WO2015173943A1 - Light source evaluation device, light source evaluation method, and program - Google Patents

Light source evaluation device, light source evaluation method, and program Download PDF

Info

Publication number
WO2015173943A1
WO2015173943A1 PCT/JP2014/063025 JP2014063025W WO2015173943A1 WO 2015173943 A1 WO2015173943 A1 WO 2015173943A1 JP 2014063025 W JP2014063025 W JP 2014063025W WO 2015173943 A1 WO2015173943 A1 WO 2015173943A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
wavelength band
evaluation apparatus
irradiance
Prior art date
Application number
PCT/JP2014/063025
Other languages
French (fr)
Japanese (ja)
Inventor
善博 菱川
直史 渡邊
Original Assignee
独立行政法人産業技術総合研究所
株式会社ワコム電創
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 株式会社ワコム電創 filed Critical 独立行政法人産業技術総合研究所
Priority to PCT/JP2014/063025 priority Critical patent/WO2015173943A1/en
Priority to JP2016519064A priority patent/JP6245620B2/en
Publication of WO2015173943A1 publication Critical patent/WO2015173943A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a light source evaluation apparatus, a light source evaluation method, and a program.
  • it is preferably used when evaluating the light source of a solar simulator for measuring the performance of a solar cell.
  • a solar simulator has been used when measuring performance such as photoelectric conversion efficiency of a solar cell.
  • the JIS standard and the IEC standard stipulate that the light emitted from the light source of the solar simulator has almost the same spectral irradiance as that of the reference sunlight. Therefore, a light source evaluation apparatus that evaluates whether the light emitted from the light source of the solar simulator matches the standard is used.
  • Patent Document 1 discloses a light source evaluation apparatus having a spectral radiometer for measuring the spectral irradiance of light emitted from a solar simulator.
  • the light source evaluation apparatus of Patent Document 1 is based on the solar simulator based on the spectral irradiance of light radiated from the solar simulator measured by the spectroradiometer, the spectral irradiance of natural sunlight, and the spectral sensitivity of the solar cell. The evaluation value of the characteristic of the emitted light is calculated.
  • the light source evaluation apparatus of Patent Document 1 separates light from a light source to be measured by a spectroradiometer using a spectroscope.
  • the structure of the light source evaluation device is complicated by a diffraction grating, a prism, etc., resulting in increased manufacturing costs and poor stability over time. is there.
  • the present invention has been made in view of the above-described problems, and an object thereof is to simplify the structure of a light source evaluation apparatus, to reduce manufacturing costs, and to improve stability.
  • a light source evaluation apparatus of the present invention is a light source evaluation apparatus for evaluating a light source of a solar simulator, and is arranged in a matrix and receives a plurality of light receivers that receive light emitted from the light source, and the plurality of light receivers, Calculation that calculates the spectral match degree of the light source with respect to natural sunlight from the plurality of optical filters that are respectively disposed between the light sources and have different transmission wavelength bands, and the irradiance received by the plurality of light receivers. And a portion.
  • the light source evaluation method of the present invention is arranged in a matrix and is arranged between a plurality of light receivers that receive light emitted from a light source of a solar simulator, and between the plurality of light receivers and the light source, and has different transmissions.
  • the program of the present invention is arranged in a matrix, and is arranged between a plurality of light receivers that receive light emitted from a light source of a solar simulator, and between the plurality of light receivers and the light source, and different transmission wavelength bands.
  • a calculation step of calculating a spectrum match degree of the light source with respect to natural sunlight from each irradiance received by the plurality of light receivers. Is a program for causing a computer to execute.
  • the light emitted from the light source is transmitted through the plurality of optical filters having different transmission wavelength bands and received by the plurality of light receivers, thereby simplifying the structure of the light source evaluation apparatus. Manufacturing costs can be reduced.
  • FIG. 1 is a diagram illustrating an external configuration of a light source evaluation apparatus.
  • FIG. 2 is a diagram illustrating an internal configuration of the light source evaluation apparatus.
  • FIG. 3 is a diagram illustrating a configuration of the light receiving device and the optical filter device.
  • FIG. 4 is a diagram showing the spectral sensitivity of the solar battery cell and the spectral transmittance of the band-pass filter.
  • FIG. 5 is a diagram showing the product of the spectral sensitivity of the solar battery cell and the spectral transmittance of each bandpass filter.
  • FIG. 6 is a diagram illustrating a correspondence table that stores information associated with each wavelength band.
  • FIG. 7 is a flowchart illustrating processing of the information processing apparatus.
  • FIG. 8 is a flowchart showing the measurement of the correction coefficient between cells.
  • FIG. 9 is a flowchart showing measurement of the degree of spectral coincidence.
  • FIG. 10 is a flowchart showing the measurement of irradiance unevenness.
  • FIG. 11 is a flowchart showing the measurement of the time variation rate of irradiance.
  • FIG. 12 is a diagram showing an energy distribution for each wavelength band in the reference sunlight.
  • FIG. 13 is a diagram in which the energy distribution and the like are displayed on the display unit.
  • FIG. 14 is a diagram in which the energy distribution is displayed as a graph on the display unit.
  • FIG. 15 is a diagram illustrating a configuration of the rotating unit.
  • FIG. 16A is a diagram illustrating a state in which the rotating unit is rotated 90 degrees.
  • FIG. 16B is a diagram illustrating a state where the rotating unit is rotated 180 degrees.
  • FIG. 16C is a diagram illustrating a state where the rotating unit is rotated by 270 degrees.
  • a light source evaluation apparatus (light source evaluation system) 10 according to the present embodiment will be described with reference to the drawings.
  • the light source evaluation device 10 evaluates the light source 101 of the solar simulator 100.
  • the light that is finally emitted is evaluated.
  • FIG. 1 is a diagram illustrating an example of an external configuration of the light source evaluation device 10.
  • FIG. 2 is a diagram illustrating an example of the internal configuration of the light source evaluation apparatus 10.
  • the light source evaluation device 10 includes a light receiving device 20, a conversion device 25, an information processing device 30, an optical filter device 40, and the like.
  • the light receiving device 20 receives light emitted from the light source 101 of the solar simulator 100 and outputs an output value corresponding to the received irradiance to the information processing device 30 via the conversion device 25.
  • the light receiving device 20 of the present embodiment includes a solar battery cell 21 as a light receiver, a position detection unit 22, and an I / F unit 23. A plurality of solar cells 21 are arranged in a matrix.
  • the position detection unit 22 detects the position of a later-described rotation unit 42, specifically, a rotation angle.
  • the I / F unit 23 is connected to a cable connected to the conversion device 25.
  • the light receiving device 20 shown in FIG. 1 has a total of 64 solar cells 21 with eight columns (columns) and eight rows (rows), and the region where the solar cells 21 are arranged is formed in a square shape.
  • solar cells 21 11 As shown in FIG. 1, solar cells 21 11 ,... 2 columns ⁇ 1 rows of solar cells 21 21 ,. a row of solar cells and solar cell 21 81.
  • Each solar cell 21 outputs a current value of a short circuit current (hereinafter referred to as a current value) as an output value corresponding to the received irradiance.
  • the conversion device 25 A / D converts the current value output from the light receiving device 20 and transmits it to the information processing device 30.
  • the conversion device 25 includes a conversion unit 26 and an I / F unit 27.
  • the converter 26 A / D converts the current value.
  • the I / F unit 27 is connected to a cable connected to the light receiving device 20 and a cable connected to the information processing device 30.
  • the information processing device 30 evaluates the light source 101 of the solar simulator 100 based on the irradiance of the solar battery cell 21, specifically, the current value received from the light receiving device 20.
  • the information processing apparatus 30 includes a display unit 31, a control unit 32, an I / F unit 33, an operation unit 34, and a storage unit 35.
  • the information processing apparatus 30 can be configured by a computer, for example.
  • the display unit 31 displays the result of evaluating the light source 101 and the like.
  • the control unit 32 controls the entire information processing apparatus 30.
  • the I / F unit 33 is connected to a cable connected to the conversion device 25.
  • the operation unit 34 is used when a user inputs to the information processing apparatus 30.
  • the storage unit 35 stores an inter-wavelength correction coefficient Mn, an inter-cell correction coefficient Kn, an energy distribution D AM (n) of reference sunlight, a correspondence table, and the like, which will be described later.
  • the control unit 32 includes a calculation unit 36, a storage control unit 37, an input / output control unit 38, and a display control unit 39.
  • the calculation unit 36 calculates the degree of spectral coincidence, the irradiance location unevenness, the irradiance temporal variation rate, and the like, which will be described later.
  • the storage control unit 37 controls the storage unit 35 to store and read information.
  • the input / output control unit 38 controls input via the operation unit 34 and input / output with the outside via the I / F unit 33.
  • the information processing apparatus 30 includes, as items for measuring the light source 101, (a) measurement of spectrum matching degree, (b) measurement of irradiance location unevenness, and (c) measurement of time variation rate of irradiance. Is possible.
  • (A) The measurement of the degree of spectral coincidence is to measure the degree of coincidence for each wavelength range of light emitted from the light source to be measured and irradiated to the light receiving surface with respect to reference sunlight or the like.
  • the wavelength band of 400 nm to 1100 nm is divided into six wavelength bands, specifically, 400 nm to 500 nm, 500 nm to 600 nm, 600 nm to 700 nm, 700 nm to 800 nm, 800 nm to The spectrum is divided into 900 nm and 900 nm to 1100 nm, and the degree of spectral coincidence with reference sunlight is measured for each divided wavelength band.
  • B) Measurement of irradiance location unevenness is to measure the level of irradiance in a region (location) emitted by a light source.
  • the measurement of the time variation rate of irradiance is to measure the value at which the irradiance radiated from the light source fluctuates per time.
  • the light source evaluation apparatus 10 of the present embodiment does not perform spectroscopy using a spectroradiometer using a spectroscope as described in Patent Document 1, and uses a light receiver such as a solar battery cell 21 for each wavelength band.
  • a light receiver such as a solar battery cell 21 for each wavelength band.
  • an optical filter device 40 is provided. As shown in FIG. 1, the optical filter device 40 is disposed between the light source 101 and the light receiving device 20 and transmits light for each desired wavelength band among the light emitted from the light source 101. Therefore, the light receiving device 20 can receive light for each desired wavelength band transmitted by the optical filter device 40.
  • the optical filter device 40 includes a base 41, a rotating unit 42, and an optical filter unit 43.
  • the base 41 is detachable with respect to the light receiving device 20 and is supported so as to be rotatable about a rotation shaft (R shown in FIG. 1) of the rotation unit 42.
  • R rotation shaft
  • the user attaches the optical filter device 40 to the light receiving device 20 when measuring the degree of spectral coincidence (a) described above.
  • B Measurement of irradiance unevenness
  • the optical filter device 40 is detached from the light receiving device 20.
  • the rotating part 42 is formed in a disc shape and supports the optical filter part 43 at the center.
  • the optical filter unit 43 includes a plurality of band-pass filters 44 as optical filters arranged in a matrix.
  • the optical filter unit 43 shown in FIG. 1 has a total of 64 bandpass filters 44 with eight columns (columns) and eight rows (rows), and the area where the bandpass filters 44 are arranged is formed in a square shape. Is done. As shown in FIG. 1, a band pass filter 44 11 ... 2 band ⁇ 1 row bandpass filter 44 21 ,... 8 columns ⁇ 1 is used. the bandpass filter line and bandpass filter 44 81.
  • Each band pass filter 44 is disposed above (directly above) each solar cell 21. Therefore, the light emitted from the light source 101 and transmitted through each bandpass filter 44 is received by each lower (directly below) solar cell 21. For example, light transmitted through the bandpass filter 44 11 is received by the solar battery cell 21 11 .
  • the bandpass filter 44 of the present embodiment has at least six different transmission wavelength bands. Specifically, it has a transmission wavelength band in which the wavelength band of 400 nm to 1100 nm is divided into six wavelength bands of 400 nm to 500 nm, 500 nm to 600 nm, 600 nm to 700 nm, 700 nm to 800 nm, 800 nm to 900 nm, 900 nm to 1100 nm. ing. As described above, the bandpass filter 44 having different transmission wavelength bands has continuous transmission wavelength bands within 400 nm to 1100 nm.
  • the light receiving device 20 is composed of six solar cells 21 1 to 21 6
  • the optical filter device 40 is composed of six bandpass filters 44 1 to 44 6 disposed above each solar cell 21. Is done.
  • the band-pass filter 44 1 has a transmission wavelength band of 400 nm ⁇ 500 nm
  • the band pass filter 44 2 has a transmission wavelength band of 500 nm ⁇ 600 nm
  • a band pass filter 44 3 The band-pass filter 44 4 has a transmission wavelength band of 700 nm to 800 nm
  • the band-pass filter 44 5 has a transmission wavelength band of 800 nm to 900 nm
  • the band-pass filter 44 6 has a transmission wavelength band of 600 nm to 700 nm.
  • the band pass filter 44 is manufactured according to the wavelength band in the manufacturing process. This can be realized by forming a multilayer vapor deposition film structure or by mixing a dye into the glass on which the film is deposited.
  • each solar battery cell 21 receives light in the wavelength band transmitted by each bandpass filter 44 from the light emitted from the light source 101.
  • the solar cell 21 1 is receiving a light in a wavelength band of 400 nm ⁇ 500 nm
  • the solar cell 21 2 receives a light having a wavelength band of 500 nm ⁇ 600 nm
  • the solar cell 21 3 is 600 nm ⁇ 700 nm receiving light wavelength band of the solar battery cell 21 4 receives light in a wavelength band of 700 nm ⁇ 800 nm
  • the solar cell 21 5 receives the light in the wavelength band of 800 nm ⁇ 900 nm
  • the solar cell 21 6 Receives light in the wavelength band of 900 nm to 1100 nm.
  • FIG. 4 is a diagram showing the spectral sensitivity according to the wavelength of the crystalline solar battery cell.
  • the spectral sensitivity of the solar battery cell 21 is 0.3 at 400 nm, gradually increases from 400 nm to around 900 nm, and 1.0 at around 900 nm. On the other hand, it suddenly decreases from 900 nm to 1100 nm and is 0.3 near 1100 nm.
  • a light source having an irradiance peak at 400 nm and a light source having an irradiance peak at 900 nm have the same energy.
  • the current values output from the solar cells 21 when receiving light from each light source are not the same. Specifically, a larger current value is output when a light source having a peak of irradiance at 900 nm with high spectral sensitivity is received.
  • the influence of the spectral sensitivity corresponding to the wavelength of the solar battery cell 21 is removed by the following two processes.
  • FIG. 4 shows the spectral transmittance set for each of the bandpass filters 44 1 to 44 6 .
  • a band-pass filter 44 1 the spectral transmittance is set to be suddenly lowered curved accordance shifts from 400nm to 500 nm.
  • the bandpass filters 44 2 to 44 5 are set so that the spectral transmittance decreases in a curved line as the wavelength shifts from a low wavelength to a high wavelength.
  • the band-pass filter 445 compared to the band-pass filter 44 1, the change in spectral transmittance becomes gradual.
  • the band-pass filter 44 6, the spectral transmittance is set to be higher curved accordance shifts to higher wavelength from lower wavelengths.
  • the manufacturing process of the bandpass filter 44 is not limited. This can be realized by increasing or decreasing the number of layers of the multilayer deposited film in the deposition process, increasing or decreasing the layer thickness, or mixing a pigment into the glass on which the film is deposited.
  • FIG. 5 is a diagram showing a product of the spectral sensitivity of the solar battery cell 21 and the spectral transmittance of each of the bandpass filters 44 1 to 44 6 .
  • the product of spectral sensitivity and spectral transmittance is constant within the transmission wavelength band of each of the bandpass filters 44 1 to 44 6 .
  • the product of the spectral sensitivity and the bandpass filter 44 1 spectral transmittance is always 0.25
  • the product of the spectral sensitivity and the band pass filter 44 2 of the spectral transmittance is always 0.5.
  • inter-wavelength band correction coefficients M 3 to M 6 that calculate the product of the spectral sensitivity and the spectral transmittance of the other bandpass filters 44 3 to 44 6 as 1.0 are calculated.
  • the calculated inter-wavelength band correction coefficients M 1 to M 6 are respectively multiplied by the current values of the solar cells 21 that have passed through and received the band-pass filters 44 1 to 44 6 as will be described later. Therefore, when natural sunlight is received, it can correct
  • the calculated inter-wavelength band correction coefficient Mn is stored in the correspondence table of the storage unit 35 in association with each wavelength band.
  • FIG. 6 is a diagram illustrating an example of the correspondence table. In the correspondence table shown in FIG. 6, for each wavelength band, a bandpass filter 44n, a wavelength band correction coefficient Mn, a solar cell 21n, and an intercell correction coefficient Kn described later are stored in association with each other.
  • FIG. 7 is a flowchart showing processing of the information processing device 30 of the light source evaluation device 10. The flowchart of FIG. 7 is started in response to an instruction for the user to execute the program via the operation unit 34.
  • step S70 the display control unit 39 displays the measurement items on the display unit 31 in a selectable manner. Specifically, (a) measurement of spectral coincidence, (b) measurement of irradiance unevenness of location, (c) measurement of time variation rate of irradiance, and (d) measurement of correction coefficient between cells. Display measurement items.
  • the measurement of the inter-cell correction coefficient is selected when calculating the inter-cell correction coefficient for correcting the variation in the current value output from each solar cell 21 when natural sunlight is received. Is done.
  • step S71 the input / output control unit 38 determines whether (d) measurement of the inter-cell correction coefficient is selected by the user.
  • step S72 If the measurement of the inter-cell correction coefficient is selected, the process proceeds to step S72, and if not selected, the process proceeds to step S73.
  • the measurement of the correction coefficient between cells by step S72 is later mentioned with reference to the flowchart of FIG.
  • step S ⁇ b> 73 the input / output control unit 38 determines whether or not (a) measurement of spectrum matching degree has been selected by the user.
