WO2015174282A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2015174282A1
WO2015174282A1 PCT/JP2015/062914 JP2015062914W WO2015174282A1 WO 2015174282 A1 WO2015174282 A1 WO 2015174282A1 JP 2015062914 W JP2015062914 W JP 2015062914W WO 2015174282 A1 WO2015174282 A1 WO 2015174282A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
storage container
tank
pressure
gas phase
Prior art date
Application number
PCT/JP2015/062914
Other languages
French (fr)
Japanese (ja)
Inventor
淳夫 池内
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015174282A1 publication Critical patent/WO2015174282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery that performs charging and discharging by circulating an electrolytic solution through a battery unit.
  • the RF battery ⁇ is typically connected between a power generation unit (for example, a solar power generation device, a wind power generation device, other general power plants, etc.) and a load (such as a customer) via an AC / DC converter.
  • a power generation unit for example, a solar power generation device, a wind power generation device, other general power plants, etc.
  • load such as a customer
  • the RF battery ⁇ includes one or more battery units 100.
  • the battery unit 100 includes a positive electrode cell part 102 containing a positive electrode 104, a negative electrode cell part 103 containing a negative electrode 105, and a diaphragm 101 that separates both the cell parts 102 and 103 and transmits ions.
  • a positive electrode electrolyte tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell unit 102 via pipes 108 and 110.
  • a negative electrode electrolyte tank 107 for storing a negative electrode electrolyte is connected to the negative electrode cell unit 103 via pipes 109 and 111.
  • the pipes 108 and 109 are provided with pumps 112 and 113 for circulating the electrolytes, respectively.
  • the battery unit 100 is connected to the positive electrode cell section 102 (positive electrode 104) and the negative electrode cell section 103 (negative electrode 105) by the pipes 108 to 111 and the pumps 112 and 113, respectively.
  • the negative electrode electrolyte solution is circulated and charged and charged / discharged as the valence of metal ions (vanadium ions in the example shown in the drawing) change as the active material in the electrolyte solution at both electrodes.
  • the gas phase in the electrolyte tanks 106 and 107 expands or contracts due to temperature changes in the installation environment, heat generation during charging and discharging, and the like.
  • the electrolyte tanks 106 and 107 may burst.
  • the electrolyte tanks 106 and 107 may be dented and damaged.
  • it has been proposed to provide a redox flow battery with a pressure adjustment mechanism that adjusts the inside of the electrolyte tanks 106 and 107 to near atmospheric pressure see, for example, Patent Document 1).
  • Patent Document 1 discloses a pressure adjustment mechanism including a first atmospheric pressure holding container and a second atmospheric pressure holding container in which a pressure adjusting liquid is stored (see FIG. 1 of Patent Document 1).
  • the gas phase in the first atmospheric pressure holding container is communicated with the gas phase in the liquid storage tank (electrolyte tank) by the first communication means, and the liquid phase in the first atmospheric pressure holding container and the second atmospheric pressure holding container are communicated.
  • the liquid phase is communicated with the second communicating means.
  • the gas phase in the second atmospheric pressure holding container is open to the atmosphere.
  • the pressure in the electrolyte tank drops to near atmospheric pressure.
  • the electrolyte tank has a negative pressure
  • the liquid level of the first atmospheric pressure holding container is raised and the liquid level of the second atmospheric pressure holding container is lowered as shown in FIG.
  • the internal pressure rises to near atmospheric pressure.
  • Patent Document 1 it is possible to prevent the atmosphere from being sucked into the electrolyte tank when the inside of the electrolyte tank becomes negative pressure, and to prevent the electrolyte from being deteriorated by the atmosphere. Can be suppressed.
  • the reason why the atmosphere can be prevented from being sucked into the electrolytic solution tank is that the pressure adjusting liquid is filled in the second communication means that connects the second atmospheric pressure holding container and the first atmospheric pressure holding container.
  • Patent Document 1 since the gas phase in the second atmospheric pressure holding container is open to the atmosphere, the pressure adjusting liquid in the container evaporates. For this reason, it is necessary to monitor the amount of the pressure-regulating liquid at a considerable frequency and replenish it appropriately. Since the labor of maintenance during operation of such a redox flow battery is complicated, it is desired to reduce the labor.
  • the present invention has been made in view of the above circumstances, and one object of the present invention is to provide a redox flow battery that requires less maintenance during operation.
  • the redox flow battery includes a battery unit, an electrolyte tank for a positive electrode, an electrolyte tank for a negative electrode, and a pressure adjustment mechanism.
  • the battery unit has a positive electrode, a negative electrode, and a diaphragm.
  • the positive electrode electrolyte tank stores the positive electrode electrolyte supplied to the battery unit.
  • the negative electrode electrolyte solution tank stores the negative electrode electrolyte supplied to the battery unit.
  • the pressure adjustment mechanism is attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank, and adjusts the pressure of the gas phase in the electrolyte tank.
  • the pressure adjusting mechanism is a storage container that stores the pressure adjusting liquid, a first exhaust pipe that extends from the gas phase in the electrolyte tank, passes through the gas phase in the storage container, and opens into the liquid phase in the storage container, And a water seal valve provided with a second exhaust pipe having one end opened to the gas phase in the storage container and the other end opened to the atmosphere, and a liquid supply mechanism for replenishing the pressure adjusting liquid in the storage container.
  • the above redox flow battery requires less maintenance.
  • FIG. 2 is a schematic configuration diagram of a pressure adjustment mechanism shown in Embodiment 1.
  • FIG. 6 is a schematic configuration diagram of a pressure adjustment mechanism shown in Embodiment 2.
  • FIG. It is a schematic block diagram of the pressure adjustment mechanism shown in Embodiment 3.
  • a redox flow battery includes a battery unit, an electrolyte tank for a positive electrode, an electrolyte tank for a negative electrode, and a pressure adjustment mechanism.
  • the battery unit has a positive electrode, a negative electrode, and a diaphragm.
  • the positive electrode electrolyte tank stores the positive electrode electrolyte supplied to the battery unit.
  • the negative electrode electrolyte solution tank stores the negative electrode electrolyte supplied to the battery unit.
  • the pressure adjustment mechanism is attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank, and adjusts the pressure of the gas phase in the electrolyte tank.
  • the pressure adjusting mechanism is a storage container that stores the pressure adjusting liquid, a first exhaust pipe that extends from the gas phase in the electrolyte tank, passes through the gas phase in the storage container, and opens into the liquid phase in the storage container, And a water seal valve provided with a second exhaust pipe having one end opened to the gas phase in the storage container and the other end opened to the atmosphere, and a liquid supply mechanism for replenishing the pressure adjusting liquid in the storage container.
  • the water seal valve provided in the pressure adjusting mechanism of the redox flow battery can release the gas in the electrolyte tank to the atmosphere when the inside of the electrolyte tank becomes positive pressure.
  • the movement state of the gas in the electrolytic solution tank will be specifically described.
  • the gas in the electrolytic solution tank is discharged to the liquid phase in the storage container through the first exhaust pipe, and moves to the gas phase in the storage container. Since the gas in the storage container is released to the atmosphere through the second exhaust pipe, as a result, the gas in the electrolytic solution tank is released to the outside, and the electrolytic solution tank is prevented from bursting.
  • the water seal valve also contributes to increasing the pressure of the electrolyte tank when the inside of the electrolyte tank becomes negative pressure. This is because when the electrolyte tank becomes negative pressure, the pressure adjusting liquid is sucked into the first exhaust pipe, and the volume of the gas phase in the first exhaust pipe decreases accordingly.
  • the redox flow battery provided with the pressure adjusting mechanism is a redox flow battery that requires less maintenance. This is because a liquid supply mechanism for replenishing the pressure adjusting liquid to the storage container of the water seal valve is provided.
  • the liquid supply mechanism may include a replacement fluid tank, a first pipe, and a second pipe.
  • the replacement fluid tank is a member that stores a replenishing pressure adjustment fluid.
  • the first pipe extends from the gas phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is opened and closed by the liquid level in the storage container. It is a member.
  • the second pipe is a member that communicates with the liquid phase in the replacement liquid tank and the gas phase in the storage container, and supplies the pressure adjusting liquid from the replacement liquid tank to the storage container when the opening of the first pipe is opened. .
  • the pressure adjusting liquid in the storage container of the water seal valve decreases, the pressure adjusting liquid can be automatically replenished from the replacement liquid tank to the storage container.
  • the trouble of monitoring and replenishing the pressure adjusting liquid can be greatly reduced.
  • it can suppress that the pressure regulation liquid in a storage container reduces too much, and the gaseous phase in an electrolyte solution tank communicates with air
  • the liquid supply mechanism may include a replacement fluid tank and a third pipe.
  • the replacement fluid tank is a member for storing a replenishing pressure adjusting solution, and its gas phase is sealed.
  • the third pipe extends from the liquid phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is opened and closed by the liquid level in the storage container. It is a member.
  • the water seal valve further includes a wave-shielding tube that houses a portion on the opening side of the first exhaust pipe and is open at both ends. Can do.
  • the opening on the lower side and the opening on the upper side of the wave preventing cylinder are opened at a position lower than the opening of the first exhaust pipe and a position higher than the liquid level, respectively.
  • the upper opening of the wave-breaking cylinder is opened at a position higher than the liquid level, bubbles that have entered the liquid phase in the wave-breaking cylinder can be repelled by the liquid level inside the wave-breaking cylinder. Since the liquid level inside the wave breaker is separated from the liquid level outside the wave breaker by the wave breaker, the liquid surface outside the wave breaker can be suppressed. If the liquid level in the storage container can be suppressed, the opening of the pipe that is opened and closed by the liquid level (the first pipe in the configuration [2] and the third pipe in the configuration [3]) is frequently opened and closed. Can be suppressed. As a result, the supply of the pressure adjusting liquid from the replacement fluid tank to the storage container can be made an appropriate amount.
  • the liquid supply mechanism includes a first water generating device that condenses water vapor contained in the gas phase in the storage container and returns it to the liquid phase in the storage container. be able to.
  • Replenishment of the pressure adjustment liquid using water vapor contained in the gas phase in the storage container can significantly reduce the frequency of replenishment of the pressure adjustment liquid by human hands.
  • the liquid supply mechanism may include a second water generation device that condenses water vapor contained in the atmosphere and introduces it into the liquid phase in the storage container. .
  • the water seal valve may further include an overflow pipe that opens to the side portion or bottom portion of the storage container and discharges the regulated liquid exceeding a predetermined amount to the outside. it can.
  • the vapor phase in the storage container contains a large amount of water vapor
  • the water vapor in the storage container condenses and the pressure adjustment liquid in the storage container increases.
  • the pressure adjustment mechanism including the overflow pipe the pressure-regulating liquid stored in the storage container can be limited to a predetermined amount or less, so that the occurrence of the above problem can be suppressed.
  • the redox flow battery of the present embodiment may include a form provided with a breathing bag attached to at least one of a positive electrode electrolyte tank and a negative electrode electrolyte tank.
  • the redox flow battery provided with a breathing bag, it is possible to effectively prevent the electrolyte tank from being recessed when the inside of the electrolyte tank becomes negative pressure.
  • a redox flow battery (hereinafter referred to as an RF battery ⁇ ) according to this embodiment will be described with reference to the drawings.
  • this invention is not necessarily limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
  • the RF battery ⁇ shown in FIG. 1 has the same configuration as the RF battery ⁇ described with reference to the operation principle diagram of FIG. 6 except that the gas phase communication pipe 9 and the pressure adjustment mechanism 1 are provided. Therefore, in the RF battery ⁇ of FIG. 1, the same components as those of the RF battery ⁇ of FIG.
  • the RF battery ⁇ shown in FIG. 1 has a battery unit 100 and a circulation mechanism (electrolyte tanks 106 and 107, pipes 108 to 111, a pump 112 for supplying an electrolytic solution to the battery unit 100. 113).
  • the arrangement of each member in the RF battery ⁇ shown in FIG. 1 is close to the actual arrangement.
  • the positions of the electrolyte tanks 106 and 107 in FIG. 1 are arranged at a position lower than the battery unit 100.
  • the RF battery ⁇ includes a gas phase communication pipe 9 that communicates the gas phase in the electrolyte tank 106 for the positive electrode and the gas phase in the electrolyte tank 107 for the negative electrode.
  • the gas phase communication pipe 9 can handle the gas phases in the electrolyte tanks 106 and 107 as a unit.
  • a maintenance valve may be provided in the middle of the gas phase communication pipe 9.
  • the RF battery ⁇ includes two pressure adjusting mechanisms 1 attached to the electrolyte tanks 106 and 107, and two breathing bags 3 attached to the electrolyte tanks 106 and 107, respectively.
  • These members 1 and 3 are for adjusting the pressure in the electrolyte tanks 106 and 107, and the pressure adjusting mechanism 1 mainly functions when the pressure in the electrolyte tanks 106 and 107 becomes positive.
  • the breathing bag 3 functions mainly when the inside of the electrolyte tanks 106 and 107 becomes a negative pressure.
  • the pressure adjustment mechanism 1 includes a water seal valve 1A and a liquid supply mechanism 1B as shown in FIG.
  • One pressure adjusting mechanism 1 is provided in each of the electrolyte tanks 106 and 107 so that even if one of them fails, the other functions so that the pressure in the electrolyte tanks 106 and 107 can be adjusted. It is to make it.
  • the water seal valve 1 ⁇ / b> A of the pressure adjustment mechanism 1 includes a storage container 10, a first exhaust pipe 11, and a second exhaust pipe 12.
  • the storage container 10 is a member that stores the pressure adjusting liquid 10L.
  • the first exhaust pipe 11 is a member that extends from the gas phase in the electrolyte tank 106 (107), passes through the gas phase in the storage container 10, and opens into the liquid phase in the storage container 10.
  • the second exhaust pipe 12 is a member having one end opened to the gas phase in the storage container 10 and the other end opened to the atmosphere.
  • the pressure adjusting liquid 10L may be water or an aqueous solution that is inexpensive and easily available.
  • the aqueous solution include dilute sulfuric acid solution.
  • the dilute sulfuric acid solution is preferable because it is difficult to freeze even in a low temperature environment.
  • the storage container 10, the first exhaust pipe 11, and the second exhaust pipe 12 can be made of a resin such as polyvinyl chloride (PVC), for example.
  • PVC polyvinyl chloride
  • the storage container 10 is preferably transparent so that the amount of the pressure adjusting liquid 10L in the storage container 10 can be confirmed from the outside. PVC can respond to such a request.
  • the first exhaust pipe 11 and the second exhaust pipe 12 may be transparent.
