WO2015173957A1 - Communication device and wireless mesh network - Google Patents

Communication device and wireless mesh network Download PDF

Info

Publication number
WO2015173957A1
WO2015173957A1 PCT/JP2014/063093 JP2014063093W WO2015173957A1 WO 2015173957 A1 WO2015173957 A1 WO 2015173957A1 JP 2014063093 W JP2014063093 W JP 2014063093W WO 2015173957 A1 WO2015173957 A1 WO 2015173957A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
signal
communication
unit
relay
Prior art date
Application number
PCT/JP2014/063093
Other languages
French (fr)
Japanese (ja)
Inventor
靖 松高
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/063093 priority Critical patent/WO2015173957A1/en
Priority to TW103137351A priority patent/TW201545516A/en
Publication of WO2015173957A1 publication Critical patent/WO2015173957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/08Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on transmission power

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a communication device and a wireless mesh network that perform multi-hop transfer of data or the like to its destination.
  • Mobile phone systems, wireless LAN systems, wireless mesh networks, and the like are known as wireless communication systems.
  • a wireless communication system in order to maintain a certain communication quality, load distribution of each wireless terminal (called a base station, a mobile station, an access point, a terminal, a master station, a slave station, etc. depending on the type of system) is distributed. And operations that take into account the reduction of interference and effective use of wireless communication resources (traffic).
  • a base station a technique in which a radio base station adjusts a processing load by controlling transmission power according to the number of mobile stations accommodated.
  • Patent Document 2 a technique for adjusting the transmission power of a radio base station to an appropriate value according to the installed environment has been studied.
  • Patent Document 1 describes a technique in which a radio base station adjusts the number of mobile stations accommodated by changing transmission power to adjust a processing load.
  • the radio base station increases the communication output by increasing the transmission output when the number of mobile stations accommodated is small, and reduces the communication area by decreasing the transmission output when the number of accommodates increases. Then, the mobile station at the end of the communication area is moved to another radio base station so as to adjust so as not to exceed its own processing capacity.
  • Patent Document 2 a large-scale area is secured with a single radio base station with high transmission power in a place with good visibility such as a mountainous area, and a radio base with low transmission power in a place with many obstacles such as buildings and poor visibility. A technique for securing a communication area using a plurality of stations is described.
  • Wireless mesh networks are being considered for use in automatic meter reading systems such as smart grids. That is, a system has been proposed in which communication between a concentrator (data collection device) and a smart meter (a device that measures the amount of power used and transmits the result as meter reading data to the concentrator) is established using a wireless mesh network.
  • the concentrator collects meter reading values (meter reading data) of each smart meter at regular intervals (for example, every 30 minutes). The collected data is used to limit the amount of power used by power generation plans and demand response.
  • the automatic meter reading system by accommodating as many smart meters as possible with one concentrator, the number of concentrators installed can be suppressed, and the system construction cost can be reduced.
  • a smart meter or a repeater that does not perform meter reading is built in a multi-hop connection centered on the concentrator, so that the meter reading data of a smart meter far from the concentrator includes multiple It will reach the concentrator via a smart meter or relay.
  • the number of smart meters accommodated in one concentrator increases, the number of messages transmitted in the wireless mesh network increases, and it becomes difficult to collect meter reading data from all smart meters within a certain period.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a communication device and a wireless mesh network that can reduce wireless signals transmitted in the system.
  • the present invention is a communication device that forms a wireless mesh network applied to an automatic meter-reading system, and directly transmits a signal transmitted by a master unit that collects meter-reading data.
  • it is characterized by comprising notifying means for notifying that a route of a signal transmitted to the parent device is different from a route of a signal transmitted from the parent device to itself.
  • the communication apparatus has an effect of reducing the number of times radio signals are transmitted.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless mesh network according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the slave unit.
  • FIG. 3 is a diagram illustrating a configuration example of a repeater.
  • FIG. 4 is a diagram illustrating a configuration example of the parent device.
  • FIG. 5 is a diagram illustrating an example of an operation sequence in which the slave unit enters the wireless mesh network.
  • FIG. 6 is a diagram illustrating a configuration example of a wireless mesh network according to the second embodiment.
  • FIG. 7 is a diagram illustrating an example of an operation sequence in which a repeater enters a wireless mesh network.
  • FIG. 8 is a diagram illustrating an example of a message format for realizing the first to third embodiments.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless mesh network according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the slave unit.
  • FIG. 3 is
  • FIG. 9 is a diagram illustrating an example of a timer value of a delivery confirmation waiting timer.
  • FIG. 10 is a diagram illustrating the timing at which the parent device transmits entry completion to the child device.
  • FIG. 11 is a diagram illustrating the timing at which the parent device transmits entry completion to the child device.
  • FIG. 12 is a diagram illustrating the timing at which the child device transmits a message to the parent device.
  • FIG. 13 is a diagram illustrating the timing at which the child device transmits a message to the parent device.
  • FIG. 14 is a diagram illustrating the timing at which the child device transmits a message to the parent device.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless mesh network according to a first embodiment that includes a parent device, a child device, and a relay device as communication devices according to the present invention.
  • the wireless mesh network of the present embodiment is configured to include a parent device 1, child devices 11, 12, 13 and 14, and a relay device 21.
  • This wireless mesh network can be applied to, for example, an automatic meter reading system in which a meter installed in a consumer meter measures the amount of electricity, gas, water, etc. used and notifies the collecting device of the meter reading result.
  • Master unit 1 communicates with each slave unit and relay unit directly or via another slave unit or relay unit.
  • the base unit 1 can communicate with a host device via an optical line, a mobile line, or the like.
  • base station 1 is set as the structure which can adjust transmission output.
  • the slave units 11 to 14 are connected to a meter such as a smart meter and communicate with the master unit 1 directly or indirectly. That is, each slave unit communicates directly with the master unit 1 if it can transmit and receive radio waves to and from the master unit 1, and when other slave units cannot transmit and receive radio waves to and from the master unit 1, Communicate with the master unit 1 via the relay unit.
  • the transmission output of each slave unit is fixed.
  • mobile_unit 11 to 14 is good also as a structure (integrated type) which incorporated instruments, such as a smart meter, and good also as an external attachment (separate type).
  • mobile_units 11-14 also have a function as a relay machine mentioned later.
  • the relay device 21 can communicate with a peripheral child device, a parent device, or another relay device, and relays communication between the child device and the parent device that cannot perform direct communication.
  • the transmission output of the repeater 21 is fixed.
  • area 2 and area 3 indicate the reach of radio signals transmitted from base unit 1 (range in which a slave unit and a relay unit can normally receive a message).
  • Area 2 is the wireless signal reachable range when the transmission output of the master unit 1 is set higher than that of the slave unit or the relay unit, and the area 3 is set so that the transmission output of the master unit 1 is the same as that of the slave unit or the relay unit It is the reach of the radio signal when
  • areas 31 to 34 indicate the reach ranges of the radio signals transmitted from the slave units 11 to 14, respectively.
  • Area 41 indicates the reachable range of the radio signal transmitted by the repeater 21.
  • the slave unit 13 transmits from the master unit 1.
  • the received message 53 can be received directly.
  • the transmission output of the master unit 1 is set to the same setting as that of the slave unit or the relay unit, the reach range of the radio signal is the area 3, and the slave unit 13 does not exist in this area 3. It becomes impossible to directly receive the message 53 transmitted from. In this case, the slave unit 13 receives a message from the master unit 1 via the slave unit 12, for example.
  • the parent device 1 since the parent device 1 does not exist in the area 33, when the child device 13 transmits the message 51 addressed to the parent device 1, the child device 12 existing in the area 33 receives the message 51 and receives it as the message 52. Transfer to machine 1.
  • FIG. 2 is a diagram illustrating a configuration example of the slave units 11 to 14.
  • the configurations of the slave units 11 to 14 are the same, and include a PHY 101, a MAC 102, a CPU 103, a ROM 105, a RAM 106, a nonvolatile memory 107, and an instrument IF 108.
  • the CPU 103 includes a communication processing unit 104.
  • the PHY 101 is an interface for communicating with other slave units, relay units, and the master unit, and transmits and receives radio signals via the antenna 100.
  • the MAC 102 has a function of controlling the PHY 101 and manages MAC addresses.
  • the CPU 103 performs various processes as a slave unit.
  • a communication processing unit 104 provided in the CPU 103 performs selection of a route to the parent device 1, transmission / reception of a message, transfer processing of a message, and the like. Although not shown, the CPU 103 performs processing according to the content of the received message and communication processing with a meter such as a smart meter.
  • the communication processing unit 104 may perform communication processing with the instrument.
  • the ROM 105 stores an operation program as a slave unit.
  • the RAM 106 is used for storing temporary information.
  • the nonvolatile memory 107 stores path information, data collected from a meter such as a smart meter, and the like.
  • the meter IF 108 is a communication interface for acquiring meter reading data from a meter such as a smart meter, making various settings for the meter, controlling the meter, and the like.
  • FIG. 3 is a diagram illustrating a configuration example of the repeater 21.
  • the repeater 21 has a configuration in which the instrument IF 108 is deleted from the slave units 11 to 14 shown in FIG. That is, the relay device 21 has the same function as the slave device except that it does not communicate with a meter such as a smart meter.
  • FIG. 4 is a diagram illustrating a configuration example of the base unit 1.
  • the master unit 1 has a configuration in which the instrument IF 108 provided in the slave units 11 to 14 shown in FIG.
  • the host device IF 109 is an interface for communicating with the host device via an optical line, a mobile phone line, or the like.
  • the communication processing unit 104 of the parent device 1 manages communication paths with all the child devices and relay devices that have entered the parent device (parent device 1). The operations of the other constituent elements are the same as those of the slave units 11 to 14.
  • the base unit 1, the slave units 11 to 14 and the relay unit 21 constituting the wireless mesh network specifically, operations of the slave unit and the relay unit entering the wireless mesh network will be described.
  • the entry operations of the slave units 11 to 14 and the entry operation of the relay unit 21 are the same, here, as an example, the operation when the slave unit 13 illustrated in FIG. 1 enters the wireless mesh network will be described.
  • mobile_unit 12 and the relay machine 21 exist in the reach
  • mobile_unit 12 is a wireless mesh network (wireless managed by the main
  • FIG. 5 is a diagram illustrating an example of an operation sequence in which the slave unit 13 enters the wireless mesh network.
  • an area indicating a radio signal reachable range is referred to as a signal reachable area.
  • area 2 indicating the reach of the radio signal transmitted by base unit 1 is referred to as “signal reach area 2 of base unit 1”.
  • the child device 13 When the child device 13 is activated and does not enter the wireless mesh network, the child device 13 first transmits a peripheral search request by broadcast in order to search for a wireless mesh network that can be entered (step S11).
  • a unique message name is used, but standards such as “Enhanced Beacon Request” and “Enhanced Beacon” defined in IEEE802.15.4e may be followed.
  • the messages used in the present embodiment are not limited to these. Any message can be used as long as it is a similar message. The same applies to subsequent messages.
  • the master unit 1 Since the master unit 1 is located outside the signal arrival area 33 of the slave unit 13, it cannot receive the peripheral search request.
  • mobile_unit 12 and the relay machine 21 receive a periphery search request
  • the handset 12 since the handset 12 has already entered the wireless mesh network, it transmits a peripheral search response to the handset 13 and has entered the wireless mesh network, and the accommodation destination is the base unit 1. The communication path up to this point (in this example, direct communication with the base unit 1 is possible) is notified to the handset 13 (step S13).
  • the communication quality (such as RSSI (Received Signal Strength Indicator) value) and the communication quality (error rate) with the next-hop wireless terminal (master unit, slave unit, relay unit) , Transmission delay, etc.) may be notified.
  • RSSI Received Signal Strength Indicator
  • the slave unit 13 When receiving the peripheral search response, the slave unit 13 recognizes that it can communicate with the master unit 1 via the slave unit 12, and selects the slave unit 12 as a route to the master unit 1 (step S14). Then, an entry request is transmitted by unicast to the parent device 1 via the child device 12 (step S15). In the present embodiment, since the handset 13 receives the peripheral search response only from the handset 12, the handset 12 is selected as the transmission destination of the message addressed to the base unit 1. However, when there are a plurality of child devices or relay devices that have already entered, a transmission destination of a message addressed to the parent device 1 is selected from among them.
  • the slave unit 13 waits for a peripheral search response for a certain period after transmitting the peripheral search request, and receives a peripheral search response from a plurality of wireless terminals (slave unit, relay unit, base unit).
  • the wireless terminal that becomes the optimum route is selected from the wireless terminals that have transmitted the surrounding search response, and an entry request is transmitted.
  • mobile_unit 13 selects a path
  • the slave unit 12 When receiving the entry request from the slave unit 13, the slave unit 12 confirms delivery (returns ACK) and transfers the entry request to the master unit 1 (steps S16 and S18).
  • the slave unit 13 starts monitoring whether or not a response to the entry request can be received directly from the master unit 1 (step S17). This monitoring continues until a response is received or until a certain time has elapsed.
  • monitoring is started after waiting for reception of ACK, but may be started immediately after the entry request is transmitted in step S15. Also, monitoring may not be started when the number of hops to base unit 1 is greater than a certain value (for example, the number of hops according to the transmission power setting of base unit 1 such as 3 hops).
  • the base unit 1 When the base unit 1 receives the entry request, it returns an ACK (step S19). Then, a response and authentication request is transmitted in order to determine whether the entry request has been received and whether or not entry of the slave unit 13 (entry request transmission source) requesting entry is permitted. At this time, the information on the route through which the entry request has been transmitted is added to the response / authentication request and transmitted to the child device 12 by unicast (step S20). As shown in FIG. 1, since the slave units 11, 12, and 13 exist in the signal arrival area 2 of the master unit 1, the response / authentication request transmitted in step S ⁇ b> 20 is sent to each slave unit in the signal arrival area 2. Received by. Although not shown in FIG. 5, since the slave unit 11 does not transmit or transfer an entry request, it is ignored even if a response / authentication request is received (transfer of the received response / authentication request). And the response and authentication request is discarded without confirming delivery).
  • the child device 13 When receiving the response / authentication request as a response to the entry request transmitted in step S15 directly from the parent device 1, the child device 13 recognizes that direct reception from the parent device 1 is possible (step S22). Then, it does not transmit an ACK for the response / authentication request, but waits for the same response / authentication request received directly from the parent device 1 to be transferred from the child device 12 to itself.
  • the slave unit 12 When receiving the response / authentication request as a response to the entry request transferred in step S18 from the parent device 1 (step S20), the slave unit 12 returns an ACK (step S21), and the response / authentication request is the destination. It transfers to the subunit
  • step S24 When the slave unit 13 receives the response and authentication request transferred by the slave unit 12, the slave unit 13 returns an ACK (step S24), and then performs an authentication process. In FIG. 5, the description of the authentication process is omitted.
  • the slave unit 13 transmits an authentication response including the authentication result to the master unit 1 by unicast (step S25). In step S25, information indicating that the message can be directly received from the parent device 1 is added to the authentication response and transmitted.
  • the slave unit 12 When receiving the authentication response, the slave unit 12 returns an ACK to the slave unit 13 (step S26), and transfers the authentication response to the master unit 1 (step S27). At this time, the slave unit 12 confirms the information added to the authentication response and recognizes that the slave unit 13 can directly receive the message transmitted from the master unit 1. That is, when a unicast message addressed to the parent device 1 is received from the child device 13, it is unnecessary to return an ACK, and even if the unicast message addressed to the child device 13 is not transmitted, the child device 13 In some cases, an ACK addressed to itself is received, and in this case, it is stored that the ACK is unconditionally transferred to the base unit 1.
  • the parent device 1 When receiving the authentication response from the child device 12, the parent device 1 returns an ACK to the child device 12 (step S28). And it is judged from the authentication result contained in an authentication response whether the subunit
  • the upstream communication path (communication path from itself to the master unit 1) and the downstream communication path (communication path from the master unit 1 to itself) are asymmetric. It is determined that the child device 12 and the parent device 1 have grasped the situation, and an ACK for entry completion is transmitted to the child device 12 instead of the parent device 1 that is the entry completion transmission source (step S31).
  • the slave unit 12 recognizes that the entry of the slave unit 13 is permitted by monitoring the completion of entry transmitted from the master unit 1 to the slave unit 13 or by receiving an ACK for the completion of entry from the slave unit 13. To do. And the subunit
  • mobile_unit 12 cannot monitor the completion of entry with respect to the subunit
  • the slave unit 13 When the entry process with respect to the master unit 1 is normally completed, the slave unit 13 notifies the master unit 1 of data (meter reading values, etc.) periodically collected from a smart meter or the like by a periodic meter reading notification (step S33).
  • the slave unit 13 transmits a periodic meter reading notification to the master unit 1 via the slave unit 12. Since the handset 12 can directly receive the message from the base unit 1, the handset 12 forwards a periodic meter reading notification to the base unit 1 without transmitting an ACK to the handset 13. (Step S34).
  • the master unit 1 receives the periodic meter reading notification from the slave unit 13 via the slave unit 12, the master unit 1 knows that the slave unit 13 can directly receive a message from itself. An ACK is directly transmitted to the address (step S35).
  • the number of message transmissions can be reduced by one. That is, since transmission from the child device 12 to the child device 13 is not required, message transmission by the child device 12 can be reduced (see steps S30 to S32). Further, in the message transmission from the child device 13 to the parent device 1, ACK transmission can be reduced once. That is, since it is not necessary to return the ACK by the child device 12 that has received the message from the child device 13, the transmission of the ACK by the child device 12 can be reduced (see steps S33 to S35).
  • a plurality of slave units are provided on the route (upstream route) from the slave unit 13 to the master unit 1 that can directly receive a message transmitted by the master unit 1.
  • the number of message transmissions in communication from the parent device 1 to the child device 13 and the number of ACK transmissions in communication from the child device 13 to the parent device 1 can be reduced by the number of the devices / relay devices.
  • a wireless mesh network when data from each child device is aggregated in the parent device, there are a plurality of child devices using the child device 13 as a relay path (in FIG.
  • the relay device 21 and the slave device 14 enter the master device 1 using the slave device 13 as a relay path), and the same effect can be obtained with respect to the slave device / relay device. Therefore, the number of message transmissions can be further reduced as a whole system. As a result, in a system that collects meter reading values within a certain period, the number of slave units that can be accommodated by one master unit can be increased, and the number of master units to be installed can be reduced. System costs can be reduced by reducing the number of master units.
  • the master unit transmits a radio signal with a higher transmission output than the slave units and repeaters accommodated therein.
  • a wireless terminal slave unit, repeater unit located at the end of the reach of the radio signal transmitted by the base unit (a location away from the base unit) communicates with the base unit, it transmits a downstream message to the base unit. Directly received from the machine and sends an upstream message via the relay terminal (slave machine or relay machine).
  • the relay terminal receives a message addressed to the base unit from the wireless terminal, the relay terminal omits delivery confirmation (return of ACK) to the base station and transfers the message to the base unit.
  • the relay charge terminal receives a delivery confirmation addressed to the parent device from the wireless terminal, the relay terminal transfers it to the parent device.
  • the above-described effects reduction in the number of message transmissions, increase in the number of slave units and repeaters that can be accommodated by the master unit, and cost reduction of the system
  • FIG. FIG. 6 is a diagram illustrating a configuration example of a wireless mesh network according to the second embodiment.
  • the wireless mesh network of the present embodiment is obtained by adding a handset 15 to the wireless mesh network (see FIG. 1) of the first embodiment.
  • the configuration of the slave unit 15 is the same as that of the slave units 11 to 14 (see FIG. 2).
  • the transmission output of the relay device 21 is set higher than the slave devices 11 to 15 as compared with the wireless mesh network of the first embodiment.
  • the reach range of the radio signal transmitted by the repeater 21 of the present embodiment is defined as an area (signal reach area) 42. Further, it is assumed that the slave unit 13 cannot directly receive the radio signal transmitted by the master unit 1.
  • the configuration of each wireless terminal (master unit, slave unit, and relay unit) forming the wireless mesh network is the same as that of the first embodiment (see FIGS. 2 to 4).
  • the slave units 12 to 15 exist in the signal arrival area 42 of the repeater 21, but the slave units 12 and 13 have already entered the wireless mesh network, and the slave units 14 and 15 have not entered the wireless mesh network.
  • FIG. 7 is a diagram illustrating an example of an operation sequence in which the repeater 21 enters the wireless mesh network.
  • the relay machine 21 When the relay machine 21 is activated and does not enter the wireless mesh network, the relay machine 21 first transmits a peripheral search request to search for an available wireless mesh network (step S41).
  • the base unit 1 Since the base unit 1 is located outside the signal arrival area 42, it cannot receive the peripheral search request transmitted by the relay unit 21.
