WO2015172667A1 - 多波束天线系统及其相位调节方法和双极化天线系统 - Google Patents

多波束天线系统及其相位调节方法和双极化天线系统 Download PDF

Info

Publication number
WO2015172667A1
WO2015172667A1 PCT/CN2015/078218 CN2015078218W WO2015172667A1 WO 2015172667 A1 WO2015172667 A1 WO 2015172667A1 CN 2015078218 W CN2015078218 W CN 2015078218W WO 2015172667 A1 WO2015172667 A1 WO 2015172667A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
antenna system
power
radio frequency
units
Prior art date
Application number
PCT/CN2015/078218
Other languages
English (en)
French (fr)
Inventor
王强
赵建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15793477.9A priority Critical patent/EP3136509B1/en
Priority to KR1020167034343A priority patent/KR101858042B1/ko
Priority to JP2016567653A priority patent/JP6395862B2/ja
Publication of WO2015172667A1 publication Critical patent/WO2015172667A1/zh
Priority to US15/349,517 priority patent/US10069215B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multi-beam antenna system, a phase adjustment method thereof, and a dual-polarization antenna system.
  • An antenna is an energy converter that converts a guided wave propagating on a transmission line into a spatial electromagnetic wave, or vice versa, for transmitting or receiving electromagnetic waves in wireless communication.
  • the most common conventional antennas in wireless communication systems are: FRP omnidirectional antennas, plate directional antennas, and small whip antennas. Many times people need antennas with maximum coverage and farthest coverage, ie antennas have the largest beamwidth and maximum gain, while on a single beam antenna the two are contradictory.
  • Multi-beam antennas have multiple beam radiating capabilities that increase the range of radiated coverage without reducing antenna gain. However, the radiation coverage of conventional multi-beam antennas is still relatively small.
  • the invention provides a multi-beam antenna system, a phase adjustment method thereof and a dual-polarization antenna system, which realize a large radiation coverage range.
  • the present invention provides a multi-beam antenna system comprising:
  • the one-dimensional multi-beam forming module connected to the radio frequency port, the one-dimensional multi-beam forming module comprising a multi-beam forming unit and a first phase control unit connected to the multi-beam forming unit,
  • the multi-beam forming unit is configured to convert the radio frequency signal transmitted by the radio frequency port into an M-channel radio frequency signal having different phases, where M is an integer greater than 1, and the multi-beam forming unit has a function for outputting the M path separately An M output terminal of the radio frequency signal, wherein the first phase control unit is configured to adjust a phase of the M radio frequency signal;
  • a two-dimensional multi-beam forming module coupled to the one-dimensional multi-beam forming module, the two-dimensional multi-beam forming module comprising a phase shifter, a second phase control unit coupled to the phase shifter, and respectively coupled to the M first power dividing units of the M output ends of the multi-beam forming unit, each of the first power dividing units is configured to divide the RF signal into one N-channel RF signal, wherein N is an integer greater than 1, each first The power dividing unit has N output branches for respectively outputting the N-channel RF signals, and the phase shifters are disposed on the P output branches of the N output branches, and P is an integer greater than or equal to 1.
  • the second phase control unit is configured to adjust a phase when the phase shifter performs phase shifting;
  • the M ⁇ N radiating elements Connected to the M ⁇ N radiating elements of the second multi-beam forming module, the M ⁇ N radiating elements form a matrix having N rows and M columns, and the M column radiating units are respectively connected to the M first a power dividing unit, wherein the N radiating units in each of the RF units are respectively connected to the N output branches of a first power dividing unit, and in the matrix of the N rows and M columns, and the M first powers
  • the M ⁇ P radiating elements in which the output branches of the phase shifters are arranged in the subunits constitute a matrix of P rows and M columns.
  • each of the first power split units includes a first power splitter, the first power splitter has Q outputs, and the first power split The device is configured to divide one RF signal into Q RF signals, and Q is an integer greater than one;
  • Each of the first power dividing units further includes Q second power splitters respectively connected to the Q output ends of the first power splitter, and each of the second power splitters includes R output terminals, and each of the second power splits
  • the N radiating elements in each column of radio frequency units are respectively connected to the N output ends of the Q second power splitters.
  • the output branch of the phase shifter is included in each of the first power split units, and the first power splitter passes the phase shifter Connected to the second splitter, or the second splitter is connected to the radiating element through a phase shifter.
  • the M phase shifters respectively connected to the M radiating elements in the same row constitute a linked phase shifter, and the coordinated phase shifting phase
  • the device is used to make multiple RF signals in the same phase shift phase.
  • the multiple beamforming unit includes a butler matrix and an S-selector switch, The butler matrix is connected to the radio frequency port by the S selection switch;
  • the butler matrix includes S inputs, S is an integer greater than 1, the S select switch includes S outputs, and the S outputs of the S select switches are respectively connected to S of the butler matrix Input
  • the first phase control unit is connected to the control end of the S-select switch, and the first phase control unit is configured to control the S-select switch to select one of the S output outputs for output.
  • the multiple beam forming unit includes a second power splitting unit and is connected to a phase shifting unit of the second power dividing unit, the phase shifting unit being connected to the first phase control unit.
  • a dual-polarized antenna system comprising two of the above-described multi-beam antenna systems; each radiating element in one multi-beam antenna system and each radiating element in another multi-beam antenna system are respectively Corresponding to form a dual-polarized radiation unit.
  • a phase adjustment method for a multi-beam antenna system for the multi-beam antenna system described above, including:
  • Phase-shifting the P-channel RF signals in the N-channel RF signals in each of the first power-dividing units, and in the M first-power division units, the M-channel RF signals output to the M radiation units in the same row are in the same phase Phase shifting.
  • the multi-beam antenna system, the phase adjustment method thereof and the dual-polarization antenna system provided by the invention form a matrix type radiation unit, and respectively form a module by a one-dimensional multi-beam forming module and a two-dimensional multi-beam forming module
  • the block adjusts the maximum gain direction in two dimensions of the matrix radiating element separately, thereby achieving a larger radiation coverage.
