WO2015172750A1 - Appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et procédé associé - Google Patents

Appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et procédé associé Download PDF

Info

Publication number
WO2015172750A1
WO2015172750A1 PCT/CN2015/083026 CN2015083026W WO2015172750A1 WO 2015172750 A1 WO2015172750 A1 WO 2015172750A1 CN 2015083026 W CN2015083026 W CN 2015083026W WO 2015172750 A1 WO2015172750 A1 WO 2015172750A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic radiation
mine
antenna
area
fire
Prior art date
Application number
PCT/CN2015/083026
Other languages
English (en)
Chinese (zh)
Inventor
王恩元
孔彪
刘晓斐
Original Assignee
王恩元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王恩元 filed Critical 王恩元
Priority to AU2015258535A priority Critical patent/AU2015258535B2/en
Publication of WO2015172750A1 publication Critical patent/WO2015172750A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F5/00Means or methods for preventing, binding, depositing, or removing dust; Preventing explosions or fires
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions

Definitions

  • the invention relates to a fire detecting device and method, in particular to a mine hidden fire danger electromagnetic radiation detecting device and method.
  • Mine fires include external fires and internal fires. Internal fires are fires that occur under certain conditions of coal with spontaneous combustion tendency. They are characterized by latent and sudden nature. Mine fires often lead to casualties, equipment losses, mine shutdowns, resource destruction, and even gas, coal dust or sulfide dust explosions, which have an important impact on mine production and personnel safety. Due to the relatively small space under the mine and the special environment under the mine, it is difficult to accurately understand the hidden fire hazard and fire situation. Therefore, the use of fire detection technology for concealed fire detection is an important means for the mine to find fire to understand the fire.
  • the current mine fire hazard detection methods mainly include: (1) Temperature method, which is a method for determining the natural fire hazard and area of the coal seam based on the temperature change of the measured area. This method is mainly used for early forecasting and cannot detect the extent of hidden fire or fire hazards.
  • (2) Visible light image analysis method uses the visible light image for fire analysis. Since the visible light image has little correlation with the thermal characteristics of the fire, there are defects in which the algorithm is complicated and the accuracy is not high.
  • (3) Infrared analysis and detection The infrared temperature is used to obtain the temperature of the object, and it is judged whether the fire threshold is exceeded or not.
  • Such detection devices are mostly implemented by near-infrared temperature measuring instruments, which are seriously affected by the distance and cannot accurately detect the fire source.
  • Indicator gas analysis method which uses a combination of beam tube monitoring system, manual sampling analysis, mine monitoring system and other means to obtain various types of mass change gas, the concentration and ratio of certain gases generated during the spontaneous combustion of coal. The characteristic parameters such as the rate of occurrence are mathematically analyzed.
  • the beam tube is easily damaged by coal and rock, and it is impossible to detect the fire hazard of the deep coal body and the goaf.
  • the object of the present invention is to provide a concealed fire hazard detecting device and method with high detection accuracy and being easy to carry.
  • the object of the present invention is achieved as follows: the content includes: detecting device and detecting method; mine hidden
  • the fire electromagnetic radiation detecting device is composed of a vertically oriented receiving antenna group and a monitoring host; the monitoring host includes a preamplifier, a filter, an A/D converter, a buffer register, a CPU, a data memory, a display, a communication port, a keyboard, and a power supply.
  • the mutually perpendicularly oriented receiving antennas are divided into antennas No. 1 and No. 2, and antennas No. 1 and No. 2 are respectively connected in series with the preamplifier and the filter to form two antenna groups, and the two antenna groups connected in series are connected in parallel.
  • the A/D converter is connected in series with the A/D converter, and the A/D converter is connected in series with the buffer register and the CPU.
  • the data memory, the display, the communication port, and the keyboard are connected in parallel to the CPU, and the power supply supplies power to the monitoring host.
  • the monitoring host of the further mine concealed fire electromagnetic radiation detecting device synchronously collects the electromagnetic radiation components E 1 and E 2 received from the antenna No. 1 and the antenna No. 2 , and the vector superimposed values of the components E 1 and E 2 are the effective receiving quadrant regions of the antenna group.
