WO2012090359A1 - Pseudo reference cell and pseudo reference cell system - Google Patents

Pseudo reference cell and pseudo reference cell system Download PDF

Info

Publication number
WO2012090359A1
WO2012090359A1 PCT/JP2011/005178 JP2011005178W WO2012090359A1 WO 2012090359 A1 WO2012090359 A1 WO 2012090359A1 JP 2011005178 W JP2011005178 W JP 2011005178W WO 2012090359 A1 WO2012090359 A1 WO 2012090359A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference cell
pseudo reference
spectral sensitivity
pseudo
light receiving
Prior art date
Application number
PCT/JP2011/005178
Other languages
French (fr)
Japanese (ja)
Inventor
宜弘 西川
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to JP2012550677A priority Critical patent/JP5561378B2/en
Publication of WO2012090359A1 publication Critical patent/WO2012090359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a pseudo reference cell (pseudo reference cell) for evaluating solar cells. cell) and a pseudo reference cell system using the pseudo reference cell.
  • This solar simulator has machine differences between manufacturers and between the same manufacturers. For this reason, even if it is a solar cell with the same spectral sensitivity characteristic, if a solar cell is measured with a different solar simulator, the electric power generation amount of a solar cell will differ.
  • the measurer uses the returned sample as the company's reference cell for adjusting the light quantity of the solar simulator. That is, the measurer irradiates the reference cell with the irradiation light of the solar simulator, and adjusts the amount of light of the solar simulator so that the short-circuit current Isc becomes the measurement value A. Then, the measurer measures the characteristics of the solar cell (of the product to be inspected) to be actually measured. As described above, it is difficult to accurately reproduce the spectrum of the reference sunlight, but this is a technique for adjusting the solar simulators of each company as much as possible.
  • a reference cell capable of maintaining a stable state for a long time can be easily obtained.
  • a stable state cannot be maintained for a long time due to changes in physical properties such as light degradation and heat recovery. There is also the influence of light soaking of the solar cell itself. For this reason, a reference cell made of a thin film silicon solar cell lacks stability of the calibration value, and reproducibility of the light amount adjustment result of the solar simulator is poor.
  • the pseudo cell disclosed in Patent Document 1 cannot obtain a stable pseudo cell sufficient for calibration as a reference because the amorphous silicon layer itself is physically unstable.
  • the spectral sensitivity of silicon is insensitive in the wavelength range longer than 1100 nm, it has a sensitivity of 1100 nm or more such as a thin film solar cell made of CIS (CuInSe 2 ) or CIGS (Cu (In, Ga) Se 2 ).
  • a pseudo cell cannot be created.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to maintain a stable state for a relatively long period of time with a spectral sensitivity characteristic equivalent to that of a solar cell to be measured. It is an object of the present invention to provide a pseudo cell that can be obtained, a pseudo reference cell that is a reference cell, and a pseudo reference cell system that can determine a short-circuit current using the pseudo cell.
  • the pseudo reference cell and the pseudo reference cell system according to the present invention include a plurality of photovoltaic elements having different spectral sensitivity characteristics, wherein the combined spectral sensitivity is set to be equal to the spectral sensitivity of the solar cell to be measured. ing.
  • the pseudo reference cell according to the present invention has a spectral sensitivity characteristic equivalent to a spectral sensitivity desired as a reference cell of a solar cell to be measured, and can maintain a physically stable state for a relatively long period of time.
  • the pseudo reference cell system can determine the short circuit current of the pseudo reference cell.
  • this pseudo reference cell system a pseudo reference cell that covers the spectral sensitivity wavelength range of the solar cell to be measured and can maintain a physically stable state for a long period of time is used.
  • FIG. 1 is a block diagram showing a configuration of a pseudo reference cell system 100 according to the embodiment
  • FIG. 2 is a diagram for explaining a pseudo reference cell 30 constituting the pseudo reference cell system 100 shown in FIG. .
  • FIG. 2A is a front view of the pseudo reference cell 30, that is, a diagram showing a surface that receives pseudo sunlight
  • FIG. 2B is a cross-sectional view of the pseudo reference cell 30, that is, its structure.
  • the pseudo reference cell 30 includes a plurality of photovoltaic elements.
  • the pseudo reference cell 30 of the present embodiment is configured by, for example, two solar cells (light receiving sensors) of the first light receiving unit 10 and the second light receiving unit 20.
  • the first light receiving unit 10 includes a cover glass 11, an optical filter 12, and an InGaAs (indium gallium arsenide) element 13.
  • the InGaAs element 13 converts light energy into electric energy by the photovoltaic effect and outputs the light energy. It is an example of the photovoltaic element which performs.
  • the cover glass 11, the optical filter 12, and the InGaAs element 13 are laminated in this order from the light receiving surface side.
  • the second light receiving unit 20 includes a cover glass 21 and an Si element 22, and the Si element 22 is another example of the photovoltaic element.
  • the cover glass 21 and the Si element 22 are laminated in this order from the light receiving surface side.
  • the spectral sensitivity characteristic of the InGaAs element 13 and the spectral sensitivity characteristic of the Si element 22 are different from each other, as will be described later.
  • the first light receiving unit 10 and the second light receiving unit 20 When each of the first light receiving unit 10 and the second light receiving unit 20 receives simulated sunlight from the solar simulator 1, the first light receiving unit 10 and the second light receiving unit 20 photoelectrically convert the photovoltaic effect and output a voltage by IV conversion.
  • the pseudo reference cell 30 is a pseudo standard cell of a solar cell using CIS, that is, a cell having a spectral sensitivity substantially equal to a spectral sensitivity desired for a standard cell of a CIS solar cell to be measured.
  • the first light receiving unit 10 is a light receiving element in which an optical filter 12 is pasted on an InGaAs element 13 in a housing and the top is covered with a cover glass 11 for protection. is there.
  • This optical filter 12 is for making the spectral sensitivity characteristic of the 1st light-receiving part 10 into desired spectral sensitivity.
  • the optical filter 12 only needs to be a filter that can transmit a desired wavelength (for example, a bandpass filter, a cutoff filter, or the like), and is, for example, an absorption optical filter or an interference optical filter.
  • the second light receiving unit 20 is a light receiving element in which a Si (silicon) element 22 is covered with a cover glass 21 for protection.
  • CIS solar cells absorb light energy for a wider range of wavelengths than crystalline Si solar cells.
  • FIG. 3 is a diagram showing the spectral sensitivity of a solar cell using CIS (CIS solar cell) and the spectral sensitivity of a solar cell using crystalline Si (crystalline Si solar cell).
  • the spectral sensitivity (dashed line) of the CIS type solar cell has a sensitivity from about 300 nm to about 1300 nm, while the spectral sensitivity (dashed line) of the crystalline Si type solar cell is about 300 nm to about 1300 nm.
  • the sensitivity is only up to about 1200 nm. Therefore, in the pseudo cell using the crystalline Si type solar cell, the spectral sensitivity of the CIS type solar cell cannot be created no matter what optical filter is used.
  • the wavelength range of the spectral sensitivity is expanded by adding another light receiving element having sensitivity even with respect to the wavelength at which the crystalline Si is not sensitive.
  • the spectral sensitivity of the Si element 22 is P1 ( ⁇ )
  • the spectral sensitivity of the InGaAs element 13 is P2 ( ⁇ )
  • the weighting coefficient (loading coefficient) of the Si element 22 is K1 ( ⁇ ) (for example, 92. 4%)
  • the spectral transmittance P ( ⁇ ) of the pseudo reference cell 30 can be obtained using the following equation (1).
  • P ( ⁇ ) K1 ( ⁇ ) * P1 ( ⁇ ) + K2 ( ⁇ ) * P2 ( ⁇ ) (1)
  • the weighting coefficient K1 is a design value for adjusting to the desired combined spectral sensitivity.
  • the weighting coefficient K1 is the same value for all wavelengths, but is changed for each wavelength. May be.
  • the spectral transmittance K2 of the optical filter 12 is the InGaAs element 13 in the wavelength band in which the Si element 22 has no sensitivity among the wavelengths in which the CIS solar cell has sensitivity. Is set to perform photoelectric conversion.
  • FIG. 4 shows the spectral sensitivity CIS (solid line) of the CIS solar cell, the spectral sensitivity P ( ⁇ ) of the pseudo reference cell 30 (short dashed line;...), The spectral sensitivity P1 ( ⁇ ) of the Si element 22 (dashed line).
  • FIG. 4 is a diagram showing the spectral sensitivity P2 ( ⁇ ) (two-dot chain line) of the InGaAs element 13 and the spectral transmittance K2 ( ⁇ ) (long broken line; ————) of the optical filter 12.
  • CIS type solar cells have sensitivity in the wavelength range of about 300 nm to about 1350 nm (see CIS).
  • the Si element 22 of the pseudo reference cell 30 has sensitivity in a wavelength range of about 300 nm to about 1200 nm (see P1) and does not have sensitivity in a wavelength range of about 1200 nm to about 1350 nm. Therefore, the wavelength range of about 1200 nm to about 1350 nm is supplemented by the InGaAs element 13 having sensitivity in this range.
  • the InGaAs element 13 has sensitivity in the wavelength range of about 780 nm to about 1700 nm (see P2).
  • the InGaAs element 13 compensates for the sensitivity in the range necessary for the pseudo reference cell 30, that is, in the wavelength range of about 1200 nm to about 1350 nm, and considers the spectral sensitivity of the crystalline Si type solar cell 22, and has a wavelength of about 950 nm to about 950 nm.
  • An optical filter 12 that transmits light in the range of 1350 nm is used (see K2).
  • FIG. 5 is a diagram showing the spectral sensitivity P ( ⁇ ) of the pseudo reference cell 30 and the spectral sensitivity CIS of the standard cell of the solar cell using CIS. That is, the pseudo reference cell 30 has a spectral sensitivity (dashed line) substantially equal to the spectral sensitivity (dashed line) desired as a standard cell of a solar cell using the CIS that is a solar cell to be measured. Become.
  • the spectrum mismatch error of the pseudo reference cell 30 is, for example, ⁇ 0.4%, the JIS requirement ⁇ 1% or less is satisfied, so there is a practical problem in adjusting the solar simulator 1. There will be no.
  • Spectral mismatch error MM is defined as Eref ( ⁇ ) as the spectral irradiance of the reference solar light, Emes ( ⁇ ) as the spectral irradiance of the solar simulator used for measuring the solar cell,
  • Sref ( ⁇ ) the desired spectral sensitivity
  • the pseudo reference cell 30 having a spectral sensitivity close to that of the CIS solar cell can be created.
  • the said Formula (1) is a type
  • the combined spectral sensitivity characteristic when a plurality of photovoltaic elements are used is obtained.