  • FIG. 1 is a schematic structural diagram of a multi-beam antenna system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of another multi-beam antenna system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a first power splitting unit according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a multi-beam antenna system according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of another first power dividing unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of another first power dividing unit according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of another first power dividing unit according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a multi-beam antenna system according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a matrix for forming a dual-polarized radiating element according to Embodiment 4 of the present invention.
  • an embodiment of the present invention provides a multi-beam antenna system, including: a radio frequency port 1; a one-dimensional multi-beam forming module 2 connected to the radio frequency port 1, and a one-dimensional multi-beam forming module 2 including a multi-beam forming unit 21 and a first phase control unit 22 connected to the multi-beam forming unit 21, the multi-beam forming unit 21 is configured to convert the radio frequency signal transmitted by the radio frequency port 1 into M-channel radio frequency signals having different phases, where M is an integer greater than 1.
  • the multi-beam forming unit 21 has M output ends for respectively outputting the M-channel radio frequency signals, and the first phase control unit 22 is configured to adjust the M-channel radio frequency.
  • Phase of the signal a two-dimensional multi-beam forming module 3 connected to the one-dimensional multi-beam forming module 2, the two-dimensional multi-beam forming module 3 comprising a phase shifter 32, a second phase control unit 33 connected to the phase shifter 32, and respectively
  • the M first power dividing units 31 are connected to the M output ends of the one-dimensional multi-wave speed forming module 2, and each of the first power dividing units 31 is configured to divide the RF signal into one N-channel RF signal, where N is greater than 1.
  • each of the first power dividing units 31 has N output branches for respectively outputting the N-channel RF signals, and the P-output branches of the N output branches are provided with a phase shifter 32, P is An integer greater than or equal to 1, the second phase control unit 33 is configured to adjust a phase when the phase shifter 32 performs phase shifting; M ⁇ N radiating elements 4 connected to the second multi-beam forming module 3, M ⁇ N radiations
  • the unit 4 forms a matrix having N rows and M columns, and the M columns of radiating elements 4 are respectively connected to the M first power dividing units 31, and the N radiating units in each column of the radio frequency unit 4 are respectively connected to a first power dividing unit 31.
  • first phase control unit 22 and the second phase control unit 33 may be two separate units, respectively providing the multi-beam forming unit 21 and the phase shifter 32 with corresponding control signals; or as shown in FIG. 2 It is shown that the first phase control unit and the second phase control unit are the same phase control unit 5, and respectively provide the corresponding control signals for the multi-beam forming unit 21 and the phase shifter 32.
  • the radio frequency port 1 transmits the radio frequency signal to the multi-beam forming unit 21, and the multi-beam forming unit 21 converts the radio frequency signal into M-channel radio frequency signals having different phases and respectively transmits them to the M first power dividing units 31, respectively.
  • the first power dividing unit 31 distributes the received one-way radio frequency signal into multiple radio frequency signals, and one or more channels (only one channel is shown in FIG. 1) after the power distribution are directly transmitted to the corresponding radiation.
  • the unit 4, after the power distribution, the other one or more radio frequency signals are phase-shifted by the phase shifter 32 and transmitted to the corresponding radiation unit 4, and the M ⁇ N radiation units 4 radiate the respective received radio frequency signals.
  • the maximum gain of a plurality of radiating elements in the same direction is determined by the phase difference between the radio frequency signals of the radiating elements.
  • the multi-beam forming unit 21 sets the M-channel radio frequency signals output by the one-dimensional multi-beam forming module 2 to different phases, and then the phase shifter 32 performs the radio frequency signals on the P output branches of each of the first power dividing units 31.
  • Phase shifting, in M first power In the sub-unit 31 the M-channel radio frequency signals outputted to the M radiating elements 4 of the same row are phase-shifted by the same phase to ensure that the phase shifter 32 does not change the M-channel radio frequency signals of the M radiating elements 4 of the same row. The phase difference between them.
  • each RF signal is divided into a first RF signal and a second RF signal of the same phase in the first power dividing unit 31, and the four first RF signals are respectively output to the four RF units 4 of the first row, four paths
  • the second RF signal is phase-shifted by 10 degrees and output to the four RF units 4 of the second row.
  • the four RF signals received by the four RF units 4 of the first row are respectively -45 degrees, - At 90 degrees, -135 degrees, and -180 degrees, the four RF signals received by the four RF units 4 in the second row are -35 degrees, -80 degrees, -125 degrees, and -170 degrees, respectively.
  • the maximum gain direction of a row or column of radio frequency units is determined by the phase difference of the radio frequency signals of the plurality of radio frequency units in the row or column, and therefore, the maximum gain direction of the first dimension (lateral direction) is determined by the one-dimensional multi-beam forming module. 2 adjustment decision, the maximum gain direction of the second dimension (longitudinal) is determined by the two-dimensional multi-beam forming module 3 to adjust the maximum gain direction of the two dimensions separately.
  • the multi-beam antenna system in this embodiment forms a matrix-type radiating element, and respectively adjusts the maximum gain direction in two dimensions of the matrix-type radiating element by the one-dimensional multi-beam forming module and the two-dimensional multi-beam forming module, respectively. Thereby achieving a large radiation coverage.
  • each first power dividing unit 31 includes a first power splitter 311, and the first power splitter 311 has Q outputs, and the first power splitter The 311 is configured to divide the RF signal into one Q radio signal, and Q is an integer greater than 1.
  • Each of the first power split units 31 further includes Q second connected to the Q outputs of the first splitter 311.
  • the output branch of the phase shifter 32 is included in each of the first power dividing units 31, and the second power splitter 312 is connected to the first power splitter 311 through the phase shifter 32; As shown in FIG. 5, the second power splitter 312 is connected to the radiating element 4 through the phase shifter 32; or as shown in FIG. 6, in the partial output branch of the first power dividing unit 31, the second power splitter 312 The first power splitter 311 is connected to the first power splitter 311. In the other partial output branch of the first power split unit 31, the second power splitter 312 is connected to the radiating element 4 via the phase shifter 32.
  • the M phase shifters 32 respectively connected to the M radiating elements 4 of the same row form a phase shifting phase.
  • the interlocking phase shifter is used to make the multiple RF signals have the same phase shift phase, and the linked phase shifter is lower in cost than the multiple individual phase shifters.
