WO2015174399A1 - Light extraction film, surface light emitting body, and method for producing light extraction film - Google Patents

Light extraction film, surface light emitting body, and method for producing light extraction film Download PDF

Info

Publication number
WO2015174399A1
WO2015174399A1 PCT/JP2015/063594 JP2015063594W WO2015174399A1 WO 2015174399 A1 WO2015174399 A1 WO 2015174399A1 JP 2015063594 W JP2015063594 W JP 2015063594W WO 2015174399 A1 WO2015174399 A1 WO 2015174399A1
Authority
WO
WIPO (PCT)
Prior art keywords
light extraction
extraction film
light
meth
ionic liquid
Prior art date
Application number
PCT/JP2015/063594
Other languages
French (fr)
Japanese (ja)
Inventor
直子 山田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2015526817A priority Critical patent/JPWO2015174399A1/en
Publication of WO2015174399A1 publication Critical patent/WO2015174399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a light extraction film, a surface light emitter, and a method for manufacturing the light extraction film.
  • This application claims priority on May 12, 2014 based on Japanese Patent Application No. 2014-098241 for which it applied to Japan, and uses the content for it here.
  • a scattering film, a light extraction film, and the like are used for the surface light emitter.
  • the former is a film in which organic beads for diffusing light are fixed with heat or a photo-curing resin, and diffuses light emitted from a surface light emitter.
  • the latter is a film that takes out light by changing the angle of the light beam by the difference in refractive index between the light incident surface and the light exit surface, or by a fine uneven structure. These film surfaces have poor electrical conductivity, and dust or the like may adhere to them.
  • a conductive polymer or metal oxide is added to the film of Patent Document 1
  • an ionic liquid is added to the films of Patent Documents 2, 3, and 4 to improve the conductivity. Yes.
  • the conductive polymer proposed in Patent Document 1 has low compatibility with the resin used as a film, and there is a concern that the film appearance may deteriorate due to bleeding to the surface layer during a wet heat test. Furthermore, the metal oxide proposed in Patent Document 1 may cause light scattering and absorption, which may deteriorate the characteristics of the optical film. Further, the ionic liquids proposed in Patent Documents 2, 3, and 4 contain fluorine, which may conflict with halogen regulations in recent years, particularly in Europe and the United States. Furthermore, there is a concern such as mold corrosion due to fluorine, which is not satisfactory as an antistatic film.
  • an object of the present invention is to improve the light extraction efficiency and normal luminance of the surface light emitter and to suppress the emission angle dependency of the emission light wavelength, to suppress bleed out, and to be excellent in antistatic properties. It is to provide a light extraction film.
  • a light extraction film comprising a matrix resin (X), an ionic liquid (Y), and light diffusing fine particles (Z).
  • the absolute value of the difference in sp value obtained from the cloud point titration method between the ionic liquid (Y) and the material constituting the light extraction film excluding the ionic liquid (Y) including the ionic liquid (Y) is A light extraction film that is 0.1 to 17.
  • the light extraction film includes a matrix resin (X), The content of the ionic liquid (Y) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the matrix resin (X), according to any one of [1] to [7].
  • Light extraction film. [9] The light extraction film includes light diffusing fine particles (Z), The light extraction film according to [8], wherein the content of the light diffusing fine particles (Z) is 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the matrix resin (X).
  • the light extraction film includes a matrix resin (X), The light extraction film according to any one of [1] to [9], wherein the matrix resin (X) is an acrylic resin.
  • a light extraction film according to any one of [1] to [10], wherein the light extraction film has an uneven structure on the surface.
  • a surface light emitter comprising the light extraction film according to any one of [1] to [11] and an EL element.
  • a method for producing a light extraction film comprising: supplying a mixture containing an ionic liquid (Y) and an active energy ray-curable composition between a base material and a mold having a concavo-convex transfer portion, and irradiating the active energy ray. Manufacturing method.
  • the light extraction film of the present invention is excellent in antistatic properties while improving the light extraction efficiency and normal luminance of the surface light emitter and suppressing the emission angle dependence of the emission light wavelength.
  • the surface light emitter of the present invention is excellent in light extraction efficiency and normal luminance, suppresses the emission angle dependence of the emission light wavelength, and is excellent in antistatic properties.
  • the light extraction film manufacturing method of the present invention is excellent in productivity, and the resulting light extraction film improves the light extraction efficiency and normal luminance of the surface light emitter and suppresses the emission angle dependency of the emission light wavelength. In addition, it has excellent antistatic properties.
  • the light extraction film 10 of the present invention is laminated on the substrate of the EL element 30, and the material constituting the light extraction film 10 contains an ionic liquid (Y).
  • the material constituting the light extraction film 10 is excellent in the productivity of the light extraction film 10, excellent in the light extraction efficiency and normal luminance of the surface light emitter, and suppresses the emission angle dependency of the emission light wavelength of the surface light emitter. It is preferable that matrix resin (X), ionic liquid (Y), and light-diffusion particle
  • the matrix resin (X) is not particularly limited as long as it has a high light transmittance in the visible light wavelength region (approximately 400 nm to 700 nm).
  • acrylic resin polycarbonate resin
  • polyethylene terephthalate polybutylene terephthalate
  • polyethylene naphthalate examples thereof include polyester resins such as phthalate; styrene resins such as polystyrene and ABS resin; vinyl chloride resins and the like.
  • These matrix resins (X) may be used individually by 1 type, and may use 2 or more types together.
  • an acrylic resin is preferable because it has a high light transmittance in the visible light wavelength region and is excellent in heat resistance, mechanical properties, or molding processability.
  • the acrylic resin means a resin containing a monomer unit derived from (meth) acrylic acid or a derivative thereof.
  • the light transmittance of the matrix resin (X) is preferably 50 to 95%, more preferably 60 to 90%, because the light extraction film 10 is excellent in appearance and has excellent light extraction efficiency and normal luminance of the surface light emitter. .
  • the light transmittance of the matrix resin (X) is a value measured according to JIS K7361.
  • the refractive index of the matrix resin (X) is preferably 1.30 to 2.00, more preferably 1.35 to 1.90, and more preferably 1.40, because it is excellent in light extraction efficiency and normal luminance of the surface light emitter. More preferably, it is ⁇ 1.80.
  • the refractive index of each material in this specification shall be the value measured using the sodium D line
  • the matrix resin (X) is excellent in the productivity of the light extraction film 10
  • a resin cured by irradiating the active energy ray-curable composition with active energy rays is preferable.
  • the active energy ray include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because they are excellent in curability of the active energy ray curable composition and can suppress deterioration of the light extraction film 10.
  • the active energy ray-curable composition is not particularly limited as long as it can be cured by active energy rays, but the active energy ray-curable composition is excellent in handleability and curability, and the light extraction film 10 has flexibility, heat resistance, and scratch resistance.
  • non-crosslinkable monomer (A) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, alkyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acryl
  • the active energy ray-curable composition is excellent in handleability and curability, and the light extraction film 10 has flexibility, heat resistance, scratch resistance, solvent resistance, light Since it is excellent in various physical properties such as permeability, (meth) acrylates, epoxy (meth) acrylates, and olefins are preferable, and (meth) acrylates and epoxy (meth) acrylates are more preferable.
  • (Meth) acrylate refers to acrylate or methacrylate.
  • the content of the non-crosslinkable monomer (A) is preferably 0.5% by mass to 60% by mass, more preferably 1% by mass to 57% by mass with respect to 100% by mass of the active energy ray-curable composition. 2% to 55% by weight is more preferable.
  • the content of the non-crosslinkable monomer (A) is 0.5% by mass or more, the handleability of the active energy ray-curable composition is excellent, and the substrate adhesion of the light extraction film 10 is excellent.
  • the content of the non-crosslinkable monomer (A) is 60% by mass or less, the active energy ray-curable composition is excellent in crosslinkability and curability, and the light extraction film 10 is excellent in solvent resistance.
  • crosslinkable monomer (B) examples include hexa (meth) acrylates such as dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate; dipentaerythritol hydroxypenta (meth) acrylate , Penta (meth) acrylates such as caprolactone-modified dipentaerythritol hydroxypenta (meth) acrylate; ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxy modified tetra (meth) acrylate, dipenta Such as erystol hexa (meth) acrylate, dipentaerystol penta (meth) acrylate, tetramethylolmethane
  • Tora (meth) acrylates trimethylolpropane tri (meth) acrylate, trisethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, tris ( Tri (meth) acrylates such as 2- (meth) acryloyloxyethyl) isocyanurate, aliphatic hydrocarbon-modified trimethylolpropane tri (meth) acrylate having 2 to 5 carbon atoms, and isocyanuric acid ethylene oxide-modified tri (meth) acrylate Triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,5-pentanediol di
  • Polyurethane polyfunctional (meth) acrylates such as compounds obtained by reacting an isocyanate group with a hydroxyl group-containing (meth) acrylate; divinyl ethers such as diethylene glycol divinyl ether and triethylene glycol divinyl ether Butadiene, isoprene, dienes such as dimethyl butadiene and the like.
  • These crosslinkable monomers (B) may be used individually by 1 type, and may use 2 or more types together.
  • the light extraction film 10 is excellent in various properties such as flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance, so hexa (meth) acrylates , Penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl (meth) acrylates, polyester di (meth) acrylates, urethane polyfunctional ( (Meth) acrylates are preferred, hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, polyester di (meth) acrylates and Urethane polyfunctional (meth) acrylates are more preferred.
  • the content of the crosslinkable monomer (B) is preferably 30% by mass to 98% by mass, more preferably 35% by mass to 97% by mass with respect to 100% by mass of the active energy ray-curable composition, and 40% by mass. More preferably, it is -96 mass%.
  • the content of the crosslinkable monomer (B) is 30% by mass or more, the active energy ray-curable composition is excellent in crosslinkability and curability, and the light extraction film 10 is excellent in solvent resistance.
  • flexibility of the light extraction film 10 is excellent in the content rate of a crosslinkable monomer (B) being 98 mass% or less.
  • Examples of the polymerization initiator (C) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, acetoin, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone, ⁇ , ⁇ -Dimethoxy- ⁇ -phenylacetophenone, benzyldimethyl ketal, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2- Carbonyl compounds such as methyl-1-phenylpropan-1-one and 2-ethylanthraquinone; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, etc.
  • Sulfur compounds 2,4,6-trimethylbenzoyl diphenylphosphine oxide, acylphosphine oxide such as benzo dichloride ethoxy phosphine oxide, and the like.
  • These polymerization initiators (C) may be used individually by 1 type, and may use 2 or more types together.
  • carbonyl compounds and acyl phosphine oxides are preferred because they are excellent in handleability and curability of the active energy ray-curable composition and light transmittance of the light extraction film 10. Compounds are more preferred.
  • the content of the polymerization initiator (C) in the active energy ray-curable composition is preferably 0.1% by mass to 10% by mass, and 0.5% by mass with respect to 100% by mass of the active energy ray-curable composition. More preferably, it is preferably ⁇ 8% by mass, more preferably 1% by mass to 5% by mass.
  • the handleability and curability of the active energy ray-curable composition are excellent.
  • the non-crosslinkable monomer (A) is at least one monomer selected from the group consisting of (meth) acrylates, epoxy (meth) acrylates, and olefins.
  • the crosslinkable monomer (B) is hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl ( It is at least one monomer selected from the group consisting of (meth) acrylates, polyester di (meth) acrylates, and urethane polyfunctional (meth) acrylates, and the polymerization initiator (C) is a carbonyl compound and acylphosphine. It is at least one compound selected from the group consisting of fin oxides.
  • the ionic liquid (Y) means a salt that exists in a liquid state at 100 ° C. (that is, a salt having a melting point of 100 ° C. or less), and consists of an anion and a cation.
  • the ionic liquid (Y) is dispersed in the light extraction film.
  • non-fluorinated ionic liquid (Y ′) containing no fluorine atom is preferred. Since the ionic liquid (Y) has electrical conductivity, it can be expected to propagate externally applied charges, suppress the charging of the light extraction film 10, and suppress the adhesion of dust. Further, since the ionic liquid (Y) is a liquid unlike a normal solid antistatic agent, it is excellent in dispersibility in the matrix resin (X), and the light extraction film 10 can be easily manufactured.
  • the ionic liquid (Y) those capable of increasing the compatibility with the added matrix resin (X) and suppressing bleed-out are desirable.
  • the sp value of the matrix resin (X) and the ionic liquid (Y) may be calculated using a cloud point titration method, and the sp value difference between the absolute values may be used as a reference.
  • the absolute value of the difference in sp value between the ionic liquid (Y) and the material constituting the light extraction film excluding the ionic liquid is preferably 0.1 to 17, and more preferably 6 to 16.
  • the material constituting the light extraction film excluding the ionic liquid includes matrix resin (X) and light diffusion fine particles (Z).
  • the absolute value of the difference in sp value between the matrix resin (X) and the ionic liquid (Y) is preferably from 0.1 to 18, and more preferably from 6 to 17.
  • sp using the cloud point titration method can be calculated by a technique in which a poor solvent is added to a cloud point in a solution obtained by dissolving a sample in a good solvent.
  • the anion of the ionic liquid (Y) for example, it does not need to contain a fluorine atom, and examples thereof include an amide anion, a sulfate anion, and a phosphate anion. These anions of the ionic liquid (Y) may be used alone or in combination of two or more. Among these anions of the ionic liquid (Y), an amide anion and a sulfate anion are preferable, and a sulfate anion is more preferable because the antistatic property of the light extraction film 10 is excellent.
  • Examples of the amide anion include a cyanamide anion. These amide type anions may be used alone or in combination of two or more.
  • Examples of the sulfate anion include an anion derived from a reaction product of glycol ether sulfate (glycol ether sulfate anion), an anion derived from a reaction product of alkylbenzene sulfonic acid (alkylbenzene sulfonate anion), butyl sulfonate anion, and methyl sulfate.
  • Examples include anions, ethyl sulfate anions, hydrogen sulfate anions, octyl sulfate anions, alkyl sulfate anions, and the like. These sulfate-type anions may be used alone or in combination of two or more.
  • Examples of the phosphate anion include butyl phosphate anion. These phosphate anions may be used alone or in combination of two or more.
  • Other examples include nitrate anions, thiocyanate anions, acetate anions, aminoacetate anions, lactate anions.
  • Examples of the cation of the ionic liquid (Y) include ammonium cation, imidazolium cation, phosphonium cation, pyridinium cation, pyrrolidinium cation, pyrrolium cation, and triazonium cation.
  • the cation of these ionic liquids (Y) may be used individually by 1 type, and may use 2 or more types together.
  • ammonium-based cations and imidazolium-based cations are preferable, and ammonium-based cations are more preferable because the antistatic property of the light extraction film 10 is excellent.
  • ammonium cation examples include a cation derived from an alkanolamine salt reactant (alkanolamine cation), butyltrimethylammonium cation, ethyldiethylpropylammonium cation, 2-hydroxyethyl-triethylammonium cation, methyl-trioctylammonium cation, methyl
  • alkanolamine cation alkanolamine salt reactant
  • butyltrimethylammonium cation ethyldiethylpropylammonium cation, 2-hydroxyethyl-triethylammonium cation, methyl-trioctylammonium cation, methyl
  • examples include trioctylammonium cation, tetrabutylammonium cation, tetraethylammonium cation, tetraheptylammonium cation, tributy
  • ammonium cations may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the imidazolium-based cation include 1-allyl-3-methylimidazolium cation, 1-benzyl-3-methylimidazolium cation, 1,3-bis (cyanomethyl) imidazolium cation, 1,3-bis (cyano Propyl) imidazolium cation, 1-butyl-2,3-dimethylimidazolium cation, 4- (3-butyl) -1-imidazolium cation, 1- (3-cyanopropyl) -3-methylimidazolium cation, 1 -Ethyl-3-methylimidazolium cation, 1-butyl-3-methylimidazolium cation, 1-decyl-3-methylimidazolium cation, 1,3-diethoxyimidazolium cation, 1,3-dimethoxy-2- Methylimidazolium
  • imidazolium-based cations may be used alone or in combination of two or more.
  • Examples of the phosphonium cation include a tetrabutylphosphonium cation, a tributylmethylphosphonium cation, and a trihexyltetradecylphosphonium cation. These phosphonium-based cations may be used alone or in combination of two or more.
  • Examples of the pyridium cation include 1-butyl-3-methylpyridium cation, 1-butyl-4-methylpyridium cation, 1-butylpyridium cation, 1-ethylpyridium cation, 1- (3-cyano Propyl) pyridinium cation, 3-methyl-4-propylpyridium cation, and the like. These pyridinium cations may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the pyrrolidinium cation include 1-butyl-1-methylpyrrolidinium cation, 2-methylpyrrolidinium cation, and 3-phenylpyrrolidinium cation.
  • pyrrolidinium cations may be used alone or in combination of two or more.
  • examples of the pyrrolinium cation include 2-acetylpyrrolium cation, 3-acetylpyrrolium cation, 1- (2-nitrophenyl) pyrrolium cation and the like. These pyrrolinium cations may be used alone or in combination of two or more.
  • the cation is at least one selected from the group consisting of an ammonium cation, an imidazolium cation, a phosphonium cation, a pyridinium cation, a pyrrolidinium cation, a pyrrolium cation, a triazonium cation, and the like.
  • the ionic liquid (Y) is preferably a cation, and the anion is at least one kind of anion selected from the group consisting of an amide anion, a sulfate anion, a phosphate anion and the like.
  • the ionic liquid (Y) may be a commercially available ionic liquid (Y), such as “Amino Ion AS 100”, “Amino Ion AS 300”, “Amino Ion AS 400”, etc. manufactured by Nippon Emulsifier Co., Ltd. Is mentioned.
  • the light diffusing fine particles (Z) have a function of diffusing light. Therefore, when the light extraction film 10 contains the light diffusing fine particles (Z), the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed.
  • the light diffusing fine particles (Z) are not particularly limited as long as they are particles having a light diffusing effect in a visible light wavelength range (approximately 400 nm to 700 nm), and known fine particles can be used.
  • the light diffusing fine particles (Z) may be used alone or in combination of two or more.
  • Examples of the material of the light diffusing fine particles (Z) include metals such as gold, silver, silicon, aluminum, magnesium, zirconium, titanium, zinc, germanium, indium, tin, antimony, and cerium; silicon oxide, aluminum oxide, and magnesium oxide. , Zirconium oxide, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, cerium oxide, etc .; metal hydroxide such as aluminum hydroxide; metal such as magnesium carbonate Carbon oxides; metal nitrides such as silicon nitride; resins such as acrylic resins, styrene resins, silicone resins, urethane resins, melamine resins, and epoxy resins.
  • metals such as gold, silver, silicon, aluminum, magnesium, zirconium, titanium, zinc, germanium, indium, tin, antimony, and cerium
  • silicon oxide aluminum oxide, and magnesium oxide.
  • These light diffusing fine particles (Z) may be used alone or in combination of two or more.
  • these materials for the light diffusing fine particles (Z) since they are excellent in handling at the time of manufacturing the light extraction film 10, silicon, aluminum, magnesium, silicon oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium carbonate, Acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, and epoxy resin are preferable.
  • Silicon oxide, aluminum oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, epoxy resin These particles are more preferable, and acrylic resins and silicone resins are more preferable.
  • the refractive index of the light diffusing fine particles (Z) is preferably 1.30 to 2.00, more preferably 1.35 to 1.90, because of excellent light extraction efficiency and normal luminance of the surface light emitter. 40 to 1.80 is more preferable.
  • the volume average particle diameter of the light diffusing fine particles (Z) is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 8 ⁇ m, and still more preferably 1.5 ⁇ m to 6 ⁇ m.
  • the volume average particle diameter of the light diffusing fine particles (Z) is a value measured by a laser diffraction scattering method.
  • Examples of the shape of the light diffusing fine particles (Z) include a spherical shape, a cylindrical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, a conical shape, a star shape, and an indefinite shape. These light diffusing fine particles (Z) may be used alone or in combination of two or more. Among these shapes of the light diffusing fine particles (Z), since light in the visible wavelength range can be effectively scattered, a spherical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, and a star shape are preferable, and a spherical shape is more preferable. .
  • the content of the ionic liquid (Y) is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the matrix resin (X).
  • the content of the ionic liquid (Y) is 0.1 parts by mass or more, the antistatic property of the light extraction film 10 is excellent.
  • it is excellent in adhesiveness with the base material 15 mentioned later as content of an ionic liquid (Y) is 10 mass parts or less.
  • the content of the light diffusing fine particles (Z) is preferably 1 part by mass to 70 parts by mass, and more preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the matrix resin (X).
  • the content of the light diffusing fine particles (Z) is 1 part by mass or more, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed. Further, when the content of the light diffusing fine particles (Z) is 70 parts by mass or less, the light extraction efficiency and the normal luminance of the surface light emitter are excellent.
  • the material constituting the light extraction film 10 may include other additives as long as the performance of the light extraction film 10 is not impaired. May be included.
  • additives examples include mold release agents, ultraviolet absorbers, light stabilizers, flame retardants, antifoaming agents, leveling agents, antifouling improvers, dispersion stabilizers, viscosity modifiers, and the like.
  • the content of other additives is preferably 10% by mass or less with respect to the total mass of the light extraction film because the properties of the other additives can be improved without impairing the performance of the light extraction film 10. 5 mass% or less is more preferable. Specifically, 0.05 to 10% by mass is preferable, and 0.1 to 5% by mass is more preferable.
  • the refractive index difference between the matrix resin (X) and the light diffusing fine particles (Z) is preferably 0.03 to 0.25, more preferably 0.05 to 0.20, and still more preferably 0.07 to 0.15. .
  • the difference in refractive index between the matrix resin (X) and the light diffusing fine particles (Z) is 0.03 or more, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed.
  • the refractive index difference between the matrix resin (X) and the light diffusing fine particles (Z) is 0.25 or less, the light extraction efficiency and normal luminance of the surface light emitter are excellent.
  • the combination of the matrix resin (X) and the light diffusing fine particles (Z) is excellent in the heat resistance, mechanical properties, and molding processability of the light extraction film 10 and the refractive index difference is within the above-mentioned preferable range.
  • the matrix resin (X) is preferably an acrylic resin because it is excellent in efficiency and normal luminance and can suppress the emission angle dependence of the emission light wavelength of the surface light emitter.
  • the matrix resin (X ) Is an acrylic resin
  • the light diffusing fine particles (Z) are silicon oxide fine particles
  • the matrix resin (X) is an acrylic resin
  • the light diffusing fine particles (Z) are aluminum oxide fine particles
  • the matrix resin (X) is an acrylic resin
  • the light diffusing fine particles (Z ) Is aluminum hydroxide fine particles
  • matrix resin (X) is acrylic resin
  • light diffusion fine particles (Z) are magnesium carbonate fine particles
  • matrix Light (X) is acrylic resin
  • light diffusing fine particles (Z) are acrylic resin fine particles
  • matrix resin (X) is acrylic resin
  • light diffusing fine particles (Z) are styrene resin fine particles
  • matrix resin (X) is light diffusing with acrylic resin Fine particles (Z) are silicone resin fine particles
  • matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are urethane resin fine particles
  • matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are melamine resin fine particles
  • matrix The resin (X) is
  • Light diffusion fine particles (Z) are styrene resin fine particles and matrix resin (X) is acrylic resin for light expansion.
  • Fine particles (Z) are silicone resin fine particles
  • matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are urethane resin fine particles
  • matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are melamine resin fine particles
  • matrix The resin (X) is an acrylic resin, and the light diffusing fine particles (Z) are more preferably epoxy resin fine particles
  • the matrix resin (X) is an acrylic resin
  • the light diffusing fine particles (Z) are acrylic resin fine particles
  • the matrix resin (X) is an acrylic resin
  • the light diffusing fine particles (Z) are acrylic resin fine particles
  • the matrix resin (X) is an acrylic resin.
  • the light diffusing fine particles (Z) are more preferably silicone resin fine particles.
  • the ionic liquid (Y) is selected from the group consisting of an ammonium cation, an imidazolium cation, a phosphonium cation, a pyridinium cation, a pyrrolidinium cation, a pyrrolium cation, a triazonium cation, and the like.
  • the matrix resin (X) is an acrylic resin Resin
  • light diffusion fine particles (Z) are silicon oxide fine particles, aluminum oxide fine particles, aluminum hydroxide fine particles, magnesium carbonate fine particles, acrylic resin fine particles, styrene resin fine particles, silicone resin fine particles, urethane resin fine particles, mela Down resin fine particles, and at least one kind of fine particles selected from the group consisting of epoxy resin particles.
  • the light extraction film 10 of the present invention preferably has the concavo-convex structure layer 12 and the base layer 13 because it is excellent in the structural stability of the light extraction film 10 and excellent in the light extraction efficiency and normal luminance of the surface light emitter.
  • Examples of the light extraction film 10 of the present invention include a light extraction film 10 having a concavo-convex structure layer 12 having a concavo-convex structure 11 and a base layer 13 as shown in FIG.
  • the uneven structure layer 12 has an uneven structure 11. It is preferable to provide the concavo-convex structure 11 because it is excellent in light extraction efficiency and normal luminance of the surface light emitter.
  • the concavo-convex structure 11 may be a protrusion or a depression, and the protrusion and the depression may be mixed, but the protrusion is preferable because the productivity of the optical film 10 is excellent.
  • the surface light emitter is excellent in light extraction efficiency and normal luminance, so that it has a spherical notch shape, a spherical notch shape, an ellipsoidal spherical notch shape, an ellipsoidal spherical notch shape, and a pyramid shape.
  • a truncated pyramid shape is preferable, a spherical notch shape, an ellipsoidal spherical shape, and a pyramidal shape are more preferable, and a spherically truncated shape and an elliptical spherical shape are more preferable.
  • Each shape in this specification does not need to be exactly that shape, and includes shapes that are very similar.
  • FIGS. 2A to 2F Examples of the arrangement of the concavo-convex structure 11 are shown in FIGS. 2A to 2F.
  • the hexagonal arrangement means that the concavo-convex structure 11 is arranged at each vertex and middle point of the hexagon, and the arrangement of the hexagon is continuously arranged.
  • the rectangular arrangement means that the concavo-convex structure 11 is arranged at each vertex of the rectangle, and the arrangement of the rectangle is continuously arranged.
  • the rhombus arrangement indicates that the concavo-convex structure 11 is arranged at each apex of the rhombus and the arrangement of the rhombus is continuously arranged.
  • the linear arrangement indicates that the concavo-convex structure 11 is arranged linearly.
  • the circular arrangement indicates that the concavo-convex structure 11 is arranged along a circle. Random arrangement indicates that the uneven structure 11 is irregularly arranged.
  • a hexagonal arrangement, a rectangular arrangement, and a rhombus arrangement are preferable, and a hexagonal arrangement and a rectangular arrangement are more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the bottom surface portion 14 of the concavo-convex structure 11 refers to a virtual planar portion surrounded by the outer peripheral edge of the bottom portion of the concavo-convex structure 11 (or the contact surface with the base layer 13 when the base layer 13 is provided).
  • the longest diameter L of the bottom surface portion 14 of the concavo-convex structure 11 is the length of the longest portion of the bottom surface portion 14 of the concavo-convex structure 11, and the average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11 is the light extraction
  • the surface having the concavo-convex structure 11 of the film 10 is photographed with a scanning microscope, and the longest diameter A of the bottom surface portion 14 of the concavo-convex structure 11 is measured at five locations to obtain an average value.
  • the height H of the concavo-convex structure 11 means the height from the bottom surface portion 14 of the concavo-convex structure 11 to the highest portion in the case of the protrusion structure, and the lowest from the bottom surface portion 14 of the concavo-convex structure 11 in the case of the depression structure.
  • the average height H ave of the concavo-convex structure 11 is obtained by photographing the cross section of the light extraction film 10 with a scanning microscope and measuring the height B of the highest part of the concavo-convex structure 11 at five locations. And the average value.
  • the average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11 is preferably 2 ⁇ m to 200 ⁇ m, more preferably 6 ⁇ m to 150 ⁇ m, and even more preferably 10 ⁇ m to 100 ⁇ m, because of the excellent light extraction efficiency and normal luminance of the surface light emitter. .
  • the average height H ave of the concavo-convex structure 11 is preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 75 ⁇ m, and even more preferably 5 ⁇ m to 50 ⁇ m, because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the aspect ratio of the concavo-convex structure 11 is preferably 0.3 to 1.4, more preferably 0.35 to 1.3, and more preferably 0.4 to 1 because of excellent light extraction efficiency and normal luminance of the surface light emitter. 0.0 is more preferable.
  • the aspect ratio of the concavo-convex structure 11 is a value calculated from the average height H ave of the concavo-convex structure 14 / average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11.
  • Examples of the shape of the bottom surface portion 14 of the concavo-convex structure 11 include a polygon such as a triangle and a quadrangle; a circle such as a perfect circle and an ellipse; and an indefinite shape.
  • a polygon and a circle are preferable, and a circle is more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
  • the ratio of the area of the bottom surface portion 14 of the concavo-convex structure 11 (the area surrounded by the dotted line in FIG. 4) to the area of the light extraction film 10 (the area surrounded by the solid line in FIG. 4) is the light of the surface light emitter. 20% to 99% is preferable, 25% to 95% is more preferable, and 30% to 93% is still more preferable because of excellent extraction efficiency and normal luminance.
  • the maximum value of the ratio of the area of the bottom surface portion 14 of the concavo-convex structure 11 to the area of the light extraction film 10 is about 91%.
  • Base layer 13 Since the uneven structure 11 of the uneven structure layer 12 is supported, the base layer 13 is preferably provided.
  • the thickness of the base layer 13 is preferably 3 ⁇ m to 60 ⁇ m, and more preferably 5 ⁇ m to 50 ⁇ m, because the light extraction film 10 is excellent in flexibility and adhesion to the substrate 15 described later.
  • the thickness of the base layer 13 is obtained by taking a cross-section of the light extraction film 10 with a scanning microscope, measuring the height of the base layer 13 at five locations, and taking the average value.
  • the concavo-convex structure layer 12 and the base layer 13 may have the same or different material composition, but since the productivity of the light extraction film 10 is excellent, the material composition is preferably the same.
  • the surface resistivity of the light extraction film 10 is preferably 1 ⁇ 10 14 ⁇ / cm 2 or less, and preferably 1 ⁇ 10 9 ⁇ / cm 2 to 1 ⁇ 10 13 ⁇ / cm 2 .
  • the antistatic property of the light extraction film 10 is excellent.
  • the surface resistivity of the light extraction film 10 is a value measured using a high resistivity meter at an applied voltage of 500 V and a measurement time of 60 seconds in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH.
  • the charge decay time of the light extraction film 10 is preferably 10 seconds or less, and more preferably from 0.1 second to 5 seconds. When the charge decay time of the light extraction film 10 is 10 seconds or less, the antistatic property of the light extraction film 10 is excellent.
  • the charge decay time of the light extraction film 10 is the time until the charge measured at an applied voltage of 10 kV is attenuated to 1/2 in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH using a charged charge decay rate measuring device. To do.
  • a base material 21 On the light incident surface side of the light extraction film 10 (that is, when the light extraction film 10 does not have the base layer 13, the bottom side of the concavo-convex layer 12; when the light extraction film 10 has the base layer 13, In order to keep the shape of the light extraction film 10 on the side opposite to the side where the uneven layer 12 is present, a base material 21 may be provided.
  • the base material 21 is excellent in curability of the active energy ray-curable composition, a base material that transmits the active energy ray is preferable.
  • Examples of the material of the base material 21 include acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; styrene resin such as polystyrene and ABS resin; vinyl chloride resin; diacetyl cellulose, triacetyl cellulose.
  • Cellulose resins such as: Imide resins such as polyimide and polyimideamide; Glass; Metals.
  • acrylic resin, polycarbonate resin, polyester resin, styrene resin, cellulose resin, and imide resin are preferable because of excellent flexibility and active energy ray permeability. Acrylic resin, polycarbonate Resins, polyester resins, and imide resins are more preferable.
  • the thickness of the substrate 21 is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 20 ⁇ m to 500 ⁇ m, and even more preferably 25 ⁇ m to 300 ⁇ m, because the light extraction film 10 is excellent in handleability and excellent in the curability of the active energy ray curable composition. preferable.
  • a cross section of the base material 21 is photographed with a scanning microscope, the thickness is measured at five locations, and the average value is obtained.
  • the base material 21 may be subjected to an easy adhesion treatment on the surface of the base material 21 as necessary in order to improve the adhesion with the light extraction film 10.
  • Examples of the easy-adhesion treatment method include a method of forming an easy-adhesion layer made of polyester resin, acrylic resin, urethane resin, or the like on the surface of the base material 21, a method of roughening the surface of the base material 21, and the like. It is done.
  • the substrate 21 may be subjected to surface treatments such as antistatic, antireflection, and adhesion prevention between the substrates as required, in addition to the easy adhesion treatment.
  • an adhesive layer 22 may be provided.
  • the adhesive layer 22 may be provided on the surface of the substrate 21 opposite to the surface in contact with the light extraction film 10. Examples of the adhesive layer 22 include a layer using a known adhesive.
  • a protective film 23 may be provided.
  • the protective film 23 may be peeled off from the light extraction film 10 or the like when the light extraction film 10 or the like is attached to the surface of the EL element 30 or used as a surface light emitter.
  • Examples of the protective film 23 include known protective films.
  • examples of the material include polyethylene, polypropylene, polyolefin, and polyester.
  • Method for producing light extraction film 10 As a manufacturing method of the light extraction film 10 of this invention, the method of using the apparatus 50 shown in FIG. 5 etc. are mentioned, for example.
  • the method for producing the light extraction film 10 of the present invention is preferably a method using the apparatus 50 shown in FIG. 5 because the extraction film 10 can be continuously produced.
  • the active energy ray-curable composition for constituting the light extraction layer 11, the ionic liquid (Y), if necessary, the light diffusing fine particles (Z), and other additives are mixed in a desired blending amount to obtain
  • the obtained mixture 51 is put in the storage tank 55 in advance.
  • the substrate 21 is introduced between the cylindrical roll mold 52 and the rubber nip roll 53.
  • the mixture 51 is supplied between the rotating roll mold 52 and the base material 21 through a pipe 56 having a nozzle attached to the tip from the tank 55.
  • the mixture 51 sandwiched between the rotating roll mold 52 and the substrate 21 is cured by active energy rays in the vicinity of the active energy ray irradiation device 54.
  • the light extraction film 10 having the substrate 21 is obtained.
  • the viscosity of the mixture 51 is preferably 10 mPa ⁇ s to 3000 mPa ⁇ s, more preferably 20 mPa ⁇ s to 2500 mPa ⁇ s, and more preferably 30 mPa ⁇ s to 2000 mPa ⁇ s, since it is excellent in handleability during the production of the light extraction film 10. Further preferred.
  • the viscosity can be determined by measuring a viscous resistance torque acting on the disk or cylinder when the disk or cylinder is rotated in the mixture 51 using a B-type viscometer.
  • the content of the active energy ray-curable composition in the mixture 51 is preferably 55 to 98% by mass, and more preferably 59 to 95% by mass with respect to the total mass of the mixture 51.
  • Examples of the roll mold 52 include molds such as aluminum, brass, and steel; resin molds such as silicone resin, urethane resin, epoxy resin, ABS resin, fluororesin, and polymethylpentene resin; molds obtained by plating the resin; Examples include a mold made of a material obtained by mixing various metal powders with a resin.
  • a mold is preferable because of excellent heat resistance and mechanical strength and suitable for continuous production.
  • the mold is preferable in many respects such as being resistant to polymerization heat generation, hardly deforming, hardly scratched, temperature controllable, and suitable for precision molding.
  • Examples of the method for producing the transfer surface (transfer portion) of the mold include cutting with a diamond tool, etching as described in International Publication No. 2008/069324 pamphlet, and the like. Among these methods for producing a transfer surface, etching as described in International Publication No. 2008/069324 is preferable because it is easy to form a depression having a curved surface.
  • a cylindrical thin film mold 52 is formed by winding a metal thin film produced by electroforming from a master mold having a depression on the transfer surface and an inverted projection, around a roll core member. Manufacturing methods can be used.
  • heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the roll mold 52 as necessary.
  • the active energy ray generated from the active energy ray irradiation device 54 include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because they are excellent in curability of the active energy ray curable composition and can suppress deterioration of the light extraction film 10.
  • Examples of the active energy ray light source of the active energy ray irradiation device 54 include a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an electrodeless ultraviolet lamp, a visible light halogen lamp, and a xenon lamp.
  • the integrated light amount of the active energy ray of the active energy ray irradiation device 54 is excellent in curability of the active energy ray curable composition and can suppress the deterioration of the light extraction film 10. Therefore, 0.01 J / cm 2 to 10 J / Cm 2 is preferable, and 0.5 J / cm 2 to 8 J / cm 2 is more preferable.
  • heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the tank 55 as necessary.
  • the surface light emitter of the present invention includes the light extraction film 10 and the EL element 30 of the present invention.
  • the surface light emitter of the present invention may have an adhesive layer and a substrate. Examples of the surface light emitter of the present invention include a surface light emitter shown in FIG.
  • the surface light emitter shown in FIG. 6 is formed on the surface of the glass substrate 31 of the EL element 30 on which the glass substrate 31, the anode 32, the light emitting layer 33, and the cathode 34 are sequentially laminated, through the adhesive layer 22 and the base material 21.
  • a take-out film 10 is laminated.
  • the surface light emitter of the present invention includes the light extraction film of the present invention, it has excellent light extraction efficiency and normal luminance, suppresses the emission angle dependency of the emission light wavelength, and is excellent in antistatic properties. Therefore, the surface light emitter of the present invention can be suitably used for, for example, illumination, a display, a screen, and the like.
  • the matrix resin (X) obtained in Production Example 1 and the ionic liquid (Y) used in Examples and Comparative Examples are, for example, K.I. W. Suh, J .; M.M. Corbett: J.M. Apply Polym. Sci. , 12 [10], p. 2359-2370 (1968).
  • V ml 1/2 ( ⁇ 3 ⁇ ml ) V mh 1/2 ( ⁇ mh ⁇ 3 ) V ml , V mh : Volume of poor solvent with low sp value and high poor solvent, respectively ⁇ ml , ⁇ mh : Sp value of poor solvent with low sp value, and high poor solvent ⁇ 3 : Modified sp value formula of polymer Then, the sp value was calculated from the following equation.
  • ⁇ 3 (V ml 1/2 ⁇ ⁇ ml + V mh 1/2 ⁇ ⁇ mh ) / (V ml 1/2 + V mh 1/2 )
  • Adhesion evaluation Similar to the measurement of surface resistivity, a measurement sample was obtained. About the obtained measurement sample, adhesiveness evaluation was implemented after storage in a high-temperature, high-humidity environment. The high temperature and high humidity conditions were one week in an environment of a temperature of 85 ° C. and a relative humidity of 85% RH. The sample after the test was subjected to adhesion evaluation according to JIS K5600.
  • a light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples.
  • the light emitted from the hole with a diameter of 10 mm of the light shielding sheet when the organic EL element is turned on with a current of 1.5 A is supplied to the luminance meter (model name “BM-7”, manufactured by Topcon Corporation).
  • the luminance value of the surface light emitter was obtained by measuring from the normal direction of the surface light emitter.
  • the ratio of the luminance values of the surface light emitters obtained in Examples and Comparative Examples when the luminance value of the surface light emitter obtained in the reference example was 100% was defined as normal luminance.
  • a light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples.
  • the light emitted from the hole with a diameter of 10 mm of the light shielding sheet when the EL element is turned on with a current of 1.5 A is emitted from a luminance meter (model name “BM-7”, manufactured by Topcon Corporation).
  • the normal direction of the surface light emitter (0 °), the direction inclined by 10 ° from the normal direction of the surface light emitter, the direction inclined by 20 ° from the normal direction of the surface light emitter, and 30 from the normal direction of the surface light emitter.
  • the x value and x average value of each angle are plotted on the horizontal axis, the y value and y average value of each angle are plotted on the vertical axis, and the x and y values of each angle are plotted from the point where the average values of x and y are plotted.
  • the distance to the point where the value of y was plotted was calculated, and the value when the distance was the longest was taken as the chromaticity change amount. The smaller the chromaticity change amount, the more the emission angle dependency of the emission light wavelength of the surface light emitter is suppressed.
  • Active energy ray-curable composition A Active energy ray-curable composition produced in Production Example 1 described later (refractive index of cured product 1.52)
  • Ionic liquid A “Amino ion AS100” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and glycol sulfate)
  • Ionic liquid B “Amino ion AS300” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and alkylbenzenesulfonic acid)
  • Ionic liquid C “Amino ion AS400” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and dialkyl succinate sulfonic acid)
  • Ionic liquid D Tri-n-butylmethylammonium bistrifluoromethanesulfonimide (trade name “FC-4400”, manufactured by Sumitomo 3M Limited)
  • Surfactant E
  • polybutylene glycol dimethacrylate trade name “Acryester PBOM”, manufactured by Mitsubishi Rayon Co., Ltd
  • Example 1 100 parts of active energy ray-curable composition A, 43 parts of light diffusing fine particles (Z) and 1 part of ionic liquid A were mixed to obtain a mixture.
  • Table 2 shows the evaluation results of the antistatic properties of the cured product of the obtained mixture.
  • the obtained mixture was applied to the roll mold obtained in Production Example 2, and a polyethylene terephthalate base material (trade name “Cosmo Shine A4300”, manufactured by Toyobo Co., Ltd., thickness 188 ⁇ m) was placed thereon, and the base layer The film was uniformly stretched with a nip roll so that the thickness of the film became 25 ⁇ m.
  • the ultraviolet-ray was irradiated from the base material, the mixture pinched
  • the size of the concavo-convex structure of the light extraction film calculated from the image taken with the scanning microscope of the obtained light extraction film, a sphere-shaped projection substantially corresponding to the size of the roll-shaped depression was obtained.
  • the uneven structure of the light extraction film obtained from the image taken with a scanning microscope corresponds to the roll type and is arranged in a hexagonal array with a minimum spacing of 3 ⁇ m, and the area of the bottom surface of the spherical protrusion relative to the area of the light extraction film The ratio was 76%.
  • Cargill standard refraction liquid reffractive index 1.52, manufactured by Moritex Co., Ltd.
  • Table 2 shows the evaluation results of the optical characteristics of the obtained surface light emitter.
  • Examples 2 to 4 Except having mixed the mixture by the kind and quantity of Table 1, it operated similarly to Example 1 and obtained the light extraction film and the surface light-emitting body. In addition, content of an ionic liquid and light-diffusion fine particle represents the mass part with respect to 100 mass parts of active energy curable compositions.
  • Table 2 shows the evaluation results of the antistatic properties of the cured product of the obtained mixture and the evaluation results of the optical properties of the obtained surface light emitter.
  • Comparative Examples 3 to 5 Although the mixture was mixed in the types and amounts shown in Table 1, it was not compatible with the matrix resin (X), so that the light extraction film and the surface light emitter could not be obtained.
  • the light extraction films obtained in Examples 1 to 4 improved the light extraction efficiency and normal luminance of the surface light emitter, suppressed the emission angle dependency of the emission light wavelength, and were excellent in antistatic properties.
  • the light extraction film obtained in Comparative Example 1 did not contain the ionic liquid (Y) and was inferior in antistatic properties.
  • the light extraction film obtained in Comparative Example 2 contained the ionic liquid (Y), but contained a fluorine compound, and was inferior in adhesion after the wet heat test.
  • the ionic liquid (Y) was not contained, the surfactant was contained, and the compatibility with the matrix resin (X) was poor.
  • the light extraction film of the present invention improves the light extraction efficiency and normal luminance of the surface light emitter and suppresses the emission angle dependence of the emission light wavelength, and has excellent antistatic properties.
  • the included surface light emitter can be suitably used for lighting, a display, a screen, and the like, for example.