  • the pseudo reference cell 30 is configured by combining the second light receiving unit 20 including the Si element 22 and the first light receiving unit 10 including the optical filter 12 and the InGaAs element 13.
  • a plurality of light receiving parts not using an optical filter may be used, or a plurality of light receiving parts using an optical filter may be used.
  • other photovoltaic elements may be used.
  • a photovoltaic element using Ge (germanium), a thermopile, or the like may be used.
  • the pseudo reference cell system 100 includes a pseudo reference cell 30, an A / D conversion unit 40, a calculation control unit 50, a calibration value storage unit 60, a communication unit 70, a display unit 80, and an integrating sphere 90. .
  • the pseudo reference cell 30 is, for example, a pseudo reference cell illustrated in FIG. 2 and includes a first light receiving unit 10 and a second light receiving unit 20.
  • a first light receiving unit 10 For convenience of explanation, it is described that only a part of the light receiving surface is in contact with the integrating sphere 90, but in actuality, it is installed at an appropriate position according to the integrating sphere 90, and the entire surface of the light receiving surface of the pseudo reference cell 30. It faces the integrating sphere 90.
  • the calibration value storage unit 60 is a memory that stores in advance calibration values for correcting variations in sensitivity of the first light receiving unit 10 and the second light receiving unit 20.
  • the integrating sphere 90 plays a role of guiding light of the same amount to each sensor by spatially mixing the light introduced from the solar simulator 1 by the diffuse reflection surface in the sphere.
  • the pseudo reference cell 30 includes a plurality of light receiving elements, and in the example illustrated in FIGS. 1 and 2, the first light receiving unit 10 and the second light receiving unit 20 that are arranged in parallel with each other.
  • the parts of the solar simulator 1 that are measured by the respective light receiving units are different, and are affected by the spatial non-uniformity of the light quantity of the solar simulator.
  • the pseudo reference cell system 100 having such a configuration can perform measurement with higher accuracy.
  • the A / D conversion unit 40 amplifies each voltage output from the first light receiving unit 10 and the second light receiving unit 20 and converts each analog value into each digital value.
  • the calculation control unit 50 includes the values of the voltages output from the A / D conversion unit 40 and the calibration values of the first light receiving unit 10 and the second light receiving unit 20 stored in advance in the calibration value storage unit 60. From this, the short circuit current Isc of the pseudo reference cell 30 is calculated.
  • the voltage value of the first light receiving unit 10 output from the A / D conversion unit 40 is A1
  • the voltage value of the second light receiving unit 20 is A2
  • the calibration value of the first light receiving unit 10 is C1
  • Isc C1 * A1 + C2 * A2 (4)
  • the calibration value C1 is a calibration value for the first light receiving unit 10 including the calibration value of the optical filter 12.
  • the communication unit 70 is an interface for outputting predetermined data to a device outside the pseudo reference cell system 100.
  • the communication unit 70 is a USB (Universal Serial Bus) interface or the like.
  • the display unit 80 is a display device or the like for displaying the short-circuit current Isc calculated by the calculation control unit 50.
  • the pseudo reference cell system 100 having such a configuration can be configured using, for example, a computer such as a personal computer, and the arithmetic control unit 50 described above can be installed in the computer by executing software in which a method of calculating a short-circuit current is executed. Functionally configured.
  • the calculation control unit 50 one or more of the A / D conversion unit 40, the calibration value storage unit 60, the communication unit 70, and the display unit 80 illustrated in FIG. 1 may be configured by the computer.
  • FIG. 6 is a flowchart for explaining a process in which the pseudo reference cell system 100 calculates the short circuit current Isc of the pseudo reference cell 30.
  • FIG. 7 is a flowchart for explaining the light amount adjustment of the solar simulator by a normal reference cell.
  • the user irradiates the reference cell 2 with simulated sunlight from the solar simulator 1 as shown in FIG. 7 (S1, S2), and the reference cell 2 is short-circuited.
  • the current is measured by the current voltmeter 4 (S3).
  • the light quantity of the solar simulator 1 is adjusted so that the measured short circuit current may become the same as the short circuit current measured by public institutions, such as National Institute of Advanced Industrial Science and Technology.
  • the user irradiates the simulated reference cell system 100 with simulated sunlight from the solar simulator 1, and the simulated reference cell system 100 calculates the short-circuit current and displays it on the display unit 80. Then, the light quantity of the solar simulator 1 is adjusted so that the displayed short-circuit current Isc is the same as the short-circuit current measured by the public engine.
  • the pseudo reference cell system 100 is set to receive the irradiation light of the solar simulator 1, and the solar simulator 1 is turned on to start illumination.
  • the first light receiving unit 10 and the second light receiving unit 20 that have received irradiation light from the solar simulator 1 via the integrating sphere 90 perform photoelectric conversion, respectively, and output voltages.
  • Each of these output voltages is amplified by the A / D conversion unit 40, and each value A1, A2 of each voltage is obtained (step S10).
  • the values A1 and A2 of these voltages are output to the arithmetic control unit 50.
  • the arithmetic control unit 50 reads out the calibration values C1 and C2 from the calibration value storage unit 60 (step S11), and from the values A1 and A2 of the voltages input from the A / D conversion unit 40, the equation (4) Is used to calculate the short-circuit current Isc (step S12).
  • the calculation control unit 50 transmits the calculated short-circuit current Isc to the display unit 80 and displays it on the display unit 80 (step S13).
  • the pseudo reference cell 30 has the first light receiving unit 10 and the second light receiving unit 20 arranged side by side, but the light receiving element of the first light receiving unit 10 and the light receiving element of the second light receiving unit 20 May be used as a pseudo reference cell.
  • the integrating sphere 90 may be omitted.
  • the light may be received by the semicircular dome-shaped diffused light receiving sphere and guided to the light receiving portion of the pseudo reference cell.
  • a pseudo reference cell includes a plurality of light receiving units each having a photovoltaic element that converts light energy into electrical energy by a photovoltaic effect and outputs the energy, and having different spectral sensitivity characteristics.
  • the combined spectral sensitivity obtained by combining the outputs of the power elements is set to be equal to the (relative) spectral sensitivity of the solar cell to be measured.
  • the pseudo reference cell refers to a pseudo reference cell and a multi-junction type pseudo reference element cell.
  • a wavelength sensitivity region of another photovoltaic element exists outside the wavelength sensitivity region of the one of the plurality of photovoltaic elements.
  • the wavelength sensitivity regions which are the respective spectral sensitivity characteristics overlap at least partially.
  • the predetermined wavelength range includes different photovoltaic elements
  • a pseudo reference cell having sensitivity to the desired wavelength range as a reference cell can be obtained. It becomes possible to provide.
  • one or a plurality of light receiving units (photovoltaic elements) of the plurality of light receiving units (photovoltaic elements) may include the combined spectral sensitivity.
  • An optical filter that transmits only the wavelength range corresponding to the spectral sensitivity of the photovoltaic element is provided on the light receiving surface side of the photovoltaic element.
  • the optical filter is an absorption optical filter.
  • the optical filter is an interference optical filter.
  • the optical filter is provided on the light receiving surface side of the photovoltaic element, it is possible to use the spectral sensitivity in a desired wavelength range among the spectral sensitivities of the photovoltaic element.
  • the pseudo reference cell system calculates a short-circuit current of the pseudo reference cell by using any one of the pseudo reference cells described above and the current output from each of the plurality of photovoltaic elements. And an arithmetic unit.
  • a short circuit current for adjusting a solar simulator can be obtained using a pseudo reference cell having a spectral sensitivity substantially equal to a desired spectral sensitivity as a reference cell. It becomes possible.
  • the pseudo reference cell system further includes a storage unit that stores a calibration constant for correcting the spectral sensitivity of each of the plurality of photovoltaic elements
  • the calculation unit includes: The short circuit current of the pseudo reference cell is calculated using the current output from each of the plurality of photovoltaic elements and the calibration constant stored in the storage unit.
  • the output current can be calibrated for each photovoltaic element, so that a more accurate short-circuit current can be obtained.
  • the above-described pseudo reference cell system further includes a display unit that displays the short circuit current of the pseudo reference cell calculated by the arithmetic unit.
  • the obtained short circuit current can be displayed on a display or the like, the user can easily know the short circuit current of the pseudo reference cell.
  • the above-described pseudo reference cell system further includes an output unit that outputs the short circuit current of the pseudo reference cell calculated by the arithmetic unit to the outside of the pseudo reference cell system.
  • the obtained short-circuit current can be output to another device, other processing, for example, light amount adjustment of the solar simulator 1 is automatically performed based on the short-circuit current of the pseudo reference cell. Is possible.
  • the pseudo reference cell receives irradiation light via an integrating sphere.
  • each photovoltaic element is irradiated with pseudo-sunlight having the same illuminance, so that it is possible to obtain a short-circuit current that does not depend on the arrangement position of each photovoltaic element.
  • a pseudo reference cell for evaluating a solar cell and a pseudo reference cell system using the pseudo reference cell can be provided.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

A pseudo reference cell (30) of the present invention is provided with a plurality of photovoltaic elements (13, 22) having combined spectral sensitivity set equal to the spectral sensitivity of a solar cell to be measured, said photovoltaic elements having different spectral sensitivity characteristics. A pseudo reference cell system of the present invention is provided with the pseudo reference cell. Consequently, the pseudo reference cell (30) has spectral sensitivity characteristics equivalent to spectral sensitivity which a reference cell for the solar cell to be measured desirably has, and is capable of maintaining a physically stable state for a relatively long period of time. The pseudo reference cell system is capable of computing a short-circuit current of the pseudo reference cell (30).

