltage source 27a and an ammeter 27b on the measurement unit 27 side.
  • the constant voltage source 27a will be described as being alternating current.
  • the measuring unit 27 measures a resistance value based on a current I (current value) that changes according to the contact state between the contact detection electrodes 35 and 36 and the living tissue by applying a certain voltage. Output to the control unit 29.
  • the measurement unit 27 may output the measured current value to the control unit 29, and the calculation unit 29a may calculate the resistance value.
  • the voltage applied by the constant voltage source 27a is set so that a constant current of a level that does not affect the human body flows.
  • FIG. 5 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which the entire distal end surface of the distal end portion 33 is in contact with the biological tissue.
  • FIG. Fig.5 (a) is a side view which shows the front-end
  • FIG.5 (b) is a figure which shows typically the front end surface in Fig.5 (a).
  • the hatched portion indicates a contact portion with the living tissue 200.
  • the entire front end surface is in contact with the living tissue 200.
  • FIG. 6 is a diagram for explaining the contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention, in which the distal end surface of the distal end portion 33 and the biological tissue are not in contact with each other. It is a figure explaining a state.
  • 6A is a side view showing the distal end portion 33 and the living tissue 200
  • FIG. 6B is a diagram schematically showing the distal end surface in FIG. 6A.
  • the hatching process as shown in FIG. 5 is not performed.
  • FIG. 7 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention. It is a figure explaining the state which is contacting.
  • Fig.7 (a) is a side view which shows the front-end
  • FIG.7 (b) is a figure which shows typically the front end surface in Fig.7 (a).
  • FIG. 7B in FIG. 7, a part of the distal end surface is in contact with the biological tissue 200, and one contact detection electrode (contact detection electrode 36) is in contact with the biological tissue 200.
  • FIG. 8 is a diagram for explaining a contact state between the distal end portion of the measurement probe and the biological tissue of the optical measurement system according to the embodiment of the present invention. It is a figure explaining the state which is contacting.
  • Fig.8 (a) is a side view which shows the front-end
  • FIG.8 (b) is a figure which shows typically the front end surface in Fig.8 (a).
  • FIG. 8B in FIG. 8, a part of the front end surface is in contact with the living tissue 200, and the two contact detection electrodes 35 and 36 are in contact with the living tissue 200.
  • the resistance value cannot be measured or becomes an extremely large value.
  • the two contact detection electrodes 35 and 36 are in contact with the living tissue (or mucus) and the central portion of the distal end surface is not in contact with the living tissue 200, the current flow path Is not the shortest path, but becomes a path that bypasses the living tissue 200 and the path length becomes longer, and therefore, the resistance value is larger than the path when the entire distal end surface of the distal end portion 33 is in contact with the living tissue. Become.
  • the determination unit 29b Based on the change in the resistance value due to the contact state between the measurement probe 3 and the living tissue 200, the determination unit 29b compares this resistance value with the threshold value recorded in advance in the recording unit 28 to determine whether the measurement probe 3 It is determined whether the distal end surface is in contact with the living tissue 200. For example, the determination unit 29b determines whether or not the acquired resistance value is smaller than a threshold value, and when the resistance value is smaller than the threshold value, the entire distal end surface of the distal end portion 33 is in contact with the living tissue. It is determined that the entire surface is in proper contact with the living tissue.
  • the determination part 29b determines with the front-end
  • the control unit 29 performs control to output the determination result to the output unit 26. Specifically, when the output unit 26 determines that the entire distal end surface of the distal end portion 33 is in contact with the living tissue under the control of the control unit 29 (see FIG. 5), Information indicating that the measurement probe 3 and the living tissue 200 are in proper contact (character information and image information), LED lighting (for example, blue lighting), and sound are output. On the other hand, when the determination unit 29b determines that the entire distal end surface of the distal end portion 33 is not in contact with the living tissue (see FIGS. 6 to 8), the output unit 26 determines that the measurement probe 3 and the living tissue 200 are appropriate.
  • Character information or image information indicating that the terminal is not touched, LED lighting (for example, yellow lighting), and sound are output.
  • the user can acquire the measurement value by the light-receiving part 24 in the state which the measurement probe 3 and the biological tissue 200 contacted appropriately, and can obtain the characteristic value regarding the property of a measuring object.
  • the optical measurement system 1 configured as described above has a measurement probe via a treatment instrument channel 111 provided in an endoscope apparatus 110 (endoscope scope) of the endoscope system 100. 3 is inserted into the subject, the illumination fiber 311 irradiates the measurement object with illumination light, and the first light reception fiber 312, the second light reception fiber 313, and the third light reception fiber 314 are reflected and / or reflected by the measurement object, respectively.
  • the return light of the scattered illumination light is received at different scattering angles and propagated to the light receiving unit 24 of the optical measuring device 2.
  • the calculation unit 29 a calculates the characteristic value of the property of the measurement object based on the measurement result of the light receiving unit 24. Moreover, you may display the determination result by the determination part 29b on the monitor with which the endoscope system 100 is provided.
  • the contact detection electrodes 35 and 36 are provided on the distal end surface of the distal end portion 33 of the measurement probe 3, and the measurement unit 27 determines the resistance value between the contact detection electrodes 35 and 36. Measurement is performed, and the determination unit 29b determines whether or not the distal end surface of the measurement probe 3 is in contact with the biological surface layer based on the measurement result, so that the distal end surface of the measurement probe is the contact target (biological surface layer). It can be determined whether or not it is in proper contact.
  • the determination unit 29b determines the contact mode between the distal end surface of the measurement probe 3 and the biological surface layer based on the resistance value, the distal end surface and the biological surface layer are in contact with each other. Even if it is, it can be determined from the resistance value that a part (for example, the central part) is not in contact, so it is possible to determine that it is in an appropriate contact state, and a highly accurate and stable characteristic. Acquisition of the value can be realized.