Abstract

A light extraction film, the constituent materials of which include a matrix resin (X), an ionic liquid (Y) and light diffusion fine particles (Z). A surface light emitting body which comprises the light extraction film. A method for producing a light extraction film to be laminated on a substrate of an EL element, which comprises supply of a mixture that contains an active energy ray curable composition, an ionic liquid (Y) and light diffusion fine particles (Z) between a base and a die that has a transfer part having a recessed and projected structure and irradiation of an active energy ray.

Description

光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法Light extraction film, surface light emitter, and method of manufacturing light extraction film
 本発明は、光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法に関する。
 本願は、2014年5月12日に、日本に出願された特願2014-098241号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light extraction film, a surface light emitter, and a method for manufacturing the light extraction film.
This application claims priority on May 12, 2014 based on Japanese Patent Application No. 2014-098241 for which it applied to Japan, and uses the content for it here.
 従来、面発光体には、散乱フィルム、光取出しフィルム等が用いられている。前者は光を拡散する有機ビーズ等を熱、或いは光硬化樹脂等で固定化したフィルムであり、面発光体から出射される光を拡散させている。後者は光の入射面と出射面の屈折率差、或いは微細凹凸構造等によって、光線を変角させて光を取出すフィルムである。これらのフィルム表面は導電性が乏しく、埃等が付着する恐れがある。
 上記課題を解決するため、例えば、特許文献1のフィルムに導電性ポリマーや金属酸化物、特許文献2、3、4のフィルムにイオン液体を添加し、導電性を向上させたフィルムが提案されている。
Conventionally, a scattering film, a light extraction film, and the like are used for the surface light emitter. The former is a film in which organic beads for diffusing light are fixed with heat or a photo-curing resin, and diffuses light emitted from a surface light emitter. The latter is a film that takes out light by changing the angle of the light beam by the difference in refractive index between the light incident surface and the light exit surface, or by a fine uneven structure. These film surfaces have poor electrical conductivity, and dust or the like may adhere to them.
In order to solve the above-mentioned problem, for example, a conductive polymer or metal oxide is added to the film of Patent Document 1, and an ionic liquid is added to the films of Patent Documents 2, 3, and 4 to improve the conductivity. Yes.
特開2007-108220号JP 2007-108220 A 特開2014-006356号JP 2014-006356 A 特開2010-138393号JP 2010-138393 A 特開2005-031282号JP 2005-031282 A
 特許文献1で提案されている導電性ポリマーは、フィルムとして使用する樹脂との相溶性が低く、湿熱試験時に表層へとブリードし、フィルム外観が低下する懸念がある。さらに、特許文献1で提案されている金属酸化物は、光の散乱、吸収が起こる可能性があり、光学フィルムの特性を低下させる恐れがある。また、特許文献2、3、4で提案されているイオン液体はフッ素を含有しており、近年の、特に欧米でのハロゲン規制に抵触する可能性がある。さらに、フッ素による金型腐食等の懸念があり、帯電防止フィルムとして満足できるものではない。 The conductive polymer proposed in Patent Document 1 has low compatibility with the resin used as a film, and there is a concern that the film appearance may deteriorate due to bleeding to the surface layer during a wet heat test. Furthermore, the metal oxide proposed in Patent Document 1 may cause light scattering and absorption, which may deteriorate the characteristics of the optical film. Further, the ionic liquids proposed in Patent Documents 2, 3, and 4 contain fluorine, which may conflict with halogen regulations in recent years, particularly in Europe and the United States. Furthermore, there is a concern such as mold corrosion due to fluorine, which is not satisfactory as an antistatic film.
 そこで、本発明の目的は、面発光体の光取り出し効率・法線輝度の向上や出射光波長の出射角度依存性の抑制を行うと共に、ブリードアウトを抑制し、帯電防止性に優れるハロゲンフリーな光取り出しフィルムを提供することにある。 Accordingly, an object of the present invention is to improve the light extraction efficiency and normal luminance of the surface light emitter and to suppress the emission angle dependency of the emission light wavelength, to suppress bleed out, and to be excellent in antistatic properties. It is to provide a light extraction film.
 本発明は以下の態様を有する。
[1]マトリックス樹脂(X)、イオン液体(Y)及び光拡散微粒子(Z)を含む、光取り出しフィルム。
[2]イオン液体(Y)を含み、前記イオン液体(Y)と、前記イオン液体(Y)を除く光取り出しフィルムを構成する材料との濁点滴定法から求めたsp値の差の絶対値が0.1から17である光取り出しフィルム。
[3]光取り出しフィルムの表面抵抗率が、1×1014Ω/cm以下である、[1]又は[2]に記載の光取り出しフィルム。
[4]光取り出しフィルムの電荷減衰時間が、10秒以下である、[1]~[3]のいずれか一項に記載の光取り出しフィルム。
[5]前記イオン液体(Y)のアニオンが、非フッ素系化合物アニオンである[1]~[4]のいずれか一項に記載の光取り出しフィルム。
[6]前記イオン液体(Y)のアニオンが、グリコールエーテル硫酸エステルアニオン、及びアルキルベンゼンスルホン酸アニオンからなる群から選択される少なくとも1種のアニオンである、[5]に記載の光取り出しフィルム。
[7]前記イオン液体(Y)のカチオンが、アルカノールアミン塩及びアンモニウム塩である、[1]~[6]のいずれか一項に記載の光取り出しフィルム。
[8]光取り出しフィルムがマトリックス樹脂(X)を含み、
前記イオン液体(Y)の含有量が、前記マトリックス樹脂(X)100質量部に対して、0.1質量部~10質量部である、[1]~[7]のいずれか一項に記載の光取り出しフィルム。
[9]光取り出しフィルムが光拡散微粒子(Z)を含み、
前記光拡散微粒子(Z)の含有量が、前記マトリックス樹脂(X)100質量部に対して、1質量部~70質量部である、[8]に記載の光取り出しフィルム。
[10]光取り出しフィルムがマトリックス樹脂(X)を含み、
前記マトリックス樹脂(X)が、アクリル樹脂である[1]~[9]のいずれか一項に記載の光取り出しフィルム。
[11]光取り出しフィルムが、表面に凹凸構造を有する、[1]~[10]のいずれか一項に記載の光取り出しフィルム。
[12][1]~[11]のいずれか一項に記載の光取り出しフィルム及びEL素子を含む、面発光体。
[13]光取り出しフィルムの製造方法であって、
基材と凹凸構造の転写部を有する型との間に、イオン液体(Y)、及び活性エネルギー線硬化性組成物を含む混合物を供給し、活性エネルギー線を照射することを含む、光取り出しフィルムの製造方法。
The present invention has the following aspects.
[1] A light extraction film comprising a matrix resin (X), an ionic liquid (Y), and light diffusing fine particles (Z).
[2] The absolute value of the difference in sp value obtained from the cloud point titration method between the ionic liquid (Y) and the material constituting the light extraction film excluding the ionic liquid (Y) including the ionic liquid (Y) is A light extraction film that is 0.1 to 17.
[3] The light extraction film according to [1] or [2], wherein the surface resistivity of the light extraction film is 1 × 10 14 Ω / cm 2 or less.
[4] The light extraction film according to any one of [1] to [3], wherein the charge extraction time of the light extraction film is 10 seconds or less.
[5] The light extraction film according to any one of [1] to [4], wherein the anion of the ionic liquid (Y) is a non-fluorine compound anion.
[6] The light extraction film according to [5], wherein the anion of the ionic liquid (Y) is at least one anion selected from the group consisting of a glycol ether sulfate anion and an alkylbenzenesulfonate anion.
[7] The light extraction film according to any one of [1] to [6], wherein the cation of the ionic liquid (Y) is an alkanolamine salt or an ammonium salt.
[8] The light extraction film includes a matrix resin (X),
The content of the ionic liquid (Y) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the matrix resin (X), according to any one of [1] to [7]. Light extraction film.
[9] The light extraction film includes light diffusing fine particles (Z),
The light extraction film according to [8], wherein the content of the light diffusing fine particles (Z) is 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the matrix resin (X).
[10] The light extraction film includes a matrix resin (X),
The light extraction film according to any one of [1] to [9], wherein the matrix resin (X) is an acrylic resin.
[11] The light extraction film according to any one of [1] to [10], wherein the light extraction film has an uneven structure on the surface.
[12] A surface light emitter comprising the light extraction film according to any one of [1] to [11] and an EL element.
[13] A method for producing a light extraction film,
A light extraction film comprising: supplying a mixture containing an ionic liquid (Y) and an active energy ray-curable composition between a base material and a mold having a concavo-convex transfer portion, and irradiating the active energy ray. Manufacturing method.
 本発明の光取り出しフィルムは、面発光体の光取り出し効率・法線輝度の向上や出射光波長の出射角度依存性の抑制を行うと共に、帯電防止性に優れる。
 また、本発明の面発光体は、光取り出し効率や法線輝度に優れ、出射光波長の出射角度依存性を抑制し、帯電防止性に優れる。
 更に、本発明の光取り出しフィルムの製造方法は、生産性に優れ、得られる光取り出しフィルムは、面発光体の光取り出し効率・法線輝度の向上や出射光波長の出射角度依存性の抑制を行うと共に、帯電防止性に優れる。
The light extraction film of the present invention is excellent in antistatic properties while improving the light extraction efficiency and normal luminance of the surface light emitter and suppressing the emission angle dependence of the emission light wavelength.
In addition, the surface light emitter of the present invention is excellent in light extraction efficiency and normal luminance, suppresses the emission angle dependence of the emission light wavelength, and is excellent in antistatic properties.
Further, the light extraction film manufacturing method of the present invention is excellent in productivity, and the resulting light extraction film improves the light extraction efficiency and normal luminance of the surface light emitter and suppresses the emission angle dependency of the emission light wavelength. In addition, it has excellent antistatic properties.
本発明の光取り出しフィルムの断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the light extraction film of this invention. 本発明の光取り出しフィルムの凹凸構造の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the example of arrangement | positioning of the uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の他の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the other example of an uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の他の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the other example of an uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の他の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the other example of an uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の他の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the other example of an uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の他の配置例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at the other example of an uneven structure of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの凹凸構造の断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the uneven structure of the light extraction film of this invention. 本発明の光取り出しフィルムの凹凸構造の一例を示す模式図である。It is a schematic diagram which shows an example of the uneven structure of the light extraction film of this invention. 本発明の光取り出しフィルムの一例を光取り出しフィルムの上方から見た模式図である。It is the schematic diagram which looked at an example of the light extraction film of this invention from the upper direction of the light extraction film. 本発明の光取り出しフィルムの製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus of the light extraction film of this invention. 本発明の面発光体の断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section of the surface light-emitting body of this invention.
 以下、本発明の実施の形態について図面を用いながら説明するが、本発明はこれらの図面に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these drawings.
 本発明の光取り出しフィルム10は、EL素子30の基板上に積層するもので、光取り出しフィルム10を構成する材料が、イオン液体(Y)を含む。 The light extraction film 10 of the present invention is laminated on the substrate of the EL element 30, and the material constituting the light extraction film 10 contains an ionic liquid (Y).
 (光取り出しフィルム10を構成する材料)
 光取り出しフィルム10を構成する材料は、光取り出しフィルム10の生産性に優れ、面発光体の光取り出し効率や法線輝度に優れ、面発光体の出射光波長の出射角度依存性を抑制することから、マトリックス樹脂(X)、イオン液体(Y)、及び光拡散粒子(Z)を含むことが好ましい。
(Material constituting the light extraction film 10)
The material constituting the light extraction film 10 is excellent in the productivity of the light extraction film 10, excellent in the light extraction efficiency and normal luminance of the surface light emitter, and suppresses the emission angle dependency of the emission light wavelength of the surface light emitter. It is preferable that matrix resin (X), ionic liquid (Y), and light-diffusion particle | grains (Z) are included.
 (マトリックス樹脂(X))
 マトリックス樹脂(X)としては、可視光波長域(概ね400nm~700nm)の光透過率が高い樹脂であれば特に限定されないが、例えば、アクリル樹脂;ポリカーボネート樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン、ABS樹脂等のスチレン樹脂;塩化ビニル樹脂等が挙げられる。これらのマトリックス樹脂(X)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのマトリックス樹脂(X)の中でも、可視光波長域の光透過率が高く、耐熱性、力学特性、又は成形加工性に優れることから、アクリル樹脂が好ましい。
 ここでアクリル樹脂とは、(メタ)アクリル酸又はその誘導体から誘導される単量体単位を含む樹脂のことを意味する。
(Matrix resin (X))
The matrix resin (X) is not particularly limited as long as it has a high light transmittance in the visible light wavelength region (approximately 400 nm to 700 nm). For example, acrylic resin; polycarbonate resin; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Examples thereof include polyester resins such as phthalate; styrene resins such as polystyrene and ABS resin; vinyl chloride resins and the like. These matrix resins (X) may be used individually by 1 type, and may use 2 or more types together. Among these matrix resins (X), an acrylic resin is preferable because it has a high light transmittance in the visible light wavelength region and is excellent in heat resistance, mechanical properties, or molding processability.
Here, the acrylic resin means a resin containing a monomer unit derived from (meth) acrylic acid or a derivative thereof.
 マトリックス樹脂(X)の光透過率は、光取り出しフィルム10の外観に優れ、面発光体の光取り出し効率や法線輝度に優れることから、50~95%が好ましく、60~90%がより好ましい。
 マトリックス樹脂(X)の光透過率は、JIS K7361に準拠して測定した値とする。
The light transmittance of the matrix resin (X) is preferably 50 to 95%, more preferably 60 to 90%, because the light extraction film 10 is excellent in appearance and has excellent light extraction efficiency and normal luminance of the surface light emitter. .
The light transmittance of the matrix resin (X) is a value measured according to JIS K7361.
 マトリックス樹脂(X)の屈折率は、面発光体の光取り出し効率や法線輝度に優れることから、1.30~2.00が好ましく、1.35~1.90がより好ましく、1.40~1.80が更に好ましい。
 本明細書中の各材料の屈折率は、20℃でナトリウムD線を用いて測定した値とする。
The refractive index of the matrix resin (X) is preferably 1.30 to 2.00, more preferably 1.35 to 1.90, and more preferably 1.40, because it is excellent in light extraction efficiency and normal luminance of the surface light emitter. More preferably, it is ˜1.80.
The refractive index of each material in this specification shall be the value measured using the sodium D line | wire at 20 degreeC.
 マトリックス樹脂(X)は、光取り出しフィルム10の生産性に優れることから、活性エネルギー線硬化性組成物に活性エネルギー線を照射することで硬化させた樹脂が好ましい。
 活性エネルギー線としては、例えば、紫外線、電子線、X線、赤外線、可視光線等が挙げられる。これらの活性エネルギー線の中でも、活性エネルギー線硬化性組成物の硬化性に優れ、光取り出しフィルム10の劣化を抑制することができることから、紫外線、電子線が好ましく、紫外線がより好ましい。
Since the matrix resin (X) is excellent in the productivity of the light extraction film 10, a resin cured by irradiating the active energy ray-curable composition with active energy rays is preferable.
Examples of the active energy ray include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because they are excellent in curability of the active energy ray curable composition and can suppress deterioration of the light extraction film 10.
 活性エネルギー線硬化性組成物としては、活性エネルギー線により硬化できれば特に限定されないが、活性エネルギー線硬化性組成物の取り扱い性や硬化性に優れ、光取り出しフィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、非架橋性単量体(A)、架橋性単量体(B)及び重合開始剤(C)を含む活性エネルギー線硬化性組成物が好ましい。 The active energy ray-curable composition is not particularly limited as long as it can be cured by active energy rays, but the active energy ray-curable composition is excellent in handleability and curability, and the light extraction film 10 has flexibility, heat resistance, and scratch resistance. Active energy ray curability containing a non-crosslinkable monomer (A), a crosslinkable monomer (B) and a polymerization initiator (C). Compositions are preferred.
 非架橋性単量体(A)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、iso-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、アルキル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシメチル-2-メチルビシクロヘプタン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、トリメチロールプロパンホルマール(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、カプロラクトン変性リン酸(メタ)アクリレート等の(メタ)アクリレート類;(メタ)アクリル酸;(メタ)アクリロニトリル;(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド等の(メタ)アクリルアミド類;ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA等)とエピクロルヒドリンとの縮合反応で得られるビスフェノール型エポキシ樹脂に、(メタ)アクリル酸又はその誘導体を反応させた化合物等のエポキシ(メタ)アクリレート類;スチレン、α-メチルスチレン等の芳香族ビニル類;ビニルメチルエーテル、ビニルエチルエーテル、2-ヒドロキシエチルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル類;エチレン、プロピレン、ブテン、イソブテン等のオレフィン類等が挙げられる。これらの非架橋性単量体(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの非架橋性単量体(A)の中でも、活性エネルギー線硬化性組成物の取り扱い性、硬化性に優れ、光取り出しフィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、(メタ)アクリレート類、エポキシ(メタ)アクリレート類、オレフィン類が好ましく、(メタ)アクリレート類及びエポキシ(メタ)アクリレート類がより好ましい。
 (メタ)アクリレートとは、アクリレート又はメタクリレートをいう。
Examples of the non-crosslinkable monomer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, alkyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylic , Isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, norbornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) Acrylate, tetracyclododecanyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxy Butyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-eth Siethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, butoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, 2- (meth) acryloyloxymethyl-2 -Methylbicycloheptane, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4- (meth) acryloyloxymethyl-2-methyl-2-isobutyl-1,3-dioxolane , (Meth) acrylates such as trimethylolpropane formal (meth) acrylate, ethylene oxide modified phosphoric acid (meth) acrylate and caprolactone modified phosphoric acid (meth) acrylate; (meth) acrylic acid; (meth) acrylonitrile (Meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide, N-butyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxy (Meth) acrylamides such as methyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, (meth) acryloylmorpholine, hydroxyethyl (meth) acrylamide, and methylenebis (meth) acrylamide; bisphenols (bisphenol A, bisphenol F, (Meth) acrylic acid or a derivative thereof is reacted with a bisphenol type epoxy resin obtained by condensation reaction of bisphenol S, tetrabromobisphenol A, etc.) and epichlorohydrin Epoxy (meth) acrylates; aromatic vinyls such as styrene and α-methylstyrene; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and 2-hydroxyethyl vinyl ether; vinyl carboxylates such as vinyl acetate and vinyl butyrate Olefins such as ethylene, propylene, butene and isobutene; These non-crosslinkable monomers (A) may be used individually by 1 type, and may use 2 or more types together. Among these non-crosslinkable monomers (A), the active energy ray-curable composition is excellent in handleability and curability, and the light extraction film 10 has flexibility, heat resistance, scratch resistance, solvent resistance, light Since it is excellent in various physical properties such as permeability, (meth) acrylates, epoxy (meth) acrylates, and olefins are preferable, and (meth) acrylates and epoxy (meth) acrylates are more preferable.
(Meth) acrylate refers to acrylate or methacrylate.
 非架橋性単量体(A)の含有率は、活性エネルギー線硬化性組成物100質量%に対し、0.5質量%~60質量%が好ましく、1質量%~57質量%がより好ましく、2質量%~55質量%が更に好ましい。非架橋性単量体(A)の含有率が0.5質量%以上であると、活性エネルギー線硬化性組成物の取り扱い性に優れ、光取り出しフィルム10の基材密着性に優れる。また、非架橋性単量体(A)の含有率が60質量%以下であると、活性エネルギー線硬化性組成物の架橋性及び硬化性に優れ、光取り出しフィルム10の耐溶剤性に優れる。 The content of the non-crosslinkable monomer (A) is preferably 0.5% by mass to 60% by mass, more preferably 1% by mass to 57% by mass with respect to 100% by mass of the active energy ray-curable composition. 2% to 55% by weight is more preferable. When the content of the non-crosslinkable monomer (A) is 0.5% by mass or more, the handleability of the active energy ray-curable composition is excellent, and the substrate adhesion of the light extraction film 10 is excellent. When the content of the non-crosslinkable monomer (A) is 60% by mass or less, the active energy ray-curable composition is excellent in crosslinkability and curability, and the light extraction film 10 is excellent in solvent resistance.