Description

擬似参照セルおよび擬似参照セルシステムPseudo reference cell and pseudo reference cell system
 本発明は、太陽電池を評価するための擬似参照セル(pseudo reference
cell)およびこの擬似参照セルを用いた擬似参照セルシステムに関する。
The present invention relates to a pseudo reference cell (pseudo reference cell) for evaluating solar cells.
cell) and a pseudo reference cell system using the pseudo reference cell.
 近年、太陽電池は、広く普及し、メーカ間あるいは製品間で激しく競争している。また、その組成も、単結晶シリコン、アモルファスシリコン、薄膜シリコンおよび有機化合物等の、多くの種類が開発されている。 In recent years, solar cells have become widespread and are intensely competing between manufacturers or products. In addition, many types of compositions such as single crystal silicon, amorphous silicon, thin film silicon, and organic compounds have been developed.
 このような太陽電池は、材料および構造に起因する固有の分光感度特性を有するので、その光電変換特性は、性能評価用の照射光の分光放射照度に大きく依存する。そこで、これらの太陽電池の光電変換効率を公正に評価するために、評価方法が、IEC60904(IEC;International Electrotechnical Commission;国際電気標準会議)やJISC8905~C8991(JIS;Japanese Industrial Standards;日本工業規格)で定義されている。太陽電池の性能測定は、国際的に協定された標準試験条件の下で、基準太陽光の分光放射照度(=S(λ))に近似させた分光放射照度L(λ)を持つソーラシミュレータを用いて屋内で実施されることが多い。 Since such a solar cell has an inherent spectral sensitivity characteristic due to the material and structure, its photoelectric conversion characteristic greatly depends on the spectral irradiance of irradiation light for performance evaluation. Therefore, in order to fairly evaluate the photoelectric conversion efficiency of these solar cells, IEC60904 (IEC; International Electrotechnical Commission; International Electrotechnical Commission) and JISC 8905 to C8991 (JIS; Japanese Industrial Standards) Defined in For solar cell performance measurement, a solar simulator having a spectral irradiance L (λ) approximated to the spectral irradiance (= S (λ)) of the reference sunlight under the internationally agreed standard test conditions Often used indoors.
 このソーラシミュレータには、メーカ間および同じメーカでも機差が存在している。このため、分光感度特性が同じ太陽電池であっても、異なるソーラシミュレータで太陽電池を測定すると、太陽電池の発電量が異なってしまう。 This solar simulator has machine differences between manufacturers and between the same manufacturers. For this reason, even if it is a solar cell with the same spectral sensitivity characteristic, if a solar cell is measured with a different solar simulator, the electric power generation amount of a solar cell will differ.
 そこで、測定者は、例えば、産業技術総合技術研究所(=日本国において、国際的に統一された基準太陽光スペクトル等を持っている国立またはそれに準じる機関)に、サンプルとなる太陽電池を送付してその測定を依頼する。それに応じてこれらの機関は、所有している限りなく基準太陽光に近い高近似ソーラシミュレータを用いてサンプルの自然太陽光AM1.5、100mW/cmにおける短絡電流Iscを求め、測定値(=A)を記載して依頼者である前記測定者に返送する。 Therefore, the measurer, for example, sends a solar cell as a sample to the National Institute of Advanced Industrial Science and Technology (= a national or similar organization that has an internationally standardized reference solar spectrum in Japan). And request the measurement. Accordingly, these institutions obtain the short-circuit current Isc in the natural sunlight AM1.5, 100 mW / cm 2 of the sample using a high approximate solar simulator that is close to the reference sunlight as long as it is owned, and the measured value (= A) is described and returned to the measurer who is the client.
 そして、これを受けて測定者は、返送されて来たサンプルを、以降、自社の基準セルとして、ソーラシミュレータの光量調整用に使用している。すなわち、測定者は、ソーラシミュレータの照射光を基準セルに照射し、その短絡電流Iscが前記測定値Aとなるように、ソーラシミュレータの光量を調整する。そして、測定者は、実際に測定すべき(検査対象の製品の)太陽電池の特性を測定している。前述のように基準太陽光の分光スペクトルを厳密に再現することは、困難であるが、これは、可能な限り、各社のソーラシミュレータをそれに合せ込むための手法である。 In response to this, the measurer uses the returned sample as the company's reference cell for adjusting the light quantity of the solar simulator. That is, the measurer irradiates the reference cell with the irradiation light of the solar simulator, and adjusts the amount of light of the solar simulator so that the short-circuit current Isc becomes the measurement value A. Then, the measurer measures the characteristics of the solar cell (of the product to be inspected) to be actually measured. As described above, it is difficult to accurately reproduce the spectrum of the reference sunlight, but this is a technique for adjusting the solar simulators of each company as much as possible.
 ところで、シリコン結晶系の太陽電池は、その特性が比較的安定しているため、安定状態を長時間維持することができる基準セルを容易に得ることができる。これに対して、薄膜シリコン系の太陽電池の場合は、光劣化や熱回復等の物性的な特性変化があるため、安定状態を長期間維持することができない。また、太陽電池自体のライトソーキング等の影響もある。そのため、薄膜シリコン系太陽電池で作製した基準セルは、校正値の安定性に欠け、ソーラシミュレータの光量調整結果の再現性が悪い。 Incidentally, since the characteristics of the silicon crystal solar cell are relatively stable, a reference cell capable of maintaining a stable state for a long time can be easily obtained. On the other hand, in the case of a thin-film silicon-based solar cell, a stable state cannot be maintained for a long time due to changes in physical properties such as light degradation and heat recovery. There is also the influence of light soaking of the solar cell itself. For this reason, a reference cell made of a thin film silicon solar cell lacks stability of the calibration value, and reproducibility of the light amount adjustment result of the solar simulator is poor.
 JISC8933等では、薄膜シリコン系の太陽電池の場合、このような基準セルが持つ不安定性を克服するために、特性が安定しているシリコン結晶系セルの上に光学フィルタを貼り付けた擬似基準セルを使って、ソーラシミュレータの光量を調整することが認められている。 In JIS C8933 and the like, in the case of a thin-film silicon-based solar cell, a pseudo-reference cell in which an optical filter is pasted on a silicon crystal-based cell with stable characteristics in order to overcome such instability of the reference cell. To adjust the amount of solar simulator light.
 そこで、上述のような薄膜シリコン系の基準セルとして、アモルファスシリコンを用いた擬似セルを選択する提案がなされている(特許文献1等参照)。この擬似セルは、アモルファスシリコン層の膜厚を変化させることによって、その相対分光感度特性を測定対象の太陽電池のそれに一致させている。 Therefore, a proposal has been made to select a pseudo cell using amorphous silicon as the above-described thin-film silicon-based reference cell (see Patent Document 1). In this pseudo cell, the film thickness of the amorphous silicon layer is changed to match the relative spectral sensitivity characteristic with that of the solar cell to be measured.
 しかしながら、この特許文献1に開示の擬似セルは、アモルファスシリコン層そのものが物性的に不安定なため、基準として校正するに足る安定な擬似セルを得ることができない。一方、シリコンの分光感度が1100nmより長い波長域では感度がないことから、CIS(CuInSe)やCIGS(Cu(In,Ga)Se)から成る薄膜系太陽電池等の1100nm以上の感度を持つ擬似セルを作成することができない。 However, the pseudo cell disclosed in Patent Document 1 cannot obtain a stable pseudo cell sufficient for calibration as a reference because the amorphous silicon layer itself is physically unstable. On the other hand, since the spectral sensitivity of silicon is insensitive in the wavelength range longer than 1100 nm, it has a sensitivity of 1100 nm or more such as a thin film solar cell made of CIS (CuInSe 2 ) or CIGS (Cu (In, Ga) Se 2 ). A pseudo cell cannot be created.
特開2006-147755号公報JP 2006-147755 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、測定対象の太陽電池と同等の分光感度特性を持ち、物性的に安定した状態を比較的長期間維持することができる擬似セル、基準セルである擬似参照セルおよびこれを用い短絡電流を求めることができる擬似参照セルシステムを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and its purpose is to maintain a stable state for a relatively long period of time with a spectral sensitivity characteristic equivalent to that of a solar cell to be measured. It is an object of the present invention to provide a pseudo cell that can be obtained, a pseudo reference cell that is a reference cell, and a pseudo reference cell system that can determine a short-circuit current using the pseudo cell.
 本発明にかかる擬似参照セルおよび擬似参照セルシステムは、合成分光感度が測定対象の太陽電池の分光感度に等しくなるように設定される、互いに異なる分光感度特性を持つ複数の光起電力素子を備えている。このため、本発明にかかる擬似参照セルは、測定対象の太陽電池の基準セルとして所望される分光感度と同等の分光感度特性を持ち、物性的に安定した状態を比較的長期間維持することができ、擬似参照セルシステムは、この擬似参照セルの短絡電流を求めることができる。 The pseudo reference cell and the pseudo reference cell system according to the present invention include a plurality of photovoltaic elements having different spectral sensitivity characteristics, wherein the combined spectral sensitivity is set to be equal to the spectral sensitivity of the solar cell to be measured. ing. For this reason, the pseudo reference cell according to the present invention has a spectral sensitivity characteristic equivalent to a spectral sensitivity desired as a reference cell of a solar cell to be measured, and can maintain a physically stable state for a relatively long period of time. The pseudo reference cell system can determine the short circuit current of the pseudo reference cell.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態にかかる擬似参照セルシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the pseudo reference cell system concerning embodiment. 図1に示す擬似参照セルシステムの構成要素である擬似参照セルを説明するための図である。It is a figure for demonstrating the pseudo reference cell which is a component of the pseudo reference cell system shown in FIG. CIS型太陽電池と結晶Si型太陽電池との分光感度を示す図である。It is a figure which shows the spectral sensitivity of a CIS type solar cell and a crystalline Si type solar cell. CIS型太陽電池、擬似参照セル、Si素子、InGaAs素子の分光感度、および、光学フィルタの分光透過率を示す図である。It is a figure which shows the spectral sensitivity of the CIS type solar cell, the pseudo reference cell, the Si element, the InGaAs element, and the spectral transmittance of the optical filter. 擬似参照セルおよびCIS太陽電池の分光感度を示す図である。It is a figure which shows the spectral sensitivity of a pseudo reference cell and a CIS solar cell. 本実施形態による短絡電流算出処理を説明するためのフローチャートである。It is a flowchart for demonstrating the short circuit current calculation process by this embodiment. 通常の基準セルによるソーラシミュレータの光量調整を説明するためのフローチャートである。It is a flowchart for demonstrating light quantity adjustment of the solar simulator by a normal reference | standard cell.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
<実施形態>
 通常、ソーラシミュレータの光量調整では、基準セル(擬似セルも含む。)のI-V(電流-電圧)測定を行うが、本実施形態にかかる擬似参照セルシステムでは、短絡電流のみが測定される。すなわち、ソーラシミュレータの光量を調整する際に短絡電流のみで調整しているので、短絡電流のみがわかればよく、本擬似参照セルシステムは、短絡電流測定機能に特化している。
<Embodiment>
Normally, in the light amount adjustment of the solar simulator, IV (current-voltage) measurement of a reference cell (including a pseudo cell) is performed, but in the pseudo reference cell system according to the present embodiment, only a short-circuit current is measured. . That is, when adjusting the amount of light of the solar simulator, the adjustment is made only with the short-circuit current, so only the short-circuit current needs to be known, and this pseudo reference cell system is specialized in the short-circuit current measurement function.