  • the output branches provided with the phase shifters 32 can be separated by the output branches without the phase shifters.
  • the radiating unit 4 is used for transmitting and receiving radio frequency signals, and can be set by using a common symmetric dipole or vertical polarization. The spacing of the radiating elements 4 can be adjusted according to the beam coverage, usually one-half wavelength.
  • the multi-beam antenna system described above can be extended to a Multi Input and Multiple Output (MIMO) antenna.
  • MIMO Multi Input and Multiple Output
  • the multi-beam antenna system in this embodiment forms a matrix-type radiating element, and respectively adjusts the maximum gain direction in two dimensions of the matrix-type radiating element by the one-dimensional multi-beam forming module and the two-dimensional multi-beam forming module, respectively. Thereby achieving a large radiation coverage.
  • phase shifting when implementing a matrix type radiating element to radiate radio frequency signals of different phases, it is not necessary to separately set a device for phase shifting for each radiating element, and only need to first adjust the phase according to the beam requirement of one dimension, and then according to another
  • the beam of the dimension requires phase adjustment, and the multi-channel RF signals with different phases are obtained by superimposing the phase after the adjustment, and finally the matrix-type radiation unit radiates the RF signals of different phases, so that the phase shifter can be used with the phase shifter.
  • the number of components used for phase shifting during the phase shifting process is small, reducing the complexity of the antenna system and saving costs.
  • the multi-beam forming unit 21 may include a butler matrix 23 and an S-select switch 24, and the butler matrix 23 is connected to the radio frequency port 1 through the S-select switch 24.
  • the matrix 23 includes S input terminals, S is an integer greater than 1, the S select switch 24 includes S output terminals, and the S output terminals of the S select switch 24 are respectively connected to the S input terminals of the butler matrix 23;
  • the phase control unit 22 is connected to the control terminal of the S selection switch 24, and the first phase control unit 22 is configured to control the S selection switch 24 to select one of the S output terminals for output.
  • the butler matrix 23 When the RF input signals are input to different input terminals of the butler matrix 23, the butler matrix 23 has different modes, and the frequency of the RF signal output by the butler matrix 23 is different in different modes, so the S selection switch 24 can realize the RF signal output to the butler matrix 23. Phase adjustment.
  • the multi-beam forming unit may further include a second power dividing unit and a phase shifting unit connected to the second power dividing unit, and the phase shifting unit is connected to the first a phase control unit, wherein the first phase control unit directly adjusts the phase of the phase shifting unit for phase shifting, that is, by converting the radio frequency signal transmitted by the radio frequency port into the M-channel radio frequency signal by the second power dividing unit, passing the first phase
  • the control unit and the phase shifting unit are implemented to make the M-channel RF signals have different phases.
  • the multi-beam antenna system in this embodiment forms a matrix-type radiating element, and respectively adjusts the maximum gain direction in two dimensions of the matrix-type radiating element by the one-dimensional multi-beam forming module and the two-dimensional multi-beam forming module, respectively.
  • a matrix type radiating element to radiate radio frequency signals of different phases, it is not necessary to separately set a device for phase shifting for each radiating element, and only need to first adjust the phase according to the beam requirement of one dimension, and then according to another The beam of the dimension requires phase adjustment, and the multi-channel RF signals with different phases are obtained by superimposing the phase after the adjustment.
  • the matrix radiating element radiates the RF signals of different phases, so that it can be used with the butler matrix, and the butler matrix is passed.
  • the bridge is used to realize the phase adjustment function of the RF signal, and the bridge is lower in cost than the phase shifter.
  • the embodiment provides a dual-polarized antenna system.
  • Two of the above multi-beam antenna systems are included; as shown in FIG. 9, each radiating element in one multi-beam antenna system is respectively in one-to-one correspondence with each radiating element in another multi-beam antenna system to form a dual-polarized radiating element. .
  • the dual-polarized antenna system in this embodiment forms a matrix-type radiating element, and respectively adjusts the maximum gain direction in two dimensions of the matrix-type radiating element through the one-dimensional multi-beam forming module and the two-dimensional multi-beam forming module, respectively. To achieve greater radiation coverage.
  • the present embodiment provides a phase adjustment method for a multi-beam antenna system, which is used in the multi-beam antenna system described above, and includes:
  • Step 101 Adjust a phase of the M-channel radio frequency signal formed by the multi-beam forming unit, so that the M-channel radio frequency signal has different phases;
  • Step 102 Perform phase shift on the P-channel RF signals in the N-channel RF signals in each of the first power-dividing units, and output M-channel RF signals to the M radiation units in the same row in the M first power split units. Perform phase shifting of the same phase.
  • the phase adjustment method of the multi-beam antenna system in this embodiment forms a matrix-type radiating element, and respectively adjusts two dimensions in the matrix-type radiating element by the one-dimensional multi-beam forming module and the two-dimensional multi-beam forming module respectively. Maximum gain direction for greater radiation coverage.
  • adjusting the phase of the radio frequency signal radiated by the radiating element can realize adjusting the beam radiating path.
  • the multi-beam antenna system and the phase adjusting method thereof and the dual-polarized antenna system in the above embodiments are applicable to each of the need to adjust the beam radiating path.
  • Application scenarios For example, in an indoor WIFI scenario, the location of the user is not fixed. The WIFI hotspot needs to adjust the beam radiation path to track the user at any time. The small station returns the antenna scene, and the backhaul antenna and the base station transmit point-to-point. The beam is narrow, and it is difficult to completely install the antenna.
  • the quasi-base station, the multi-beam antenna system in the above embodiment can adjust the beam radiation path To achieve the alignment of the antenna and the base station, and increase the robustness of the antenna; the vehicle base station/vehicle return antenna scene, the vehicle is in motion, and the beam radiation path needs to be adjusted at any time to achieve alignment between the antenna and the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种多波束天线系统及其相位调节方法和双极化天线系统,涉及通信技术领域,实现较大的辐射覆盖范围。该多波束天线系统包括:连接于射频端口的一维多波束形成模块,多波束形成单元用于将射频端口传输的射频信号转换为具有不同相位的M路射频信号;二维多波束形成模块,二维多波束形成模块包括M个第一功分单元,每个第一功分单元的P条输出支路上设置有移相器;连接于第二多波束形成模块的M×N个辐射单元,M×N个辐射单元形成一个具有N行M列的矩阵,M列辐射单元分别连接于M个第一功分单元,每列射频单元中的N个辐射单元分别连接于一个第一功分单元的N条输出支路,与设置有移相器的输出支路连接的M×P个辐射单元组成P行M列的矩阵。