  • step S74 If the measurement of the spectral coincidence is selected, the process proceeds to step S74, and if not, the process proceeds to step S75.
  • the measurement of the degree of spectral coincidence in step S74 will be described later with reference to the flowchart of FIG.
  • step S ⁇ b> 75 the input / output control unit 38 determines whether (b) measurement of irradiance location unevenness has been selected by the user.
  • step S76 When the measurement of the irradiance unevenness is selected, the process proceeds to step S76, and when it is not selected, the process proceeds to step S77. The measurement of the irradiance unevenness in step S76 will be described later with reference to the flowchart of FIG.
  • step S77 the input / output control unit 38 determines whether (c) measurement of the time variation rate of irradiance has been selected by the user.
  • step S78 When the measurement of the time variation rate of the irradiance is selected, the process proceeds to step S78, and when it is not selected, the process proceeds to step S79. The measurement of the time variation rate of the irradiance in step S78 will be described later with reference to the flowchart of FIG.
  • step S79 the input / output control unit 38 determines whether the user has instructed termination. If the end is instructed, the process ends. If the end is not instructed, the process returns to step S71.
  • the user leaves the optical filter device 40 from the light receiving device 20. Further, the user removes the light source 101 to be measured and installs the light source evaluation device 10 so that natural sunlight is emitted to the light receiving device 20.
  • the input / output control unit 38 receives the current value of the short-circuit current for each solar cell 21 that has received natural sunlight. Even when the solar battery cell 21 receives light with no unevenness such as natural sunlight, a current value that varies among the solar battery cells 21 is output.
  • step S ⁇ b> 81 the calculation unit 36 calculates an inter-cell correction coefficient Kn corresponding to each solar battery cell 21 based on the received current value.
  • the current value of the solar cell 21 1 is 100 mA
  • the current value of the solar cell 21 2 is 90 mA
  • the calculation unit 36 calculates the inter-cell correction coefficient Kn so that the current value is 100 mA, which is an average value, for example. Therefore, calculation unit 36, an inter-cell correction factor K 1 of the solar cell 21 1 1.0, the solar cell 21 between the second cell correction factor K 2 of 100/90, intercell correction of the solar cell 21 3 calculating the coefficient K 3 as 100/110.
  • step S ⁇ b> 82 the display control unit 39 displays the calculated inter-cell correction coefficient Kn on the display unit 31 for each solar cell 21.
  • the storage control unit 37 stores the calculated inter-cell correction coefficient Kn in association with the solar battery cell 21. Specifically, the storage control unit 37 stores the inter-cell correction coefficient Kn in association with the solar battery cell 21 in the correspondence table shown in FIG. Thereafter, the process returns to step S71 shown in FIG.
  • the display control unit 39 may select only (d) measurement of the inter-cell correction coefficient in step S70 of FIG. 7 described above.
  • the inter-cell correction coefficient Kn is preferably calculated by the manufacturer when the light source evaluation device 10 is manufactured, and stored in the storage unit 35 in advance. In this case, (d) measurement of the inter-cell correction coefficient can be omitted from the measurement items that can be selected in step S70 of FIG.
  • the user attaches the optical filter device 40 to the light receiving device 20.
  • the user installs the light source evaluation device 10 so that the light source 101 to be measured passes through the optical filter device 40 and is emitted to the light receiving device 20.
  • the storage control unit 37 reads data of energy distribution for each wavelength band of the reference sunlight from the storage unit 35.
  • FIG. 12 shows an example of the energy distribution D AM (n) for each wavelength band in the reference sunlight (AM1.5).
  • the storage unit 35 includes sunlight outside the atmosphere (AM0), sunlight that is perpendicularly incident on the surface of the earth (AM1.0), sunlight in sunlight, and sunset.
  • the energy distribution for each wavelength band is stored in advance.
  • the storage control unit 37 reads any one energy distribution data according to the user's selection.
  • step S ⁇ b> 91 the storage control unit 37 reads the inter-wavelength correction coefficient Mn associated with each wavelength band and the inter-cell correction coefficient Kn associated with each solar battery cell 21.
  • step S ⁇ b> 92 the input / output control unit 38 receives a current value for each photovoltaic cell 21 that has passed through each bandpass filter 44 and received light from the light source 101.
  • step S93 the calculation unit 36 calculates the energy distribution [%] on the light receiving surface (here, the light receiving surface is the surface of the bandpass filter 44) of the light emitted from the light source 101 for each wavelength band based on the received current value. To do. First, the current value In for each solar cell 21 and the energy En on the surface of the bandpass filter 44 of the light source for each wavelength band are expressed by the following equations.
  • Kn is the inter-cell correction coefficient K 1 associated with the solar cell 21 1
  • the inter-wavelength correction is associated with the wavelength band of Mn of 400 nm to 500 nm.
  • coefficient M 1 S (lambda) is (spectral irradiance emitted to the bandpass filter 44 1) the spectral irradiance of the band pass filter 44 surfaces of the light emitted from the light source 101
  • B (lambda) is the solar cell 21 spectral sensitivity of a
  • Fn (lambda) is the spectral transmittance of the bandpass filter 44 1.
  • the calculation unit 36 calculates the energy distribution Dn of each wavelength band using Equation 3.
  • the calculation unit 36 calculates the spectral coincidence for each wavelength band based on each energy distribution Dn calculated in step S93 and the energy distribution D AM (n) of the reference sunlight read in step S90. calculate.
  • the degree of spectral coincidence can be calculated by Dn / D AM (n).
  • the calculation unit 36 calculates the grade of the light source to be measured for each wavelength band based on the degree of spectral match. For example, when the spectrum matching degree is close to 1.0, the calculation unit 36 calculates as class B and class C as the distance from class A and 1.0 increases. Furthermore, the calculating part 36 evaluates the whole light source based on the calculated grade. For example, when all the wavelength bands are class A, the calculation unit 36 evaluates the light source to be measured as a grade A, and when there is even one class B, evaluates it as a grade B or the like.
  • step S95 the display control unit 39 displays the calculated energy distribution, spectrum matching degree, class for each wavelength band, and light source evaluation on the display unit 31.
  • FIG. 13 is a diagram showing an example in which the energy distribution, the degree of spectral coincidence, the class for each wavelength band, and the evaluation of the light source are displayed on the display unit 31 in a table. Therefore, the user can confirm how much the light source to be measured matches the spectrum of the reference sunlight.
  • the display control unit 39 may display the calculated energy distribution on the display unit 31 as a graph.
  • FIG. 14 is a diagram illustrating an example in which the energy distribution is displayed on the display unit 31 by a graph.
  • the energy distribution of the light source to be measured and the reference sunlight for each wavelength band is shown with the energy distribution on the vertical axis and the wavelength on the horizontal axis. Thereafter, the process returns to step S71 shown in FIG.
  • step S ⁇ b> 100 the storage control unit 37 reads the inter-cell correction coefficient Kn associated with each solar battery cell 21.
  • step S ⁇ b> 101 the input / output control unit 38 receives a current value for each solar cell 21 that has received light from the light source 101.
  • step S102 the calculation unit 36 calculates the uneven irradiance location based on the received current value. Specifically, the calculation unit 36 multiplies the inter-cell correction number Kn associated with each solar cell 21 by each received current value, thereby correcting the variation in the current value output by the solar cell 21. . Next, the calculating part 36 adds each corrected electric current value, and calculates
  • step S ⁇ b> 103 the display control unit 39 displays the ratio between the corrected current value and average value of each solar cell 21 on the display unit 31 for each solar cell 21. Therefore, the user can confirm the location unevenness such as whether the irradiance at the location where the specific solar battery cell 21 is arranged is higher or lower than the average value.
  • the calculation unit 36 can calculate the evaluation of the light source based on the location unevenness, and can display the evaluation of the light source calculated by the display control unit 39. Thereafter, the process returns to step S71 shown in the flowchart of FIG.
  • the user leaves the optical filter device 40 from the light receiving device 20.
  • the user installs the light source evaluation device 10 so that the light source 101 to be measured is emitted to the light receiving device 20.
  • the input / output control unit 38 receives a predetermined current value of the solar battery cell 21.
  • the input / output control unit 38 receives the current value of the same solar battery cell 21 after a predetermined time has elapsed.
  • the calculating part 36 calculates the time variation rate of irradiance. Specifically, the calculation unit 36 calculates the time variation rate of the irradiance by obtaining a ratio between the first current value received in step S110 and the current value received after a predetermined time has elapsed.
  • step S ⁇ b> 112 the display control unit 39 displays the calculated time variation rate of the irradiance on the display unit 31. Therefore, the user can confirm the time variation rate of how much the irradiance varies in a predetermined time.
  • the calculation unit 36 can calculate the evaluation of the light source based on the time variation rate of the irradiance, and can display the evaluation of the light source calculated by the display control unit 39. Thereafter, the process returns to step S71 of the flowchart of FIG.
  • the light source evaluation apparatus 10 includes the plurality of band-pass filters 44 that are respectively disposed between the plurality of light receivers and the light source 101 and have different transmission wavelength bands. Therefore, each light receiver can receive light in a state in which the light from the light source 101 is dispersed for each different wavelength band. That is, since the light source evaluation apparatus 10 of this embodiment does not need to be spectrally separated by a spectroradiometer using a spectroscope, the structure can be simplified and the manufacturing cost can be reduced.
  • the solar battery cell 21 since the solar battery cell 21 is used as a light receiver, the solar battery cell even when light is received in a short time such as 1 [msec], that is, 1 / 1,000 second. 21 outputs a current value. Therefore, it is possible to measure the degree of spectral coincidence of a light source of a solar simulator for a concentrating solar cell that is difficult to receive for a long time because light with high irradiance is emitted.
  • the plurality of bandpass filters 44 set the spectral transmittance so that the product of the spectral transmittance and the spectral sensitivity of the solar battery cell 21 is constant within the transmission wavelength band of each bandpass filter 44. By doing so, it can be handled so that there is no difference in the spectral sensitivity of the solar battery cell 21 within the transmission wavelength band.
  • the storage unit 35 corrects the product between the spectral sensitivity of the solar battery cell 21 and the spectral transmittance of the band-pass filter 44 when receiving natural sunlight between different transmission wavelength bands. Store the coefficients.
  • the calculating part 36 can correct
  • the storage unit 35 stores an inter-cell correction coefficient that makes a current value constant when natural sunlight is received between different solar cells.
  • the calculating part 36 can correct
  • a single light source evaluation apparatus 10 can perform a plurality of measurements, and when the user performs a plurality of measurements, it is not necessary to use a plurality of apparatuses, so that the measurement cost can be reduced.
  • the calculation unit 36 measures the spectral coincidence before and after the bandpass filter 44 is changed by the rotating unit 42, and the average value of the measured spectral coincidence is obtained as the final spectrum. Calculated as the degree of match. Specifically, first, before rotating the rotating unit 42, the first spectral coincidence is measured by the process of the flowchart of FIG. 9 described above. At this time, the storage control unit 37 temporarily stores the first-time spectrum matching degree in the storage unit 35.
  • the user rotates the rotating unit 42 with respect to the base 41 to change the band pass filter 44 so as to be on the upper side of the different solar cells 21.
  • the other band-pass filter 44 receives light from the solar cells 21 different from those before the rotation.
  • the position detecting unit 22 of the light receiving device 20 detects the position of the rotating unit 42 and transmits the detected position information to the information processing device 30. Based on the received rotation information, the storage control unit 37 of the information processing device 30 changes the association for each wavelength band in the correspondence table shown in FIG. 6 to the solar cell 21n after rotation and the inter-cell correction coefficient Kn.
  • the association of the solar battery cell 21 with the wavelength band after rotation is stored in advance in the correspondence table.
  • the inter-cell correction coefficient Kn is stored in association with the rotated solar battery cell 21 in step S82 of the flowchart of FIG.
  • the inter-cell correction coefficient Kn is preferably calculated by the manufacturer when the light source evaluation device 10 is manufactured, and is stored in advance in the rotated correspondence table.
  • the second spectral coincidence is measured by the process of the flowchart of FIG. 9 described above.
  • the calculation unit 36 calculates the spectral coincidence based on the solar cell 21 and the inter-cell correction coefficient Kn shown in the correspondence table after rotation for the association for each wavelength band.
  • Mn is the inter-wavelength band correction coefficient M 1 associated with the wavelength band of 400 nm to 500 nm.
  • Mn the inter-wavelength band correction coefficient M 1 associated with the wavelength band of 400 nm to 500 nm.
  • Kn is a K 6 associated to the solar cell 21 6
  • the energy E 2 to E 6 in other wavelength bands can be similarly calculated based on the correspondence table after rotation.
  • the calculation unit 36 calculates the second-time spectrum matching degree using the calculated energy En for each wavelength band, and the storage control unit 37 temporarily stores the second-time spectrum matching degree in the storage unit 35.
  • the calculation unit 36 calculates the average value of the first and second spectrum matching degrees for the same wavelength band as the final spectrum matching degree.
  • the display control unit 39 displays the finally calculated spectrum matching degree on the display unit 31.
  • the calculation unit 36 uses the respective current values of the different solar cells 21.
  • the average value of the calculated spectrum matching degree is calculated as the final spectrum matching degree. Therefore, it is possible to calculate the degree of spectral coincidence that suppresses the influence of the irradiance unevenness of location.
  • each bandpass filter 44 has one of the six transmission wavelength bands. That is, the optical filter unit 43 is configured by arranging a plurality of band-pass filters 44 having the same transmission wavelength band. Therefore, different solar cells 21 pass through the band-pass filter 44 having the same transmission wavelength band and receive light.
  • the calculation unit 36 calculates the average value of the degree of spectral coincidence calculated using the current values of the different solar cells 21 as the final degree of spectral coincidence. The suppressed degree of spectral coincidence can be calculated.
  • the user holds the rotating unit 42 with respect to the base 4. 90 degrees, 180 degrees, and 270 degrees.
  • the band-pass filter 44 arranged on the upper side of the solar battery cell 21 at each rotation angle is arranged to be a band-pass filter 44 having a different transmission wavelength band.
  • the calculation unit 36 can calculate the average value of the first (0 degree) to the fourth (270 degree) spectrum matching degree as the final spectrum matching degree.
  • FIG. 15 is a diagram illustrating a configuration of the rotating unit 50 according to the second embodiment.
  • Each bandpass filter 44 of the rotation unit 50 of the present embodiment is obtained by reducing the size of the bandpass filter 44 of the first embodiment shown in FIG. 1 to 1 ⁇ 4.
  • the manufacturing cost of the optical filter device 40 can be reduced by reducing the bandpass filter 44.
  • 16A to 16C are views showing a state in which the rotating unit 50 is rotated 90 degrees, 180 degrees, and 170 degrees clockwise from the state shown in FIG.
  • the band-pass filter 44 arranged on the upper side of the solar battery cell 21 at each rotation angle is arranged to be a band-pass filter 44 having a different transmission wavelength band.
  • the bandpass filters 44 11 , 44 18 , 44 88 , and 44 81 disposed on the upper side of the solar battery cell 21 11 for each rotation angle have different transmission wavelength bands.
  • the calculation unit 36 finally calculates the average value of the first (0 degree) to the fourth (270 degree) spectrum matching degree. It is possible to calculate the degree of spectral coincidence.
  • the present invention has been described together with various embodiments. However, the present invention is not limited to these embodiments, and can be changed within the scope of the present invention or each embodiment can be combined. It is. Moreover, although the case where the photovoltaic cell 21 was used as a light receiver was demonstrated in embodiment mentioned above, it is not restricted to this case. For example, a thermopile or a pyroelectric sensor can be used as the light receiver. Moreover, although 6 wavelength bands were demonstrated in embodiment mentioned above, it can use similarly in the wavelength band smaller than six wavelength bands, or a wavelength band larger than six wavelength bands. Further, although the square lattice arrangement has been described as the arrangement of the light receivers, a hexagonal arrangement, a circular shape, and an arrangement in which the density of the light receivers varies depending on the location can be used similarly.
  • the present invention is not limited to this case.
  • a wavelength band wider than 400 nm to 1100 nm or a narrow wavelength band may be divided into a plurality, and the spectrum matching degree for each divided wavelength band may be calculated.
  • the predetermined wavelength band is divided into six wavelength bands.
  • the present invention is not limited to this case, and the predetermined wavelength band may be divided into at least six continuous wavelength bands. it can. In this case, it is possible to calculate the degree of spectral matching for each of the six or more wavelength bands that have been classified.
  • the program for realizing the above-described processing is supplied to the light source evaluation apparatus 10 via a network or various storage media, and the program supplied by the CPU of the light source evaluation apparatus 10 is read and executed.
  • a computer-readable recording medium storing the above-described program and a computer program product such as the above-described program can also be applied as an embodiment of the present invention.
  • the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the present invention can be used when evaluating a light source of a solar simulator for measuring the performance of a solar cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