 本擬似参照セルシステムでは、測定対象の太陽電池の分光感度の波長域をカバーし、かつ、物性的に安定した状態を長期間維持することができる擬似参照セルが用いられる。 In this pseudo reference cell system, a pseudo reference cell that covers the spectral sensitivity wavelength range of the solar cell to be measured and can maintain a physically stable state for a long period of time is used.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。図1は、実施形態にかかる擬似参照セルシステム100の構成を示すブロック図であり、図2は、図1に示す擬似参照セルシステム100を構成する擬似参照セル30を説明するための図である。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a pseudo reference cell system 100 according to the embodiment, and FIG. 2 is a diagram for explaining a pseudo reference cell 30 constituting the pseudo reference cell system 100 shown in FIG. .
 まず、図2に示す擬似参照セル30から説明する。図2(A)は、擬似参照セル30の正面図、すなわち、擬似太陽光を受ける面を示す図であり、図2(B)は、擬似参照セル30の断面図、すなわち、その構造を示す図である。 First, the pseudo reference cell 30 shown in FIG. 2 will be described. 2A is a front view of the pseudo reference cell 30, that is, a diagram showing a surface that receives pseudo sunlight, and FIG. 2B is a cross-sectional view of the pseudo reference cell 30, that is, its structure. FIG.
 擬似参照セル30は、複数の光起電力素子を備えて構成される。本実施形態の擬似参照セル30は、例えば、第1受光部10および第2受光部20の2つの太陽電池(受光センサー)で構成される。 The pseudo reference cell 30 includes a plurality of photovoltaic elements. The pseudo reference cell 30 of the present embodiment is configured by, for example, two solar cells (light receiving sensors) of the first light receiving unit 10 and the second light receiving unit 20.
 第1受光部10は、カバーガラス11と光学フィルタ12とInGaAs(インジウムガリウムヒ素)素子13とを備えて構成され、InGaAs素子13は、光エネルギーを光起電力効果によって電気エネルギーに変換して出力する光起電力素子の一例である。これらカバーガラス11、光学フィルタ12およびInGaAs素子13は、受光面側から順にこの順番で積層されている。 The first light receiving unit 10 includes a cover glass 11, an optical filter 12, and an InGaAs (indium gallium arsenide) element 13. The InGaAs element 13 converts light energy into electric energy by the photovoltaic effect and outputs the light energy. It is an example of the photovoltaic element which performs. The cover glass 11, the optical filter 12, and the InGaAs element 13 are laminated in this order from the light receiving surface side.
 第2受光部20は、カバーガラス21とSi素子22とを備えて構成され、Si素子22は、光起電力素子の他の一例である。これらカバーガラス21およびSi素子22は、受光面側から順にこの順番で積層されている。これらInGaAs素子13の分光感度特性とSi素子22の分光感度特性とは、後述するように、互いに異なっている。 The second light receiving unit 20 includes a cover glass 21 and an Si element 22, and the Si element 22 is another example of the photovoltaic element. The cover glass 21 and the Si element 22 are laminated in this order from the light receiving surface side. The spectral sensitivity characteristic of the InGaAs element 13 and the spectral sensitivity characteristic of the Si element 22 are different from each other, as will be described later.
 第1受光部10および第2受光部20は、それぞれソーラシミュレータ1からの擬似太陽光を受けると、光起電力効力により光電変換して、IV変換により電圧を出力する。 When each of the first light receiving unit 10 and the second light receiving unit 20 receives simulated sunlight from the solar simulator 1, the first light receiving unit 10 and the second light receiving unit 20 photoelectrically convert the photovoltaic effect and output a voltage by IV conversion.
 また、擬似参照セル30は、CISを用いた太陽電池の擬似基準セル、すなわち、測定対象のCIS太陽電池の基準セルに所望される分光感度と略同等の分光感度を備えるセルである。 Further, the pseudo reference cell 30 is a pseudo standard cell of a solar cell using CIS, that is, a cell having a spectral sensitivity substantially equal to a spectral sensitivity desired for a standard cell of a CIS solar cell to be measured.
 第1受光部10は、図2(B)に示すように、筐体内のInGaAs素子13の上に、光学フィルタ12を貼り付け、その上を保護のためのカバーガラス11で覆った受光素子である。この光学フィルタ12は、第1受光部10の分光感度特性を所望の分光感度にするためのものである。光学フィルタ12は、所望の波長を透過できるフィルタ(例えば、バンドパスフィルタ、カットオフフィルタ等)であればよく、例えば、吸収型光学フィルタおよび干渉型光学フィルタ等である。 As shown in FIG. 2 (B), the first light receiving unit 10 is a light receiving element in which an optical filter 12 is pasted on an InGaAs element 13 in a housing and the top is covered with a cover glass 11 for protection. is there. This optical filter 12 is for making the spectral sensitivity characteristic of the 1st light-receiving part 10 into desired spectral sensitivity. The optical filter 12 only needs to be a filter that can transmit a desired wavelength (for example, a bandpass filter, a cutoff filter, or the like), and is, for example, an absorption optical filter or an interference optical filter.
 一方、第2受光部20は、Si(シリコン)素子22の上を、保護のためのカバーガラス21で覆った受光素子である。 On the other hand, the second light receiving unit 20 is a light receiving element in which a Si (silicon) element 22 is covered with a cover glass 21 for protection.
 CIS系の太陽電池は、結晶Si型太陽電池よりも広い範囲の波長に対して光エネルギーを吸収する。 CIS solar cells absorb light energy for a wider range of wavelengths than crystalline Si solar cells.
 図3は、CISを用いた太陽電池(CIS型太陽電池)の分光感度と結晶Siを用いた太陽電池(結晶Si型太陽電池)の分光感度とを示す図である。この図3に示すように、CIS型太陽電池の分光感度(一点鎖線)は、約300nm~約1300nmまで感度を持つが、結晶Si型太陽の電池の分光感度(破線)は、約300nm~約1200nm程度までしか感度がない。したがって、結晶Si型太陽電池を用いた擬似セルでは、いかなる光学フィルタを用いたとしても、CIS型太陽電池の分光感度を作り出すことはできない。 FIG. 3 is a diagram showing the spectral sensitivity of a solar cell using CIS (CIS solar cell) and the spectral sensitivity of a solar cell using crystalline Si (crystalline Si solar cell). As shown in FIG. 3, the spectral sensitivity (dashed line) of the CIS type solar cell has a sensitivity from about 300 nm to about 1300 nm, while the spectral sensitivity (dashed line) of the crystalline Si type solar cell is about 300 nm to about 1300 nm. The sensitivity is only up to about 1200 nm. Therefore, in the pseudo cell using the crystalline Si type solar cell, the spectral sensitivity of the CIS type solar cell cannot be created no matter what optical filter is used.
 そこで、本実施形態の擬似参照セル30では、結晶Siが感度を持たない波長に対しても感度を持つ別の受光素子を追加することによって、分光感度の波長範囲が拡大されている。 Therefore, in the pseudo reference cell 30 of the present embodiment, the wavelength range of the spectral sensitivity is expanded by adding another light receiving element having sensitivity even with respect to the wavelength at which the crystalline Si is not sensitive.
 ここで、Si素子22の分光感度をP1(λ)とし、InGaAs素子13の分光感度をP2(λ)とし、Si素子22の重みづけ係数(重荷係数)をK1(λ)(例えば、92.4%)とし、光学フィルタ12の分光透過率をK2(λ)とした場合に、擬似参照セル30の分光感度P(λ)は、次式(1)を用いて、求めることができる。
P(λ)=K1(λ)*P1(λ)+K2(λ)*P2(λ)   ・・・(1)
Here, the spectral sensitivity of the Si element 22 is P1 (λ), the spectral sensitivity of the InGaAs element 13 is P2 (λ), and the weighting coefficient (loading coefficient) of the Si element 22 is K1 (λ) (for example, 92. 4%), and the spectral transmittance P (λ) of the pseudo reference cell 30 can be obtained using the following equation (1).
P (λ) = K1 (λ) * P1 (λ) + K2 (λ) * P2 (λ) (1)
 なお、重みづけ係数K1は、所望する合成分光感度に合わせ込むための設計値であり、本実施形態では、重みづけ係数K1は、全波長に対して同一の値としているが、波長毎に変えてもよい。 The weighting coefficient K1 is a design value for adjusting to the desired combined spectral sensitivity. In this embodiment, the weighting coefficient K1 is the same value for all wavelengths, but is changed for each wavelength. May be.
 本実施形態では、説明の簡単化のために、光学フィルタ12の分光透過率K2は、CIS型太陽電池が感度を有する波長のうち、Si素子22が感度を有しない波長帯域では、InGaAs素子13で光電変換するように、設定されている。 In the present embodiment, for simplicity of explanation, the spectral transmittance K2 of the optical filter 12 is the InGaAs element 13 in the wavelength band in which the Si element 22 has no sensitivity among the wavelengths in which the CIS solar cell has sensitivity. Is set to perform photoelectric conversion.
 図4は、CIS型太陽電池の分光感度CIS(実線)、擬似参照セル30の分光感度P(λ)(短破線;・・・)、Si素子22の分光感度P1(λ)(一点鎖線)、InGaAs素子13の分光感度P2(λ)(二点鎖線)、および、光学フィルタ12の分光透過率K2(λ)(長破線;― ― ―)をそれぞれ示す図である。 FIG. 4 shows the spectral sensitivity CIS (solid line) of the CIS solar cell, the spectral sensitivity P (λ) of the pseudo reference cell 30 (short dashed line;...), The spectral sensitivity P1 (λ) of the Si element 22 (dashed line). FIG. 4 is a diagram showing the spectral sensitivity P2 (λ) (two-dot chain line) of the InGaAs element 13 and the spectral transmittance K2 (λ) (long broken line; ————) of the optical filter 12.
 CIS型太陽電池は、波長約300nm~約1350nmの範囲で感度を有する(CIS参照)。一方、擬似参照セル30のSi素子22は、波長約300nm~約1200nmの範囲で感度を有し(P1参照)、波長約1200nm~約1350nmの範囲で感度を有していない。このため、波長約1200nm~約1350nmの範囲は、この範囲で感度を有するInGaAs素子13によって補われる。このInGaAs素子13は、波長約780nm~約1700nmの範囲で感度を有する(P2参照)。そこで、InGaAs素子13は、擬似参照セル30にとって必要な範囲、すなわち波長約1200nm~約1350nmの範囲における感度を補いつつ、結晶Si型太陽電池22の分光感度を考慮して、波長約950nm~約1350nmの範囲の光を透す光学フィルタ12が用いられる(K2参照)。 CIS type solar cells have sensitivity in the wavelength range of about 300 nm to about 1350 nm (see CIS). On the other hand, the Si element 22 of the pseudo reference cell 30 has sensitivity in a wavelength range of about 300 nm to about 1200 nm (see P1) and does not have sensitivity in a wavelength range of about 1200 nm to about 1350 nm. Therefore, the wavelength range of about 1200 nm to about 1350 nm is supplemented by the InGaAs element 13 having sensitivity in this range. The InGaAs element 13 has sensitivity in the wavelength range of about 780 nm to about 1700 nm (see P2). In view of this, the InGaAs element 13 compensates for the sensitivity in the range necessary for the pseudo reference cell 30, that is, in the wavelength range of about 1200 nm to about 1350 nm, and considers the spectral sensitivity of the crystalline Si type solar cell 22, and has a wavelength of about 950 nm to about 950 nm. An optical filter 12 that transmits light in the range of 1350 nm is used (see K2).
 Si素子22の分光感度P1(λ)と、分光透過率K2(λ)の光学フィルタ12で濾波されたInGaAs素子13の分光感度P2(λ)とを合成すると、この合成分光感度は、擬似参照セル30の分光感度P(λ)となる。 When the spectral sensitivity P1 (λ) of the Si element 22 and the spectral sensitivity P2 (λ) of the InGaAs element 13 filtered by the optical filter 12 having the spectral transmittance K2 (λ) are combined, this combined spectral sensitivity is pseudo-referenced. The spectral sensitivity P (λ) of the cell 30 is obtained.
 図5は、擬似参照セル30の分光感度P(λ)と、CISを用いた太陽電池の基準セルの分光感度CISとを示した図である。すなわち、擬似参照セル30は、測定対象の太陽電池であるCISを用いた太陽電池の基準セルとして所望される分光感度(一点鎖線)と略同等の分光感度(破線)を有していることになる。 FIG. 5 is a diagram showing the spectral sensitivity P (λ) of the pseudo reference cell 30 and the spectral sensitivity CIS of the standard cell of the solar cell using CIS. That is, the pseudo reference cell 30 has a spectral sensitivity (dashed line) substantially equal to the spectral sensitivity (dashed line) desired as a standard cell of a solar cell using the CIS that is a solar cell to be measured. Become.