  • the slave units 12 to 15 located in the signal arrival area 42 receive the neighborhood search request, and the slave units 12 and 13 that have already entered the wireless mesh network transmit a neighborhood search response to the relay device 21.
  • mobile_unit 12 memorize
  • the slave unit 13 similarly stores a message to that effect when it receives a peripheral search request.
  • the periphery search response transmitted by the slave unit 12 does not reach the repeater 21, and the periphery transmitted by the slave unit 13 Only the search response reaches the repeater 21 (steps S42 and S43).
  • illustration is abbreviate
  • the surrounding search response is the same as the surrounding search response described in the first embodiment.
  • the relay device 21 receives the surrounding search response for a certain period and, as a result, receives the surrounding search response only from the slave unit 13, so that the destination is set to the parent device 1 according to the communication path notified by the received surrounding search response. And the entry request that sets the route from the slave unit 13 and the slave unit 12 to the master unit 1 (slave unit 13 ⁇ slave unit 12 ⁇ route of the master unit 1) as route information is addressed to the slave unit 13 Unicast transmission is performed (step S45).
  • the entry request transmitted by the relay device 21 is received by the slave devices 12 and 13.
  • the slave unit 13 returns an ACK to the relay unit 21 and transfers the entry request to the slave unit 12 (steps S46 and S47).
  • mobile_unit 12 receives the entry request transmitted by the relay device 21, and the entry request transferred by the subunit
  • FIG. When the slave unit 12 receives the entry request transmitted from the repeater 21, the slave unit 12 confirms the route information set in this, and the route indicated by the route information is different from the actual reception route of the join request, so that the slave unit 12 has transmitted it. It is recognized that the message does not reach the repeater 21 (direct reception from the repeater 21 is possible but direct transmission to the repeater 21 is not possible) (step S49). On the other hand, when the entry request transferred by the slave unit 13 is received, an ACK is returned because the route indicated by the set route information matches the actual reception route (step S48). Then, the entry request is transferred to the parent device 1 (step S50).
  • the base unit 1 When the base unit 1 receives the entry request, it returns an ACK (step S51). Then, a response and authentication request is transmitted in order to determine whether the entry request has been received and whether or not entry of the repeater 21 (entry request transmission source) requesting entry is permitted. At this time, the information of the route through which the entry request has been transmitted is added to the response / authentication request, the final destination is set in the relay device 21, and the unicast is transmitted to the child device 12 (step S52).
  • step S 53 When receiving the response / authentication request addressed to the relay device 21, the child device 12 returns an ACK to the parent device 1 (step S 53), and further proceeds to the child device 13 according to the path information set in the response / authentication request. Transfer (step S54). In step S54, information indicating that the message can be directly received from the repeater 21 is added to the response / authentication request and transmitted.
  • the slave unit 13 When the slave unit 13 receives the response / authentication request, the slave unit 13 returns an ACK to the slave unit 12 (step S55), and further transfers the response / authentication request to the relay device 21 that is the final destination (step S56). At this time, the slave unit 13 confirms the information added to the response / authentication request, and grasps that the slave unit 12 can directly receive the message transmitted from the relay unit 21. That is, message transmission from the relay device 21 to the child device 12 is performed directly without going through itself, and an ACK (ACK addressed to the relay device 21) of the message directly transmitted from the relay device 21 to the child device 12 is received as a child. If it is received from the mobile device 12, it must be transferred to the relay device 21. If a message addressed to the relay device 21 is received from the slave device 12, it is not necessary to transmit ACK (transmit ACK to the slave device 12. Transfer the message to the repeater 21 without doing so).
  • the relay device 21 When the relay device 21 receives the response / authentication request, the relay device 21 returns an ACK to the child device 13 (step S57). And while performing an authentication process, the information added to the response and authentication request
  • the relay device 21 transmits an authentication response including the authentication result to the parent device 1 by unicast (step S59). In this step S59, an authentication response in which the parent device 1 is set as the final destination is transmitted to the child device 12.
  • the slave device 12 When receiving the authentication response from the relay device 21, the slave device 12 transmits an ACK with the relay device 21 as the final destination to the relay device 21 via the slave device 13 (steps S60 and S61), and the authentication response is transmitted to the master device 1. (Step S62).
  • the parent device 1 When receiving the authentication response from the child device 12, the parent device 1 returns an ACK to the child device 12 (step S63). Then, from the authentication result included in the authentication response, it is determined whether or not the repeater 21 is allowed to enter its own wireless mesh network. When entering, the completion of entry is transmitted through a route passing through the slave units 12 and 13 (step S64). That is, the entry completion in which route information indicating the route passing through the slave units 12 and 13 is set is transmitted.
  • the child device 12 When receiving the entry completion, the child device 12 returns an ACK to the parent device 1 (step S65), and transfers the entry completion to the child device 13 (step S66).
  • the child device 13 When receiving the entry completion from the child device 12, the child device 13 forwards the entry completion to the relay device 21 without transmitting an ACK because the destination is the relay device 21 (step S67).
  • the relay device 21 When the relay device 21 receives the entry completion, it transmits an ACK to the child device 12 (step S68).
  • the relay station transmits a radio signal with a higher transmission output than the slave unit.
  • the slave unit located at the end of the reach of the wireless signal transmitted by the repeater communicates with the repeater, it directly receives the message sent from the repeater to itself.
  • a message is transmitted to the repeater, it is transmitted via another slave unit.
  • the other slave unit in charge of relay receives a message addressed to the relay unit, the delivery confirmation (return of ACK) is omitted and the message is transferred to the relay unit.
  • the other child device in charge of relay receives the delivery confirmation addressed to the relay device, it transfers it to the relay device.
  • the effect similar to Embodiment 1 can be acquired. That is, the number of messages and ACKs transmitted between the slave unit and the relay unit between the master unit and the relay unit can be reduced as in the first embodiment.
  • Embodiment 3 FIG. In the second embodiment, the operation when the repeater 21 illustrated in FIG. 6 enters the wireless mesh network has been described. However, in the present embodiment, the slave unit 15 illustrated in FIG. 6 enters the wireless mesh network. The operation in this case will be described. Assume that the slave units 12 to 14 and the relay unit 21 shown in FIG. 6 have already entered the wireless mesh network.
  • the handset 15 since the handset 15 is in the signal arrival area 42, the handset 15 can directly receive the radio signal (message or ACK) transmitted by the repeater 21.
  • the repeater 21 since the repeater 21 is outside the signal arrival area 35, it cannot directly receive the radio signal transmitted by the slave unit 15 and receives a message or ACK from the slave unit 15 via the slave unit 14. It will be.
  • This state is the same as the relationship between the child device 13 and the parent device 1 described in the first embodiment (see FIG. 1). Therefore, the operation of the relay device 21 when the child device 15 enters the wireless mesh network is similar to the operation (see FIG. 5) of the parent device 1 described in the first embodiment. That is, the authentication process is excluded from the operation of the base unit 1.
  • the repeater 21 operates as the master unit 1 shown in FIG. 5, the slave unit 14 operates as the slave unit 12 shown in FIG. 5, and the slave unit 15 operates as the slave unit 13 shown in FIG. The effect of can be obtained.
  • FIG. 8 is a diagram illustrating an example of a message format for realizing the first to third embodiments.
  • the message is composed of a header part and a data part, and the main part of the message (entry request, response / authentication request, etc.) is stored in the data part.
  • the header part as information necessary for delivering the message from the transmission source to the transmission destination, the next transmission destination address, own address, message transmission destination address, message transmission source address, route information (from the transmission source to the transmission destination of the message) Route), sequence number (sequence No.), and extension area.
  • device type # 1 direct receivable source address, device type # 2, and direct receivable destination address are stored.
  • the message format will be described with reference to the sequence shown in FIG.
  • a case where the child device 12 transfers an entry request from the child device 13 to the parent device 1 (corresponding to step S18) will be described as an example.
  • the address of the parent device 1 is stored in the next transmission destination address of the entry request transferred from the child device 12 to the parent device 1, and the address of the child device 12 is stored in the own address.
  • the message transmission destination address stores the address of the parent device 1 that is the final destination of the entry request
  • the message transmission source address stores the address of the child device 13 that is the transmission source of the entry request.
  • a device-specific MAC address or IP address is used as the address.
  • the sequence number is used for confirmation of delivery between wireless terminals, retransmission, message loop detection on a wireless path, and the like, and is a number assigned to each message by a transmitting wireless terminal.
  • the extended area is information set as necessary. For example, it is set in the authentication response transmitted in step S25 of FIG. 5 and each subsequent message and ACK.
  • information indicating “master” is set for model type # 1
  • the address of master 1 is set for the directly receivable source address.
  • Information indicating “slave unit” is set for the model type # 2, and the address of the slave unit 13 is set for the directly receivable transmission destination address.
  • the slave unit 12 is located between the master unit 1 and the slave unit 13 based on the route information from the transmission source to the destination of the message and the extended area information, and is transmitted from the master unit 1 to the slave unit 13.
  • the message and ACK are transmitted without going through the device itself, and in the case of transmission from the child device 13 to the parent device 1, it can be recognized that the message is sent through itself. That is, if the slave unit 12 receives a message from the slave unit 13, the slave unit 12 transfers the message to the master unit 1 without transmitting an ACK to the slave unit 13. If receiving the ACK from the slave unit 13, the slave unit 12 It is possible to implement control for transferring ACK to. When the handset 12 performs such control, the number of message and ACK transmissions can be reduced.
  • Embodiment 4 FIG. A wireless mesh network according to the fourth embodiment will be described.
  • the configuration of the wireless mesh network and the configurations of the parent device, the child device, and the relay device are the same as those in the first embodiment (see FIGS. 1 to 4).
  • the message and ACK transmission / reception sequence is the same as in the first or second embodiment (see FIGS. 5 and 7).
  • the number of relays is 1. However, the number of relays may be 2 or more. If the number of relays is increased, retransmission is more likely to occur.
  • the relay device 21 transmits an authentication response to the child device 12 in step S59 and then receives ACK in step S61.
  • step S33 when the handset 13 transmits a periodic meter reading notice in step S33 and receives ACK in step S35, or in the sequence shown in FIG. 7, the handset 12 in step S66.
  • ACK is received in step S68 after the entry completion is transmitted.
  • the time that each wireless terminal (base unit, slave unit, relay unit) waits for reception of ACK is set to a value corresponding to the number of relays.
  • ACK reception waiting timer a timer value of an acknowledgment wait timer that is activated by the message sender when the ratio of the number of relays between the message and its acknowledgment (ACK) is 1: N or N: 1 (acknowledgment waiting time of ACK).
  • the master unit, the relay unit, and the slave unit hold the table shown in FIG. 9 in the ROM or nonvolatile memory, and use a timer value corresponding to the ratio of the number of relays.
  • the master unit, the relay unit, and the slave unit have a timer value T when no message or ACK relay occurs (when direct communication is possible in both directions), and as the number of relays increases, The timer value is increased to T ⁇ 2, T ⁇ 3,. Thereby, it is possible to suppress the occurrence of retransmission due to ACK not being received. In addition, it is not necessary to wait for delivery confirmation more than necessary, and communication efficiency can be increased.
  • the normal timer value T of 1: 1 is multiplied by the number of relays. However, this is an example, and there is a margin in the original timer value T. If the number of relays is small, If the same value T is used as it is and the number of relays exceeds a certain threshold value, for example, every 3 multiples, 2 times or 3 times may be used.
  • Embodiment 5 A wireless mesh network according to the fifth embodiment will be described.
  • the configuration of the wireless mesh network and the configurations of the parent device, the child device, and the relay device are the same as those in the first embodiment (see FIGS. 1 to 4).
  • the message and ACK transmission / reception sequence is the same as in the first embodiment (see FIG. 5).
  • the message and ACK transmission / reception sequence is the same as in the first or second embodiment (see FIGS. 5 and 7).
  • the parent device, the child device, and the relay device transmit messages by CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) control.
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the wireless terminal (base unit, slave unit, repeater) must monitor the transmission status of radio waves from other wireless terminals and detect radio waves during LIFS (long interframe spacing). For example, the message is transmitted when the back-off (random delay) further elapses.
  • the wireless terminal that receives the message does not detect the radio wave for a short interframe spacing (SIFS) shorter than the LIFS, at that time, the ACK Send.
  • SIFS short interframe spacing
  • FIG. 10 and FIG. 11 are diagrams for explaining transmission timing when the parent device 1 transmits entry completion to the child device 13 in the sequence shown in FIG.
  • FIG. 10 shows the transmission timing when CSMA / CA control is applied to a conventional wireless mesh network
  • FIG. 11 shows the transmission timing in the wireless mesh network of the present embodiment.
  • the master unit 1 sets the final destination as a child after LIFS + backoff.
  • the entry completion as the machine 13 is transmitted to the child machine 12.
  • the child device 12 transmits an ACK to the parent device 1 after SIFS.
  • the slave unit 12 transmits entry completion to the slave unit 13 that is the final transmission destination after LIFS + backoff.
  • slave unit 13 transmits ACK to slave unit 12 after SIFS.
  • base unit 1 directly transmits entry completion to handset 13 after LIFS + backoff.
  • the child device 13 transmits an ACK with the final transmission destination as the parent device 1 to the child device 12 after SIFS.
  • the child device 12 transmits (transfers) the ACK to the parent device 1 after SIFS.
  • the difference is not exactly as shown in FIG. 10 and FIG. 11, but when the CSMA / CA control is applied to the conventional wireless mesh network.
  • the wireless mesh network of the present embodiment it is possible to shorten the time for each “LIFS, backoff, entry completion transmission”. That is, as a whole system, it is possible to increase the time during which messages can be transmitted and received. Even if ACK transfer from the child device 12 to the parent device 1 is treated as a message and transmitted after LIFS + backoff, the time for each “SIFS, entry completion transmission” can be shortened.
  • FIG. 12 and 13 are diagrams for explaining the transmission timing when the handset 13 sends a message to the base unit 1 in the sequence shown in FIG.
  • FIG. 12 and FIG. 13 show the transmission timing when the handset 13 transmits a periodic meter reading notification as an example.
  • FIG. 12 shows the transmission timing when CSMA / CA control is applied to a conventional wireless mesh network
  • FIG. 13 shows the transmission timing in the wireless mesh network of the present embodiment.
  • the slave unit 13 is addressed to the slave unit 12 after LIFS + backoff.
  • the slave unit 12 transmits an ACK to the slave unit 13 after SIFS, and then transfers the periodic meter reading notification to the master unit 1 after LIFS + backoff.
  • the master unit 1 transmits an ACK to the slave unit 12 after SIFS.
  • the slave unit 12 when receiving the periodic meter reading notification from the slave unit 13, the slave unit 12 receives the periodic meter reading notification without transmitting an ACK. Then, after LIFS + backoff, a periodic meter reading notification is transferred to the master unit 1.
  • the base unit 1 receives the periodic meter reading notification, the base unit 1 transmits ACK to the handset 13 after SIFS.
  • the time for each “SIFS, ACK transmission” can be shortened.
  • FIG. 14 is a diagram illustrating transmission timings in a modified example of the wireless mesh network according to the present embodiment (partly improved CSMA / CA control).
  • the transmission timing shown in FIG. 14 is reached. In this case, compared with the conventional control shown in FIG. 12, the time for each of “ACK transmission, LIFS, and back-off” can be shortened. Compared with the transmission timing shown in FIG. 13, the time for each “LIFS, back-off” can be shortened.
  • the time required for one message transmission can be shortened, the number of slave units that can be accommodated by the master unit can be increased.
  • Embodiment 6 FIG.
  • the slave unit and the relay unit when the slave unit and the relay unit can directly receive a radio signal transmitted from the master unit or a relay unit having a high transmission output, the slave unit and the relay unit do not pass through another slave unit or the relay unit. Receiving messages and ACKs reduced the number of messages and ACKs sent.
  • the operation of directly receiving messages and ACKs without going through other slave units or relay units is limited to cases where a certain communication quality can be obtained. May be. Whether or not a certain communication quality can be obtained is determined by, for example, an RSSI value.
  • the handset 13 described in the first embodiment detects that the message (for example, response / authentication request) transmitted by the base unit 1 can be directly received (see FIG. 5)
  • the communication quality (RSSI or the like) is less than or equal to the threshold value
  • the route for receiving via the slave unit 12 is selected without selecting the route for receiving directly.
  • the slave unit 12 described in the second embodiment detects the communication quality of the message received from the relay unit 21 when detecting that the message transmitted by the relay unit 21 can be directly received (see FIG. 7). Is equal to or less than the threshold value, the route for receiving via the slave unit 13 is selected without selecting the route for receiving directly.
  • the message and ACK can be directly received from the base unit 1 and the relay unit 21.
  • the direct reception is selected. Without selecting from a route with better communication quality. As a result, the probability of occurrence of reselection of a route and retransmission processing due to a reception error after route selection can be reduced. Therefore, it is possible to prevent a decrease in message transfer efficiency in the wireless mesh network.
  • Embodiment 7 When the positional relationship and the signal arrival area of the parent device, the child device, and the relay device are the same as in the second embodiment described above (see FIG. 6), the relay device 21 has a higher transmission output (signal arrival area 42) than each child device. ) And a transmission output (signal arrival area 41) equivalent to each slave unit, the message can be directly transmitted to the slave unit 14. On the other hand, a message can be directly transmitted to the slave unit 15 only in the case of a high transmission output. Moreover, the main
  • a message transmission event from the relay device 21 to the child device 14 and a message transmission event from the parent device 1 to the child device 12 occur simultaneously, and the parent device 1 and the relay device 21 are connected to the child device.
  • the arrival range of the message transmitted from the parent device 1 is area 2
  • the arrival range of the message transmitted from the relay device 21 is area 42.
  • the slave unit 14 can receive a message from the relay unit 21.
  • the message transmitted from the parent device 1 interferes with the message transmitted from the relay device 21. And cannot receive normally.
  • the base unit 1 cannot receive the ACK from the handset 12, it retransmits the message.
  • the transmission output of the master unit 1 and the relay unit 21 is equivalent to that of the slave unit, the reach range of the message transmitted by the master unit 1 is area 3, and the reach range of the message transmitted by the repeater 21 is area 41. . Therefore, the slave unit 14 and the slave unit 12 can receive messages from the relay unit 21 and the master unit 1 without interference, respectively. That is, since the probability of occurrence of interference can be reduced by making the transmission output of the parent device or relay device higher than that of the child device, the probability of occurrence of a reception error or retransmission due to interference can be reduced.
  • the base unit and the relay unit change the transmission output according to the message destination. Specifically, when a message is transmitted to a child device or a relay device that can directly transmit a message to itself (two-way direct communication is possible), the transmission output is lowered. For example, when the master unit 1 transmits a message to the slave unit 11 or the slave unit 12, the transmission output is equivalent to that of the slave unit. Whether or not the transmission output is the same as that of the slave unit may be determined in transmission / reception of a message when the slave unit enters the wireless mesh network.
  • the base unit 1 when the base unit 1 directly receives a message (peripheral search request or entry request) transmitted by a slave unit or relay device that desires to enter, the master unit 1 transmits the message to the slave unit or relay device that has transmitted this message. When transmitting a message, it is decided to lower the transmission output (equal to the slave unit). However, as shown in the sequences of FIG. 5 and FIG. 7, in order to construct an asymmetric path, it is necessary to transmit a specific message with a high transmission power.
  • the number of transmissions of messages and ACKs is reduced by making the transmission output of the master unit or relay unit higher than that of the slave unit. It doesn't matter. For example, the same effect can be expected by increasing the transmission output of a slave unit installed in a place with a good line of sight like the master unit and the relay unit.
  • an example is shown in which, when a child device or a relay device enters, an entering child device or a relay device constructs an asymmetric path.
  • an additional repeater or slave unit with high transmission output is added in an area where there are multiple slave units or repeaters that have already entered the wireless mesh network, each existing wireless terminal (participated in the wireless mesh network)
  • each existing wireless terminal participated in the wireless mesh network
  • the optimum route between the parent device and the parent device changes. For example, there is a possibility that there is a slave unit or a relay unit that reduces the number of transfers through an added wireless terminal (a newly entered slave unit or relay unit). Even in such a case, it is possible to construct an asymmetric path.
  • the master unit broadcasts a message for system maintenance regularly or irregularly, and the relay unit and the slave unit use the same method as when entering in the transfer operation of the broadcast message.
  • the system maintenance message is, for example, notification of system parameters. If it is determined that an asymmetric route can be constructed, a message (for example, the next periodic meter reading notification) transmitted to the parent device is notified that the route is asymmetric, and the route is updated (optimized). That's fine.
  • a wireless mesh network is formed by a parent device, a child device, and a relay device.
  • a wireless mesh network may be formed only by a parent device and a child device.
  • the communication device is useful for a wireless mesh network that realizes an automatic meter-reading system.
  • 1 master unit 2, 3, 31, 32, 33, 34, 35, 41, 42 area (signal arrival area) 11, 12, 13, 14, 15 slave unit, 21 relay unit, 100 antenna, 101 PHY, 102 MAC, 103 CPU, 104 communication processing unit, 105 ROM, 106 RAM, 107 non-volatile memory, 108 instrument IF, 109 IF between upper devices.