Description

多波束天线系统及其相位调节方法和双极化天线系统
本申请要求于2014年05月14日提交中国专利局、申请号为201410204330.2、发明名称为“多波束天线系统及其相位调节方法和双极化天线系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种多波束天线系统及其相位调节方法和双极化天线系统。
背景技术
天线是一种能量转换器,能够将传输线上传播的导行波变换成在空间电磁波,或者进行相反的变换,在无线通信中用来发射或接收电磁波。无线通信系统中最常见传统天线为:玻璃钢全向天线、板状定向天线以及小型的鞭状天线等。很多时候人们需要天线具有最大的覆盖范围和最远的覆盖距离,即天线具有最大的波束宽度和最大的增益,而在单一波束天线上这两者是相互矛盾的。
多波束天线具有多波束的辐射能力,可以在不降低天线增益的情况下提升辐射覆盖的范围。但是,传统多波束天线的辐射覆盖范围仍然比较小。
发明内容
本发明提供一种多波束天线系统及其相位调节方法和双极化天线系统,实现较大的辐射覆盖范围。
为解决上述技术问题,本发明采用如下技术方案:
第一方面,本发明提供一种多波束天线系统,包括:
射频端口;
连接于所述射频端口的一维多波束形成模块,所述一维多波束形成模块包括多波束形成单元和连接于所述多波束形成单元的第一相位控制单元,所 述多波束形成单元用于将所述射频端口传输的射频信号转换为具有不同相位的M路射频信号,其中M为大于1的整数,所述多波束形成单元具有用于分别输出所述M路射频信号的M个输出端,所述第一相位控制单元用于调节所述M路射频信号的相位;
连接于所述一维多波束形成模块的二维多波束形成模块,所述二维多波束形成模块包括移相器、连接于所述移相器的第二相位控制单元和分别连接于所述多波束形成单元中M个输出端的M个第一功分单元,每个第一功分单元用于将一路射频信号功分为N路射频信号,其中N为大于1的整数,每个第一功分单元具有用于分别输出所述N路射频信号的N条输出支路,所述N条输出支路中的P条输出支路上设置有所述移相器,P为大于等于1的整数,所述第二相位控制单元用于调节所述移相器进行移相时的相位;
连接于所述第二多波束形成模块的M×N个辐射单元,所述M×N个辐射单元形成一个具有N行M列的矩阵,所述M列辐射单元分别连接于所述M个第一功分单元,每列射频单元中的N个辐射单元分别连接于一个第一功分单元的N条输出支路,在所述N行M列的矩阵中,与所述M个第一功分单元中设置有移相器的输出支路连接的M×P个辐射单元组成P行M列的矩阵。
结合第一方面,在第一方面的第一种实现方式中,每个第一功分单元包括第一功分器,所述第一功分器具有Q个输出端,所述第一功分器用于将一路射频信号功分为Q路射频信号,Q为大于1的整数;
每个第一功分单元还包括分别连接于所述第一功分器Q个输出端的Q个第二功分器,每个第二功分器包括R个输出端,每个第二功分器用于将一路射频信号功分为R路射频信号,R为大于1的整数,Q×R=N;
在所述N行M列的矩阵中,每列射频单元中的N个辐射单元分别连接于Q个第二功分器的N个输出端。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,在每个第一功分单元中包括移相器的输出支路上,第一功分器通过移相器连接于第二功分器,或者第二功分器通过移相器连接于辐射单元。
结合第一方面的第二种实现方式,在第一方面的第三种实现方式中,与同一行的M个辐射单元分别连接的M个移相器组成联动移相器,所述联动移相器用于使多路射频信号以相同的相位移相。
结合第一方面或第一方面的第一至第三种实现方式中的任意一种,在第一方面的第四种实现方式中,所述多波束形成单元包括butler矩阵和S选一开关,所述butler矩阵通过所述S选一开关连接于所述射频端口;
所述butler矩阵包括S个输入端,S为大于1的整数,所述S选一开关包括S个输出端,所述S选一开关的S个输出端分别连接于所述butler矩阵的S个输入端;
所述第一相位控制单元连接于所述S选一开关的控制端,所述第一相位控制单元用于控制所述S选一开关在所述S个输出端中选择一个进行输出。
结合第一方面或第一方面的第一至第三种实现方式中的任意一种,在第一方面的第五种实现方式中,所述多波束形成单元包括第二功分单元和连接于所述第二功分单元的移相单元,所述移相单元连接于所述第一相位控制单元。
第二方面,提供一种双极化天线系统,包括两个上述的多波束天线系统;一个多波束天线系统中的每个辐射单元分别与另一个多波束天线系统中的每个辐射单元一一对应组成双极化辐射单元。
第三方面,提供一种多波束天线系统的相位调节方法,用于上述的多波束天线系统,包括:
调节多波束形成单元形成的M路射频信号的相位,使所述M路射频信号具有不同的相位;
对每个第一功分单元中N路射频信号中的P路射频信号进行移相,在M个第一功分单元中,输出至同一行的M个辐射单元的M路射频信号进行相同相位的移相。
本发明提供的多波束天线系统及其相位调节方法和双极化天线系统,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模 块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一中一种多波束天线系统的结构示意图;
图2为本发明实施例一中另一种多波束天线系统的结构示意图;
图3为本发明实施例二中一种第一功分单元的结构示意图;
图4为本发明实施例二中一种多波束天线系统的结构示意图;
图5为本发明实施例二中另一种第一功分单元的结构示意图;
图6为本发明实施例二中另一种第一功分单元的结构示意图;