A light source evaluation device (10) for evaluating a light source (101) in a solar simulator has a plurality of solar cells (21) that are disposed in a matrix and receive light emitted by the light source (101), a plurality of band-pass filters (44) that are disposed between the plurality of solar cells (21) and the light source (101) and have different transmission wavelength bands, and a calculation unit (36) for calculating the spectral coincidence of the light source (101) with natural sunlight from the irradiance received by each of the plurality of solar cells (21).

Description

光源評価装置、光源評価方法およびプログラムLight source evaluation apparatus, light source evaluation method and program
 本発明は、光源評価装置、光源評価方法およびプログラムに関するものである。特に、太陽電池の性能を測定するためのソーラシミュレータの光源を評価する場合に用いられて好適である。 The present invention relates to a light source evaluation apparatus, a light source evaluation method, and a program. In particular, it is preferably used when evaluating the light source of a solar simulator for measuring the performance of a solar cell.
 従来から太陽電池の光電変換効率などの性能を測定する場合にソーラシミュレータが用いられている。太陽電池の性能を公正に測定するために、JIS規格やIEC規格ではソーラシミュレータの光源から放射される光が基準太陽光とほぼ同じ分光放射照度であることを規定している。そのため、ソーラシミュレータの光源から放射される光が規格に合致した光であるかを評価する光源評価装置が用いられている。 Conventionally, a solar simulator has been used when measuring performance such as photoelectric conversion efficiency of a solar cell. In order to measure the performance of the solar cell fairly, the JIS standard and the IEC standard stipulate that the light emitted from the light source of the solar simulator has almost the same spectral irradiance as that of the reference sunlight. Therefore, a light source evaluation apparatus that evaluates whether the light emitted from the light source of the solar simulator matches the standard is used.
 特許文献1には、ソーラシミュレータから放射される光の分光放射照度を測定するために分光放射計を有する光源評価装置が開示されている。特許文献1の光源評価装置は、分光放射計で測定されたソーラシミュレータから放射される光の分光放射照度と、自然太陽光の分光放射照度と、太陽電池の分光感度とに基づいてソーラシミュレータから放射される光の特性の評価値を演算している。 Patent Document 1 discloses a light source evaluation apparatus having a spectral radiometer for measuring the spectral irradiance of light emitted from a solar simulator. The light source evaluation apparatus of Patent Document 1 is based on the solar simulator based on the spectral irradiance of light radiated from the solar simulator measured by the spectroradiometer, the spectral irradiance of natural sunlight, and the spectral sensitivity of the solar cell. The evaluation value of the characteristic of the emitted light is calculated.
国際公開第2010/150695号パンフレットInternational Publication No. 2010/150695 Pamphlet
 しかしながら、特許文献1の光源評価装置は、測定対象の光源からの光を分光器を用いた分光放射計により分光する。分光器を用いた分光放射計により分光する場合、光源評価装置の構造が回折格子やプリズム等により複雑化してしまい、製造コストが掛かってしまったり、経時的な安定性が悪くなったりする問題がある。
 本発明は、上述したような問題点に鑑みてなされたものであり、光源評価装置の構造を簡略化させ、製造コストを削減、安定性を改善することを目的とする。
However, the light source evaluation apparatus of Patent Document 1 separates light from a light source to be measured by a spectroradiometer using a spectroscope. When performing spectroscopy with a spectroradiometer using a spectroscope, the structure of the light source evaluation device is complicated by a diffraction grating, a prism, etc., resulting in increased manufacturing costs and poor stability over time. is there.
The present invention has been made in view of the above-described problems, and an object thereof is to simplify the structure of a light source evaluation apparatus, to reduce manufacturing costs, and to improve stability.
 本発明の光源評価装置は、ソーラシミュレータの光源を評価する光源評価装置であって、マトリクス状に配置され、前記光源から放射される光を受光する複数の受光器と、前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する演算部と、を有することを特徴とする。
 本発明の光源評価方法は、マトリクス状に配置され、ソーラシミュレータの光源から放射される光を受光する複数の受光器と、前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、を備える光源評価装置による光源評価方法であって、前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する算出ステップを有することを特徴とする。
 本発明のプログラムは、マトリクス状に配置され、ソーラシミュレータの光源から放射される光を受光する複数の受光器と、前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、を備える光源評価装置を制御するプログラムであって、前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する算出ステップをコンピュータに実行させるためのプログラムである。
A light source evaluation apparatus of the present invention is a light source evaluation apparatus for evaluating a light source of a solar simulator, and is arranged in a matrix and receives a plurality of light receivers that receive light emitted from the light source, and the plurality of light receivers, Calculation that calculates the spectral match degree of the light source with respect to natural sunlight from the plurality of optical filters that are respectively disposed between the light sources and have different transmission wavelength bands, and the irradiance received by the plurality of light receivers. And a portion.
The light source evaluation method of the present invention is arranged in a matrix and is arranged between a plurality of light receivers that receive light emitted from a light source of a solar simulator, and between the plurality of light receivers and the light source, and has different transmissions. A light source evaluation method using a light source evaluation apparatus including a plurality of optical filters having wavelength bands, and calculating a spectral match degree of the light source with respect to natural sunlight from respective irradiances received by the plurality of light receivers It has a calculation step.
The program of the present invention is arranged in a matrix, and is arranged between a plurality of light receivers that receive light emitted from a light source of a solar simulator, and between the plurality of light receivers and the light source, and different transmission wavelength bands. A calculation step of calculating a spectrum match degree of the light source with respect to natural sunlight from each irradiance received by the plurality of light receivers. Is a program for causing a computer to execute.
 本発明によれば、光源から放射された光を異なる透過波長帯域を有する複数の光学フィルタでそれぞれ透過させ、複数の受光器で受光させるように構成したことで、光源評価装置の構造を簡略化させ、製造コストを削減することができる。 According to the present invention, the light emitted from the light source is transmitted through the plurality of optical filters having different transmission wavelength bands and received by the plurality of light receivers, thereby simplifying the structure of the light source evaluation apparatus. Manufacturing costs can be reduced.
図1は、光源評価装置の外観構成を示す図である。FIG. 1 is a diagram illustrating an external configuration of a light source evaluation apparatus. 図2は、光源評価装置の内部構成を示す図である。FIG. 2 is a diagram illustrating an internal configuration of the light source evaluation apparatus. 図3は、受光装置および光学フィルタ装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the light receiving device and the optical filter device. 図4は、太陽電池セルの分光感度およびバンドパスフィルタの分光透過率を示す図である。FIG. 4 is a diagram showing the spectral sensitivity of the solar battery cell and the spectral transmittance of the band-pass filter. 図5は、太陽電池セルの分光感度と各バンドパスフィルタの分光透過率との積を示す図である。FIG. 5 is a diagram showing the product of the spectral sensitivity of the solar battery cell and the spectral transmittance of each bandpass filter. 図6は、波長帯域ごとに関連付けた情報を記憶する対応テーブルを示す図である。FIG. 6 is a diagram illustrating a correspondence table that stores information associated with each wavelength band. 図7は、情報処理装置の処理を示すフローチャートである。FIG. 7 is a flowchart illustrating processing of the information processing apparatus. 図8は、セル間補正係数の測定を示すフローチャートである。FIG. 8 is a flowchart showing the measurement of the correction coefficient between cells. 図9は、スペクトル合致度の測定を示すフローチャートである。FIG. 9 is a flowchart showing measurement of the degree of spectral coincidence. 図10は、放射照度の場所むらの測定を示すフローチャートである。FIG. 10 is a flowchart showing the measurement of irradiance unevenness. 図11は、放射照度の時間変動率の測定を示すフローチャートである。FIG. 11 is a flowchart showing the measurement of the time variation rate of irradiance. 図12は、基準太陽光における波長帯域ごとのエネルギー分布を示す図である。FIG. 12 is a diagram showing an energy distribution for each wavelength band in the reference sunlight. 図13は、エネルギー分布などを表示部に表示した図である。FIG. 13 is a diagram in which the energy distribution and the like are displayed on the display unit. 図14は、エネルギー分布を表示部にグラフで表示した図である。FIG. 14 is a diagram in which the energy distribution is displayed as a graph on the display unit. 図15は、回転部の構成を示す図である。FIG. 15 is a diagram illustrating a configuration of the rotating unit. 図16Aは、回転部を90度回転させた状態を示す図である。FIG. 16A is a diagram illustrating a state in which the rotating unit is rotated 90 degrees. 図16Bは、回転部を180度回転させた状態を示す図である。FIG. 16B is a diagram illustrating a state where the rotating unit is rotated 180 degrees. 図16Cは、回転部を270度回転させた状態を示す図である。FIG. 16C is a diagram illustrating a state where the rotating unit is rotated by 270 degrees.
 以下、本実施形態に係る光源評価装置(光源評価システム)10について図面を参照して説明する。
 本実施形態では光源評価装置10がソーラシミュレータ100の光源101を評価する場合について説明する。なお、本実施形態では、測定対象の光源から例えばミラーやレンズなど介して光が放射される場合には、最終的に放射される光を評価するものとして説明する。
Hereinafter, a light source evaluation apparatus (light source evaluation system) 10 according to the present embodiment will be described with reference to the drawings.
In the present embodiment, a case where the light source evaluation device 10 evaluates the light source 101 of the solar simulator 100 will be described. In the present embodiment, when light is emitted from a light source to be measured through, for example, a mirror or a lens, the light that is finally emitted is evaluated.
 図1は、光源評価装置10の外観構成の一例を示す図である。図2は、光源評価装置10の内部構成の一例を示す図である。
 光源評価装置10は、受光装置20、変換装置25、情報処理装置30、光学フィルタ装置40などを有している。
 受光装置20は、ソーラシミュレータ100の光源101から放射される光を受光し、受光した放射照度に応じた出力値を変換装置25を介して情報処理装置30に出力する。
 本実施形態の受光装置20は、受光器としての太陽電池セル21、位置検出部22、I/F部23を有している。太陽電池セル21は、マトリクス状に複数、配列して構成される。位置検出部22は、後述する回転部42の位置、具体的には回転角度を検出する。I/F部23は、変換装置25に繋がるケーブルが接続される。
FIG. 1 is a diagram illustrating an example of an external configuration of the light source evaluation device 10. FIG. 2 is a diagram illustrating an example of the internal configuration of the light source evaluation apparatus 10.
The light source evaluation device 10 includes a light receiving device 20, a conversion device 25, an information processing device 30, an optical filter device 40, and the like.
The light receiving device 20 receives light emitted from the light source 101 of the solar simulator 100 and outputs an output value corresponding to the received irradiance to the information processing device 30 via the conversion device 25.
The light receiving device 20 of the present embodiment includes a solar battery cell 21 as a light receiver, a position detection unit 22, and an I / F unit 23. A plurality of solar cells 21 are arranged in a matrix. The position detection unit 22 detects the position of a later-described rotation unit 42, specifically, a rotation angle. The I / F unit 23 is connected to a cable connected to the conversion device 25.
 図1に示す受光装置20は、縦(列)が8つ、横(行)が8つの計64個の太陽電池セル21を有し、太陽電池セル21が配置される領域は正方形に形成される。なお、図1に示すように、1列×1行の太陽電池セルを太陽電池セル2111、・・・2列×1行の太陽電池セルを太陽電池セル2121、・・・8列×1行の太陽電池セルを太陽電池セル2181とする。各太陽電池セル21は受光した放射照度に応じた出力値として、短絡電流の電流値(以下、電流値という)をそれぞれ出力する。 The light receiving device 20 shown in FIG. 1 has a total of 64 solar cells 21 with eight columns (columns) and eight rows (rows), and the region where the solar cells 21 are arranged is formed in a square shape. The In addition, as shown in FIG. 1, solar cells 21 11 ,... 2 columns × 1 rows of solar cells 21 21 ,. a row of solar cells and solar cell 21 81. Each solar cell 21 outputs a current value of a short circuit current (hereinafter referred to as a current value) as an output value corresponding to the received irradiance.
 変換装置25は、受光装置20から出力される電流値をA/D変換して、情報処理装置30に送信する。変換装置25は、変換部26、I/F部27を有している。変換部26は、電流値をA/D変換する。I/F部27は、受光装置20に繋がるケーブルおよび情報処理装置30に繋がるケーブルが接続される。 The conversion device 25 A / D-converts the current value output from the light receiving device 20 and transmits it to the information processing device 30. The conversion device 25 includes a conversion unit 26 and an I / F unit 27. The converter 26 A / D converts the current value. The I / F unit 27 is connected to a cable connected to the light receiving device 20 and a cable connected to the information processing device 30.
 情報処理装置30は、太陽電池セル21の放射照度、具体的には受光装置20から受信した電流値に基づいてソーラシミュレータ100の光源101を評価する。情報処理装置30は、表示部31、制御部32、I/F部33、操作部34、記憶部35を有している。情報処理装置30は、例えばコンピュータにより構成することができる。 The information processing device 30 evaluates the light source 101 of the solar simulator 100 based on the irradiance of the solar battery cell 21, specifically, the current value received from the light receiving device 20. The information processing apparatus 30 includes a display unit 31, a control unit 32, an I / F unit 33, an operation unit 34, and a storage unit 35. The information processing apparatus 30 can be configured by a computer, for example.
 表示部31は、光源101を評価した結果などを表示する。制御部32は、情報処理装置30全体を制御する。I/F部33は、変換装置25に繋がるケーブルが接続される。操作部34は、使用者が情報処理装置30に対して入力する場合に用いられる。記憶部35は後述する、波長帯域間補正係数Mn、セル間補正係数Kn、基準太陽光のエネルギー分布DAM(n)、対応テーブルなどを記憶する。
 制御部32は、演算部36、記憶制御部37、入出力制御部38、表示制御部39を有している。演算部36は後述する、スペクトル合致度の算出、放射照度の場所むらの算出、放射照度の時間変動率の算出などを行う。記憶制御部37は、記憶部35を制御することで、情報の記憶および読み出しを行う。入出力制御部38は、操作部34を介した入力およびI/F部33を介した外部との入出力を制御する。
The display unit 31 displays the result of evaluating the light source 101 and the like. The control unit 32 controls the entire information processing apparatus 30. The I / F unit 33 is connected to a cable connected to the conversion device 25. The operation unit 34 is used when a user inputs to the information processing apparatus 30. The storage unit 35 stores an inter-wavelength correction coefficient Mn, an inter-cell correction coefficient Kn, an energy distribution D AM (n) of reference sunlight, a correspondence table, and the like, which will be described later.
The control unit 32 includes a calculation unit 36, a storage control unit 37, an input / output control unit 38, and a display control unit 39. The calculation unit 36 calculates the degree of spectral coincidence, the irradiance location unevenness, the irradiance temporal variation rate, and the like, which will be described later. The storage control unit 37 controls the storage unit 35 to store and read information. The input / output control unit 38 controls input via the operation unit 34 and input / output with the outside via the I / F unit 33.
 本実施形態の情報処理装置30は、光源101を測定する項目として、(a)スペクトル合致度の測定、(b)放射照度の場所むらの測定および(c)放射照度の時間変動率の測定が可能である。
 (a)スペクトル合致度の測定とは、基準太陽光などに対して測定対象の光源から放射されて受光面に照射される光の波長範囲ごとの合致度を測定するものである。具体的には、JIS規格、IEC規格に規定されるように400nm~1100nmの波長帯域を6つの波長帯域、具体的には400nm~500nm、500nm~600nm、600nm~700nm、700nm~800nm、800nm~900nm、900nm~1100nmに区分けして、区分けした波長帯域ごとに基準太陽光などに対するスペクトル合致度を測定する。
 (b)放射照度の場所むらの測定とは、光源が放射する領域(場所)の放射照度の高低を測定するものである。
 (c)放射照度の時間変動率の測定とは、光源から放射される放射照度が時間当たりに変動する値を測定するものである。
The information processing apparatus 30 according to the present embodiment includes, as items for measuring the light source 101, (a) measurement of spectrum matching degree, (b) measurement of irradiance location unevenness, and (c) measurement of time variation rate of irradiance. Is possible.
(A) The measurement of the degree of spectral coincidence is to measure the degree of coincidence for each wavelength range of light emitted from the light source to be measured and irradiated to the light receiving surface with respect to reference sunlight or the like. Specifically, as specified in the JIS standard and IEC standard, the wavelength band of 400 nm to 1100 nm is divided into six wavelength bands, specifically, 400 nm to 500 nm, 500 nm to 600 nm, 600 nm to 700 nm, 700 nm to 800 nm, 800 nm to The spectrum is divided into 900 nm and 900 nm to 1100 nm, and the degree of spectral coincidence with reference sunlight is measured for each divided wavelength band.
(B) Measurement of irradiance location unevenness is to measure the level of irradiance in a region (location) emitted by a light source.
(C) The measurement of the time variation rate of irradiance is to measure the value at which the irradiance radiated from the light source fluctuates per time.
 本実施形態の光源評価装置10は、特許文献1に記載されるような分光器を用いた分光放射計により分光することなく、太陽電池セル21などの受光器を用いたまま、波長帯域ごとのスペクトル合致度の測定を可能にするために、光学フィルタ装置40を有している。
 図1に示すように、光学フィルタ装置40は、光源101と受光装置20との間に配置され、光源101から放射される光のうち所望する波長帯域ごとに光を透過させる。したがって、受光装置20は、光学フィルタ装置40により透過された所望する波長帯域ごとの光を受光することができる。
The light source evaluation apparatus 10 of the present embodiment does not perform spectroscopy using a spectroradiometer using a spectroscope as described in Patent Document 1, and uses a light receiver such as a solar battery cell 21 for each wavelength band. In order to enable measurement of the degree of spectral coincidence, an optical filter device 40 is provided.
As shown in FIG. 1, the optical filter device 40 is disposed between the light source 101 and the light receiving device 20 and transmits light for each desired wavelength band among the light emitted from the light source 101. Therefore, the light receiving device 20 can receive light for each desired wavelength band transmitted by the optical filter device 40.
 光学フィルタ装置40は、基台41、回転部42、光学フィルタ部43を有している。基台41は、受光装置20に対して着脱可能であり、回転部42の回転軸(図1に示すR)を中心に回転自在に支持する。なお、使用者は、上述した(a)スペクトル合致度の測定をする場合、光学フィルタ装置40を受光装置20に装着する。一方、使用者は、所望する波長帯域ごとに分光させる必要がない(b)放射照度の場所むらの測定、(c)放射照度の時間変動率の測定、後述する(d)セル間補正係数の測定をする場合は光学フィルタ装置40を受光装置20から離脱させる。
 回転部42は、円板状に形成され、中央で光学フィルタ部43を支持する。