Abstract

This invention includes a remote unit that is part of a wireless mesh network used by, for example, an automatic-meter-reading system. Said remote unit determines whether or not signals transmitted by a base unit that collects meter-reading data can be received directly and also determines whether or not said base unit can directly receive signals transmitted by the remote unit. If signals transmitted by the base unit can be received directly but the base unit cannot directly receive signals transmitted by the remote unit, the remote unit selects another communication device to serve as a relaying device and relay signals transmitted by the remote unit that are intended for the base unit and notifies the base unit and the relaying device that the route to be taken by signals transmitted to the base unit and the route to be taken by signals transmitted to the remote unit by the base unit are different.

Description

通信装置および無線メッシュネットワークCommunication device and wireless mesh network
 本発明は、無線通信システムに関するものであり、特に、データ等をその宛先までマルチホップ転送する通信装置および無線メッシュネットワークに関する。 The present invention relates to a wireless communication system, and more particularly, to a communication device and a wireless mesh network that perform multi-hop transfer of data or the like to its destination.
 無線通信システムとして携帯電話システム、無線LANシステム、無線メッシュネットワークなどが知られている。無線通信システムにおいては、一定の通信品質を維持するために、各無線端末(システムの種類に応じて基地局、移動局、アクセスポイント、端末、親局、子局などと呼ばれる)の負荷の分散や干渉の削減、無線通信資源(トラフィック)の有効利用などを考慮した運用が行われる。例えば、携帯電話システムにおいては、無線基地局が、収容している移動局数に応じて送信電力を制御して処理負荷を調整する技術が検討されている(特許文献1参照)。また、設置されている環境に応じて無線基地局の送信電力を適切な値に調整する技術も検討されている(特許文献2参照)。 Mobile phone systems, wireless LAN systems, wireless mesh networks, and the like are known as wireless communication systems. In a wireless communication system, in order to maintain a certain communication quality, load distribution of each wireless terminal (called a base station, a mobile station, an access point, a terminal, a master station, a slave station, etc. depending on the type of system) is distributed. And operations that take into account the reduction of interference and effective use of wireless communication resources (traffic). For example, in a mobile phone system, a technique in which a radio base station adjusts a processing load by controlling transmission power according to the number of mobile stations accommodated (see Patent Document 1). In addition, a technique for adjusting the transmission power of a radio base station to an appropriate value according to the installed environment has been studied (see Patent Document 2).
 特許文献1には、無線基地局が送信電力を変更することにより収容している移動局の数を調整し、処理負荷を調整する技術が記載されている。特許文献1に記載の技術によれば、無線基地局は、移動局の収容台数が少ない場合は送信出力を上げて通信エリアを拡大し、収容台数が多くなると送信出力を下げて通信エリアを縮小し、通信エリアの端部にいた移動局を他の無線基地局に移動させることにより、自身の処理能力を超えないように調整する。特許文献2には、山間部などの見通しの良い場所では送信電力の高い無線基地局一つで大規模エリアを確保し、ビルなどの障害物が多く見通しが悪い場所では送信電力の低い無線基地局を複数用いて通信エリアを確保する技術が記載されている。 Patent Document 1 describes a technique in which a radio base station adjusts the number of mobile stations accommodated by changing transmission power to adjust a processing load. According to the technique described in Patent Document 1, the radio base station increases the communication output by increasing the transmission output when the number of mobile stations accommodated is small, and reduces the communication area by decreasing the transmission output when the number of accommodates increases. Then, the mobile station at the end of the communication area is moved to another radio base station so as to adjust so as not to exceed its own processing capacity. In Patent Document 2, a large-scale area is secured with a single radio base station with high transmission power in a place with good visibility such as a mountainous area, and a radio base with low transmission power in a place with many obstacles such as buildings and poor visibility. A technique for securing a communication area using a plurality of stations is described.
特開2013-150064号公報JP 2013-150064 A 特開2010-154321号公報JP 2010-154321 A
 無線メッシュネットワークは、スマートグリッド等の自動検針システムでの利用が検討されている。すなわち、コンセントレータ(データ収集装置)とスマートメータ(電力使用量を検針し、その結果を検針データとしてコンセントレータへ送信する装置)との通信を無線メッシュネットワークで構築するシステムが提案されている。このような自動検針システムでは、コンセントレータが一定期間毎(例えば30分毎)に各スマートメータの検針値(検針データ)を収集する。収集したデータは、発電計画やデマンドレスポンスによる電力量利用制限等のために利用される。自動検針システムでは、1台のコンセントレータでできるだけ多くのスマートメータを収容することで、コンセントレータの設置台数を抑制することができ、システム構築コストを削減することが可能となる。一方、無線メッシュネットワークでは、コンセントレータを中心に、スマートメータ、あるいは検針を行わない中継機がマルチホップ接続されてネットワークを構築していくため、コンセントレータから遠くにあるスマートメータの検針データは、複数のスマートメータや中継機を介してコンセントレータまで到達することになる。1台のコンセントレータに収容されているスマートメータの台数が多くなると、無線メッシュネットワーク内で送信されるメッセージ数が多くなり、一定期間内に全てのスマートメータから検針データを収集するのが難しくなる。 無線 Wireless mesh networks are being considered for use in automatic meter reading systems such as smart grids. That is, a system has been proposed in which communication between a concentrator (data collection device) and a smart meter (a device that measures the amount of power used and transmits the result as meter reading data to the concentrator) is established using a wireless mesh network. In such an automatic meter reading system, the concentrator collects meter reading values (meter reading data) of each smart meter at regular intervals (for example, every 30 minutes). The collected data is used to limit the amount of power used by power generation plans and demand response. In the automatic meter reading system, by accommodating as many smart meters as possible with one concentrator, the number of concentrators installed can be suppressed, and the system construction cost can be reduced. On the other hand, in a wireless mesh network, a smart meter or a repeater that does not perform meter reading is built in a multi-hop connection centered on the concentrator, so that the meter reading data of a smart meter far from the concentrator includes multiple It will reach the concentrator via a smart meter or relay. When the number of smart meters accommodated in one concentrator increases, the number of messages transmitted in the wireless mesh network increases, and it becomes difficult to collect meter reading data from all smart meters within a certain period.
 本発明は、上記に鑑みてなされたものであって、システム内で送信される無線信号を削減することが可能な通信装置および無線メッシュネットワークを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a communication device and a wireless mesh network that can reduce wireless signals transmitted in the system.
 上述した課題を解決し、目的を達成するために、本発明は、自動検針システムに適用される無線メッシュネットワークを形成する通信装置であって、検針データを収集する親機が送信する信号の直接受信が可能か否を判定するとともに、自身が送信した信号を前記親機が直接受信可能か否かを判定する判定手段と、前記親機が送信する信号を直接受信でき、かつ自身が送信する信号を前記親機が直接受信できない場合に、自身が送信した前記親機宛の信号を中継する他の通信装置である中継担当装置を決定する決定手段と、前記親機および前記中継担当装置に対し、前記親機に向けて送信する信号の経路と前記親機が自身に向けて送信する信号の経路が異なることを通知する通知手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a communication device that forms a wireless mesh network applied to an automatic meter-reading system, and directly transmits a signal transmitted by a master unit that collects meter-reading data. A determination means for determining whether or not reception is possible and whether or not the parent device can directly receive a signal transmitted by itself, and a signal transmitted by the parent device can be directly received and transmitted by itself Determining means for determining a relay device that is another communication device that relays a signal addressed to the parent device transmitted by itself when the base device cannot directly receive the signal; and the master device and the relay device. On the other hand, it is characterized by comprising notifying means for notifying that a route of a signal transmitted to the parent device is different from a route of a signal transmitted from the parent device to itself.
 本発明にかかる通信装置は、無線信号の送信発生回数を削減することができる、という効果を奏する。 The communication apparatus according to the present invention has an effect of reducing the number of times radio signals are transmitted.
図1は、実施の形態1の無線メッシュネットワークの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a wireless mesh network according to the first embodiment. 図2は、子機の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the slave unit. 図3は、中継機の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a repeater. 図4は、親機の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the parent device. 図5は、子機が無線メッシュネットワークに参入する動作シーケンスの一例を示す図である。FIG. 5 is a diagram illustrating an example of an operation sequence in which the slave unit enters the wireless mesh network. 図6は、実施の形態2の無線メッシュネットワークの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of a wireless mesh network according to the second embodiment. 図7は、中継機が無線メッシュネットワークに参入する動作シーケンスの一例を示す図である。FIG. 7 is a diagram illustrating an example of an operation sequence in which a repeater enters a wireless mesh network. 図8は、実施の形態1から実施の形態3を実現するためのメッセージフォーマットの一例を示す図である。FIG. 8 is a diagram illustrating an example of a message format for realizing the first to third embodiments. 図9は、送達確認待ちタイマのタイマ値の一例を示す図である。FIG. 9 is a diagram illustrating an example of a timer value of a delivery confirmation waiting timer. 図10は、親機が子機に参入完了を送信するタイミングを示す図である。FIG. 10 is a diagram illustrating the timing at which the parent device transmits entry completion to the child device. 図11は、親機が子機に参入完了を送信するタイミングを示す図である。FIG. 11 is a diagram illustrating the timing at which the parent device transmits entry completion to the child device. 図12は、子機が親機に向けてメッセージを送信するタイミングを示す図である。FIG. 12 is a diagram illustrating the timing at which the child device transmits a message to the parent device. 図13は、子機が親機に向けてメッセージを送信するタイミングを示す図である。FIG. 13 is a diagram illustrating the timing at which the child device transmits a message to the parent device. 図14は、子機が親機に向けてメッセージを送信するタイミングを示す図である。FIG. 14 is a diagram illustrating the timing at which the child device transmits a message to the parent device.
 以下に、本発明にかかる通信装置および無線メッシュネットワークの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a communication device and a wireless mesh network according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる通信装置としての親機、子機および中継機により構成された無線メッシュネットワークの実施の形態1の構成例を示す図である。本実施の形態の無線メッシュネットワークは、親機1と、子機11、12、13および14と、中継機21とを含んで構成されている。この無線メッシュネットワークは、例えば、需用家に設置されたメータが電気やガス、水道などの使用量を検針し、検針結果を収集装置へ通知する自動検針システムなどに適用可能である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a wireless mesh network according to a first embodiment that includes a parent device, a child device, and a relay device as communication devices according to the present invention. The wireless mesh network of the present embodiment is configured to include a parent device 1, child devices 11, 12, 13 and 14, and a relay device 21. This wireless mesh network can be applied to, for example, an automatic meter reading system in which a meter installed in a consumer meter measures the amount of electricity, gas, water, etc. used and notifies the collecting device of the meter reading result.
 親機1は、各子機および中継機と直接、あるいは、他の子機や中継機を介して通信を行う。図示を省略しているが、親機1は光回線、携帯回線等を介して、上位装置とも通信可能である。また、親機1は、送信出力の調整が可能な構成とする。 Master unit 1 communicates with each slave unit and relay unit directly or via another slave unit or relay unit. Although not shown, the base unit 1 can communicate with a host device via an optical line, a mobile line, or the like. Moreover, the main | base station 1 is set as the structure which can adjust transmission output.
 子機11から14は、スマートメータ等の計器と接続され、直接または間接的に親機1と通信する。すなわち、各子機は、親機1との間で電波を送受信できるのであれば親機1と直接通信し、親機1との間で電波を送受信できない場合には、周辺の他の子機や中継機を介して親機1と通信する。各子機の送信出力は固定とする。なお、子機11から14は、スマートメータ等の計器を内蔵した構成(一体型)としてもよいし、外付け(セパレート型)としてもよい。また、子機11から14は、後述する中継機としての機能も有する。 The slave units 11 to 14 are connected to a meter such as a smart meter and communicate with the master unit 1 directly or indirectly. That is, each slave unit communicates directly with the master unit 1 if it can transmit and receive radio waves to and from the master unit 1, and when other slave units cannot transmit and receive radio waves to and from the master unit 1, Communicate with the master unit 1 via the relay unit. The transmission output of each slave unit is fixed. In addition, the subunit | mobile_unit 11 to 14 is good also as a structure (integrated type) which incorporated instruments, such as a smart meter, and good also as an external attachment (separate type). Moreover, the subunit | mobile_units 11-14 also have a function as a relay machine mentioned later.
 中継機21は、周辺の子機、親機、または他の中継機と通信することができ、直接通信が不可能な子機と親機間で通信を中継する。中継機21の送信出力は固定とする。 The relay device 21 can communicate with a peripheral child device, a parent device, or another relay device, and relays communication between the child device and the parent device that cannot perform direct communication. The transmission output of the repeater 21 is fixed.
 図1において、エリア2およびエリア3は、親機1が送信した無線信号の到達範囲(子機および中継機がメッセージを正常に受信できる範囲)を示している。エリア2は、親機1の送信出力が子機や中継機よりも高く設定された場合の無線信号の到達範囲、エリア3は、親機1の送信出力が子機や中継機と同じに設定された場合の無線信号の到達範囲である。 In FIG. 1, area 2 and area 3 indicate the reach of radio signals transmitted from base unit 1 (range in which a slave unit and a relay unit can normally receive a message). Area 2 is the wireless signal reachable range when the transmission output of the master unit 1 is set higher than that of the slave unit or the relay unit, and the area 3 is set so that the transmission output of the master unit 1 is the same as that of the slave unit or the relay unit It is the reach of the radio signal when
 同様に、エリア31から34は、子機11から14がそれぞれ送信した無線信号の到達範囲を示している。エリア41は、中継機21が送信した無線信号の到達範囲を示している。 Similarly, areas 31 to 34 indicate the reach ranges of the radio signals transmitted from the slave units 11 to 14, respectively. Area 41 indicates the reachable range of the radio signal transmitted by the repeater 21.
 親機1の送信出力を子機や中継機よりも高く設定した場合、無線信号の到達範囲がエリア2となり、このエリア2に子機13が存在するため、子機13は親機1から送信されたメッセージ53を直接受信することができる。一方、親機1の送信出力を子機や中継機と同じ設定とした場合、無線信号の到達範囲がエリア3となり、このエリア3に子機13が存在しないため、子機13は親機1から送信されたメッセージ53を直接受信することができなくなる。この場合、子機13は、例えば、子機12を介して親機1からのメッセージを受信する。 When the transmission output of the master unit 1 is set higher than that of the slave unit or the relay unit, the reach range of the radio signal is the area 2, and the slave unit 13 exists in this area 2. Therefore, the slave unit 13 transmits from the master unit 1. The received message 53 can be received directly. On the other hand, when the transmission output of the master unit 1 is set to the same setting as that of the slave unit or the relay unit, the reach range of the radio signal is the area 3, and the slave unit 13 does not exist in this area 3. It becomes impossible to directly receive the message 53 transmitted from. In this case, the slave unit 13 receives a message from the master unit 1 via the slave unit 12, for example.
 また、エリア33に親機1が存在しないため、子機13が親機1宛のメッセージ51を送信した場合、エリア33に存在している子機12がメッセージ51を受信し、メッセージ52として親機1へ転送する。 In addition, since the parent device 1 does not exist in the area 33, when the child device 13 transmits the message 51 addressed to the parent device 1, the child device 12 existing in the area 33 receives the message 51 and receives it as the message 52. Transfer to machine 1.
 図2は、子機11から14の構成例を示す図である。子機11から14の構成は同一であり、PHY101、MAC102、CPU103、ROM105、RAM106、不揮発性メモリ107および計器IF108を備えている。CPU103は通信処理部104を含んでいる。 FIG. 2 is a diagram illustrating a configuration example of the slave units 11 to 14. The configurations of the slave units 11 to 14 are the same, and include a PHY 101, a MAC 102, a CPU 103, a ROM 105, a RAM 106, a nonvolatile memory 107, and an instrument IF 108. The CPU 103 includes a communication processing unit 104.
 子機11から14において、PHY101は、他の子機、中継機、親機と通信するためのインタフェースであり、アンテナ100を介して無線信号を送受信する。MAC102は、PHY101を制御する機能を有しており、MACアドレスの管理を行う。CPU103は、子機としての各種処理を実施する。CPU103が備えている通信処理部104は、親機1までの経路の選択、メッセージの送受信、メッセージの転送処理などを行う。図示は省略しているが、CPU103は、受信したメッセージの内容に応じた処理、スマートメータ等の計器との通信処理を行う。計器との通信処理は通信処理部104で行うようにしてもかまわない。ROM105は、子機としての動作プログラムを保存する。RAM106は、一時的な情報を保存するために利用される。不揮発性メモリ107は、経路情報や、スマートメータ等の計器から収集したデータ等を保存する。計器IF108は、スマートメータ等の計器等からの検針データ等の取得、計器への各種設定、計器の制御などを行うための通信インタフェースである。 In the slave units 11 to 14, the PHY 101 is an interface for communicating with other slave units, relay units, and the master unit, and transmits and receives radio signals via the antenna 100. The MAC 102 has a function of controlling the PHY 101 and manages MAC addresses. The CPU 103 performs various processes as a slave unit. A communication processing unit 104 provided in the CPU 103 performs selection of a route to the parent device 1, transmission / reception of a message, transfer processing of a message, and the like. Although not shown, the CPU 103 performs processing according to the content of the received message and communication processing with a meter such as a smart meter. The communication processing unit 104 may perform communication processing with the instrument. The ROM 105 stores an operation program as a slave unit. The RAM 106 is used for storing temporary information. The nonvolatile memory 107 stores path information, data collected from a meter such as a smart meter, and the like. The meter IF 108 is a communication interface for acquiring meter reading data from a meter such as a smart meter, making various settings for the meter, controlling the meter, and the like.
 図3は、中継機21の構成例を示す図である。図示したように、中継機21は、図2に示した子機11から14から計器IF108を削除した構成となっている。すなわち、中継機21は、スマートメータ等の計器との通信を行わない以外は、子機と同等の機能を有する。 FIG. 3 is a diagram illustrating a configuration example of the repeater 21. As shown in the figure, the repeater 21 has a configuration in which the instrument IF 108 is deleted from the slave units 11 to 14 shown in FIG. That is, the relay device 21 has the same function as the slave device except that it does not communicate with a meter such as a smart meter.
 図4は、親機1の構成例を示す図である。図示したように、親機1は、図2に示した子機11から14が備えている計器IF108を上位装置間IF109に置き換えた構成となっている。上位装置間IF109は、光回線や携帯電話回線等を介して上位装置と通信を行うためのインタフェースである。親機1の通信処理部104は、自身(親機1)に参入している全ての子機および中継機との通信経路を管理する。これら以外の構成要素の動作は子機11から14と同様である。 FIG. 4 is a diagram illustrating a configuration example of the base unit 1. As shown in the figure, the master unit 1 has a configuration in which the instrument IF 108 provided in the slave units 11 to 14 shown in FIG. The host device IF 109 is an interface for communicating with the host device via an optical line, a mobile phone line, or the like. The communication processing unit 104 of the parent device 1 manages communication paths with all the child devices and relay devices that have entered the parent device (parent device 1). The operations of the other constituent elements are the same as those of the slave units 11 to 14.
 次に、無線メッシュネットワークを構成している親機1、子機11から14および中継機21の特徴的な動作、具体的には、無線メッシュネットワークに子機および中継機が参入する動作について説明する。子機11から14の参入動作と中継機21の参入動作は同じであるため、ここでは、一例として、図1に示した子機13が無線メッシュネットワークに参入する場合の動作を説明する。なお、子機13が送信する無線信号の到達範囲(エリア33)には子機12および中継機21が存在しているが、子機12は無線メッシュネットワーク(親機1が管理している無線メッシュネットワーク)へ参入済みであり、中継機21は無線メッシュネットワークへ未参入であるものとする。また、親機1の送信出力は子機11から14や中継機21よりも高く設定されており、親機1が送信した無線信号の到達範囲がエリア2であるものとする。 Next, characteristic operations of the base unit 1, the slave units 11 to 14 and the relay unit 21 constituting the wireless mesh network, specifically, operations of the slave unit and the relay unit entering the wireless mesh network will be described. To do. Since the entry operations of the slave units 11 to 14 and the entry operation of the relay unit 21 are the same, here, as an example, the operation when the slave unit 13 illustrated in FIG. 1 enters the wireless mesh network will be described. In addition, although the subunit | mobile_unit 12 and the relay machine 21 exist in the reach | attainment range (area 33) of the radio signal which the subunit | mobile_unit 13 transmits, the subunit | mobile_unit 12 is a wireless mesh network (wireless managed by the main | base station 1). It is assumed that the relay network 21 has not entered the wireless mesh network. Further, it is assumed that the transmission output of the parent device 1 is set higher than that of the child devices 11 to 14 and the relay device 21, and the reachable range of the radio signal transmitted by the parent device 1 is area 2.
 図5は、子機13が無線メッシュネットワークに参入する動作シーケンスの一例を示す図である。なお、これ以降の説明において、無線信号の到達範囲を示しているエリアを信号到達エリアと呼ぶ。例えば、親機1が送信した無線信号の到達範囲を示すエリア2を「親機1の信号到達エリア2」と呼ぶ。 FIG. 5 is a diagram illustrating an example of an operation sequence in which the slave unit 13 enters the wireless mesh network. In the following description, an area indicating a radio signal reachable range is referred to as a signal reachable area. For example, area 2 indicating the reach of the radio signal transmitted by base unit 1 is referred to as “signal reach area 2 of base unit 1”.
 子機13は、起動すると、無線メッシュネットワークに参入していない場合、まず、参入可能な無線メッシュネットワークを探索するために、周辺探索要求をブロードキャストで送信する(ステップS11)。ここでは独自のメッセージ名を用いているが、IEEE802.15.4eに規定されている"Enhanced Beacon Request"、"Enhanced Beacon"等の標準に従うことにしてもよい。本実施の形態で使用するメッセージをこれらに限定するものではない。同様のメッセージであればどのようなメッセージでもよい。以降のメッセージに関しても同様とする。 When the child device 13 is activated and does not enter the wireless mesh network, the child device 13 first transmits a peripheral search request by broadcast in order to search for a wireless mesh network that can be entered (step S11). In this case, a unique message name is used, but standards such as “Enhanced Beacon Request” and “Enhanced Beacon” defined in IEEE802.15.4e may be followed. The messages used in the present embodiment are not limited to these. Any message can be used as long as it is a similar message. The same applies to subsequent messages.