图7为本发明实施例二中另一种第一功分单元的结构示意图;
图8为本发明实施例三中一种多波束天线系统的结构示意图;
图9为本发明实施例四中一种双极化辐射单元形成矩阵的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一
如图1所示,本发明实施例提供一种多波束天线系统,包括:射频端口1;连接于射频端口1的一维多波束形成模块2,一维多波束形成模块2包括多波束形成单元21和连接于多波束形成单元21的第一相位控制单元22,多波束形成单元21用于将射频端口1传输的射频信号转换为具有不同相位的M路射频信号,其中M为大于1的整数,多波束形成单元21具有用于分别输出上述M路射频信号的M个输出端,第一相位控制单元22用于调节上述M路射频 信号的相位;连接于一维多波束形成模块2的二维多波束形成模块3,二维多波束形成模块3包括移相器32、连接于移相器32的第二相位控制单元33和分别连接于一维多波速形成模块2中M个输出端的M个第一功分单元31,每个第一功分单元31用于将一路射频信号功分为N路射频信号,其中N为大于1的整数,每个第一功分单元31具有用于分别输出上述N路射频信号的N条输出支路,上述N条输出支路中的P条输出支路上设置有移相器32,P为大于等于1的整数,上述第二相位控制单元33用于调节移相器32进行移相时的相位;连接于第二多波束形成模块3的M×N个辐射单元4,M×N个辐射单元4形成一个具有N行M列的矩阵,M列辐射单元4分别连接于M个第一功分单元31,每列射频单元4中的N个辐射单元分别连接于一个第一功分单元31的N条输出支路,在上述N行M列的矩阵中,与上述M个第一功分单元31中设置有移相器32的输出支路连接的M×P个辐射单元4组成P行M列的矩阵。需要说明的是,上述第一相位控制单元22和第二相位控制单元33可以是两个单独的单元,分别为多波束形成单元21和移相器32提供相应的控制信号;或者如图2所示,上述第一相位控制单元和第二相位控制单元为同一个相位控制单元5,分别为多波束形成单元21和移相器32提供相应的控制信号。
具体地,首先射频端口1将射频信号传输至多波束形成单元21,多波束形成单元21将该射频信号转换为具有不同相位的M路射频信号并分别传输至M个第一功分单元31,每个第一功分单元31将接收到的一路射频信号进行功率分配为多路射频信号,经过功率分配后的一路或多路(图1中只示出了一路)射频信号直接传输至相应的辐射单元4,经过功率分配后的另外一路或多路射频信号由移相器32移相后传输至相应的辐射单元4,M×N个辐射单元4辐射各自接收到的射频信号。同一方向上的多个辐射单元的最大增益由这几个辐射单元的射频信号之间的相位差决定。首先,多波束形成单元21将一维多波束形成模块2输出的M路射频信号设置为不同相位,之后移相器32将每个第一功分单元31中P条输出支路上的射频信号进行移相,在M个第一功 分单元31中,输出至同一行的M个辐射单元4的M路射频信号进行相同相位的移相,以保证移相器32不会改变同一行的M个辐射单元4的M路射频信号之间相位差。
例如,如图1所示,M=4、N=2、P=1,一维多波束形成模块2输出的四路射频信号相位分别为-45度、-90度、-135度和-180度,每一路射频信号在第一功分单元31被分为相同相位的第一射频信号和第二射频信号,四路第一射频信号分别输出至第一行的四个射频单元4,四路第二射频信号以10度的相位进行移相并分别输出至第二行的四个射频单元4,第一行的四个射频单元4接收到的四路射频信号相位分别为-45度、-90度、-135度和-180度,第二行的四个射频单元4接收到的四路射频信号相位分别为-35度、-80度、-125度和-170度。在矩阵中,一行或一列射频单元的最大增益方向由该行或该列上多个射频单元射频信号的相位差决定,因此,第一维度(横向)的最大增益方向由一维多波束形成模块2调节决定,第二维度(纵向)的最大增益方向由二维多波束形成模块3调节决定,从而实现分别调节两个维度的最大增益方向。
本实施例中的多波束天线系统,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。
实施例二
在实施例一的基础上,具体地,如图3所示,每个第一功分单元31包括第一功分器311,第一功分器311具有Q个输出端,第一功分器311用于将一路射频信号功分为Q路射频信号,Q为大于1的整数;每个第一功分单元31还包括分别连接于第一功分器311中Q个输出端的Q个第二功分器312,每个第二功分器312包括R个输出端,每个第二功分器312用于将一路射频信号功分为R路射频信号,R为大于1的整数,Q×R=N;如图4所示,在上述N行M列的矩阵中,每列射频单元4中的N个辐射单元4分别连接于Q个第二功分器的N个输出端(图4中未示出第二功分器)。
具体地,如图3所示,在每个第一功分单元31中包括移相器32的输出支路上,第二功分器312通过移相器32连接于第一功分器311;或者如图5所示,第二功分器312通过移相器32连接于辐射单元4;或者如图6所示,在第一功分单元31的部分输出支路中,第二功分器312通过移相器32连接于第一功分器311,在第一功分单元31的另外部分输出支路中,第二功分器312通过移相器32连接于辐射单元4。
具体地,由于要求输出至同一行的M个辐射单元4的M路射频信号进行相同相位的移相,因此与同一行的M个辐射单元4分别连接的M个移相器32组成联动移相器,联动移相器用于使多路射频信号以相同的相位移相,联动移相器与多个单独的移相器相比成本更低。