  • the data storage of the mine hidden fire danger electromagnetic radiation detecting device is installed in the CPU, the monitoring host is provided with an input keyboard for inputting critical electromagnetic radiation parameters, and the monitoring host is equipped with a fireproof outer casing, which can adjust the device according to different mine conditions. Power size.
  • Mine concealed fire hazard electromagnetic radiation detection method at the selected measuring point, the effective receiving direction of antenna 1 and antenna 2 is directed toward the detection area, and the electromagnetic radiation value and its main direction of the area are tested and calculated; the main direction of different measuring points The intersection is a potentially hazardous area.
  • Mine concealed fire hazard electromagnetic radiation detection device and method detect the risk and scope of mine concealed fire from time and space, and can carry out non-contact continuous detection of concealed fire hazards and areas inside and outside the goaf
  • the device is low in cost and easy to produce, and greatly saves the cost and budget of the mine in concealed fire detection;
  • the device is simple to operate, is not limited by the small space under the well and the special environment of the underground, and the detection process has no influence on the production;
  • the device can synchronize Process and analyze the electromagnetic radiation index values and their dynamic trends during the detection process, analyze and judge the fire hazard in the potentially dangerous area in real time, and quickly and accurately realize the detection and early warning of mine fire hazard;
  • the device can pass multiple tests of electromagnetic radiation
  • the dynamic trend of indicators reflects mine fire changes and tests the effectiveness of mine fire prevention; the efficient and rapid detection and early warning of the device and method will bring huge social and economic benefits to the mine.
  • FIG. 1 is a schematic structural view of a mine concealed fire hazard electromagnetic radiation detecting device of the present invention.
  • FIG. 2 is a schematic view showing the arrangement of an electromagnetic radiation detecting device in the goaf of the present invention.
  • FIG. 3 is a block diagram of a process for detecting a hidden fire hazard electromagnetic radiation of a mine according to the present invention.
  • FIG. 1 is a schematic structural diagram of a mine concealed fire hazard electromagnetic radiation detecting device, which includes: a detecting device and a detecting method; the mine concealed fire electromagnetic radiation detecting device is composed of mutually perpendicularly oriented receiving antenna groups and a monitoring host; the monitoring host includes the front Amplifier, filter, A/D converter, buffer register, CPU, data memory, display, communication port, keyboard and power supply; wherein the vertically oriented receiving antennas are divided into antenna 1 and antenna 2, antenna 1 and 2 The antennas are respectively connected in series with the preamplifier and the filter to form two antenna groups. The two antenna groups connected in series are connected in parallel and then connected in series with the A/D converter. The A/D converter is connected in series with the buffer register and the CPU. The data memory, display, communication port, and keyboard are connected in parallel to the CPU, and the power supply supplies power to the monitoring host.
  • FIG. 2 is a schematic view of the arrangement of the electromagnetic radiation detecting device in the goaf.
  • the worker carries the mine hidden fire hazard electromagnetic radiation detecting device to the predetermined place for detection, as shown in the position of the monitoring host in the figure.
  • the effective receiving direction of antenna 1 and antenna 2 is directed to the monitoring area, and the monitoring host synchronously collects the electromagnetic radiation components E 1 and E 2 received from antennas 1 and 2 , and the components E 1 and E 2 vectors.
  • a bracket can be mounted under the antenna to adjust the height of the antenna and the test distance.
  • the No. 1 antenna and the No. 2 antenna effectively receive the quadrant area as shown by the dotted line in the figure, and the main direction of the electromagnetic radiation is the solid line position as shown in the figure.
  • the data storage of the mine hidden fire danger electromagnetic radiation detecting device is installed in the CPU.
  • the monitoring host is provided with an input keyboard for input of critical electromagnetic radiation parameters.
  • the monitoring host is equipped with a fireproof outer casing, which can adjust the power of the device according to different mine conditions. . Install the control program in the data memory.
  • Mine concealed fire hazard electromagnetic radiation detection method select two measuring points as shown in the figure, place the detecting device at the selected measuring point, and direct the effective receiving direction of antenna 1 and antenna 2 toward the detection area, test and Calculate the electromagnetic radiation value of the area and its main direction; the intersection of the main directions of the two measuring points is a potentially dangerous area, as shown by the circular area in the figure.