The optical filter device 40 includes a base 41, a rotating unit 42, and an optical filter unit 43. The base 41 is detachable with respect to the light receiving device 20 and is supported so as to be rotatable about a rotation shaft (R shown in FIG. 1) of the rotation unit 42. It should be noted that the user attaches the optical filter device 40 to the light receiving device 20 when measuring the degree of spectral coincidence (a) described above. On the other hand, it is not necessary for the user to perform spectral separation for each desired wavelength band. (B) Measurement of irradiance unevenness, (c) Measurement of time variation rate of irradiance, (d) Inter-cell correction coefficient For measurement, the optical filter device 40 is detached from the light receiving device 20.
The rotating part 42 is formed in a disc shape and supports the optical filter part 43 at the center.
 光学フィルタ部43は、光学フィルタとしてのバンドパスフィルタ44がマトリクス状に複数、配列して構成される。図1に示す光学フィルタ部43は、縦(列)が8つ、横(行)が8つの計64個のバンドパスフィルタ44を有し、バンドパスフィルタ44が配置される領域は正方形に形成される。なお、図1に示すように、1列×1行のパンドパスフィルタをバンドパスフィルタ4411・・・2列×1行のバンドパスフィルタをバンドパスフィルタ4421、・・・8列×1行のバンドパスフィルタをバンドパスフィルタ4481とする。 The optical filter unit 43 includes a plurality of band-pass filters 44 as optical filters arranged in a matrix. The optical filter unit 43 shown in FIG. 1 has a total of 64 bandpass filters 44 with eight columns (columns) and eight rows (rows), and the area where the bandpass filters 44 are arranged is formed in a square shape. Is done. As shown in FIG. 1, a band pass filter 44 11 ... 2 band × 1 row bandpass filter 44 21 ,... 8 columns × 1 is used. the bandpass filter line and bandpass filter 44 81.
 各バンドパスフィルタ44は、各太陽電池セル21の上側(真上)に配置される。したがって、光源101から放射され各バンドパスフィルタ44を透過した光はそれぞれ下側(真下)の各太陽電池セル21に受光される。例えば、バンドパスフィルタ4411を透過した光は太陽電池セル2111で受光される。 Each band pass filter 44 is disposed above (directly above) each solar cell 21. Therefore, the light emitted from the light source 101 and transmitted through each bandpass filter 44 is received by each lower (directly below) solar cell 21. For example, light transmitted through the bandpass filter 44 11 is received by the solar battery cell 21 11 .
 ここで、本実施形態のバンドパスフィルタ44は少なくとも6つの異なる透過波長帯域を有している。具体的には、400nm~1100nmの波長帯域を、400nm~500nm、500nm~600nm、600nm~700nm、700nm~800nm、800nm~900nm、900nm~1100nmの6つの波長帯域に区分けした透過波長帯域を有している。このように、異なる透過波長帯域のバンドパスフィルタ44は、400nm~1100nm内で透過波長帯域が連続している。 Here, the bandpass filter 44 of the present embodiment has at least six different transmission wavelength bands. Specifically, it has a transmission wavelength band in which the wavelength band of 400 nm to 1100 nm is divided into six wavelength bands of 400 nm to 500 nm, 500 nm to 600 nm, 600 nm to 700 nm, 700 nm to 800 nm, 800 nm to 900 nm, 900 nm to 1100 nm. ing. As described above, the bandpass filter 44 having different transmission wavelength bands has continuous transmission wavelength bands within 400 nm to 1100 nm.
 以下では、理解を容易にするために、図3に示すように受光装置20と光学フィルタ装置40との構成を単純化させた形態について説明する。図3では、受光装置20が6つの太陽電池セル21~21で構成され、光学フィルタ装置40が各太陽電池セル21の上側に配置される6つのバンドパスフィルタ44~44で構成される。 Below, in order to make an understanding easy, the form which simplified the structure of the light-receiving device 20 and the optical filter apparatus 40 as shown in FIG. 3 is demonstrated. In FIG. 3, the light receiving device 20 is composed of six solar cells 21 1 to 21 6 , and the optical filter device 40 is composed of six bandpass filters 44 1 to 44 6 disposed above each solar cell 21. Is done.
 図3に示す光学フィルタ装置40は、バンドパスフィルタ44が400nm~500nmの透過波長帯域を有し、バンドパスフィルタ44が500nm~600nmの透過波長帯域を有し、バンドパスフィルタ44が600nm~700nmの透過波長帯域を有し、バンドパスフィルタ44が700nm~800nmの透過波長帯域を有し、バンドパスフィルタ44が800nm~900nmの透過波長帯域を有し、バンドパスフィルタ44が900nm~1100nmの透過波長帯域を有している。
 このように、バンドパスフィルタ44に所望する波長帯域の光を透過させ、その他の波長帯域の光をカットするよう構成するには、バンドパスフィルタ44の製造工程で、その波長帯域に合わせて設計した多層蒸着膜構造としたり、膜が蒸着されるガラスに色素を混入させたりすることで実現できる。
Optical filter apparatus 40 shown in FIG. 3, the band-pass filter 44 1 has a transmission wavelength band of 400 nm ~ 500 nm, the band pass filter 44 2 has a transmission wavelength band of 500 nm ~ 600 nm, a band pass filter 44 3 The band-pass filter 44 4 has a transmission wavelength band of 700 nm to 800 nm, the band-pass filter 44 5 has a transmission wavelength band of 800 nm to 900 nm, and the band-pass filter 44 6 has a transmission wavelength band of 600 nm to 700 nm. Has a transmission wavelength band of 900 nm to 1100 nm.
Thus, in order to transmit the light of the desired wavelength band to the band pass filter 44 and cut the light of the other wavelength bands, the band pass filter 44 is manufactured according to the wavelength band in the manufacturing process. This can be realized by forming a multilayer vapor deposition film structure or by mixing a dye into the glass on which the film is deposited.
 したがって、各太陽電池セル21は、光源101から放射された光のうち各バンドパスフィルタ44で透過した波長帯域の光を受光する。具体的には、太陽電池セル21が400nm~500nmの波長帯域の光を受光し、太陽電池セル21が500nm~600nmの波長帯域の光を受光し、太陽電池セル21が600nm~700nmの波長帯域の光を受光し、太陽電池セル21が700nm~800nmの波長帯域の光を受光し、太陽電池セル21が800nm~900nmの波長帯域の光を受光し、太陽電池セル21が900nm~1100nmの波長帯域の光を受光する。 Accordingly, each solar battery cell 21 receives light in the wavelength band transmitted by each bandpass filter 44 from the light emitted from the light source 101. Specifically, the solar cell 21 1 is receiving a light in a wavelength band of 400 nm ~ 500 nm, the solar cell 21 2 receives a light having a wavelength band of 500 nm ~ 600 nm, the solar cell 21 3 is 600 nm ~ 700 nm receiving light wavelength band of the solar battery cell 21 4 receives light in a wavelength band of 700 nm ~ 800 nm, the solar cell 21 5 receives the light in the wavelength band of 800 nm ~ 900 nm, the solar cell 21 6 Receives light in the wavelength band of 900 nm to 1100 nm.
 ここで、本実施形態のように受光器に太陽電池セル21を用いた場合、太陽電池セル21には波長に依存する分光感度が存在する。
 図4は、結晶系の太陽電池セルの波長に応じた分光感度を示す図である。図4の実線に示すように、太陽電池セル21の分光感度は、400nmでは0.3であり、400nmから900nm近辺まで徐々に増加し、900nm近辺では1.0である。一方、900nmから1100nmまで急に減少し、1100nm近辺では0.3である。
Here, when the solar cell 21 is used in the light receiver as in the present embodiment, the solar cell 21 has a spectral sensitivity depending on the wavelength.
FIG. 4 is a diagram showing the spectral sensitivity according to the wavelength of the crystalline solar battery cell. As shown by the solid line in FIG. 4, the spectral sensitivity of the solar battery cell 21 is 0.3 at 400 nm, gradually increases from 400 nm to around 900 nm, and 1.0 at around 900 nm. On the other hand, it suddenly decreases from 900 nm to 1100 nm and is 0.3 near 1100 nm.
 ここで、仮に400nmに放射照度のピークがある光源と、900nmに放射照度のピークがある光源とが同一のエネルギーであったとする。この場合、図4のような分光感度によって、各光源からの光を受光したときに太陽電池セル21が出力する電流値は同一にならない。具体的には、分光感度が高い900nmに放射照度のピークがある光源を受光したときの電流値の方が大きく出力される。 Here, it is assumed that a light source having an irradiance peak at 400 nm and a light source having an irradiance peak at 900 nm have the same energy. In this case, due to the spectral sensitivity as shown in FIG. 4, the current values output from the solar cells 21 when receiving light from each light source are not the same. Specifically, a larger current value is output when a light source having a peak of irradiance at 900 nm with high spectral sensitivity is received.
 そこで、本実施形態では、以下の2つの処理により、太陽電池セル21の波長に応じた分光感度の影響を取り除く。まず、第1に、バンドパスフィルタ44の分光透過率と太陽電池セル21の分光感度との積が透過波長帯域内で一定になるように、各バンドパスフィルタ44~44の分光透過率を設定する。
 すなわち、太陽電池セル21の分光感度B(λ)とし、バンドパスフィルタ44~44の各分光透過率Fn(λ)とし、λを波長とすると、
 B(λ)×Fn(λ)=Ln
 になるようにする。なお、Lnは定数であり、nは1~6までの整数である。
 したがって、Fn(λ)=Ln/B(λ)となる。
Therefore, in this embodiment, the influence of the spectral sensitivity corresponding to the wavelength of the solar battery cell 21 is removed by the following two processes. First, the first, so that the product of the spectral sensitivity of the spectral transmittance and the solar cell 21 of the band-pass filter 44 is constant within the transmission wavelength band, the spectral transmittance of each bandpass filter 44 1-44 6 Set.
That is, the spectral sensitivity B (λ) of the solar battery cell 21, the spectral transmittances Fn (λ) of the bandpass filters 44 1 to 44 6 , and λ as the wavelength,
B (λ) × Fn (λ) = Ln
To be. Ln is a constant, and n is an integer from 1 to 6.
Therefore, Fn (λ) = Ln / B (λ).
 図4には各バンドパスフィルタ44~44に設定した分光透過率を示している。図4に示すように、例えばバンドパスフィルタ44は、400nmから500nmに移行するにしたがって分光透過率が曲線状に急に低くなるように設定される。また、バンドパスフィルタ44~44は、同様に低い波長から高い波長に移行するにしたがって分光透過率が曲線状に低くなるように設定される。ただし、バンドパスフィルタ44は、バンドパスフィルタ44に比べ、分光透過率の変化が緩やかになっている。一方、バンドパスフィルタ44は、低い波長から高い波長に移行するにしたがって分光透過率が曲線状に高くなるように設定される。
 このように、バンドパスフィルタ44に低い波長から高い波長に移行するにしたがって分光透過率を、緩急を設定した上で低くしたり、高くしたり構成するには、バンドパスフィルタ44の製造工程の蒸着工程において多層蒸着膜の層数を増減させたり、層の膜厚を増減させたり、膜が蒸着されるガラスに色素を混入させたりすることで実現できる。
FIG. 4 shows the spectral transmittance set for each of the bandpass filters 44 1 to 44 6 . As shown in FIG. 4, for example, a band-pass filter 44 1, the spectral transmittance is set to be suddenly lowered curved accordance shifts from 400nm to 500 nm. Similarly, the bandpass filters 44 2 to 44 5 are set so that the spectral transmittance decreases in a curved line as the wavelength shifts from a low wavelength to a high wavelength. However, the band-pass filter 445, compared to the band-pass filter 44 1, the change in spectral transmittance becomes gradual. On the other hand, the band-pass filter 44 6, the spectral transmittance is set to be higher curved accordance shifts to higher wavelength from lower wavelengths.
As described above, in order to lower or increase the spectral transmittance while setting the gradual speed as the bandpass filter 44 shifts from a low wavelength to a high wavelength, the manufacturing process of the bandpass filter 44 is not limited. This can be realized by increasing or decreasing the number of layers of the multilayer deposited film in the deposition process, increasing or decreasing the layer thickness, or mixing a pigment into the glass on which the film is deposited.
 図5は、太陽電池セル21の分光感度と各バンドパスフィルタ44~44の分光透過率との積を示す図である。図5に示すように、分光感度と分光透過率との積が各バンドパスフィルタ44~44の透過波長帯域内で一定になっている。例えば、分光感度とバンドパスフィルタ44の分光透過率との積は常に0.25であり、分光感度とバンドパスフィルタ44の分光透過率との積は常に0.5である。
 ただし、分光感度と分光透過率との積は波長帯域ごとに異なっているため、異なる波長に分光放射照度のピークがある同一のエネルギーの光源を受光した場合、未だ各光源を受光したときに太陽電池セル21が出力する電流値は同一にならない。
FIG. 5 is a diagram showing a product of the spectral sensitivity of the solar battery cell 21 and the spectral transmittance of each of the bandpass filters 44 1 to 44 6 . As shown in FIG. 5, the product of spectral sensitivity and spectral transmittance is constant within the transmission wavelength band of each of the bandpass filters 44 1 to 44 6 . For example, the product of the spectral sensitivity and the bandpass filter 44 1 spectral transmittance is always 0.25, the product of the spectral sensitivity and the band pass filter 44 2 of the spectral transmittance is always 0.5.
However, since the product of spectral sensitivity and spectral transmittance is different for each wavelength band, when receiving light sources of the same energy that have spectral irradiance peaks at different wavelengths, the solar light is still received when each light source is received. The current values output by the battery cells 21 are not the same.
 そこで、第2に、異なる透過波長帯域の間で、分光感度と分光透過率との積が一定になうように波長帯域ごとの波長帯域間補正係数を算出する。
 すなわち、太陽電池セル21の分光感度B(λ)とし、バンドパスフィルタ44~44の分光透過率Fn(λ)とし、波長帯域間補正係数Mnとすると、
 B(λ)×Fn(λ)×Mn=P
 になるようにする。なお、Pは定数であり、nは1~6までの整数である。
 したがって、Mn=P/(B(λ)×Fn(λ))=P/Ln
 すなわち、Ln=P/Mnとなる。
Therefore, secondly, a correction coefficient between wavelength bands is calculated for each wavelength band so that the product of the spectral sensitivity and the spectral transmittance is constant between different transmission wavelength bands.
That is, when the spectral sensitivity B (λ) of the solar battery cell 21 is set, the spectral transmittance Fn (λ) of the bandpass filters 44 1 to 44 6 is set, and the correction coefficient Mn between the wavelength bands is given,
B (λ) × Fn (λ) × Mn = P
To be. P is a constant, and n is an integer from 1 to 6.
Therefore, Mn = P / (B (λ) × Fn (λ)) = P / Ln
That is, Ln = P / Mn.
 ここで、例えば定数Pを1.0とした場合、分光感度とバンドパスフィルタ44の分光透過率との積を1.0にする波長帯域間補正係数Mとして、1.0/0.25=4が算出される。また、分光感度とバンドパスフィルタ44の分光透過率との積を1.0にする波長帯域間補正係数Mとして、1.0/0.5=2が算出される。同様に、分光感度と他のバンドパスフィルタ44~44の分光透過率との積を1.0にする波長帯域間補正係数M~Mが算出される。
 算出された波長帯域間補正係数M~Mは、後述するように各バンドパスフィルタ44~44を透過して受光した各太陽電池セル21の電流値にそれぞれ乗算される。したがって、自然太陽光を受光した場合、異なる透過波長帯域間であっても各太陽電池セル21により出力する電流値が同一になるように補正することができる。
Here, for example, when the constant P is 1.0, the wavelength band correction coefficient M 1 that sets the product of the spectral sensitivity and the spectral transmittance of the band-pass filter 44 1 to 1.0 is 1.0 / 0.0. 25 = 4 is calculated. Moreover, as the wavelength band between the correction factor M 2 of the product to 1.0 with spectral sensitivity and the band pass filter 44 and second spectral transmittance, 1.0 / 0.5 = 2 it is calculated. Similarly, inter-wavelength band correction coefficients M 3 to M 6 that calculate the product of the spectral sensitivity and the spectral transmittance of the other bandpass filters 44 3 to 44 6 as 1.0 are calculated.
The calculated inter-wavelength band correction coefficients M 1 to M 6 are respectively multiplied by the current values of the solar cells 21 that have passed through and received the band-pass filters 44 1 to 44 6 as will be described later. Therefore, when natural sunlight is received, it can correct | amend so that the electric current value output by each photovoltaic cell 21 may become the same even if it is between different transmission wavelength bands.
 算出した波長帯域間補正係数Mnは、波長帯域ごとに関連付けて記憶部35の対応テーブルに記憶される。図6は、対応テーブルの一例を示す図である。図6に示す対応テーブルには波長帯域ごとに、バンドパスフィルタ44n、波長帯域間補正係数Mn、太陽電池セル21nおよび後述するセル間補正係数Knが関連付けて記憶される。 The calculated inter-wavelength band correction coefficient Mn is stored in the correspondence table of the storage unit 35 in association with each wavelength band. FIG. 6 is a diagram illustrating an example of the correspondence table. In the correspondence table shown in FIG. 6, for each wavelength band, a bandpass filter 44n, a wavelength band correction coefficient Mn, a solar cell 21n, and an intercell correction coefficient Kn described later are stored in association with each other.
 次に、上述したように構成される光源評価装置10を用いた光源101の評価方法について具体的に説明する。以下で説明する各フローチャートの処理は、情報処理装置30のCPUがROMなどに格納されたプログラムを実行することにより実現される。
 図7は、光源評価装置10の情報処理装置30の処理を示すフローチャートである。図7のフローチャートは、使用者が操作部34を介したプログラムを実行する指示に応じて開始される。
Next, a method for evaluating the light source 101 using the light source evaluation apparatus 10 configured as described above will be specifically described. The processing of each flowchart described below is realized by the CPU of the information processing device 30 executing a program stored in a ROM or the like.
FIG. 7 is a flowchart showing processing of the information processing device 30 of the light source evaluation device 10. The flowchart of FIG. 7 is started in response to an instruction for the user to execute the program via the operation unit 34.
 ステップS70では、表示制御部39は表示部31に測定項目を選択可能に表示する。具体的には、(a)スペクトル合致度の測定、(b)放射照度の場所むらの測定、(c)放射照度の時間変動率の測定、(d)セル間補正係数の測定、の4つの測定項目を表示する。ここで、(d)セル間補正係数の測定とは、自然太陽光を受光したときに各太陽電池セル21が出力する電流値のばらつきを補正するためのセル間補正係数を算出する場合に選択される。 In step S70, the display control unit 39 displays the measurement items on the display unit 31 in a selectable manner. Specifically, (a) measurement of spectral coincidence, (b) measurement of irradiance unevenness of location, (c) measurement of time variation rate of irradiance, and (d) measurement of correction coefficient between cells. Display measurement items. Here, (d) the measurement of the inter-cell correction coefficient is selected when calculating the inter-cell correction coefficient for correcting the variation in the current value output from each solar cell 21 when natural sunlight is received. Is done.
 ステップS71では、入出力制御部38は使用者により(d)セル間補正係数の測定が選択されたか否かを判定する。(d)セル間補正係数の測定が選択された場合にはステップS72に移行し、選択されていない場合にはステップS73に移行する。ステップS72によるセル間補正係数の測定は、図8のフローチャートを参照して後述する。
 ステップS73では、入出力制御部38は使用者により(a)スペクトル合致度の測定が選択されたか否かを判定する。(a)スペクトル合致度の測定が選択された場合にはステップS74に移行し、選択されていない場合にはステップS75に移行する。ステップS74によるスペクトル合致度の測定は、図9のフローチャートを参照して後述する。
In step S71, the input / output control unit 38 determines whether (d) measurement of the inter-cell correction coefficient is selected by the user. (D) If the measurement of the inter-cell correction coefficient is selected, the process proceeds to step S72, and if not selected, the process proceeds to step S73. The measurement of the correction coefficient between cells by step S72 is later mentioned with reference to the flowchart of FIG.
In step S <b> 73, the input / output control unit 38 determines whether or not (a) measurement of spectrum matching degree has been selected by the user. (A) If the measurement of the spectral coincidence is selected, the process proceeds to step S74, and if not, the process proceeds to step S75. The measurement of the degree of spectral coincidence in step S74 will be described later with reference to the flowchart of FIG.
 ステップS75では、入出力制御部38は、使用者により(b)放射照度の場所むらの測定が選択されたか否かを判定する。(b)放射照度の場所むらの測定が選択された場合にはステップS76に移行し、選択されていない場合にはステップS77に移行する。ステップS76による放射照度の場所むらの測定は、図10のフローチャートを参照して後述する。
 ステップS77では、入出力制御部38は使用者により(c)放射照度の時間変動率の測定が選択されたか否かを判定する。(c)放射照度の時間変動率の測定が選択された場合にはステップS78に移行し、選択されていない場合にはステップS79に移行する。ステップS78による放射照度の時間変動率の測定は、図11のフローチャートを参照して後述する。