 架橋性単量体(B)としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート類;ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート等のペンタ(メタ)アクリレート類;ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシ変性テトラ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリスエトキシレーテッドトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシレーテッドペンタエリスリトールトリ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、炭素数2~5の脂肪族炭化水素変性トリメチロールプロパントリ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等のトリ(メタ)アクリレート類;トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、メチルペンタンジオールジ(メタ)アクリレート、ジエチルペンタンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ビス(2-(メタ)アクリロイルオキシエチル)-2-ヒドロキシエチルイソシアヌレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエトキシレーテッドシクロヘキサンジメタノールジ(メタ)アクリレート、ポリプロポキシレーテッドシクロヘキサンジメタノールジ(メタ)アクリレート、ポリエトキシレーテッドビスフェノールAジ(メタ)アクリレート、ポリプロポキシレーテッドビスフェノールAジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、ポリエトキシレーテッド水添ビスフェノールAジ(メタ)アクリレート、ポリプロポキシレーテッド水添ビスフェノールAジ(メタ)アクリレート、ビスフェノキシフルオレンエタノールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのγ-ブチロラクトン付加物のジ(メタ)アクリレート、ネオペンチルグリコールのカプロラクトン付加物のジ(メタ)アクリレート、ブチレングリコールのカプロラクトン付加物のジ(メタ)アクリレート、シクロヘキサンジメタノールのカプロラクトン付加物のジ(メタ)アクリレート、ジシクロペンタンジオールのカプロラクトン付加物のジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物のジ(メタ)アクリレート、ビスフェノールAのカプロラクトン付加物のジ(メタ)アクリレート、水添ビスフェノールAのカプロラクトン付加物のジ(メタ)アクリレート、ビスフェノールFのカプロラクトン付加物のジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート類;ジアリルフタレート、ジアリルテレフタレート、ジアリルイソフタレート、ジエチレングリコールジアリルカーボネート等のジアリル類;アリル(メタ)アクリレート;ジビニルベンゼン;メチレンビスアクリルアミド;多塩基酸(フタル酸、コハク酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、テレフタル酸、アゼライン酸、アジピン酸等)と、多価アルコール(エチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール等)及び(メタ)アクリル酸又はその誘導体との反応で得られる化合物等のポリエステルジ(メタ)アクリレート類;ジイソシアネート化合物(トリレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート等)と、水酸基含有(メタ)アクリレート(2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能(メタ)アクリレート等)とを反応させた化合物、アルコール類(アルカンジオール、ポリエーテルジオール、ポリエステルジオール、スピログリコール化合物等の1種又は2種以上)の水酸基にジイソシアネート化合物を付加し、残ったイソシアネート基に、水酸基含有(メタ)アクリレートを反応させた化合物等のウレタン多官能(メタ)アクリレート類;ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等のジビニルエーテル類;ブタジエン、イソプレン、ジメチルブタジエン等のジエン類等が挙げられる。これらの架橋性単量体(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの架橋性単量体(B)の中でも、光取り出しフィルム10の柔軟性、耐熱性、耐擦傷性、耐溶剤性、光透過性等の諸物性に優れることから、ヘキサ(メタ)アクリレート類、ペンタ(メタ)アクリレート類、テトラ(メタ)アクリレート類、トリ(メタ)アクリレート類、ジ(メタ)アクリレート類、ジアリル類、アリル(メタ)アクリレート、ポリエステルジ(メタ)アクリレート類、ウレタン多官能(メタ)アクリレート類が好ましく、ヘキサ(メタ)アクリレート類、ペンタ(メタ)アクリレート類、テトラ(メタ)アクリレート類、トリ(メタ)アクリレート類、ジ(メタ)アクリレート類、ポリエステルジ(メタ)アクリレート類及びウレタン多官能(メタ)アクリレート類がより好ましい。 Examples of the crosslinkable monomer (B) include hexa (meth) acrylates such as dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate; dipentaerythritol hydroxypenta (meth) acrylate , Penta (meth) acrylates such as caprolactone-modified dipentaerythritol hydroxypenta (meth) acrylate; ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxy modified tetra (meth) acrylate, dipenta Such as erystol hexa (meth) acrylate, dipentaerystol penta (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, etc. Tora (meth) acrylates; trimethylolpropane tri (meth) acrylate, trisethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, tris ( Tri (meth) acrylates such as 2- (meth) acryloyloxyethyl) isocyanurate, aliphatic hydrocarbon-modified trimethylolpropane tri (meth) acrylate having 2 to 5 carbon atoms, and isocyanuric acid ethylene oxide-modified tri (meth) acrylate Triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, methylpentanediol di (meth) ) Acrylate, diethylpentanediol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate , Tricyclodecane dimethanol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxy) Phenyl) propane, 2,2-bis (4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl) propane, 1,2-bis (3- (meth) acryloxy-2-hydroxypropoxy) ethane, , 4-bis (3- (meth) acryloxy-2-hydroxypropoxy) butane, bis (2- (meth) acryloyloxyethyl) -2-hydroxyethyl isocyanurate, cyclohexanedimethanol di (meth) acrylate, dimethyloltri Cyclodecane di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, polyethoxylated cyclohexanedimethanol di (meth) acrylate, polypropoxylated cyclohexanedimethanol di (meth) acrylate, polyethylene Silated bisphenol A di (meth) acrylate, polypropoxylated bisphenol A di (meth) acrylate, hydrogenated bisphenol A di (meth) acrylate, polyethoxylated hydrogenated bisphenol A di (meth) acrylate, polypropoxylated Di (meth) of ε-caprolactone adduct of hydrogenated bisphenol A di (meth) acrylate, bisphenoxyfluoreneethanol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, neopentyl glycol hydroxypivalate Di (meth) acrylate of γ-butyrolactone adduct of neopentyl glycol hydroxypivalate and di (meth) acrylate of caprolactone adduct of neopentyl glycol Di (meth) acrylate of caprolactone adduct of acrylate, butylene glycol, di (meth) acrylate of caprolactone adduct of cyclohexanedimethanol, di (meth) acrylate of caprolactone adduct of dicyclopentanediol, ethylene oxide addition of bisphenol A Di (meth) acrylate of a product, di (meth) acrylate of a propylene oxide adduct of bisphenol A, di (meth) acrylate of a caprolactone adduct of bisphenol A, di (meth) acrylate of a caprolactone adduct of hydrogenated bisphenol A, Di (meth) acrylates such as di (meth) acrylates of caprolactone adducts of bisphenol F, isocyanuric acid ethylene oxide-modified di (meth) acrylates; Diallyls such as diallyl terephthalate, diallyl terephthalate, diallyl isophthalate, diethylene glycol diallyl carbonate; allyl (meth) acrylate; divinylbenzene; methylenebisacrylamide; polybasic acids (phthalic acid, succinic acid, hexahydrophthalic acid, tetrahydrophthalic acid, terephthalic Polyesters such as compounds obtained by reaction of acids, azelaic acid, adipic acid, etc.) with polyhydric alcohols (ethylene glycol, hexanediol, polyethylene glycol, polytetramethylene glycol, etc.) and (meth) acrylic acid or derivatives thereof (Meth) acrylates; diisocyanate compounds (tolylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, dicyclohexylmethane diisocyanate, hexame Styrene diisocyanate) and hydroxyl group-containing (meth) acrylates (2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, pentaerythritol tri (meth) acrylate) A diisocyanate compound was added to the hydroxyl group of a compound obtained by reacting with a functional (meth) acrylate or the like, or an alcohol (one kind or two or more kinds such as an alkanediol, a polyether diol, a polyester diol, and a spiroglycol compound) and remained. Polyurethane polyfunctional (meth) acrylates such as compounds obtained by reacting an isocyanate group with a hydroxyl group-containing (meth) acrylate; divinyl ethers such as diethylene glycol divinyl ether and triethylene glycol divinyl ether Butadiene, isoprene, dienes such as dimethyl butadiene and the like. These crosslinkable monomers (B) may be used individually by 1 type, and may use 2 or more types together. Among these crosslinkable monomers (B), the light extraction film 10 is excellent in various properties such as flexibility, heat resistance, scratch resistance, solvent resistance, and light transmittance, so hexa (meth) acrylates , Penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl (meth) acrylates, polyester di (meth) acrylates, urethane polyfunctional ( (Meth) acrylates are preferred, hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, polyester di (meth) acrylates and Urethane polyfunctional (meth) acrylates are more preferred.
 架橋性単量体(B)の含有率は、活性エネルギー線硬化性組成物100質量%に対し、30質量%~98質量%が好ましく、35質量%~97質量%がより好ましく、40質量%~96質量%が更に好ましい。架橋性単量体(B)の含有率が30質量%以上であると、活性エネルギー線硬化性組成物の架橋性や硬化性に優れ、光取り出しフィルム10の耐溶剤性に優れる。また、架橋性単量体(B)の含有率が98質量%以下であると、光取り出しフィルム10の柔軟性に優れる。 The content of the crosslinkable monomer (B) is preferably 30% by mass to 98% by mass, more preferably 35% by mass to 97% by mass with respect to 100% by mass of the active energy ray-curable composition, and 40% by mass. More preferably, it is -96 mass%. When the content of the crosslinkable monomer (B) is 30% by mass or more, the active energy ray-curable composition is excellent in crosslinkability and curability, and the light extraction film 10 is excellent in solvent resistance. Moreover, the softness | flexibility of the light extraction film 10 is excellent in the content rate of a crosslinkable monomer (B) being 98 mass% or less.
 重合開始剤(C)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、アセトイン、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、2,2-ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、ベンジルジメチルケタール、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-エチルアントラキノン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物類;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等のアシルフォスフィンオキサイド類等が挙げられる。これらの重合開始剤(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの重合開始剤(C)の中でも、活性エネルギー線硬化性組成物の取り扱い性や硬化性、光取り出しフィルム10の光透過性に優れることから、カルボニル化合物、アシルフォスフィンオキサイド類が好ましく、カルボニル化合物がより好ましい。 Examples of the polymerization initiator (C) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, acetoin, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone, α, α-Dimethoxy-α-phenylacetophenone, benzyldimethyl ketal, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2- Carbonyl compounds such as methyl-1-phenylpropan-1-one and 2-ethylanthraquinone; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, etc. Sulfur compounds; 2,4,6-trimethylbenzoyl diphenylphosphine oxide, acylphosphine oxide such as benzo dichloride ethoxy phosphine oxide, and the like. These polymerization initiators (C) may be used individually by 1 type, and may use 2 or more types together. Among these polymerization initiators (C), carbonyl compounds and acyl phosphine oxides are preferred because they are excellent in handleability and curability of the active energy ray-curable composition and light transmittance of the light extraction film 10. Compounds are more preferred.
 活性エネルギー線硬化性組成物中の重合開始剤(C)の含有率は、活性エネルギー線硬化性組成物100質量%に対し、0.1質量%~10質量%が好ましく、0.5質量%~8質量%がより好ましく、1質量%~5質量%が更に好ましい。重合開始剤(C)の含有率が0.1質量%以上であると、活性エネルギー線硬化性組成物の取り扱い性や硬化性に優れる。また、重合開始剤(C)の含有率が10質量%以下であると、光取り出しフィルム10の光透過性に優れる。 The content of the polymerization initiator (C) in the active energy ray-curable composition is preferably 0.1% by mass to 10% by mass, and 0.5% by mass with respect to 100% by mass of the active energy ray-curable composition. More preferably, it is preferably ˜8% by mass, more preferably 1% by mass to 5% by mass. When the content of the polymerization initiator (C) is 0.1% by mass or more, the handleability and curability of the active energy ray-curable composition are excellent. Moreover, it is excellent in the light transmittance of the light extraction film 10 as the content rate of a polymerization initiator (C) is 10 mass% or less.
 本発明の一つの側面は、非架橋性単量体(A)が、(メタ)アクリレート類、エポキシ(メタ)アクリレート類、及びオレフィン類からなる群から選択される少なくとも一種の単量体であり、架橋性単量体(B)がヘキサ(メタ)アクリレート類、ペンタ(メタ)アクリレート類、テトラ(メタ)アクリレート類、トリ(メタ)アクリレート類、ジ(メタ)アクリレート類、ジアリル類、アリル(メタ)アクリレート、ポリエステルジ(メタ)アクリレート類、及びウレタン多官能(メタ)アクリレート類からなる群から選択される少なくとも一種の単量体であり、重合開始剤(C)がカルボニル化合物、及びアシルフォスフィンオキサイド類からなる群から選択される少なくとも一種の化合物である。 One aspect of the present invention is that the non-crosslinkable monomer (A) is at least one monomer selected from the group consisting of (meth) acrylates, epoxy (meth) acrylates, and olefins. The crosslinkable monomer (B) is hexa (meth) acrylates, penta (meth) acrylates, tetra (meth) acrylates, tri (meth) acrylates, di (meth) acrylates, diallyls, allyl ( It is at least one monomer selected from the group consisting of (meth) acrylates, polyester di (meth) acrylates, and urethane polyfunctional (meth) acrylates, and the polymerization initiator (C) is a carbonyl compound and acylphosphine. It is at least one compound selected from the group consisting of fin oxides.
 (イオン液体(Y))
 イオン液体(Y)は、100℃において液体で存在する塩(即ち、融点が100℃以下の塩)を意味し、アニオンとカチオンからなる。イオン液体(Y)は、光取り出しフィルム中では分散されて存在する。中でもフッ素原子を含有しない非フッ素系イオン液体(Y’)が好ましい。
 イオン液体(Y)は、電気伝導性を有することから、外部から与えられた電荷を伝播させ、光取り出しフィルム10の帯電を抑制することができ、埃の付着を抑制することが期待できる。
 また、イオン液体(Y)は、通常の固体の帯電防止剤とは異なり、液体であることから、マトリックス樹脂(X)への分散性に優れ、光取り出しフィルム10の製造が容易である。
(Ionic liquid (Y))
The ionic liquid (Y) means a salt that exists in a liquid state at 100 ° C. (that is, a salt having a melting point of 100 ° C. or less), and consists of an anion and a cation. The ionic liquid (Y) is dispersed in the light extraction film. Of these, non-fluorinated ionic liquid (Y ′) containing no fluorine atom is preferred.
Since the ionic liquid (Y) has electrical conductivity, it can be expected to propagate externally applied charges, suppress the charging of the light extraction film 10, and suppress the adhesion of dust.
Further, since the ionic liquid (Y) is a liquid unlike a normal solid antistatic agent, it is excellent in dispersibility in the matrix resin (X), and the light extraction film 10 can be easily manufactured.
イオン液体(Y)としては、添加するマトリックス樹脂(X)との相溶性を高め、ブリードアウトを抑制できるものが望ましい。例えば、濁点滴定法を用いてマトリックス樹脂(X)とイオン液体(Y)のsp値を算出し、絶対値のsp値差を基準としてもよい。
イオン液体(Y)とイオン液体を除く光取り出しフィルムを構成する材料とのsp値の差の絶対値としては、0.1~17であることが好ましく、6~16がより好ましい。0.1未満であるとイオン液体を除く光取り出しフィルムを構成する材料と完全相溶し、帯電防止性能発現のために添加するイオン液体(Y)の量が多くなり、17超であるとイオン液体を除く光取り出しフィルムを構成する材料との相溶性が低く、湿熱試験時にブリードアウトしやすくなる。ここで、イオン液体を除く光取り出しフィルムを構成する材料としては、マトリックス樹脂(X)、光拡散微粒子(Z)等が挙げられる。
マトリックス樹脂(X)とイオン液体(Y)のsp値の差の絶対値としては0.1~18が好ましく、6~17がさらに好ましい。0.1より小さいとマトリックス樹脂と完全相溶し、帯電防止性能発現のために添加するイオン液体(Y)の量が多くなる。また、18より大きいとマトリックス樹脂(X)との相溶性が低く、湿熱試験時にブリードアウトしやすくなる。
なお、本明細書において、濁点滴定法を用いたspは、試料を良溶媒に溶解した溶液に貧溶媒を濁点まで添加する手法で算出することが可能である。
ml 1/2(δ-δml)=Vmh 1/2(δmh-δ
ml、Vmh:それぞれsp値の低い貧溶媒と高い貧溶媒の体積
δml、δmh:それぞれsp値の低い貧溶媒と高い貧溶媒のsp値
δ:高分子のsp値
式を変形して、次の式からsp値を算出する。
δ=(Vml 1/2・δml+Vmh 1/2・δmh)/(Vml 1/2+Vmh 1/2
As the ionic liquid (Y), those capable of increasing the compatibility with the added matrix resin (X) and suppressing bleed-out are desirable. For example, the sp value of the matrix resin (X) and the ionic liquid (Y) may be calculated using a cloud point titration method, and the sp value difference between the absolute values may be used as a reference.
The absolute value of the difference in sp value between the ionic liquid (Y) and the material constituting the light extraction film excluding the ionic liquid is preferably 0.1 to 17, and more preferably 6 to 16. If it is less than 0.1, it is completely compatible with the material constituting the light extraction film excluding the ionic liquid, and the amount of ionic liquid (Y) added for the development of antistatic performance increases, and if it exceeds 17, ions are added. The compatibility with the material constituting the light extraction film excluding the liquid is low, and it becomes easy to bleed out during the wet heat test. Here, examples of the material constituting the light extraction film excluding the ionic liquid include matrix resin (X) and light diffusion fine particles (Z).
The absolute value of the difference in sp value between the matrix resin (X) and the ionic liquid (Y) is preferably from 0.1 to 18, and more preferably from 6 to 17. If it is less than 0.1, it is completely compatible with the matrix resin, and the amount of ionic liquid (Y) added for the development of antistatic performance increases. On the other hand, if it is larger than 18, the compatibility with the matrix resin (X) is low, and bleeding out easily occurs during the wet heat test.
In the present specification, sp using the cloud point titration method can be calculated by a technique in which a poor solvent is added to a cloud point in a solution obtained by dissolving a sample in a good solvent.
V ml 1/23 −δ ml ) = V mh 1/2mh −δ 3 )
V ml , V mh : Volume of poor solvent with low sp value and high poor solvent, respectively δ ml , δ mh : Sp value of poor solvent with low sp value, and high poor solvent δ 3 : Modified sp value formula of polymer Then, the sp value is calculated from the following equation.
δ 3 = (V ml 1/2 · δ ml + V mh 1/2 · δ mh ) / (V ml 1/2 + V mh 1/2 )
 イオン液体(Y)のアニオンとしては、例えば、フッ素原子を含有していなければよく、アミド系アニオン、サルフェート系アニオン、フォスフェート系アニオン等が挙げられる。これらのイオン液体(Y)のアニオンは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのイオン液体(Y)のアニオンの中でも、光取り出しフィルム10の帯電防止性に優れることから、アミド系アニオン、サルフェート系アニオンが好ましく、サルフェート系アニオンがより好ましい。 As the anion of the ionic liquid (Y), for example, it does not need to contain a fluorine atom, and examples thereof include an amide anion, a sulfate anion, and a phosphate anion. These anions of the ionic liquid (Y) may be used alone or in combination of two or more. Among these anions of the ionic liquid (Y), an amide anion and a sulfate anion are preferable, and a sulfate anion is more preferable because the antistatic property of the light extraction film 10 is excellent.
 アミド系アニオンとしては、例えば、シアナミドアニオン、等が挙げられる。これらのアミド系アニオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 サルフェート系アニオンとしては、例えば、グリコールエーテル硫酸エステルの反応物由来のアニオン(グリコールエーテル硫酸エステルアニオン)、アルキルベンゼンスルホン酸の反応物由来のアニオン(アルキルベンゼンスルホン酸アニオン)、ブチルサルフォネートアニオン、メチルサルフェートアニオン、エチルサルフェートアニオン、ハイドロゲンサルフェートアニオン、オクチルサルフェートアニオン、アルキルサルフェートアニオン等が挙げられる。これらのサルフェート系アニオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 フォスフェート系アニオンとしては、例えば、ブチルフォスフェートアニオン等が挙げられる。これらのフォスフェート系アニオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 その他、ナイトレート系アニオン、チオシアネート系アニオン、アセテート系アニオン、アミノアセテート系アニオン、ラクテート系アニオン等が挙げられる。
Examples of the amide anion include a cyanamide anion. These amide type anions may be used alone or in combination of two or more.
Examples of the sulfate anion include an anion derived from a reaction product of glycol ether sulfate (glycol ether sulfate anion), an anion derived from a reaction product of alkylbenzene sulfonic acid (alkylbenzene sulfonate anion), butyl sulfonate anion, and methyl sulfate. Examples include anions, ethyl sulfate anions, hydrogen sulfate anions, octyl sulfate anions, alkyl sulfate anions, and the like. These sulfate-type anions may be used alone or in combination of two or more.
Examples of the phosphate anion include butyl phosphate anion. These phosphate anions may be used alone or in combination of two or more.
Other examples include nitrate anions, thiocyanate anions, acetate anions, aminoacetate anions, lactate anions.
 イオン液体(Y)のカチオンとしては、例えば、アンモニウム系カチオン、イミダゾリウム系カチオン、ホスホニウム系カチオン、ピリジニウム系カチオン、ピロリジニウム系カチオン、ピロリニウム系カチオン、トリアゾニウム系カチオン等が挙げられる。これらのイオン液体(Y)のカチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのイオン液体(Y)のカチオンの中でも、光取り出しフィルム10の帯電防止性に優れることから、アンモニウム系カチオン、イミダゾリウム系カチオンが好ましく、アンモニウム系カチオンがより好ましい。 Examples of the cation of the ionic liquid (Y) include ammonium cation, imidazolium cation, phosphonium cation, pyridinium cation, pyrrolidinium cation, pyrrolium cation, and triazonium cation. The cation of these ionic liquids (Y) may be used individually by 1 type, and may use 2 or more types together. Among these cations of the ionic liquid (Y), ammonium-based cations and imidazolium-based cations are preferable, and ammonium-based cations are more preferable because the antistatic property of the light extraction film 10 is excellent.
 アンモニウム系カチオンとしては、例えば、アルカノールアミン塩反応物由来のカチオン(アルカノールアミンカチオン)、ブチルトリメチルアンモニウムカチオン、エチルジエチルプロピルアンモニウムカチオン、2-ヒドロキシエチル-トリエチルアンモニウムカチオン、メチル-トリオクチルアンモニウムカチオン、メチルトリオクチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラヘプチルアンモニウムカチオン、トリブチルメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、トリス(2-ヒドロキシ)メチルアンモニウムカチオン、アンモニウムカチオン等が挙げられる。これらのアンモニウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 イミダゾリウム系カチオンとしては、例えば、1-アリル-3-メチルイミダゾリウムカチオン、1-ベンジル-3-メチルイミダゾリウムカチオン、1、3-ビス(シアノメチル)イミダゾリウムカチオン、1、3-ビス(シアノプロピル)イミダゾリウムカチオン、1-ブチル-2、3-ジメチルイミダゾリウムカチオン、4-(3-ブチル)-1-イミダゾリウムカチオン、1-(3-シアノプロピル)-3-メチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-デシル-3-メチルイミダゾリウムカチオン、1、3-ジエトキシイミダゾリウムカチオン、1、3-ジメトキシ-2-メチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-メチル-3-オクチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン等が挙げられる。これらのイミダゾリウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ホスホニウム系カチオンとしては、例えば、テトラブチルホスホニウムカチオン、トリブチルメチルホスホニウムカチオン、トリヘキシルテトラデシルホスホニウムカチオン等が挙げられる。これらのホスホニウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ピリジウム系カチオンとしては、例えば、1-ブチル-3-メチルピリジウムカチオン、1-ブチル-4-メチルピリジウムカチオン、1-ブチルピリジウムカチオン、1-エチルピリジウムカチオン、1-(3-シアノプロピル)ピリジウムカチオン、3-メチル-4-プロピルピリジウムカチオン等が挙げられる。これらのピリジニウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ピロリジニウム系カチオンとしては、例えば、1-ブチル-1-メチルピロリジニウムカチオン、2-メチルピロリジニウムカチオン、3-フェニルピロリジニウムカチオン等が挙げられる。これらのピロリジニウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ピロリニウム系カチオンとしては、例えば、2-アセチルピロリニウムカチオン、3-アセチルピロリニウムカチオン、1-(2-ニトロフェニル)ピロリニウムカチオン等が挙げられる。これらのピロリニウム系カチオンは、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the ammonium cation include a cation derived from an alkanolamine salt reactant (alkanolamine cation), butyltrimethylammonium cation, ethyldiethylpropylammonium cation, 2-hydroxyethyl-triethylammonium cation, methyl-trioctylammonium cation, methyl Examples include trioctylammonium cation, tetrabutylammonium cation, tetraethylammonium cation, tetraheptylammonium cation, tributylmethylammonium cation, triethylmethylammonium cation, tris (2-hydroxy) methylammonium cation, ammonium cation and the like. These ammonium cations may be used individually by 1 type, and may use 2 or more types together.
Examples of the imidazolium-based cation include 1-allyl-3-methylimidazolium cation, 1-benzyl-3-methylimidazolium cation, 1,3-bis (cyanomethyl) imidazolium cation, 1,3-bis (cyano Propyl) imidazolium cation, 1-butyl-2,3-dimethylimidazolium cation, 4- (3-butyl) -1-imidazolium cation, 1- (3-cyanopropyl) -3-methylimidazolium cation, 1 -Ethyl-3-methylimidazolium cation, 1-butyl-3-methylimidazolium cation, 1-decyl-3-methylimidazolium cation, 1,3-diethoxyimidazolium cation, 1,3-dimethoxy-2- Methylimidazolium cation, 1-hexyl-3-methylimid Tetrazolium cation, 1-methyl-3-octyl-imidazolium cation, 1-methyl-3-propyl imidazolium cations, and the like. These imidazolium-based cations may be used alone or in combination of two or more.
Examples of the phosphonium cation include a tetrabutylphosphonium cation, a tributylmethylphosphonium cation, and a trihexyltetradecylphosphonium cation. These phosphonium-based cations may be used alone or in combination of two or more.