 親機1は、子機13の信号到達エリア33の外に位置するため周辺探索要求を受信できない。子機12および中継機21は周辺探索要求を受信する。中継機21は自身も未参入であることから、周辺探索要求を無視し、受信した周辺探索要求を破棄する(ステップS12)。一方、子機12は無線メッシュネットワークに参入済のため、周辺探索応答を子機13に対して送信し、無線メッシュネットワークに参入済であり、収容先は親機1であること、親機1までの通信経路(この例では親機1との直接通信が可能なこと)を子機13に通知する(ステップS13)。通信経路に加えて、次ホップの無線端末(親機、子機、中継機)との間の通信品質(RSSI(Received Signal Strength Indicator)値など)や親機との間の通信品質(エラー率、伝送遅延など)を通知するようにしてもよい。 Since the master unit 1 is located outside the signal arrival area 33 of the slave unit 13, it cannot receive the peripheral search request. The subunit | mobile_unit 12 and the relay machine 21 receive a periphery search request | requirement. Since the repeater 21 itself has not yet entered, it ignores the surrounding search request and discards the received surrounding search request (step S12). On the other hand, since the handset 12 has already entered the wireless mesh network, it transmits a peripheral search response to the handset 13 and has entered the wireless mesh network, and the accommodation destination is the base unit 1. The communication path up to this point (in this example, direct communication with the base unit 1 is possible) is notified to the handset 13 (step S13). In addition to the communication path, the communication quality (such as RSSI (Received Signal Strength Indicator) value) and the communication quality (error rate) with the next-hop wireless terminal (master unit, slave unit, relay unit) , Transmission delay, etc.) may be notified.
 子機13は、周辺探索応答を受信すると、子機12経由で親機1と通信可能であることを認識し、子機12を親機1へのルートとして選択する(ステップS14)。そして、子機12経由で親機1宛に参入要求をユニキャストで送信する(ステップS15)。なお、本実施の形態では、子機13は子機12からのみ周辺探索応答を受信するため、親機1宛のメッセージの送信先として子機12を選択する。しかし、参入済みの子機または中継機が周囲に複数存在する場合には、その中から親機1宛のメッセージの送信先を選択する。すなわち、子機13は、周辺探索要求を送信してから一定期間にわたって周辺探索応答を待ち、複数の無線端末(子機、中継機、親機)から周辺探索応答を受信した場合には、受信した周辺探索応答の送信元の無線端末の中から、最適な経路となる無線端末を選択して参入要求を送信する。子機13は、親機1までのホップ数などを考慮して経路(参入要求の送信先とする無線端末)を選択する。 When receiving the peripheral search response, the slave unit 13 recognizes that it can communicate with the master unit 1 via the slave unit 12, and selects the slave unit 12 as a route to the master unit 1 (step S14). Then, an entry request is transmitted by unicast to the parent device 1 via the child device 12 (step S15). In the present embodiment, since the handset 13 receives the peripheral search response only from the handset 12, the handset 12 is selected as the transmission destination of the message addressed to the base unit 1. However, when there are a plurality of child devices or relay devices that have already entered, a transmission destination of a message addressed to the parent device 1 is selected from among them. That is, the slave unit 13 waits for a peripheral search response for a certain period after transmitting the peripheral search request, and receives a peripheral search response from a plurality of wireless terminals (slave unit, relay unit, base unit). The wireless terminal that becomes the optimum route is selected from the wireless terminals that have transmitted the surrounding search response, and an entry request is transmitted. The subunit | mobile_unit 13 selects a path | route (wireless terminal used as the transmission destination of an entry request) in consideration of the hop number etc. to the main | base station 1.
 子機12は、子機13から参入要求を受信すると、送達確認(ACKの返送)を行うとともに参入要求を親機1へ転送する(ステップS16,S18)。子機13は、参入要求に対するACKを受信すると、参入要求に対する応答を親機1から直接受信できるか否かの監視を開始する(ステップS17)。この監視は、応答を受信するか一定時間が経過するまで継続する。なお、ここでは、ACKの受信を待ってから監視を開始することとしたが、ステップS15で参入要求を送信した後すぐに開始してもよい。また、親機1までのホップ数が一定値(たとえば、3ホップなど、親機1の送信電力設定に応じたホップ数)よりも大きい場合には、監視を開始しないようにしてもよい。 When receiving the entry request from the slave unit 13, the slave unit 12 confirms delivery (returns ACK) and transfers the entry request to the master unit 1 (steps S16 and S18). When receiving the ACK for the entry request, the slave unit 13 starts monitoring whether or not a response to the entry request can be received directly from the master unit 1 (step S17). This monitoring continues until a response is received or until a certain time has elapsed. Here, monitoring is started after waiting for reception of ACK, but may be started immediately after the entry request is transmitted in step S15. Also, monitoring may not be started when the number of hops to base unit 1 is greater than a certain value (for example, the number of hops according to the transmission power setting of base unit 1 such as 3 hops).
 親機1は、参入要求を受信するとACKを返送する(ステップS19)。そして、参入要求を受信したことと、参入を要求している子機13(参入要求の送信元)の参入を許可するか否かを判断するために、応答兼認証要求を送信する。このとき、参入要求が送信されてきた経路の情報を応答兼認証要求に付加してユニキャストで子機12宛に送信する(ステップS20)。図1に示したように、親機1の信号到達エリア2には子機11、12および13が存在するため、ステップS20で送信された応答兼認証要求は信号到達エリア2内の各子機により受信される。なお、図5においては記載を省略しているが、子機11は、参入要求の送信も転送もしていないため、応答兼認証要求を受信しても無視する(受信した応答兼認証要求の転送や送達確認は行わずに、応答兼認証要求を破棄する)。 When the base unit 1 receives the entry request, it returns an ACK (step S19). Then, a response and authentication request is transmitted in order to determine whether the entry request has been received and whether or not entry of the slave unit 13 (entry request transmission source) requesting entry is permitted. At this time, the information on the route through which the entry request has been transmitted is added to the response / authentication request and transmitted to the child device 12 by unicast (step S20). As shown in FIG. 1, since the slave units 11, 12, and 13 exist in the signal arrival area 2 of the master unit 1, the response / authentication request transmitted in step S <b> 20 is sent to each slave unit in the signal arrival area 2. Received by. Although not shown in FIG. 5, since the slave unit 11 does not transmit or transfer an entry request, it is ignored even if a response / authentication request is received (transfer of the received response / authentication request). And the response and authentication request is discarded without confirming delivery).
 子機13は、ステップS15で送信した参入要求に対する応答としての応答兼認証要求を親機1から直接受信した場合、親機1からの直接受信が可能と認識する(ステップS22)。そして、応答兼認証要求に対するACKは送信せずに、親機1から直接受信したものと同じ応答兼認証要求が子機12から自身宛に転送されてくるのを待つ。 When receiving the response / authentication request as a response to the entry request transmitted in step S15 directly from the parent device 1, the child device 13 recognizes that direct reception from the parent device 1 is possible (step S22). Then, it does not transmit an ACK for the response / authentication request, but waits for the same response / authentication request received directly from the parent device 1 to be transferred from the child device 12 to itself.
 子機12は、ステップS18で転送した参入要求に対する応答としての応答兼認証要求を親機1から受信すると(ステップS20)、ACKを返送し(ステップS21)、応答兼認証要求をその宛先である子機13へ転送する(ステップS23)。 When receiving the response / authentication request as a response to the entry request transferred in step S18 from the parent device 1 (step S20), the slave unit 12 returns an ACK (step S21), and the response / authentication request is the destination. It transfers to the subunit | mobile_unit 13 (step S23).
 子機13は、子機12により転送された応答兼認証要求を受信すると、ACKを返送し(ステップS24)、その後、認証処理を行う。なお、図5においては認証処理の記載を省略している。子機13は、認証処理が終了すると、認証結果を含んだ認証応答を親機1宛にユニキャストで送信する(ステップS25)。このステップS25では、メッセージを親機1から直接受信可能であることを示す情報を認証応答に付加して送信する。 When the slave unit 13 receives the response and authentication request transferred by the slave unit 12, the slave unit 13 returns an ACK (step S24), and then performs an authentication process. In FIG. 5, the description of the authentication process is omitted. When the authentication process is completed, the slave unit 13 transmits an authentication response including the authentication result to the master unit 1 by unicast (step S25). In step S25, information indicating that the message can be directly received from the parent device 1 is added to the authentication response and transmitted.
 子機12は、認証応答を受信するとACKを子機13へ返送し(ステップS26)、認証応答を親機1へ転送する(ステップS27)。このとき、子機12は、認証応答に付加されている情報を確認し、親機1から送信されたメッセージを子機13が直接受信可能であることを把握する。すなわち、親機1宛のユニキャストメッセージを子機13から受信した場合にACKの返送が不要であること、自身が子機13宛のユニキャストメッセージを送信していない場合でも、子機13から自身宛のACKを受信する場合があり、その場合には無条件に親機1宛にACKを転送すること、を記憶する。 When receiving the authentication response, the slave unit 12 returns an ACK to the slave unit 13 (step S26), and transfers the authentication response to the master unit 1 (step S27). At this time, the slave unit 12 confirms the information added to the authentication response and recognizes that the slave unit 13 can directly receive the message transmitted from the master unit 1. That is, when a unicast message addressed to the parent device 1 is received from the child device 13, it is unnecessary to return an ACK, and even if the unicast message addressed to the child device 13 is not transmitted, the child device 13 In some cases, an ACK addressed to itself is received, and in this case, it is stored that the ACK is unconditionally transferred to the base unit 1.
 親機1は、子機12から認証応答を受信すると、ACKを子機12へ返送する(ステップS28)。そして、認証応答に含まれる認証結果より、子機13を自身の無線メッシュネットワークに参入させるか否かを判断する。参入させる場合、認証応答に付加されている情報(子機13がメッセージの直接受信が可能であることを示す情報)から、子機13への直接送信が可能であることを認識する(ステップS29)。そして、参入完了を子機12経由ではなく、子機13宛に直接送信する(ステップS30)。 When receiving the authentication response from the child device 12, the parent device 1 returns an ACK to the child device 12 (step S28). And it is judged from the authentication result contained in an authentication response whether the subunit | mobile_unit 13 enters into an own wireless mesh network. When entering, it recognizes that direct transmission to the subunit | mobile_unit 13 is possible from the information (information which shows that the subunit | mobile_unit 13 can receive a message directly) added to the authentication response (step S29). ). Then, the entry completion is transmitted directly to the child device 13 instead of via the child device 12 (step S30).
 子機13は、参入完了を親機1から直接受信すると、上りの通信経路(自身から親機1への通信経路)と下りの通信経路(親機1から自身への通信経路)が非対称であることを子機12および親機1が把握したと判断し、参入完了に対するACKを参入完了の送信元の親機1ではなく、子機12へ送信する(ステップS31)。 When the slave unit 13 directly receives the completion of entry from the master unit 1, the upstream communication path (communication path from itself to the master unit 1) and the downstream communication path (communication path from the master unit 1 to itself) are asymmetric. It is determined that the child device 12 and the parent device 1 have grasped the situation, and an ACK for entry completion is transmitted to the child device 12 instead of the parent device 1 that is the entry completion transmission source (step S31).
 子機12は、親機1が子機13宛に送信する参入完了をモニタする、または、参入完了に対するACKを子機13から受信することにより、子機13の参入が許可されたことを認識する。そして、子機12は、親機1宛のユニキャストメッセージを子機13から受信した場合にはACKの返送を行わない動作を開始するとともに、自身が子機13宛に送信していないユニキャストメッセージに対するACKを子機13から受信した場合に無条件で親機1宛に転送する動作を開始する。子機12は、ステップS31で子機13から送信されたACKを受信した場合、親機1へ転送する(ステップS32)。なお、子機12は一定期間、子機13宛の参入完了をモニタできない、または、参入完了に対するACKを子機13から受信できない場合は、子機13の参入処理が正常に完了していないと判断し、通常動作(子機13から周辺探索要求を受信する前の動作)に復帰する。 The slave unit 12 recognizes that the entry of the slave unit 13 is permitted by monitoring the completion of entry transmitted from the master unit 1 to the slave unit 13 or by receiving an ACK for the completion of entry from the slave unit 13. To do. And the subunit | mobile_unit 12 starts the operation | movement which does not return ACK, when the unicast message addressed to the main | base station 1 is received from the subunit | mobile_unit 13, and the unicast which self does not transmit to the subunit | mobile_unit 13 When an ACK for the message is received from the slave unit 13, an operation for unconditionally transferring the message to the master unit 1 is started. When receiving the ACK transmitted from the slave unit 13 in step S31, the slave unit 12 transfers the ACK to the master unit 1 (step S32). In addition, the subunit | mobile_unit 12 cannot monitor the completion of entry with respect to the subunit | mobile_unit 13 for a fixed period, or when the ACK with respect to entry completion cannot be received from the subunit | mobile_unit 13, if the entry process of the subunit | mobile_unit 13 is not completed normally It judges and returns to normal operation (operation before receiving a periphery search request from the subunit | mobile_unit 13).
 親機1に対する参入処理が正常に完了した場合、子機13は、定期的にスマートメータ等から収集したデータ(検針値等)を定期検針通知にて親機1へ通知する(ステップS33)。子機13は、定期検針通知を子機12経由で親機1宛に送信する。子機12は、子機13が親機1からのメッセージを直接受信することが可能であることから、子機13へのACK送信は行わずに、親機1に対して定期検針通知を転送する(ステップS34)。親機1は、子機12経由で子機13からの定期検針通知を受信すると、子機13が自身からのメッセージを直接受信できることを把握しているため、子機12宛ではなく子機13宛に直接ACKを送信する(ステップS35)。 When the entry process with respect to the master unit 1 is normally completed, the slave unit 13 notifies the master unit 1 of data (meter reading values, etc.) periodically collected from a smart meter or the like by a periodic meter reading notification (step S33). The slave unit 13 transmits a periodic meter reading notification to the master unit 1 via the slave unit 12. Since the handset 12 can directly receive the message from the base unit 1, the handset 12 forwards a periodic meter reading notification to the base unit 1 without transmitting an ACK to the handset 13. (Step S34). When the master unit 1 receives the periodic meter reading notification from the slave unit 13 via the slave unit 12, the master unit 1 knows that the slave unit 13 can directly receive a message from itself. An ACK is directly transmitted to the address (step S35).
 本実施の形態を適用した場合、図5に示したように、従来(上りと下りの経路が同一の無線メッシュネットワーク)と比較して、親機1から子機13へのメッセージ送信においては、メッセージの送信回数を1回削減できる。すなわち、子機12から子機13への転送が不要となるため、子機12によるメッセージの送信を削減できる(ステップS30からS32参照)。また、子機13から親機1へのメッセージ送信においては、ACKの送信を1回削減できる。すなわち、子機13からメッセージを受信した子機12によるACKの返送が不要となるため、子機12によるACKの送信を削減できる(ステップS33からS35参照)。 When this embodiment is applied, as shown in FIG. 5, in the message transmission from the parent device 1 to the child device 13 as compared with the conventional case (a wireless mesh network having the same uplink and downlink routes), The number of message transmissions can be reduced by one. That is, since transmission from the child device 12 to the child device 13 is not required, message transmission by the child device 12 can be reduced (see steps S30 to S32). Further, in the message transmission from the child device 13 to the parent device 1, ACK transmission can be reduced once. That is, since it is not necessary to return the ACK by the child device 12 that has received the message from the child device 13, the transmission of the ACK by the child device 12 can be reduced (see steps S33 to S35).
 本実施の形態では、中継する子機が1台の場合を説明したが、親機1が送信したメッセージを直接受信可能な子機13から親機1までの経路(上り経路)に複数の子機/中継機が存在する場合、その台数分だけ、親機1から子機13への通信におけるメッセージの送信回数と、子機13から親機1への通信におけるACKの送信回数とを削減できる。このような無線メッシュネットワークにて、親機に各子機からのデータを集約する場合、子機13を中継路とする子機が複数存在するため(図1では、子機13の参入後、中継機21と子機14が子機13を中継路として、親機1に参入する)、その子機/中継機に関しても同様の効果が得られる。よって、システム全体としてさらなるメッセージの送信数の削減が可能となる。その結果、一定期間内に検針値を収集するシステムにおいて、1台の親機が収容可能な子機の台数を増やすことが可能となり、設置する親機の台数を削減することが可能となる。親機の台数削減によりシステムの低コスト化を実現できる。 In the present embodiment, a case has been described in which a single slave unit is relayed. However, a plurality of slave units are provided on the route (upstream route) from the slave unit 13 to the master unit 1 that can directly receive a message transmitted by the master unit 1. When there is a device / relay device, the number of message transmissions in communication from the parent device 1 to the child device 13 and the number of ACK transmissions in communication from the child device 13 to the parent device 1 can be reduced by the number of the devices / relay devices. . In such a wireless mesh network, when data from each child device is aggregated in the parent device, there are a plurality of child devices using the child device 13 as a relay path (in FIG. 1, after the child device 13 enters, The relay device 21 and the slave device 14 enter the master device 1 using the slave device 13 as a relay path), and the same effect can be obtained with respect to the slave device / relay device. Therefore, the number of message transmissions can be further reduced as a whole system. As a result, in a system that collects meter reading values within a certain period, the number of slave units that can be accommodated by one master unit can be increased, and the number of master units to be installed can be reduced. System costs can be reduced by reducing the number of master units.
 このように、本実施の形態の無線メッシュネットワークにおいて、親機は、収容している子機および中継機よりも高い送信出力にて無線信号を送信する。親機が送信する無線信号の到達範囲の端部(親機から離れた場所)に位置している無線端末(子機,中継機)は、親機と通信する場合、下り方向のメッセージを親機から直接受信し、上り方向のメッセージを中継担当端末(子機または中継機)経由で送信する。中継担当端末は、親機宛のメッセージを無線端末から受信した場合、無線端末に対する送達確認(ACKの返送)を省略し、メッセージを親機へ転送する。また、中継担当端末は、親機宛の送達確認を無線端末から受信した場合には親機へ転送する。これにより、上述した効果(メッセージ送信数の削減、親機が収容可能な子機や中継機の台数増加、システムの低コスト化)を得ることができる。 As described above, in the wireless mesh network according to the present embodiment, the master unit transmits a radio signal with a higher transmission output than the slave units and repeaters accommodated therein. When a wireless terminal (slave unit, repeater unit) located at the end of the reach of the radio signal transmitted by the base unit (a location away from the base unit) communicates with the base unit, it transmits a downstream message to the base unit. Directly received from the machine and sends an upstream message via the relay terminal (slave machine or relay machine). When the relay charge terminal receives a message addressed to the base unit from the wireless terminal, the relay terminal omits delivery confirmation (return of ACK) to the base station and transfers the message to the base unit. In addition, when the relay charge terminal receives a delivery confirmation addressed to the parent device from the wireless terminal, the relay terminal transfers it to the parent device. As a result, the above-described effects (reduction in the number of message transmissions, increase in the number of slave units and repeaters that can be accommodated by the master unit, and cost reduction of the system) can be obtained.
実施の形態2.
 図6は、実施の形態2の無線メッシュネットワークの構成例を示す図である。本実施の形態の無線メッシュネットワークは、実施の形態1の無線メッシュネットワーク(図1参照)に子機15を追加したものである。子機15の構成は子機11から14と同様とする(図2参照)。本実施の形態の無線メッシュネットワークは、実施の形態1の無線メッシュネットワークと比較して、中継機21の送信出力を子機11から15よりも高く設定したものである。本実施の形態の中継機21が送信した無線信号の到達範囲をエリア(信号到達エリア)42とする。また、子機13は、親機1が送信した無線信号を直接受信することができないものとする。無線メッシュネットワークを形成している各無線端末(親機、子機、中継機)の構成は実施の形態1と同様とする(図2から図4参照)。
Embodiment 2. FIG.
FIG. 6 is a diagram illustrating a configuration example of a wireless mesh network according to the second embodiment. The wireless mesh network of the present embodiment is obtained by adding a handset 15 to the wireless mesh network (see FIG. 1) of the first embodiment. The configuration of the slave unit 15 is the same as that of the slave units 11 to 14 (see FIG. 2). In the wireless mesh network of the present embodiment, the transmission output of the relay device 21 is set higher than the slave devices 11 to 15 as compared with the wireless mesh network of the first embodiment. The reach range of the radio signal transmitted by the repeater 21 of the present embodiment is defined as an area (signal reach area) 42. Further, it is assumed that the slave unit 13 cannot directly receive the radio signal transmitted by the master unit 1. The configuration of each wireless terminal (master unit, slave unit, and relay unit) forming the wireless mesh network is the same as that of the first embodiment (see FIGS. 2 to 4).
 次に、図6に示した構成の無線メッシュネットワークに中継機21が参入する動作を説明する。中継機21の信号到達エリア42には子機12から15が存在しているが、子機12および13は無線メッシュネットワークへ参入済、子機14および15は無線メッシュネットワークへ未参入とする。 Next, the operation of the repeater 21 entering the wireless mesh network having the configuration shown in FIG. 6 will be described. The slave units 12 to 15 exist in the signal arrival area 42 of the repeater 21, but the slave units 12 and 13 have already entered the wireless mesh network, and the slave units 14 and 15 have not entered the wireless mesh network.
 図7は、中継機21が無線メッシュネットワークに参入する動作シーケンスの一例を示す図である。 FIG. 7 is a diagram illustrating an example of an operation sequence in which the repeater 21 enters the wireless mesh network.
 中継機21は、起動すると、無線メッシュネットワークに参入していない場合、まず、参入可能な無線メッシュネットワークを探索するために、周辺探索要求をブロードキャスト送信する(ステップS41)。 When the relay machine 21 is activated and does not enter the wireless mesh network, the relay machine 21 first transmits a peripheral search request to search for an available wireless mesh network (step S41).
 親機1は信号到達エリア42の外に位置しているため、中継機21が送信した周辺探索要求を受信できない。信号到達エリア42の中に位置している子機12から15は周辺探索要求を受信し、無線メッシュネットワークに参入済みの子機12および13が周辺探索応答を中継機21へ送信する。子機12は、周辺探索要求を受信した場合にはその旨を記憶する(ステップS44)。図示を省略しているが、子機13も同様に、周辺探索要求を受信した場合にはその旨を記憶する。 Since the base unit 1 is located outside the signal arrival area 42, it cannot receive the peripheral search request transmitted by the relay unit 21. The slave units 12 to 15 located in the signal arrival area 42 receive the neighborhood search request, and the slave units 12 and 13 that have already entered the wireless mesh network transmit a neighborhood search response to the relay device 21. The subunit | mobile_unit 12 memorize | stores that when the periphery search request | requirement is received (step S44). Although not shown in the figure, the slave unit 13 similarly stores a message to that effect when it receives a peripheral search request.
 中継機21は子機12の信号到達エリア32の外に位置しているため(図6参照)、子機12が送信した周辺探索応答は中継機21まで届かず、子機13が送信した周辺探索応答のみが中継機21に届く(ステップS42,S43)。なお、図示を省略しているが、無線メッシュネットワークに未参入の子機14および15は、周辺探索要求を受信しても無視する。周辺探索応答は、実施の形態1で説明した周辺探索応答と同じものである。 Since the repeater 21 is located outside the signal arrival area 32 of the slave unit 12 (see FIG. 6), the periphery search response transmitted by the slave unit 12 does not reach the repeater 21, and the periphery transmitted by the slave unit 13 Only the search response reaches the repeater 21 (steps S42 and S43). In addition, although illustration is abbreviate | omitted, even if the subunit | mobile_unit 14 and 15 which has not entered into a wireless mesh network receives a periphery search request | requirement, it will be disregarded. The surrounding search response is the same as the surrounding search response described in the first embodiment.