  • the determination unit 29b has been described as determining the contact state between the distal end surface of the measurement probe 3 and the biological surface layer based on a pre-recorded threshold value.
  • two or more values may be set. For example, as shown in FIGS. 6 and 7, a value corresponding to the resistance value output when at least one of the contact detection electrodes does not contact the living tissue (or mucus), and two contact detections as shown in FIG.
  • a value corresponding to the resistance value output when the electrodes 35 and 36 are in contact with the living tissue (or mucus) and the central portion of the distal end surface is not in contact with the living tissue 200 is further set as a threshold value. It may be a thing.
  • the output unit 26 outputs information according to the determination result by the determination unit 29b.
  • the determination results may be recorded in association with each other.
  • the measurement unit 27 is described as being provided in the optical measurement device 2. However, the measurement unit 27 is provided in the distal end portion 33 or the connector unit 31 and a resistance value is output from the measurement probe 3. You may do.
  • the straight line passing through the center of the outer surface of the contact detection electrodes 35 and 36 is described as passing through the center of the tip surface of the optical element 34 (tip portion 33).
  • the tip surface of the element 34 (tip portion 33) has a shape other than a circle, for example, an ellipse or a square
  • a straight line passing through the center of the outer surface of the contact detection electrodes 35 and 36 gives the center of gravity of the tip surface.
  • the contact detection electrodes 35 and 36 may be provided at the passing positions.
  • the surface of the mask is the distal end, and the contact detection electrodes 35 and 36 are disposed on the peripheral edge of the plane that passes through the distal end. May be provided.
  • FIG. 10 is a plan view schematically showing a measurement probe according to the first modification of the embodiment of the present invention.
  • FIG. 11 is a diagram schematically illustrating the configuration of the distal end portion and the measurement unit of the optical measurement system according to the first modification of the present embodiment.
  • the pair of two contact detection electrodes has been described.
  • the measurement probe 3a according to the first modification includes two pairs of contact detection electrodes (four contact detection electrodes). ).
  • the optical measurement device 2 includes a measurement unit 271 instead of the measurement unit 27.
  • the measurement probe 3a includes a tip 33a instead of the tip 33 described above.
  • an optical element 34a that forms part of the outer surface of the measurement probe 3a is provided at the distal end portion 33a.
  • the optical element 34a is provided with grooves 343 and 344 that are provided on the outer peripheral side and have a notch shape that is notched along the longitudinal direction.
  • the groove portions 343 and 344 are described as being formed at positions opposite to each other with respect to the central axis of the optical element 34a and communicating with the groove portion formed in the protection portion 316. .
  • a straight line passing through the centers of the groove portions 341 and 342 and a straight line passing through the centers of the groove portions 343 and 344 are orthogonal to each other in the direction orthogonal to the longitudinal direction of the optical element 34a.
  • the present invention is not limited to this, as long as each straight line passes through the central portion of the optical element 34a (a region where contact detection is performed).
  • contact detection electrodes 35 to 38 are provided in the openings on the front end surface side of the optical element 34a, respectively.
  • the contact detection electrodes 37 and 38 are electrically connected to the measurement unit 271 via the signal line disposed along the groove and the connector unit 31.
  • a straight line that passes through the center of the outer surface of the contact detection electrodes 35 and 36 and a straight line that passes through the center of the outer surface of the contact detection electrodes 37 and 38 form the tip surface of the optical element 34a. Cross at the center.
  • the contact detection electrodes 35, 36 and 37, 38 are connected to each other via a signal line passing through the measuring unit 271 (see FIG. 11).
  • the signal line is provided with constant voltage sources 27a and 27c and ammeters 27b and 27d on the measurement unit 271 side.
  • a closed circuit having resistance to the living tissue is formed, and when the contact detection electrodes 37 and 38 come into contact with the living tissue, the living body A closed circuit is formed with tissue as resistance.
  • the measurement unit 271 applies a certain voltage to change the current I 1 that changes according to the contact state between the contact detection electrodes 35 and 36 and the living tissue, and the contact detection electrodes 37 and 38 and the living tissue.
  • each resistance value is measured and output to the control unit 29.
  • the measurement unit 271 may output the measured current value to the control unit 29, and the calculation unit 29a may calculate the resistance value.
  • the voltages applied by the constant voltage sources 27a and 27c are set such that a constant current having a level that does not affect the human body flows.
  • the determination unit 29b determines that the tip surface of the measurement probe 3a is It is determined whether or not the body tissue 200 is in contact.
  • the determination unit 29b compares the resistance values R 1 and R 2 with a threshold value recorded in advance in the recording unit 28 to determine whether or not the distal end surface of the measurement probe 3a is in contact with the living tissue 200. .
  • the circuit may be switched by an input from a user, or may be switched at a predetermined time interval.
  • each pair of contact detection electrodes preferably has a straight line passing through the centers of the two contact detection electrodes intersecting the central axis of the optical element.
  • FIG. 12 is a diagram schematically illustrating the configuration of the distal end portion and the measurement unit of the optical measurement system according to the second modification of the present embodiment.
  • two closed circuits are formed using two of the four contact detection electrodes, for example, two constant voltage sources and two ammeters are provided.
  • the measurement unit 272 according to the second modification has a circuit in which two pairs of contact detection electrodes are connected using one constant voltage source and an ammeter.
  • the contact detection electrodes 35, 36 and 37, 38 are connected via a signal line passing through the measuring section 272, and the circuit can be switched by switches S1, S2 (see FIG. 12).
  • the measuring unit 272 detects the contact between the contact detection electrodes 35 and 36 and the living tissue and the contact between the contact detection electrodes 37 and 38 and the living tissue by switching the switches S1 and S2. Switching to the circuit, the resistance value based on the measured current value I is measured and output to the control unit 29. Note that the measurement unit 272 may output the measured current value to the control unit 29, and the calculation unit 29a may calculate the resistance value.