In step S <b> 75, the input / output control unit 38 determines whether (b) measurement of irradiance location unevenness has been selected by the user. (B) When the measurement of the irradiance unevenness is selected, the process proceeds to step S76, and when it is not selected, the process proceeds to step S77. The measurement of the irradiance unevenness in step S76 will be described later with reference to the flowchart of FIG.
In step S77, the input / output control unit 38 determines whether (c) measurement of the time variation rate of irradiance has been selected by the user. (C) When the measurement of the time variation rate of the irradiance is selected, the process proceeds to step S78, and when it is not selected, the process proceeds to step S79. The measurement of the time variation rate of the irradiance in step S78 will be described later with reference to the flowchart of FIG.
 ステップS79では、入出力制御部38は使用者により終了が指示されたか否かを判定する。終了が指示された場合には処理を終了し、終了が指示されていない場合にはステップS71に戻る。 In step S79, the input / output control unit 38 determines whether the user has instructed termination. If the end is instructed, the process ends. If the end is not instructed, the process returns to step S71.
 次に、セル間補正係数の測定について図8のフローチャートを参照して説明する。ここでは、使用者は光学フィルタ装置40を受光装置20から離脱させておく。また、使用者は測定対象の光源101を取り除き、受光装置20に自然太陽光が放射されるように光源評価装置10を設置する。
 ステップS80では、入出力制御部38は自然太陽光を受光した太陽電池セル21ごとに短絡電流の電流値を受信する。太陽電池セル21は自然太陽光のような、むらのない光を受光した場合であっても各太陽電池セル21間でばらついた電流値が出力されてしまう。
Next, the measurement of the correction coefficient between cells will be described with reference to the flowchart of FIG. Here, the user leaves the optical filter device 40 from the light receiving device 20. Further, the user removes the light source 101 to be measured and installs the light source evaluation device 10 so that natural sunlight is emitted to the light receiving device 20.
In step S80, the input / output control unit 38 receives the current value of the short-circuit current for each solar cell 21 that has received natural sunlight. Even when the solar battery cell 21 receives light with no unevenness such as natural sunlight, a current value that varies among the solar battery cells 21 is output.
 ステップS81では、演算部36は受信した電流値に基づいて、各太陽電池セル21に応じたセル間補正係数Knを算出する。例えば、太陽電池セル21の電流値が100mAであり、太陽電池セル21の電流値が90mAであり、太陽電池セル21の電流値110mA・・・であったとする。この場合、演算部36は例えば平均値である電流値100mAになるようにセル間補正係数Knを算出する。したがって、演算部36は、太陽電池セル21のセル間補正係数Kを1.0、太陽電池セル21のセル間補正係数Kを100/90、太陽電池セル21のセル間補正係数Kを100/110のように算出する。 In step S <b> 81, the calculation unit 36 calculates an inter-cell correction coefficient Kn corresponding to each solar battery cell 21 based on the received current value. For example, the current value of the solar cell 21 1 is 100 mA, the current value of the solar cell 21 2 is 90 mA, and were current 110 mA · · · of the solar cell 21 3. In this case, the calculation unit 36 calculates the inter-cell correction coefficient Kn so that the current value is 100 mA, which is an average value, for example. Therefore, calculation unit 36, an inter-cell correction factor K 1 of the solar cell 21 1 1.0, the solar cell 21 between the second cell correction factor K 2 of 100/90, intercell correction of the solar cell 21 3 calculating the coefficient K 3 as 100/110.
 ステップS82では、表示制御部39は算出したセル間補正係数Knを太陽電池セル21ごとに表示部31に表示する。また、記憶制御部37は算出したセル間補正係数Knを太陽電池セル21に関連付けて記憶する。具体的には、記憶制御部37は図6に示す対応テーブルに、太陽電池セル21と関連付けて各セル間補正係数Knを記憶する。その後、図7に示すステップS71の処理に戻る。
 なお、表示制御部39は記憶部35にセル間補正係数Knが記憶されていない場合、上述した図7のステップS70において(d)セル間補正係数の測定のみしか選択できないようにしてもよい。
 また、セル間補正係数Knは光源評価装置10を製造した時点で製造者が算出し、予め記憶部35に記憶することが好ましい。この場合、図7のステップS70において選択できる測定項目の中に(d)セル間補正係数の測定を省略することができる。
In step S <b> 82, the display control unit 39 displays the calculated inter-cell correction coefficient Kn on the display unit 31 for each solar cell 21. The storage control unit 37 stores the calculated inter-cell correction coefficient Kn in association with the solar battery cell 21. Specifically, the storage control unit 37 stores the inter-cell correction coefficient Kn in association with the solar battery cell 21 in the correspondence table shown in FIG. Thereafter, the process returns to step S71 shown in FIG.
When the inter-cell correction coefficient Kn is not stored in the storage unit 35, the display control unit 39 may select only (d) measurement of the inter-cell correction coefficient in step S70 of FIG. 7 described above.
The inter-cell correction coefficient Kn is preferably calculated by the manufacturer when the light source evaluation device 10 is manufactured, and stored in the storage unit 35 in advance. In this case, (d) measurement of the inter-cell correction coefficient can be omitted from the measurement items that can be selected in step S70 of FIG.
 次に、スペクトル合致度の測定について図9のフローチャートを参照して説明する。ここでは、使用者は光学フィルタ装置40を受光装置20に装着させる。また、使用者は測定対象の光源101が光学フィルタ装置40を透過して受光装置20に放射されるように光源評価装置10を設置する。
 ステップS90では、記憶制御部37は記憶部35から基準太陽光の波長帯域ごとのエネルギー分布のデータを読み出す。図12は、基準太陽光(AM1.5)における波長帯域ごとのエネルギー分布DAM(n)の一例を示す。なお、記憶部35には、基準太陽光(AM1.5)のほか、大気圏外の太陽光(AM0)、地表に垂直に入射する太陽光(AM1.0)、日出および日没の太陽光における波長帯域ごとのエネルギー分布が予め記憶されている。記憶制御部37は使用者の選択に応じて何れか一つのエネルギー分布のデータを読み出す。
Next, the measurement of the degree of spectral coincidence will be described with reference to the flowchart of FIG. Here, the user attaches the optical filter device 40 to the light receiving device 20. In addition, the user installs the light source evaluation device 10 so that the light source 101 to be measured passes through the optical filter device 40 and is emitted to the light receiving device 20.
In step S <b> 90, the storage control unit 37 reads data of energy distribution for each wavelength band of the reference sunlight from the storage unit 35. FIG. 12 shows an example of the energy distribution D AM (n) for each wavelength band in the reference sunlight (AM1.5). In addition to the reference sunlight (AM1.5), the storage unit 35 includes sunlight outside the atmosphere (AM0), sunlight that is perpendicularly incident on the surface of the earth (AM1.0), sunlight in sunlight, and sunset. The energy distribution for each wavelength band is stored in advance. The storage control unit 37 reads any one energy distribution data according to the user's selection.
 ステップS91では、記憶制御部37は波長帯域ごとに関連付けられた波長帯域間補正係数Mnと、各太陽電池セル21に関連付けられたセル間補正係数Knとを読み出す。
 ステップS92では、入出力制御部38は光源101から各バンドパスフィルタ44を透過して受光した太陽電池セル21ごとに電流値を受信する。
 ステップS93では、演算部36は受信した電流値に基づいて、波長帯域ごとの光源101から放射される光の受光面(ここでは受光面はバンドパスフィルタ44表面)におけるエネルギー分布[%]を算出する。
 まず、太陽電池セル21ごとの電流値Inおよび波長帯域ごとの光源のバンドパスフィルタ44表面におけるエネルギーEnは、以下の式で示される。
In step S <b> 91, the storage control unit 37 reads the inter-wavelength correction coefficient Mn associated with each wavelength band and the inter-cell correction coefficient Kn associated with each solar battery cell 21.
In step S <b> 92, the input / output control unit 38 receives a current value for each photovoltaic cell 21 that has passed through each bandpass filter 44 and received light from the light source 101.
In step S93, the calculation unit 36 calculates the energy distribution [%] on the light receiving surface (here, the light receiving surface is the surface of the bandpass filter 44) of the light emitted from the light source 101 for each wavelength band based on the received current value. To do.
First, the current value In for each solar cell 21 and the energy En on the surface of the bandpass filter 44 of the light source for each wavelength band are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000002
 したがって、
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-M000002
Therefore,
Figure JPOXMLDOC01-appb-I000003
 例えば、400nm~500nmの波長帯域の光源のエネルギーEでは、Knが太陽電池セル21に関連付けられたセル間補正係数K、Mnが400nm~500nmの波長帯域に関連付けられた波長帯域間補正係数M、S(λ)は光源101から放射される光のバンドパスフィルタ44表面における分光放射照度(バンドパスフィルタ44に放射される分光放射照度)、B(λ)が太陽電池セル21の分光感度、Fn(λ)がバンドパスフィルタ44の分光透過率である。
 次に、波長帯域ごとの光源のエネルギー分布Dnは、以下の式で示される。
For example, for the energy E 1 of the light source in the wavelength band of 400 nm to 500 nm, Kn is the inter-cell correction coefficient K 1 associated with the solar cell 21 1 , and the inter-wavelength correction is associated with the wavelength band of Mn of 400 nm to 500 nm. coefficient M 1, S (lambda) is (spectral irradiance emitted to the bandpass filter 44 1) the spectral irradiance of the band pass filter 44 surfaces of the light emitted from the light source 101, B (lambda) is the solar cell 21 spectral sensitivity of a Fn (lambda) is the spectral transmittance of the bandpass filter 44 1.
Next, the energy distribution Dn of the light source for each wavelength band is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 Esは全ての太陽電池セル21が受光した光のエネルギーである。また、iは所定の波長帯域内を区分けした数であり、本実施形態ではi=6である。
 数2は、数1に基づいて以下の式で表すことができる。
Es is the energy of light received by all the solar cells 21. Further, i is a number obtained by dividing a predetermined wavelength band, and i = 6 in this embodiment.
Equation 2 can be expressed by the following equation based on Equation 1.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 例えば、波長帯域400nm~500nmのエネルギー分布Dでは、Inは太陽電池セル21が出力する電流値Iである。
 演算部36は数3を用いて各波長帯域のエネルギー分布Dnを算出する。
 ステップS94では、演算部36はステップS93で算出した各エネルギー分布Dnと、ステップS90で読み出された基準太陽光のエネルギー分布DAM(n)とに基づいて、波長帯域ごとにスペクトル合致度を算出する。具体的には、スペクトル合致度はDn/DAM(n)により算出することができる。
For example, in the energy distribution D 1 in the wavelength band 400 nm to 500 nm, In is the current value I 1 output from the solar battery cell 21 1 .
The calculation unit 36 calculates the energy distribution Dn of each wavelength band using Equation 3.
In step S94, the calculation unit 36 calculates the spectral coincidence for each wavelength band based on each energy distribution Dn calculated in step S93 and the energy distribution D AM (n) of the reference sunlight read in step S90. calculate. Specifically, the degree of spectral coincidence can be calculated by Dn / D AM (n).
 また、演算部36はスペクトル合致度に基づいて波長帯域ごとに測定対象の光源の等級を算出する。演算部36は例えばスペクトル合致度が1.0に近似している場合にクラスA、1.0から離れるにしたがってクラスB、クラスCのように算出する。更に、演算部36は算出した等級に基づいて光源全体を評価する。演算部36は例えば全ての波長帯域がクラスAの場合に測定対象の光源を等級Aとして評価し、一つでもクラスBがある場合には等級Bなどとして評価する。 Also, the calculation unit 36 calculates the grade of the light source to be measured for each wavelength band based on the degree of spectral match. For example, when the spectrum matching degree is close to 1.0, the calculation unit 36 calculates as class B and class C as the distance from class A and 1.0 increases. Furthermore, the calculating part 36 evaluates the whole light source based on the calculated grade. For example, when all the wavelength bands are class A, the calculation unit 36 evaluates the light source to be measured as a grade A, and when there is even one class B, evaluates it as a grade B or the like.
 ステップS95では、表示制御部39は算出されたエネルギー分布、スペクトル合致度、波長帯域ごとのクラス、光源の評価を表示部31に表示する。図13は、エネルギー分布、スペクトル合致度、波長帯域ごとのクラス、光源の評価を表示部31に表により表示した一例を示す図である。したがって、使用者は測定対象の光源がどの程度、基準太陽光のスペクトルと合致しているかを確認することができる。 In step S95, the display control unit 39 displays the calculated energy distribution, spectrum matching degree, class for each wavelength band, and light source evaluation on the display unit 31. FIG. 13 is a diagram showing an example in which the energy distribution, the degree of spectral coincidence, the class for each wavelength band, and the evaluation of the light source are displayed on the display unit 31 in a table. Therefore, the user can confirm how much the light source to be measured matches the spectrum of the reference sunlight.
 また、表示制御部39は算出されたエネルギー分布を表示部31にグラフで表示してもよい。図14は、エネルギー分布を表示部31にグラフにより表示した一例を示す図である。図14では、縦軸をエネルギー分布とし、横軸を波長として、波長帯域ごとの測定対象の光源および基準太陽光のエネルギー分布を示している。
 その後、図7に示すステップS71の処理に戻る。
Further, the display control unit 39 may display the calculated energy distribution on the display unit 31 as a graph. FIG. 14 is a diagram illustrating an example in which the energy distribution is displayed on the display unit 31 by a graph. In FIG. 14, the energy distribution of the light source to be measured and the reference sunlight for each wavelength band is shown with the energy distribution on the vertical axis and the wavelength on the horizontal axis.
Thereafter, the process returns to step S71 shown in FIG.
 次に、放射照度の場所むらの測定について図10のフローチャートを参照して説明する。ここでは、使用者は光学フィルタ装置40を受光装置20から離脱させておく。また、使用者は測定対象の光源101が受光装置20に放射されるように光源評価装置10を設置する。
 ステップS100では、記憶制御部37は各太陽電池セル21に関連付けられたセル間補正係数Knを読み出す。
 ステップS101では、入出力制御部38は光源101から光を受光した太陽電池セル21ごとに電流値を受信する。
Next, measurement of irradiance unevenness will be described with reference to the flowchart of FIG. Here, the user leaves the optical filter device 40 from the light receiving device 20. In addition, the user installs the light source evaluation device 10 so that the light source 101 to be measured is emitted to the light receiving device 20.
In step S <b> 100, the storage control unit 37 reads the inter-cell correction coefficient Kn associated with each solar battery cell 21.
In step S <b> 101, the input / output control unit 38 receives a current value for each solar cell 21 that has received light from the light source 101.
 ステップS102では、演算部36は受信した電流値に基づいて、放射照度の場所むらを算出する。具体的には、演算部36は各太陽電池セル21に関連付けられたセル間補正数Knと受信した各電流値とを乗算することで、太陽電池セル21が出力する電流値のばらつきを補正する。次に、演算部36は補正した各電流値を加算し、太陽電池セルの個数で除算することで電流値の平均値を求める。次に、演算部36は各太陽電池セル21nの補正後の電流値と平均値との比を求めることで場所むらを算出する。 In step S102, the calculation unit 36 calculates the uneven irradiance location based on the received current value. Specifically, the calculation unit 36 multiplies the inter-cell correction number Kn associated with each solar cell 21 by each received current value, thereby correcting the variation in the current value output by the solar cell 21. . Next, the calculating part 36 adds each corrected electric current value, and calculates | requires the average value of an electric current value by dividing by the number of photovoltaic cells. Next, the calculating part 36 calculates a spot unevenness by calculating | requiring the ratio of the electric current value after correction | amendment of each photovoltaic cell 21n, and an average value.
 ステップS103では、表示制御部39は太陽電池セル21ごとに各太陽電池セル21の補正後の電流値と平均値との比を表示部31に表示する。したがって、使用者はある特定の太陽電池セル21が配置されている場所の放射照度が平均値に対して高いか低いかなどの場所むらを確認することができる。なお、演算部36は場所むらに基づいて光源の評価を算出し、表示制御部39が算出された光源の評価を表示することができる。
 その後、図7のフローチャートに示すステップS71に戻る。
In step S <b> 103, the display control unit 39 displays the ratio between the corrected current value and average value of each solar cell 21 on the display unit 31 for each solar cell 21. Therefore, the user can confirm the location unevenness such as whether the irradiance at the location where the specific solar battery cell 21 is arranged is higher or lower than the average value. The calculation unit 36 can calculate the evaluation of the light source based on the location unevenness, and can display the evaluation of the light source calculated by the display control unit 39.
Thereafter, the process returns to step S71 shown in the flowchart of FIG.
 次に、放射照度の時間変動率の測定について図11のフローチャートを参照して説明する。ここでは、使用者は光学フィルタ装置40を受光装置20から離脱させておく。また、使用者は測定対象の光源101が受光装置20に放射されるように光源評価装置10を設置する。
 ステップS110では、入出力制御部38は予め定められた太陽電池セル21の電流値を受信する。続いて、入出力制御部38は所定時間経過後に同じ太陽電池セル21の電流値を受信する。
 ステップS111では、演算部36は放射照度の時間変動率を算出する。具体的には、演算部36はステップS110で受信された最初の電流値と所定時間経過後に受信された電流値との比を求めることで放射照度の時間変動率を算出する。
Next, measurement of the time variation rate of irradiance will be described with reference to the flowchart of FIG. Here, the user leaves the optical filter device 40 from the light receiving device 20. In addition, the user installs the light source evaluation device 10 so that the light source 101 to be measured is emitted to the light receiving device 20.
In step S110, the input / output control unit 38 receives a predetermined current value of the solar battery cell 21. Subsequently, the input / output control unit 38 receives the current value of the same solar battery cell 21 after a predetermined time has elapsed.
In step S111, the calculating part 36 calculates the time variation rate of irradiance. Specifically, the calculation unit 36 calculates the time variation rate of the irradiance by obtaining a ratio between the first current value received in step S110 and the current value received after a predetermined time has elapsed.
 ステップS112では、表示制御部39は算出した放射照度の時間変動率を表示部31に表示する。したがって、使用者は放射照度が所定時間でどの程度変動するかの時間変動率を確認することができる。なお、演算部36は放射照度の時間変動率に基づいて光源の評価を算出し、表示制御部39が算出された光源の評価を表示することができる。
 その後、図7のフローチャートのステップS71に戻る。
In step S <b> 112, the display control unit 39 displays the calculated time variation rate of the irradiance on the display unit 31. Therefore, the user can confirm the time variation rate of how much the irradiance varies in a predetermined time. The calculation unit 36 can calculate the evaluation of the light source based on the time variation rate of the irradiance, and can display the evaluation of the light source calculated by the display control unit 39.
Thereafter, the process returns to step S71 of the flowchart of FIG.