 中継機21は、一定期間にわたって周辺探索応答の受信を行い、その結果、子機13のみから周辺探索応答を受信するので、受信した周辺探索応答で通知された通信経路に従い、宛先を親機1に設定し、かつ子機13および子機12を経由して親機1に至る経路(子機13→子機12→親機1の経路)を経路情報として設定した参入要求を子機13宛にユニキャスト送信する(ステップS45)。 The relay device 21 receives the surrounding search response for a certain period and, as a result, receives the surrounding search response only from the slave unit 13, so that the destination is set to the parent device 1 according to the communication path notified by the received surrounding search response. And the entry request that sets the route from the slave unit 13 and the slave unit 12 to the master unit 1 (slave unit 13 → slave unit 12 → route of the master unit 1) as route information is addressed to the slave unit 13 Unicast transmission is performed (step S45).
 中継機21が送信した参入要求は、子機12および13により受信される。子機13は、参入要求を受信すると、中継機21へACKを返送するとともに、参入要求を子機12へ転送する(ステップS46,S47)。子機12は、中継機21が送信した参入要求および子機13により転送された参入要求を受信する。子機12は、中継機21が送信した参入要求を受信すると、これに設定されている経路情報を確認し、経路情報が示す経路と参入要求の実際の受信経路が異なるため、自身が送信したメッセージは中継機21まで届かない(中継機21からの直接受信は可能だが中継機21への直接送信は不可能)と認識する(ステップS49)。一方、子機13により転送された参入要求を受信した場合、設定されている経路情報が示す経路と実際の受信経路が一致しているため、ACKを返送する(ステップS48)。そして、参入要求を親機1へ転送する(ステップS50)。 The entry request transmitted by the relay device 21 is received by the slave devices 12 and 13. When receiving the entry request, the slave unit 13 returns an ACK to the relay unit 21 and transfers the entry request to the slave unit 12 (steps S46 and S47). The subunit | mobile_unit 12 receives the entry request transmitted by the relay device 21, and the entry request transferred by the subunit | mobile_unit 13. FIG. When the slave unit 12 receives the entry request transmitted from the repeater 21, the slave unit 12 confirms the route information set in this, and the route indicated by the route information is different from the actual reception route of the join request, so that the slave unit 12 has transmitted it. It is recognized that the message does not reach the repeater 21 (direct reception from the repeater 21 is possible but direct transmission to the repeater 21 is not possible) (step S49). On the other hand, when the entry request transferred by the slave unit 13 is received, an ACK is returned because the route indicated by the set route information matches the actual reception route (step S48). Then, the entry request is transferred to the parent device 1 (step S50).
 親機1は、参入要求を受信するとACKを返送する(ステップS51)。そして、参入要求を受信したことと、参入を要求している中継機21(参入要求の送信元)の参入を許可するか否かを判断するために、応答兼認証要求を送信する。このとき、参入要求が送信されてきた経路の情報を応答兼認証要求に付加し、最終の宛先を中継機21に設定してユニキャストで子機12へ送信する(ステップS52)。 When the base unit 1 receives the entry request, it returns an ACK (step S51). Then, a response and authentication request is transmitted in order to determine whether the entry request has been received and whether or not entry of the repeater 21 (entry request transmission source) requesting entry is permitted. At this time, the information of the route through which the entry request has been transmitted is added to the response / authentication request, the final destination is set in the relay device 21, and the unicast is transmitted to the child device 12 (step S52).
 子機12は、中継機21宛の応答兼認証要求を受信すると、親機1へACKを返送し(ステップS53)、さらに、応答兼認証要求に設定されている経路情報に従い、子機13へ転送する(ステップS54)。このステップS54では、メッセージを中継機21から直接受信可能であることを示す情報を応答兼認証要求に付加して送信する。 When receiving the response / authentication request addressed to the relay device 21, the child device 12 returns an ACK to the parent device 1 (step S 53), and further proceeds to the child device 13 according to the path information set in the response / authentication request. Transfer (step S54). In step S54, information indicating that the message can be directly received from the repeater 21 is added to the response / authentication request and transmitted.
 子機13は、応答兼認証要求を受信すると、子機12へACKを返送し(ステップS55)、さらに、最終の宛先である中継機21へ応答兼認証要求を転送する(ステップS56)。このとき、子機13は、応答兼認証要求に付加されている情報を確認し、中継機21から送信されたメッセージを子機12が直接受信可能であることを把握する。すなわち、中継機21から子機12へのメッセージ送信は自身を経由せずに直接行われること、中継機21から子機12へ直接送信されたメッセージのACK(中継機21宛のACK)を子機12から受信した場合は中継機21へ転送する必要があること、中継機21宛のメッセージを子機12から受信した場合にはACKの送信が不要であること(ACKを子機12へ送信することなく、メッセージを中継機21へ転送すること)、を記憶する。 When the slave unit 13 receives the response / authentication request, the slave unit 13 returns an ACK to the slave unit 12 (step S55), and further transfers the response / authentication request to the relay device 21 that is the final destination (step S56). At this time, the slave unit 13 confirms the information added to the response / authentication request, and grasps that the slave unit 12 can directly receive the message transmitted from the relay unit 21. That is, message transmission from the relay device 21 to the child device 12 is performed directly without going through itself, and an ACK (ACK addressed to the relay device 21) of the message directly transmitted from the relay device 21 to the child device 12 is received as a child. If it is received from the mobile device 12, it must be transferred to the relay device 21. If a message addressed to the relay device 21 is received from the slave device 12, it is not necessary to transmit ACK (transmit ACK to the slave device 12. Transfer the message to the repeater 21 without doing so).
 中継機21は、応答兼認証要求を受信すると、子機13へACKを返送する(ステップS57)。そして、認証処理を行うとともに、応答兼認証要求に付加されている情報を確認し、自身が送信したメッセージを子機12が直接受信可能であると認識する(ステップS58)。なお、図7においては認証処理の記載を省略している。中継機21は、認証処理が終了すると、認証結果を含んだ認証応答を親機1宛にユニキャストで送信する(ステップS59)。このステップS59では、最終の宛先として親機1を設定した認証応答を子機12宛に送信する。 When the relay device 21 receives the response / authentication request, the relay device 21 returns an ACK to the child device 13 (step S57). And while performing an authentication process, the information added to the response and authentication request | requirement is confirmed, and it recognizes that the subunit | mobile_unit 12 can directly receive the message which self transmitted (step S58). In FIG. 7, the description of the authentication process is omitted. When the authentication process is completed, the relay device 21 transmits an authentication response including the authentication result to the parent device 1 by unicast (step S59). In this step S59, an authentication response in which the parent device 1 is set as the final destination is transmitted to the child device 12.
 子機12は、中継機21から認証応答を受信すると、中継機21を最終の宛先とするACKを子機13経由で中継機21へ送信し(ステップS60,S61)、認証応答を親機1へ転送する(ステップS62)。 When receiving the authentication response from the relay device 21, the slave device 12 transmits an ACK with the relay device 21 as the final destination to the relay device 21 via the slave device 13 (steps S60 and S61), and the authentication response is transmitted to the master device 1. (Step S62).
 親機1は、子機12から認証応答を受信すると、ACKを子機12へ返送する(ステップS63)。そして、認証応答に含まれる認証結果より、中継機21を自身の無線メッシュネットワークに参入させるか否かを判断する。参入させる場合、子機12および13を経由する経路で参入完了を送信する(ステップS64)。すなわち、子機12および13を経由する経路を示す経路情報を設定した参入完了を送信する。 When receiving the authentication response from the child device 12, the parent device 1 returns an ACK to the child device 12 (step S63). Then, from the authentication result included in the authentication response, it is determined whether or not the repeater 21 is allowed to enter its own wireless mesh network. When entering, the completion of entry is transmitted through a route passing through the slave units 12 and 13 (step S64). That is, the entry completion in which route information indicating the route passing through the slave units 12 and 13 is set is transmitted.
 子機12は、参入完了を受信すると、ACKを親機1へ返送し(ステップS65)、参入完了を子機13へ転送する(ステップS66)。 When receiving the entry completion, the child device 12 returns an ACK to the parent device 1 (step S65), and transfers the entry completion to the child device 13 (step S66).
 子機13は、子機12から参入完了を受信すると、その宛先が中継機21であることから、ACKを送信せずに、参入完了を中継機21へ転送する(ステップS67)。 When receiving the entry completion from the child device 12, the child device 13 forwards the entry completion to the relay device 21 without transmitting an ACK because the destination is the relay device 21 (step S67).
 中継機21は、参入完了を受信すると、子機12へACKを送信する(ステップS68)。 When the relay device 21 receives the entry completion, it transmits an ACK to the child device 12 (step S68).
 このように、本実施の形態の無線メッシュネットワークにおいて、中継機は、子機よりも高い送信出力にて無線信号を送信する。中継機が送信する無線信号の到達範囲の端部(中継機から離れた場所)に位置している子機は、中継機と通信する場合、中継機から自身宛に送信されたメッセージを直接受信し、中継機へメッセージを送信する場合には、他の子機経由で送信する。中継を担当する他の子機は、中継機宛のメッセージを受信した場合、送達確認(ACKの返送)を省略し、メッセージを中継機へ転送する。また、中継を担当する他の子機は、中継機宛の送達確認を受信した場合には中継機へ転送する。これにより、実施の形態1と同様の効果を得ることができる。すなわち、親機と中継機の間にある子機と中継機の間のメッセージやACKの送信回数を実施の形態1と同様に削減することができる。 Thus, in the wireless mesh network of the present embodiment, the relay station transmits a radio signal with a higher transmission output than the slave unit. When the slave unit located at the end of the reach of the wireless signal transmitted by the repeater (a place away from the repeater) communicates with the repeater, it directly receives the message sent from the repeater to itself. However, when a message is transmitted to the repeater, it is transmitted via another slave unit. When the other slave unit in charge of relay receives a message addressed to the relay unit, the delivery confirmation (return of ACK) is omitted and the message is transferred to the relay unit. In addition, when the other child device in charge of relay receives the delivery confirmation addressed to the relay device, it transfers it to the relay device. Thereby, the effect similar to Embodiment 1 can be acquired. That is, the number of messages and ACKs transmitted between the slave unit and the relay unit between the master unit and the relay unit can be reduced as in the first embodiment.
実施の形態3.
 実施の形態2では、図6に示した中継機21が無線メッシュネットワークに参入する場合の動作を説明したが、本実施の形態では、図6に示した子機15が無線メッシュネットワークに参入する場合の動作について説明する。図6に示した子機12から14および中継機21は無線メッシュネットワークに参入済みであるものとする。
Embodiment 3 FIG.
In the second embodiment, the operation when the repeater 21 illustrated in FIG. 6 enters the wireless mesh network has been described. However, in the present embodiment, the slave unit 15 illustrated in FIG. 6 enters the wireless mesh network. The operation in this case will be described. Assume that the slave units 12 to 14 and the relay unit 21 shown in FIG. 6 have already entered the wireless mesh network.
 図6に示したように、子機15は、信号到達エリア42の中にいるため、中継機21が送信した無線信号(メッセージやACK)を直接受信できる。一方、中継機21は、信号到達エリア35の外にいるため、子機15が送信した無線信号を直接受信することができず、子機14経由で子機15からのメッセージやACKを受信することになる。この状態は、実施の形態1で説明した子機13と親機1の関係と同じである(図1参照)。そのため、子機15が無線メッシュネットワークに参入する場合の中継機21の動作は、実施の形態1で説明した親機1の動作(図5参照)と類似したものとなる。すなわち、親機1の動作から認証処理を除いたものとなる。中継機21が図5に示した親機1、子機14が図5に示した子機12、子機15が図5に示した子機13として動作することにより、実施の形態1と同様の効果を得ることができる。 As shown in FIG. 6, since the handset 15 is in the signal arrival area 42, the handset 15 can directly receive the radio signal (message or ACK) transmitted by the repeater 21. On the other hand, since the repeater 21 is outside the signal arrival area 35, it cannot directly receive the radio signal transmitted by the slave unit 15 and receives a message or ACK from the slave unit 15 via the slave unit 14. It will be. This state is the same as the relationship between the child device 13 and the parent device 1 described in the first embodiment (see FIG. 1). Therefore, the operation of the relay device 21 when the child device 15 enters the wireless mesh network is similar to the operation (see FIG. 5) of the parent device 1 described in the first embodiment. That is, the authentication process is excluded from the operation of the base unit 1. The repeater 21 operates as the master unit 1 shown in FIG. 5, the slave unit 14 operates as the slave unit 12 shown in FIG. 5, and the slave unit 15 operates as the slave unit 13 shown in FIG. The effect of can be obtained.
 ここで、実施の形態1から3を実現するために使用するメッセージのフォーマットについて説明する。図8は、実施の形態1から実施の形態3を実現するためのメッセージフォーマットの一例を示す図である。図示したように、メッセージはヘッダ部およびデータ部で構成され、データ部には、メッセージの本体(参入要求、応答兼認証要求、等)が格納される。ヘッダ部には、メッセージを送信元から送信先へ届けるために必要な情報として、次送信先アドレス、自アドレス、メッセージ送信先アドレス、メッセージ送信元アドレス、経路情報(メッセージの送信元から送信先までの経路)、シーケンス番号(シーケンスNo.)および拡張領域が格納される。拡張領域には、機器種別#1、直接受信可能送信元アドレス、機器種別#2および直接受信可能送信先アドレスが格納される。 Here, the format of a message used for realizing the first to third embodiments will be described. FIG. 8 is a diagram illustrating an example of a message format for realizing the first to third embodiments. As shown in the figure, the message is composed of a header part and a data part, and the main part of the message (entry request, response / authentication request, etc.) is stored in the data part. In the header part, as information necessary for delivering the message from the transmission source to the transmission destination, the next transmission destination address, own address, message transmission destination address, message transmission source address, route information (from the transmission source to the transmission destination of the message) Route), sequence number (sequence No.), and extension area. In the extended area, device type # 1, direct receivable source address, device type # 2, and direct receivable destination address are stored.
 図5に示したシーケンスを参照しながらメッセージフォーマットを説明する。ここでは、子機12が子機13からの参入要求を親機1へ転送する場合(ステップS18に相当)を例に説明する。子機12から親機1へ転送される参入要求の次送信先アドレスには親機1のアドレスが格納され、自アドレスには子機12のアドレスが格納される。また、メッセージ送信先アドレスには参入要求の最終到達先である親機1のアドレスが格納され、メッセージ送信元アドレスには参入要求の送信元の子機13のアドレスが格納される。なお、アドレスとしては、機器固有のMACアドレスやIPアドレスなどを使用する。シーケンス番号は、各無線端末間での送達の確認や、再送、無線経路上でのメッセージのループ検出等に用いられ、送信元の無線端末がメッセージ毎に付与する番号である。 The message format will be described with reference to the sequence shown in FIG. Here, a case where the child device 12 transfers an entry request from the child device 13 to the parent device 1 (corresponding to step S18) will be described as an example. The address of the parent device 1 is stored in the next transmission destination address of the entry request transferred from the child device 12 to the parent device 1, and the address of the child device 12 is stored in the own address. The message transmission destination address stores the address of the parent device 1 that is the final destination of the entry request, and the message transmission source address stores the address of the child device 13 that is the transmission source of the entry request. As the address, a device-specific MAC address or IP address is used. The sequence number is used for confirmation of delivery between wireless terminals, retransmission, message loop detection on a wireless path, and the like, and is a number assigned to each message by a transmitting wireless terminal.
 拡張領域は、必要に応じて設定される情報である。例えば、図5のステップS25で送信する認証応答、およびこれ以降の各メッセージとACKに設定される。図5のステップS25以降の各メッセージおよびACKにおいては、機種種別#1に対して「親機」を示す情報が設定され、直接受信可能送信元アドレスに対して親機1のアドレスが設定され、機種種別#2に対して「子機」を示す情報が設定され、直接受信可能送信先アドレスに対して子機13のアドレスが設定される。これにより、子機13、子機12および親機1は、子機13が親機1からの送信を直接受信可能であることを認識できる。子機12はメッセージの送信元から送信先までの経路情報および拡張領域の情報から、自身が、親機1と子機13の間に位置しており、親機1から子機13への送信の場合は、自身を経由することなく、メッセージおよびACKが送信され、子機13から親機1への送信の場合は、自身を経由することを認識できる。すなわち、子機12は、子機13からメッセージを受信した場合はACKを子機13に送信することなくメッセージを親機1に転送し、子機13からACKを受信した場合は、親機1にACKを転送する制御を実施できる。子機12がこのような制御を行うことにより、メッセージおよびACKの送信回数を削減できる。 The extended area is information set as necessary. For example, it is set in the authentication response transmitted in step S25 of FIG. 5 and each subsequent message and ACK. In each message and ACK after step S25 in FIG. 5, information indicating “master” is set for model type # 1, and the address of master 1 is set for the directly receivable source address. Information indicating “slave unit” is set for the model type # 2, and the address of the slave unit 13 is set for the directly receivable transmission destination address. Thereby, the subunit | mobile_unit 13, the subunit | mobile_unit 12, and the main | base station 1 can recognize that the subunit | mobile_unit 13 can receive the transmission from the main | base station 1 directly. The slave unit 12 is located between the master unit 1 and the slave unit 13 based on the route information from the transmission source to the destination of the message and the extended area information, and is transmitted from the master unit 1 to the slave unit 13. In the case of, the message and ACK are transmitted without going through the device itself, and in the case of transmission from the child device 13 to the parent device 1, it can be recognized that the message is sent through itself. That is, if the slave unit 12 receives a message from the slave unit 13, the slave unit 12 transfers the message to the master unit 1 without transmitting an ACK to the slave unit 13. If receiving the ACK from the slave unit 13, the slave unit 12 It is possible to implement control for transferring ACK to. When the handset 12 performs such control, the number of message and ACK transmissions can be reduced.
実施の形態4.
 実施の形態4の無線メッシュネットワークについて説明する。無線メッシュネットワークの構成、親機、子機および中継機の構成は実施の形態1と同様とする(図1から図4参照)。メッセージとACKの送受信シーケンスは実施の形態1または2と同様とする(図5、図7参照)。
Embodiment 4 FIG.
A wireless mesh network according to the fourth embodiment will be described. The configuration of the wireless mesh network and the configurations of the parent device, the child device, and the relay device are the same as those in the first embodiment (see FIGS. 1 to 4). The message and ACK transmission / reception sequence is the same as in the first or second embodiment (see FIGS. 5 and 7).
 図5に示したシーケンスにおいて、親機1がステップS20で応答兼認証要求を子機12に送信してからステップS21でACKを受信するまでの時間と、親機1がステップS30で参入完了を子機13に送信してからステップS32でACKを受信するまでの時間は、ACKの転送が発生するため、後者の方が長くなる。そのため、前者(子機12がACKを送信する場合)と後者(子機13がACKを送信する場合)でACKの受信待ち時間を同じに設定した場合、ACKの未受信による再送(参入完了の再送)の発生頻度が高くなるおそれがある。図5に示したシーケンス例では中継数を1としているが、中継数が2以上になることもあり、中継数が多くなると、さらに再送が発生しやすくなる。 In the sequence shown in FIG. 5, the time from when the master unit 1 transmits a response / authentication request to the slave unit 12 at step S20 until it receives an ACK at step S21, and the master unit 1 completes entry at step S30. Since the transmission of ACK occurs after the transmission to the child device 13 until the ACK is received in step S32, the latter is longer. Therefore, if the reception wait time of ACK is set to be the same for the former (when the slave unit 12 transmits ACK) and the latter (when the slave unit 13 transmits ACK), retransmission due to ACK not being received (participation completion) There is a risk that the frequency of occurrence of retransmission will increase. In the sequence example shown in FIG. 5, the number of relays is 1. However, the number of relays may be 2 or more. If the number of relays is increased, retransmission is more likely to occur.
 図7に示したシーケンスにおいて、中継機21がステップS59で認証応答を子機12に送信してからステップS61でACKを受信する場合も同様となる。 In the sequence shown in FIG. 7, the same applies when the relay device 21 transmits an authentication response to the child device 12 in step S59 and then receives ACK in step S61.
 また、図5に示したシーケンスにおいて、子機13がステップS33で定期検針通知を送信してからステップS35でACKを受信する場合や、図7に示したシーケンスにおいて、子機12がステップS66で参入完了を送信してからステップS68でACKを受信する場合も同様となる。 Further, in the sequence shown in FIG. 5, when the handset 13 transmits a periodic meter reading notice in step S33 and receives ACK in step S35, or in the sequence shown in FIG. 7, the handset 12 in step S66. The same applies when ACK is received in step S68 after the entry completion is transmitted.
 そこで、本実施の形態の無線メッシュネットワークにおいては、各無線端末(親機、子機、中継機)がACKの受信を待つ時間(ACKの受信待ちタイマ)を中継数に応じた値とする。例えば、図9に従った値とする。図9は、メッセージとその送達確認(ACK)の中継数の比が1:NあるいはN:1の場合に、メッセージの送信元が起動する送達確認待ちタイマのタイマ値(ACKの受信待ち時間)の一例を示す図である。親機、中継機および子機は図9に示したテーブルをROMや不揮発性メモリに保持し、中継数の比に対応するタイマ値を使用する。図9に従った場合、親機、中継機および子機は、メッセージやACKの中継が発生しない場合(双方向ともに直接通信が可能な場合)のタイマ値をTとし、中継数が増えるにつれて、タイマ値をT×2、T×3、…と大きくする。これにより、ACKの未受信による再送発生を抑制できる。また、必要以上に送達確認を待つことが無くなり、通信の効率を上げることが可能となる。 Therefore, in the wireless mesh network of the present embodiment, the time that each wireless terminal (base unit, slave unit, relay unit) waits for reception of ACK (ACK reception waiting timer) is set to a value corresponding to the number of relays. For example, assume a value according to FIG. FIG. 9 shows a timer value of an acknowledgment wait timer that is activated by the message sender when the ratio of the number of relays between the message and its acknowledgment (ACK) is 1: N or N: 1 (acknowledgment waiting time of ACK). It is a figure which shows an example. The master unit, the relay unit, and the slave unit hold the table shown in FIG. 9 in the ROM or nonvolatile memory, and use a timer value corresponding to the ratio of the number of relays. In the case of following FIG. 9, the master unit, the relay unit, and the slave unit have a timer value T when no message or ACK relay occurs (when direct communication is possible in both directions), and as the number of relays increases, The timer value is increased to T × 2, T × 3,. Thereby, it is possible to suppress the occurrence of retransmission due to ACK not being received. In addition, it is not necessary to wait for delivery confirmation more than necessary, and communication efficiency can be increased.
 なお、「非対称経路中継数比=1」の場合、上りと下りの経路が非対称ではなく、双方向の直接通信が可能な場合(通常の場合)を意味する。例えば、図1に示した子機12と子機13の関係がこれに該当する。図9では、1:1の通常のタイマ値Tに対して、中継数を掛けた値としたが、一例であり元々のタイマ値Tに余裕があるが場合は、中継数が少ない場合は、そのまま同じ値Tを用い、中継数がある閾値を超えた場合、例えば3の倍数毎に、2倍、3倍というように長くしても良い。 Note that “asymmetric route relaying number ratio = 1” means that the upstream and downstream routes are not asymmetrical and bi-directional direct communication is possible (normal case). For example, the relationship between the slave unit 12 and the slave unit 13 shown in FIG. In FIG. 9, the normal timer value T of 1: 1 is multiplied by the number of relays. However, this is an example, and there is a margin in the original timer value T. If the number of relays is small, If the same value T is used as it is and the number of relays exceeds a certain threshold value, for example, every 3 multiples, 2 times or 3 times may be used.