需要说明的是,如图7所示,在每个第一功分单元31中,设置有移相器32的输出支路可以被没有设置移相器的输出支路隔开。另外,上述辐射单元4用于射频信号的发射和接收,可以采用常见的对称偶极子或垂直极化等方式设置,辐射单元4间距可以根据波束覆盖范围调整,通常为二分之一波长。上述多波束天线系统可以扩展为多输入输出(Multi Input and Multiple Output,MIMO)天线。
多波束天线系统的具体工作过程和原理与实施例一相同,在此不再赘述。
本实施例中的多波束天线系统,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。另外,在实现矩阵式的辐射单元辐射不同相位的射频信号时,无需对应每个辐射单元都单独设置用于移相的器件,只需要先根据一个维度的波束要求进行相位调节,再根据另一个维度的波束要求进行相位调节,通过两次调节后的相位叠加得到具有不同相位的多路射频信号,最终实现矩阵式的辐射单元辐射不同相位的射频信号,从而可以配合联动移相器使用,这样在移相过程中使用的用于移相的器件数量较少,降低了天线系统的复杂程度,节约了成本。
实施例三
在实施例一和二的基础上,如图8所示,上述多波束形成单元21可以包括butler矩阵23和S选一开关24,butler矩阵23通过S选一开关24连接于射频端口1;butler矩阵23包括S个输入端,S为大于1的整数,S选一开关24包括S个输出端,S选一开关24的S个输出端分别连接于butler矩阵23的S个输入端;第一相位控制单元22连接于S选一开关24的控制端,第一相位控制单元22用于控制S选一开关24在上述S个输出端中选择一个进行输出。butler矩阵23的不同输入端输入射频信号时,butler矩阵23具有不同的模式,在不同模式下butler矩阵23输出的射频信号相位不同,因此S选一开关24可以实现对butler矩阵23输出的射频信号的相位调节。
上述使用butler矩阵和S选一开关配合的方式成本较低,另外上述多波束形成单元可以包括第二功分单元和连接于上述第二功分单元的移相单元,移相单元连接于第一相位控制单元,此时第一相位控制单元直接调节移相单元进行移相时的相位,即通过由第二功分单元实现将射频端口传输的射频信号转换为M路射频信号,通过第一相位控制单元和移相单元实现使该M路射频信号具有不同相位。
多波束天线系统的具体工作过程和原理与实施例一相同,在此不再赘述。
本实施例中的多波束天线系统,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。另外,在实现矩阵式的辐射单元辐射不同相位的射频信号时,无需对应每个辐射单元都单独设置用于移相的器件,只需要先根据一个维度的波束要求进行相位调节,再根据另一个维度的波束要求进行相位调节,通过两次调节后的相位叠加得到具有不同相位的多路射频信号,最终实现矩阵式的辐射单元辐射不同相位的射频信号,从而可以配合butler矩阵使用,butler矩阵通过电桥来实现射频信号的相位调节功能,电桥与移相器相比成本更低。
实施例四
在实施例一、二或三的基础上,本实施例提供一种双极化天线系统,包 括两个上述的多波束天线系统;如图9所示,一个多波束天线系统中的每个辐射单元分别与另一个多波束天线系统中的每个辐射单元一一对应组成双极化辐射单元。
其中每个多波束天线系统的具体工作过程和原理与实施例一相同,在此不再赘述。
本实施例中的双极化天线系统,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。
实施例五
基于实施例一、二或三,本实施例提供一种多波束天线系统的相位调节方法,用于上述的多波束天线系统,包括:
步骤101、调节多波束形成单元形成的M路射频信号的相位,使上述M路射频信号具有不同的相位;
步骤102、对每个第一功分单元中N路射频信号中的P路射频信号进行移相,在M个第一功分单元中,输出至同一行的M个辐射单元的M路射频信号进行相同相位的移相。
多波束天线系统的具体工作过程和原理与上述实施例相同,在此不再赘述。
本实施例中的多波束天线系统的相位调节方法,形成矩阵式的辐射单元,并分别通过一维多波束形成模块和二维多波束形成模块分别调节矩阵式的辐射单元中两个维度上的最大增益方向,从而实现较大的辐射覆盖范围。
需要说明的是,调节辐射单元辐射的射频信号相位可以实现调节波束辐射路径,上述各实施例中的多波束天线系统及其相位调节方法和双极化天线系统适用于需要调节波束辐射路径的各种应用场景。例如:室内WIFI场景,用户的位置不固定,WIFI热点需要随时调节波束辐射路径来跟踪用户;小站回传天线场景,回传天线与基站点对点传输,波束很窄,在安装天线时难以完全对准基站,上述实施例中的多波束天线系统可以通过调节波束辐射路径 来实现天线与基站的对准,且增加了天线的鲁棒性;车载基站/车载回传天线场景,车子处于运动状态,需要随时调节波束辐射路径来实现天线与基站的对准。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种多波束天线系统,其特征在于,包括:
    射频端口;
    连接于所述射频端口的一维多波束形成模块,所述一维多波束形成模块包括多波束形成单元和连接于所述多波束形成单元的第一相位控制单元,所述多波束形成单元用于将所述射频端口传输的射频信号转换为具有不同相位的M路射频信号,其中M为大于1的整数,所述多波束形成单元具有用于分别输出所述M路射频信号的M个输出端,所述第一相位控制单元用于调节所述M路射频信号的相位;
    连接于所述一维多波束形成模块的二维多波束形成模块,所述二维多波束形成模块包括移相器、连接于所述移相器的第二相位控制单元和分别连接于所述多波束形成单元中M个输出端的M个第一功分单元,每个第一功分单元用于将一路射频信号功分为N路射频信号,其中N为大于1的整数,每个第一功分单元具有用于分别输出所述N路射频信号的N条输出支路,所述N条输出支路中的P条输出支路上设置有所述移相器,P为大于等于1的整数,所述第二相位控制单元用于调节所述移相器进行移相时的相位;
    连接于所述第二多波束形成模块的M×N个辐射单元,所述M×N个辐射单元形成一个具有N行M列的矩阵,所述M列辐射单元分别连接于所述M个第一功分单元,每列射频单元中的N个辐射单元分别连接于一个第一功分单元的N条输出支路,在所述N行M列的矩阵中,与所述M个第一功分单元中设置有移相器的输出支路连接的M×P个辐射单元组成P行M列的矩阵。
  2. 根据权利要求1所述的多波束天线系统,其特征在于,
    每个第一功分单元包括第一功分器,所述第一功分器具有Q个输出端,所述第一功分器用于将一路射频信号功分为Q路射频信号,Q为大于1的整数;
    每个第一功分单元还包括分别连接于所述第一功分器Q个输出端的Q个第二功分器,每个第二功分器包括R个输出端,每个第二功分器用于将一路射频信号功分为R路射频信号,R为大于1的整数,Q×R=N;
    在所述N行M列的矩阵中,每列射频单元中的N个辐射单元分别连接于Q个第二功分器的N个输出端。
  3. 根据权利要求2所述的多波束天线系统,其特征在于,
    在每个第一功分单元中包括移相器的输出支路上,第一功分器通过移相器连接于第二功分器,或者第二功分器通过移相器连接于辐射单元。
  4. 根据权利要求3所述的多波束天线系统,其特征在于,
    与同一行的M个辐射单元分别连接的M个移相器组成联动移相器,所述联动移相器用于使多路射频信号以相同的相位移相。
  5. 根据权利要求1至4中任意一项所述的多波束天线系统,其特征在于,
    所述多波束形成单元包括butler矩阵和S选一开关,所述butler矩阵通过所述S选一开关连接于所述射频端口;
    所述butler矩阵包括S个输入端,S为大于1的整数,所述S选一开关包括S个输出端,所述S选一开关的S个输出端分别连接于所述butler矩阵的S个输入端;
    所述第一相位控制单元连接于所述S选一开关的控制端,所述第一相位控制单元用于控制所述S选一开关在所述S个输出端中选择一个进行输出。
  6. 根据权利要求1至4中任意一项所述的多波束天线系统,其特征在于,
    所述多波束形成单元包括第二功分单元和连接于所述第二功分单元的移相单元,所述移相单元连接于所述第一相位控制单元。
  7. 一种双极化天线系统,其特征在于,包括两个如权利要求1至6中任意一项所述的多波束天线系统;
    一个多波束天线系统中的辐射单元分别与另一个多波束天线系统中的辐射单元一一对应组成双极化辐射单元。
  8. 一种多波束天线系统的相位调节方法,用于如权利要求1至6中任意一项所述的多波束天线系统,其特征在于,包括:
    调节多波束形成单元形成的M路射频信号的相位,使所述M路射频信号具有不同的相位;
    对每个第一功分单元中N路射频信号中的P路射频信号进行移相,在M个第一功分单元中,输出至同一行的M个辐射单元的M路射频信号进行相同相位 的移相。
PCT/CN2015/078218 2014-05-14 2015-05-04 多波束天线系统及其相位调节方法和双极化天线系统 WO2015172667A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15793477.9A EP3136509B1 (en) 2014-05-14 2015-05-04 Multi-beam antenna system and phase adjustment method thereof, and dual-polarization antenna system
KR1020167034343A KR101858042B1 (ko) 2014-05-14 2015-05-04 다중 빔 안테나 시스템 및 그 위상 조정 방법, 그리고 이중 편파 안테나 시스템
JP2016567653A JP6395862B2 (ja) 2014-05-14 2015-05-04 マルチビームアンテナシステム、およびマルチビームアンテナシステムの位相調整方法、ならびに二重偏波アンテナシステム
US15/349,517 US10069215B2 (en) 2014-05-14 2016-11-11 Multi-beam antenna system and phase adjustment method for multi-beam antenna system, and dual-polarized antenna system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410204330.2A CN105098383B (zh) 2014-05-14 2014-05-14 多波束天线系统及其相位调节方法和双极化天线系统
CN201410204330.2 2014-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/349,517 Continuation US10069215B2 (en) 2014-05-14 2016-11-11 Multi-beam antenna system and phase adjustment method for multi-beam antenna system, and dual-polarized antenna system