 このように本実施形態の光源評価装置10は、複数の受光器と光源101との間にそれぞれ配置され、異なる透過波長帯域を有する複数のバンドパスフィルタ44を有している。したがって、各受光器は光源101からの光を異なる波長帯域ごとに分光した状態で受光することができる。すなわち、本実施形態の光源評価装置10は分光器を用いた分光放射計により分光する必要がないので構造を簡略化でき、製造コストを削減することができる。 As described above, the light source evaluation apparatus 10 according to the present embodiment includes the plurality of band-pass filters 44 that are respectively disposed between the plurality of light receivers and the light source 101 and have different transmission wavelength bands. Therefore, each light receiver can receive light in a state in which the light from the light source 101 is dispersed for each different wavelength band. That is, since the light source evaluation apparatus 10 of this embodiment does not need to be spectrally separated by a spectroradiometer using a spectroscope, the structure can be simplified and the manufacturing cost can be reduced.
 また、本実施形態の光源評価装置10では、受光器として太陽電池セル21を用いたことから例えば1[msec]、すなわち1,000分の1秒などの短時間で受光した場合でも太陽電池セル21から電流値が出力される。したがって、高い放射照度の光が放射されるために長時間受光させることが難しい集光型太陽電池用のソーラシミュレータの光源などのスペクトル合致度も測定することができる。
 このとき、複数のバンドパスフィルタ44は、分光透過率と、太陽電池セル21の分光感度との積とが各バンドパスフィルタ44の透過波長帯域内で一定になるように、分光透過率を設定したことで、透過波長帯域内での太陽電池セル21の分光感度の差異がないように扱うことができる。
Moreover, in the light source evaluation apparatus 10 of this embodiment, since the solar battery cell 21 is used as a light receiver, the solar battery cell even when light is received in a short time such as 1 [msec], that is, 1 / 1,000 second. 21 outputs a current value. Therefore, it is possible to measure the degree of spectral coincidence of a light source of a solar simulator for a concentrating solar cell that is difficult to receive for a long time because light with high irradiance is emitted.
At this time, the plurality of bandpass filters 44 set the spectral transmittance so that the product of the spectral transmittance and the spectral sensitivity of the solar battery cell 21 is constant within the transmission wavelength band of each bandpass filter 44. By doing so, it can be handled so that there is no difference in the spectral sensitivity of the solar battery cell 21 within the transmission wavelength band.
 また、記憶部35では、異なる透過波長帯域間で、自然太陽光を受光したときの太陽電池セル21の分光感度とバンドパスフィルタ44の分光透過率との積を一定にする、波長帯域間補正係数を記憶する。演算部36は、太陽電池セルの電流値に波長帯域間補正係数を乗算することで、波長帯域間のばらつきを補正することができる。 In addition, the storage unit 35 corrects the product between the spectral sensitivity of the solar battery cell 21 and the spectral transmittance of the band-pass filter 44 when receiving natural sunlight between different transmission wavelength bands. Store the coefficients. The calculating part 36 can correct | amend the dispersion | variation between wavelength bands by multiplying the electric current value of a photovoltaic cell by the correction coefficient between wavelength bands.
 また、記憶部35では、異なる太陽電池セル間でそれぞれ、自然太陽光を受光したときの電流値を一定にするセル間補正係数を記憶する。演算部36は、太陽電池セルの電流値にセル間補正係数を乗算することで、太陽電池セル21間の電流値のばらつきを補正することができる。 In addition, the storage unit 35 stores an inter-cell correction coefficient that makes a current value constant when natural sunlight is received between different solar cells. The calculating part 36 can correct | amend the dispersion | variation in the electric current value between the photovoltaic cells 21 by multiplying the electric current value of a photovoltaic cell by the correction coefficient between cells.
 また、本実施形態では、(a)スペクトル合致度の測定に受光器を用いたことにより、(b)放射照度の場所むらの測定および(c)放射照度の時間変動率を測定の少なくとも何れかの測定を同じ光源評価装置10で行うことができる。すなわち、光源評価装置10の一台で複数の測定が可能であり、使用者が複数の測定を行う場合に複数の装置が用いる必要がないために測定にかかるコストを低減することができる。 In the present embodiment, (a) by using a light receiver for measuring the degree of spectral coincidence, (b) measuring at least one of irradiance nonuniformity and (c) measuring the time variation rate of irradiance. Can be measured by the same light source evaluation apparatus 10. That is, a single light source evaluation apparatus 10 can perform a plurality of measurements, and when the user performs a plurality of measurements, it is not necessary to use a plurality of apparatuses, so that the measurement cost can be reduced.
 次に、回転部42を用いたスペクトル合致度の測定について説明する。回転部42を用いたスペクトル合致度の測定では、演算部36は回転部42によるバンドパスフィルタ44の変更前後でそれぞれスペクトル合致度を測定し、測定したスペクトル合致度の平均値を最終的なスペクトル合致度として算出する。
 具体的には、まず回転部42を回転させる前に、上述した図9のフローチャートの処理により1回目のスペクトル合致度の測定を行う。このとき、記憶制御部37は1回目のスペクトル合致度を記憶部35に一時的に記憶する。
Next, measurement of the degree of spectral coincidence using the rotating unit 42 will be described. In the measurement of the spectral coincidence using the rotating unit 42, the calculation unit 36 measures the spectral coincidence before and after the bandpass filter 44 is changed by the rotating unit 42, and the average value of the measured spectral coincidence is obtained as the final spectrum. Calculated as the degree of match.
Specifically, first, before rotating the rotating unit 42, the first spectral coincidence is measured by the process of the flowchart of FIG. 9 described above. At this time, the storage control unit 37 temporarily stores the first-time spectrum matching degree in the storage unit 35.
 次に、使用者は回転部42を基台41に対して回転させることで、バンドパスフィルタ44を異なる太陽電池セル21の上側になるように変更させる。ここで、図3に示す状態から回転部42の回転軸Rを中心に180度、回転させることで、バンドパスフィルタ44を透過した光は太陽電池セル21が受光することになる。他のバンドパスフィルタ44も同様に、回転前とは異なる太陽電池セル21が受光することになる。 Next, the user rotates the rotating unit 42 with respect to the base 41 to change the band pass filter 44 so as to be on the upper side of the different solar cells 21. Here, 180 degrees around the rotation axis R of the rotating part 42 from the state shown in FIG. 3, by rotating, the light transmitted through the bandpass filter 44 1 will be the solar cell 21 6 is received. Similarly, the other band-pass filter 44 receives light from the solar cells 21 different from those before the rotation.
 回転部42が回転された場合、受光装置20の位置検出部22は、回転部42の位置を検出し、検出した位置情報を情報処理装置30に送信する。情報処理装置30の記憶制御部37は受信した回転情報に基づいて、図6に示す対応テーブルにおける波長帯域ごとの関連付けを、回転後の太陽電池セル21nおよびセル間補正係数Knに変更する。回転後の波長帯域に対する太陽電池セル21の関連付けは、予め対応テーブルに記憶される。一方、セル間補正係数Knは、図8のフローチャートのステップS82において回転後の太陽電池セル21と関連付けて記憶される。なお、セル間補正係数Knは光源評価装置10を製造した時点で製造者が算出し、予め回転後の対応テーブルに記憶することが好ましい。 When the rotating unit 42 is rotated, the position detecting unit 22 of the light receiving device 20 detects the position of the rotating unit 42 and transmits the detected position information to the information processing device 30. Based on the received rotation information, the storage control unit 37 of the information processing device 30 changes the association for each wavelength band in the correspondence table shown in FIG. 6 to the solar cell 21n after rotation and the inter-cell correction coefficient Kn. The association of the solar battery cell 21 with the wavelength band after rotation is stored in advance in the correspondence table. On the other hand, the inter-cell correction coefficient Kn is stored in association with the rotated solar battery cell 21 in step S82 of the flowchart of FIG. The inter-cell correction coefficient Kn is preferably calculated by the manufacturer when the light source evaluation device 10 is manufactured, and is stored in advance in the rotated correspondence table.
 次に、上述した図9のフローチャートの処理により2回目のスペクトル合致度の測定を行う。このとき、演算部36は波長帯域ごとの関連付けを回転後の対応テーブルに示す太陽電池セル21およびセル間補正係数Knに基づいてスペクトル合致度を算出する。 Next, the second spectral coincidence is measured by the process of the flowchart of FIG. 9 described above. At this time, the calculation unit 36 calculates the spectral coincidence based on the solar cell 21 and the inter-cell correction coefficient Kn shown in the correspondence table after rotation for the association for each wavelength band.
 例えば、数3を用いて波長帯域400nm~500nmのエネルギー分布Dを算出する場合を想定する。この場合、Mnが400nm~500nmの波長帯域に関連付けられた波長帯域間補正係数Mである。一方、図6に示す回転後の対応テーブルから、透過波長帯域400nm~500nmのバンドパスフィルタ44を透過して受光するのは太陽電池セル21である。したがって、Knは太陽電池セル21に関連付けられたKであり、Inは太陽電池セル21の電流値Iである。
 したがって、演算部36は、波長帯域400nm~500nmのエネルギーEを、E=K×M×Iによって算出することができる。その他の波長帯域のエネルギーE~Eについても、回転後の対応テーブルに基づいて同様に算出することができる。
 演算部36は算出した波長帯域ごとのエネルギーEnを用いて2回目のスペクトル合致度を算出し、記憶制御部37は2回目のスペクトル合致度を記憶部35に一時的に記憶する。
For example, assume a case of calculating the energy distribution D 1 of the wavelength band 400 nm ~ 500 nm using a number 3. In this case, Mn is the inter-wavelength band correction coefficient M 1 associated with the wavelength band of 400 nm to 500 nm. On the other hand, from the correspondence table after rotation shown in FIG. 6, is a solar cell 21 6 to transmission to receiving a band-pass filter 44 1 of the transmission wavelength band 400 nm ~ 500 nm. Therefore, Kn is a K 6 associated to the solar cell 21 6, an In is a current value I 6 of the solar battery cells 21 6.
Therefore, the calculation unit 36 can calculate the energy E 1 in the wavelength band of 400 nm to 500 nm by E 1 = K 6 × M 1 × I 6 . The energy E 2 to E 6 in other wavelength bands can be similarly calculated based on the correspondence table after rotation.
The calculation unit 36 calculates the second-time spectrum matching degree using the calculated energy En for each wavelength band, and the storage control unit 37 temporarily stores the second-time spectrum matching degree in the storage unit 35.
 次に、演算部36は、同一の波長帯域ごとに1回目と2回目とのスペクトル合致度の平均値を、最終的なスペクトル合致度として算出する。表示制御部39は、最終的に算出されたスペクトル合致度を表示部31に表示する。
 このように、バンドパスフィルタ44の変更前後で異なる太陽電池セル21が、同一のバンドパスフィルタ44を透過して受光した場合、演算部36は異なる太陽電池セル21のそれぞれの電流値を用いて算出したスペクトル合致度の平均値を最終的なスペクトル合致度として算出する。したがって、放射照度の場所むらの影響を抑制したスペクトル合致度を算出することができる。
Next, the calculation unit 36 calculates the average value of the first and second spectrum matching degrees for the same wavelength band as the final spectrum matching degree. The display control unit 39 displays the finally calculated spectrum matching degree on the display unit 31.
As described above, when different solar cells 21 before and after the change of the bandpass filter 44 pass through the same bandpass filter 44 and receive light, the calculation unit 36 uses the respective current values of the different solar cells 21. The average value of the calculated spectrum matching degree is calculated as the final spectrum matching degree. Therefore, it is possible to calculate the degree of spectral coincidence that suppresses the influence of the irradiance unevenness of location.
 なお、図1に示すように、バンドパスフィルタ44が波長帯域を区分けした数以上ある場合、各バンドパスフィルタ44は6つの透過波長帯域の何れかの透過波長帯域を有している。すなわち、光学フィルタ部43は、同一の透過波長帯域を有するバンドパスフィルタ44が複数、配置して構成されている。したがって、異なる太陽電池セル21が同一の透過波長帯域を有するバンドパスフィルタ44を透過して受光する。
 この場合、演算部36は、異なる太陽電池セル21のそれぞれの電流値を用いて算出したスペクトル合致度の平均値を最終的なスペクトル合致度として算出することで、放射照度の場所むらの影響を抑制したスペクトル合致度を算出することができる。
As shown in FIG. 1, when there are more bandpass filters 44 than the number of divided wavelength bands, each bandpass filter 44 has one of the six transmission wavelength bands. That is, the optical filter unit 43 is configured by arranging a plurality of band-pass filters 44 having the same transmission wavelength band. Therefore, different solar cells 21 pass through the band-pass filter 44 having the same transmission wavelength band and receive light.
In this case, the calculation unit 36 calculates the average value of the degree of spectral coincidence calculated using the current values of the different solar cells 21 as the final degree of spectral coincidence. The suppressed degree of spectral coincidence can be calculated.
 また、図1に示すように、太陽電池セル21の配置される領域が正方形であり、バンドパスフィルタ44の配置される領域が正方形である場合、使用者は回転部42を基台4に対して90度、180度、270度、回転させることができる。このとき、各回転角度で太陽電池セル21の上側に配置されるバンドパスフィルタ44は、異なる透過波長帯域のバンドパスフィルタ44になるように配置される。
 演算部36は、1回目(0度)~4回目(270度)のスペクトル合致度の平均値を最終的なスペクトル合致度として算出することができる。
Further, as shown in FIG. 1, when the area where the solar cells 21 are arranged is a square and the area where the bandpass filter 44 is arranged is a square, the user holds the rotating unit 42 with respect to the base 4. 90 degrees, 180 degrees, and 270 degrees. At this time, the band-pass filter 44 arranged on the upper side of the solar battery cell 21 at each rotation angle is arranged to be a band-pass filter 44 having a different transmission wavelength band.
The calculation unit 36 can calculate the average value of the first (0 degree) to the fourth (270 degree) spectrum matching degree as the final spectrum matching degree.
 (第2の実施形態)
 次に、第2の実施形態として、異なる回転部の形態について説明する。なお、第1の実施形態と同一の構成は、同一符号を付してその説明を省略する。
 図15は、第2の実施形態の回転部50の構成を示す図である。
 本実施形態の回転部50の各バンドパスフィルタ44は、図1に示す第1の実施形態のバンドパスフィルタ44のサイズを1/4に縮小したものである。このように、バンドパスフィルタ44を縮小させることで光学フィルタ装置40の製造コストを削減することができる。
(Second Embodiment)
Next, as a second embodiment, a form of a different rotating unit will be described. In addition, the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits the description.
FIG. 15 is a diagram illustrating a configuration of the rotating unit 50 according to the second embodiment.
Each bandpass filter 44 of the rotation unit 50 of the present embodiment is obtained by reducing the size of the bandpass filter 44 of the first embodiment shown in FIG. 1 to ¼. Thus, the manufacturing cost of the optical filter device 40 can be reduced by reducing the bandpass filter 44.
 図16A~図16Cは、図15に示す状態から回転部50を右回りに90度、180度、170度、回転させた状態を示す図である。このとき、各回転角度で太陽電池セル21の上側に配置されるバンドパスフィルタ44は、異なる透過波長帯域のバンドパスフィルタ44になるように配置される。例えば、回転角度ごとに太陽電池セル2111の上側に配置されるバンドパスフィルタ4411、4418、4488、4481は、それぞれ異なる透過波長帯域である。
 図15に示す回転部50の構成でも、第1の実施形態で説明したように、演算部36は、1回目(0度)~4回目(270度)のスペクトル合致度の平均値を最終的なスペクトル合致度として算出することができる。
16A to 16C are views showing a state in which the rotating unit 50 is rotated 90 degrees, 180 degrees, and 170 degrees clockwise from the state shown in FIG. At this time, the band-pass filter 44 arranged on the upper side of the solar battery cell 21 at each rotation angle is arranged to be a band-pass filter 44 having a different transmission wavelength band. For example, the bandpass filters 44 11 , 44 18 , 44 88 , and 44 81 disposed on the upper side of the solar battery cell 21 11 for each rotation angle have different transmission wavelength bands.
Also in the configuration of the rotation unit 50 shown in FIG. 15, as described in the first embodiment, the calculation unit 36 finally calculates the average value of the first (0 degree) to the fourth (270 degree) spectrum matching degree. It is possible to calculate the degree of spectral coincidence.
 以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更したり、各実施形態を組み合わせたりすることが可能である。
 また、上述した実施形態では受光器として太陽電池セル21を用いる場合について説明したが、この場合に限られない。例えば、受光器としてサーモパイルや焦電センサなどを用いることができる。
 また、上述した実施形態では、6つの波長帯域について説明したが、6つの波長帯域よりも少ない波長帯域または6つの波長帯域よりも多い波長帯域でも同様に用いることができる。また、受光器の配置として正方格子配置について説明したが、六角形型の配置や円形、場所によって受光器の密度が異なる配置でも同様に用いることができる。
As described above, the present invention has been described together with various embodiments. However, the present invention is not limited to these embodiments, and can be changed within the scope of the present invention or each embodiment can be combined. It is.
Moreover, although the case where the photovoltaic cell 21 was used as a light receiver was demonstrated in embodiment mentioned above, it is not restricted to this case. For example, a thermopile or a pyroelectric sensor can be used as the light receiver.
Moreover, although 6 wavelength bands were demonstrated in embodiment mentioned above, it can use similarly in the wavelength band smaller than six wavelength bands, or a wavelength band larger than six wavelength bands. Further, although the square lattice arrangement has been described as the arrangement of the light receivers, a hexagonal arrangement, a circular shape, and an arrangement in which the density of the light receivers varies depending on the location can be used similarly.
 また、上述した実施形態では所定の波長帯域として、400nm~1100nmの波長帯域を複数に区分けする場合について説明したが、この場合に限られない。例えば400nm~1100nmよりも広い波長帯域または狭い波長帯域を複数に区分けし、区分けした波長帯域ごとのスペクトル合致度を算出してもよい。
 また、上述した実施形態では所定の波長帯域を6つの波長帯域に区分けする場合について説明したが、この場合に限られず、所定の波長帯域を連続する少なくとも6つ以上の波長帯域で区分けすることができる。この場合、区分けした6つ以上の波長帯域ごとのスペクトル合致度を算出することができる。
In the above-described embodiment, the case where the wavelength band of 400 nm to 1100 nm is divided into a plurality of predetermined wavelength bands has been described. However, the present invention is not limited to this case. For example, a wavelength band wider than 400 nm to 1100 nm or a narrow wavelength band may be divided into a plurality, and the spectrum matching degree for each divided wavelength band may be calculated.
In the embodiment described above, the case where the predetermined wavelength band is divided into six wavelength bands has been described. However, the present invention is not limited to this case, and the predetermined wavelength band may be divided into at least six continuous wavelength bands. it can. In this case, it is possible to calculate the degree of spectral matching for each of the six or more wavelength bands that have been classified.
 本実施形態では上述した処理を実現するプログラムを、ネットワークまたは各種記憶媒体を介して光源評価装置10に供給し、光源評価装置10のCPUが供給されたプログラムを読み出して実行することでも実現される。また、上述したプログラムを記録したコンピュータ読み取り可能な記録媒体および上述したプログラムなどのコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。 In the present embodiment, the program for realizing the above-described processing is supplied to the light source evaluation apparatus 10 via a network or various storage media, and the program supplied by the CPU of the light source evaluation apparatus 10 is read and executed. . Further, a computer-readable recording medium storing the above-described program and a computer program product such as the above-described program can also be applied as an embodiment of the present invention. As the recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
 本発明は、太陽電池の性能を測定するためのソーラシミュレータの光源を評価する場合に利用することができる。 The present invention can be used when evaluating a light source of a solar simulator for measuring the performance of a solar cell.