実施の形態5.
 実施の形態5の無線メッシュネットワークについて説明する。無線メッシュネットワークの構成、親機、子機および中継機の構成は実施の形態1と同様とする(図1から図4参照)。メッセージとACKの送受信シーケンスは実施の形態1と同様とする(図5参照)。メッセージとACKの送受信シーケンスは実施の形態1または2と同様とする(図5、図7参照)。
Embodiment 5 FIG.
A wireless mesh network according to the fifth embodiment will be described. The configuration of the wireless mesh network and the configurations of the parent device, the child device, and the relay device are the same as those in the first embodiment (see FIGS. 1 to 4). The message and ACK transmission / reception sequence is the same as in the first embodiment (see FIG. 5). The message and ACK transmission / reception sequence is the same as in the first or second embodiment (see FIGS. 5 and 7).
 本実施の形態の無線メッシュネットワークにおいて、親機、子機および中継機は、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)制御によってメッセージを送信する。 In the wireless mesh network of the present embodiment, the parent device, the child device, and the relay device transmit messages by CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) control.
 CSMA/CA制御を適用した場合、無線端末(親機、子機、中継機)は、他の無線端末による電波の送信状態を監視し、LIFS(long interframe spacing)の間、電波を検出しなければ、さらにバックオフ(ランダム遅延)が経過した時点でメッセージを送信する。また、受信したメッセージの送達確認を確実に優先的に行うため、メッセージを受信した無線端末は、LIFSよりも短いSIFS(short interframe spacing)の間、電波を検出しない場合に、その時点で、ACKの送信を行う。これにより、メッセージの送信よりもACKの送信が優先されるので、ACKが送信できない(メッセージの送信側がACKを受信できない)ことによるメッセージの再送が発生するのを防止できる。 When CSMA / CA control is applied, the wireless terminal (base unit, slave unit, repeater) must monitor the transmission status of radio waves from other wireless terminals and detect radio waves during LIFS (long interframe spacing). For example, the message is transmitted when the back-off (random delay) further elapses. In addition, in order to ensure the delivery confirmation of the received message with certainty, if the wireless terminal that receives the message does not detect the radio wave for a short interframe spacing (SIFS) shorter than the LIFS, at that time, the ACK Send. Thereby, since transmission of ACK is prioritized over transmission of message, it is possible to prevent the retransmission of the message due to the fact that the ACK cannot be transmitted (the message transmitting side cannot receive the ACK).
 図10および図11は、図5に示したシーケンスにおいて、親機1が子機13に参入完了を送信する場合の送信タイミングを説明するための図である。図10は、従来の無線メッシュネットワークにCSMA/CA制御を適用した場合の送信タイミングを示し、図11は、本実施の形態の無線メッシュネットワークにおける送信タイミングを示している。 FIG. 10 and FIG. 11 are diagrams for explaining transmission timing when the parent device 1 transmits entry completion to the child device 13 in the sequence shown in FIG. FIG. 10 shows the transmission timing when CSMA / CA control is applied to a conventional wireless mesh network, and FIG. 11 shows the transmission timing in the wireless mesh network of the present embodiment.
 仮に、従来の無線メッシュネットワークの構成が図1に示したものである場合、CSMA/CA制御を適用すると、図10に示したように、親機1がLIFS+バックオフ後に、最終送信先を子機13とした参入完了を子機12へ送信する。子機12は、最終送信先が子機13とされた参入完了を親機1から受信すると、SIFS後に親機1へACKを送信する。その後、子機12は、LIFS+バックオフ後に、参入完了を最終送信先である子機13へ送信する。子機13は、自身宛ての参入完了を受信すると、SIFS後に子機12へACKを送信する。 If the configuration of the conventional wireless mesh network is the one shown in FIG. 1, when CSMA / CA control is applied, as shown in FIG. 10, the master unit 1 sets the final destination as a child after LIFS + backoff. The entry completion as the machine 13 is transmitted to the child machine 12. When receiving the completion of entry in which the final transmission destination is the child device 13 from the parent device 1, the child device 12 transmits an ACK to the parent device 1 after SIFS. Thereafter, the slave unit 12 transmits entry completion to the slave unit 13 that is the final transmission destination after LIFS + backoff. When receiving the entry completion addressed to itself, slave unit 13 transmits ACK to slave unit 12 after SIFS.
 一方、本実施の形態の無線メッシュネットワークにおいては、図11に示したように、親機1は、LIFS+バックオフ後に、子機13宛てに参入完了を直接送信する。子機13は、参入完了を親機1から受信すると、SIFS後に、最終送信先を親機1としたACKを子機12へ送信する。子機12は、最終送信先が親機1とされたACKを受信すると、SIFS後に親機1へACKを送信(転送)する。 On the other hand, in the wireless mesh network according to the present embodiment, as shown in FIG. 11, base unit 1 directly transmits entry completion to handset 13 after LIFS + backoff. When receiving the entry completion from the parent device 1, the child device 13 transmits an ACK with the final transmission destination as the parent device 1 to the child device 12 after SIFS. When receiving the ACK whose final transmission destination is the parent device 1, the child device 12 transmits (transfers) the ACK to the parent device 1 after SIFS.
 バックオフがランダム値であること、隠れ端末による送信の影響等により、正確には図10と図11のような差にはならないが、従来の無線メッシュネットワークにCSMA/CA制御を適用した場合と比較して、本実施の形態の無線メッシュネットワークにおいては「LIFS、バックオフ、参入完了の送信」の各1回分の時間を短縮できる。すなわち、システム全体として、メッセージを送受信可能な時間を増やすことができる。仮に、子機12から親機1へのACKの転送をメッセージ扱いとして、LIFS+バックオフ後に送信するようにしても、「SIFS、参入完了の送信」の各1回分の時間を短縮できる。 Due to the fact that the backoff is a random value and the influence of transmission by the hidden terminal, etc., the difference is not exactly as shown in FIG. 10 and FIG. 11, but when the CSMA / CA control is applied to the conventional wireless mesh network. In comparison, in the wireless mesh network of the present embodiment, it is possible to shorten the time for each “LIFS, backoff, entry completion transmission”. That is, as a whole system, it is possible to increase the time during which messages can be transmitted and received. Even if ACK transfer from the child device 12 to the parent device 1 is treated as a message and transmitted after LIFS + backoff, the time for each “SIFS, entry completion transmission” can be shortened.
 図12および図13は、図5に示したシーケンスにおいて、子機13が親機1に向けてメッセージを送信する場合の送信タイミングを説明するための図である。図12および図13は、一例として、子機13が定期検針通知を送信する場合の送信タイミングを示している。図12は、従来の無線メッシュネットワークにCSMA/CA制御を適用した場合の送信タイミングを示し、図13は、本実施の形態の無線メッシュネットワークにおける送信タイミングを示している。 12 and 13 are diagrams for explaining the transmission timing when the handset 13 sends a message to the base unit 1 in the sequence shown in FIG. FIG. 12 and FIG. 13 show the transmission timing when the handset 13 transmits a periodic meter reading notification as an example. FIG. 12 shows the transmission timing when CSMA / CA control is applied to a conventional wireless mesh network, and FIG. 13 shows the transmission timing in the wireless mesh network of the present embodiment.
 仮に、従来の無線メッシュネットワークの構成が図1に示したものである場合、CSMA/CA制御を適用すると、図12に示したように、子機13は、LIFS+バックオフ後に、子機12宛てに定期検針通知を送信する。子機12は、定期検針通知を子機13から受信すると、SIFS後に子機13へACKを送信し、その後、LIFS+バックオフ後に、親機1宛てに定期検針通知を転送する。親機1は、定期検針通知を子機12から受信すると、SIFS後に子機12へACKを送信する。 If the configuration of the conventional wireless mesh network is as shown in FIG. 1, when CSMA / CA control is applied, as shown in FIG. 12, the slave unit 13 is addressed to the slave unit 12 after LIFS + backoff. Send a periodic meter reading notification to. When receiving the periodic meter reading notification from the slave unit 13, the slave unit 12 transmits an ACK to the slave unit 13 after SIFS, and then transfers the periodic meter reading notification to the master unit 1 after LIFS + backoff. When receiving the periodic meter reading notification from the slave unit 12, the master unit 1 transmits an ACK to the slave unit 12 after SIFS.
 一方、本実施の形態の無線メッシュネットワークにおいては、図13に示したように、子機12は、子機13から定期検針通知を受信した場合にACKを送信することなく、定期検針通知を受信してからLIFS+バックオフ後に、親機1に対して定期検針通知を転送する。親機1は、定期検針通知を受信すると、SIFS後に、子機13へACKを送信する。このように、図12に示した従来の制御と比較して、「SIFS、ACK送信」の各1回分の時間を短縮できる。 On the other hand, in the wireless mesh network of the present embodiment, as shown in FIG. 13, when receiving the periodic meter reading notification from the slave unit 13, the slave unit 12 receives the periodic meter reading notification without transmitting an ACK. Then, after LIFS + backoff, a periodic meter reading notification is transferred to the master unit 1. When the base unit 1 receives the periodic meter reading notification, the base unit 1 transmits ACK to the handset 13 after SIFS. Thus, compared with the conventional control shown in FIG. 12, the time for each “SIFS, ACK transmission” can be shortened.
 また、本実施の形態の無線メッシュネットワークに適用しているCSMA/CA制御の一部を変更することにより、図14に示した送信タイミングとすることもできる。図14は、本実施の形態の無線メッシュネットワークの変形例(CSMA/CA制御を一部改良したもの)における送信タイミングを示す図である。 Further, the transmission timing shown in FIG. 14 can be obtained by changing a part of the CSMA / CA control applied to the wireless mesh network of the present embodiment. FIG. 14 is a diagram illustrating transmission timings in a modified example of the wireless mesh network according to the present embodiment (partly improved CSMA / CA control).
 子機12が子機13から定期検針通知を受信した場合に、本来であれば、子機12から子機13宛てのACKの送信が優先されることを利用し、SIFS後に親機1宛てに定期検針通知を転送するようにすると、図14に示した送信タイミングとなる。この場合、図12に示した従来の制御と比較して、「ACK送信、LIFS、バックオフ」の各1回分の時間を短縮できる。図13に示した送信タイミングと比較しても、「LIFS、バックオフ」の各1回分の時間を短縮できる。 When the handset 12 receives the periodic meter reading notification from the handset 13, if the original, the fact that the transmission of the ACK addressed from the handset 12 to the handset 13 is prioritized is used, and the address is sent to the base unit 1 after SIFS. When the periodic meter reading notification is transferred, the transmission timing shown in FIG. 14 is reached. In this case, compared with the conventional control shown in FIG. 12, the time for each of “ACK transmission, LIFS, and back-off” can be shortened. Compared with the transmission timing shown in FIG. 13, the time for each “LIFS, back-off” can be shortened.
 このように、1回のメッセージ送信に要する時間を短縮できるので、親機が収容可能な子機の台数を増やすことができる。 Thus, since the time required for one message transmission can be shortened, the number of slave units that can be accommodated by the master unit can be increased.
実施の形態6.
 実施の形態1や実施の形態2において、子機および中継機は、親機または送信出力が高い中継機が送信した無線信号を直接受信できる場合、他の子機や中継機を経由せずにメッセージやACKを受信することとして、メッセージおよびACKの送信数を削減した。しかし、無線伝送路は状態が変動しやすいことを考慮し、他の子機や中継機を経由せずにメッセージやACKを直接受信する動作を、ある一定の通信品質が得られる場合に限定してもよい。一定の通信品質が得られるか否かは、例えば、RSSI値で判断する。
Embodiment 6 FIG.
In the first embodiment and the second embodiment, when the slave unit and the relay unit can directly receive a radio signal transmitted from the master unit or a relay unit having a high transmission output, the slave unit and the relay unit do not pass through another slave unit or the relay unit. Receiving messages and ACKs reduced the number of messages and ACKs sent. However, in consideration of the fact that the state of the wireless transmission path is likely to fluctuate, the operation of directly receiving messages and ACKs without going through other slave units or relay units is limited to cases where a certain communication quality can be obtained. May be. Whether or not a certain communication quality can be obtained is determined by, for example, an RSSI value.
 例えば、実施の形態1で説明した子機13は、親機1が送信したメッセージ(たとえば応答兼認証要求)を直接受信可能であることを検出した場合に(図5参照)、受信したメッセージの通信品質(RSSI等)が閾値以下であれば、直接受信する経路を選択せずに、子機12を経由して受信する経路を選択する。同様に、実施の形態2で説明した子機12は、中継機21が送信したメッセージを直接受信可能であることを検出した場合に(図7参照)、中継機21から受信したメッセージの通信品質が閾値以下であれば、直接受信する経路を選択せずに、子機13を経由して受信する経路を選択する。このように、経路選択時には、親機1や中継機21からメッセージおよびACKを直接受信できたが、電界強度の変動により受信できなくなる可能性がある通信品質の場合に、直接受信することを選択せず、より通信品質の良い経路から受信することを選択する。これにより、経路選択後の受信エラーによる経路の再選択、再送処理の発生確率を低減することができる。よって、無線メッシュネットワーク内でのメッセージの転送効率の低下を防止できる。 For example, when the handset 13 described in the first embodiment detects that the message (for example, response / authentication request) transmitted by the base unit 1 can be directly received (see FIG. 5), If the communication quality (RSSI or the like) is less than or equal to the threshold value, the route for receiving via the slave unit 12 is selected without selecting the route for receiving directly. Similarly, the slave unit 12 described in the second embodiment detects the communication quality of the message received from the relay unit 21 when detecting that the message transmitted by the relay unit 21 can be directly received (see FIG. 7). Is equal to or less than the threshold value, the route for receiving via the slave unit 13 is selected without selecting the route for receiving directly. As described above, when the route is selected, the message and ACK can be directly received from the base unit 1 and the relay unit 21. However, when the communication quality may not be received due to the fluctuation of the electric field strength, the direct reception is selected. Without selecting from a route with better communication quality. As a result, the probability of occurrence of reselection of a route and retransmission processing due to a reception error after route selection can be reduced. Therefore, it is possible to prevent a decrease in message transfer efficiency in the wireless mesh network.
実施の形態7.
 親機、子機および中継機の位置関係と信号到達エリアが上述した実施の形態2と同様の場合(図6参照)、中継機21は、各子機よりも高い送信出力(信号到達エリア42)の場合、および、各子機と同等の送信出力(信号到達エリア41)の場合の双方において、子機14に対してはメッセージを直接送信することができる。一方、子機15に対しては、高い送信出力の場合のみ、メッセージを直接送信できる。また、親機1は、各子機よりも高い送信出力の場合、および、各子機と同等の送信出力の場合の双方において、子機12に対してメッセージを直接送信することができる。
Embodiment 7 FIG.
When the positional relationship and the signal arrival area of the parent device, the child device, and the relay device are the same as in the second embodiment described above (see FIG. 6), the relay device 21 has a higher transmission output (signal arrival area 42) than each child device. ) And a transmission output (signal arrival area 41) equivalent to each slave unit, the message can be directly transmitted to the slave unit 14. On the other hand, a message can be directly transmitted to the slave unit 15 only in the case of a high transmission output. Moreover, the main | base station 1 can transmit a message directly with respect to the subunit | mobile_unit 12 in both the case of transmission output higher than each subunit | mobile_unit, and the case of the transmission output equivalent to each subunit | mobile_unit.
 このような状況において、中継機21から子機14へのメッセージの送信イベントおよび親機1から子機12へのメッセージの送信イベントが同時に発生し、かつ、親機1および中継機21が子機よりも高い送信出力でメッセージを送信した場合、親機1が送信したメッセージの到達範囲はエリア2、中継機21が送信したメッセージの到達範囲はエリア42となる。このとき、子機14は中継機21からのメッセージを受信できる。一方、子機12には、親機1が送信した無線信号と中継機21が送信した無線信号の双方が到達するため、親機1が送信したメッセージは、中継機21が送信したメッセージと干渉して正常に受信できなくなる。その結果、親機1は、子機12からのACKを受信できないため、メッセージを再送する。しかし、親機1と中継機21の送信出力を子機と同等とした場合、親機1が送信したメッセージの到達範囲はエリア3、中継機21が送信したメッセージの到達範囲はエリア41となる。そのため、子機14および子機12は、それぞれ、中継機21、親機1からのメッセージを干渉なく受信することができる。すなわち、親機や中継機の送信出力を子機より高くすることにより干渉が発生する確率を低減できるので、干渉による受信エラーや再送の発生確率を低減できる。 In such a situation, a message transmission event from the relay device 21 to the child device 14 and a message transmission event from the parent device 1 to the child device 12 occur simultaneously, and the parent device 1 and the relay device 21 are connected to the child device. When a message is transmitted with a higher transmission output, the arrival range of the message transmitted from the parent device 1 is area 2, and the arrival range of the message transmitted from the relay device 21 is area 42. At this time, the slave unit 14 can receive a message from the relay unit 21. On the other hand, since both the wireless signal transmitted from the parent device 1 and the wireless signal transmitted from the relay device 21 reach the child device 12, the message transmitted from the parent device 1 interferes with the message transmitted from the relay device 21. And cannot receive normally. As a result, since the base unit 1 cannot receive the ACK from the handset 12, it retransmits the message. However, when the transmission output of the master unit 1 and the relay unit 21 is equivalent to that of the slave unit, the reach range of the message transmitted by the master unit 1 is area 3, and the reach range of the message transmitted by the repeater 21 is area 41. . Therefore, the slave unit 14 and the slave unit 12 can receive messages from the relay unit 21 and the master unit 1 without interference, respectively. That is, since the probability of occurrence of interference can be reduced by making the transmission output of the parent device or relay device higher than that of the child device, the probability of occurrence of a reception error or retransmission due to interference can be reduced.
 このようなケースを考慮し、本実施の形態の親機および中継機は、メッセージの宛先に応じて送信出力を変更する。具体的には、自身に対してメッセージを直接送信することが可能な(双方向の直接通信が可能な)子機や中継機に対してメッセージを送信する場合、送信出力を下げる。例えば、親機1は、子機11や子機12に対してメッセージを送信する場合、子機と同等の送信出力とする。子機と同等の送信出力とするか否かは、子機が無線メッシュネットワークに参入する際のメッセージの送受信において判別すればよい。すなわち、親機1は、参入を希望している子機や中継機が送信したメッセージ(周辺探索要求や参入要求)を直接受信した場合、このメッセージを送信してきた子機または中継機に対してメッセージを送信する際には送信出力を下げる(子機と同等とする)ことに決定する。ただし、図5や図7のシーケンスに示したように、非対称の経路を構築するために、特定のメッセージに関しては、高い送信出力で送信する必要がある。 Considering such a case, the base unit and the relay unit according to the present embodiment change the transmission output according to the message destination. Specifically, when a message is transmitted to a child device or a relay device that can directly transmit a message to itself (two-way direct communication is possible), the transmission output is lowered. For example, when the master unit 1 transmits a message to the slave unit 11 or the slave unit 12, the transmission output is equivalent to that of the slave unit. Whether or not the transmission output is the same as that of the slave unit may be determined in transmission / reception of a message when the slave unit enters the wireless mesh network. That is, when the base unit 1 directly receives a message (peripheral search request or entry request) transmitted by a slave unit or relay device that desires to enter, the master unit 1 transmits the message to the slave unit or relay device that has transmitted this message. When transmitting a message, it is decided to lower the transmission output (equal to the slave unit). However, as shown in the sequences of FIG. 5 and FIG. 7, in order to construct an asymmetric path, it is necessary to transmit a specific message with a high transmission power.
 上述した各実施の形態では、親機、あるいは中継機の送信出力を子機より高くすることにより、メッセージやACKの送信回数を削減することとしたが、一部の子機の送信出力を高くしてもかまわない。例えば、親機や中継機と同様に見通しの良い場所に設置されている子機の送信出力を高くすることで、同様の効果が期待できる。 In each of the above-described embodiments, the number of transmissions of messages and ACKs is reduced by making the transmission output of the master unit or relay unit higher than that of the slave unit. It doesn't matter. For example, the same effect can be expected by increasing the transmission output of a slave unit installed in a place with a good line of sight like the master unit and the relay unit.
 実施の形態1および実施の形態2では、子機や中継機がそれぞれ参入する際に、参入する子機や中継機が非対称の経路を構築する例を示した。ここで、既に無線メッシュネットワークに参入済みの子機や中継機が複数存在しているエリアにおいて送信出力の高い中継機や子機を増設した場合、既存の各無線端末(無線メッシュネットワークに参入済みの子機や中継機)と親機の間の最適経路が変化するケースが考えられる。例えば、増設された無線端末(新たに参入した子機または中継機)を経由すると転送回数の削減となる子機や中継機が存在する可能性がある。このようなケースにおいても、非対称の経路を構築することが可能である。例えば、親機が、定期的に、または、不定期に、システムメンテナンスのためのメッセージをブロードキャストし、中継機と子機は、ブロードキャストされたメッセージの転送動作において、参入する際と同様の手法にて、非対称の経路が構築可能か否かを判別できる。なお、システムメンテナンスのためのメッセージとは、例えば、システムパラメータの通知等である。非対称の経路が構築可能と判断した場合には、親機に向けて送信するメッセージ(たとえば、次の定期検針通知)において、非対称の経路とすることを通知し、経路を更新(最適化)すればよい。 In the first embodiment and the second embodiment, an example is shown in which, when a child device or a relay device enters, an entering child device or a relay device constructs an asymmetric path. Here, if an additional repeater or slave unit with high transmission output is added in an area where there are multiple slave units or repeaters that have already entered the wireless mesh network, each existing wireless terminal (participated in the wireless mesh network) In some cases, the optimum route between the parent device and the parent device changes. For example, there is a possibility that there is a slave unit or a relay unit that reduces the number of transfers through an added wireless terminal (a newly entered slave unit or relay unit). Even in such a case, it is possible to construct an asymmetric path. For example, the master unit broadcasts a message for system maintenance regularly or irregularly, and the relay unit and the slave unit use the same method as when entering in the transfer operation of the broadcast message. Thus, it can be determined whether or not an asymmetric path can be constructed. The system maintenance message is, for example, notification of system parameters. If it is determined that an asymmetric route can be constructed, a message (for example, the next periodic meter reading notification) transmitted to the parent device is notified that the route is asymmetric, and the route is updated (optimized). That's fine.
 各実施の形態では、無線メッシュネットワークが親機、子機および中継機により形成されている場合の例を説明したが、無線メッシュネットワークは親機と子機のみによって形成されても構わない。 In each embodiment, an example in which a wireless mesh network is formed by a parent device, a child device, and a relay device has been described. However, a wireless mesh network may be formed only by a parent device and a child device.
 以上のように、本発明にかかる通信装置は、自動検針システムを実現する無線メッシュネットワークに有用である。 As described above, the communication device according to the present invention is useful for a wireless mesh network that realizes an automatic meter-reading system.
 1 親機、2,3,31,32,33,34,35,41,42 エリア(信号到達エリア)、11,12,13,14,15 子機、21 中継機、100 アンテナ、101 PHY、102 MAC、103 CPU、104 通信処理部、105 ROM、106 RAM、107 不揮発性メモリ、108 計器IF、109 上位装置間IF。 1 master unit, 2, 3, 31, 32, 33, 34, 35, 41, 42 area (signal arrival area) 11, 12, 13, 14, 15 slave unit, 21 relay unit, 100 antenna, 101 PHY, 102 MAC, 103 CPU, 104 communication processing unit, 105 ROM, 106 RAM, 107 non-volatile memory, 108 instrument IF, 109 IF between upper devices.