Examples of the pyridium cation include 1-butyl-3-methylpyridium cation, 1-butyl-4-methylpyridium cation, 1-butylpyridium cation, 1-ethylpyridium cation, 1- (3-cyano Propyl) pyridinium cation, 3-methyl-4-propylpyridium cation, and the like. These pyridinium cations may be used individually by 1 type, and may use 2 or more types together.
Examples of the pyrrolidinium cation include 1-butyl-1-methylpyrrolidinium cation, 2-methylpyrrolidinium cation, and 3-phenylpyrrolidinium cation. These pyrrolidinium cations may be used alone or in combination of two or more.
Examples of the pyrrolinium cation include 2-acetylpyrrolium cation, 3-acetylpyrrolium cation, 1- (2-nitrophenyl) pyrrolium cation and the like. These pyrrolinium cations may be used alone or in combination of two or more.
 イオン液体(Y)としては、カチオンがアンモニウム系カチオン、イミダゾリウム系カチオン、ホスホニウム系カチオン、ピリジニウム系カチオン、ピロリジニウム系カチオン、ピロリニウム系カチオン、トリアゾニウム系カチオン等からなる群から選択される少なくとも1種のカチオンであり、アニオンがアミド系アニオン、サルフェート系アニオン、フォスフェート系アニオン等からなる群から選択される少なくとも1種のアニオンであるイオン液体(Y)が好ましい。 As the ionic liquid (Y), the cation is at least one selected from the group consisting of an ammonium cation, an imidazolium cation, a phosphonium cation, a pyridinium cation, a pyrrolidinium cation, a pyrrolium cation, a triazonium cation, and the like. The ionic liquid (Y) is preferably a cation, and the anion is at least one kind of anion selected from the group consisting of an amide anion, a sulfate anion, a phosphate anion and the like.
 イオン液体(Y)は、市販のイオン液体(Y)でもよく、例えば、「アミノイオンAS100」、「アミノイオンAS300」、「アミノイオンAS400」等の日本乳化剤(株)製のアミノイオンASシリーズ等が挙げられる。 The ionic liquid (Y) may be a commercially available ionic liquid (Y), such as “Amino Ion AS 100”, “Amino Ion AS 300”, “Amino Ion AS 400”, etc. manufactured by Nippon Emulsifier Co., Ltd. Is mentioned.
 (光拡散微粒子(Z))
 光拡散微粒子(Z)は、光を拡散する機能を有する。そのため、光取り出しフィルム10に光拡散微粒子(Z)が含まれることで、面発光体の出射光波長の出射角度依存性を抑制することができる。
(Light-diffusing fine particles (Z))
The light diffusing fine particles (Z) have a function of diffusing light. Therefore, when the light extraction film 10 contains the light diffusing fine particles (Z), the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed.
 光拡散微粒子(Z)は、可視光波長域(概ね400nm~700nm)の光拡散効果を有する粒子であれば特に限定されることはなく、公知の微粒子を用いることができる。光拡散微粒子(Z)は、1種を単独で用いてもよく、2種以上を併用してもよい。 The light diffusing fine particles (Z) are not particularly limited as long as they are particles having a light diffusing effect in a visible light wavelength range (approximately 400 nm to 700 nm), and known fine particles can be used. The light diffusing fine particles (Z) may be used alone or in combination of two or more.
 光拡散微粒子(Z)の材料としては、例えば、金、銀、ケイ素、アルミニウム、マグネシウム、ジルコニウム、チタン、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン、セリウム等の金属;酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物;水酸化アルミニウム等の金属水酸化物;炭酸マグネシウム等の金属炭酸化物;窒化ケイ素等の金属窒化物;アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂等の樹脂等が挙げられる。これらの光拡散微粒子(Z)の材料は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの光拡散微粒子(Z)の材料の中でも、光取り出しフィルム10の製造時の取り扱い性に優れることから、ケイ素、アルミニウム、マグネシウム、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、炭酸マグネシウム、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂が好ましく、酸化ケイ素、酸化アルミニウム、水酸化アルミニウム、炭酸マグネシウム、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂の粒子がより好ましく、アクリル樹脂、シリコーン樹脂が更に好ましい。 Examples of the material of the light diffusing fine particles (Z) include metals such as gold, silver, silicon, aluminum, magnesium, zirconium, titanium, zinc, germanium, indium, tin, antimony, and cerium; silicon oxide, aluminum oxide, and magnesium oxide. , Zirconium oxide, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, cerium oxide, etc .; metal hydroxide such as aluminum hydroxide; metal such as magnesium carbonate Carbon oxides; metal nitrides such as silicon nitride; resins such as acrylic resins, styrene resins, silicone resins, urethane resins, melamine resins, and epoxy resins. These light diffusing fine particles (Z) may be used alone or in combination of two or more. Among these materials for the light diffusing fine particles (Z), since they are excellent in handling at the time of manufacturing the light extraction film 10, silicon, aluminum, magnesium, silicon oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium carbonate, Acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, and epoxy resin are preferable. Silicon oxide, aluminum oxide, aluminum hydroxide, magnesium carbonate, acrylic resin, styrene resin, silicone resin, urethane resin, melamine resin, epoxy resin These particles are more preferable, and acrylic resins and silicone resins are more preferable.
 光拡散微粒子(Z)の屈折率は、面発光体の光取り出し効率や法線輝度に優れることから、1.30~2.00が好ましく、1.35~1.90がより好ましく、1.40~1.80が更に好ましい。 The refractive index of the light diffusing fine particles (Z) is preferably 1.30 to 2.00, more preferably 1.35 to 1.90, because of excellent light extraction efficiency and normal luminance of the surface light emitter. 40 to 1.80 is more preferable.
 光拡散微粒子(Z)の体積平均粒子径は、0.5μm~10μmが好ましく、1μm~8μmがより好ましく、1.5μm~6μmが更に好ましい。光拡散微粒子(Z)の体積平均粒子径が0.5μm以上であると、可視波長域の光を効果的に散乱させることができる。また、光拡散微粒子(Z)の体積平均粒子径が10μm以下であると、面発光体の出射光波長の出射角度依存性を抑制することができる。
 光拡散微粒子(Z)の体積平均粒子径は、レーザー回折散乱法で測定した値とする。
The volume average particle diameter of the light diffusing fine particles (Z) is preferably 0.5 μm to 10 μm, more preferably 1 μm to 8 μm, and still more preferably 1.5 μm to 6 μm. When the volume average particle diameter of the light diffusing fine particles (Z) is 0.5 μm or more, light in the visible wavelength region can be effectively scattered. Further, when the volume average particle diameter of the light diffusing fine particles (Z) is 10 μm or less, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed.
The volume average particle diameter of the light diffusing fine particles (Z) is a value measured by a laser diffraction scattering method.
 光拡散微粒子(Z)の形状としては、例えば、球状、円柱状、立方体状、直方体状、角錐状、円錐状、星型状、不定形状等が挙げられる。これらの光拡散微粒子(Z)の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの光拡散微粒子(Z)の形状の中でも、可視波長域の光を効果的に散乱させることができることから、球状、立方体状、直方体状、角錐状、星型状が好ましく、球状がより好ましい。 Examples of the shape of the light diffusing fine particles (Z) include a spherical shape, a cylindrical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, a conical shape, a star shape, and an indefinite shape. These light diffusing fine particles (Z) may be used alone or in combination of two or more. Among these shapes of the light diffusing fine particles (Z), since light in the visible wavelength range can be effectively scattered, a spherical shape, a cubic shape, a rectangular parallelepiped shape, a pyramid shape, and a star shape are preferable, and a spherical shape is more preferable. .
 (光取り出しフィルム10を構成する材料の組成)
 イオン液体(Y)の含有量は、マトリックス樹脂(X)100質量部に対して、0.1質量部~10質量部が好ましく、0.5質量部~8質量部がより好ましい。イオン液体(Y)の含有量が0.1質量部以上であると、光取り出しフィルム10の帯電防止性に優れる。また、イオン液体(Y)の含有量が10質量部以下であると、後述する基材15との密着性に優れる。
(Composition of the material constituting the light extraction film 10)
The content of the ionic liquid (Y) is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the matrix resin (X). When the content of the ionic liquid (Y) is 0.1 parts by mass or more, the antistatic property of the light extraction film 10 is excellent. Moreover, it is excellent in adhesiveness with the base material 15 mentioned later as content of an ionic liquid (Y) is 10 mass parts or less.
 光拡散微粒子(Z)の含有量は、マトリックス樹脂(X)100質量部に対して、1質量部~70質量部が好ましく、5質量部~60質量部がより好ましい。光拡散微粒子(Z)の含有量が1質量部以上であると、面発光体の出射光波長の出射角度依存性を抑制することができる。また、光拡散微粒子(Z)の含有量が70質量部以下であると、面発光体の光取り出し効率や法線輝度に優れる。 The content of the light diffusing fine particles (Z) is preferably 1 part by mass to 70 parts by mass, and more preferably 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the matrix resin (X). When the content of the light diffusing fine particles (Z) is 1 part by mass or more, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed. Further, when the content of the light diffusing fine particles (Z) is 70 parts by mass or less, the light extraction efficiency and the normal luminance of the surface light emitter are excellent.
 光取り出しフィルム10を構成する材料は、マトリックス樹脂(X)、イオン液体(Y)、及び光拡散微粒子(Z)以外にも、光取り出しフィルム10の性能を損なわない範囲で、他の添加剤を含んでもよい。 In addition to the matrix resin (X), the ionic liquid (Y), and the light diffusing fine particles (Z), the material constituting the light extraction film 10 may include other additives as long as the performance of the light extraction film 10 is not impaired. May be included.
 他の添加剤としては、例えば、離型剤、紫外線吸収剤、光安定化剤、難燃剤、消泡剤、レベリング剤、防汚性向上剤、分散安定剤、粘度調整剤等が挙げられる。 Examples of other additives include mold release agents, ultraviolet absorbers, light stabilizers, flame retardants, antifoaming agents, leveling agents, antifouling improvers, dispersion stabilizers, viscosity modifiers, and the like.
 他の添加剤の含有率は、光取り出しフィルム10の性能を損なわずに他の添加剤が有する特性を向上させることができることから、光取り出しフィルムの総質量に対し、10質量%以下が好ましく、5質量%以下がより好ましい。具体的には、0.05~10質量%が好ましく、0.1~5質量%がより好ましい。 The content of other additives is preferably 10% by mass or less with respect to the total mass of the light extraction film because the properties of the other additives can be improved without impairing the performance of the light extraction film 10. 5 mass% or less is more preferable. Specifically, 0.05 to 10% by mass is preferable, and 0.1 to 5% by mass is more preferable.
 (マトリックス樹脂(X)と光拡散微粒子(Z)の組合せ)
 マトリックス樹脂(X)と光拡散微粒子(Z)とは、屈折率差を有することで、光拡散微粒子(Z)の効果が生じる。
 マトリックス樹脂(X)と光拡散微粒子(Z)との屈折率差は、0.03~0.25が好ましく、0.05~0.20がより好ましく、0.07~0.15が更に好ましい。マトリックス樹脂(X)と光拡散微粒子(Z)との屈折率差が0.03以上であると、面発光体の出射光波長の出射角度依存性を抑制することができる。また、マトリックス樹脂(X)と光拡散微粒子(Z)との屈折率差が0.25以下であると、面発光体の光取り出し効率や法線輝度に優れる。
(Combination of matrix resin (X) and light diffusing fine particles (Z))
Since the matrix resin (X) and the light diffusing fine particles (Z) have a difference in refractive index, the effect of the light diffusing fine particles (Z) occurs.
The refractive index difference between the matrix resin (X) and the light diffusing fine particles (Z) is preferably 0.03 to 0.25, more preferably 0.05 to 0.20, and still more preferably 0.07 to 0.15. . When the difference in refractive index between the matrix resin (X) and the light diffusing fine particles (Z) is 0.03 or more, the emission angle dependency of the emission light wavelength of the surface light emitter can be suppressed. Moreover, when the refractive index difference between the matrix resin (X) and the light diffusing fine particles (Z) is 0.25 or less, the light extraction efficiency and normal luminance of the surface light emitter are excellent.
 マトリックス樹脂(X)と光拡散微粒子(Z)との組合せは、光取り出しフィルム10の耐熱性、力学特性、成形加工性に優れ、屈折率差が前記好ましい範囲であり、面発光体の光取り出し効率や法線輝度に優れ、面発光体の出射光波長の出射角度依存性を抑制することができることから、マトリックス樹脂(X)がアクリル樹脂であることが好適であり、中でも、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)が酸化ケイ素微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)が酸化アルミニウム微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)が水酸化アルミニウム微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)が炭酸マグネシウム微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がアクリル樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がスチレン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がシリコーン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がウレタン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がメラミン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がエポキシ樹脂微粒子が好ましく、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がアクリル樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がスチレン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がシリコーン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がウレタン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がメラミン樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がエポキシ樹脂微粒子がより好ましく、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がアクリル樹脂微粒子、マトリックス樹脂(X)がアクリル樹脂で光拡散微粒子(Z)がシリコーン樹脂微粒子が更に好ましい。 The combination of the matrix resin (X) and the light diffusing fine particles (Z) is excellent in the heat resistance, mechanical properties, and molding processability of the light extraction film 10 and the refractive index difference is within the above-mentioned preferable range. The matrix resin (X) is preferably an acrylic resin because it is excellent in efficiency and normal luminance and can suppress the emission angle dependence of the emission light wavelength of the surface light emitter. Among these, the matrix resin (X ) Is an acrylic resin, the light diffusing fine particles (Z) are silicon oxide fine particles, the matrix resin (X) is an acrylic resin, the light diffusing fine particles (Z) are aluminum oxide fine particles, the matrix resin (X) is an acrylic resin, and the light diffusing fine particles (Z ) Is aluminum hydroxide fine particles, matrix resin (X) is acrylic resin, light diffusion fine particles (Z) are magnesium carbonate fine particles, matrix Light (X) is acrylic resin, light diffusing fine particles (Z) are acrylic resin fine particles, matrix resin (X) is acrylic resin, light diffusing fine particles (Z) are styrene resin fine particles, matrix resin (X) is light diffusing with acrylic resin Fine particles (Z) are silicone resin fine particles, matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are urethane resin fine particles, matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are melamine resin fine particles, matrix The resin (X) is an acrylic resin, the light diffusing fine particles (Z) are preferably epoxy resin fine particles, the matrix resin (X) is an acrylic resin, the light diffusing fine particles (Z) are acrylic resin fine particles, and the matrix resin (X) is an acrylic resin. Light diffusion fine particles (Z) are styrene resin fine particles and matrix resin (X) is acrylic resin for light expansion. Fine particles (Z) are silicone resin fine particles, matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are urethane resin fine particles, matrix resin (X) is acrylic resin and light diffusing fine particles (Z) are melamine resin fine particles, matrix The resin (X) is an acrylic resin, and the light diffusing fine particles (Z) are more preferably epoxy resin fine particles, the matrix resin (X) is an acrylic resin, the light diffusing fine particles (Z) are acrylic resin fine particles, and the matrix resin (X) is an acrylic resin. And the light diffusing fine particles (Z) are more preferably silicone resin fine particles.
 本発明の一つの側面としては、イオン液体(Y)が、アンモニウム系カチオン、イミダゾリウム系カチオン、ホスホニウム系カチオン、ピリジニウム系カチオン、ピロリジニウム系カチオン、ピロリニウム系カチオン、トリアゾニウム系カチオン等からなる群から選択される少なくとも1種であるカチオン、及びアミド系アニオン、サルフェート系アニオン、フォスフェート系アニオン等からなる群から選択される少なくとも1種であるアニオンを有するものであり;マトリックス樹脂(X)が、アクリル樹脂であり;光拡散微粒子(Z)が酸化ケイ素微粒子、酸化アルミニウム微粒子、水酸化アルミニウム微粒子、炭酸マグネシウム微粒子、アクリル樹脂微粒子、スチレン樹脂微粒子、シリコーン樹脂微粒子、ウレタン樹脂微粒子、メラミン樹脂微粒子、及びエポキシ樹脂微粒子からなる群から選択される少なくとも1種の微粒子である。 As one aspect of the present invention, the ionic liquid (Y) is selected from the group consisting of an ammonium cation, an imidazolium cation, a phosphonium cation, a pyridinium cation, a pyrrolidinium cation, a pyrrolium cation, a triazonium cation, and the like. And at least one anion selected from the group consisting of an amide-type anion, sulfate-type anion, phosphate-type anion and the like; and the matrix resin (X) is an acrylic resin Resin; light diffusion fine particles (Z) are silicon oxide fine particles, aluminum oxide fine particles, aluminum hydroxide fine particles, magnesium carbonate fine particles, acrylic resin fine particles, styrene resin fine particles, silicone resin fine particles, urethane resin fine particles, mela Down resin fine particles, and at least one kind of fine particles selected from the group consisting of epoxy resin particles.
 本発明の光取り出しフィルム10は、光取り出しフィルム10の構造安定性に優れ、面発光体の光取り出し効率や法線輝度に優れることから、凹凸構造層12とベース層13とを有することが好ましい。
 本発明の光取り出しフィルム10としては、例えば、図1に示すような凹凸構造11を有する凹凸構造層12とベース層13とを有する光取り出しフィルム10等が挙げられる。
The light extraction film 10 of the present invention preferably has the concavo-convex structure layer 12 and the base layer 13 because it is excellent in the structural stability of the light extraction film 10 and excellent in the light extraction efficiency and normal luminance of the surface light emitter. .
Examples of the light extraction film 10 of the present invention include a light extraction film 10 having a concavo-convex structure layer 12 having a concavo-convex structure 11 and a base layer 13 as shown in FIG.
 (凹凸構造層12)
 凹凸構造層12は、凹凸構造11を有する。
 面発光体の光取り出し効率や法線輝度に優れることから、凹凸構造11を設けることが好ましい。
 凹凸構造11は、突起であってもよく、窪みであってもよく、突起と窪みが混在してもよいが、光学フィルム10の生産性に優れることから、突起が好ましい。
(Uneven structure layer 12)
The uneven structure layer 12 has an uneven structure 11.
It is preferable to provide the concavo-convex structure 11 because it is excellent in light extraction efficiency and normal luminance of the surface light emitter.
The concavo-convex structure 11 may be a protrusion or a depression, and the protrusion and the depression may be mixed, but the protrusion is preferable because the productivity of the optical film 10 is excellent.
 凹凸構造11の形状としては、例えば、球欠形状、球欠台形状、楕円体球欠形状(回転楕円体を1つの平面で切り取った形状)、楕円体球欠台形状(回転楕円体を互いに平行な2つの平面で切り取った形状)、角錐形状、角錐台形状、円錐形状、円錐台形状、これらに関連する屋根型形状(球欠形状、球欠台形状、楕円体球欠形状、楕円体球欠台形状、角錐形状、角錐台形状、円錐形状又は円錐台形状が底面部に沿って伸長したような形状)等が挙げられる。これらの凹凸構造11の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凹凸構造11の形状の中でも、面発光体の光取り出し効率や法線輝度に優れることから、球欠形状、球欠台形状、楕円体球欠形状、楕円体球欠台形状、角錐形状、角錐台形状が好ましく、球欠形状、楕円体球欠形状、角錐形状がより好ましく、球欠形状、楕円体球欠形状が更に好ましい。
 本明細書中の各形状は、厳密にその形状でなくてもよく、酷似した形状も含むものとする。
As the shape of the concavo-convex structure 11, for example, a sphere shape, a sphere shape, an ellipsoid sphere shape (a shape obtained by cutting a spheroid on one plane), and an ellipsoid sphere shape (a spheroid is mutually connected). Shape cut by two parallel planes), pyramid shape, truncated pyramid shape, cone shape, truncated cone shape, and related roof shape (spherical shape, spherical truncated shape, ellipsoidal spherical shape, elliptical shape) And a truncated cone shape, a pyramid shape, a truncated pyramid shape, a cone shape, or a shape in which a truncated cone shape extends along the bottom surface portion). These concavo-convex structures 11 may be used alone or in combination of two or more. Among these shapes of the concavo-convex structure 11, the surface light emitter is excellent in light extraction efficiency and normal luminance, so that it has a spherical notch shape, a spherical notch shape, an ellipsoidal spherical notch shape, an ellipsoidal spherical notch shape, and a pyramid shape. Further, a truncated pyramid shape is preferable, a spherical notch shape, an ellipsoidal spherical shape, and a pyramidal shape are more preferable, and a spherically truncated shape and an elliptical spherical shape are more preferable.
Each shape in this specification does not need to be exactly that shape, and includes shapes that are very similar.
 凹凸構造11の配置例を、図2A~2Fに示す。
 凹凸構造11の配置としては、例えば、六方配列(図2A)、矩形配列(図2B)、菱形配列(図2C)、直線状配列(図2D)、円状配列(図2E)、ランダム配置(図2F)等が挙げられる。六方配列とは、六角形の各頂点及び中点に凹凸構造11が配置され、該六角形の配置が連続的に配列されることを示す。矩形配列とは、矩形の各頂点に凹凸構造11が配置され、該矩形の配置が連続的に配列されることを示す。菱形配列とは、菱形の各頂点に凹凸構造11が配置され、該菱形の配置が連続的に配列されることを示す。直線状配列とは、直線状に凹凸構造11が配置されることを示す。円状配列とは、円に沿って凹凸構造11が配置されることを示す。ランダム配置とは凹凸構造11が不規則に配置されることを示す。これらの凹凸構造11の配置の中でも、面発光体の光取り出し効率や法線輝度に優れることから、六方配列、矩形配列、菱形配列が好ましく、六方配列、矩形配列がより好ましい。
Examples of the arrangement of the concavo-convex structure 11 are shown in FIGS. 2A to 2F.
As the arrangement of the concavo-convex structure 11, for example, a hexagonal arrangement (FIG. 2A), a rectangular arrangement (FIG. 2B), a rhombic arrangement (FIG. 2C), a linear arrangement (FIG. 2D), a circular arrangement (FIG. 2E), a random arrangement ( FIG. 2F) and the like. The hexagonal arrangement means that the concavo-convex structure 11 is arranged at each vertex and middle point of the hexagon, and the arrangement of the hexagon is continuously arranged. The rectangular arrangement means that the concavo-convex structure 11 is arranged at each vertex of the rectangle, and the arrangement of the rectangle is continuously arranged. The rhombus arrangement indicates that the concavo-convex structure 11 is arranged at each apex of the rhombus and the arrangement of the rhombus is continuously arranged. The linear arrangement indicates that the concavo-convex structure 11 is arranged linearly. The circular arrangement indicates that the concavo-convex structure 11 is arranged along a circle. Random arrangement indicates that the uneven structure 11 is irregularly arranged. Among these arrangements of the concavo-convex structure 11, a hexagonal arrangement, a rectangular arrangement, and a rhombus arrangement are preferable, and a hexagonal arrangement and a rectangular arrangement are more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
 凹凸構造11の一例を、図3A及びBに示す。
 凹凸構造11の底面部14とは、凹凸構造11の底部(ベース層13を有する場合は、ベース層13との接面)の外周縁により囲まれる仮想的な面状部分をいう。
 また、凹凸構造11の底面部14の最長径Lとは、凹凸構造11の底面部14における最も長い部分の長さをいい、凹凸構造11の底面部14の平均最長径Laveは、光取り出しフィルム10の凹凸構造11を有する表面を走査型顕微鏡にて撮影し、凹凸構造11の底面部14の最長径Aを5箇所測定し、その平均値とする。