 ここで、擬似参照セル30のスペクトルミスマッチ誤差が、例えば、-0.4%であれば、JISの要求事項である±1%以下を満たしているので、ソーラシミュレータ1の調整には実用上問題がないことになる。 Here, if the spectrum mismatch error of the pseudo reference cell 30 is, for example, −0.4%, the JIS requirement ± 1% or less is satisfied, so there is a practical problem in adjusting the solar simulator 1. There will be no.
 スペクトルミスマッチ誤差MMは、基準太陽光の分光放射照度をEref(λ)とし、太陽電池の測定に使用するソーラシミュレータの分光放射照度をEmes(λ)とし、測定対象の太陽電池の分光感度、すなわち、所望する理想の分光感度をSref(λ)とし、そして、擬似参照セル30の分光感度をP(λ)とした場合に、次式(2)によって求められる。なお、図5では、CISがSref(λ)に該当する。
MM=(∫Eref(λ)*Sref(λ)dλ*∫Emes(λ)*P(λ)dλ)/(∫Emes(λ)*Sref(λ)dλ*∫Eref(λ)*P(λ)dλ)   ・・・(2)
Spectral mismatch error MM is defined as Eref (λ) as the spectral irradiance of the reference solar light, Emes (λ) as the spectral irradiance of the solar simulator used for measuring the solar cell, When the desired spectral sensitivity is Sref (λ) and the spectral sensitivity of the pseudo reference cell 30 is P (λ), the following equation (2) is obtained. In FIG. 5, CIS corresponds to Sref (λ).
MM = (∫Eref (λ) * Sref (λ) dλ * ∫Emes (λ) * P (λ) dλ) / (∫Emes (λ) * Sref (λ) dλ * ∫Eref (λ) * P (λ Dλ) (2)
 このように、Si素子22に加えてInGaAs素子13と光学フィルタ12とを用いることで、CIS太陽電池の分光感度に近い分光感度を持つ擬似参照セル30が作成可能となる。 Thus, by using the InGaAs element 13 and the optical filter 12 in addition to the Si element 22, the pseudo reference cell 30 having a spectral sensitivity close to that of the CIS solar cell can be created.
 なお、上記式(1)は、実施形態の擬似参照セル30の分光感度を求める式であり、3つ以上の光起電力素子を用いてもよく、その場合の擬似参照セルの分光感度P(λ)は、各光起電力素子の分光感度をPi(λ)とし、各光起電力素子に装着する光学フィルタの分光透過率をKi(λ)とした場合に、次式(3)によって求められる。
P(λ)=ΣKi(λ)*Pi(λ)   ・・・(3)
ただし、Σは、iについての和をとる。この式(3)を用いることで、複数の光起電力素子を用いた場合の合成分光感度特性が求められる。
In addition, the said Formula (1) is a type | formula which calculates | requires the spectral sensitivity of the pseudo reference cell 30 of embodiment, You may use three or more photovoltaic elements, In that case, the spectral sensitivity P ( λ) is obtained by the following equation (3) when the spectral sensitivity of each photovoltaic element is Pi (λ) and the spectral transmittance of the optical filter attached to each photovoltaic element is Ki (λ). It is done.
P (λ) = ΣKi (λ) * Pi (λ) (3)
However, Σ is the sum of i. By using this equation (3), the combined spectral sensitivity characteristic when a plurality of photovoltaic elements are used is obtained.
 また、実施形態では、Si素子22を備える第2受光部20と、光学フィルタ12とInGaAs素子13とを備える第1受光部10とを組み合わせることによって、擬似参照セル30が構成されているが、この組み合わせに限らず、例えば、光学フィルタを用いない受光部を複数個用いてもよく、また、光学フィルタを用いた受光部を複数個用いて構成してもよい。また、InGaAs素子だけでなく、他の光起電力素子が用いられてもよく、例えば、Ge(ゲルマニウム)を用いた光起電力素子や、サーモパイル等が用いられてもよい。 In the embodiment, the pseudo reference cell 30 is configured by combining the second light receiving unit 20 including the Si element 22 and the first light receiving unit 10 including the optical filter 12 and the InGaAs element 13. For example, a plurality of light receiving parts not using an optical filter may be used, or a plurality of light receiving parts using an optical filter may be used. In addition to the InGaAs element, other photovoltaic elements may be used. For example, a photovoltaic element using Ge (germanium), a thermopile, or the like may be used.
 次に、図1を用いて擬似参照セルシステム100を説明する。この擬似参照セルシステム100は、擬似参照セル30、A/D変換部40、演算制御部50、校正値記憶部60、通信部70、表示部80、および、積分球90を備えて構成される。 Next, the pseudo reference cell system 100 will be described with reference to FIG. The pseudo reference cell system 100 includes a pseudo reference cell 30, an A / D conversion unit 40, a calculation control unit 50, a calibration value storage unit 60, a communication unit 70, a display unit 80, and an integrating sphere 90. .
 擬似参照セル30は、例えば、図2に示す擬似参照セルであり、第1受光部10と第2受光部20とを備えている。説明の便宜上、積分球90に受光面の一部のみが接するように記載しているが、実際には、積分球90に応じた適切な位置に設置され、擬似参照セル30の受光面全面で積分球90に臨んでいる。 The pseudo reference cell 30 is, for example, a pseudo reference cell illustrated in FIG. 2 and includes a first light receiving unit 10 and a second light receiving unit 20. For convenience of explanation, it is described that only a part of the light receiving surface is in contact with the integrating sphere 90, but in actuality, it is installed at an appropriate position according to the integrating sphere 90, and the entire surface of the light receiving surface of the pseudo reference cell 30. It faces the integrating sphere 90.
 校正値記憶部60は、第1受光部10および第2受光部20のそれぞれの感度のバラツキを補正するための校正値を予め記憶しておくメモリである。 The calibration value storage unit 60 is a memory that stores in advance calibration values for correcting variations in sensitivity of the first light receiving unit 10 and the second light receiving unit 20.
 積分球90は、ソーラシミュレータ1から導入された光を球内拡散反射面により空間的に光をミキシングして各々のセンサに等しい光量の光を導く役割を果たしている。 The integrating sphere 90 plays a role of guiding light of the same amount to each sensor by spatially mixing the light introduced from the solar simulator 1 by the diffuse reflection surface in the sphere.
 擬似参照セル30は、複数の受光素子、図1および図2に示す例では、互いに並列配置された第1受光部10および第2受光部20を備えているため、積分球90を介しないでソーラシミュレータ1から光を受けると、それぞれの受光部が測光しているソーラシミュレータ1の部位が異なり、ソーラシミュレータの光量の空間的な不均一性の影響を受けてしまうことになる。このため、積分球90を介した擬似太陽光をそれぞれの受光部で受光することによって、それぞれの太陽電池が測光しているソーラシミュレータ1の光量は、均一となり、配置位置の依存性をなくすことが可能となる。よって、このような構成の擬似参照セルシステム100は、より精度の高い測定が可能となる。 The pseudo reference cell 30 includes a plurality of light receiving elements, and in the example illustrated in FIGS. 1 and 2, the first light receiving unit 10 and the second light receiving unit 20 that are arranged in parallel with each other. When light is received from the solar simulator 1, the parts of the solar simulator 1 that are measured by the respective light receiving units are different, and are affected by the spatial non-uniformity of the light quantity of the solar simulator. For this reason, by receiving the pseudo sunlight through the integrating sphere 90 by each light receiving unit, the amount of light of the solar simulator 1 measured by each solar cell becomes uniform, and the dependence of the arrangement position is eliminated. Is possible. Therefore, the pseudo reference cell system 100 having such a configuration can perform measurement with higher accuracy.
 A/D変換部40は、第1受光部10および第2受光部20から出力される各電圧をそれぞれ増幅し、その各アナログ値を各デジタル値に変換する。 The A / D conversion unit 40 amplifies each voltage output from the first light receiving unit 10 and the second light receiving unit 20 and converts each analog value into each digital value.
 演算制御部50は、A/D変換部40から出力される各電圧の各値と、校正値記憶部60に予め記憶されている第1受光部10および第2受光部20の各校正値とから、擬似参照セル30の短絡電流Iscを算出する。 The calculation control unit 50 includes the values of the voltages output from the A / D conversion unit 40 and the calibration values of the first light receiving unit 10 and the second light receiving unit 20 stored in advance in the calibration value storage unit 60. From this, the short circuit current Isc of the pseudo reference cell 30 is calculated.
 A/D変換部40から出力された第1受光部10の電圧の値をA1とし、第2受光部20の電圧の値をA2とし、第1受光部10の校正値をC1とし、第2受光部20の校正値をC2とした場合に、短絡電流Iscは、次式(4)を用いることによって求められる。
Isc=C1*A1+C2*A2   ・・・(4)
なお、校正値C1は、光学フィルタ12の校正値を含んだ第1受光部10としての校正値である。
The voltage value of the first light receiving unit 10 output from the A / D conversion unit 40 is A1, the voltage value of the second light receiving unit 20 is A2, the calibration value of the first light receiving unit 10 is C1, and the second When the calibration value of the light receiving unit 20 is C2, the short circuit current Isc is obtained by using the following equation (4).
Isc = C1 * A1 + C2 * A2 (4)
The calibration value C1 is a calibration value for the first light receiving unit 10 including the calibration value of the optical filter 12.
 通信部70は、擬似参照セルシステム100外部の装置へ所定のデータを出力するためのインタフェース等である。例えば、通信部70は、USB(Universal Serial Bus)インタフェース等である。 The communication unit 70 is an interface for outputting predetermined data to a device outside the pseudo reference cell system 100. For example, the communication unit 70 is a USB (Universal Serial Bus) interface or the like.
 表示部80は、演算制御部50が算出した短絡電流Iscを表示するためのディスプレイ装置等である。 The display unit 80 is a display device or the like for displaying the short-circuit current Isc calculated by the calculation control unit 50.
 このような構成の擬似参照セルシステム100は、例えば、パーソナルコンピュータ等のコンピュータを用いて構成可能であり、短絡電流の演算方法をプログラムしたソフトウェアを実行することによって上述の演算制御部50がコンピュータに機能的に構成される。なお、コンピュータによって、演算制御部50だけではなく、図1に示すA/D変換部40、校正値記憶部60、通信部70、表示部80のうちの1または複数が構成されてもよい。 The pseudo reference cell system 100 having such a configuration can be configured using, for example, a computer such as a personal computer, and the arithmetic control unit 50 described above can be installed in the computer by executing software in which a method of calculating a short-circuit current is executed. Functionally configured. In addition to the calculation control unit 50, one or more of the A / D conversion unit 40, the calibration value storage unit 60, the communication unit 70, and the display unit 80 illustrated in FIG. 1 may be configured by the computer.
 次に、図6を用いて、擬似参照セルシステム100の動作について説明する。図6は、擬似参照セルシステム100が、擬似参照セル30の短絡電流Iscを算出する処理を説明するためのフローチャートである。図7は、通常の基準セルによるソーラシミュレータの光量調整を説明するためのフローチャートである。 Next, the operation of the pseudo reference cell system 100 will be described with reference to FIG. FIG. 6 is a flowchart for explaining a process in which the pseudo reference cell system 100 calculates the short circuit current Isc of the pseudo reference cell 30. FIG. 7 is a flowchart for explaining the light amount adjustment of the solar simulator by a normal reference cell.
 通常、基準セルを用いてソーラシミュレータ1を調整する場合、ユーザは、図7に示すように、基準セル2にソーラシミュレータ1から擬似太陽光を照射し(S1、S2)、基準セル2の短絡電流を電流電圧計4で測定する(S3)。そして、測定された短絡電流が、産業技術総合技術研究所等の公的機関が測定した短絡電流と同じになるように、ソーラシミュレータ1の光量が調整される。 Normally, when adjusting the solar simulator 1 using the reference cell, the user irradiates the reference cell 2 with simulated sunlight from the solar simulator 1 as shown in FIG. 7 (S1, S2), and the reference cell 2 is short-circuited. The current is measured by the current voltmeter 4 (S3). And the light quantity of the solar simulator 1 is adjusted so that the measured short circuit current may become the same as the short circuit current measured by public institutions, such as National Institute of Advanced Industrial Science and Technology.