  • the determination unit 29b performs measurement based on the resistance value measured based on the current I and the resistance value measured based on the currents I 1 and I 2 (see Modification 1) obtained by switching the circuit. It is determined whether or not the tip surface of the probe 3a is in contact with the living tissue 200. According to the second modification, since resistance values in two directions are acquired and determination processing is performed, the contact state between the distal end surface and the biological tissue 200 is determined with higher accuracy than in the above-described embodiment. can do.
  • any two of the contact detection electrodes 35 to 38 may be selected by switching a switch.
  • the contact detection electrode 35 and the contact detection electrode 37 may be selected to form a circuit that detects contact between the contact detection electrodes 35 and 37 and the living tissue.
  • the AC constant voltage source is used.
  • a DC constant voltage source may be used, or a voltage may be used instead of the constant current source and the voltmeter.
  • a value may be measured.
  • an ammeter and a voltmeter may be provided, and the resistance value may be measured based on the actually measured current value and voltage value.
  • the measurement probe and the optical measurement system according to the present invention are useful for determining whether or not the tip surface is in proper contact with the contact target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明にかかる測定プローブは、生体組織に対して光学測定を行う光学測定装置(2)に着脱自在に接続される測定プローブ(3)であって、生体組織に照明光を照射する照明ファイバと、生体組織で反射および/または散乱した照明光の戻り光を受光する受光ファイバと、先端が通過する平面の周縁部に設けられ、対をなす二つの接触検出用電極を一対または複数対有する接触検出手段と、を備え、対をなす二つの接触検出用電極を通過する直線は、先端の重心を通過する。

Description

測定プローブおよび光学測定システム
 本発明は、試料に対して照射光を照射し、該照射により試料から発せられる光を受光する測定プローブ、および該測定プローブを備えた光学測定システムに関する。
 従来、生体組織等の試料に照明光を照射し、試料から反射または散乱された検出光の測定値に基づいて、試料の性状を推定する光学測定システムが知られている。このような光学測定システムは、試料に照明光を出射する光源、および試料からの検出光を検出する検出部を有する光学測定装置と、この光学測定装置に対して着脱可能であり、試料に対する照射光の照射、および試料からの光を受光する測定プローブとを用いて構成される。
 測定プローブは、一端が光源に接続され、他端から照明光を生体組織に照射する照明ファイバと、一端が検出部に接続され、他端で照明ファイバによる照射によって生体組織から発せられた光を受光する受光ファイバと、からなるファイバユニットを有する。
 このような光学測定システムでは、空間コヒーレンス長の短い低コヒーレントの白色光を測定プローブの照明ファイバ先端から生体組織に照射し、複数の角度の散乱光の強度分布を複数の受光ファイバを用いて測定することによって、生体組織の性状を検出するLEBS(Low-Coherence Enhanced Backscattering)が用いられている(特許文献1参照)。
 ここで、上述したLEBSでは、測定プローブの先端面を生体組織(接触対象)に接触させた状態で生体組織の性状の検出を行う。このため、測定プローブの先端面を生体組織に確実に接触させる技術が求められていた。
 測定プローブの先端面が生体組織に接触しているか否かを判定するものとして、先端面に複数の検知センサが設けられている測定プローブが開示されている(例えば、特許文献2を参照)。特許文献2によれば、複数の検出センサが電気的特性をそれぞれ検出し、該検出結果から測定プローブの先端面が生体組織に接触しているか否かを判定することができる。
特許第5049415号公報 特開2005-312927号公報
 しかしながら、特許文献2が開示する測定プローブは、各検出センサが独立して電気的特性を検出しているため、検出センサ近傍における生体組織との接触状態を検出できても、検出センサ間など先端面の中心部における接触状態を検出できなかった。このため、測定プローブの先端面と生体組織とが、実際に適切に接触しているか否かを判定することができない場合があった。
 本発明は、上記に鑑みてなされたものであって、先端面が接触対象と適切に接触しているか否かを判定することができる測定プローブおよび光学測定システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる測定プローブは、生体組織に対して光学測定を行う光学測定装置に着脱自在に接続される測定プローブであって、前記生体組織に照明光を照射する照明ファイバと、前記生体組織で反射および/または散乱した照明光の戻り光を受光する受光ファイバと、当該測定プローブの先端が通過する平面の周縁部に設けられ、対をなす二つの接触検出用電極を一対または複数対有する接触検出手段と、を備え、前記対をなす二つの接触検出用電極を通過する直線は、前記先端の重心を通過することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記対をなす二つの接触検出用電極は、複数対設けられ、前記対をなす二つの接触検出用電極を通過する直線は、他の対をなす二つの接触検出用電極を通過する直線と前記先端面の中心近傍で交差することを特徴とする。