 更に、凹凸構造11の高さHとは、突起構造の場合は凹凸構造11の底面部14から最も高い部位までの高さをいい、窪み構造の場合は凹凸構造11の底面部14から最も低い部位までの高さをいい、凹凸構造11の平均高さHaveは、光取り出しフィルム10の断面を走査型顕微鏡にて撮影し、凹凸構造11の最も高い部位の高さBを5箇所測定し、その平均値とする。
An example of the concavo-convex structure 11 is shown in FIGS.
The bottom surface portion 14 of the concavo-convex structure 11 refers to a virtual planar portion surrounded by the outer peripheral edge of the bottom portion of the concavo-convex structure 11 (or the contact surface with the base layer 13 when the base layer 13 is provided).
Further, the longest diameter L of the bottom surface portion 14 of the concavo-convex structure 11 is the length of the longest portion of the bottom surface portion 14 of the concavo-convex structure 11, and the average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11 is the light extraction The surface having the concavo-convex structure 11 of the film 10 is photographed with a scanning microscope, and the longest diameter A of the bottom surface portion 14 of the concavo-convex structure 11 is measured at five locations to obtain an average value.
Furthermore, the height H of the concavo-convex structure 11 means the height from the bottom surface portion 14 of the concavo-convex structure 11 to the highest portion in the case of the protrusion structure, and the lowest from the bottom surface portion 14 of the concavo-convex structure 11 in the case of the depression structure. The average height H ave of the concavo-convex structure 11 is obtained by photographing the cross section of the light extraction film 10 with a scanning microscope and measuring the height B of the highest part of the concavo-convex structure 11 at five locations. And the average value.
 凹凸構造11の底面部14の平均最長径Laveは、面発光体の光取り出し効率や法線輝度に優れることから、2μm~200μmが好ましく、6μm~150μmがより好ましく、10μm~100μmが更に好ましい。 The average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11 is preferably 2 μm to 200 μm, more preferably 6 μm to 150 μm, and even more preferably 10 μm to 100 μm, because of the excellent light extraction efficiency and normal luminance of the surface light emitter. .
 凹凸構造11の平均高さHaveは、面発光体の光取り出し効率や法線輝度に優れることから、1μm~100μmが好ましく、3μm~75μmがより好ましく、5μm~50μmが更に好ましい。 The average height H ave of the concavo-convex structure 11 is preferably 1 μm to 100 μm, more preferably 3 μm to 75 μm, and even more preferably 5 μm to 50 μm, because of excellent light extraction efficiency and normal luminance of the surface light emitter.
 凹凸構造11のアスペクト比は、面発光体の光取り出し効率や法線輝度に優れることから、0.3~1.4が好ましく、0.35~1.3がより好ましく、0.4~1.0が更に好ましい。
 凹凸構造11のアスペクト比は、凹凸構造14の平均高さHave/凹凸構造11の底面部14の平均最長径Laveから算出した値とする。
The aspect ratio of the concavo-convex structure 11 is preferably 0.3 to 1.4, more preferably 0.35 to 1.3, and more preferably 0.4 to 1 because of excellent light extraction efficiency and normal luminance of the surface light emitter. 0.0 is more preferable.
The aspect ratio of the concavo-convex structure 11 is a value calculated from the average height H ave of the concavo-convex structure 14 / average longest diameter L ave of the bottom surface portion 14 of the concavo-convex structure 11.
 凹凸構造11の底面部14の形状としては、例えば、三角形、四角形等の多角形;真円形、楕円形等の円形;不定形等が挙げられる。これらの凹凸構造11の底面部14の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凹凸構造11の底面部14の形状の中でも、面発光体の光取り出し効率や法線輝度に優れることから、多角形、円形が好ましく、円形がより好ましい。 Examples of the shape of the bottom surface portion 14 of the concavo-convex structure 11 include a polygon such as a triangle and a quadrangle; a circle such as a perfect circle and an ellipse; and an indefinite shape. As the shape of the bottom surface portion 14 of these concavo-convex structures 11, one type may be used alone, or two or more types may be used in combination. Among these shapes of the bottom surface portion 14 of the concavo-convex structure 11, a polygon and a circle are preferable, and a circle is more preferable because of excellent light extraction efficiency and normal luminance of the surface light emitter.
 上方から見た光取り出しフィルムの一例を、図4に示す。
 光取り出しフィルム10の面積(図4でいう実線で囲まれた面積)に対する凹凸構造11の底面部14の面積(図4でいう点線で囲まれた面積)が占める割合は、面発光体の光取り出し効率や法線輝度に優れることから、20%~99%が好ましく、25%~95%がより好ましく、30%~93%が更に好ましい。
 凹凸構造11の底面部14がすべて同一の大きさの円形である場合、光取り出しフィルム10の面積に対する凹凸構造11の底面部14の面積の割合の最大値は、91%程度となる。
An example of the light extraction film viewed from above is shown in FIG.
The ratio of the area of the bottom surface portion 14 of the concavo-convex structure 11 (the area surrounded by the dotted line in FIG. 4) to the area of the light extraction film 10 (the area surrounded by the solid line in FIG. 4) is the light of the surface light emitter. 20% to 99% is preferable, 25% to 95% is more preferable, and 30% to 93% is still more preferable because of excellent extraction efficiency and normal luminance.
When the bottom surface portions 14 of the concavo-convex structure 11 are all circular with the same size, the maximum value of the ratio of the area of the bottom surface portion 14 of the concavo-convex structure 11 to the area of the light extraction film 10 is about 91%.
 (ベース層13)
 凹凸構造層12の凹凸構造11を支持することから、ベース層13を設けることが好ましい。
(Base layer 13)
Since the uneven structure 11 of the uneven structure layer 12 is supported, the base layer 13 is preferably provided.
 ベース層13の厚さは、光取り出しフィルム10の柔軟性、後述する基材15との密着性に優れることから、3μm~60μmが好ましく、5μm~50μmがより好ましい。
 ベース層13の厚さは、光取り出しフィルム10の断面を走査型顕微鏡にて撮影し、ベース層13の高さを5箇所測定し、その平均値とする。
The thickness of the base layer 13 is preferably 3 μm to 60 μm, and more preferably 5 μm to 50 μm, because the light extraction film 10 is excellent in flexibility and adhesion to the substrate 15 described later.
The thickness of the base layer 13 is obtained by taking a cross-section of the light extraction film 10 with a scanning microscope, measuring the height of the base layer 13 at five locations, and taking the average value.
 凹凸構造層12とベース層13は、材料組成が同一であってもよく異なってもよいが、光取り出しフィルム10の生産性に優れることから、材料組成が同一であることが好ましい。 The concavo-convex structure layer 12 and the base layer 13 may have the same or different material composition, but since the productivity of the light extraction film 10 is excellent, the material composition is preferably the same.
 光取り出しフィルム10の表面抵抗率は、1×1014Ω/cm以下が好ましく、1×10Ω/cm~1×1013Ω/cmが好ましい。光取り出しフィルム10の表面抵抗率が1×1014Ω/cm以下であると、光取り出しフィルム10の帯電防止性に優れる。
 光取り出しフィルム10の表面抵抗率は、高抵抗率計を用い、温度23℃、相対湿度50%RHの環境下、印加電圧500V、測定時間60秒で測定した値とする。
The surface resistivity of the light extraction film 10 is preferably 1 × 10 14 Ω / cm 2 or less, and preferably 1 × 10 9 Ω / cm 2 to 1 × 10 13 Ω / cm 2 . When the surface resistivity of the light extraction film 10 is 1 × 10 14 Ω / cm 2 or less, the antistatic property of the light extraction film 10 is excellent.
The surface resistivity of the light extraction film 10 is a value measured using a high resistivity meter at an applied voltage of 500 V and a measurement time of 60 seconds in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH.
 光取り出しフィルム10の電荷減衰時間は、10秒以下が好ましく、0.1秒~5秒がより好ましい。光取り出しフィルム10の電荷減衰時間が10秒以下であると、光取り出しフィルム10の帯電防止性に優れる。
 光取り出しフィルム10の電荷減衰時間は、帯電電荷減衰度測定器を用い、温度23℃、相対湿度50%RHの環境下、印加電圧10kVで測定した電荷が1/2に減衰するまでの時間とする。
The charge decay time of the light extraction film 10 is preferably 10 seconds or less, and more preferably from 0.1 second to 5 seconds. When the charge decay time of the light extraction film 10 is 10 seconds or less, the antistatic property of the light extraction film 10 is excellent.
The charge decay time of the light extraction film 10 is the time until the charge measured at an applied voltage of 10 kV is attenuated to 1/2 in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH using a charged charge decay rate measuring device. To do.
 (基材21)
 光取り出しフィルム10の光入射面側(すなわち、光取り出しフィルム10がベース層13を有しないときは、凹凸層12の底部側;光取り出しフィルム10がベース層13を有するときは、ベース層13の凹凸層12が存在する側とは反対の側)に、光取り出しフィルム10の形状を保つために、基材21を設けてもよい。
(Substrate 21)
On the light incident surface side of the light extraction film 10 (that is, when the light extraction film 10 does not have the base layer 13, the bottom side of the concavo-convex layer 12; when the light extraction film 10 has the base layer 13, In order to keep the shape of the light extraction film 10 on the side opposite to the side where the uneven layer 12 is present, a base material 21 may be provided.
 基材21は、活性エネルギー線硬化性組成物の硬化性に優れることから、活性エネルギー線を透過する基材が好ましい。 Since the base material 21 is excellent in curability of the active energy ray-curable composition, a base material that transmits the active energy ray is preferable.
 基材21の材料としては、例えば、アクリル樹脂;ポリカーボネート樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン、ABS樹脂等のスチレン樹脂;塩化ビニル樹脂;ジアセチルセルロース、トリアセチルセルロース等のセルロース樹脂;ポリイミド、ポリイミドアミド等のイミド樹脂;ガラス;金属が挙げられる。これらの基材21の材料の中でも、柔軟性に優れ、活性エネルギー線の透過性に優れることから、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、スチレン樹脂、セルロース樹脂、イミド樹脂が好ましく、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、イミド樹脂がより好ましい。 Examples of the material of the base material 21 include acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; styrene resin such as polystyrene and ABS resin; vinyl chloride resin; diacetyl cellulose, triacetyl cellulose. Cellulose resins such as: Imide resins such as polyimide and polyimideamide; Glass; Metals. Among these materials of the base material 21, acrylic resin, polycarbonate resin, polyester resin, styrene resin, cellulose resin, and imide resin are preferable because of excellent flexibility and active energy ray permeability. Acrylic resin, polycarbonate Resins, polyester resins, and imide resins are more preferable.
 基材21の厚さは、光取り出しフィルム10の取り扱い性に優れ、活性エネルギー線硬化組成物の硬化性に優れることから、10μm~1000μmが好ましく、20μm~500μmがより好ましく、25μm~300μmが更に好ましい。
 基材の厚さは基材21の断面を走査型顕微鏡にて撮影し、厚さを5箇所測定し、その平均値とする。
The thickness of the substrate 21 is preferably 10 μm to 1000 μm, more preferably 20 μm to 500 μm, and even more preferably 25 μm to 300 μm, because the light extraction film 10 is excellent in handleability and excellent in the curability of the active energy ray curable composition. preferable.
As for the thickness of the base material, a cross section of the base material 21 is photographed with a scanning microscope, the thickness is measured at five locations, and the average value is obtained.
 基材21は、光取り出しフィルム10との密着性を向上させるため、必要に応じて、基材21の表面に易接着処理を施してもよい。
 易接着処理の方法としては、例えば、基材21の表面にポリエステル樹脂、アクリル樹脂、ウレタン樹脂等からなる易接着層を形成する方法、基材21の表面を粗面化処理する方法等が挙げられる。
The base material 21 may be subjected to an easy adhesion treatment on the surface of the base material 21 as necessary in order to improve the adhesion with the light extraction film 10.
Examples of the easy-adhesion treatment method include a method of forming an easy-adhesion layer made of polyester resin, acrylic resin, urethane resin, or the like on the surface of the base material 21, a method of roughening the surface of the base material 21, and the like. It is done.
 基材21は、易接着処理以外にも、必要に応じて、帯電防止、反射防止、基材同士の密着防止等の表面処理を施してもよい。 The substrate 21 may be subjected to surface treatments such as antistatic, antireflection, and adhesion prevention between the substrates as required, in addition to the easy adhesion treatment.
 (粘着層22)
 光取り出しフィルム10の光入射面側に、EL素子30へ接着するため、粘着層22を設けてもよい。基材21を有する場合には、光取り出しフィルム10と接する面とは反対側の基材21の表面に粘着層22を設ければよい。
 粘着層22としては、例えば、公知の粘着剤を用いた層等が挙げられる。
(Adhesive layer 22)
In order to adhere to the EL element 30 on the light incident surface side of the light extraction film 10, an adhesive layer 22 may be provided. When the substrate 21 is provided, the adhesive layer 22 may be provided on the surface of the substrate 21 opposite to the surface in contact with the light extraction film 10.
Examples of the adhesive layer 22 include a layer using a known adhesive.
 (保護フィルム23)
 光取り出しフィルム10の光入射面側や光出射面側(即ち凹凸層12側)に、光取り出しフィルム10の取り扱い性を高めるため、保護フィルム23を設けてもよい。保護フィルム23は、EL素子30の表面に光取り出しフィルム10等を貼ったり、面発光体として用いたりする際に、光取り出しフィルム10等から剥がせばよい。
 保護フィルム23としては、例えば、公知の保護フィルム等が挙げられる。例えば、素材としてはポリエチレン、ポリプロピレン、ポリオレフィン、ポリエステル等が挙げられる。
(Protective film 23)
In order to improve the handleability of the light extraction film 10 on the light incident surface side or the light emission surface side (that is, the uneven layer 12 side) of the light extraction film 10, a protective film 23 may be provided. The protective film 23 may be peeled off from the light extraction film 10 or the like when the light extraction film 10 or the like is attached to the surface of the EL element 30 or used as a surface light emitter.
Examples of the protective film 23 include known protective films. For example, examples of the material include polyethylene, polypropylene, polyolefin, and polyester.
 (光取り出しフィルム10の製造方法)
 本発明の光取り出しフィルム10の製造方法としては、例えば、図5に示す装置50を用いる方法等が挙げられる。
 本発明の光取り出しフィルム10の製造方法は、取り出しフィルム10を連続的に生産できることから、図5に示す装置50を用いる方法が好ましい。
(Method for producing light extraction film 10)
As a manufacturing method of the light extraction film 10 of this invention, the method of using the apparatus 50 shown in FIG. 5 etc. are mentioned, for example.
The method for producing the light extraction film 10 of the present invention is preferably a method using the apparatus 50 shown in FIG. 5 because the extraction film 10 can be continuously produced.
 光取り出し層11を構成するための活性エネルギー線硬化性組成物、イオン液体(Y)、必要に応じて、光拡散微粒子(Z)、他の添加剤を所望の配合量にて混合し、得られた混合物51を貯蔵タンク55に予め入れておく。
 円筒形のロール型52とゴム製のニップロール53との間に、基材21を導入する。この状態で、回転するロール型52と基材21との間に、タンク55から先端にノズルを取り付けた配管56を通して、混合物51を供給する。
 回転するロール型52と基材21との間に挟まれた混合物51は、活性エネルギー線照射装置54付近で活性エネルギー線により硬化される。得られた硬化物をロール型52から離型することで、基材21を有する光取り出しフィルム10が得られる。
The active energy ray-curable composition for constituting the light extraction layer 11, the ionic liquid (Y), if necessary, the light diffusing fine particles (Z), and other additives are mixed in a desired blending amount to obtain The obtained mixture 51 is put in the storage tank 55 in advance.
The substrate 21 is introduced between the cylindrical roll mold 52 and the rubber nip roll 53. In this state, the mixture 51 is supplied between the rotating roll mold 52 and the base material 21 through a pipe 56 having a nozzle attached to the tip from the tank 55.
The mixture 51 sandwiched between the rotating roll mold 52 and the substrate 21 is cured by active energy rays in the vicinity of the active energy ray irradiation device 54. By removing the obtained cured product from the roll mold 52, the light extraction film 10 having the substrate 21 is obtained.
 混合物51の粘度は、光取り出しフィルム10の製造時の取り扱い性に優れることから、10mPa・s~3000mPa・sが好ましく、20mPa・s~2500mPa・sがより好ましく、30mPa・s~2000mPa・sが更に好ましい。
 ここで粘度は、B型粘度計を用いて、混合物51中で円盤または円筒を回転させたとき、円盤または円筒に働く粘性抵抗トルクを測定することで決定できる。
The viscosity of the mixture 51 is preferably 10 mPa · s to 3000 mPa · s, more preferably 20 mPa · s to 2500 mPa · s, and more preferably 30 mPa · s to 2000 mPa · s, since it is excellent in handleability during the production of the light extraction film 10. Further preferred.
Here, the viscosity can be determined by measuring a viscous resistance torque acting on the disk or cylinder when the disk or cylinder is rotated in the mixture 51 using a B-type viscometer.
 混合物51中の活性エネルギー線硬化性組成物の含有量は、混合物51の総質量に対し、55~98質量%であることが好ましく、59~95質量%であることがより好ましい。 The content of the active energy ray-curable composition in the mixture 51 is preferably 55 to 98% by mass, and more preferably 59 to 95% by mass with respect to the total mass of the mixture 51.
 ロール型52としては、例えば、アルミニウム、黄銅、鋼等の金型;シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ABS樹脂、フッ素樹脂、ポリメチルペンテン樹脂等の樹脂型;樹脂にめっきを施した型;樹脂に各種金属粉を混合した材料で作製した型等が挙げられる。これらのロール型52の中でも、耐熱性や機械強度に優れ、連続生産に適していることから、金型が好ましい。具体的には、金型は、重合発熱に強い、変形しにくい、傷が付きにくい、温度制御が可能である、精密成形に適している等の多くの点で好ましい。 Examples of the roll mold 52 include molds such as aluminum, brass, and steel; resin molds such as silicone resin, urethane resin, epoxy resin, ABS resin, fluororesin, and polymethylpentene resin; molds obtained by plating the resin; Examples include a mold made of a material obtained by mixing various metal powders with a resin. Among these roll molds 52, a mold is preferable because of excellent heat resistance and mechanical strength and suitable for continuous production. Specifically, the mold is preferable in many respects such as being resistant to polymerization heat generation, hardly deforming, hardly scratched, temperature controllable, and suitable for precision molding.
 型の転写面(転写部)の製造方法としては、例えば、ダイヤモンドバイトによる切削、国際公開2008/069324号パンフレットに記載されるようなエッチング等が挙げられる。これらの転写面の製造方法の中でも、曲面を有する窪みを形成するのに容易であることから、国際公開2008/069324号パンフレットに記載されるようなエッチングが好ましい。
 また、転写面の製造方法としては、転写面の窪みと反転した突起を有するマスター型から、電鋳法を用いて作製した金属薄膜をロール芯部材に巻きつけて、円筒形のロール型52を製造する方法を用いることができる。
Examples of the method for producing the transfer surface (transfer portion) of the mold include cutting with a diamond tool, etching as described in International Publication No. 2008/069324 pamphlet, and the like. Among these methods for producing a transfer surface, etching as described in International Publication No. 2008/069324 is preferable because it is easy to form a depression having a curved surface.
In addition, as a method for manufacturing the transfer surface, a cylindrical thin film mold 52 is formed by winding a metal thin film produced by electroforming from a master mold having a depression on the transfer surface and an inverted projection, around a roll core member. Manufacturing methods can be used.
 ロール型52の内部又は外部には、表面温度を維持するために、必要に応じて、シーズヒータや温水ジャケット等の熱源設備を設けてもよい。
 活性エネルギー線照射装置54から発生する活性エネルギー線としては、例えば、紫外線、電子線、X線、赤外線、可視光線等が挙げられる。これらの活性エネルギー線の中でも、活性エネルギー線硬化性組成物の硬化性に優れ、光取り出しフィルム10の劣化を抑制することができることから、紫外線、電子線が好ましく、紫外線がより好ましい。
In order to maintain the surface temperature, heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the roll mold 52 as necessary.
Examples of the active energy ray generated from the active energy ray irradiation device 54 include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because they are excellent in curability of the active energy ray curable composition and can suppress deterioration of the light extraction film 10.
 活性エネルギー線照射装置54の活性エネルギー線の発光光源としては、例えば、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、無電極紫外線ランプ、可視光ハロゲンランプ、キセノンランプ等が挙げられる。
 活性エネルギー線照射装置54の活性エネルギー線の積算光量は、活性エネルギー線硬化性組成物の硬化性に優れ、光取り出しフィルム10の劣化を抑制することができることから、0.01J/cm~10J/cmが好ましく、0.5J/cm~8J/cmがより好ましい。
 タンク55の内部又は外部には、混合物51の保管温度を維持するために、必要に応じて、シーズヒータや温水ジャケット等の熱源設備を設けてもよい。
Examples of the active energy ray light source of the active energy ray irradiation device 54 include a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, an electrodeless ultraviolet lamp, a visible light halogen lamp, and a xenon lamp.
The integrated light amount of the active energy ray of the active energy ray irradiation device 54 is excellent in curability of the active energy ray curable composition and can suppress the deterioration of the light extraction film 10. Therefore, 0.01 J / cm 2 to 10 J / Cm 2 is preferable, and 0.5 J / cm 2 to 8 J / cm 2 is more preferable.
In order to maintain the storage temperature of the mixture 51, heat source equipment such as a sheathed heater or a hot water jacket may be provided inside or outside the tank 55 as necessary.
 (面発光体)
 本発明の面発光体は、本発明の光取り出しフィルム10及びEL素子30を含む。本発明の面発光体は、粘着層、及び基材を有していてもよい。
 本発明の面発光体としては、例えば、図6に示す面発光体等が挙げられる。
 図6に示す面発光体は、ガラス基板31、陽極32、発光層33、陰極34が順次積層されたEL素子30のガラス基板31の表面に、粘着層22、基材21を介して、光取り出しフィルム10が積層されている。
(Surface emitter)
The surface light emitter of the present invention includes the light extraction film 10 and the EL element 30 of the present invention. The surface light emitter of the present invention may have an adhesive layer and a substrate.
Examples of the surface light emitter of the present invention include a surface light emitter shown in FIG.
The surface light emitter shown in FIG. 6 is formed on the surface of the glass substrate 31 of the EL element 30 on which the glass substrate 31, the anode 32, the light emitting layer 33, and the cathode 34 are sequentially laminated, through the adhesive layer 22 and the base material 21. A take-out film 10 is laminated.
 本発明の面発光体は、本発明の光取り出しフィルムを含むことから、光取り出し効率や法線輝度に優れ、出射光波長の出射角度依存性を抑制し、帯電防止性に優れる。
 そのため、本発明の面発光体は、例えば、照明、ディスプレイ、スクリーン等に好適に用いることができる。
Since the surface light emitter of the present invention includes the light extraction film of the present invention, it has excellent light extraction efficiency and normal luminance, suppresses the emission angle dependency of the emission light wavelength, and is excellent in antistatic properties.
Therefore, the surface light emitter of the present invention can be suitably used for, for example, illumination, a display, a screen, and the like.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 尚、実施例中の「部」及び「%」は、「質量部」及び「質量%」を示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
In the examples, “parts” and “%” indicate “parts by mass” and “% by mass”.
 (sp値の測定(濁点滴定法))