 これに対し、本実施形態では、ユーザは、擬似参照セルシステム100にソーラシミュレータ1からの擬似太陽光を照射し、擬似参照セルシステム100は、短絡電流を算出し、表示部80に表示する。そして、この表示された短絡電流Iscが、公的機関が測定した短絡電流と同じになるように、ソーラシミュレータ1の光量が調整される。 On the other hand, in this embodiment, the user irradiates the simulated reference cell system 100 with simulated sunlight from the solar simulator 1, and the simulated reference cell system 100 calculates the short-circuit current and displays it on the display unit 80. Then, the light quantity of the solar simulator 1 is adjusted so that the displayed short-circuit current Isc is the same as the short-circuit current measured by the public engine.
 より具体的には、図1に示すように、擬似参照セルシステム100がソーラシミュレータ1の照射光を受け得るようにセットされ、ソーラシミュレータ1が点灯されて照明が開始される。 More specifically, as shown in FIG. 1, the pseudo reference cell system 100 is set to receive the irradiation light of the solar simulator 1, and the solar simulator 1 is turned on to start illumination.
 ソーラシミュレータ1から積分球90を介して照射光を受けた第1受光部10および第2受光部20は、それぞれ光電変換を行い、電圧をそれぞれ出力する。これら出力された各電圧は、A/D変換部40によってそれぞれ増幅され、各電圧の各値A1、A2が求められる(ステップS10)。これら各電圧の各値A1、A2は、演算制御部50に出力される。 The first light receiving unit 10 and the second light receiving unit 20 that have received irradiation light from the solar simulator 1 via the integrating sphere 90 perform photoelectric conversion, respectively, and output voltages. Each of these output voltages is amplified by the A / D conversion unit 40, and each value A1, A2 of each voltage is obtained (step S10). The values A1 and A2 of these voltages are output to the arithmetic control unit 50.
 演算制御部50は、校正値記憶部60から各校正値C1、C2を読み出し(ステップS11)、A/D変換部40から入力された各電圧の各値A1、A2とから、式(4)を用いて短絡電流Iscを算出する(ステップS12)。 The arithmetic control unit 50 reads out the calibration values C1 and C2 from the calibration value storage unit 60 (step S11), and from the values A1 and A2 of the voltages input from the A / D conversion unit 40, the equation (4) Is used to calculate the short-circuit current Isc (step S12).
 演算制御部50は、この算出した短絡電流Iscを表示部80に送信し、表示部80に表示させる(ステップS13)。 The calculation control unit 50 transmits the calculated short-circuit current Isc to the display unit 80 and displays it on the display unit 80 (step S13).
 本実施形態では、擬似参照セル30は、第1受光部10と第2受光部20とを横並びに配置しているが、第1受光部10の受光素子と第2受光部20の受光素子とを積層する構成とし、擬似参照セルとされてもよい。この場合、積分球90は、無くてもよい。 In the present embodiment, the pseudo reference cell 30 has the first light receiving unit 10 and the second light receiving unit 20 arranged side by side, but the light receiving element of the first light receiving unit 10 and the light receiving element of the second light receiving unit 20 May be used as a pseudo reference cell. In this case, the integrating sphere 90 may be omitted.
 また、積分球90で光を均一にする方法を説明したが、半円形のドーム形状の拡散受光球で光を受けて、擬似参照セルの受光部に光を導いても良い。 Further, although the method of making the light uniform with the integrating sphere 90 has been described, the light may be received by the semicircular dome-shaped diffused light receiving sphere and guided to the light receiving portion of the pseudo reference cell.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる擬似参照セルは、光エネルギーを光起電力効果によって電気エネルギーに変換して出力し、分光感度特性がそれぞれ異なる光起電力素子を有する複数の受光部を備え、前記複数の光起電力素子の出力を合成した合成分光感度が、測定対象の太陽電池の(相対)分光感度に等しくなるように設定されている。 A pseudo reference cell according to an aspect includes a plurality of light receiving units each having a photovoltaic element that converts light energy into electrical energy by a photovoltaic effect and outputs the energy, and having different spectral sensitivity characteristics. The combined spectral sensitivity obtained by combining the outputs of the power elements is set to be equal to the (relative) spectral sensitivity of the solar cell to be measured.
 このような構成によれば、分光感度が異なる光起電力素子を組み合わせて所望の分光感度を実現することができるので、測定対象の太陽電池の分光感度にほぼ等しい分光感度を備える擬似参照セルであって、比較的安定した擬似参照セルを提供することが可能となる。ここで、擬似参照セルは、擬似基準セルおよび多接合型の擬似基準要素セルをいう。 According to such a configuration, it is possible to realize a desired spectral sensitivity by combining photovoltaic elements having different spectral sensitivities. Therefore, in a pseudo reference cell having a spectral sensitivity substantially equal to the spectral sensitivity of the solar cell to be measured. Thus, it is possible to provide a relatively stable pseudo reference cell. Here, the pseudo reference cell refers to a pseudo reference cell and a multi-junction type pseudo reference element cell.
 また、他の一態様では、上述の擬似参照セルにおいて、前記複数の光起電力素子のうち、一の光起電力素子が持つ波長感度領域外に他の光起電力素子の波長感度領域が存在し、各々の分光感度特性である波長感度領域が少なくとも一部で重なっている。 In another aspect, in the above-described pseudo reference cell, a wavelength sensitivity region of another photovoltaic element exists outside the wavelength sensitivity region of the one of the plurality of photovoltaic elements. However, the wavelength sensitivity regions which are the respective spectral sensitivity characteristics overlap at least partially.
 このような構成によれば、所定の波長範囲が異なる光起電力素子を含むので、複数の光起電力素子を組み合わせることで、基準セルとして所望される波長範囲に対する感度を備えた擬似参照セルを提供することが可能となる。 According to such a configuration, since the predetermined wavelength range includes different photovoltaic elements, by combining a plurality of photovoltaic elements, a pseudo reference cell having sensitivity to the desired wavelength range as a reference cell can be obtained. It becomes possible to provide.
 また、他の一態様では、上述の擬似参照セルにおいて、前記複数の受光部(光起電力素子)のうちの1または複数の受光部(光起電力素子)は、前記合成分光感度のうち当該光起電力素子が担う分光感度に対応する波長範囲のみを透過する光学フィルタを該光起電力素子の受光面側に備える。また、上述の擬似参照セルにおいて、好ましくは、前記光学フィルタは、吸収型光学フィルタである。あるいは、上述の擬似参照セルにおいて、好ましくは、前記光学フィルタは、干渉型光学フィルタである。 In another aspect, in the above-described pseudo reference cell, one or a plurality of light receiving units (photovoltaic elements) of the plurality of light receiving units (photovoltaic elements) may include the combined spectral sensitivity. An optical filter that transmits only the wavelength range corresponding to the spectral sensitivity of the photovoltaic element is provided on the light receiving surface side of the photovoltaic element. In the above-described pseudo reference cell, preferably, the optical filter is an absorption optical filter. Alternatively, in the above-described pseudo reference cell, preferably, the optical filter is an interference optical filter.
 このような構成によれば、光学フィルタを光起電力素子の受光面側に備えるので、光起電力素子の分光感度のうち所望の波長範囲の分光感度を利用することが可能となる。 According to such a configuration, since the optical filter is provided on the light receiving surface side of the photovoltaic element, it is possible to use the spectral sensitivity in a desired wavelength range among the spectral sensitivities of the photovoltaic element.
 また、他の一態様にかかる擬似参照セルシステムは、上述のいずれかの擬似参照セルと、前記複数の光起電力素子がそれぞれ出力する電流を用いて、前記擬似参照セルの短絡電流を算出する演算部とを備える。 Moreover, the pseudo reference cell system according to another aspect calculates a short-circuit current of the pseudo reference cell by using any one of the pseudo reference cells described above and the current output from each of the plurality of photovoltaic elements. And an arithmetic unit.
 このような構成の擬似参照セルシステムによれば、基準セルとして所望される分光感度にほぼ等しい分光感度を備える擬似参照セルを用いて、例えば、ソーラシミュレータを調整するための短絡電流を求めることが可能となる。 According to the pseudo reference cell system having such a configuration, for example, a short circuit current for adjusting a solar simulator can be obtained using a pseudo reference cell having a spectral sensitivity substantially equal to a desired spectral sensitivity as a reference cell. It becomes possible.
 また、他の一態様では、上述の擬似参照セルシステムにおいて、前記複数の光起電力素子それぞれの分光感度を補正するための校正定数を記憶している記憶部をさらに備え、前記演算部は、前記複数の光起電力素子がそれぞれ出力する電流と、前記記憶部に記憶されている校正定数とを用いて前記擬似参照セルの短絡電流を算出する。 In another aspect, in the above-described pseudo reference cell system, the pseudo reference cell system further includes a storage unit that stores a calibration constant for correcting the spectral sensitivity of each of the plurality of photovoltaic elements, and the calculation unit includes: The short circuit current of the pseudo reference cell is calculated using the current output from each of the plurality of photovoltaic elements and the calibration constant stored in the storage unit.
 このような構成によれば、それぞれの光起電力素子毎に出力電流を校正することができるので、より正確な短絡電流を求めることが可能となる。 According to such a configuration, the output current can be calibrated for each photovoltaic element, so that a more accurate short-circuit current can be obtained.
 また、他の一態様では、これら上述の擬似参照セルシステムにおいて、前記演算部が算出した前記擬似参照セルの短絡電流を表示する表示部をさらに備える。 In another aspect, the above-described pseudo reference cell system further includes a display unit that displays the short circuit current of the pseudo reference cell calculated by the arithmetic unit.
 このような構成によれば、求めた短絡電流をディスプレイ等に表示できるので、ユーザは、容易に擬似参照セルの短絡電流を知ることが可能となる。 According to such a configuration, since the obtained short circuit current can be displayed on a display or the like, the user can easily know the short circuit current of the pseudo reference cell.
 また、他の一態様では、これら上述の擬似参照セルシステムにおいて、前記演算部が算出した前記擬似参照セルの短絡電流を前記擬似参照セルシステムの外部に出力する出力部をさらに備える。 In another aspect, the above-described pseudo reference cell system further includes an output unit that outputs the short circuit current of the pseudo reference cell calculated by the arithmetic unit to the outside of the pseudo reference cell system.
 このような構成によれば、求めた短絡電流を他の装置に出力することができるので、擬似参照セルの短絡電流に基づいて、他の処理、例えばソーラシミュレータ1の光量調整を自動で行うことが可能となる。 According to such a configuration, since the obtained short-circuit current can be output to another device, other processing, for example, light amount adjustment of the solar simulator 1 is automatically performed based on the short-circuit current of the pseudo reference cell. Is possible.
 また、他の一態様では、これら上述の擬似参照セルシステムにおいて、前記擬似参照セルは、照射光を積分球を介して受光する。 In another aspect, in the above-described pseudo reference cell system, the pseudo reference cell receives irradiation light via an integrating sphere.
 このような構成によれば、それぞれの光起電力素子に同一照度の擬似太陽光が照射されるので、各光起電力素子の配置位置に依存しない短絡電流を求めることが可能となる。 According to such a configuration, each photovoltaic element is irradiated with pseudo-sunlight having the same illuminance, so that it is possible to obtain a short-circuit current that does not depend on the arrangement position of each photovoltaic element.
 この出願は、2010年12月28日に出願された日本国特許出願特願2010-291759を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2010-291759 filed on Dec. 28, 2010, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、太陽電池を評価するための擬似参照セルおよびこの擬似参照セルを用いた擬似参照セルシステムを提供することができる。 According to the present invention, a pseudo reference cell for evaluating a solar cell and a pseudo reference cell system using the pseudo reference cell can be provided.