Claims (14)

  1.  ソーラシミュレータの光源を評価する光源評価装置であって、
     マトリクス状に配置され、前記光源から放射される光を受光する複数の受光器と、
     前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、
     前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する演算部と、を有することを特徴とする光源評価装置。
    A light source evaluation apparatus for evaluating a light source of a solar simulator,
    A plurality of light receivers arranged in a matrix and receiving light emitted from the light source;
    A plurality of optical filters disposed between the plurality of light receivers and the light source, each having a different transmission wavelength band;
    A light source evaluation apparatus comprising: an arithmetic unit that calculates a spectral coincidence degree of the light source with respect to natural sunlight from each irradiance received by the plurality of light receivers.
  2.  前記受光器は、太陽電池セルであって、
     前記光学フィルタは、前記光学フィルタの分光透過率と、前記太陽電池セルの分光感度との積が前記透過波長帯域内で一定になるように、前記分光透過率が設定されることを特徴とする請求項1に記載の光源評価装置。
    The light receiver is a solar battery cell,
    The optical filter is characterized in that the spectral transmittance is set so that a product of the spectral transmittance of the optical filter and the spectral sensitivity of the solar battery cell is constant within the transmission wavelength band. The light source evaluation apparatus according to claim 1.
  3.  異なる透過波長帯域間でそれぞれ、自然太陽光を受光したときの前記太陽電池セルの分光感度と前記光学フィルタの分光透過率との積を一定にする、波長帯域間補正係数を記憶する記憶部を有し、
     前記演算部は、前記太陽電池セルの電流値に前記波長帯域間補正係数を乗算した値を用いて前記光源のスペクトル合致度を算出することを特徴とする請求項2に記載の光源評価装置。
    A storage unit for storing a correction coefficient between wavelength bands that makes the product of the spectral sensitivity of the solar battery cell and the spectral transmittance of the optical filter constant when receiving natural sunlight between different transmission wavelength bands, respectively. Have
    The light source evaluation apparatus according to claim 2, wherein the calculation unit calculates a spectral coincidence degree of the light source using a value obtained by multiplying the current value of the solar battery cell by the correction coefficient between wavelength bands.
  4.  前記記憶部は、前記複数の太陽電池セル間でそれぞれ、自然太陽光を受光したときの電流値を一定にするセル間補正係数を記憶し、
     前記演算部は、前記太陽電池セルの電流値に前記セル間補正係数を乗算した値を用いて前記光源のスペクトル合致度を算出することを特徴とする請求項3に記載の光源評価装置。
    The storage unit stores an inter-cell correction coefficient that makes a current value constant when receiving natural sunlight between the plurality of solar cells,
    The light source evaluation apparatus according to claim 3, wherein the calculation unit calculates a spectrum matching degree of the light source using a value obtained by multiplying the current value of the solar battery cell by the inter-cell correction coefficient.
  5.  前記波長帯域間補正係数をMn、前記セル間補正係数をKnとし、前記太陽電池セルの電流値をInとし、iを所定の波長帯域内を区分けした数とし、区分けした各波長帯域におけるエネルギー分布をDnとすると、
     前記演算部は、
    Figure JPOXMLDOC01-appb-I000001
     により算出した各波長帯域におけるエネルギー分布Dnを用いて前記光源のスペクトル合致度を算出することを特徴とする請求項4に記載の光源評価装置。
    The correction coefficient between wavelength bands is Mn, the correction coefficient between cells is Kn, the current value of the solar battery cell is In, i is the number of divisions within a predetermined wavelength band, and the energy distribution in each divided wavelength band Is Dn,
    The computing unit is
    Figure JPOXMLDOC01-appb-I000001
    5. The light source evaluation apparatus according to claim 4, wherein the spectrum coincidence degree of the light source is calculated using the energy distribution Dn in each wavelength band calculated by the above.
  6.  前記複数の光学フィルタは、少なくとも400nm~1100nmを6つに区分けした透過波長帯域のうちの何れか1つの透過波長帯域を有することを特徴とする請求項1に記載の光源評価装置。 2. The light source evaluation apparatus according to claim 1, wherein the plurality of optical filters have any one transmission wavelength band of transmission wavelength bands obtained by dividing at least 400 nm to 1100 nm into six.
  7.  前記演算部は、前記複数の光学フィルタを離脱させた状態で前記複数の受光器により受光された光の放射照度に基づいて、前記光源の放射照度の場所むらを測定することを特徴とする請求項1に記載の光源評価装置。 The arithmetic unit measures the location unevenness of the irradiance of the light source based on the irradiance of light received by the plurality of light receivers with the plurality of optical filters detached. Item 4. The light source evaluation apparatus according to Item 1.
  8.  前記演算部は、前記複数の光学フィルタを離脱させた状態で前記複数の受光器のうち少なくとも一つの受光器により受光された光の放射照度に基づいて、前記光源の放射照度の時間変動率を測定することを特徴とする請求項1に記載の光源評価装置。 The arithmetic unit calculates a time variation rate of the irradiance of the light source based on the irradiance of light received by at least one of the plurality of light receivers with the plurality of optical filters detached. The light source evaluation apparatus according to claim 1, wherein measurement is performed.
  9.  異なる前記受光器が、同一の透過波長帯域を有する前記光学フィルタを透過して受光した場合、
     前記演算部は、前記受光器それぞれの放射照度に基づいて算出したスペクトル合致度の平均値を最終的な前記光源のスペクトル合致度として算出することを特徴とする請求項1に記載の光源評価装置。
    When the different light receivers pass through the optical filter having the same transmission wavelength band and receive the light,
    The light source evaluation apparatus according to claim 1, wherein the calculation unit calculates an average value of spectrum matching degrees calculated based on irradiance of each of the light receivers as a final spectrum matching degree of the light source. .
  10.  前記受光器の上側に配置される光学フィルタは、異なる光学フィルタに変更可能であって、変更前後で前記光学フィルタの透過波長帯域が異なることを特徴とする請求項9に記載の光源評価装置。 10. The light source evaluation apparatus according to claim 9, wherein the optical filter disposed on the upper side of the light receiver can be changed to a different optical filter, and the transmission wavelength band of the optical filter is different before and after the change.
  11.  前記複数の光学フィルタを支持する回転部と、回転部を回転自在に支持する基台とを有し、
     前記基台に対して前記回転部を回転させることで、前記受光器の上側に配置される光学フィルタが、異なる光学フィルタに変更可能であることを特徴とする請求項10に記載の光源評価装置。
    A rotating unit that supports the plurality of optical filters, and a base that rotatably supports the rotating unit,
    The light source evaluation apparatus according to claim 10, wherein an optical filter disposed on the upper side of the light receiver can be changed to a different optical filter by rotating the rotating unit with respect to the base. .
  12.  前記複数の光学フィルタは、透過波長帯域が連続していることを特徴とする請求項1ないし11の何れか1項に記載の光源評価装置。 The light source evaluation apparatus according to any one of claims 1 to 11, wherein the plurality of optical filters have a continuous transmission wavelength band.
  13.  マトリクス状に配置され、ソーラシミュレータの光源から放射される光を受光する複数の受光器と、
     前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、を備える光源評価装置による光源評価方法であって、
     前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する算出ステップを有することを特徴とする光源評価方法。
    A plurality of light receivers arranged in a matrix and receiving light emitted from the light source of the solar simulator;
    A plurality of optical filters disposed respectively between the plurality of light receivers and the light source and having different transmission wavelength bands, and a light source evaluation method by a light source evaluation apparatus,
    A light source evaluation method comprising: calculating a spectrum matching degree of the light source with respect to natural sunlight from each irradiance received by the plurality of light receivers.
  14.  マトリクス状に配置され、ソーラシミュレータの光源から放射される光を受光する複数の受光器と、
     前記複数の受光器と前記光源との間にそれぞれ配置され、異なる透過波長帯域を有する複数の光学フィルタと、を備える光源評価装置を制御するプログラムであって、
     前記複数の受光器により受光されたそれぞれの放射照度から自然太陽光に対する前記光源のスペクトル合致度を算出する算出ステップをコンピュータに実行させるためのプログラム。
     