 製造例1で得られたマトリックス樹脂(X)や実施例・比較例で用いたイオン液体(Y)は、例えばK.W.Suh, J.M.Corbett: J. Apply Polym.Sci., 12〔10〕,p.2359-2370 (1968)に記載の方法で実験的に求めることができる。それぞれの試料を10mLのテトラヒドロフランに溶解した溶液を、n-ヘキサンと脱イオン水のそれぞれを用いて濁点まで滴定した。
ml 1/2(δ-δml)=Vmh 1/2(δmh-δ
ml、Vmh:それぞれsp値の低い貧溶媒と高い貧溶媒の体積
δml、δmh:それぞれsp値の低い貧溶媒と高い貧溶媒のsp値
δ:高分子のsp値
式を変形して、次の式からsp値を算出した。
δ=(Vml 1/2・δml+Vmh 1/2・δmh)/(Vml 1/2+Vmh 1/2
各々のsp値を算出し、マトリックス樹脂(X)と実施例・比較例で用いたイオン液体(Y)のsp値の差の絶対値を算出した。
(Measurement of sp value (turbidity titration method))
The matrix resin (X) obtained in Production Example 1 and the ionic liquid (Y) used in Examples and Comparative Examples are, for example, K.I. W. Suh, J .; M.M. Corbett: J.M. Apply Polym. Sci. , 12 [10], p. 2359-2370 (1968). A solution in which each sample was dissolved in 10 mL of tetrahydrofuran was titrated to the cloud point using each of n-hexane and deionized water.
V ml 1/23 −δ ml ) = V mh 1/2mh −δ 3 )
V ml , V mh : Volume of poor solvent with low sp value and high poor solvent, respectively δ ml , δ mh : Sp value of poor solvent with low sp value, and high poor solvent δ 3 : Modified sp value formula of polymer Then, the sp value was calculated from the following equation.
δ 3 = (V ml 1/2 · δ ml + V mh 1/2 · δ mh ) / (V ml 1/2 + V mh 1/2 )
Each sp value was calculated, and the absolute value of the difference between the sp values of the matrix resin (X) and the ionic liquid (Y) used in the examples and comparative examples was calculated.
 (表面抵抗率の測定)
 実施例・比較例で得られた混合物を、2つのポリエチレンテレフタレート基材(商品名「コスモシャインA4100」、東洋紡(株)製、厚さ188μm)の間に供給し、硬化物の厚さが25μmになるようにニップロールで均一に伸ばした。その後、基材の上から紫外線を照射し、基材に挟まれた混合物を硬化させ、一方の基材を剥離し、測定サンプルを得た。
 得られた測定サンプルについて、高抵抗率計(機種名「ハイレスタUP」、三菱化学(株)製)を用いて、表面抵抗率を測定した。測定条件は、温度23℃、相対湿度50%RHの環境下、URSプローブを用い、印加電圧500V、測定時間60秒とした。
 尚、表面抵抗率が低いということは、表面導電率が高いことを意味し、帯電防止性に優れることが期待される。
(Measurement of surface resistivity)
The mixture obtained in Examples and Comparative Examples was supplied between two polyethylene terephthalate substrates (trade name “Cosmo Shine A4100”, manufactured by Toyobo Co., Ltd., thickness 188 μm), and the thickness of the cured product was 25 μm. It was uniformly stretched with a nip roll. Then, the ultraviolet-ray was irradiated from the base material, the mixture pinched | interposed into the base material was hardened, one base material was peeled, and the measurement sample was obtained.
About the obtained measurement sample, surface resistivity was measured using the high resistivity meter (model name "Hiresta UP", Mitsubishi Chemical Corporation make). The measurement conditions were an environment with a temperature of 23 ° C. and a relative humidity of 50% RH, using a URS probe, with an applied voltage of 500 V and a measurement time of 60 seconds.
Note that the low surface resistivity means that the surface conductivity is high, and it is expected to have excellent antistatic properties.
 (電荷減衰時間の測定)
 表面抵抗率の測定と同様、測定サンプルを得た。
 得られた測定サンプルについて、帯電電荷減衰度測定器(機種名「スタティック オネストメータ H-100」、シシド静電気(株))を用いて、電荷減衰時間を測定した。測定条件は、温度23℃、相対湿度50%RHの環境下、印加電圧10kVとし、電圧が飽和値到達後に電圧を開放し、電荷が1/2に減衰するまでの時間を、電荷減衰時間とした。電圧の飽和値は、装置のスペックにより、最大3.0kVである。
 尚、電荷減衰時間が短いということは、帯電した電荷を放散させやすいことを意味し、帯電防止性に優れることが期待される。
(Measurement of charge decay time)
Similar to the measurement of surface resistivity, a measurement sample was obtained.
With respect to the obtained measurement sample, the charge decay time was measured using a charged charge decay rate measuring device (model name “Static Honestometer H-100”, Shishido Static Co., Ltd.). The measurement conditions were an applied voltage of 10 kV in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH, and the time until the voltage was released after the voltage reached the saturation value and the charge decayed to 1/2 was defined as the charge decay time. did. The voltage saturation value is a maximum of 3.0 kV depending on the specifications of the apparatus.
The short charge decay time means that the charged charge is easily dissipated and is expected to be excellent in antistatic properties.
(密着性評価)
表面抵抗率の測定と同様、測定サンプルを得た。
得られた測定サンプルについて、高温高湿環境下で保管後に、密着性評価を実施した。高温高湿条件は、温度85℃、相対湿度85%RHの環境下、1週間とした。試験終了後のサンプルは、JIS K5600に準拠して密着性評価を実施した。
(Adhesion evaluation)
Similar to the measurement of surface resistivity, a measurement sample was obtained.
About the obtained measurement sample, adhesiveness evaluation was implemented after storage in a high-temperature, high-humidity environment. The high temperature and high humidity conditions were one week in an environment of a temperature of 85 ° C. and a relative humidity of 85% RH. The sample after the test was subjected to adhesion evaluation according to JIS K5600.
 (光取り出し効率の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置し、これを、積分球(ラブスフェア社製、大きさ6インチ)のサンプル開口部に配置した。この状態で、有機EL素子に10mAの電流を通電して点灯した時の、遮光シートの直径10mmの穴から出射する光を、分光計測器(分光器:機種名「PMA-12」(浜松フォトニクス社製)、ソフトウェア:ソフト名「PMA用基本ソフトウェアU6039-01ver.3.3.1」)にて測定し、標準視感度曲線による補正を行って、面発光体の光子数を算出した。
 参考例で得られた面発光体の光子数を100%としたときの、実施例・比較例で得られた面発光体の光子数の割合を、光取り出し効率とした。
(Measurement of light extraction efficiency)
On the surface light emitters obtained in the examples, comparative examples, and reference examples, a light shielding sheet having a diameter of 10 mm and a hole having a diameter of 10 mm was disposed, and this was integrated with an integrating sphere (manufactured by Labsphere, size 6). Inch) at the sample opening. In this state, when the organic EL element is turned on by supplying a current of 10 mA, the light emitted from the hole with a diameter of 10 mm of the light shielding sheet is converted into a spectroscopic measuring instrument (spectrometer: model name “PMA-12” (Hamamatsu Photonics). ), Software: software name “PMA basic software U6039-01 ver. 3.3.1”), correction was performed using a standard visibility curve, and the number of photons of the surface light emitter was calculated.
The ratio of the number of photons of the surface light emitters obtained in Examples and Comparative Examples when the number of photons of the surface light emitter obtained in the reference example was 100% was defined as the light extraction efficiency.
 (法線輝度の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置した。この状態で、有機EL素子に1.5Aの電流を通電した点灯した時の、遮光シートの直径10mmの穴から出射する光を、輝度計(機種名「BM-7」、トプコン社製)にて、面発光体の法線方向から測定し、面発光体の輝度値を得た。
 参考例で得られた面発光体の輝度値を100%としたときの、実施例・比較例で得られた面発光体の輝度値の割合を、法線輝度とした。
(Measurement of normal brightness)
A light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples. In this state, the light emitted from the hole with a diameter of 10 mm of the light shielding sheet when the organic EL element is turned on with a current of 1.5 A is supplied to the luminance meter (model name “BM-7”, manufactured by Topcon Corporation). The luminance value of the surface light emitter was obtained by measuring from the normal direction of the surface light emitter.
The ratio of the luminance values of the surface light emitters obtained in Examples and Comparative Examples when the luminance value of the surface light emitter obtained in the reference example was 100% was defined as normal luminance.
 (色度変化量の測定)
 実施例・比較例・参考例で得られた面発光体上に、直径10mmの穴の空いた厚さ0.1mmの遮光シートを配置した。この状態で、EL素子に1.5Aの電流を通電した点灯した時の、遮光シートの直径10mmの穴から出射する光を、輝度計(機種名「BM-7」、トプコン社製)にて、面発光体の法線方向(0°)、面発光体の法線方向から10°傾けた方向、面発光体の法線方向から20°傾けた方向、面発光体の法線方向から30°傾けた方向、面発光体の法線方向から40°傾けた方向、面発光体の法線方向から50°傾けた方向、面発光体の法線方向から60°傾けた方向、面発光体の法線方向から70°傾けた方向、面発光体の法線方向から75°傾けた方向、面発光体の法線方向から80°傾けた方向から、それぞれxy表色系の色度x、yを測定した。各角度のxの値及びxの平均値を横軸に、各角度のyの値及びyの平均値を縦軸にプロットし、x及びyの平均値をプロットした点から各角度のx及びyの値をプロットした点までの距離を算出し、その距離が最も長くなる時の値を色度変化量とした。
 尚、色度変化量が小さいほど、面発光体の出射光波長の出射角度依存性が抑制されたことを意味する。
(Measurement of chromaticity change)
A light-shielding sheet having a thickness of 0.1 mm with a hole having a diameter of 10 mm was disposed on the surface light emitters obtained in Examples, Comparative Examples, and Reference Examples. In this state, the light emitted from the hole with a diameter of 10 mm of the light shielding sheet when the EL element is turned on with a current of 1.5 A is emitted from a luminance meter (model name “BM-7”, manufactured by Topcon Corporation). The normal direction of the surface light emitter (0 °), the direction inclined by 10 ° from the normal direction of the surface light emitter, the direction inclined by 20 ° from the normal direction of the surface light emitter, and 30 from the normal direction of the surface light emitter. Direction tilted, direction tilted 40 ° from the normal direction of the surface light emitter, direction tilted 50 ° from the normal direction of the surface light emitter, direction tilted 60 ° from the normal direction of the surface light emitter, surface light emitter Chromaticity x of the xy color system, respectively, from a direction inclined by 70 ° from the normal direction, a direction inclined by 75 ° from the normal direction of the surface light emitter, and a direction inclined by 80 ° from the normal direction of the surface light emitter. y was measured. The x value and x average value of each angle are plotted on the horizontal axis, the y value and y average value of each angle are plotted on the vertical axis, and the x and y values of each angle are plotted from the point where the average values of x and y are plotted. The distance to the point where the value of y was plotted was calculated, and the value when the distance was the longest was taken as the chromaticity change amount.
The smaller the chromaticity change amount, the more the emission angle dependency of the emission light wavelength of the surface light emitter is suppressed.
 (材料)
 活性エネルギー線硬化性組成物A:後述する製造例1で製造した活性エネルギー線硬化性組成物(硬化物の屈折率1.52)
 イオン液体A:「アミノイオンAS100」(商品名、日本乳化剤(株)製、アルカノールアミンとグリコール硫酸エステルとの反応物)
 イオン液体B:「アミノイオンAS300」(商品名、日本乳化剤(株)製、アルカノールアミンとアルキルベンゼンスルホン酸との反応物)
 イオン液体C:「アミノイオンAS400」(商品名、日本乳化剤(株)製、アルカノールアミンとジアルキルサクシネートスルホン酸との反応物)
 イオン液体D:トリ-n-ブチルメチルアンモニウムビストリフルオロメタンスルホンイミド(商品名「FC-4400」、住友スリーエム(株)製)
界面活性剤E:「1SX-1055」(商品名、大成ファインケミカル(株)製)
界面活性剤F:「1SX-1090」(商品名、大成ファインケミカル(株)製)
界面活性剤G:「8SX-1071」(商品名、大成ファインケミカル(株)製)
 光拡散微粒子A:シリコーン樹脂球状微粒子(商品名「TSR9000」、モメンティブ・パフォーマンス・マテリアルズ社製、屈折率1.42、体積平均粒子径2μm)
 有機EL素子A:Symfos OLED-010K(コニカミノルタ社製、白色OLED素子)の光出射面側の表面の光取り出し部材を剥離した有機EL素子
(material)
Active energy ray-curable composition A: Active energy ray-curable composition produced in Production Example 1 described later (refractive index of cured product 1.52)
Ionic liquid A: “Amino ion AS100” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and glycol sulfate)
Ionic liquid B: “Amino ion AS300” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and alkylbenzenesulfonic acid)
Ionic liquid C: “Amino ion AS400” (trade name, manufactured by Nippon Emulsifier Co., Ltd., reaction product of alkanolamine and dialkyl succinate sulfonic acid)
Ionic liquid D: Tri-n-butylmethylammonium bistrifluoromethanesulfonimide (trade name “FC-4400”, manufactured by Sumitomo 3M Limited)
Surfactant E: “1SX-1055” (trade name, manufactured by Taisei Fine Chemical Co., Ltd.)
Surfactant F: “1SX-1090” (trade name, manufactured by Taisei Fine Chemical Co., Ltd.)
Surfactant G: “8SX-1071” (trade name, manufactured by Taisei Fine Chemical Co., Ltd.)
Light diffusing fine particles A: Silicone resin spherical fine particles (trade name “TSR9000”, manufactured by Momentive Performance Materials, refractive index 1.42, volume average particle diameter 2 μm)
Organic EL element A: Organic EL element from which the light extraction member on the light emitting surface side of Symfos OLED-010K (manufactured by Konica Minolta, white OLED element) is peeled off
 [製造例1]
 (活性エネルギー線硬化性組成物Aの製造)
 ガラス製のフラスコに、ジイソシアネート化合物としてヘキサメチレンジイソシアネート117.6g(0.7モル)及びイソシアヌレート型のヘキサメチレンジイソシアネート3量体151.2g(0.3モル)、水酸基含有(メタ)アクリレートとして2-ヒドロキシプロピルアクリレート128.7g(0.99モル)及びペンタエリスリトールトリアクリレート693g(1.54モル)、触媒としてジラウリル酸ジ-n-ブチルスズ22.1g、並びに重合禁止剤としてハイドロキノンモノメチルエーテル0.55gを供給し、75℃に昇温し、75℃に保ったまま攪拌を続け、フラスコ内の残存イソシアネート化合物の濃度が0.1モル/L以下になるまで反応させ、室温に冷却し、ウレタン多官能アクリレートを得た。
 得られたウレタン多官能アクリレート35部、ポリブチレングリコールジメタクリレート(商品名「アクリエステルPBOM」、三菱レイヨン(株)製、数平均分子量650)20部、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート(商品名「ニューフロンティアBPEM-10」、第一工業製薬(株)製)40部、フェノキシエチルアクリレート(商品名「ニューフロンティアPHE」、第一工業製薬(株)製)5部及び1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」、チバ・スペシャルティ・ケミカルズ(株)製)1.2部を混合し、活性エネルギー線硬化性組成物Aを得た。
[Production Example 1]
(Production of active energy ray-curable composition A)
In a glass flask, 117.6 g (0.7 mol) of hexamethylene diisocyanate as a diisocyanate compound, 151.2 g (0.3 mol) of an isocyanurate type hexamethylene diisocyanate trimer, 2 as a hydroxyl group-containing (meth) acrylate -128.7 g (0.99 mol) of hydroxypropyl acrylate and 693 g (1.54 mol) of pentaerythritol triacrylate, 22.1 g of di-n-butyltin dilaurate as a catalyst, and 0.55 g of hydroquinone monomethyl ether as a polymerization inhibitor The mixture was heated to 75 ° C., stirred while maintaining the temperature at 75 ° C., reacted until the concentration of the residual isocyanate compound in the flask was 0.1 mol / L or less, cooled to room temperature, A functional acrylate was obtained.
35 parts of urethane polyfunctional acrylate obtained, 20 parts of polybutylene glycol dimethacrylate (trade name “Acryester PBOM”, manufactured by Mitsubishi Rayon Co., Ltd., number average molecular weight 650), di (meta) of ethylene oxide adduct of bisphenol A ) 40 parts of acrylate (trade name “New Frontier BPEM-10”, Daiichi Kogyo Seiyaku Co., Ltd.), 5 parts and 1 of phenoxyethyl acrylate (trade name “New Frontier PHE”, Daiichi Kogyo Seiyaku Co., Ltd.) -1.2 parts of hydroxycyclohexyl phenyl ketone (trade name “Irgacure 184”, manufactured by Ciba Specialty Chemicals Co., Ltd.) was mixed to obtain an active energy ray-curable composition A.
 [製造例2]
 (ロール型の製造)
 外径200mm、軸方向の長さ320mmの鋼製のロールの外周面に、厚さ200μm、ビッカース硬度230Hvの銅めっきを施した。銅めっき層の表面に感光剤を塗布し、レーザー露光、現像及びエッチングを行い、銅めっき層に直径50μm、深さ25μmの半球状の窪みが最小間隔3μmで六方配列に並んでいる転写部が形成された型を得た。得られた型の表面に、防錆性及び耐久性を付与するため、クロムめっきを施し、ロール型を得た。
[Production Example 2]
(Manufacture of roll molds)
Copper plating with a thickness of 200 μm and a Vickers hardness of 230 Hv was applied to the outer peripheral surface of a steel roll having an outer diameter of 200 mm and an axial length of 320 mm. A transfer agent in which a photosensitizer is applied to the surface of the copper plating layer, laser exposure, development and etching are performed, and a hemispherical depression having a diameter of 50 μm and a depth of 25 μm is arranged in a hexagonal array at a minimum interval of 3 μm on the copper plating layer. A formed mold was obtained. In order to impart rust prevention and durability to the surface of the obtained mold, chromium plating was applied to obtain a roll mold.
 [参考例1]
 有機EL素子Aをそのまま面発光体として用いた。用いた面発光体の光学特性の評価結果を、表2に示す。
[Reference Example 1]
The organic EL element A was used as a surface light emitter as it was. Table 2 shows the evaluation results of the optical characteristics of the used surface light emitter.
 [実施例1]
 活性エネルギー線硬化性組成物A100部、光拡散微粒子(Z)43部及びイオン液体A1部を混合し、混合物を得た。得られた混合物の硬化物の帯電防止特性の評価結果を、表2に示す。
 製造例2で得られたロール型に、得られた混合物を塗布し、その上にポリエチレンテレフタレート基材(商品名「コスモシャインA4300」、東洋紡(株)製、厚さ188μm)を置き、ベース層の厚さが25μmになるようにニップロールで均一に伸ばした。その後、基材の上から紫外線を照射し、ロール型と基材に挟まれた混合物を硬化させ、ロール型を剥離し、基材を有する光取り出しフィルムを得た。
 得られた光取り出しフィルムの走査型顕微鏡にて撮影した画像から算出した光取り出しフィルムの凹凸構造の大きさは、ほぼロール型の窪みの大きさに対応した球欠形状の突起が得られた。また、走査型顕微鏡にて撮影した画像から、得られた光取り出しフィルムの凹凸構造は、ロール型に対応し最小間隔3μmで六方配列に並び、光取り出しフィルムの面積に対する球状突起の底面部の面積の割合は、76%であった。
 有機EL素子Aの光出射面側に、粘着層としてカーギル標準屈折液(屈折率1.52、(株)モリテックス製)を塗布し、得られた基材を有する光取り出しフィルムの基材の面を光学密着させ、面発光体を得た。得られた面発光体の光学特性の評価結果を、表2に示す。
[Example 1]
100 parts of active energy ray-curable composition A, 43 parts of light diffusing fine particles (Z) and 1 part of ionic liquid A were mixed to obtain a mixture. Table 2 shows the evaluation results of the antistatic properties of the cured product of the obtained mixture.
The obtained mixture was applied to the roll mold obtained in Production Example 2, and a polyethylene terephthalate base material (trade name “Cosmo Shine A4300”, manufactured by Toyobo Co., Ltd., thickness 188 μm) was placed thereon, and the base layer The film was uniformly stretched with a nip roll so that the thickness of the film became 25 μm. Then, the ultraviolet-ray was irradiated from the base material, the mixture pinched | interposed between the roll type | mold and the base material was hardened, the roll type | mold was peeled, and the light extraction film which has a base material was obtained.
As for the size of the concavo-convex structure of the light extraction film calculated from the image taken with the scanning microscope of the obtained light extraction film, a sphere-shaped projection substantially corresponding to the size of the roll-shaped depression was obtained. In addition, the uneven structure of the light extraction film obtained from the image taken with a scanning microscope corresponds to the roll type and is arranged in a hexagonal array with a minimum spacing of 3 μm, and the area of the bottom surface of the spherical protrusion relative to the area of the light extraction film The ratio was 76%.
Applying Cargill standard refraction liquid (refractive index 1.52, manufactured by Moritex Co., Ltd.) as an adhesive layer on the light emitting surface side of the organic EL element A, the surface of the substrate of the light extraction film having the obtained substrate Were optically adhered to obtain a surface light emitter. Table 2 shows the evaluation results of the optical characteristics of the obtained surface light emitter.
 [実施例2~4、比較例1~2]
 混合物を表1に記載の種類と量で混合した以外は、実施例1と同様に操作を行い、光取り出しフィルム及び面発光体を得た。なお、イオン液体及び光拡散微粒子の含有量は、活性エネルギー硬化性組成物100質量部に対する質量部を表す。得られた混合物の硬化物の帯電防止特性の評価結果と得られた面発光体の光学特性の評価結果を、表2に示す。
[比較例3~5]
混合物を表1に記載の種類と量で混合したが、マトリックス樹脂(X)と相溶しなかったため、光取り出しフィルム及び面発光体を得ることができなかった。
[Examples 2 to 4, Comparative Examples 1 and 2]
Except having mixed the mixture by the kind and quantity of Table 1, it operated similarly to Example 1 and obtained the light extraction film and the surface light-emitting body. In addition, content of an ionic liquid and light-diffusion fine particle represents the mass part with respect to 100 mass parts of active energy curable compositions. Table 2 shows the evaluation results of the antistatic properties of the cured product of the obtained mixture and the evaluation results of the optical properties of the obtained surface light emitter.
[Comparative Examples 3 to 5]
Although the mixture was mixed in the types and amounts shown in Table 1, it was not compatible with the matrix resin (X), so that the light extraction film and the surface light emitter could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4で得られた光取り出しフィルムは、面発光体の光取り出し効率・法線輝度の向上や出射光波長の出射角度依存性の抑制を行うと共に、帯電防止性に優れた。
 一方、比較例1で得られた光取り出しフィルムは、イオン液体(Y)を含まず、帯電防止性に劣った。比較例2で得られた光取り出しフィルムは、イオン液体(Y)を含むが、フッ素化合物を含有しており、湿熱試験後の密着性に劣った。比較例3~5では、イオン液体(Y)を含まず、界面活性剤を含有しており、マトリックス樹脂(X)との相溶性に劣った。
The light extraction films obtained in Examples 1 to 4 improved the light extraction efficiency and normal luminance of the surface light emitter, suppressed the emission angle dependency of the emission light wavelength, and were excellent in antistatic properties.
On the other hand, the light extraction film obtained in Comparative Example 1 did not contain the ionic liquid (Y) and was inferior in antistatic properties. The light extraction film obtained in Comparative Example 2 contained the ionic liquid (Y), but contained a fluorine compound, and was inferior in adhesion after the wet heat test. In Comparative Examples 3 to 5, the ionic liquid (Y) was not contained, the surfactant was contained, and the compatibility with the matrix resin (X) was poor.
 本発明の光取り出しフィルムは、面発光体の光取り出し効率・法線輝度の向上や出射光波長の出射角度依存性の抑制を行うと共に、帯電防止性に優れるため、本発明の光取り出しフィルムを含む面発光体は、例えば、照明、ディスプレイ、スクリーン等に好適に用いることができる。 The light extraction film of the present invention improves the light extraction efficiency and normal luminance of the surface light emitter and suppresses the emission angle dependence of the emission light wavelength, and has excellent antistatic properties. The included surface light emitter can be suitably used for lighting, a display, a screen, and the like, for example.
  10 光取り出しフィルム
  11 凹凸構造
  12 凹凸構造層
  13 ベース層
  14 凹凸構造の底面部
  21 基材
  22 粘着層
  23 保護フィルム
  30 EL素子
  31 ガラス基板
  32 陽極
  33 発光層
  34 陰極
  50 装置
  51 混合物
  52 ロール型
  53 ニップロール
  54 活性エネルギー線照射装置
  55 タンク
  56 配管
DESCRIPTION OF SYMBOLS 10 Light extraction film 11 Uneven structure 12 Uneven structure layer 13 Base layer 14 Bottom part of uneven structure 21 Base material 22 Adhesive layer 23 Protective film 30 EL element 31 Glass substrate 32 Anode 33 Light emitting layer 34 Cathode 50 Device 51 Mixture 52 Roll type 53 Nip roll 54 Active energy ray irradiation device 55 Tank 56 Piping