  • Mine concealed fire hazard electromagnetic radiation detection method based on the average value of electromagnetic radiation indicators in potential hazardous areas and the dynamic trend of multiple tests, using the critical value method and dynamic trend method to determine the average value of electromagnetic radiation indicators in potential hazardous areas and multiple times The dynamic trend of the test; when the electromagnetic radiation index value or the dynamic change trend exceeds the corresponding critical value, it is determined that there is a fire hazard in the area.
  • Figure 3 is a block diagram of the process of mine concealed fire hazard electromagnetic radiation detection method. For the following four steps.
  • the first step device layout, the antenna No. 1 and No. 2 antenna are fixed on the pre-selected measuring points, and large electrical equipment is avoided in the vicinity of the measuring point to prevent the receiving signal of the antenna from being interfered.
  • the distance between the antenna and the measured area depends on the site conditions and the size of the area being measured.
  • the detection device is turned on, the built-in software is initialized, and the program starts running. During operation, the system will prompt the operation steps, and the display shows the operation process and the detection result.
  • the second step parameter input, input the critical electromagnetic radiation intensity value E L and the critical pulse value N L, the critical electromagnetic radiation intensity growth rate P e , the critical electromagnetic radiation pulse number growth rate P n , the detection time T, the amplification factor through the input keyboard M.
  • the third step: detection and data processing, the No. 1 antenna and the No. 2 antenna will amplify the electromagnetic radiation information received on the site through the preamplifier, filter and A/D converter processing, transfer to the buffer register, and the CPU reads the antenna No. 1 And the electromagnetic radiation components E 1 and E 2 received by the antenna No. 2 , calculate the vector superposition values of the components E 1 and E 2 in the time period, thereby obtaining the electromagnetic radiation values in the effective receiving quadrant region of the antenna No. 1 and the antenna No. 2; E.
  • the fourth step judging the potential dangerous area, adjusting the measuring point, and based on the electromagnetic radiation information received by the antenna group , the monitoring host calculates and analyzes the average value of the electromagnetic radiation intensity in the potentially dangerous area. Or the average value of the pulse number N and the growth rate ⁇ E, ⁇ N of the dynamic change, the critical value judgment and the dynamic trend determination method are used to determine the fire risk of the potentially dangerous area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et un associé, ledit appareil et ledit procédé étant destinés à la détection d'incendie. La détection d'un danger d'incendie caché dans une mine est réalisée par la détection et l'analyse de signaux de rayonnement électromagnétique produits au fur et à mesure que la température d'un corps de charbon augmente ou que le corps de charbon brûle. L'appareil de détection comprend un groupe d'antennes de réception mutuellement perpendiculaires et une machine de surveillance principale. Le procédé de détection consiste à : orienter, à des points de mesure désignés, la direction de réception efficace du groupe d'antennes de réception mutuellement perpendiculaires vers une zone de détection, puis mesurer et calculer la valeur et la direction primaire du rayonnement électromagnétique, l'intersection des directions primaires par rapport aux différents points de mesure indiquant une zone de danger potentiel. Sur la base de la valeur moyenne des indicateurs de rayonnement électromagnétique d'une zone de danger potentiel et sur la base d'une tendance représentée par de multiples mesures de changement dynamique, une détermination est réalisée au moyen d'une valeur critique et de la tendance du changement dynamique. Lorsqu'une valeur d'indicateur de rayonnement électromagnétique ou la tendance du changement dynamique dépasse une valeur critique correspondante, il est déterminé que le danger d'incendie est présent dans ladite zone. Le procédé de l'invention peut être utilisé pour détecter, dans le temps et dans l'espace, un danger d'incendie caché et des zones de danger d'incendie dans une mine. Le procédé est très efficace et pratique.
PCT/CN2015/083026 2014-05-16 2015-07-01 Appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et procédé associé WO2015172750A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015258535A AU2015258535B2 (en) 2014-05-16 2015-07-01 Electromagnetic radiation detection apparatus for hidden fire danger in mine, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410209447.XA CN103985218B (zh) 2014-05-16 2014-05-16 矿井隐蔽火灾危险电磁辐射探测装置及方法
CN201410209447.X 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015172750A1 true WO2015172750A1 (fr) 2015-11-19