    A plurality of light receivers arranged in a matrix and receiving light emitted from the light source of the solar simulator;
    A program for controlling a light source evaluation apparatus, each of which is disposed between the plurality of light receivers and the light source, and includes a plurality of optical filters having different transmission wavelength bands,
    A program for causing a computer to execute a calculation step of calculating a degree of spectral coincidence of the light source with respect to natural sunlight from each irradiance received by the plurality of light receivers.
PCT/JP2014/063025 2014-05-16 2014-05-16 Light source evaluation device, light source evaluation method, and program WO2015173943A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/063025 WO2015173943A1 (en) 2014-05-16 2014-05-16 Light source evaluation device, light source evaluation method, and program
JP2016519064A JP6245620B2 (en) 2014-05-16 2014-05-16 Light source evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063025 WO2015173943A1 (en) 2014-05-16 2014-05-16 Light source evaluation device, light source evaluation method, and program

Publications (1)

Publication Number Publication Date
WO2015173943A1 true WO2015173943A1 (en) 2015-11-19

Family

ID=54479512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063025 WO2015173943A1 (en) 2014-05-16 2014-05-16 Light source evaluation device, light source evaluation method, and program

Country Status (2)

Country Link
JP (1) JP6245620B2 (en)
WO (1) WO2015173943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443708A (en) * 2018-11-29 2019-03-08 普德光伏技术(苏州)有限公司 A kind of solar simulator irradiation evenness test device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390507B (en) * 2020-03-11 2022-11-04 上海新产业光电技术有限公司 Spectrum information acquisition method and spectrum detection device
CN112556849B (en) * 2020-12-07 2022-09-23 上海新产业光电技术有限公司 Hyperspectral imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185128A (en) * 1986-02-10 1987-08-13 Toshiba Corp Light and color measuring apparatus
JP2011252749A (en) * 2010-06-01 2011-12-15 Seiko Epson Corp Spectrometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105538B2 (en) * 2011-06-14 2015-08-11 Moon J. Kim Dynamically configurable photovoltaic cell array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185128A (en) * 1986-02-10 1987-08-13 Toshiba Corp Light and color measuring apparatus
JP2011252749A (en) * 2010-06-01 2011-12-15 Seiko Epson Corp Spectrometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Solar simulators for crystalline solar cells and modules", JIS C 8912, 28 February 1998 (1998-02-28), pages 1 - 5 *
NOBORU YAMADA ET AL.: "Test of prototype highly -collimated/low-irradiance solar simulator for brief optical evaluation of solar concentrator system", JOURNAL OF JSES, vol. 38, no. 4, 31 July 2012 (2012-07-31), pages 39 - 46 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443708A (en) * 2018-11-29 2019-03-08 普德光伏技术(苏州)有限公司 A kind of solar simulator irradiation evenness test device

Also Published As

Publication number Publication date
JP6245620B2 (en) 2017-12-13
JPWO2015173943A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP7088277B2 (en) Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system
JP6245620B2 (en) Light source evaluation device
WO2012020542A1 (en) Light source evaluation device and solar cell evaluation device
US9513159B2 (en) Solar simulator light-amount evaluation apparatus, solar simulator light-amount evaluation method, solar cell evaluation apparatus, and solar cell evaluation method
JP6863279B2 (en) Inspection equipment, inspection method, and program
Theristis et al. Spectral corrections based on air mass, aerosol optical depth, and precipitable water for CPV performance modeling
CN109253976B (en) High-spectrum real-time radiometric calibration method based on light sensing module
JP5825632B2 (en) Spectroradiometer calibration method
CN108680534B (en) Optical channel on-orbit calibration verification method based on medium wave infrared reflectivity reference
US20140268315A1 (en) Glass selection for infrared lens design
Driesse et al. Spectrally selective sensors for PV system performance monitoring
Plag et al. Multidimensional model to correct PV device performance measurements taken under diffuse irradiation to reference conditions
US11002597B2 (en) Solar spectrum sensor for determining value of solar spectrum based on determined average photon energy
Mano et al. Impact estimation of average photon energy from two spectrum bands on short circuit current of photovoltaic modules
Galleano et al. Traceable spectral irradiance measurements in photovoltaics: Results of the PTB and JRC spectroradiometer comparison using different light sources
Riedel et al. Direct beam and diffuse spectral irradiance measurements in a nordic country analyzed with the average photon energy parameter
Lee et al. Comparison of the effects of spectrum on cadmium telluride and monocrystalline silicon photovoltaic module performance
CN106443851A (en) Color-separated focal position adjustable diffraction optical element and design method thereof
JP2013156132A (en) Solar cell evaluation device and solar cell evaluation method
Ransome et al. Checking the new IEC 61853.1-4 with high quality 3rd party data to benchmark its practical relevance in energy yield prediction
Mutiara et al. Evaluation of spectrally distributed irradiance in the Netherlands regarding the energy performance of various PV technologies
WO2012090359A1 (en) Pseudo reference cell and pseudo reference cell system
Habte et al. Developing a Framework for Reference Cell Standards for PV Resource Applications
JP5772972B2 (en) Solar cell evaluation device and solar cell evaluation method
RU139153U1 (en) POLYCHROMATIC PYROMETER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891763

Country of ref document: EP

Kind code of ref document: A1