 また、本発明にかかる光学測定システムは、生体組織に対して光学測定を行う光学測定装置と、該光学測定装置に着脱自在に接続される測定プローブとを備えた光学測定システムであって、前記測定プローブは、前記生体組織に照明光を照射する照明ファイバと、前記生体組織で反射および/または散乱した照明光の戻り光を受光する受光ファイバと、当該測定プローブの先端が通過する平面の周縁部に設けられ、対をなす二つの接触検出用電極を一対または複数対有する接触検出手段と、を有し、前記対をなす二つの接触検出用電極を通過する直線は、前記先端の重心を通過し、前記光学測定装置は、前記対をなす二つの接触検出用電極間の抵抗値を計測する計測部を備えたことを特徴とする。
 また、本発明にかかる光学測定システムは、上記発明において、前記光学測定装置は、前記計測部が計測した前記抵抗値に基づいて前記生体組織と前記先端との接触状態を判定する判定部と、前記判定部による判定結果を出力する出力部と、を備えたことを特徴とする。
 本発明によれば、測定プローブの先端面が接触対象と適切に接触しているか否かを判定することができるという効果を奏する。
図1は、本発明の実施の形態にかかる光学測定システムの構成を模式的に示すブロック図である。 図2は、本発明の実施の形態にかかる光学測定システムの光学素子を含む測定プローブの先端部を長手方向に沿って切断した断面を模式的に示す図である。 図3は、図2の矢視A方向の測定プローブを模式的に示す平面図である。 図4は、本発明の実施の形態にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。 図5は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部の先端面全面と生体組織とが接触している状態を説明する図である。 図6は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部の先端面と生体組織とが非接触の状態を説明する図である。 図7は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部の先端面の一部と生体組織とが接触している状態を説明する図である。 図8は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部の先端面の一部と生体組織とが接触している状態を説明する図である。 図9は、本発明の実施の形態にかかる光学測定システムを内視鏡システムで使用する際の状況を示す図である。 図10は、本発明の実施の形態の変形例1にかかる測定プローブを模式的に示す平面図である。 図11は、本発明の実施の形態の変形例1にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。 図12は、本発明の実施の形態の変形例2にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。
 以下、図面を参照して、本発明にかかる測定プローブおよびこの測定プローブを備えた光学測定システムの好適な実施の形態を詳細に説明する。なお、この実施の形態によってこの発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。
(実施の形態)
 図1は、本発明の実施の形態にかかる光学測定システムの構成を模式的に示すブロック図である。図1に示す光学測定システム1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の性状(特性)を検出する光学測定装置2と、光学測定装置2に着脱自在であり、被検体内に挿入され、生体組織(例えば、図5に示す生体組織200)と接触した状態で照射光の照射および生体組織からの光(戻り光)を受光する測定プローブ3と、を備える。
 まず、光学測定装置2について説明する。光学測定装置2は、電源21と、光源部22と、接続部23と、受光部24と、入力部25と、出力部26と、計測部27と、記録部28と、制御部29と、を備える。電源21は、光学測定装置2の各構成要素に電力を供給する。
 光源部22は、白色LED(Light Emitting Diode)、キセノンランプ、タングステンランプおよびハロゲンランプのようなインコヒーレント光源と、必要に応じて一または複数のレンズ、たとえば集光レンズやコリメートレンズ等を用いて実現される。光源部22は、接続部23を介して測定対象物へ照射する少なくとも一つのスペクトル成分を有するインコヒーレント光を測定プローブ3に出力する。
 接続部23は、測定プローブ3のコネクタ部31を光学測定装置2に着脱自在に接続する。接続部23は、光源部22が発する光を測定プローブ3に出力するとともに、測定プローブ3から出射されて測定対象物で反射および/または散乱した照明光の戻り光を受光部24に出力する。接続部23は、測定プローブ3の接続の有無に関する情報を制御部29へ出力する。
 受光部24は、測定プローブ3から出射された照明光であって測定対象物で反射および/または散乱した照明光の戻り光を受光して測定する。受光部24は、複数の分光測定器や受光センサ等を用いて実現される。具体的には、受光部24は、分光測定器が後述する測定プローブ3の受光ファイバの数に応じて設けられる。受光部24は、測定プローブ3から入射された散乱光のスペクトル成分および強度分布を測定して、各波長の測定を行う。受光部24は、測定結果を制御部29へ出力する。
 入力部25は、プッシュ式のスイッチやタッチパネル等を用いて実現され、光学測定装置2の起動を指示する指示信号または他の各種の動作を指示する指示信号の入力を受け付けて制御部29へ出力する。
 出力部26は、液晶または有機EL(Electro Luminescence)のディスプレイ、LED等の光源、およびスピーカ等を用いて実現され、光学測定装置2における各種処理に関する情報を出力する。また、出力部26は、制御部29の制御のもと、例えば、受光部24が受光した光の強度(後述する演算部29aが演算した特性値)などの数値をディスプレイに表示する。
 計測部27は、測定プローブ3に設けられた接触検出用電極(後述する接触検出用電極35,36)間の抵抗値を計測する。計測部27は、計測した抵抗値を制御部29に出力する。
 記録部28は、揮発性メモリや不揮発性メモリを用いて実現され、光学測定装置2を動作させるための各種プログラム、光学測定処理に使用される各種データや各種パラメータを記録する。また、記録部28は、計測部27により計測された抵抗値から、測定プローブ3の先端面が生体組織200と接触しているか否かを判定するための閾値を記録している。記録部28は、光学測定装置2の処理中の情報を一時的に記録する。また、記録部28は、光学測定装置2の測定結果を、測定対象の被検体に対応付けて記録する。なお、記録部28は、光学測定装置2の外部から装着されるメモリカード等を用いて構成されてもよい。
 制御部29は、CPU(Central Processing Unit)等を用いて構成される。制御部29は、光学測定装置2の各部の処理動作を制御する。制御部29は、光学測定装置2の各部に対応する指示情報やデータの転送等を行うことによって、光学測定装置2の動作を制御する。制御部29は、受光部24による測定結果を記録部28に記録する。制御部29は、演算部29aおよび判定部29bを有する。
 演算部29aは、受光部24による測定結果に基づいて、複数の演算処理を行い、測定対象物の性状に関する特性値を演算する。この特性値の種別は、たとえば入力部25が受け付けた指示信号にしたがって設定される。
 判定部29bは、計測部27による計測結果に基づいて、測定プローブ3の先端面が生体組織200と接触しているか否かを判定する。具体的には、判定部29bは、計測部27から出力される抵抗値に基づいて測定プローブ3の先端面が生体組織200と接触しているか否かを判定する。
 つぎに、測定プローブ3について説明する。測定プローブ3は、複数の光ファイバを内部に配設して実現される。具体的には、測定プローブ3は、測定対象物に照明光を出射する照明ファイバと、測定対象物で反射および/または散乱した照明光の戻り光が異なる角度で入射する複数の受光ファイバとを用いて実現される。測定プローブ3は、光学測定装置2の接続部23に着脱自在に接続されるコネクタ部31と、可撓性を有する可撓部32と、光源部22から供給された照明光を照射するとともに、測定対象物からの戻り光を受光する先端部33と、を備える。
 測定プローブ3の先端部33の構成について詳細に説明する。図2は、測定プローブ3の先端部33を長手方向に沿って切断した断面を模式的に示す図である。図3は、図2の矢視A方向の測定プローブ3を模式的に示す平面図である。先端部33には、図2に示すように、測定プローブ3の外表面の一部をなす光学素子34が設けられている。
 測定プローブ3は、測定対象物に照明光を照射する照明ファイバ311、測定対象物で反射および/または散乱した照明光の戻り光が入射する第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314からなるファイバユニット310と、照明ファイバ311、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314それぞれの傷防止や位置を固定するガラス又は樹脂等の被覆部材315と、被覆部材315を外力から保護するガラス又は真鍮等の保護部316と、SUS等からなり、保護部316、光学素子34の外周面を覆うプローブ外皮317と、を備える。
 照明ファイバ311は、光源部22から出力された照明光を伝播し、光学素子34を介して測定対象物に照明光を照射する。なお、照明ファイバ311の数は、検査項目または測定対象物の種類、たとえば血流や部位に応じて適宜変更することができる。照明ファイバ311は、例えばステップインデックス型シングルコアファイバを用いて構成される。
 第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314は、光学素子34を介してそれぞれの先端から入射した測定対象物で反射および/または散乱した照明光の戻り光を伝播し、光学測定装置2の受光部24に出力する。なお、受光ファイバの数は、検査項目または測定対象物の種類、たとえば血流や部位に応じて適宜変更することができる。第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314は、例えばステップインデックス型シングルコアファイバを用いて構成される。
 測定プローブ3の照明ファイバ311、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314は、先端部33において隣接するファイバとの距離が短くなるように配置され、光学素子34に当接している。
 保護部316には、外周側に設けられ、長手方向に沿って切り欠かれた切欠き形状をなす溝部316a,316bが形成されている。溝部316a,316bは、保護部316の中心軸(例えば、先端部33の中心を通過する軸)に対して互いに反対側となる位置に形成されている。
 光学素子34は、円柱状をなし、所定の屈折率を有する透過性のガラスを用いて構成される。光学素子34は、照明ファイバ311と測定対象物(例えば、生体表層)までの距離を固定し、空間コヒーレント長を一定の状態で光を照射可能に形成されている。また、光学素子34は、第1受光ファイバ312と測定対象物との距離、第2受光ファイバ313と測定対象物との距離および第3受光ファイバ314と測定対象物との距離をそれぞれ固定し、所定の散乱角度の戻り光を安定して受光可能に形成されている。
 光学素子34には、周縁部に設けられ、長手方向に沿って切り欠かれた切欠き形状をなす溝部341,342が形成されている。溝部341,342は、光学素子34の中心軸に対して互いに反対側となる位置であって、溝部316a,316bとそれぞれ連通する位置に形成されている。換言すれば、溝部341,342は、それぞれの中心を通過する直線が、光学素子34の中心軸と交差している。溝部316aと溝部341とは、互いに連通することによって可撓部32および先端部33に沿って延びる溝を形成する。また、溝部316bと溝部342とは、互いに連通することによって可撓部32および先端部33に沿って延びる溝を形成する。なお、溝部341,342は、光学素子34の中心軸を介して反対側に設けられるものとして説明するが、これに限らず、光学素子34の長手方向と直交する方向において、該溝部341,342の中心を通過する直線が、光学素子34の中央部(接触検出を行う領域)を通過するものであればよい。
 また、光学素子34の溝部341,342は、該光学素子34の先端面側の開口にそれぞれ設けられ、光学素子34の先端面の一部をなし、対をなす接触検出用電極35,36を有する。接触検出用電極35,36は、溝に沿って配設される信号線35a,36a、およびコネクタ部31を介して計測部27と電気的に接続している。本実施の形態では、接触検出用電極35,36の外表面の中心を通過する直線が、光学素子34(先端部33)の先端面の中心を通過するものとして説明する。なお、溝部341と接触検出用電極35との間、および溝部342と接触検出用電極36との間は、水密性を有する。また、光学素子34は、少なくとも生体組織と接触する先端面における接触検出用電極35,36以外の部分が、絶縁性、生体適合性、撥水性および光透過性を有することが好ましい。接触検出用電極35,36および信号線35a,36aにより接触検出手段を構成する。
 図4は、本発明の実施の形態にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。接触検出用電極35,36は、計測部27を経由する信号線(信号線35a,36aを含む)を介して接続されている。該信号線には、計測部27側に定電圧源27aと電流計27bとが設けられている。本実施の形態では、定電圧源27aが交流であるものとして説明する。接触検出用電極35,36が生体組織と接触することにより、生体組織(粘膜または粘液)を抵抗とする閉回路が形成される。計測部27では、ある一定の電圧を加えることで、接触検出用電極35,36と生体組織との接触状態に応じて変化する電流I(電流値)をもとに、抵抗値を計測して制御部29に出力する。なお、計測部27は、計測した電流値を制御部29に出力し、演算部29aが抵抗値を演算するものであってもよい。また、定電圧源27aが印加する電圧は、人体に影響のないレベルの定電流が流れるように設定されている。