Claims (13)

  1. マトリックス樹脂(X)、イオン液体(Y)及び光拡散微粒子(Z)を含む、光取り出しフィルム。 A light extraction film comprising a matrix resin (X), an ionic liquid (Y), and light diffusing fine particles (Z).
  2.  イオン液体(Y)を含み、前記イオン液体(Y)と、前記イオン液体(Y)を除く光取り出しフィルムを構成する材料との濁点滴定法から求めたsp値の差の絶対値が0.1から17である光取り出しフィルム。 The absolute value of the difference in sp value obtained from the cloud point titration method between the ionic liquid (Y) and the material constituting the light extraction film excluding the ionic liquid (Y) is 0.1. To 17 light extraction film.
  3.  光取り出しフィルムの表面抵抗率が、1×1014Ω/cm以下である、請求項1又は2に記載の光取り出しフィルム。 The light extraction film according to claim 1, wherein the surface resistivity of the light extraction film is 1 × 10 14 Ω / cm 2 or less.
  4. 光取り出しフィルムの電荷減衰時間が、10秒以下である、請求項1~3のいずれか一項に記載の光取り出しフィルム。 The light extraction film according to any one of claims 1 to 3, wherein a charge decay time of the light extraction film is 10 seconds or less.
  5. 前記イオン液体(Y)のアニオンが、非フッ素系化合物アニオンである請求項1~4のいずれか一項に記載の光取り出しフィルム。 The light extraction film according to any one of claims 1 to 4, wherein the anion of the ionic liquid (Y) is a non-fluorine compound anion.
  6. 前記イオン液体(Y)のアニオンが、グリコールエーテル硫酸エステルアニオン、及びアルキルベンゼンスルホン酸アニオンからなる群から選択される少なくとも1種のアニオンである、請求項5に記載の光取り出しフィルム。 The light extraction film according to claim 5, wherein the anion of the ionic liquid (Y) is at least one anion selected from the group consisting of a glycol ether sulfate anion and an alkylbenzenesulfonate anion.
  7. 前記イオン液体(Y)のカチオンが、アルカノールアミン塩及びアンモニウム塩である、請求項1~6のいずれか一項に記載の光取り出しフィルム。 The light extraction film according to any one of claims 1 to 6, wherein the cation of the ionic liquid (Y) is an alkanolamine salt or an ammonium salt.
  8.  光取り出しフィルムがマトリックス樹脂(X)を含み、
    前記イオン液体(Y)の含有量が、前記マトリックス樹脂(X)100質量部に対して、0.1質量部~10質量部である、請求項1~7のいずれか一項に記載の光取り出しフィルム。
    The light extraction film contains a matrix resin (X),
    The light according to any one of claims 1 to 7, wherein a content of the ionic liquid (Y) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the matrix resin (X). Take out film.
  9.  光取り出しフィルムが光拡散微粒子(Z)を含み、
    前記光拡散微粒子(Z)の含有量が、前記マトリックス樹脂(X)100質量部に対して、1質量部~70質量部である、請求項8に記載の光取り出しフィルム。
    The light extraction film contains light diffusing fine particles (Z),
    The light extraction film according to claim 8, wherein the content of the light diffusing fine particles (Z) is 1 part by mass to 70 parts by mass with respect to 100 parts by mass of the matrix resin (X).
  10. 光取り出しフィルムがマトリックス樹脂(X)を含み、
    前記マトリックス樹脂(X)が、アクリル樹脂である請求項1~9のいずれか一項に記載の光取り出しフィルム。
    The light extraction film contains a matrix resin (X),
    The light extraction film according to any one of claims 1 to 9, wherein the matrix resin (X) is an acrylic resin.
  11. 光取り出しフィルムが、表面に凹凸構造を有する、請求項1~10のいずれか一項に記載の光取り出しフィルム。 The light extraction film according to any one of claims 1 to 10, wherein the light extraction film has a concavo-convex structure on a surface thereof.
  12. 請求項1~11のいずれか一項に記載の光取り出しフィルム及びEL素子を含む、面発光体。 A surface light emitter comprising the light extraction film according to any one of claims 1 to 11 and an EL element.
  13. 光取り出しフィルムの製造方法であって、
    基材と凹凸構造の転写部を有する型との間に、イオン液体(Y)、及び活性エネルギー線硬化性組成物を含む混合物を供給し、活性エネルギー線を照射することを含む、光取り出しフィルムの製造方法。
    A method of manufacturing a light extraction film,
    A light extraction film comprising: supplying a mixture containing an ionic liquid (Y) and an active energy ray-curable composition between a base material and a mold having a concavo-convex transfer portion, and irradiating the active energy ray. Manufacturing method.
PCT/JP2015/063594 2014-05-12 2015-05-12 Light extraction film, surface light emitting body, and method for producing light extraction film WO2015174399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526817A JPWO2015174399A1 (en) 2014-05-12 2015-05-12 Light extraction film, surface light emitter, and method of manufacturing light extraction film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-098241 2014-05-12
JP2014098241 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174399A1 true WO2015174399A1 (en) 2015-11-19