  • the internal volume of the storage container 10 is preferably 0.2 liters (200 cm 3 ) or more and 20 liters or less. If it is the storage container 10 which has the internal volume of this range, the function as water seal valve 1A can fully be exhibited, and it can avoid that water seal valve 1A enlarges.
  • the inner diameter of the first exhaust pipe 11 connected to the vapor phase of the electrolyte tank 106 (107) is preferably 1 cm or more and 10 cm or less. If it is the 1st exhaust pipe 11 which has an internal diameter of this range, discharge
  • the inner diameter of the second exhaust pipe 12 is preferably 1 cm or more and 10 cm or less. If it is the 2nd exhaust pipe 12 which has the internal diameter of this range, the gas in the storage container 10 can be rapidly discharged
  • the second exhaust pipe 12 only needs to be configured to open the storage container 10 to the atmosphere, and may be a short pipe that forms an opening in the storage container 10.
  • the water seal valve 1A having the above-described configuration has a function of adjusting the pressure inside the electrolyte tanks 106 and 107 to near atmospheric pressure when the inside of the electrolyte tanks 106 and 107 becomes a positive pressure. Specifically, when the inside of the electrolyte tanks 106 and 107 becomes positive pressure, the gas in the electrolyte tanks 106 and 107 passes through the first exhaust pipe 11 and is discharged to the liquid phase in the storage container 10. (See thick arrow). The gas discharged to the liquid phase becomes bubbles and rises in the liquid phase and moves to the gas phase in the storage container 10. The gas in the storage container 10 is released to the atmosphere through the second exhaust pipe 12 as indicated by the thick arrow.
  • the gas in the electrolyte tanks 106 and 107 is released to the outside by the water seal valve 1A, and the pressure inside the electrolyte tanks 106 and 107 is adjusted to near atmospheric pressure. As a result, rupture of the electrolyte tanks 106 and 107 can be prevented.
  • the water seal valve 1A having the above-described configuration also has a function of bringing the pressure inside the electrolyte tanks 106 and 107 close to atmospheric pressure when the electrolyte tanks 106 and 107 become negative pressure.
  • the pressure adjusting liquid 10L is sucked into the first exhaust pipe 11, and the volume of the gas phase in the first exhaust pipe 11 decreases accordingly.
  • the pressure inside the electrolyte tanks 106 and 107 increases, and the depression of the electrolyte tanks 106 and 107 is suppressed.
  • the gas generated in the electrolyte tanks 106 and 107 may be harmful gas. Therefore, it is preferable to provide a gas removal device in the middle of the first exhaust pipe 11 or in the middle of the second exhaust pipe 12.
  • a gas removal device for example, the one described in JP 2007-31209 A (for example, a filter using copper oxide) can be used.
  • the water seal valve 1 ⁇ / b> A of this example may further include a wave blocking tube 13 (see a broken line) inside the storage container 10.
  • the wave preventing tube 13 is a member that accommodates a portion of the first exhaust pipe 11 on the opening side and suppresses the ripple of the liquid level in the storage container 10 caused by bubbles discharged from the first exhaust pipe 11. Both ends of the wave barrier 13 are open.
  • the opening on the lower side of the wave-breaking tube 13 is opened below the opening of the first exhaust pipe 11, many of the bubbles discharged from the electrolyte tanks 106 and 107 to the first exhaust pipe 11 are formed. It enters the liquid phase in the wave-breaking cylinder 13.
  • the opening on the upper side of the wave preventing tube 13 is opened at a position higher than the liquid level, the bubbles that have entered the liquid phase in the wave preventing tube 13 can be repelled by the liquid level inside the wave preventing tube 13. .
  • the liquid surface inside the wave preventing tube 13 is partitioned from the liquid surface outside the wave preventing tube 13 by the wave preventing tube 13, it is possible to suppress the undulation and foaming of the liquid surface outside the wave preventing tube 13. it can. The effect obtained as a result will be described later.
  • the water seal valve 1A of this example further includes an overflow pipe 14 that opens to the side of the storage container 10.
  • the overflow pipe 14 is a member that restricts the pressure adjusting liquid 10L stored in the storage container 10 to a predetermined amount or less by discharging the pressure adjusting liquid 10L in the storage container 10 exceeding a predetermined amount to the outside.
  • the temperature of the installation environment of the RF battery ⁇ is decreased, water vapor in the storage container 10 is condensed, and the pressure adjusting liquid 10L in the storage container 10 is increased.
  • the pressure adjustment liquid 10L increases, there may be a problem that the pressure value to be adjusted increases or a problem that the pressure adjustment liquid 10L overflows from the storage container 10 and the water seal valve 1A does not function.
  • the overflow pipe 14 is provided as a countermeasure.
  • the amount of the pressure adjusting liquid 10L stored in the storage container 10 is preferably 0.1 liter or more and 10 liters or less.
  • the overflow pipe 14 may be opened at the bottom of the storage container 10. In that case, the overflow pipe 14 connected to the bottom of the storage container 10 is bent so as to extend toward the upper side of the storage container 10 so that the liquid amount of the storage container 10 is maintained constant.
  • the liquid supply mechanism 1 ⁇ / b> B of this example includes a replacement fluid tank 20, a first pipe 21, and a second pipe 22.
  • the replacement fluid tank 20 is a member that stores the pressure adjusting liquid 10L.
  • the first pipe 21 extends from the gas phase in the replacement fluid tank 20, passes through the gas phase in the storage container 10, opens near the liquid level of the liquid phase in the storage container 10, and the opening is opened and closed by the liquid level. It is a member.
  • the second pipe 22 communicates with the liquid phase in the replacement liquid tank 20 and the gas phase in the storage container 10, and when the opening of the first pipe 21 is opened, the pressure adjusting liquid is transferred from the replacement liquid tank 20 to the storage container 10. It is a member that supplies 10L.
  • the opening position of the second pipe 22 is higher than the lower end of the first pipe 21.
  • the replacement fluid tank 20, the first pipe 21, and the second pipe 22 can be made of resin such as PVC.
  • PVC is preferable because it has various resistances and is inexpensive.
  • These members 20, 21, 22 are also preferably transparent so that the state of the pressure adjusting liquid 10L can be confirmed.
  • the internal volume of the replacement fluid tank 20 is preferably 1 liter or more and 100 liters or less. With the replacement fluid tank 20 having an internal volume within this range, the function of replenishing the water sealing valve 1A with the pressure regulating fluid 10L can be sufficiently exhibited.
  • the inner diameter of the first pipe 21 and the inner diameter of the second pipe 22 are preferably 0.5 cm or more and 10 cm or less.
  • the replenisher tank 20 is provided with an inlet for the pressure regulating liquid 10L that can be opened and closed at a position on the upper surface thereof. The inlet of the replacement fluid tank 20 is closed during operation of the RF battery, and the gas phase of the replacement fluid tank 20 is kept in a sealed state. When the replacement fluid tank 20 is not sufficiently sealed and the atmosphere flows into the gas phase of the replacement fluid tank 20, the pressure adjusting liquid 10 L in the replacement fluid tank 20 is supplied to the storage container 10 without limit.
  • the second pipe 22 includes a valve 22b in the middle thereof.
  • the valve 22b is for preventing the pressure adjusting liquid 10L from flowing into the storage container 10 from the replacement liquid tank 20 when the pressure adjusting liquid 10L is replenished into the liquid replacement tank 20. Without the valve 22b, the pressure adjusting liquid 10L replenished in the replacement liquid tank 20 flows into the storage container 10 without limit. During the operation of the RF battery ⁇ , the valve 22b is kept open.
  • the liquid supply mechanism 1B having the above-described configuration, when the amount of the pressure adjusting liquid 10L in the water seal valve 1A decreases and the liquid level of the pressure adjusting liquid 10L becomes lower than the lower end of the first pipe 21 (illustration).
  • the opening of the first pipe 21 is opened, and gas flows from the gas phase in the storage container 10 into the gas phase in the replacement liquid tank 20 via the first pipe 21.
  • the pressure adjusting liquid 10L in the replacement fluid tank 20 is supplied into the storage container 10 through the second pipe 22 by the pressure of the inflow.
  • the opening is closed, and the inflow of gas through the first pipe 21 stops and the second pipe 22 passes through.
  • the supply of the pressure adjusting liquid 10L is also stopped. As described above, since the liquid supply mechanism 1B automatically continues to supply the pressure adjusting liquid 10L into the storage container 10 until the pressure adjusting liquid 10L in the replacement liquid tank 20 disappears, the pressure adjusting liquid in the storage container 10 is maintained. The labor of monitoring and replenishing 10 L can be reduced.
  • the water seal valve 1A of the present embodiment is provided with a wave-proof cylinder 13, and the ripple of the liquid level of the pressure adjusting liquid 10L in the storage container 10 is suppressed. Therefore, it is possible to prevent the first piping 21 from being frequently opened and closed due to the undulation of the liquid level and unnecessary supply of the pressure adjusting liquid 10L from the replacement fluid tank 20. Moreover, it can avoid that the pressure regulation liquid 10L in the storage container 10 is discharged
  • the breathing bag 3 is a member that hangs down in the electrolyte tanks 106 and 107 and communicates with the inside thereof in the atmosphere.
  • the breathing bag 3 for example, a known configuration described in JP-A-2002-175825 can be used.
  • the breathing bag 3 When the inside of the electrolyte tanks 106 and 107 becomes negative pressure, the breathing bag 3 sucks air into the inside thereof to reduce the internal volume of the electrolyte tanks 106 and 107 (excluding the breathing bag 3). The pressure in the tanks 106 and 107 is increased. The breathing bag 3 also functions when the pressure in the electrolyte tanks 106 and 107 becomes positive. Specifically, the gas inside the breathing bag 3 is released to the atmosphere, the internal volume of the electrolyte tanks 106 and 107 (excluding the breathing bag 3) is increased, and the pressure in the electrolyte tanks 106 and 107 is reduced.
  • a water-seal valve 1A described with reference to FIG. 2 can be used to configure a backup mechanism for when the breathing bag 3 fails and does not operate (the same applies to the second to fourth embodiments).
  • the second exhaust pipe 12 of the water seal valve 1A may be communicated with the gas phase in the electrolyte tank 106 (107), and the first exhaust pipe 11 may be communicated with the atmosphere.
  • the breathing bag 3 breaks down when the inside of the electrolyte tanks 106 and 107 becomes a negative pressure, the air is sucked from the first exhaust pipe 11 and is passed through the second exhaust pipe 12. Air flows into the electrolyte tanks 106 and 107.
  • the 3 includes a replacement fluid tank 20 and a third pipe 23.
  • the liquid supply mechanism 1C according to the second embodiment illustrated in FIG.
  • the replacement fluid tank 20 is a member that stores the pressure adjusting liquid 10 ⁇ / b> L, and is disposed above the storage container 10.
  • the upper part of the replacement fluid tank 20 is sealed, and the gas phase of the replacement fluid tank 20 does not communicate anywhere.
  • the third pipe 23 extends from the liquid phase in the replacement fluid tank 20, passes through the gas phase in the storage container 10, opens near the liquid surface of the liquid phase in the storage container 10, and the opening is opened by the liquid level. It is a member that is opened and closed.
  • the third pipe 23 may be considered as a member having both the function of the first pipe 21 and the function of the second pipe 22 in the liquid supply mechanism 1B of the first embodiment.
  • a valve 23 b is provided in the middle of the third pipe 23.
  • the valve 23b is for preventing the pressure adjusting liquid 10L from flowing from the replacement liquid tank 20 into the storage container 10 when the pressure adjusting liquid 10L is replenished into the replacement liquid tank 20.
  • the replacement fluid tank 20 of the liquid supply mechanism 1 ⁇ / b> C also includes an inlet for the pressure adjusting liquid 10 ⁇ / b> L that can be opened and closed at the position of the upper surface. During operation of the RF battery, the inlet is closed and the gas phase of the replacement fluid tank 20 is kept sealed.
  • the internal volume of the replacement fluid tank 20 can be approximately the same as in the first embodiment.
  • the inner diameter of the third pipe 23 is preferably 1 cm or more and 5 cm or less.
  • the liquid supply mechanism 1C having the above configuration, when the amount of the pressure adjusting liquid 10L in the storage container 10 decreases and the liquid level of the pressure adjusting liquid 10L becomes lower than the third pipe 23, the third pipe 23 The pressure adjusting liquid 10L in the replacement fluid tank 20 is supplied into the storage container 10 through the third pipe 23.
  • the opening of the third pipe 23 When the liquid level of the pressure adjusting liquid 10L in the storage container 10 reaches the opening of the third pipe 23, the opening is closed and the supply of the pressure adjusting liquid 10L via the third pipe 23 is also stopped.
  • the liquid supply mechanism 1C automatically supplies the pressure adjusting liquid 10L into the storage container 10 until the pressure adjusting liquid 10L in the replacement liquid tank 20 disappears. The labor of monitoring and replenishing 10 L can be reduced.
  • the water seal valve 1A of the present embodiment is also provided with a wave-proof cylinder 13 that suppresses the undulation of the liquid level of the pressure adjusting liquid 10L in the storage container 10, and stabilizes the open / closed state of the third pipe 23. In addition, excessive discharge of the pressure regulating liquid 10L from the overflow pipe 14 is suppressed.
  • the liquid supply mechanism 1D includes a first water generating device 30 that is provided in the middle of the second exhaust pipe 12 and condenses water vapor contained in the gas discharged from the gas phase in the storage container 10 to the atmosphere.
  • generation apparatus 30 falls to the liquid phase in the storage container 10, and the quantity of the pressure regulation liquid 10L is maintained. Too much pressure adjusting liquid 10L is discharged from the overflow pipe 14. However, since the undulation of the pressure adjusting liquid 10L is suppressed by the wave preventing cylinder 13 provided in the water seal valve 1A, the pressure adjusting liquid 10L is not excessively discharged from the overflow pipe 14.
  • a cooler that cools the second exhaust pipe 12 from the outer periphery, a dehumidifier that uses the Peltier effect, or the like can be used.
  • the replenishment frequency of the pressure adjusting liquid 10L by a human hand can be significantly reduced by replenishing the pressure adjusting liquid 10L using water vapor contained in the atmosphere.
  • Embodiment 4 demonstrates the liquid supply mechanism 1E which replenishes the pressure regulation liquid 10L using the water vapor
  • the liquid supply mechanism 1E includes a second water generation device 40 that condenses water vapor contained in the atmosphere, and an introduction pipe 41 that communicates from the second water generation device 40 to the gas phase in the storage container 10. .
  • generation apparatus 40 is introduce
  • generation apparatus 40 similarly to the 1st water production
  • the replenishment frequency of the pressure adjusting liquid 10L by a human hand can be significantly reduced by replenishing the pressure adjusting liquid 10L using water vapor contained in the atmosphere.
  • the redox flow battery of the present invention can be suitably used as a battery for load leveling or for measures against instantaneous voltage drop or power failure.
  • Redox flow battery (RF battery ⁇ ) DESCRIPTION OF SYMBOLS 1 Pressure adjustment mechanism 10L Pressure regulation liquid 1A Water seal valve 10 Storage container 11 1st exhaust pipe 12 2nd exhaust pipe 13 Wave-proof cylinder 14 Overflow pipe 1B, 1C, 1D, 1E Liquid supply mechanism 20 Supplementary liquid tank 21 1st piping 22 Second piping 23 Third piping 22b, 23b Valve 30 First water generating device 40 Second water generating device 41 Introducing tube 3 Breathing bag 9 Gas phase communicating tube ⁇ Redox flow battery (RF battery ⁇ ) DESCRIPTION OF SYMBOLS 100 Battery unit 101 Diaphragm 102 Positive electrode cell part 103 Negative electrode cell part 104 Positive electrode 105 Negative electrode 106 Electrolyte tank for positive electrodes 107 Electrolyte tank for negative electrodes 108-111 Piping 112,113 Pump

Abstract

This redox flow battery is provided with: a battery unit provided with a positive electrode, a negative electrode, and a barrier membrane; a positive electrode electrolyte tank for storing a positive electrode electrolyte to be supplied to the battery unit; a negative electrode electrolyte tank for storing a negative electrode electrolyte to be supplied to the battery unit; and a pressure adjustment mechanism which is attached to the positive electrode electrolyte tank and/or the negative electrode electrolyte tank, and which adjusts the pressure of the gas phase inside the electrolyte tank(s). The pressure adjustment mechanism is provided with: a water seal valve provided with a storage container for storing a pressure adjustment liquid, a first exhaust pipe which extends from the gas phase inside the electrolyte tank(s), passes through the gas phase inside the storage container, and opens in the liquid phase inside the storage container, and a second exhaust pipe which has one end thereof open to the gas phase inside the storage container, and another end thereof open to the atmosphere; and a liquid supply mechanism for replenishing the pressure adjustment liquid inside the storage container.

Description

レドックスフロー電池Redox flow battery
 本発明は、電解液を電池ユニットに流通させることで充放電を行うレドックスフロー電池に関する。 The present invention relates to a redox flow battery that performs charging and discharging by circulating an electrolytic solution through a battery unit.
 昨今、地球温暖化への対策として、太陽光発電、風力発電といった自然エネルギー(所謂、再生可能エネルギー)を利用した発電が世界的に活発に行なわれている。これらの発電出力は、天候などの自然条件に大きく左右される。そのため、電力系統に占める自然エネルギーの割合が増えると、電力系統の運用に際しての問題、例えば周波数や電圧の維持が困難になるといった問題が予測される。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の蓄電、負荷平準化などを図ることが挙げられる。 Recently, as a countermeasure against global warming, power generation using natural energy (so-called renewable energy) such as solar power generation and wind power generation has been actively performed worldwide. These power generation outputs greatly depend on natural conditions such as the weather. Therefore, when the proportion of natural energy in the power system increases, problems in operating the power system, for example, problems such as difficulty in maintaining the frequency and voltage are predicted. One solution to this problem is to install large-capacity storage batteries to smooth output fluctuations, store surplus power, and level load.
 大容量の蓄電池の一つに、図6の動作原理図に示すレドックスフロー電池(以下、RF電池β)がある。RF電池βは、代表的には、交流/直流変換器を介して、発電部(例えば、太陽光発電装置や風力発電装置、その他一般の発電所など)と負荷(需要家など)との間に接続され、発電部で発電した電力を充電して蓄え、又は、蓄えた電力を放電して負荷に供給する。 One of the large-capacity storage batteries is a redox flow battery (hereinafter referred to as an RF battery β) shown in FIG. The RF battery β is typically connected between a power generation unit (for example, a solar power generation device, a wind power generation device, other general power plants, etc.) and a load (such as a customer) via an AC / DC converter. The power generated by the power generation unit is charged and stored, or the stored power is discharged and supplied to the load.
 RF電池βには、単数あるいは複数の電池ユニット100が備わっている。電池ユニット100は、正極電極104を内蔵する正極セル部102と、負極電極105を内蔵する負極セル部103と、両セル部102,103を分離すると共にイオンを透過する隔膜101と、を備え、充放電を担う。正極セル部102には、正極電解液を貯留する正極用の電解液タンク106が配管108,110を介して接続されている。負極セル部103には、負極電解液を貯留する負極用の電解液タンク107が配管109,111を介して接続されている。また、配管108,109にはそれぞれ、各電解液を循環させるポンプ112,113が設けられている。電池ユニット100は、配管108~111とポンプ112,113によって、正極セル部102(正極電極104)及び負極セル部103(負極電極105)にそれぞれ正極用タンク106の正極電解液及び負極用タンク107の負極電解液を循環供給して、両極における電解液中の活物質となる金属イオン(図示例ではバナジウムイオン)の価数変化に伴って充放電を行う。 The RF battery β includes one or more battery units 100. The battery unit 100 includes a positive electrode cell part 102 containing a positive electrode 104, a negative electrode cell part 103 containing a negative electrode 105, and a diaphragm 101 that separates both the cell parts 102 and 103 and transmits ions. Responsible for charge and discharge. A positive electrode electrolyte tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell unit 102 via pipes 108 and 110. A negative electrode electrolyte tank 107 for storing a negative electrode electrolyte is connected to the negative electrode cell unit 103 via pipes 109 and 111. The pipes 108 and 109 are provided with pumps 112 and 113 for circulating the electrolytes, respectively. The battery unit 100 is connected to the positive electrode cell section 102 (positive electrode 104) and the negative electrode cell section 103 (negative electrode 105) by the pipes 108 to 111 and the pumps 112 and 113, respectively. The negative electrode electrolyte solution is circulated and charged and charged / discharged as the valence of metal ions (vanadium ions in the example shown in the drawing) change as the active material in the electrolyte solution at both electrodes.
 ここで、RF電池βでは、設置環境の温度変化や充放電時の発熱などによって電解液タンク106,107内の気相が膨張あるいは収縮する。例えば、電解液タンク106,107内が大気圧よりも高い正圧となった場合、電解液タンク106,107が破裂する恐れがある。また、電解液タンク106,107内が大気圧よりも低い負圧となった場合、電解液タンク106,107が凹んで損傷する恐れがある。その対策として、レドックスフロー電池に、電解液タンク106,107の内部を大気圧付近に調整する圧力調整機構を設けることが提案されている(例えば、特許文献1を参照)。 Here, in the RF battery β, the gas phase in the electrolyte tanks 106 and 107 expands or contracts due to temperature changes in the installation environment, heat generation during charging and discharging, and the like. For example, when the inside of the electrolyte tanks 106 and 107 becomes a positive pressure higher than the atmospheric pressure, the electrolyte tanks 106 and 107 may burst. Further, when the inside of the electrolyte tanks 106 and 107 has a negative pressure lower than the atmospheric pressure, the electrolyte tanks 106 and 107 may be dented and damaged. As a countermeasure, it has been proposed to provide a redox flow battery with a pressure adjustment mechanism that adjusts the inside of the electrolyte tanks 106 and 107 to near atmospheric pressure (see, for example, Patent Document 1).
 特許文献1には、調圧液を蓄えた第1気圧保持容器と第2気圧保持容器とで構成される圧力調整機構が開示されている(特許文献1の図1参照)。第1気圧保持容器内の気相は、第1連通手段によって貯液タンク(電解液タンク)内の気相に連通されており、第1気圧保持容器内の液相と第2気圧保持容器内の液相とが第2連通手段によって連通されている。さらに第2気圧保持容器内の気相は大気に開放されている。このような構成の圧力調整機構であれば、電解液タンクが正圧となった場合、特許文献1の図2に示すように第1気圧保持容器の液面が下がり、第2気圧保持容器の液面が上がることで、電解液タンク内の圧力が大気圧付近まで下がる。一方、電解液タンクが負圧になった場合、特許文献1の図3に示すように第1気圧保持容器の液面が上がり、第2気圧保持容器の液面が下がることで、電解液タンク内の圧力が大気圧付近まで上がる。 Patent Document 1 discloses a pressure adjustment mechanism including a first atmospheric pressure holding container and a second atmospheric pressure holding container in which a pressure adjusting liquid is stored (see FIG. 1 of Patent Document 1). The gas phase in the first atmospheric pressure holding container is communicated with the gas phase in the liquid storage tank (electrolyte tank) by the first communication means, and the liquid phase in the first atmospheric pressure holding container and the second atmospheric pressure holding container are communicated. The liquid phase is communicated with the second communicating means. Further, the gas phase in the second atmospheric pressure holding container is open to the atmosphere. With the pressure adjusting mechanism having such a configuration, when the electrolyte tank becomes positive pressure, the liquid level of the first atmospheric pressure holding container is lowered as shown in FIG. As the liquid level rises, the pressure in the electrolyte tank drops to near atmospheric pressure. On the other hand, when the electrolyte tank has a negative pressure, the liquid level of the first atmospheric pressure holding container is raised and the liquid level of the second atmospheric pressure holding container is lowered as shown in FIG. The internal pressure rises to near atmospheric pressure.
 さらに上記特許文献1の構成によれば、電解液タンク内が負圧となったときに、電解液タンク内に大気が吸い込まれることを抑制することができ、大気によって電解液が劣化することを抑制することができる。電解液タンクに大気が吸い込まれることを抑制できるのは、第2気圧保持容器と第1気圧保持容器とを繋ぐ第2連通手段に調圧液が満ちているからである。 Furthermore, according to the configuration of Patent Document 1, it is possible to prevent the atmosphere from being sucked into the electrolyte tank when the inside of the electrolyte tank becomes negative pressure, and to prevent the electrolyte from being deteriorated by the atmosphere. Can be suppressed. The reason why the atmosphere can be prevented from being sucked into the electrolytic solution tank is that the pressure adjusting liquid is filled in the second communication means that connects the second atmospheric pressure holding container and the first atmospheric pressure holding container.
特開2001-253495号公報JP 2001-253495 A
 しかし、特許文献1の構成では、第2気圧保持容器内の気相が大気に開放しているため、容器内の調圧液が蒸散する。そのため、調圧液の液量をかなりの頻度で監視し、適宜補充する必要がある。このようなレドックスフロー電池の運転時のメンテナンスの手間が煩雑であるため、その手間を低減することが望まれている。 However, in the configuration of Patent Document 1, since the gas phase in the second atmospheric pressure holding container is open to the atmosphere, the pressure adjusting liquid in the container evaporates. For this reason, it is necessary to monitor the amount of the pressure-regulating liquid at a considerable frequency and replenish it appropriately. Since the labor of maintenance during operation of such a redox flow battery is complicated, it is desired to reduce the labor.
 本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、運転時のメンテナンスの手間が少ないレドックスフロー電池を提供することにある。 The present invention has been made in view of the above circumstances, and one object of the present invention is to provide a redox flow battery that requires less maintenance during operation.
 本発明の一態様に係るレドックスフロー電池は、電池ユニットと、正極用の電解液タンクと、負極用の電解液タンクと、圧力調整機構と、を備える。電池ユニットは、正極電極、負極電極、および隔膜を有する。正極用の電解液タンクは、電池ユニットに供給される正極電解液を貯留する。負極用の電解液タンクは、電池ユニットに供給される負極電解液を貯留する。圧力調整機構は、正極用の電解液タンクおよび負極用の電解液タンクの少なくとも一方に取り付けられ、当該電解液タンク内の気相の圧力を調節する。その圧力調整機構は、調圧液を貯留する貯留容器、電解液タンク内の気相から伸び、貯留容器内の気相を通って、貯留容器内の液相内に開口する第一排気管、および一端が貯留容器内の気相に開口し、他端が大気に開口する第二排気管を備える水封弁と、貯留容器内に調圧液を補給する給液機構と、を備える。 The redox flow battery according to one embodiment of the present invention includes a battery unit, an electrolyte tank for a positive electrode, an electrolyte tank for a negative electrode, and a pressure adjustment mechanism. The battery unit has a positive electrode, a negative electrode, and a diaphragm. The positive electrode electrolyte tank stores the positive electrode electrolyte supplied to the battery unit. The negative electrode electrolyte solution tank stores the negative electrode electrolyte supplied to the battery unit. The pressure adjustment mechanism is attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank, and adjusts the pressure of the gas phase in the electrolyte tank. The pressure adjusting mechanism is a storage container that stores the pressure adjusting liquid, a first exhaust pipe that extends from the gas phase in the electrolyte tank, passes through the gas phase in the storage container, and opens into the liquid phase in the storage container, And a water seal valve provided with a second exhaust pipe having one end opened to the gas phase in the storage container and the other end opened to the atmosphere, and a liquid supply mechanism for replenishing the pressure adjusting liquid in the storage container.
 上記レドックスフロー電池は、メンテナンスの手間が少ない。 The above redox flow battery requires less maintenance.
実施形態に係るレドックスフロー電池の概略構成図である。It is a schematic block diagram of the redox flow battery which concerns on embodiment. 実施形態1に示す圧力調整機構の概略構成図である。2 is a schematic configuration diagram of a pressure adjustment mechanism shown in Embodiment 1. FIG. 実施形態2に示す圧力調整機構の概略構成図である。6 is a schematic configuration diagram of a pressure adjustment mechanism shown in Embodiment 2. FIG. 実施形態3に示す圧力調整機構の概略構成図である。It is a schematic block diagram of the pressure adjustment mechanism shown in Embodiment 3. 実施形態4に示す圧力調整機構の概略構成図である。It is a schematic block diagram of the pressure adjustment mechanism shown in Embodiment 4. レドックスフロー電池の動作原理図である。It is an operation | movement principle figure of a redox flow battery.
[本発明の実施形態の説明]
 最初に本発明に係る実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment according to the present invention will be listed and described.
[1]実施形態に係るレドックスフロー電池は、電池ユニットと、正極用の電解液タンクと、負極用の電解液タンクと、圧力調整機構と、を備える。電池ユニットは、正極電極、負極電極、および隔膜を有する。正極用の電解液タンクは、電池ユニットに供給される正極電解液を貯留する。負極用の電解液タンクは、電池ユニットに供給される負極電解液を貯留する。圧力調整機構は、正極用の電解液タンクおよび負極用の電解液タンクの少なくとも一方に取り付けられ、当該電解液タンク内の気相の圧力を調節する。その圧力調整機構は、調圧液を貯留する貯留容器、電解液タンク内の気相から伸び、貯留容器内の気相を通って、貯留容器内の液相内に開口する第一排気管、および一端が貯留容器内の気相に開口し、他端が大気に開口する第二排気管を備える水封弁と、貯留容器内に調圧液を補給する給液機構と、を備える。 [1] A redox flow battery according to an embodiment includes a battery unit, an electrolyte tank for a positive electrode, an electrolyte tank for a negative electrode, and a pressure adjustment mechanism. The battery unit has a positive electrode, a negative electrode, and a diaphragm. The positive electrode electrolyte tank stores the positive electrode electrolyte supplied to the battery unit. The negative electrode electrolyte solution tank stores the negative electrode electrolyte supplied to the battery unit. The pressure adjustment mechanism is attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank, and adjusts the pressure of the gas phase in the electrolyte tank. The pressure adjusting mechanism is a storage container that stores the pressure adjusting liquid, a first exhaust pipe that extends from the gas phase in the electrolyte tank, passes through the gas phase in the storage container, and opens into the liquid phase in the storage container, And a water seal valve provided with a second exhaust pipe having one end opened to the gas phase in the storage container and the other end opened to the atmosphere, and a liquid supply mechanism for replenishing the pressure adjusting liquid in the storage container.
 上記レドックスフロー電池の圧力調整機構に備わる水封弁は、電解液タンクの内部が正圧となったときに電解液タンク内の気体を大気に放出することができる。電解液タンク内の気体の移動状態を具体的に説明すると、電解液タンク内の気体は第一排気管を通って貯留容器内の液相に排出され、貯留容器内の気相に移行する。貯留容器の気体は第二排気管を介して大気に放出されるので、結果的に電解液タンク内の気体は外部に放出されることになり、電解液タンクの破裂が防止される。一方、上記水封弁は、電解液タンクの内部が負圧になったとき、電解液タンクの圧力を上げることにも寄与する。電解液タンクが負圧になったとき、第一排気管に調圧液が吸い込まれて、その分だけ第一排気管内の気相の容積が減少するからである。 The water seal valve provided in the pressure adjusting mechanism of the redox flow battery can release the gas in the electrolyte tank to the atmosphere when the inside of the electrolyte tank becomes positive pressure. The movement state of the gas in the electrolytic solution tank will be specifically described. The gas in the electrolytic solution tank is discharged to the liquid phase in the storage container through the first exhaust pipe, and moves to the gas phase in the storage container. Since the gas in the storage container is released to the atmosphere through the second exhaust pipe, as a result, the gas in the electrolytic solution tank is released to the outside, and the electrolytic solution tank is prevented from bursting. On the other hand, the water seal valve also contributes to increasing the pressure of the electrolyte tank when the inside of the electrolyte tank becomes negative pressure. This is because when the electrolyte tank becomes negative pressure, the pressure adjusting liquid is sucked into the first exhaust pipe, and the volume of the gas phase in the first exhaust pipe decreases accordingly.
 また、上記圧力調整機構を備えるレドックスフロー電池は、メンテナンスの手間が少ないレドックスフロー電池である。それは、水封弁の貯留容器に調圧液を補給する給液機構が備わっているからである。 Also, the redox flow battery provided with the pressure adjusting mechanism is a redox flow battery that requires less maintenance. This is because a liquid supply mechanism for replenishing the pressure adjusting liquid to the storage container of the water seal valve is provided.
[2]実施形態のレドックスフロー電池として、給液機構は、補液タンクと第一配管と第二配管とを備える形態を挙げることができる。補液タンクは、補充用の調圧液を貯留する部材である。第一配管は、補液タンク内の気相から伸び、貯留容器内の気相を通って、貯留容器内の液相の液面近傍に開口し、貯留容器内の液面によって開口部が開閉される部材である。第二配管は、補液タンク内の液相と貯留容器内の気相とに連通され、第一配管の開口部が開放されたときに補液タンクから貯留容器に調圧液を供給する部材である。 [2] As the redox flow battery according to the embodiment, the liquid supply mechanism may include a replacement fluid tank, a first pipe, and a second pipe. The replacement fluid tank is a member that stores a replenishing pressure adjustment fluid. The first pipe extends from the gas phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is opened and closed by the liquid level in the storage container. It is a member. The second pipe is a member that communicates with the liquid phase in the replacement liquid tank and the gas phase in the storage container, and supplies the pressure adjusting liquid from the replacement liquid tank to the storage container when the opening of the first pipe is opened. .
 上記構成によれば、水封弁の貯留容器内の調圧液が減少したとき、補液タンクから貯留容器に自動で調圧液を補充することができる。その結果、調圧液の監視・補充の手間を大幅に低減することができる。また、貯留容器内の調圧液が減少し過ぎて、電解液タンク内の気相が大気と連通することを抑制することができる。 According to the above configuration, when the pressure adjusting liquid in the storage container of the water seal valve decreases, the pressure adjusting liquid can be automatically replenished from the replacement liquid tank to the storage container. As a result, the trouble of monitoring and replenishing the pressure adjusting liquid can be greatly reduced. Moreover, it can suppress that the pressure regulation liquid in a storage container reduces too much, and the gaseous phase in an electrolyte solution tank communicates with air | atmosphere.
[3]実施形態のレドックスフロー電池として、給液機構は、補液タンクと第三配管とを備える形態を挙げることができる。補液タンクは、補充用の調圧液を貯留する部材であって、その気相は密閉されている。第三配管は、補液タンク内の液相から伸び、貯留容器内の気相を通って、貯留容器内の液相の液面近傍に開口し、貯留容器内の液面によって開口部が開閉される部材である。 [3] As a redox flow battery according to the embodiment, the liquid supply mechanism may include a replacement fluid tank and a third pipe. The replacement fluid tank is a member for storing a replenishing pressure adjusting solution, and its gas phase is sealed. The third pipe extends from the liquid phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is opened and closed by the liquid level in the storage container. It is a member.
 上記構成によれば、上記[2]の構成と同様に、水封弁の貯留容器内の調圧液が減少したとき、補液タンクから貯留容器に自動で調圧液を補充することができる。また、この構成は、上記[2]の構成よりもシンプルで、作製が容易である。 According to the above configuration, similarly to the configuration of [2] above, when the pressure adjustment liquid in the storage container of the water seal valve decreases, the pressure adjustment liquid can be automatically replenished from the replacement liquid tank to the storage container. Further, this configuration is simpler than the configuration [2] and is easy to manufacture.
[4]補液タンクを備える実施形態のレドックスフロー電池として、水封弁はさらに、第一排気管の開口部側の部分を内部に収納し、両端が開口した防波筒を備える形態を挙げることができる。この防波筒の下方側の開口部、および上方側の開口部はそれぞれ、第一排気管の開口部よりも低い位置、および液面よりも高い位置に開口している。 [4] As a redox flow battery according to an embodiment including a replacement fluid tank, the water seal valve further includes a wave-shielding tube that houses a portion on the opening side of the first exhaust pipe and is open at both ends. Can do. The opening on the lower side and the opening on the upper side of the wave preventing cylinder are opened at a position lower than the opening of the first exhaust pipe and a position higher than the liquid level, respectively.
 水封弁に防波筒を設けることで、第一排気管から排出される気泡によって生じる貯留容器内の液面の波立ちを抑え、補液タンクからの調圧液の供給状態を安定化させることができ、補液タンクから貯留容器への不必要な調圧液の供給を抑制することができる。水封弁に設けられる防波筒の下方側の開口部が第一排気管の開口部よりも下側に開口しているため、電解液タンクから第一排気管に排出された気泡の多くが防波筒内の液相に入り込む。防波筒の上方側開口部は液面よりも高い位置に開口しているため、防波筒内の液相に入り込んだ気泡は、防波筒の内部の液面で弾ける。防波筒の内部の液面は、防波筒によって防波筒の外部の液面と区画されているため、防波筒の外側の液面の波立ちを抑制することができる。貯留容器内の液面の波立ちを抑制できれば、液面によって開閉される配管(上記[2]の構成では第一配管、上記[3]の構成では第三配管)の開口部が頻繁に開閉されることを抑制できる。その結果、補液タンクから貯留容器への調圧液の供給を適切な量とすることができる。 By providing a wave-proof cylinder on the water seal valve, it is possible to suppress the undulation of the liquid level in the storage container caused by bubbles discharged from the first exhaust pipe, and to stabilize the supply state of the pressure adjusting liquid from the replacement liquid tank. It is possible to suppress unnecessary supply of the pressure adjusting liquid from the replacement fluid tank to the storage container. Since the opening on the lower side of the wave shield provided in the water seal valve opens below the opening of the first exhaust pipe, many of the bubbles discharged from the electrolyte tank to the first exhaust pipe It enters the liquid phase in the wave barrier. Since the upper opening of the wave-breaking cylinder is opened at a position higher than the liquid level, bubbles that have entered the liquid phase in the wave-breaking cylinder can be repelled by the liquid level inside the wave-breaking cylinder. Since the liquid level inside the wave breaker is separated from the liquid level outside the wave breaker by the wave breaker, the liquid surface outside the wave breaker can be suppressed. If the liquid level in the storage container can be suppressed, the opening of the pipe that is opened and closed by the liquid level (the first pipe in the configuration [2] and the third pipe in the configuration [3]) is frequently opened and closed. Can be suppressed. As a result, the supply of the pressure adjusting liquid from the replacement fluid tank to the storage container can be made an appropriate amount.
[5]本実施形態のレドックスフロー電池として、給液機構は、貯留容器内の気相に含まれる水蒸気を凝結させ、貯留容器内の液相に戻す第一の水生成装置を備える形態を挙げることができる。 [5] As the redox flow battery of the present embodiment, the liquid supply mechanism includes a first water generating device that condenses water vapor contained in the gas phase in the storage container and returns it to the liquid phase in the storage container. be able to.
 貯留容器内の気相に含まれる水蒸気を用いて調圧液を補充することで、人の手による調圧液の補充頻度を大幅に低減することができる。 Replenishment of the pressure adjustment liquid using water vapor contained in the gas phase in the storage container can significantly reduce the frequency of replenishment of the pressure adjustment liquid by human hands.
[6]本実施形態のレドックスフロー電池として、給液機構は、大気中に含まれる水蒸気を凝結させ、貯留容器内の液相に導入する第二の水生成装置を備える形態を挙げることができる。 [6] As the redox flow battery of the present embodiment, the liquid supply mechanism may include a second water generation device that condenses water vapor contained in the atmosphere and introduces it into the liquid phase in the storage container. .
 大気中に含まれる水蒸気を用いて調圧液を補充することで、人の手による調圧液の補充頻度を大幅に低減することができる。 By replenishing the pressure adjustment liquid using water vapor contained in the atmosphere, the replenishment frequency of the pressure adjustment liquid by human hands can be greatly reduced.
[7]本実施形態のレドックスフロー電池として、水封弁はさらに、貯留容器の側部または底部に開口し、所定量を超える調圧液を外部に排出するオーバーフロー管を備える形態を挙げることができる。 [7] As the redox flow battery of the present embodiment, the water seal valve may further include an overflow pipe that opens to the side portion or bottom portion of the storage container and discharges the regulated liquid exceeding a predetermined amount to the outside. it can.
 貯留容器内の気相には多くの水蒸気が含まれているため、レドックスフロー電池の設置環境の温度が低下したとき、貯留容器内の水蒸気が結露して貯留容器内の調圧液が増加する場合がある。貯留容器内の調圧液が多くなりすぎると、調圧する圧力値が上昇するといった問題や、貯留容器から調圧液が溢れて水封弁が機能しなくなるといった問題が生じる恐れがある。オーバーフロー管を備える圧力調整機構によれば、貯留容器内に貯留される調圧液を所定量以下に制限することができるので、上記問題の発生を抑制することができる。 Since the vapor phase in the storage container contains a large amount of water vapor, when the temperature of the environment in which the redox flow battery is installed decreases, the water vapor in the storage container condenses and the pressure adjustment liquid in the storage container increases. There is a case. If the amount of pressure adjusting liquid in the storage container increases too much, there may be a problem that the pressure value to be adjusted increases, or a problem that the pressure adjusting liquid overflows from the storage container and the water seal valve does not function. According to the pressure adjustment mechanism including the overflow pipe, the pressure-regulating liquid stored in the storage container can be limited to a predetermined amount or less, so that the occurrence of the above problem can be suppressed.
[8]本実施形態のレドックスフロー電池として、正極用の電解液タンクおよび負極用の電解液タンクの少なくとも一方に取り付けられる呼吸袋を備える形態を挙げることができる。 [8] The redox flow battery of the present embodiment may include a form provided with a breathing bag attached to at least one of a positive electrode electrolyte tank and a negative electrode electrolyte tank.
 呼吸袋を備えるレドックスフロー電池によれば、電解液タンクの内部が負圧になったときに、電解液タンクが凹むことを効果的に防止することができる。 According to the redox flow battery provided with a breathing bag, it is possible to effectively prevent the electrolyte tank from being recessed when the inside of the electrolyte tank becomes negative pressure.
[本発明の実施形態の詳細]
 本実施形態に係るレドックスフロー電池(以下、RF電池α)を図面に基づいて説明する。なお、本発明はこれらの例示に限定されるわけではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
[Details of the embodiment of the present invention]
A redox flow battery (hereinafter referred to as an RF battery α) according to this embodiment will be described with reference to the drawings. In addition, this invention is not necessarily limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
<実施形態1>
 図1に示すRF電池αは、気相連通管9と圧力調整機構1を備えること以外は、図6の動作原理図を用いて説明したRF電池βと同様の構成を備える。従って、図1のRF電池αにおける図6のRF電池βと共通の構成については、同一の符号を付して説明を省略する。
<Embodiment 1>
The RF battery α shown in FIG. 1 has the same configuration as the RF battery β described with reference to the operation principle diagram of FIG. 6 except that the gas phase communication pipe 9 and the pressure adjustment mechanism 1 are provided. Therefore, in the RF battery α of FIG. 1, the same components as those of the RF battery β of FIG.
 ≪RF電池の全体構成≫
 図1に示すRF電池αは、従来のRF電池βと同様に、電池ユニット100と、この電池ユニット100に電解液を供給する循環機構(電解液タンク106,107、配管108~111、ポンプ112,113)とを備える。但し、図1に示すRF電池αにおける各部材の配置は、実際の配置に近い配置としている。例えば、図1の電解液タンク106,107の位置は、電池ユニット100よりも低い位置に配置されている。
≪Overall configuration of RF battery≫
As in the conventional RF battery β, the RF battery α shown in FIG. 1 has a battery unit 100 and a circulation mechanism ( electrolyte tanks 106 and 107, pipes 108 to 111, a pump 112 for supplying an electrolytic solution to the battery unit 100. 113). However, the arrangement of each member in the RF battery α shown in FIG. 1 is close to the actual arrangement. For example, the positions of the electrolyte tanks 106 and 107 in FIG. 1 are arranged at a position lower than the battery unit 100.
 このRF電池αは、正極用の電解液タンク106内の気相と、負極用の電解液タンク107内の気相と、を連通する気相連通管9を備える。気相連通管9によって、両電解液タンク106,107内の気相を一体に扱うことができる。この気相連通管9の途中には、メンテナンス用のバルブを設けても構わない。 The RF battery α includes a gas phase communication pipe 9 that communicates the gas phase in the electrolyte tank 106 for the positive electrode and the gas phase in the electrolyte tank 107 for the negative electrode. The gas phase communication pipe 9 can handle the gas phases in the electrolyte tanks 106 and 107 as a unit. A maintenance valve may be provided in the middle of the gas phase communication pipe 9.
 また、RF電池αは、各電解液タンク106,107に取り付けられる二つの圧力調整機構1と、各電解液タンク106,107に取り付けられる二つの呼吸袋3と、を備える。これらの部材1,3はいずれも、電解液タンク106,107内の圧力を調整するためのものであり、圧力調整機構1は主として電解液タンク106,107内が正圧になったときに機能し、呼吸袋3は主として電解液タンク106,107内が負圧になったときに機能する。 Further, the RF battery α includes two pressure adjusting mechanisms 1 attached to the electrolyte tanks 106 and 107, and two breathing bags 3 attached to the electrolyte tanks 106 and 107, respectively. These members 1 and 3 are for adjusting the pressure in the electrolyte tanks 106 and 107, and the pressure adjusting mechanism 1 mainly functions when the pressure in the electrolyte tanks 106 and 107 becomes positive. The breathing bag 3 functions mainly when the inside of the electrolyte tanks 106 and 107 becomes a negative pressure.
 ≪圧力調整機構≫
 圧力調整機構1は、図2に示すように水封弁1Aと給液機構1Bとを備える。圧力調整機構1を各電解液タンク106,107に一つずつ設けているのは、いずれか一方が故障しても他方が機能することで、電解液タンク106,107内の圧力を調整できるようにするためである。
≪Pressure adjustment mechanism≫
The pressure adjustment mechanism 1 includes a water seal valve 1A and a liquid supply mechanism 1B as shown in FIG. One pressure adjusting mechanism 1 is provided in each of the electrolyte tanks 106 and 107 so that even if one of them fails, the other functions so that the pressure in the electrolyte tanks 106 and 107 can be adjusted. It is to make it.
  [水封弁]
 圧力調整機構1の水封弁1Aは、貯留容器10と第一排気管11と第二排気管12とを備える。貯留容器10は、調圧液10Lを貯留する部材である。第一排気管11は、電解液タンク106(107)内の気相から伸び、貯留容器10内の気相を通って、貯留容器10内の液相内に開口する部材である。第二排気管12は、その一端が貯留容器10内の気相に開口し、他端が大気に開口する部材である。
[Water seal valve]
The water seal valve 1 </ b> A of the pressure adjustment mechanism 1 includes a storage container 10, a first exhaust pipe 11, and a second exhaust pipe 12. The storage container 10 is a member that stores the pressure adjusting liquid 10L. The first exhaust pipe 11 is a member that extends from the gas phase in the electrolyte tank 106 (107), passes through the gas phase in the storage container 10, and opens into the liquid phase in the storage container 10. The second exhaust pipe 12 is a member having one end opened to the gas phase in the storage container 10 and the other end opened to the atmosphere.
 調圧液10Lは、安価で入手が容易な水もしくは水溶液を用いることができる。水溶液としては、例えば希硫酸溶液などを挙げることができる。希硫酸溶液は、低温環境下であっても凍結し難いため、好ましい。 The pressure adjusting liquid 10L may be water or an aqueous solution that is inexpensive and easily available. Examples of the aqueous solution include dilute sulfuric acid solution. The dilute sulfuric acid solution is preferable because it is difficult to freeze even in a low temperature environment.
 貯留容器10、第一排気管11、および第二排気管12は、例えばポリ塩化ビニル(PVC)などの樹脂で構成することができる。ポリ塩化ビニルは、耐水性、耐酸性、耐アルカリ性、耐溶剤性で、安価であるため、好ましい。貯留容器10内の調圧液10Lの量を外部から確認できるように、貯留容器10は透明であることが好ましい。このような要請にもPVCが応えることができる。もちろん、第一排気管11および第二排気管12も透明として構わない。 The storage container 10, the first exhaust pipe 11, and the second exhaust pipe 12 can be made of a resin such as polyvinyl chloride (PVC), for example. Polyvinyl chloride is preferable because it is water resistant, acid resistant, alkali resistant, solvent resistant and inexpensive. The storage container 10 is preferably transparent so that the amount of the pressure adjusting liquid 10L in the storage container 10 can be confirmed from the outside. PVC can respond to such a request. Of course, the first exhaust pipe 11 and the second exhaust pipe 12 may be transparent.
 貯留容器10の内容積は、0.2リットル(200cm)以上20リットル以下とすることが好ましい。この範囲の内容積を有する貯留容器10であれば、水封弁1Aとしての機能を十分に発揮することができ、しかも水封弁1Aが大型化することを回避することができる。 The internal volume of the storage container 10 is preferably 0.2 liters (200 cm 3 ) or more and 20 liters or less. If it is the storage container 10 which has the internal volume of this range, the function as water seal valve 1A can fully be exhibited, and it can avoid that water seal valve 1A enlarges.
 電解液タンク106(107)の気相に繋がる第一排気管11の内径は、1cm以上10cm以下とすることが好ましい。この範囲の内径を有する第一排気管11であれば、電解液タンク107からの気体の排出がスムーズで、第一排気管11から貯留容器10内の液相に排出された気体によって形成される気泡のサイズが大きくなり過ぎることを回避できる。気泡が大きくなり過ぎると、調圧液10Lの液面が激しく泡立ち、調圧液10Lの蒸発量が大きくなる。なお、本例では、第一排気管11から排出される気泡の排出方向を一方側に限定するために、第一排気管11の開口端を斜めにカットしている。 The inner diameter of the first exhaust pipe 11 connected to the vapor phase of the electrolyte tank 106 (107) is preferably 1 cm or more and 10 cm or less. If it is the 1st exhaust pipe 11 which has an internal diameter of this range, discharge | emission of the gas from the electrolyte solution tank 107 will be smooth, and it will be formed with the gas discharged | emitted from the 1st exhaust pipe 11 to the liquid phase in the storage container 10. It is possible to avoid the bubble size from becoming too large. If the bubbles become too large, the liquid level of the pressure adjusting liquid 10L will bubble violently and the amount of evaporation of the pressure adjusting liquid 10L will increase. In this example, the opening end of the first exhaust pipe 11 is cut obliquely in order to limit the discharge direction of the bubbles discharged from the first exhaust pipe 11 to one side.
 第二排気管12の内径は、1cm以上10cm以下とすることが好ましい。この範囲の内径を有する第二排気管12であれば、貯留容器10内の気体を速やかに外部に排出することができる。なお、第二排気管12は貯留容器10を大気に開口できる構成であれば良く、貯留容器10に開口部を形成する短管でも構わない。 The inner diameter of the second exhaust pipe 12 is preferably 1 cm or more and 10 cm or less. If it is the 2nd exhaust pipe 12 which has the internal diameter of this range, the gas in the storage container 10 can be rapidly discharged | emitted outside. The second exhaust pipe 12 only needs to be configured to open the storage container 10 to the atmosphere, and may be a short pipe that forms an opening in the storage container 10.
 上記構成を備える水封弁1Aは、電解液タンク106,107内が正圧になったときに電解液タンク106,107の内部の圧力を大気圧付近に調整する機能を持つ。具体的には、電解液タンク106,107の内部が正圧となったとき、電解液タンク106,107内の気体は第一排気管11を通って貯留容器10内の液相に排出される(太線矢印参照)。液相に排出された気体は気泡となって液相中を上昇し、貯留容器10内の気相に移行する。貯留容器10の気体は、太線矢印で示すように第二排気管12を介して大気に放出される。このように電解液タンク106,107内の気体は、水封弁1Aによって外部に放出され、電解液タンク106,107の内部の圧力が大気圧付近に調整される。その結果、電解液タンク106,107の破裂を防止することができる。 The water seal valve 1A having the above-described configuration has a function of adjusting the pressure inside the electrolyte tanks 106 and 107 to near atmospheric pressure when the inside of the electrolyte tanks 106 and 107 becomes a positive pressure. Specifically, when the inside of the electrolyte tanks 106 and 107 becomes positive pressure, the gas in the electrolyte tanks 106 and 107 passes through the first exhaust pipe 11 and is discharged to the liquid phase in the storage container 10. (See thick arrow). The gas discharged to the liquid phase becomes bubbles and rises in the liquid phase and moves to the gas phase in the storage container 10. The gas in the storage container 10 is released to the atmosphere through the second exhaust pipe 12 as indicated by the thick arrow. In this way, the gas in the electrolyte tanks 106 and 107 is released to the outside by the water seal valve 1A, and the pressure inside the electrolyte tanks 106 and 107 is adjusted to near atmospheric pressure. As a result, rupture of the electrolyte tanks 106 and 107 can be prevented.
 また、上記構成を備える水封弁1Aは、電解液タンク106,107が負圧になったときに電解液タンク106,107の内部の圧力を大気圧に近づける機能も持つ。電解液タンク106,107が負圧になったとき、第一排気管11に調圧液10Lが吸い込まれて、その分だけ第一排気管11内の気相の容積が減少する。その結果、電解液タンク106,107の内部の圧力が上昇し、電解液タンク106,107の凹みが抑制される。 Further, the water seal valve 1A having the above-described configuration also has a function of bringing the pressure inside the electrolyte tanks 106 and 107 close to atmospheric pressure when the electrolyte tanks 106 and 107 become negative pressure. When the electrolyte tanks 106 and 107 have a negative pressure, the pressure adjusting liquid 10L is sucked into the first exhaust pipe 11, and the volume of the gas phase in the first exhaust pipe 11 decreases accordingly. As a result, the pressure inside the electrolyte tanks 106 and 107 increases, and the depression of the electrolyte tanks 106 and 107 is suppressed.
 なお、電解液タンク106,107内部で発生する気体は、有害な気体である場合もある。そのため、第一排気管11の途中、あるいは第二排気管12の途中に、ガス除去装置を設けることが好ましい。ガス除去装置としては、例えば特開2007-311209号公報に記載のもの(例えば、酸化銅を用いたフィルター)を利用することができる。 Note that the gas generated in the electrolyte tanks 106 and 107 may be harmful gas. Therefore, it is preferable to provide a gas removal device in the middle of the first exhaust pipe 11 or in the middle of the second exhaust pipe 12. As the gas removal device, for example, the one described in JP 2007-31209 A (for example, a filter using copper oxide) can be used.
 本例の水封弁1Aはさらに、貯留容器10の内部に防波筒13(破線参照)を備えていても良い。防波筒13は、第一排気管11の開口部側の部分を内部に収納し、第一排気管11から排出される気泡によって生じる貯留容器10中の液面の波立ちを抑える部材である。防波筒13の両端は開口している。 The water seal valve 1 </ b> A of this example may further include a wave blocking tube 13 (see a broken line) inside the storage container 10. The wave preventing tube 13 is a member that accommodates a portion of the first exhaust pipe 11 on the opening side and suppresses the ripple of the liquid level in the storage container 10 caused by bubbles discharged from the first exhaust pipe 11. Both ends of the wave barrier 13 are open.
 防波筒13の下方側の開口部は第一排気管11の開口部よりも下側に開口しているため、電解液タンク106,107から第一排気管11に排出された気泡の多くが防波筒13内の液相に入り込む。一方、防波筒13の上方側開口部は液面よりも高い位置に開口しているため、防波筒13内の液相に入り込んだ気泡は、防波筒13の内部の液面で弾ける。防波筒13の内部の液面は、防波筒13によって防波筒13の外部の液面と区画されているため、防波筒13の外側の液面の波立ち・泡立ちを抑制することができる。その結果として得られる効果については後述する。 Since the opening on the lower side of the wave-breaking tube 13 is opened below the opening of the first exhaust pipe 11, many of the bubbles discharged from the electrolyte tanks 106 and 107 to the first exhaust pipe 11 are formed. It enters the liquid phase in the wave-breaking cylinder 13. On the other hand, since the opening on the upper side of the wave preventing tube 13 is opened at a position higher than the liquid level, the bubbles that have entered the liquid phase in the wave preventing tube 13 can be repelled by the liquid level inside the wave preventing tube 13. . Since the liquid surface inside the wave preventing tube 13 is partitioned from the liquid surface outside the wave preventing tube 13 by the wave preventing tube 13, it is possible to suppress the undulation and foaming of the liquid surface outside the wave preventing tube 13. it can. The effect obtained as a result will be described later.
 また、本例の水封弁1Aはさらに、貯留容器10の側部に開口するオーバーフロー管14を備える。オーバーフロー管14は、所定量を超える貯留容器10内の調圧液10Lを外部に排出することで、貯留容器10内に貯留される調圧液10Lを所定量以下に制限する部材である。RF電池αの設置環境の温度が低下したとき、貯留容器10内の水蒸気が結露して貯留容器10内の調圧液10Lが増加する。調圧液10Lが増加すると、調圧する圧力値が増加するといった問題や、貯留容器10から調圧液10Lが溢れて水封弁1Aが機能しなくなるといった問題が生じる恐れがある。オーバーフロー管14はその対策として設けられる。貯留容器10内に貯留される調圧液10Lの量は、0.1リットル以上10リットル以下とすることが好ましい。なお、オーバーフロー管14は、貯留容器10の底部に開口していても良い。その場合、貯留容器10の底部に繋がるオーバーフロー管14を、貯留容器10の上方側に向かって伸びるように屈曲させ、貯留容器10の液量が一定に維持されるようにする。 In addition, the water seal valve 1A of this example further includes an overflow pipe 14 that opens to the side of the storage container 10. The overflow pipe 14 is a member that restricts the pressure adjusting liquid 10L stored in the storage container 10 to a predetermined amount or less by discharging the pressure adjusting liquid 10L in the storage container 10 exceeding a predetermined amount to the outside. When the temperature of the installation environment of the RF battery α is decreased, water vapor in the storage container 10 is condensed, and the pressure adjusting liquid 10L in the storage container 10 is increased. When the pressure adjustment liquid 10L increases, there may be a problem that the pressure value to be adjusted increases or a problem that the pressure adjustment liquid 10L overflows from the storage container 10 and the water seal valve 1A does not function. The overflow pipe 14 is provided as a countermeasure. The amount of the pressure adjusting liquid 10L stored in the storage container 10 is preferably 0.1 liter or more and 10 liters or less. The overflow pipe 14 may be opened at the bottom of the storage container 10. In that case, the overflow pipe 14 connected to the bottom of the storage container 10 is bent so as to extend toward the upper side of the storage container 10 so that the liquid amount of the storage container 10 is maintained constant.
  [給液機構]
 本例の給液機構1Bは、補液タンク20と第一配管21と第二配管22とを備える。補液タンク20は、調圧液10Lを貯留する部材である。第一配管21は、補液タンク20内の気相から伸び、貯留容器10内の気相を通って、貯留容器10内の液相の液面近傍に開口し、液面によって開口部が開閉される部材である。第二配管22は、補液タンク20内の液相と貯留容器10内の気相とに連通され、第一配管21の開口部が開放されたときに補液タンク20から貯留容器10に調圧液10Lを供給する部材である。第二配管22の開口位置は、第一配管21の下端よりも高い位置にある。
[Liquid supply mechanism]
The liquid supply mechanism 1 </ b> B of this example includes a replacement fluid tank 20, a first pipe 21, and a second pipe 22. The replacement fluid tank 20 is a member that stores the pressure adjusting liquid 10L. The first pipe 21 extends from the gas phase in the replacement fluid tank 20, passes through the gas phase in the storage container 10, opens near the liquid level of the liquid phase in the storage container 10, and the opening is opened and closed by the liquid level. It is a member. The second pipe 22 communicates with the liquid phase in the replacement liquid tank 20 and the gas phase in the storage container 10, and when the opening of the first pipe 21 is opened, the pressure adjusting liquid is transferred from the replacement liquid tank 20 to the storage container 10. It is a member that supplies 10L. The opening position of the second pipe 22 is higher than the lower end of the first pipe 21.
 補液タンク20、第一配管21、および第二配管22は、PVCなどの樹脂で構成することができる。PVCは、種々の耐性を持ち、安価であるため、好ましい。これらの部材20,21,22も、調圧液10Lの状態を確認できるように透明であることが好ましい。 The replacement fluid tank 20, the first pipe 21, and the second pipe 22 can be made of resin such as PVC. PVC is preferable because it has various resistances and is inexpensive. These members 20, 21, 22 are also preferably transparent so that the state of the pressure adjusting liquid 10L can be confirmed.
 補液タンク20の内容積は、1リットル以上100リットル以下とすることが好ましい。この範囲の内容積を有する補液タンク20であれば、水封弁1Aに調圧液10Lを補充する機能を十分に発揮することができる。一方、第一配管21の内径と第二配管22の内径とは0.5cm以上10cm以下とすることが好ましい。この補液タンク20は、その上面の位置に開閉可能な調圧液10Lの入れ口を備える。補液タンク20の入れ口は、RF電池の運転時は閉じておき、補液タンク20の気相を密閉状態にしておく。補液タンク20の密閉が十分でなく、補液タンク20の気相に大気が流入すると、補液タンク20の調圧液10Lが際限なく貯留容器10に供給されてしまう。 The internal volume of the replacement fluid tank 20 is preferably 1 liter or more and 100 liters or less. With the replacement fluid tank 20 having an internal volume within this range, the function of replenishing the water sealing valve 1A with the pressure regulating fluid 10L can be sufficiently exhibited. On the other hand, the inner diameter of the first pipe 21 and the inner diameter of the second pipe 22 are preferably 0.5 cm or more and 10 cm or less. The replenisher tank 20 is provided with an inlet for the pressure regulating liquid 10L that can be opened and closed at a position on the upper surface thereof. The inlet of the replacement fluid tank 20 is closed during operation of the RF battery, and the gas phase of the replacement fluid tank 20 is kept in a sealed state. When the replacement fluid tank 20 is not sufficiently sealed and the atmosphere flows into the gas phase of the replacement fluid tank 20, the pressure adjusting liquid 10 L in the replacement fluid tank 20 is supplied to the storage container 10 without limit.
 第二配管22は、その途中にバルブ22bを備える。このバルブ22bは、補液タンク20内に調圧液10Lを補充するときに、補液タンク20から貯留容器10内に調圧液10Lが流入することを防止するためのものである。バルブ22bがなければ、補液タンク20内に補充した調圧液10Lが際限なく貯留容器10に流入する。RF電池αの運転時は、バルブ22bは開けておく。 The second pipe 22 includes a valve 22b in the middle thereof. The valve 22b is for preventing the pressure adjusting liquid 10L from flowing into the storage container 10 from the replacement liquid tank 20 when the pressure adjusting liquid 10L is replenished into the liquid replacement tank 20. Without the valve 22b, the pressure adjusting liquid 10L replenished in the replacement liquid tank 20 flows into the storage container 10 without limit. During the operation of the RF battery α, the valve 22b is kept open.
 上記構成を備える給液機構1Bによれば、水封弁1A内の調圧液10Lの量が減少し、調圧液10Lの液面が第一配管21の下端よりも低くなったとき(図示する状態のとき)、第一配管21の開口部が開放され、第一配管21を介して貯留容器10内の気相から補液タンク20内の気相に気体が流入する。その流入の圧力で、補液タンク20内の調圧液10Lが、第二配管22を介して貯留容器10内に供給される。貯留容器10内の調圧液10Lの液面が第一配管21の開口部に達したら、開口部が閉鎖され、第一配管21を介した気体の流入が止まり、第二配管22を介した調圧液10Lの供給も止まる。以上説明したように、給液機構1Bは、補液タンク20内の調圧液10Lが無くなるまで、自動で貯留容器10内に調圧液10Lを供給し続けるため、貯留容器10内の調圧液10Lの監視・補充の手間を低減することができる。 According to the liquid supply mechanism 1B having the above-described configuration, when the amount of the pressure adjusting liquid 10L in the water seal valve 1A decreases and the liquid level of the pressure adjusting liquid 10L becomes lower than the lower end of the first pipe 21 (illustration). In this state, the opening of the first pipe 21 is opened, and gas flows from the gas phase in the storage container 10 into the gas phase in the replacement liquid tank 20 via the first pipe 21. The pressure adjusting liquid 10L in the replacement fluid tank 20 is supplied into the storage container 10 through the second pipe 22 by the pressure of the inflow. When the liquid level of the pressure adjusting liquid 10L in the storage container 10 reaches the opening of the first pipe 21, the opening is closed, and the inflow of gas through the first pipe 21 stops and the second pipe 22 passes through. The supply of the pressure adjusting liquid 10L is also stopped. As described above, since the liquid supply mechanism 1B automatically continues to supply the pressure adjusting liquid 10L into the storage container 10 until the pressure adjusting liquid 10L in the replacement liquid tank 20 disappears, the pressure adjusting liquid in the storage container 10 is maintained. The labor of monitoring and replenishing 10 L can be reduced.
 ここで、本実施形態の水封弁1Aには防波筒13が設けられており、貯留容器10内の調圧液10Lの液面の波立ちが抑制されている。そのため、液面の波立ちによって第一配管21が頻繁に開閉され、補液タンク20から調圧液10Lが不必要に供給されることを抑制することができる。また、液面の波立ちを抑制することで、貯留容器10内の調圧液10Lがオーバーフロー管14から過剰に排出されることを回避することができる。 Here, the water seal valve 1A of the present embodiment is provided with a wave-proof cylinder 13, and the ripple of the liquid level of the pressure adjusting liquid 10L in the storage container 10 is suppressed. Therefore, it is possible to prevent the first piping 21 from being frequently opened and closed due to the undulation of the liquid level and unnecessary supply of the pressure adjusting liquid 10L from the replacement fluid tank 20. Moreover, it can avoid that the pressure regulation liquid 10L in the storage container 10 is discharged | emitted excessively from the overflow pipe | tube 14 by suppressing the ripple of a liquid level.
 ≪呼吸袋≫
 呼吸袋3は、図1に示すように、電解液タンク106,107内に垂下され、その内部が大気中に連通される部材である。呼吸袋3は、例えば特開2002-175825号公報に記載される公知の構成を利用することができる。
≪breathing bag≫
As shown in FIG. 1, the breathing bag 3 is a member that hangs down in the electrolyte tanks 106 and 107 and communicates with the inside thereof in the atmosphere. For the breathing bag 3, for example, a known configuration described in JP-A-2002-175825 can be used.
 呼吸袋3は、電解液タンク106,107内が負圧になったときに、その内部に大気を吸い込んで、電解液タンク106,107の内容積(呼吸袋3を除く)を減じ、電解液タンク106,107内の圧力を上昇させる。また、呼吸袋3は、電解液タンク106,107内が正圧になったときにも機能する。具体的には、呼吸袋3の内部の気体を大気に放出し、電解液タンク106,107の内容積(呼吸袋3を除く)を増やし、電解液タンク106,107内の圧力を低下させる。 When the inside of the electrolyte tanks 106 and 107 becomes negative pressure, the breathing bag 3 sucks air into the inside thereof to reduce the internal volume of the electrolyte tanks 106 and 107 (excluding the breathing bag 3). The pressure in the tanks 106 and 107 is increased. The breathing bag 3 also functions when the pressure in the electrolyte tanks 106 and 107 becomes positive. Specifically, the gas inside the breathing bag 3 is released to the atmosphere, the internal volume of the electrolyte tanks 106 and 107 (excluding the breathing bag 3) is increased, and the pressure in the electrolyte tanks 106 and 107 is reduced.
 ≪その他≫
 図2を参照して説明した水封弁1Aを利用して、呼吸袋3が故障して動作しなくなったときのためのバックアップ機構を構成することもできる(実施形態2~4においても同様)。その場合、水封弁1Aの第二排気管12を電解液タンク106(107)内の気相に連通させ、第一排気管11を大気に連通させると良い。このような構成とすれば、電解液タンク106,107内が負圧になったときに呼吸袋3が故障した場合、第一排気管11から大気が吸引され、第二排気管12を介して電解液タンク106,107内に大気が流入する。その結果、電解液タンク106,107内の圧力が上昇し、電解液タンク106,107の凹みが抑制される。なお、大気によって電解液が劣化する恐れがあるため、この構成はあくまで呼吸袋3が故障したときの緊急対策用である。
≪Others≫
A water-seal valve 1A described with reference to FIG. 2 can be used to configure a backup mechanism for when the breathing bag 3 fails and does not operate (the same applies to the second to fourth embodiments). . In that case, the second exhaust pipe 12 of the water seal valve 1A may be communicated with the gas phase in the electrolyte tank 106 (107), and the first exhaust pipe 11 may be communicated with the atmosphere. With such a configuration, when the breathing bag 3 breaks down when the inside of the electrolyte tanks 106 and 107 becomes a negative pressure, the air is sucked from the first exhaust pipe 11 and is passed through the second exhaust pipe 12. Air flows into the electrolyte tanks 106 and 107. As a result, the pressure in the electrolytic solution tanks 106 and 107 increases, and the dents in the electrolytic solution tanks 106 and 107 are suppressed. In addition, since there exists a possibility that electrolyte solution may deteriorate with air | atmosphere, this structure is for emergency measures when the breathing bag 3 fails to the last.
<実施形態2>
 この実施形態2を含む以降の実施形態では、図2に示す給液機構1Bを別の構成に置換した例を説明する。水封弁1Aの基本構成は、実施形態1と共通するため、その説明は省略する。
<Embodiment 2>
In the following embodiments including the second embodiment, an example in which the liquid supply mechanism 1B shown in FIG. 2 is replaced with another configuration will be described. Since the basic configuration of the water seal valve 1A is the same as that of the first embodiment, the description thereof is omitted.
 図3に示す実施形態2の給液機構1Cは、補液タンク20と第三配管23とを備える。補液タンク20は、調圧液10Lを貯留する部材であって、貯留容器10よりも上方に配置されている。補液タンク20の上部は封止され、補液タンク20の気相はどこにも連通していない。一方、第三配管23は、補液タンク20内の液相から伸び、貯留容器10内の気相を通って、貯留容器10内の液相の液面近傍に開口し、液面によって開口部が開閉される部材である。第三配管23は、実施形態1の給液機構1Bにおける第一配管21の機能と第二配管22の機能を兼ね備える部材と考えて良い。この第三配管23の途中にはバルブ23bが設けられている。このバルブ23bは、補液タンク20内に調圧液10Lを補充するときに、補液タンク20から貯留容器10内に調圧液10Lが流入することを防止するためのものである。この給液機構1Cの補液タンク20も、実施形態1の構成と同様にその上面の位置に開閉可能な調圧液10Lの入れ口を備える。RF電池の運転時は、入れ口を閉じて、補液タンク20の気相を密閉状態にしておく。 3 includes a replacement fluid tank 20 and a third pipe 23. The liquid supply mechanism 1C according to the second embodiment illustrated in FIG. The replacement fluid tank 20 is a member that stores the pressure adjusting liquid 10 </ b> L, and is disposed above the storage container 10. The upper part of the replacement fluid tank 20 is sealed, and the gas phase of the replacement fluid tank 20 does not communicate anywhere. On the other hand, the third pipe 23 extends from the liquid phase in the replacement fluid tank 20, passes through the gas phase in the storage container 10, opens near the liquid surface of the liquid phase in the storage container 10, and the opening is opened by the liquid level. It is a member that is opened and closed. The third pipe 23 may be considered as a member having both the function of the first pipe 21 and the function of the second pipe 22 in the liquid supply mechanism 1B of the first embodiment. A valve 23 b is provided in the middle of the third pipe 23. The valve 23b is for preventing the pressure adjusting liquid 10L from flowing from the replacement liquid tank 20 into the storage container 10 when the pressure adjusting liquid 10L is replenished into the replacement liquid tank 20. Similarly to the configuration of the first embodiment, the replacement fluid tank 20 of the liquid supply mechanism 1 </ b> C also includes an inlet for the pressure adjusting liquid 10 </ b> L that can be opened and closed at the position of the upper surface. During operation of the RF battery, the inlet is closed and the gas phase of the replacement fluid tank 20 is kept sealed.
 補液タンク20の内容積は実施形態1と同程度とすることができる。一方、第三配管23の内径は1cm以上5cm以下とすることが好ましい。 The internal volume of the replacement fluid tank 20 can be approximately the same as in the first embodiment. On the other hand, the inner diameter of the third pipe 23 is preferably 1 cm or more and 5 cm or less.
 上記構成を備える給液機構1Cによれば、貯留容器10内の調圧液10Lの量が減少し、調圧液10Lの液面が第三配管23よりも低くなったとき、第三配管23の開口部が開放され、第三配管23を介して補液タンク20内の調圧液10Lが貯留容器10内に供給される。貯留容器10内の調圧液10Lの液面が第三配管23の開口部に達したら、開口部が閉鎖され、第三配管23を介した調圧液10Lの供給も止まる。ここで、水封弁1Aに防波筒13を設け、貯留容器10内の調圧液10Lの液面の波立ちを抑制することで、第三配管23の開口部の開閉状態を安定させることができる。以上説明したように、給液機構1Cは、補液タンク20内の調圧液10Lが無くなるまで、自動で貯留容器10内に調圧液10Lを供給し続けるため、貯留容器10内の調圧液10Lの監視・補充の手間を低減することができる。 According to the liquid supply mechanism 1C having the above configuration, when the amount of the pressure adjusting liquid 10L in the storage container 10 decreases and the liquid level of the pressure adjusting liquid 10L becomes lower than the third pipe 23, the third pipe 23 The pressure adjusting liquid 10L in the replacement fluid tank 20 is supplied into the storage container 10 through the third pipe 23. When the liquid level of the pressure adjusting liquid 10L in the storage container 10 reaches the opening of the third pipe 23, the opening is closed and the supply of the pressure adjusting liquid 10L via the third pipe 23 is also stopped. Here, it is possible to stabilize the open / closed state of the opening of the third pipe 23 by providing the water-sealed valve 1A with the wave-proof cylinder 13 and suppressing the ripple of the liquid level of the pressure adjusting liquid 10L in the storage container 10. it can. As described above, the liquid supply mechanism 1C automatically supplies the pressure adjusting liquid 10L into the storage container 10 until the pressure adjusting liquid 10L in the replacement liquid tank 20 disappears. The labor of monitoring and replenishing 10 L can be reduced.
 なお、本実施形態の水封弁1Aにも、貯留容器10内の調圧液10Lの液面の波立ちを抑制する防波筒13が設けられており、第三配管23の開閉状態の安定化、およびオーバーフロー管14からの調圧液10Lの過剰排出の抑制が図られている。 The water seal valve 1A of the present embodiment is also provided with a wave-proof cylinder 13 that suppresses the undulation of the liquid level of the pressure adjusting liquid 10L in the storage container 10, and stabilizes the open / closed state of the third pipe 23. In addition, excessive discharge of the pressure regulating liquid 10L from the overflow pipe 14 is suppressed.
<実施形態3>
 実施形態3では、貯留容器10内の気相に含まれる水蒸気を利用して調圧液10Lを補充する給液機構1Dを図4に基づいて説明する。
<Embodiment 3>
In the third embodiment, a liquid supply mechanism 1D that replenishes the pressure adjusting liquid 10L using water vapor contained in the gas phase in the storage container 10 will be described with reference to FIG.
 給液機構1Dは、第二排気管12の途中に設けられ、貯留容器10内の気相から大気へ排出される気体に含まれる水蒸気を凝結させる第一の水生成装置30を備える。第一の水生成装置30で生成した水は貯留容器10内の液相に落下し、調圧液10Lの量が維持される。多すぎる調圧液10Lはオーバーフロー管14から排出される。但し、水封弁1Aに設けられる防波筒13によって調圧液10Lの波立ちが抑制されているため、オーバーフロー管14から調圧液10Lが過剰に排出されないようになっている。 The liquid supply mechanism 1D includes a first water generating device 30 that is provided in the middle of the second exhaust pipe 12 and condenses water vapor contained in the gas discharged from the gas phase in the storage container 10 to the atmosphere. The water produced | generated with the 1st water production | generation apparatus 30 falls to the liquid phase in the storage container 10, and the quantity of the pressure regulation liquid 10L is maintained. Too much pressure adjusting liquid 10L is discharged from the overflow pipe 14. However, since the undulation of the pressure adjusting liquid 10L is suppressed by the wave preventing cylinder 13 provided in the water seal valve 1A, the pressure adjusting liquid 10L is not excessively discharged from the overflow pipe 14.
 第一の水生成装置30としては、第二排気管12を外周から冷却する冷却機や、ペルチェ効果を利用した除湿機などを利用することができる。 As the first water generating device 30, a cooler that cools the second exhaust pipe 12 from the outer periphery, a dehumidifier that uses the Peltier effect, or the like can be used.
 本実施形態の構成によれば、大気中に含まれる水蒸気を用いて調圧液10Lを補充することで、人の手による調圧液10Lの補充頻度を大幅に低減することができる。 According to the configuration of the present embodiment, the replenishment frequency of the pressure adjusting liquid 10L by a human hand can be significantly reduced by replenishing the pressure adjusting liquid 10L using water vapor contained in the atmosphere.
<実施形態4>
 実施形態4では、大気中に含まれる水蒸気を利用して調圧液10Lを補充する給液機構1Eを図5に基づいて説明する。
<Embodiment 4>
Embodiment 4 demonstrates the liquid supply mechanism 1E which replenishes the pressure regulation liquid 10L using the water vapor | steam contained in air | atmosphere based on FIG.
 給液機構1Eは、大気中に含まれる水蒸気を凝結させる第二の水生成装置40と、その第二の水生成装置40から貯留容器10内の気相に連通する導入管41と、を備える。第二の水生成装置40で生成した水は、導入管41を介して貯留容器10内に導入され、調圧液10Lの量が維持される。この構成であれば、常時調圧液10Lに水が継ぎ足される。多すぎる調圧液10Lはオーバーフロー管14から排出される。調圧液10Lの過剰排出は、防波筒13によって抑えられている。なお、第二の水生成装置40としては、実施形態3の第一の水生成装置30と同様に、冷却機や除湿器を利用することができる。 The liquid supply mechanism 1E includes a second water generation device 40 that condenses water vapor contained in the atmosphere, and an introduction pipe 41 that communicates from the second water generation device 40 to the gas phase in the storage container 10. . The water produced | generated with the 2nd water production | generation apparatus 40 is introduce | transduced in the storage container 10 via the introductory pipe 41, and the quantity of the pressure regulation liquid 10L is maintained. With this configuration, water is always added to the pressure adjusting liquid 10L. Too much pressure adjusting liquid 10L is discharged from the overflow pipe 14. Excessive discharge of the pressure adjusting liquid 10 </ b> L is suppressed by the wave barrier 13. In addition, as the 2nd water production | generation apparatus 40, similarly to the 1st water production | generation apparatus 30 of Embodiment 3, a cooler and a dehumidifier can be utilized.
 本実施形態の構成によれば、大気中に含まれる水蒸気を用いて調圧液10Lを補充することで、人の手による調圧液10Lの補充頻度を大幅に低減することができる。 According to the configuration of the present embodiment, the replenishment frequency of the pressure adjusting liquid 10L by a human hand can be significantly reduced by replenishing the pressure adjusting liquid 10L using water vapor contained in the atmosphere.
 本発明のレドックスフロー電池は、負荷平準用途や瞬低・停電対策用の電池として好適に利用することができる。 The redox flow battery of the present invention can be suitably used as a battery for load leveling or for measures against instantaneous voltage drop or power failure.
α レドックスフロー電池(RF電池α)
1 圧力調整機構 10L 調圧液
 1A 水封弁
 10 貯留容器 11 第一排気管 12 第二排気管
 13 防波筒 14 オーバーフロー管
 1B,1C,1D,1E 給液機構
 20 補液タンク 21 第一配管 22 第二配管 23 第三配管
 22b,23b バルブ
 30 第一の水生成装置  40 第二の水生成装置 41 導入管
3 呼吸袋
9 気相連通管
β レドックスフロー電池(RF電池β)
 100 電池ユニット
 101 隔膜 102 正極セル部 103 負極セル部
 104 正極電極  105 負極電極
 106 正極用の電解液タンク  107 負極用の電解液タンク
 108~111 配管
 112,113 ポンプ
α Redox flow battery (RF battery α)
DESCRIPTION OF SYMBOLS 1 Pressure adjustment mechanism 10L Pressure regulation liquid 1A Water seal valve 10 Storage container 11 1st exhaust pipe 12 2nd exhaust pipe 13 Wave-proof cylinder 14 Overflow pipe 1B, 1C, 1D, 1E Liquid supply mechanism 20 Supplementary liquid tank 21 1st piping 22 Second piping 23 Third piping 22b, 23b Valve 30 First water generating device 40 Second water generating device 41 Introducing tube 3 Breathing bag 9 Gas phase communicating tube β Redox flow battery (RF battery β)
DESCRIPTION OF SYMBOLS 100 Battery unit 101 Diaphragm 102 Positive electrode cell part 103 Negative electrode cell part 104 Positive electrode 105 Negative electrode 106 Electrolyte tank for positive electrodes 107 Electrolyte tank for negative electrodes 108-111 Piping 112,113 Pump