 図5は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部33の先端面全面と生体組織とが接触している状態を説明する図である。図5(a)は、先端部33と生体組織200とを示す側面図であって、図5(b)は、図5(a)における先端面を模式的に示す図である。なお、図5(b)においてハッチング処理が施されている部分が、生体組織200との接触部分を示している。図5(b)に示すように、図5では、先端面の全面が生体組織200と接触している。
 図6は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部33の先端面と生体組織とが非接触の状態を説明する図である。図6(a)は、先端部33と生体組織200とを示す側面図であって、図6(b)は、図6(a)における先端面を模式的に示す図である。なお、図6(b)では、先端面と生体組織200とが接触していないため、図5に示すようなハッチング処理は施されていない。
 図7は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部33の先端面の一部と生体組織とが接触している状態を説明する図である。図7(a)は、先端部33と生体組織200とを示す側面図であって、図7(b)は、図7(a)における先端面を模式的に示す図である。図7(b)に示すように、図7では、先端面の一部が生体組織200と接触し、一方の接触検出用電極(接触検出用電極36)が生体組織200と接触している。
 図8は、本発明の実施の形態にかかる光学測定システムの測定プローブの先端部と生体組織との接触状態を説明する図であって、先端部33の先端面の一部と生体組織とが接触している状態を説明する図である。図8(a)は、先端部33と生体組織200とを示す側面図であって、図8(b)は、図8(a)における先端面を模式的に示す図である。図8(b)に示すように、図8では、先端面の一部が生体組織200と接触し、かつ二つの接触検出用電極35,36が生体組織200と接触している。
 ここで、図6,7に示すように少なくとも一方の接触検出用電極が生体組織(または粘液)と接触しない場合は、抵抗値が計測不可、または極端に大きい値となる。また、図8に示すように二つの接触検出用電極35,36が生体組織(または粘液)と接触しかつ、先端面の中央部が生体組織200と接触していない場合は、電流の流れる経路が最短経路ではなく、生体組織200を迂回した経路となって経路長が長くなるため、先端部33の先端面全面と生体組織とが接触している場合の経路と比して抵抗値が大きくなる。
 これに対し、先端部33の先端面全面と生体組織とが接触している場合は(図5参照)、接触検出用電極35,36間で電流が流れる経路の経路長が最少となるため、接触状態が安定しない場合(図6~8参照)と比して抵抗値が小さくなる。
 測定プローブ3と生体組織200との接触状態による抵抗値の変化をもとに、判定部29bは、この抵抗値と、記録部28に予め記録されている閾値とを比較して測定プローブ3の先端面が生体組織200と接触しているか否かを判定する。判定部29bは、例えば、取得した抵抗値が閾値より小さいか否かを判断し、抵抗値が閾値より小さい場合に先端部33の先端面全面と生体組織とが接触している、すなわち、先端面全面と生体組織とが適切に接触していると判定する。一方、判定部29bは、取得した抵抗値が閾値以上の場合に先端部33の先端面と生体組織とが適切に接触していないと判定する。このように、判定部29bの判定により、測定プローブ3の先端面が生体組織200と接触しているか否か、または測定プローブ3の先端面のうち、全面が生体組織200と接触しているか否かを判定することができる。
 制御部29は、判定部29bにより判定結果が出力されると、該判定結果を出力部26に出力させる制御を行う。具体的には、出力部26は、制御部29の制御のもと、判定部29bによって先端部33の先端面全面と生体組織とが接触している(図5参照)と判定された場合、測定プローブ3と生体組織200とが適切に接触している旨の情報(文字情報や画像情報)や、LEDの点灯(例えば青色に点灯)、音声を出力する。一方、出力部26は、判定部29bによって先端部33の先端面全面と生体組織とが接触していない(図6~8参照)と判定された場合、測定プローブ3と生体組織200とが適切に接触していない旨の情報(文字情報や画像情報)や、LEDの点灯(例えば黄色に点灯)、音声を出力する。これにより、使用者は、測定プローブ3と生体組織200とが適切に接触した状態で、受光部24による測定結果を取得して、測定対象物の性状に関する特性値を得ることができる。
 以上のように構成された光学測定システム1は、図9に示すように、内視鏡システム100の内視鏡装置110(内視鏡スコープ)に設けられた処置具チャンネル111を介して測定プローブ3が被検体内に挿入され、照明ファイバ311が測定対象物に照明光を照射し、第1受光ファイバ312、第2受光ファイバ313および第3受光ファイバ314がそれぞれ測定対象物で反射および/または散乱した照明光の戻り光を異なる散乱角度で受光して光学測定装置2の受光部24に伝播する。その後、演算部29aは、受光部24の測定結果に基づいて、測定対象物の性状の特性値を演算する。また、判定部29bによる判定結果を、内視鏡システム100が備えるモニタに表示してもよい。
 以上説明した本実施の形態によれば、測定プローブ3の先端部33の先端面に接触検出用電極35,36を設けて、計測部27が該接触検出用電極35,36間の抵抗値を計測し、判定部29bが、該計測結果に基づいて測定プローブ3の先端面が生体表層と接触しているか否かを判定するようにしたので、測定プローブの先端面が接触対象(生体表層)と適切に接触しているか否かを判定することができる。
 また、本実施の形態によれば、判定部29bが、抵抗値に基づいて測定プローブ3の先端面と生体表層との接触態様を判定するようにしたので、先端面と生体表層とが接触している場合であっても、一部(例えば中央部)が非接触の状態を抵抗値から判断できるため、適切な接触状態であることを判定することが可能であり、高精度かつ安定した特性値の取得を実現することができる。
 なお、上述した実施の形態では、判定部29bが、予め記録されている閾値に基づいて測定プローブ3の先端面と生体表層との接触態様を判定するものとして説明したが、閾値は一つに限らず、二つ以上の値を設定するものであってもよい。例えば、図6,7に示すように少なくとも一方の接触検出用電極が生体組織(または粘液)と接触しない場合に出力される抵抗値に応じた値と、図8に示すように二つの接触検出用電極35,36が生体組織(または粘液)と接触しかつ、先端面の中央部が生体組織200と接触していない場合に出力される抵抗値に応じた値と、を閾値としてさらに設定するものであってもよい。
 また、上述した実施の形態では、判定部29bによる判定結果に応じて出力部26が情報を出力するものとして説明したが、実際に判定部29bが判定処理を行ったタイミングで測定された特性値に該判定結果を対応付けて記録するものであってもよい。
 また、上述した実施の形態では、計測部27が光学測定装置2に設けられているものとして説明したが、計測部27を先端部33やコネクタ部31に設けて測定プローブ3から抵抗値を出力するものであってもよい。
 また、上述した実施の形態では、接触検出用電極35,36の外表面の中心を通過する直線が、光学素子34(先端部33)の先端面の中心を通過するものとして説明したが、光学素子34(先端部33)の先端面が円以外の形状、例えば楕円や角形をなすものである場合は、接触検出用電極35,36の外表面の中心を通過する直線が先端面の重心を通過する位置に接触検出用電極35,36を設ければよい。また、先端部33の先端に、例えば一部を遮光する円環状のマスクが設けられる場合は、該マスクの表面を先端とし、該先端を通過する平面の周縁部に接触検出用電極35,36を設ければよい。
(実施の形態の変形例1)
 図10は、本発明の実施の形態の変形例1にかかる測定プローブを模式的に示す平面図である。図11は、本実施の形態の変形例1にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。上述した実施の形態では、対をなす二つの接触検出用電極を一対有するものとして説明したが、本変形例1にかかる測定プローブ3aは、二対の接触検出用電極(四つの接触検出用電極)を有する。また、光学測定装置2は、計測部27に代えて計測部271を有する。
 測定プローブ3aは、上述した先端部33に代えて先端部33aを備える。先端部33aには、図10に示すように、測定プローブ3aの外表面の一部をなす光学素子34aが設けられている。光学素子34aには、上述した溝部341,342の他、外周側に設けられ、長手方向に沿って切り欠かれた切欠き形状をなす溝部343,344が形成されている。なお、本変形例1では、溝部343,344は、光学素子34aの中心軸に対して互いに反対側となる位置に形成され、保護部316に形成される溝部と連通しているものとして説明する。また、本変形例1では、光学素子34aの長手方向と直交する方向において、溝部341,342の中心を通過する直線と、溝部343,344の中心を通過する直線とが直交するものとして説明するが、これに限るものではなく、各直線が光学素子34aの中央部(接触検出を行う領域)を通過するものであればよい。
 また、光学素子34aの溝部341~344には、該光学素子34aの先端面側の開口に接触検出用電極35~38がそれぞれ設けられる。接触検出用電極37,38は、接触検出用電極35,36のように、溝に沿って配設される信号線、およびコネクタ部31を介して計測部271と電気的に接続している。本変形例1では、接触検出用電極35,36の外表面の中心を通過する直線と、接触検出用電極37,38の外表面の中心を通過する直線とが、光学素子34aの先端面の中心で交差している。
 接触検出用電極35,36および37,38は、計測部271を経由する信号線を介してそれぞれ接続されている(図11参照)。該信号線には、計測部271側に定電圧源27a,27cと電流計27b,27dとが設けられている。接触検出用電極35,36が生体組織と接触することにより、生体組織(粘膜または粘液)を抵抗とする閉回路が形成され、接触検出用電極37,38が生体組織と接触することにより、生体組織を抵抗とする閉回路が形成される。計測部271では、ある一定の電圧を加えることで、接触検出用電極35,36と生体組織との接触状態に応じて変化する電流I、および接触検出用電極37,38と生体組織との接触状態に応じて変化する電流Iをもとに、それぞれの抵抗値を計測して制御部29に出力する。なお、計測部271は、計測した電流値を制御部29に出力し、演算部29aが抵抗値を演算するものであってもよい。また、定電圧源27a,27cが印加する電圧は、人体に影響のないレベルの定電流が流れるように設定されている。
 判定部29bは、電流Iに基づき計測された抵抗値(例えばR)と、電流Iに基づき計測された抵抗値(例えばR)とをもとに、測定プローブ3aの先端面が生体組織200と接触しているか否かを判定する。判定部29bは、抵抗値R,Rと、記録部28に予め記録されている閾値と、を比較して測定プローブ3aの先端面が生体組織200と接触しているか否かを判定する。本変形例1によれば、二つの方向における抵抗値を取得して判定処理を行うため、上述した実施の形態と比して、先端面と生体組織200との接触状態を一段と高精度に判定することができる。なお、回路の切り替えは、使用者からの入力により切り替えるものであってもよいし、所定時間間隔で切り替えるものであってもよい。
 本変形例1では、二対の接触検出用電極(四つの接触検出用電極)を有するものとして説明したが、三対以上の接触検出用電極を有するものであってもよい。この場合、各一対の接触検出用電極(溝部)は、二つの接触検出用電極の中心を通過する直線が、光学素子の中心軸と交差していることが好ましい。
(実施の形態の変形例2)
 図12は、本実施の形態の変形例2にかかる光学測定システムの先端部および計測部の構成を模式的に示す図である。上述した変形例1では、四つの接触検出用電極のうち二つの接触検出用電極を用いて閉回路を二つ形成する、例えば二つの定電圧源と二つの電流計とが設けられているものとして説明したが、本変形例2にかかる計測部272は、一つの定電圧源および電流計を用いて二対の接触検出用電極を接続した回路を有する。
 接触検出用電極35,36および37,38は、計測部272を経由する信号線を介して接続され、スイッチS1,S2によって回路が切替可能である(図12参照)。計測部272では、スイッチS1,S2を切り替えることで、接触検出用電極35,36と生体組織との接触状態を検出する回路、および接触検出用電極37,38と生体組織との接触を検出する回路に切り替えて、計測した電流値Iに基づく抵抗値を計測して制御部29に出力する。なお、計測部272は、計測した電流値を制御部29に出力し、演算部29aが抵抗値を演算するものであってもよい。
 判定部29bは、電流Iに基づき計測された抵抗値や、回路を切り替えることによって得られた電流I,I(変形例1を参照)に基づき計測された抵抗値をもとに、測定プローブ3aの先端面が生体組織200と接触しているか否かを判定する。本変形例2によれば、二つの方向における抵抗値を取得して判定処理を行うため、上述した実施の形態と比して、先端面と生体組織200との接触状態を一段と高精度に判定することができる。
 なお、変形例2において、スイッチを切り替えることにより、接触検出用電極35~38のいずれか二つの接触検出用電極を選択することができるようにしてもよい。例えば、接触検出用電極35と接触検出用電極37とを選択し、該接触検出用電極35,37と生体組織との接触を検出する回路を形成するものであってもよい。
 なお、上述した実施の形態および変形例では、交流の定電圧源を用いるものを説明したが、直流の定電圧源を用いるものであってもよいし、定電流源および電圧計に代えて電圧値を計測するものであってもよい。また、電流計および電圧計を設けて、それぞれが実際に計測した電流値および電圧値をもとに抵抗値を計測するものであってもよい。
 以上のように、本発明にかかる測定プローブおよび光学測定システムは、先端面が接触対象と適切に接触しているか否かを判定するのに有用である。
 1 光学測定システム
 2 光学測定装置
 3,3a 測定プローブ
 21 電源
 22 光源部
 23 接続部
 24 受光部
 25 入力部
 26 出力部