Claims (27)

  1.  自動検針システムに適用される無線メッシュネットワークを形成する通信装置であって、
     検針データを収集する親機が送信する信号の直接受信が可能か否を判定するとともに、自身が送信した信号を前記親機が直接受信可能か否かを判定する判定手段と、
     前記親機が送信する信号を直接受信でき、かつ自身が送信する信号を前記親機が直接受信できない場合に、自身が送信した前記親機宛の信号を中継する他の通信装置である中継担当装置を決定する決定手段と、
     前記親機および前記中継担当装置に対し、前記親機に向けて送信する信号の経路と前記親機が自身に向けて送信する信号の経路が異なることを通知する通知手段と、
     を備えることを特徴とする通信装置。
    A communication device that forms a wireless mesh network applied to an automatic meter reading system,
    A determination means for determining whether or not direct reception of a signal transmitted by a parent device collecting meter-reading data is possible, and determining whether or not the parent device can directly receive a signal transmitted by itself,
    The relay person who can directly receive the signal transmitted by the parent device and is another communication device that relays the signal transmitted by the parent device to the parent device when the parent device cannot directly receive the signal transmitted by the parent device. Determining means for determining the device;
    Notifying means for notifying that the route of the signal transmitted to the parent device and the route of the signal transmitted to the parent device are different to the parent device and the relay charge device;
    A communication apparatus comprising:
  2.  前記中継担当装置経由で前記親機へ信号を送信するとともに当該送信した信号の送達確認を前記親機から直接受信することを特徴とする請求項1に記載の通信装置。 The communication device according to claim 1, wherein a signal is transmitted to the parent device via the relay device and a delivery confirmation of the transmitted signal is directly received from the parent device.
  3.  前記親機から直接受信した信号の送達確認を前記中継担当装置経由で送信することを特徴とする請求項1または2に記載の通信装置。 The communication device according to claim 1 or 2, wherein a delivery confirmation of a signal directly received from the parent device is transmitted via the relay responsible device.
  4.  検針を行う計器から検針データを取得して前記親機へ送信する子機として動作することを特徴とする請求項1、2または3に記載の通信装置。 4. The communication apparatus according to claim 1, wherein the communication apparatus operates as a slave unit that acquires meter reading data from a meter that performs meter reading and transmits the data to the master unit.
  5.  前記親機に対して検針データを送信する子機と前記親機の間で信号を中継する中継装置として動作することを特徴とする請求項1、2または3に記載の通信装置。 The communication device according to claim 1, 2 or 3, wherein the communication device operates as a relay device that relays a signal between the slave device that transmits meter reading data to the master device and the master device.
  6.  CSMA/CA制御に従った動作を実行することを特徴とする請求項1から5のいずれか一つに記載の通信装置。 6. The communication apparatus according to claim 1, wherein an operation according to CSMA / CA control is executed.
  7.  前記判定手段は、一定の通信品質が確保されている場合に直接受信が可能と判断することを特徴とする請求項1から6のいずれか一つに記載の通信装置。 The communication device according to any one of claims 1 to 6, wherein the determination unit determines that direct reception is possible when a certain communication quality is ensured.
  8.  自動検針システムに適用される無線メッシュネットワークを形成する通信装置であって、
     自身と検針データを収集する親機との間の経路上に位置しており、かつ自身が送信した信号を直接受信することはできないが自身に対して信号を直接送信することが可能な他の通信装置である高出力装置を検出する検出手段と、
     自身が送信した前記親機宛の信号を受信して前記高出力装置に向けて転送する他の通信装置である中継担当装置、を決定する決定手段と、
     前記高出力装置および前記中継担当装置に対し、前記親機に向けて送信する信号の経路と前記親機が自身に向けて送信する信号の経路が異なることを通知する通知手段と、
     を備えることを特徴とする通信装置。
    A communication device that forms a wireless mesh network applied to an automatic meter reading system,
    It is located on the route between itself and the master unit that collects meter reading data, and other signals that can not directly receive the signal transmitted by itself but can directly transmit the signal to itself Detecting means for detecting a high output device as a communication device;
    A determination means for determining a relay charge device, which is another communication device that receives a signal addressed to the parent device transmitted by itself and transfers the signal to the high output device;
    Notifying means for notifying that the route of the signal transmitted to the parent device and the route of the signal transmitted to the parent device are different from the high output device and the relay charge device;
    A communication apparatus comprising:
  9.  前記高出力装置宛の信号に対する送達確認を前記高出力装置から直接受信し、前記高出力装置から直接受信した信号の送達確認を前記中継担当装置経由で送信することを特徴とする請求項8に記載の通信装置。 9. The delivery confirmation for the signal addressed to the high-power device is directly received from the high-power device, and the delivery confirmation of the signal received directly from the high-power device is transmitted via the relay device. The communication device described.
  10.  検針を行う計器から検針データを取得して前記親機へ送信する子機として動作することを特徴とする請求項8または9に記載の通信装置。 10. The communication device according to claim 8, wherein the communication device operates as a slave unit that acquires meter reading data from a meter that performs meter reading and transmits the data to the master unit.
  11.  前記親機に対して検針データを送信する子機と前記親機の間で信号を中継する中継装置として動作することを特徴とする請求項8または9に記載の通信装置。 10. The communication device according to claim 8, wherein the communication device operates as a relay device that relays a signal between the slave device that transmits meter reading data to the master device and the master device.
  12.  CSMA/CA制御に従った動作を実行することを特徴とする請求項8から11のいずれか一つに記載の通信装置。 The communication device according to any one of claims 8 to 11, wherein an operation according to CSMA / CA control is executed.
  13.  前記検出手段は、自身が送信した信号を直接受信することはできないが自身に対して一定の品質を満たした状態で信号を直接送信可能な他の通信装置を前記高出力装置と判断することを特徴とする請求項8から12のいずれか一つに記載の通信装置。 The detection means determines that another communication device that cannot directly receive a signal transmitted by itself but can directly transmit a signal in a state satisfying a certain quality with respect to itself is the high-power device. The communication device according to any one of claims 8 to 12, characterized in that:
  14.  自動検針システムに適用される無線メッシュネットワークを形成する通信装置であって、
     検針データを収集する親機が送信する信号を直接受信でき、かつ前記親機へ信号を直接送信することができない他の通信装置が前記親機宛に送信した信号を受信した場合、受信した信号の送達確認を前記他の通信装置へ送信することなく、前記受信した信号を前記親機に向けて転送する転送手段、
     を備えることを特徴とする通信装置。
    A communication device that forms a wireless mesh network applied to an automatic meter reading system,
    When a signal transmitted to the parent device is received by another communication device that can directly receive a signal transmitted by the parent device that collects meter-reading data and cannot directly transmit a signal to the parent device, the received signal Transfer means for transferring the received signal to the master unit without transmitting the delivery confirmation to the other communication device;
    A communication apparatus comprising:
  15.  検針を行う計器から検針データを取得して前記親機へ送信する子機として動作することを特徴とする請求項14に記載の通信装置。 15. The communication apparatus according to claim 14, wherein the communication apparatus operates as a slave unit that acquires meter reading data from a meter that performs meter reading and transmits the data to the master unit.
  16.  前記親機に対して検針データを送信する子機と前記親機の間で信号を中継する中継装置として動作することを特徴とする請求項14に記載の通信装置。 15. The communication device according to claim 14, wherein the communication device operates as a relay device that relays a signal between the slave device that transmits meter reading data to the master device and the master device.
  17.  CSMA/CA制御に従った動作を実行することを特徴とする請求項14、15または16に記載の通信装置。 The communication apparatus according to claim 14, 15 or 16, wherein an operation according to CSMA / CA control is executed.
  18.  前記転送手段が検針データを転送する場合の待ち時間をSIFSとすることを特徴とする請求項17に記載の通信装置。 18. The communication apparatus according to claim 17, wherein the waiting time when the transfer means transfers meter-reading data is SIFS.
  19.  自動検針システムに適用される無線メッシュネットワークを形成する通信装置であって、
     自身が送信する信号を直接受信でき、かつ自身に対して信号を直接送信することができない他の通信装置に対して信号を送信する場合、前記他の通信装置に対して送信した信号の送達確認を前記他の通信装置とは異なる他の通信装置である中継担当装置経由で受信し、前記他の通信装置が送信元の信号を前記中継担当装置経由で受信した場合、受信した信号の送達確認を前記他の通信装置宛に直接送信する送受信手段、
     を備えることを特徴とする通信装置。
    A communication device that forms a wireless mesh network applied to an automatic meter reading system,
    When transmitting a signal to another communication device that can directly receive a signal transmitted by itself and cannot directly transmit a signal to itself, confirm delivery of the signal transmitted to the other communication device. When the other communication device receives the source signal via the relay device, the delivery confirmation of the received signal is received via the relay device that is another communication device different from the other communication device. Transmitting / receiving means for transmitting directly to the other communication device,
    A communication apparatus comprising:
  20.  検針データを収集する親機として動作することを特徴とする請求項19に記載の通信装置。 20. The communication device according to claim 19, wherein the communication device operates as a master unit for collecting meter reading data.
  21.  検針を行う計器から検針データを取得して前記親機へ送信する子機として動作することを特徴とする請求項19に記載の通信装置。 20. The communication apparatus according to claim 19, wherein the communication apparatus operates as a slave unit that acquires meter reading data from a meter that performs meter reading and transmits the data to the master unit.
  22.  前記親機に対して検針データを送信する子機と前記親機の間で信号を中継する中継装置として動作することを特徴とする請求項19に記載の通信装置。 The communication device according to claim 19, wherein the communication device operates as a relay device that relays a signal between the slave device that transmits meter-reading data to the master device and the master device.
  23.  他の通信装置に対して送信した信号の送達確認を前記中継担当装置経由で受信する場合の受信待ち時間が、他の通信装置に対して送信した信号の送達確認を当該他の通信装置から直接受信する場合の受信待ち時間よりも長いことを特徴とする請求項19から22のいずれか一つに記載の通信装置。 The reception waiting time when receiving the delivery confirmation of the signal transmitted to the other communication device via the relay responsible device is the same as the delivery waiting time of the signal transmitted to the other communication device directly from the other communication device. The communication apparatus according to any one of claims 19 to 22, wherein the communication apparatus is longer than a reception waiting time when receiving.
  24.  CSMA/CA制御に従った動作を実行することを特徴とする請求項19から23のいずれか一つに記載の通信装置。 The communication apparatus according to any one of claims 19 to 23, wherein an operation according to CSMA / CA control is executed.
  25.  前記送受信手段は、双方向の直接通信が可能な他の通信装置に対して信号を送信する場合に送信出力を下げることを特徴とする請求項19から24のいずれか一つに記載の通信装置。 The communication device according to any one of claims 19 to 24, wherein the transmission / reception unit reduces a transmission output when transmitting a signal to another communication device capable of two-way direct communication. .
  26.  自動検針システムに適用される無線メッシュネットワークであって、
     1台以上の第1の通信装置と、
     前記第1の通信装置よりも送信出力が高い1台以上の第2の通信装置と、
     を備え、
     前記第1の通信装置は、前記第2の通信装置が送信する信号を直接受信できるが、前記第2の通信装置へ信号を直接送信することができない場合、前記第2の通信装置宛の信号に対する送達確認を前記第2の通信装置から直接受信し、前記第2の通信装置から直接受信した信号の送達確認を他の第1の通信装置経由で送信する、ことを特徴とする無線メッシュネットワーク。
    A wireless mesh network applied to an automatic meter reading system,
    One or more first communication devices;
    One or more second communication devices having a higher transmission output than the first communication device;
    With
    When the first communication device can directly receive the signal transmitted by the second communication device, but cannot directly transmit the signal to the second communication device, the signal addressed to the second communication device A wireless mesh network characterized in that a delivery confirmation of a signal directly received from the second communication device is transmitted via another first communication device. .
  27.  自動検針システムに適用される無線メッシュネットワークであって、
     1台以上の第1の通信装置と、
     前記第1の通信装置よりも送信出力が高い1台以上の第2の通信装置と、
     を備え、
     前記第2の通信装置は、前記第1の通信装置の中に、自身が送信する信号を直接受信できるが、自身に対して信号を直接送信することができないものが存在する場合、自身に対して信号を直接送信することができない第1の通信装置に対する信号送信では、当該第1の通信装置に対して送信した信号の送達確認を当該第1の通信装置とは異なる通信装置である中継担当装置経由で受信し、当該第1の通信装置が送信元の信号を当該中継担当装置経由で受信した場合、受信した信号の送達確認を当該第1の通信装置宛に直接送信する、ことを特徴とする無線メッシュネットワーク。
    A wireless mesh network applied to an automatic meter reading system,
    One or more first communication devices;
    One or more second communication devices having a higher transmission output than the first communication device;
    With
    The second communication device can directly receive a signal transmitted from the first communication device, but cannot transmit a signal directly to the second communication device. In the signal transmission to the first communication device that cannot directly transmit the signal, the relay person who is a communication device different from the first communication device confirms the delivery of the signal transmitted to the first communication device. When the first communication device receives the transmission source signal via the relay responsible device, the first communication device directly transmits a delivery confirmation of the received signal to the first communication device. Wireless mesh network.
PCT/JP2014/063093 2014-05-16 2014-05-16 Communication device and wireless mesh network WO2015173957A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/063093 WO2015173957A1 (en) 2014-05-16 2014-05-16 Communication device and wireless mesh network
TW103137351A TW201545516A (en) 2014-05-16 2014-10-29 Communication device and wireless mesh network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063093 WO2015173957A1 (en) 2014-05-16 2014-05-16 Communication device and wireless mesh network