Claims (8)

  1.  正極電極、負極電極、および隔膜を有する電池ユニットと、
     前記電池ユニットに供給される正極電解液を貯留する正極用の電解液タンクと、
     前記電池ユニットに供給される負極電解液を貯留する負極用の電解液タンクと、
     前記正極用の電解液タンクおよび前記負極用の電解液タンクの少なくとも一方に取り付けられ、前記電解液タンク内の気相の圧力を調節する圧力調整機構と、を備え
     前記圧力調整機構は、
      調圧液を貯留する貯留容器、前記電解液タンク内の気相から伸び、前記貯留容器内の気相を通って、前記貯留容器内の液相内に開口する第一排気管、および一端が前記貯留容器内の前記気相に開口し、他端が大気に開口する第二排気管を備える水封弁と、
      前記貯留容器内に前記調圧液を補給する給液機構と、
     を備えるレドックスフロー電池。
    A battery unit having a positive electrode, a negative electrode, and a diaphragm;
    An electrolyte tank for a positive electrode that stores a positive electrode electrolyte supplied to the battery unit;
    An electrolyte tank for a negative electrode that stores a negative electrode electrolyte supplied to the battery unit;
    A pressure adjustment mechanism that is attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank and adjusts the pressure of the gas phase in the electrolyte tank, and the pressure adjustment mechanism includes:
    A storage container for storing the pressure adjusting liquid, a first exhaust pipe extending from the gas phase in the electrolyte tank, passing through the gas phase in the storage container and opening into the liquid phase in the storage container, and one end A water-sealing valve comprising a second exhaust pipe that opens to the gas phase in the storage container and the other end opens to the atmosphere;
    A liquid supply mechanism for replenishing the pressure adjusting liquid in the storage container;
    Redox flow battery comprising.
  2.  前記給液機構は、
      補充用の前記調圧液を貯留する補液タンクと、
      前記補液タンク内の気相から伸び、前記貯留容器内の前記気相を通って、前記貯留容器内の前記液相の液面近傍に開口し、前記貯留容器内の前記液面によって開口部が開閉される第一配管と、
      前記補液タンク内の前記液相と前記貯留容器内の前記気相とに連通され、前記第一配管の前記開口部が開放されたときに前記補液タンクから前記貯留容器に前記調圧液を供給する第二配管と、
     を備える請求項1に記載のレドックスフロー電池。
    The liquid supply mechanism is
    A replenisher tank for storing the pressure-regulating liquid for replenishment;
    It extends from the gas phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is formed by the liquid level in the storage container. A first pipe to be opened and closed;
    Communicating with the liquid phase in the replacement fluid tank and the gas phase in the storage container, and supplying the pressure adjusting liquid from the replacement fluid tank to the storage container when the opening of the first pipe is opened Second piping to be
    A redox flow battery according to claim 1.
  3.  前記給液機構は、
      補充用の前記調圧液を貯留する補液タンクと、
      前記補液タンク内の液相から伸び、前記貯留容器内の前記気相を通って、前記貯留容器内の前記液相の液面近傍に開口し、前記貯留容器内の前記液面によって開口部が開閉される第三配管と、 を備え、
     前記補液タンクの気相が密閉されている請求項1に記載のレドックスフロー電池。
    The liquid supply mechanism is
    A replenisher tank for storing the pressure-regulating liquid for replenishment;
    It extends from the liquid phase in the replacement tank, passes through the gas phase in the storage container, opens near the liquid level of the liquid phase in the storage container, and the opening is formed by the liquid level in the storage container. A third pipe that is opened and closed;
    The redox flow battery according to claim 1, wherein a gas phase of the replacement fluid tank is sealed.
  4.  前記水封弁はさらに、前記第一排気管の前記開口部側の部分を内部に収納し、両端が開口した防波筒を備え、
     前記防波筒の下方側の開口部、および上方側の開口部はそれぞれ、前記第一排気管の前記開口部よりも低い位置、および前記液面よりも高い位置に開口している請求項2または請求項3に記載のレドックスフロー電池。
    The water seal valve further includes a portion of the first exhaust pipe on the side of the opening, and a wave-breaking cylinder having both ends opened,
    The opening on the lower side and the opening on the upper side of the wave preventing cylinder are respectively opened at a position lower than the opening of the first exhaust pipe and a position higher than the liquid level. Or the redox flow battery of Claim 3.
  5.  前記給液機構は、前記貯留容器内の前記気相に含まれる水蒸気を凝結させ、前記貯留容器内の前記液相に戻す第一の水生成装置を備える請求項1に記載のレドックスフロー電池。 The redox flow battery according to claim 1, wherein the liquid supply mechanism includes a first water generation device that condenses water vapor contained in the gas phase in the storage container and returns the water vapor to the liquid phase in the storage container.
  6.  前記給液機構は、大気中に含まれる水蒸気を凝結させ、前記貯留容器内の前記液相に導入する第二の水生成装置を備える請求項1に記載のレドックスフロー電池。 The redox flow battery according to claim 1, wherein the liquid supply mechanism includes a second water generation device that condenses water vapor contained in the atmosphere and introduces the water vapor into the liquid phase in the storage container.
  7.  前記水封弁はさらに、所定量を超える前記調圧液を外部に排出するオーバーフロー管を備える請求項1~請求項6のいずれか1項に記載のレドックスフロー電池。 The redox flow battery according to any one of claims 1 to 6, wherein the water seal valve further includes an overflow pipe for discharging the pressure-regulating liquid exceeding a predetermined amount to the outside.
  8.  前記正極用の電解液タンクおよび前記負極用の電解液タンクの少なくとも一方に取り付けられる呼吸袋を備える請求項1~請求項7のいずれか1項に記載のレドックスフロー電池。 The redox flow battery according to any one of claims 1 to 7, further comprising a breathing bag attached to at least one of the positive electrode electrolyte tank and the negative electrode electrolyte tank.
PCT/JP2015/062914 2014-05-14 2015-04-30 Redox flow battery WO2015174282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-100864 2014-05-14
JP2014100864A JP2015219990A (en) 2014-05-14 2014-05-14 Redox flow battery

Publications (1)

Publication Number Publication Date
WO2015174282A1 true WO2015174282A1 (en) 2015-11-19

Family

ID=54479823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062914 WO2015174282A1 (en) 2014-05-14 2015-04-30 Redox flow battery

Country Status (3)

Country Link
JP (1) JP2015219990A (en)
TW (1) TW201603384A (en)
WO (1) WO2015174282A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279669A (en) * 2018-09-26 2019-01-29 高频美特利环境科技(北京)有限公司 Liquid seal device
CN110492145A (en) * 2019-08-12 2019-11-22 中盐金坛盐化有限责任公司 Organic water phase flow battery based on salt cave
CN111448699A (en) * 2017-12-27 2020-07-24 昭和电工株式会社 Redox flow battery
WO2024031923A1 (en) * 2022-08-10 2024-02-15 寰泰储能科技股份有限公司 Vanadium flow battery using different-layer arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401319B1 (en) * 2017-11-28 2022-05-24 스미토모덴키고교가부시키가이샤 redox flow battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167093U (en) * 1982-04-30 1983-11-07 東陶機器株式会社 tank
JPH0529997U (en) * 1991-09-26 1993-04-20 横河電機株式会社 Ultrapure water tank device
JP2001253495A (en) * 2000-03-14 2001-09-18 Sumitomo Electric Ind Ltd Liquid reservoir
JP2004206928A (en) * 2002-12-24 2004-07-22 Toyota Motor Corp Fuel cell system
JP2004227810A (en) * 2003-01-20 2004-08-12 Shin Caterpillar Mitsubishi Ltd Battery liquid supply device
JP2010286168A (en) * 2009-06-11 2010-12-24 Panasonic Corp Heat storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167093U (en) * 1982-04-30 1983-11-07 東陶機器株式会社 tank
JPH0529997U (en) * 1991-09-26 1993-04-20 横河電機株式会社 Ultrapure water tank device
JP2001253495A (en) * 2000-03-14 2001-09-18 Sumitomo Electric Ind Ltd Liquid reservoir
JP2004206928A (en) * 2002-12-24 2004-07-22 Toyota Motor Corp Fuel cell system
JP2004227810A (en) * 2003-01-20 2004-08-12 Shin Caterpillar Mitsubishi Ltd Battery liquid supply device
JP2010286168A (en) * 2009-06-11 2010-12-24 Panasonic Corp Heat storage system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448699A (en) * 2017-12-27 2020-07-24 昭和电工株式会社 Redox flow battery
CN109279669A (en) * 2018-09-26 2019-01-29 高频美特利环境科技(北京)有限公司 Liquid seal device
CN110492145A (en) * 2019-08-12 2019-11-22 中盐金坛盐化有限责任公司 Organic water phase flow battery based on salt cave
CN110492145B (en) * 2019-08-12 2021-02-19 中盐金坛盐化有限责任公司 Organic aqueous phase flow battery based on salt cavern
WO2024031923A1 (en) * 2022-08-10 2024-02-15 寰泰储能科技股份有限公司 Vanadium flow battery using different-layer arrangement

Also Published As

Publication number Publication date
TW201603384A (en) 2016-01-16
JP2015219990A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
WO2015174282A1 (en) Redox flow battery
WO2015174283A1 (en) Redox flow battery
JP6308366B2 (en) Electrolyte circulating battery
US10807692B2 (en) Undersea vehicle and method for operating the same
TWI788429B (en) redox flow battery
US10543893B2 (en) Undersea vehicle and method for operating a reactor
JP2015232960A (en) Battery system
JP6951670B2 (en) Redox flow battery
US20240003028A1 (en) Alkaline water electrolysis system and method of operating alkaline water electrolysis system
JP6268531B2 (en) Redox flow battery
JP6612714B2 (en) Electrolyzed water generator
JP6600713B2 (en) Gas generator
US10916785B2 (en) Fuel cell storage system
JP2017033850A (en) Tank type power generation device capable of producing high pressure hydrogen, and fuel cell vehicle
JP6164751B2 (en) Liquid electrolyte fuel cell system
JPS60124367A (en) Electrolyte circulation system of fuel cell
JP2014032843A (en) Fuel cell system
JP2014120438A (en) Fuel cell system
JP2011192538A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792390

Country of ref document: EP

Kind code of ref document: A1