Family

ID=51277173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083026 WO2015172750A1 (fr) 2014-05-16 2015-07-01 Appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et procédé associé

Country Status (3)

Country Link
CN (1) CN103985218B (fr)
AU (1) AU2015258535B2 (fr)
WO (1) WO2015172750A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720378A (zh) * 2021-07-29 2021-11-30 华北科技学院(中国煤矿安全技术培训中心) 一种采空区煤自燃灾害智能在线监测与联动处置装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985218B (zh) * 2014-05-16 2016-10-26 中国矿业大学 矿井隐蔽火灾危险电磁辐射探测装置及方法
CN106321149B (zh) * 2016-09-06 2018-03-30 北京科技大学 矿山典型动力灾害电‑震耦合监测预警方法
CN107589463B (zh) * 2017-08-28 2024-02-02 河南理工大学 一种测试煤自燃过程电磁辐射的系统
CN108071422B (zh) * 2018-02-23 2023-04-14 中国矿业大学(北京) 基于图像监测设备的矿井爆炸监控系统
CN108071423B (zh) * 2018-02-23 2023-04-14 中国矿业大学(北京) 基于红外图像监测设备的矿井爆炸监控系统
CN108131166B (zh) * 2018-02-23 2023-04-14 中国矿业大学(北京) 基于图像的矿井爆炸监测报警系统
CN108590763B (zh) * 2018-02-23 2023-04-14 中国矿业大学(北京) 基于红外图像的矿井爆炸监测报警系统
CN108896611A (zh) * 2018-08-23 2018-11-27 中原工学院 煤自燃倾向性的测定装置及测定方法
CN111243213B (zh) * 2020-01-14 2022-04-29 山东科技大学 煤堆或矸石山自燃高温异常区域电磁信号探测及定位方法
CN114387754B (zh) * 2020-10-16 2023-10-27 中国移动通信集团设计院有限公司 基于消防联动的天线控制方法及装置
CN113252105B (zh) * 2021-05-13 2021-11-16 中国安全生产科学研究院 一种硫化矿石存储隐患检测方法及系统
CN114627205B (zh) * 2022-03-31 2023-04-07 昆明理工大学 一种煤层平行电磁波束探测的多尺度图像重建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1265369A1 (ru) * 1985-04-17 1986-10-23 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Способ определени выбросоопасных зон угольного пласта при ведении горных работ в очистных выработках
WO1997014941A1 (fr) * 1995-10-13 1997-04-24 Powertech Labs Inc. Mesure a distance de temperatures internes a travers un materiau permeable a un rayonnement a hyperfrequence
CN101806228A (zh) * 2010-02-01 2010-08-18 南京紫淮矿用电子高科技有限公司 煤层瓦斯射电频谱测向预警系统
CN101958033A (zh) * 2010-09-09 2011-01-26 北京航空航天大学 被动毫米波隐藏火源探测系统
CN203452853U (zh) * 2013-09-18 2014-02-26 贵州师范大学 一种用于煤与瓦斯突出监测的三维电磁辐射感应探测装置
CN103985218A (zh) * 2014-05-16 2014-08-13 中国矿业大学 矿井隐蔽火灾危险电磁辐射探测装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288455C (zh) * 2004-11-19 2006-12-06 中国矿业大学 煤岩动力灾害实时监测预报装置及预报方法
CN201540627U (zh) * 2009-10-27 2010-08-04 西安盛赛尔电子有限公司 多参量红外火焰探测器
GB201105889D0 (en) * 2011-04-07 2011-05-18 Popper James S Fire detector
CN202033865U (zh) * 2011-04-25 2011-11-09 四川天微电子有限责任公司 一种紫红外复合火焰探测器
CN202033478U (zh) * 2011-04-29 2011-11-09 中国科学院地质与地球物理研究所 具有正交天线的甚低频电磁仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1265369A1 (ru) * 1985-04-17 1986-10-23 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Способ определени выбросоопасных зон угольного пласта при ведении горных работ в очистных выработках
WO1997014941A1 (fr) * 1995-10-13 1997-04-24 Powertech Labs Inc. Mesure a distance de temperatures internes a travers un materiau permeable a un rayonnement a hyperfrequence
CN101806228A (zh) * 2010-02-01 2010-08-18 南京紫淮矿用电子高科技有限公司 煤层瓦斯射电频谱测向预警系统
CN101958033A (zh) * 2010-09-09 2011-01-26 北京航空航天大学 被动毫米波隐藏火源探测系统
CN203452853U (zh) * 2013-09-18 2014-02-26 贵州师范大学 一种用于煤与瓦斯突出监测的三维电磁辐射感应探测装置
CN103985218A (zh) * 2014-05-16 2014-08-13 中国矿业大学 矿井隐蔽火灾危险电磁辐射探测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, LIANG ET AL.: "The Appliance of Microwave Technology in Fire Detection", FIRE SCIENCE AND TECHNOLOGY, vol. 25, no. 01, 31 January 2006 (2006-01-31), pages 73 - 75 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720378A (zh) * 2021-07-29 2021-11-30 华北科技学院(中国煤矿安全技术培训中心) 一种采空区煤自燃灾害智能在线监测与联动处置装置