Claims (10)

  1.  光エネルギーを光起電力効果によって電気エネルギーに変換して出力し、分光感度特性がそれぞれ異なる光起電力素子を有する複数の受光部を備え、
     前記複数の受光部の各分光感度は、それらを合成した合成分光感度が、測定対象の太陽電池の分光感度に等しくなるように設定されていること
     を特徴とする擬似参照セル。
    The light energy is converted into electric energy by the photovoltaic effect and output, and includes a plurality of light receiving units having photovoltaic elements having different spectral sensitivity characteristics,
    Each of the spectral sensitivities of the plurality of light receiving units is set so that a combined spectral sensitivity obtained by combining them is equal to a spectral sensitivity of a solar cell to be measured.
  2.  前記複数の光起電力素子のうち、一の光起電力素子が持つ波長感度領域外に他の光起電力素子の波長感度領域が存在し、各々の分光感度特性である波長感度領域が少なくとも一部で重なること
     を特徴とする請求項1に記載の擬似参照セル。
    Among the plurality of photovoltaic elements, there is a wavelength sensitivity area of another photovoltaic element outside the wavelength sensitivity area of one photovoltaic element, and at least one wavelength sensitivity area as each spectral sensitivity characteristic is present. The pseudo reference cell according to claim 1, wherein the pseudo reference cells overlap each other.
  3.  前記複数の受光部のうちの1または複数の受光部は、前記合成分光感度のうち当該光起電力素子が担う分光感度に対応する波長範囲のみを透過する光学フィルタを前記光起電力素子の受光面側に備えること
     を特徴とする請求項1に記載の擬似参照セル。
    One or more light receiving units of the plurality of light receiving units receive an optical filter that transmits only a wavelength range corresponding to a spectral sensitivity of the photovoltaic element among the combined spectral sensitivities. The pseudo reference cell according to claim 1, wherein the pseudo reference cell is provided on a surface side.
  4.  前記光学フィルタは、吸収型光学フィルタであること
     を特徴とする請求項3に記載の擬似参照セル。
    The pseudo reference cell according to claim 3, wherein the optical filter is an absorption optical filter.
  5.  前記光学フィルタは、干渉型光学フィルタであること
     を特徴とする請求項3に記載の擬似参照セル。
    The pseudo reference cell according to claim 3, wherein the optical filter is an interference optical filter.
  6.  請求項1に記載の擬似参照セルと、
     前記複数の光起電力素子がそれぞれ出力する電流を用いて、前記擬似参照セルの短絡電流を算出する演算部とを備えること
     を特徴とする擬似参照セルシステム。
    A pseudo reference cell according to claim 1;
    A pseudo reference cell system comprising: an arithmetic unit that calculates a short-circuit current of the pseudo reference cell using currents output from the plurality of photovoltaic elements.
  7.  前記複数の光起電力素子それぞれの分光感度を補正するための校正定数を記憶している記憶部をさらに備え、
     前記演算部は、前記複数の光起電力素子がそれぞれ出力する電流と、前記記憶部に記憶されている校正定数とを用いて前記擬似参照セルの短絡電流を算出すること
     を特徴とする請求項6に記載の擬似参照セルシステム。
    A storage unit storing a calibration constant for correcting the spectral sensitivity of each of the plurality of photovoltaic elements;
    The arithmetic unit calculates a short-circuit current of the pseudo reference cell using currents output from the plurality of photovoltaic elements and calibration constants stored in the storage unit. 7. The pseudo reference cell system according to 6.
  8.  前記演算部が算出した前記擬似参照セルの短絡電流を表示する表示部をさらに備えること
     を特徴とする請求項6に記載の擬似参照セルシステム。
    The pseudo reference cell system according to claim 6, further comprising a display unit that displays a short circuit current of the pseudo reference cell calculated by the arithmetic unit.
  9.  前記演算部が算出した前記擬似参照セルの短絡電流を前記擬似参照セルシステムの外部に出力する出力部をさらに備えること
     を特徴とする請求項6に記載の擬似参照セルシステム。
    The pseudo reference cell system according to claim 6, further comprising an output unit that outputs the short circuit current of the pseudo reference cell calculated by the arithmetic unit to the outside of the pseudo reference cell system.
  10.  前記擬似参照セルは、照射光を積分球を介して受光すること
     を特徴とする請求項6に記載の擬似参照セルシステム。
    The pseudo reference cell system according to claim 6, wherein the pseudo reference cell receives irradiation light through an integrating sphere.
PCT/JP2011/005178 2010-12-28 2011-09-14 Pseudo reference cell and pseudo reference cell system WO2012090359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550677A JP5561378B2 (en) 2010-12-28 2011-09-14 Pseudo reference cell and pseudo reference cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291759 2010-12-28
JP2010-291759 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090359A1 true WO2012090359A1 (en) 2012-07-05