Publications (1)

Publication Number Publication Date
WO2015172667A1 true WO2015172667A1 (zh) 2015-11-19

Family

ID=54479317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078218 WO2015172667A1 (zh) 2014-05-14 2015-05-04 多波束天线系统及其相位调节方法和双极化天线系统

Country Status (6)

Country Link
US (1) US10069215B2 (zh)
EP (1) EP3136509B1 (zh)
JP (1) JP6395862B2 (zh)
KR (1) KR101858042B1 (zh)
CN (1) CN105098383B (zh)
WO (1) WO2015172667A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056410A (ko) * 2016-11-18 2018-05-28 후아웨이 테크놀러지 컴퍼니 리미티드 디지털 위상 천이기
JP2020512767A (ja) * 2017-03-27 2020-04-23 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナシステム、信号処理システム、および信号処理方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207497B (zh) * 2016-08-30 2024-01-05 广东通宇通讯股份有限公司 一种多波束天线系统及其构造波束的方法
US10439851B2 (en) * 2016-09-20 2019-10-08 Ohio State Innovation Foundation Frequency-independent receiver and beamforming technique
CN107093798A (zh) * 2017-05-09 2017-08-25 周越 一种连续波雷达电子波束扫描天线装置
CN109004366B (zh) * 2017-06-06 2021-07-16 华为技术有限公司 一种天线装置以及波束调整的方法
CN110098847B (zh) * 2018-01-31 2020-07-14 上海华为技术有限公司 通信装置
CN108267720B (zh) * 2018-01-31 2021-08-13 中国电子科技集团公司第三十八研究所 用于多目标搜索与跟踪的同时多波束选择开关及调度方法
CN112640215B (zh) * 2018-08-24 2022-09-23 康普技术有限责任公司 用于方位波束宽度稳定的具有交错竖直阵列的带透镜基站天线
CN110971282B (zh) * 2018-09-29 2023-08-15 中国移动通信有限公司研究院 一种天线测试系统、方法、装置、电子设备及存储介质
CN110112566B (zh) * 2019-04-23 2021-02-09 西安空间无线电技术研究所 一种大宽带高辐射效率的相控阵天线系统
WO2020243885A1 (zh) * 2019-06-03 2020-12-10 华为技术有限公司 一种天线及基站
CN110380215A (zh) * 2019-07-01 2019-10-25 广东通宇通讯股份有限公司 一种具有幅度分配功能的分布式多路移相器
CN110350926A (zh) * 2019-08-06 2019-10-18 中国电子科技集团公司第五十四研究所 一种双频极化可调多波束射频组件
CN113937500B (zh) * 2021-11-25 2023-04-14 北京华镁钛科技有限公司 一种多级移相器系统及天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168878A1 (en) * 2011-06-06 2012-12-13 Poynting Holdings Limited Multi-beam multi-radio antenna
CN103633452A (zh) * 2013-11-28 2014-03-12 深圳市华为安捷信电气有限公司 一种天线及无线信号发送、接收方法
CN103682682A (zh) * 2013-11-27 2014-03-26 深圳市华为安捷信电气有限公司 一种多波束天线系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
US4032922A (en) * 1976-01-09 1977-06-28 The United States Of America As Represented By The Secretary Of The Navy Multibeam adaptive array
JPS58178604A (ja) * 1982-04-12 1983-10-19 Mitsubishi Electric Corp アレイアンテナの給電回路
US4638317A (en) * 1984-06-19 1987-01-20 Westinghouse Electric Corp. Orthogonal beam forming network
US4989011A (en) * 1987-10-23 1991-01-29 Hughes Aircraft Company Dual mode phased array antenna system
US5038150A (en) * 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna
GB2324912B (en) * 1994-04-18 1999-02-24 Int Mobile Satellite Org Beam-forming network
JP3249049B2 (ja) * 1996-09-06 2002-01-21 三菱電機株式会社 偏波測定装置
US6025803A (en) * 1998-03-20 2000-02-15 Northern Telecom Limited Low profile antenna assembly for use in cellular communications
JP3564353B2 (ja) * 2000-03-03 2004-09-08 日本電信電話株式会社 給電方法およびビーム走査アンテナ
US6680698B2 (en) * 2001-05-07 2004-01-20 Rafael-Armament Development Authority Ltd. Planar ray imaging steered beam array (PRISBA) antenna
US7183995B2 (en) * 2001-08-16 2007-02-27 Raytheon Company Antenna configurations for reduced radar complexity
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
GB0611379D0 (en) * 2006-06-09 2006-07-19 Qinetiq Ltd Phased array antenna system with two-dimensional scanning
ES2747937T3 (es) 2008-11-20 2020-03-12 Commscope Technologies Llc Antena sectorial de doble haz y conjunto
FR2968846A1 (fr) 2010-12-08 2012-06-15 Thomson Licensing Systeme d'antennes multifaisceaux
CN102714805B (zh) * 2012-03-05 2015-09-30 华为技术有限公司 天线系统
CN202940807U (zh) 2012-08-13 2013-05-15 佛山市健博通电讯实业有限公司 一种用于波束成形网络的Butler矩阵
CN102856667A (zh) 2012-09-06 2013-01-02 上海瀚讯无线技术有限公司 一种多波束天线系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168878A1 (en) * 2011-06-06 2012-12-13 Poynting Holdings Limited Multi-beam multi-radio antenna
CN103682682A (zh) * 2013-11-27 2014-03-26 深圳市华为安捷信电气有限公司 一种多波束天线系统
CN103633452A (zh) * 2013-11-28 2014-03-12 深圳市华为安捷信电气有限公司 一种天线及无线信号发送、接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136509A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056410A (ko) * 2016-11-18 2018-05-28 후아웨이 테크놀러지 컴퍼니 리미티드 디지털 위상 천이기
JP2020512767A (ja) * 2017-03-27 2020-04-23 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナシステム、信号処理システム、および信号処理方法
US11005546B2 (en) 2017-03-27 2021-05-11 Huawei Technologies Co., Ltd. Antenna system, signal processing system, and signal processing method

Also Published As

Publication number Publication date
KR20160148712A (ko) 2016-12-26
JP2017516408A (ja) 2017-06-15
KR101858042B1 (ko) 2018-05-15
CN105098383A (zh) 2015-11-25
US20170062950A1 (en) 2017-03-02
EP3136509A1 (en) 2017-03-01
US10069215B2 (en) 2018-09-04
EP3136509B1 (en) 2022-02-16
CN105098383B (zh) 2019-01-25
JP6395862B2 (ja) 2018-09-26
EP3136509A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2015172667A1 (zh) 多波束天线系统及其相位调节方法和双极化天线系统
JP5324014B2 (ja) アンテナ、基地局、およびビーム処理方法
US11469525B2 (en) Antenna system, feeding network reconfiguration method, and apparatus
US10164346B2 (en) Multiple-input multiple-output (MIMO) omnidirectional antenna
TWI544829B (zh) 無線網路裝置與無線網路控制方法
US11005546B2 (en) Antenna system, signal processing system, and signal processing method
US11728879B2 (en) Dual-polarization beamforming
JP2008124974A (ja) 無線通信システム及び無線通信装置
US11189911B2 (en) Compact combiner for phased-array antenna beamformer
US9774098B2 (en) Wireless communication node with 4TX/4RX triple band antenna arrangement
WO2015067152A1 (zh) 天线系统、天线和基站
US7038621B2 (en) Antenna arrangement with adjustable radiation pattern and method of operation
US11569583B2 (en) Multi-beam routing using a lens antenna
US20180123239A1 (en) Phased Array System and Beam Scanning Method
WO2016183797A1 (zh) 一种相控阵芯片、相控阵波束扫描方法和装置
KR101859867B1 (ko) 밀리미터파 안테나 장치 및 렌즈를 이용하여 빔을 생성하는 방법
US8860628B2 (en) Antenna array for transmission/reception device for signals with a wavelength of the microwave, millimeter or terahertz type
Drysdale et al. Sinusoidal time-modulated uniform circular array for generating orbital angular momentum modes
US20170117627A1 (en) A Wireless Communication Node With an Antenna Arrangement For Triple Band Reception and Transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016567653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015793477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793477

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167034343

Country of ref document: KR

Kind code of ref document: A