 27,271,272 計測部
 28 記録部
 29 制御部
 29a 演算部
 29b 判定部
 31 コネクタ部
 32 可撓部
 33,33a 先端部
 34,34a 光学素子
 35~38 接触検出用電極
 100 内視鏡システム
 110 内視鏡装置
 111 処置具チャンネル
 310 ファイバユニット
 311 照明ファイバ
 312 第1受光ファイバ
 313 第2受光ファイバ
 314 第3受光ファイバ
 315 被覆部材
 316 保護部
 317 プローブ外皮

Claims (4)

  1.  生体組織に対して光学測定を行う光学測定装置に着脱自在に接続される測定プローブであって、
     前記生体組織に照明光を照射する照明ファイバと、
     前記生体組織で反射および/または散乱した照明光の戻り光を受光する受光ファイバと、
     当該測定プローブの先端が通過する平面の周縁部に設けられ、対をなす二つの接触検出用電極を一対または複数対有する接触検出手段と、
     を備え、
     前記対をなす二つの接触検出用電極を通過する直線は、前記先端の重心を通過することを特徴とする測定プローブ。
  2.  前記対をなす二つの接触検出用電極は、複数対設けられ、
     前記対をなす二つの接触検出用電極を通過する直線は、他の対をなす二つの接触検出用電極を通過する直線と前記先端面の中心近傍で交差することを特徴とする請求項1に記載の測定プローブ。
  3.  生体組織に対して光学測定を行う光学測定装置と、該光学測定装置に着脱自在に接続される測定プローブとを備えた光学測定システムであって、
     前記測定プローブは、
     前記生体組織に照明光を照射する照明ファイバと、
     前記生体組織で反射および/または散乱した照明光の戻り光を受光する受光ファイバと、
     当該測定プローブの先端が通過する平面の周縁部に設けられ、対をなす二つの接触検出用電極を一対または複数対有する接触検出手段と、
     を有し、前記対をなす二つの接触検出用電極を通過する直線は、前記先端の重心を通過し、
     前記光学測定装置は、
     前記対をなす二つの接触検出用電極間の抵抗値を計測する計測部
     を備えたことを特徴とする光学測定システム。
  4.  前記光学測定装置は、
     前記計測部が計測した前記抵抗値に基づいて前記生体組織と前記先端との接触状態を判定する判定部と、
     前記判定部による判定結果を出力する出力部と、
     を備えたことを特徴とする請求項4に記載の光学測定システム。
PCT/JP2015/064188 2014-05-16 2015-05-18 測定プローブおよび光学測定システム WO2015174543A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558296A JPWO2015174543A1 (ja) 2014-05-16 2015-05-18 測定プローブおよび光学測定システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461994575P 2014-05-16 2014-05-16
US61/994,575 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174543A1 true WO2015174543A1 (ja) 2015-11-19

Family

ID=54480077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064188 WO2015174543A1 (ja) 2014-05-16 2015-05-18 測定プローブおよび光学測定システム

Country Status (2)

Country Link
JP (1) JPWO2015174543A1 (ja)
WO (1) WO2015174543A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104838A (ja) * 2006-09-25 2008-05-08 Matsushita Electric Works Ltd 生体信号測定具及びこれを用いた生体信号測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157873B2 (ja) * 2004-04-01 2008-10-01 株式会社日本システム研究所 表面性状測定用プローブ、これを用いた表面性状測定方法及び装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104838A (ja) * 2006-09-25 2008-05-08 Matsushita Electric Works Ltd 生体信号測定具及びこれを用いた生体信号測定方法

Also Published As

Publication number Publication date
JPWO2015174543A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6173325B2 (ja) 測定プローブおよび生体光学測定システム
JP2019510203A5 (ja)
US9014517B2 (en) Fiber unit
US20150177134A1 (en) Scattered light measurement apparatus
JP6000957B2 (ja) 光学測定装置および校正方法
US10682043B2 (en) Measurement probe and bio-optical measurement system with contact detection
US9211053B2 (en) Medical apparatus, disposable medical device, and medical system
JP6028015B2 (ja) 測定プローブ
WO2015174543A1 (ja) 測定プローブおよび光学測定システム
US20160183805A1 (en) Calibrator and calibration apparatus
JP5469291B1 (ja) 光学測定装置および光学測定システム
JP5439631B1 (ja) 生体光学測定装置および測定プローブ
JP5596870B2 (ja) 測定プローブ
WO2013140690A1 (ja) 測定プローブおよび生体光学測定システム
JP5526292B1 (ja) 生体光学測定装置、測定プローブおよび生体光学測定システム
WO2013133341A1 (ja) 光学測定装置
JP5763285B1 (ja) 光学測定装置
JP2020054554A (ja) センサプローブ、及びセンサシステム
JP2007330551A (ja) 皮下脂肪厚計

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015558296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792090

Country of ref document: EP

Kind code of ref document: A1