Family

ID=46382505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005178 WO2012090359A1 (en) 2010-12-28 2011-09-14 Pseudo reference cell and pseudo reference cell system

Country Status (2)

Country Link
JP (1) JP5561378B2 (en)
WO (1) WO2012090359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097512A1 (en) * 2012-12-17 2014-06-26 コニカミノルタ株式会社 Standard cell for solar battery
CN111430482A (en) * 2020-04-29 2020-07-17 中国电子科技集团公司第十八研究所 Method for preparing standard sub-cell of four-junction gallium arsenide solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
JP2004273870A (en) * 2003-03-11 2004-09-30 Canon Inc Method and device for measuring laminated photoelectric conversion element
JP2006147755A (en) * 2004-11-18 2006-06-08 Kaneka Corp Method of measuring characteristics of multi-junction type photoelectric conversion element
JP2006147806A (en) * 2004-11-18 2006-06-08 Kaneka Corp Determination method of characteristic confinement element cell of multi-junction type photoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
JP2004273870A (en) * 2003-03-11 2004-09-30 Canon Inc Method and device for measuring laminated photoelectric conversion element
JP2006147755A (en) * 2004-11-18 2006-06-08 Kaneka Corp Method of measuring characteristics of multi-junction type photoelectric conversion element
JP2006147806A (en) * 2004-11-18 2006-06-08 Kaneka Corp Determination method of characteristic confinement element cell of multi-junction type photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097512A1 (en) * 2012-12-17 2014-06-26 コニカミノルタ株式会社 Standard cell for solar battery
CN111430482A (en) * 2020-04-29 2020-07-17 中国电子科技集团公司第十八研究所 Method for preparing standard sub-cell of four-junction gallium arsenide solar cell
CN111430482B (en) * 2020-04-29 2022-08-02 中国电子科技集团公司第十八研究所 Method for preparing standard sub-cell of four-junction gallium arsenide solar cell

Also Published As

Publication number Publication date
JPWO2012090359A1 (en) 2014-06-05
JP5561378B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Smestad et al. Reporting solar cell efficiencies in solar energy materials and solar cells
Bonnet-Eymard et al. Optimized short-circuit current mismatch in multi-junction solar cells
WO2012020542A1 (en) Light source evaluation device and solar cell evaluation device
Peharz et al. A simple method for quantifying spectral impacts on multi-junction solar cells
Parretta et al. Effects of solar irradiation conditions on the outdoor performance of photovoltaic modules
Dirnberger et al. On the uncertainty of energetic impact on the yield of different PV technologies due to varying spectral irradiance
Kurtz et al. Key parameters in determining energy generated by CPV modules
Dirnberger et al. Progress in photovoltaic module calibration: results of a worldwide intercomparison between four reference laboratories
Monokroussos et al. Electrical characterization intercomparison of high‐efficiency c‐Si modules within Asian and European laboratories
JP5561378B2 (en) Pseudo reference cell and pseudo reference cell system
JP5626363B2 (en) Spectral irradiance measuring apparatus, spectral irradiance measuring system, and spectral irradiance calibration method
Emery Photovoltaic calibrations at the National Renewable Energy Laboratory and uncertainty analysis following the ISO 17025 guidelines
Dirnberger Photovoltaic module measurement and characterization in the laboratory
Bliss et al. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating
Osterwald et al. Effects of spectral error in efficiency measurements of GaInAs-based concentrator solar cells
JP5742835B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
WO2012035694A1 (en) Solar cell evaluation device and light source evaluation device
JP4696308B2 (en) Method for evaluating characteristics of solar cells
Kröger et al. Results of the round robin calibration of reference solar cells within the PhotoClass project
Takeguchi et al. Accurate estimation of outdoor performance of photovoltaic module through spectral mismatch correction factor under wide range of solar spectrum
WO2014097512A1 (en) Standard cell for solar battery
Monokroussos et al. Energy rating of c-Si and mc-Si commercial PV-Modules in accordance with IEC 61853–1,-2,-3 and impact on the annual yield
Nishikawa et al. Irradiance adjustment system developed for various types of solar cells and illumination conditions
Chojniak et al. Outdoor measurements of a full‐size bifacial Pero/Si tandem module under different spectral conditions
Driesse PV Reference Cells for Outdoor Use: An Investigation of Calibration Factors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853431

Country of ref document: EP

Kind code of ref document: A1