Family

ID=54479937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063594 WO2015174399A1 (en) 2014-05-12 2015-05-12 Light extraction film, surface light emitting body, and method for producing light extraction film

Country Status (3)

Country Link
JP (1) JPWO2015174399A1 (en)
TW (1) TWI574033B (en)
WO (1) WO2015174399A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139992A (en) * 2018-02-13 2019-08-22 日清紡ホールディングス株式会社 Conductive metal paste
US20220236640A1 (en) * 2021-01-28 2022-07-28 Canon Kabushiki Kaisha Photocurable composition comprising an organic ionic compound
US11769606B2 (en) 2019-03-29 2023-09-26 Nisshinbo Holdings Inc. Conductive metal paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259927A (en) * 1995-03-20 1996-10-08 Japan Energy Corp Antistatic agent and synthetic resin containing the same
JP2010123313A (en) * 2008-11-18 2010-06-03 Konica Minolta Opto Inc Method of manufacturing organic electroluminescence surface light emitter, organic electroluminescence surface light emitter,and display device and lighting system using the same
JP2012167253A (en) * 2011-01-26 2012-09-06 Shin-Etsu Chemical Co Ltd Light-diffusive dimethylsilicone rubber composition
JP2013234264A (en) * 2012-05-09 2013-11-21 Sanyo Chem Ind Ltd Antistatic agent and antistatic resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259927A (en) * 1995-03-20 1996-10-08 Japan Energy Corp Antistatic agent and synthetic resin containing the same
JP2010123313A (en) * 2008-11-18 2010-06-03 Konica Minolta Opto Inc Method of manufacturing organic electroluminescence surface light emitter, organic electroluminescence surface light emitter,and display device and lighting system using the same
JP2012167253A (en) * 2011-01-26 2012-09-06 Shin-Etsu Chemical Co Ltd Light-diffusive dimethylsilicone rubber composition
JP2013234264A (en) * 2012-05-09 2013-11-21 Sanyo Chem Ind Ltd Antistatic agent and antistatic resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139992A (en) * 2018-02-13 2019-08-22 日清紡ホールディングス株式会社 Conductive metal paste
JP7363017B2 (en) 2018-02-13 2023-10-18 日清紡ホールディングス株式会社 conductive metal paste
US11769606B2 (en) 2019-03-29 2023-09-26 Nisshinbo Holdings Inc. Conductive metal paste
US20220236640A1 (en) * 2021-01-28 2022-07-28 Canon Kabushiki Kaisha Photocurable composition comprising an organic ionic compound

Also Published As

Publication number Publication date
TWI574033B (en) 2017-03-11
JPWO2015174399A1 (en) 2017-04-20
TW201544831A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US9903986B2 (en) Light extraction film for EL elements, surface light emitting body, and method for producing light extraction film for EL elements
US9891354B2 (en) Light-extraction film for EL, method for manufacturing light-extraction film for EL, and planar light-emitting body
WO2014157379A1 (en) Optical film, optical film manufacturing method and surface light-emitting body
WO2014163135A1 (en) Optical film and surface light emitting body
US9765941B2 (en) Optical film, surface light emitting body, and method for producing optical film
JP2018088017A (en) Optical film, method for forming optical film, and surface-emitting body
WO2014189037A1 (en) Light extraction film, method for producing same, and surface light emitting body
WO2015174399A1 (en) Light extraction film, surface light emitting body, and method for producing light extraction film
WO2014156452A1 (en) Optical film production method, optical film, surface light-emitting body and optical film production device
JP6394309B2 (en) Optical film manufacturing method, optical film, and surface light emitter
JP2015206957A (en) Optical film, laminate, illumination, and display
JP2014102370A (en) Optical film and surface light-emitting body
JP2015159033A (en) Light extraction film, surface light emission body and method of producing light extraction film
JP2017069208A (en) Light extraction structure for electroluminescent element and surface light emitter
JP2016081614A (en) Light extraction film for el element and surface-emitting body
JP2016018024A (en) Optical film, surface light emitter, and manufacturing method for optical film
JP2016001207A (en) Optical film, surface light emitter and manufacturing method optical film
JP2016143612A (en) Light extraction film for electroluminescent element and surface-emitting body
JP2015219332A (en) Optical film and surface emitter
JP2016061813A (en) Optical film, surface light emitter, and manufacturing method for optical film
JP2016045386A (en) Optical film, surface light-emitting body, and method for manufacturing optical film
JP2016018050A (en) Optical film, surface light emitter, and manufacturing method for optical film
JP2017191694A (en) Light extraction structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015526817

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793523

Country of ref document: EP

Kind code of ref document: A1