Also Published As

Publication number Publication date
AU2015258535A1 (en) 2016-11-24
AU2015258535B2 (en) 2017-07-20
CN103985218B (zh) 2016-10-26
CN103985218A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2015172750A1 (fr) Appareil de détection de rayonnement électromagnétique pour un danger d'incendie caché dans une mine, et procédé associé
Murvay et al. A survey on gas leak detection and localization techniques
RU2594917C1 (ru) Способ и схема для обнаружения и минимизации метановой опасности в районе очистной лавы
NZ589157A (en) Detecting electrical anomalies by receiving sensor data with received anomaly detection rules
CN110748381B (zh) 用于煤矿井下的采空区高温火区位置声波探测方法及系统
CN104296944B (zh) 一种浅埋煤层煤矿地表向矿井下采空区漏风测试方法
CN106569105B (zh) 一种gis局部放电光学特高频联合检测方法
Yuan et al. Early fire detection for underground diesel fuel storage areas
CN104155071A (zh) 一种基于背景纹影技术的气体泄漏监测装置与方法
WO2015072130A1 (fr) Système de détermination de fuite et méthode de détermination de fuite
CN115075886B (zh) 煤巷掘进全周期多尺度突出危险时空预警与消突检验方法
CN108760983A (zh) 分级复合指标体系的采煤工作面自然发火预警方法
CN202387137U (zh) 火场智能生命三维引航器及系统
Miao et al. Research on multi feature fusion perception technology of mine fire based on inspection robot
CN107367303A (zh) 一种施工安全监控装置
CN105651695B (zh) 用于危害气体探测器的模拟测试装置及模拟测试方法
LI et al. Infrared thermography for prediction of spontaneous combustion of sulfide ores
MX2017016644A (es) Un método, sistema y aparato para proveer una señal electrónica para la vigilancia y prueba de sensores de radiación geiger-muller.
Bhuttoa et al. Development of a wearable safety device for coal miners
CN106285780A (zh) 煤矿瓦斯浓度监测报警装置
CN204405635U (zh) 一种气体在线检测防爆系统
CN103968953B (zh) 炮孔全孔测温装置及其测试方法
Hongyao Coal mine disaster rescue life sign monitoring technology based on FBG and acceleration sensor
CN207067025U (zh) 一种输煤皮带在线煤质分析系统
CN206311577U (zh) 一种防遮挡的气体检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015258535

Country of ref document: AU

Date of ref document: 20150701

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15792821

Country of ref document: EP

Kind code of ref document: A1