Publications (1)

Publication Number Publication Date
WO2015173957A1 true WO2015173957A1 (en) 2015-11-19

Family

ID=54479523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063093 WO2015173957A1 (en) 2014-05-16 2014-05-16 Communication device and wireless mesh network

Country Status (2)

Country Link
TW (1) TW201545516A (en)
WO (1) WO2015173957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170224A (en) * 2017-07-17 2017-09-15 陈剑桃 A kind of smart home intelligent electric meter wireless kilowatt meter reading-out system
WO2019184652A1 (en) * 2018-03-29 2019-10-03 华为技术有限公司 Data transmission method and related apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030772A (en) * 2001-07-13 2003-01-31 Mitsubishi Electric Corp Automatic inspection system and data collection system
JP2010252165A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Communication terminal, and communication system
JP2013021516A (en) * 2011-07-11 2013-01-31 Toshiba Corp Consumed quantity measurement system, radio communication center device and program for the same measurement system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030772A (en) * 2001-07-13 2003-01-31 Mitsubishi Electric Corp Automatic inspection system and data collection system
JP2010252165A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Communication terminal, and communication system
JP2013021516A (en) * 2011-07-11 2013-01-31 Toshiba Corp Consumed quantity measurement system, radio communication center device and program for the same measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170224A (en) * 2017-07-17 2017-09-15 陈剑桃 A kind of smart home intelligent electric meter wireless kilowatt meter reading-out system
WO2019184652A1 (en) * 2018-03-29 2019-10-03 华为技术有限公司 Data transmission method and related apparatus
US11665070B2 (en) 2018-03-29 2023-05-30 Huawei Technologies Co., Ltd. Data transmission method and related apparatus

Also Published As

Publication number Publication date
TW201545516A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP3853326B2 (en) System and method for reliably broadcasting in ad hoc network environment
Zhu et al. Exploring Link Correlation for Efficient Flooding in Wireless Sensor Networks.
EP3298710B1 (en) Low power sensor node operation for wireless network
US20160073288A1 (en) Reducing contention in a peer-to-peer data link network
US8599809B2 (en) Routing method for wireless mesh networks and wireless mesh network system using the same
CN101222299A (en) Relay apparatus for relaying a data packet
KR101644867B1 (en) Data sending method, data forwarding method, apparatus, and system
CN102123020B (en) Distributed cooperative multiple access method and system providing guarantee for quality of service
JP2015188207A (en) Radio communication system, radio communication device, and data relay method
EP4243553A2 (en) Cocktail party: side conversations and talking over in wireless mesh networks
JP2007208830A (en) Radio relay method
US10624017B2 (en) Method for operating a communication apparatus and communication apparatus
JP2013093717A (en) Radio station, communication system, and communication method
WO2015173957A1 (en) Communication device and wireless mesh network
JP2014057279A (en) Radio communication device, radio communication system and radio communication control method
WO2017145731A1 (en) Communication terminal, multi-hop communication system, and program
KR101008978B1 (en) Confidence broadcasting system to ad-hoc network environment and method thereof
Ahn et al. A multipoint relay selection method for reliable broadcast in ad hoc networks
Wang et al. NCAC-MAC: Network coding aware cooperative medium access control for wireless networks
JP4163643B2 (en) Wireless communication system, wireless base station, wireless terminal, and wireless communication method
EP3373691B1 (en) Network system, node, frame communication method, and program
JP5481345B2 (en) Radio station
Jin et al. C-MAC: a MAC protocol supporting cooperation in wireless LANs
CN107071925B (en) A kind of broadcast channel method for reliable transmission under CSMA/CA mechanism
JP2014207574A (en) Multi-hop communication system and communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP