WO2015172418A1 - 一种盲人智能眼镜 - Google Patents

一种盲人智能眼镜 Download PDF

Info

Publication number
WO2015172418A1
WO2015172418A1 PCT/CN2014/079729 CN2014079729W WO2015172418A1 WO 2015172418 A1 WO2015172418 A1 WO 2015172418A1 CN 2014079729 W CN2014079729 W CN 2014079729W WO 2015172418 A1 WO2015172418 A1 WO 2015172418A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind
smart glasses
control module
module
information
Prior art date
Application number
PCT/CN2014/079729
Other languages
English (en)
French (fr)
Inventor
杨宝
赵磊
张春雷
陈宜国
Original Assignee
深圳市卡卓无线信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卡卓无线信息技术有限公司 filed Critical 深圳市卡卓无线信息技术有限公司
Publication of WO2015172418A1 publication Critical patent/WO2015172418A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/06Walking aids for blind persons

Definitions

  • the present invention relates to the field of information communication technologies, and in particular, to a blind smart glasses.
  • Guided blind glasses are a blind guide device for blind, cataract patients and other temporary blindness. At present, more blind guide glasses are used.
  • CDM-I Type guide blind glasses the guide blind glasses are composed of an electronic box and glasses. The glasses are equipped with two ultrasonic transducers and an earphone, and the transducer can transmit and receive the reflected ultrasonic pulse wave to the front, and the blind person perceives the obstacle in front by the sound change of the earphone.
  • the guiding range of the blind glasses for small obstacles is directly in front, left and right 10 degrees, 5 degrees above, 35 degrees below, 2 meters from the glasses, 0.4 meters above and 0.2 meters above, 1.4 below Obstacle within the spatial extent of the meter; for large obstacles, the detection range is larger.
  • Detection distance is 1.5 meters and 4 Two meters, selected by the toggle switch on the electronic box.
  • the earphones will make a sound, and the closer the obstacle is, the faster the sound repeats and the higher the pitch.
  • Power supply uses a 9 volt 6F22 Multi-layer battery, one battery can be used for 60 hours.
  • the guide glasses are mounted on the spectacle frame and the ophthalmic lens.
  • the ultrasonic device continuously emits ultrasonic waves forward, and is reflected back when encountering an obstacle, and is received by the ultrasonic receiving device on the glasses, and then processed by the electronic circuit. It becomes an audible sound.
  • the pitch and repetition frequency of the sound change with the distance of the obstacle.
  • the blind person can judge the distance between the obstacle and the obstacle according to the sound, the pitch and the repetition frequency, thereby avoiding the collision. It is convenient for the blind to walk and reduce the pain of collision. It is an advanced tool for blind guides.
  • the present invention adopts embedded system software and hardware technology, adopts large-scale integrated circuits, adopts mobile communication technology, and adopts GPS positioning technology, using GPS navigation technology, using sensor technology, using speech recognition technology, etc., in the image acquisition, baseband digital signal processing, image analysis, voice broadcast, speech recognition, voice navigation to provide better for the blind Guided blind service.
  • the technical problem to be solved by the present invention is to provide a blind smart glasses for the problem that the blind person cannot be put into consideration in the above prior art.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a smart glasses for blind people, including:
  • a lens disposed in the front portion of the frame
  • a temple that is hinged to both ends of the front of the frame
  • the blind smart glasses further include:
  • a sensor assembly disposed at at least one of: a front portion of the frame, the lens, and the temple; the sensor assembly is configured to detect a state parameter of the blind smart glasses;
  • the control module is disposed at any one of the following: the front of the frame, the lens, and the temple; the control module is configured to execute a preset decision mechanism according to the state parameter measured by the sensor component.
  • the sensor component is electrically connected to the control module.
  • the sensor assembly includes a gravity sensor, an acceleration sensor, and a compass sensor;
  • the gravity sensor is configured to detect a gravity sensing value in the state parameter, and transmit the gravity sensing value back to the control module;
  • the acceleration sensor is configured to detect a velocity transformation value in the state parameter, and transmit the velocity transformation value back to the control module;
  • the compass sensor is configured to detect a moving direction in the state parameter, and transmit the moving direction to the control module;
  • the control module is further configured to calculate an inclination angle of the blind smart glasses with respect to a horizontal plane according to the gravity sensing value, and calculate a moving speed of the blind smart glasses according to the speed conversion value.
  • the blind smart glasses further include a voice output module electrically connected to the control module, and the voice output module is disposed on the temple for outputting preset first voice information;
  • the control module is further configured to execute the decision mechanism according to the tilt angle, the moving speed, and the moving direction, wherein the determining mechanism is configured to control the voice output module to output the first voice information.
  • the blind smart glasses further include:
  • GPS module electrically connected to the control module, wherein the GPS module is configured to acquire positioning information of the blind smart glasses
  • the wireless communication module electrically connected to the control module, the wireless communication module is configured to wirelessly communicate with a preset remote server;
  • the control module is further configured to execute the decision mechanism according to the tilt angle, the moving speed, and the moving direction, wherein the determining mechanism is to invoke the GPS
  • the positioning information of the module is generated, and a first-aid information bound to the positioning information is generated, and the positioning information and the first-aid information are sent to the remote server by using the wireless communication module.
  • the blind smart glasses further include a camera module electrically connected to the control module, disposed on a rear side of the lens or an upper side of the front of the frame, and the camera module is configured to collect the front of the blind smart glasses Image information and transmitting the image information to the control module;
  • the control module is further configured to calculate the obstacle information in the image information according to the image information.
  • the blind smart glasses further include a voice output module electrically connected to the control module, and configured on the temples for outputting preset second voice information;
  • the control module is further configured to control the voice output module to output the second voice information according to the obstacle information.
  • the blind smart glasses further include a voice input module electrically connected to the control module, the voice input module being disposed at either end of the front portion of the frame for receiving voice input information and Transmitting the voice input information to the control module, where the voice input information is a target location;
  • the control module is further configured to identify the voice input information to determine the target location.
  • the blind smart glasses further include a GPS module electrically connected to the control module, The GPS module is configured to acquire positioning information of the blind smart glasses;
  • the control module is further configured to form walking route information according to the positioning information and the target location.
  • the blind smart glasses further include a voice output module electrically connected to the control module, and the voice output module is disposed on the temple for outputting preset third voice information;
  • the control module is further configured to form the third voice information according to the travel route information, and control the voice output module to output the third voice information.
  • a blind intelligent glasses embodying the invention has the following beneficial effects: integrating sensor technology, image acquisition and analysis, speech recognition and broadcast, not only has a reasonable structure, but also has small volume, light weight, convenient use and practicability. Improved the guided user experience.
  • FIG. 1 is a schematic structural diagram of a blind smart glasses according to a first embodiment of the present invention
  • FIG. 2 is a block diagram of a blind smart glasses according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a blind smart glasses according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram of a blind smart glasses according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a blind smart glasses according to a third embodiment of the present invention.
  • FIG. 6 is a block diagram of a blind smart glasses according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a blind smart glasses according to a fourth embodiment of the present invention.
  • FIG. 8 is a block diagram of a blind smart glasses according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a blind smart glasses according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram of a blind smart glasses according to a fifth embodiment of the present invention.
  • the invention solves the problem that the blind person provides intelligent guidance to the external obstacles, such as roadblocks, traps and other dangerous situations, intelligent voice reminding, and the like, and can perform voice navigation function for the blind person when traveling alone. It can not only guide the voice of the blind, voice broadcast, voice reminder, but also alarm in dangerous situations.
  • FIG. 1 is a schematic structural diagram of a blind smart glasses according to a first embodiment of the present invention, as shown in FIG. 1
  • the embodiment provides a blind smart glasses including: a front portion 1 of the frame; a lens 2 disposed in the front portion 1 of the frame; a temple 3 and a front portion of the frame 1 The ends are hinged.
  • the blind smart glasses further include: a sensor component including a plurality of sub-sensors 4 According to the different functions of the sensor, the unused sub-sensors can be set at: front part 1 of the frame, lens 2, temple 3; sensor assembly 4 The sub-sensor is used to detect various state parameters of the blind smart glasses; the control module 5 can be set at any of the following according to the wiring requirements: the front of the frame 1 , the lens 2 , the temple 3 ; the control module 5 is generally MCU (Micro Control Unit) Chinese name is micro control unit, which refers to the computer's CPU, RAM, ROM with the emergence and development of large-scale integrated circuits.
  • MCU Micro Control Unit
  • the timer counter and various I/O interfaces are integrated on one chip to form a chip-level computer, which can be controlled differently for different applications.
  • the control module 5 is generally used in accordance with the sensor assembly 4
  • the measured state parameters perform a preset decision mechanism. For example, based on the obstacle distance measured by the ranging sensor, the control module 5 issues an early warning prompt to the blind user.
  • FIG. 2 is a block diagram of a blind smart glasses according to a first embodiment of the present invention, as shown in FIG. 2, Inside the blind smart glasses, the sensor assembly 4 and the control module 5 Electrical connection.
  • the blind smart glasses are powered by a battery, and the battery is combined with a lithium battery and coupled to the control module to supply power to the blind smart glasses.
  • the charging circuit includes a ChargerIO. ChargerIO guarantees the use of the blind smart glasses while charging.
  • FIG. 3 is a schematic structural diagram of a blind smart glasses according to a second embodiment of the present invention.
  • the sensor assembly 4 Including gravity sensor 41, acceleration sensor 42, and compass sensor 43;
  • the gravity sensor 41 is configured to detect a gravity sensing value in the state parameter, and transmit the gravity sensing value back to the control module 5
  • the gravity sensor works on the principle of the piezoelectric effect.
  • the so-called piezoelectric effect is 'for a heteropolar crystal without a symmetry center added to the crystal
  • the external force will change the polarization state of the crystal and establish an electric field inside the crystal.
  • This phenomenon of polarization of the medium due to mechanical force is called the positive piezoelectric effect.
  • Gravity sensor 41 It utilizes its internal characteristics of crystal deformation due to acceleration. Since this deformation will generate voltage As long as the relationship between the generated voltage and the applied acceleration is calculated, the acceleration can be converted into a voltage output.
  • an acceleration sensor there are many other ways to make an acceleration sensor.
  • the capacitive effect, the thermal bubble effect, and the optical effect but the most basic principle is that the deformation of a certain medium is generated by the acceleration, and the deformation amount is measured and converted into a voltage output by the relevant circuit.
  • the angle of inclination of the device relative to the horizontal plane can be calculated by measuring the acceleration due to gravity by a gravity sensor. Blind user Whether the walking posture is inclined.
  • the acceleration sensor 42 is configured to detect a velocity transformation value in the state parameter, and transmit the velocity transformation value back to the control module 5
  • An acceleration sensor is an electronic device that measures acceleration. Acceleration is the force that acts on an object during acceleration. It is like gravity, or gravity. Acceleration can be a constant, such as g can also be a variable.
  • accelerometers There are two types of accelerometers: one is an angular accelerometer, which is made up of a gyroscope (angular velocity sensor). ) improved. The other is a line accelerometer. By analyzing the dynamic acceleration, you can analyze the speed at which the device moves. That is, the walking speed of the blind user.
  • the compass sensor 43 is configured to detect a moving direction in the state parameter and transmit the moving direction back to the control module 5
  • the compass sensor is mainly composed of a geomagnetic sensor.
  • the current geomagnetic sensor can detect a direction angle error of ⁇ 0.1 °, and when the response speed is 4 times per second, the response speed is 20 per second.
  • the second time is roughly ⁇ 0.2 °. That is to measure the walking direction of the blind user.
  • the control module 5 The moving speed of the blind smart glasses is calculated according to the speed conversion value by implanting corresponding software for calculating the tilt angle of the blind smart glasses with respect to the horizontal plane according to the gravity sensing value.
  • FIG. 4 is a block diagram of a blind smart glasses according to a second embodiment of the present invention, as shown in FIG. 4 .
  • the embodiment is not used in the first embodiment.
  • a voice output module 6 electrically connected to the control module 5 is further included, and the voice output module 6 is disposed on the mirror.
  • Voice output module 6 It is also possible to increase or decrease the volume according to the degree of danger of the actual situation to remind the blind user that for the volume adjustment function, a security level can be set in the control module 5, and the sensor component 4 The measured state parameter is compared with a preset parameter in the safety level to obtain a safety level, and the volume is adjusted according to the safety level.
  • the voice output module 6 is involved in all embodiments of the present invention. The embodiment can adjust the volume level with this embodiment.
  • the control module 5 Also for performing the decision mechanism according to the tilt angle, the moving speed, and the moving direction, wherein the decision mechanism is to control the voice output module 6
  • the first voice information is output.
  • This embodiment is mainly used for detecting the walking process of a blind user, for example, when a blind user wears the blind smart glasses, and when the traveling direction is wrong, the walking posture is inclined, or the walking speed is too fast, the voice broadcast is performed and the reminder sound is sent first.
  • Voice information the first voice information is generally: 'dangerous, the direction of travel is wrong' 'the speed of travel is too fast, please slow down the speed of travel' ... and so on.
  • the embodiment further includes a button for entering the walking mode, the button is used to trigger the walking mode, and the walking mode comprises the following steps:
  • the beneficial effect of this embodiment is that the walking direction, walking posture or walking speed of the blind user is detected to ensure that the blind user is safe to travel alone.
  • FIG. 5 is a schematic structural diagram of a blind smart glasses according to a third embodiment of the present invention, as shown in FIG. 5
  • the blind smart glasses further include a GPS module 7 and a wireless communication module 8 disposed at both ends of the front portion 1 of the frame.
  • GPS module 7 and wireless communication module 8 are not limited to At the front of the frame 1 , you can also set other positions with the blind smart glasses.
  • FIG. 6 is a block diagram of a blind smart glasses according to a third embodiment of the present invention, as shown in FIG. 6 .
  • the embodiment is different from the second embodiment in that the control module 5 is electrically connected to the GPS module 7, and the GPS module 7 is configured to acquire positioning information of the blind smart glasses; the control module 5 is electrically connected to the wireless communication module 8, and the wireless communication module 8 is used for wireless communication connection with a preset remote server.
  • the control module 5 The method is further configured to perform the decision mechanism according to the tilt angle, the moving speed, and the moving direction, wherein the determining mechanism is to invoke the GPS module 7
  • the positioning information is generated, and a first-aid information bound to the positioning information is generated, and the positioning information and the first-aid information are passed through the wireless communication module 8 Sent to the remote server.
  • the embodiment is mainly applied to a blind user who sends a distress signal to the network when a danger such as a fall occurs, and dials a pre-stored telephone number through the network to notify a person to serve the blind person who falls. Taking the blind user as an example, the operation flow of this embodiment is as follows:
  • the gravity sensor 41 is used to detect the gravity sensing value in the state parameter
  • the acceleration sensor 42 For detecting a velocity transformation value in the state parameter
  • the compass sensor 43 is configured to detect a moving direction in the state parameter.
  • the positioning information of the GPS module 7 is called, and the positioning information is the location of the incident where the blind user falls.
  • the remote server arranges a special person to serve the blind user on site, or calls the blind user's home to notify the blind user that a fall accident has occurred.
  • This step can be flexibly set according to requirements, and is not limited to the exemplary case of the embodiment.
  • the beneficial effect of this embodiment is that when a blind user has a dangerous accident, a distress signal is issued in time to notify the special person to serve.
  • FIG. 7 is a schematic structural diagram of a blind smart glasses according to a fourth embodiment of the present invention, as shown in FIG. 7
  • the blind smart glasses further include a camera module 9 disposed on the rear side of the lens 2 or on the upper side of the front portion 1 of the frame, and a voice output module 6 disposed on the temple 3.
  • FIG. 8 is a block diagram of a blind smart glasses according to a fourth embodiment of the present invention, as shown in FIG. 8
  • this embodiment differs from the first embodiment in that the control module 5 is electrically connected to the camera module 9, and the camera module 9 For collecting image information in front of the blind smart glasses, and transmitting the image information to the control module 5; the control module 5 It is further configured to calculate obstacle information in the image information according to the image information.
  • the blind smart glasses further include a voice output module 6 electrically connected to the control module 5 For outputting the preset second voice information; the control module 5 is further configured to control the voice output module according to the obstacle information.
  • the second voice information is output.
  • the embodiment is mainly applied to the blind user's path, as in the first embodiment, the embodiment may further add a button for triggering the approach mode, and the path mode includes the following steps:
  • the second voice information is called for voice broadcast, and a reminder sound is issued, for example, 'there is an obstacle in front', please take a detour, and so on.
  • the beneficial effect of this embodiment is that the blind person is identified as walking obstacles in front of the road to ensure safe travel.
  • FIG. 9 is a schematic structural diagram of a blind smart glasses according to a fifth embodiment of the present invention, as shown in FIG.
  • the blind smart glasses further include a voice input module 10 disposed at either end of the front portion 1 of the frame, a GPS module 7, and a voice output module 6 disposed on the temple 3 .
  • FIG. 10 is a block diagram of a blind smart glasses according to a fifth embodiment of the present invention, as shown in FIG. 10
  • the embodiment is different from the first embodiment in that the blind smart glasses further comprise a voice input module 10 electrically connected to the control module 5.
  • the voice input module 10 For receiving voice input information and transmitting the voice input information to the control module 5, wherein the voice input information is a target location; a GPS module 7 electrically connected to the control module 5, The GPS module 7 is configured to acquire positioning information of the blind smart glasses; and a voice output module 6 electrically connected to the control module 5, for outputting preset third voice information.
  • the control module 5 After the voice input information is identified to determine the target location, the walking route information is formed according to the positioning information and the target location, and the blind user is navigated according to the walking route information, and the third is formed according to the walking route information. Voice information, controlling the voice output module 6 outputting the third voice information.
  • the embodiment is applied to the blind user navigation.
  • the embodiment may also add a navigation button. When the user presses the navigation button, the user navigation mode is triggered.
  • the navigation mode includes the following steps:
  • voice input destination such as: 'I want to go to 'Baoan Sports Center'';
  • the voice broadcasts the third voice message: 'The destination distance is now three kilometers, in the northwest of the current location'; if the destination is not found, the broadcast: 'The target location does not exist, please re-enter';
  • the beneficial effect of this embodiment is that the blind user is navigated to facilitate the blind user to travel.

Abstract

本发明公开了一种盲人智能眼镜,包括:镜架前部;镜片,设置于镜架前部内;镜腿,与镜架前部的两端铰接;盲人智能眼镜还包括:传感器组件,设置于以下至少一处:镜架前部、镜片、镜腿;传感器组件用于检测盲人智能眼镜的状态参数;控制模块,设置于以下任意一处:镜架前部、镜片、镜腿;控制模块用于依据传感器组件所测得的状态参数执行预设的决策机制。实施本发明的有益效果是结构设置合理,体积小、重量轻、使用方便、实用性强,提高了导盲用户体验。

Description

一种盲人智能眼镜 技术领域
本发明涉及信息通信技术领域,尤其涉及一种盲人智能眼镜。
背景技术
导盲眼镜是一种专门供盲人、白内障患者及其他暂时失一明者导盲探测装置。目前,采用比较多的导盲眼镜是 CDM-I 型导盲眼镜,该导盲眼镜由电子盒和眼镜两部分组成。眼镜上装有两只超声换能器和一只耳塞机,换能器能够向前方发射和接收反射回来的超声脉冲波,盲人通过耳机发出的声音变化而感知前方的障碍物。导盲眼镜对小障碍物的探测范围是正前方,左右各 10 度、上方 5 度、下方 35 度,在离眼镜 2 米远的地方,可以探测到左右各 0.4 米、上方 0.2 米、下方 1.4 米的空间范围内的障碍物;对于大的障碍物,探测范围还要大些。探测距离分 1.5 米和 4 米两档,由电子盒上的拨动开关选择。当在一定距离内遇到障碍物时,耳机便发出声响,障碍物越近,声音重复得越急促,音调也越来越高。电源采用一节 9 伏 6F22 叠层电池,一节电池可使用 60 小时。使用时,先戴好眼镜,选择好距离档:在人多的地方应选 1.5 米的距离档,在人少的地方可选 4 米的距离档。
这一高科技产品一投放市场就以它设计灵巧、美观大方、使用方便。自本品问世以来国内外反响很大,国内外报刊作了大量的报道。导盲眼镜是将集成电路装置安装在眼镜架和眼镜片上,超声装置不断向前发射超声波,当遇到障碍物时即反射回来,经眼镜上的超声波接收装置接收后,通过电子线路的处理,变成可听见的声音,该声音的音调及重复频率是随着障碍物的距离改变而变化,盲人可以根据声音、音调及重复频率来判断前方有无障碍物及障碍物距离,从而避免了碰撞,使盲人行走方便,减少碰撞的痛苦,是盲人导盲引路的先进工具。
但是,上述产品仅能够判断盲人前方有无障碍物及其距离,并不能设身处地地考虑盲人行走的需求,本发明采用嵌入式系统软硬件技术,采用大规模集成电路,采用移动通信技术,采用了GPS定位技术,采用了GPS导航技术,采用了传感器技术,采用了语音识别技术等,从而在图像采集,基带数字信号处理,图像分析,语音播报,语音识别,语音导航方面为盲人提供更好的导盲服务。
发明内容
本发明要解决的技术问题在于,针对上述现有技术中无法设身处地地考虑盲人行走的问题,提供一种盲人智能眼镜。
本发明解决其技术问题所采用的技术方案是:构造 一种盲人智能眼镜 ,包括:
镜架前部;
镜片,设置于所述镜架前部内;
镜腿,与所述镜架前部的两端铰接;
所述盲人智能眼镜还包括:
传感器组件,设置于以下至少一处:所述镜架前部、所述镜片、所述镜腿;所述传感器组件用于检测所述盲人智能眼镜的状态参数;
控制模块,设置于以下任意一处:所述镜架前部、所述镜片、所述镜腿;所述控制模块用于依据所述传感器组件所测得的状态参数执行预设的决策机制。
在本发明所述的 盲人智能眼镜中 ,所述传感器组件与所述控制模块电性连接。
在本发明所述的 盲人智能眼镜中 ,所述传感器组件包括重力传感器、加速度传感器、以及指南针传感器;
所述重力传感器用于检测所述状态参数中的重力感应值,并将所述重力感应值回传至所述控制模块;
所述加速度传感器用于检测所述状态参数中的速度变换值,并将所述速度变换值回传至所述控制模块;
所述指南针传感器用于检测所述状态参数中的移动方向,并将所述移动方向回传至所述控制模块;
所述控制模块还用于依据所述重力感应值计算出所述盲人智能眼镜相对于水平面的倾斜角度,依据所述速度变换值计算出所述盲人智能眼镜的移动速度。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的语音输出模块,所述语音输出模块设置于所述镜腿上,用于输出预设的第一语音信息;
所述控制模块还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为控制所述语音输出模块输出所述第一语音信息。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括:
与所述控制模块电性连接的 GPS 模块,所述 GPS 模块用于获取所述盲人智能眼镜的定位信息;
与所述控制模块电性连接的无线通信模块,所述无线通信模块用于与预设的远程服务器无线通信连接;
所述控制模块还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为调用所述 GPS 模块的所述定位信息,并生成一与所述定位信息绑定的急救信息,将所述定位信息及所述急救信息通过所述无线通信模块发送至所述远程服务器。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的摄像模块,设置于所述镜片后侧或所述镜架前部上侧,所述摄像模块用于采集所述盲人智能眼镜前方的图像信息,并将所述图像信息传送至所述控制模块;
所述控制模块还用于依据所述图像信息计算出所述图像信息中的障碍信息。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的语音输出模块,设置于所述镜腿上,用于输出预设的第二语音信息;
所述控制模块还用于依据所述障碍信息控制所述语音输出模块输出所述第二语音信息。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的语音输入模块,所述语音输入模块设置于所述镜架前部的两端中的任意一端,用于接收语音输入信息并将所述语音输入信息回传至所述控制模块,其中,所述语音输入信息为目标地点;
所述控制模块还用于识别所述语音输入信息以确定所述目标地点。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的 GPS 模块,所述 GPS 模块用于获取所述盲人智能眼镜的定位信息;
所述控制模块还用于依据所述定位信息及所述目标地点形成行走路线信息。
在本发明所述的 盲人智能眼镜中 ,所述盲人智能眼镜还包括与所述控制模块电性连接的语音输出模块,所述语音输出模块设置于所述镜腿上,用于输出预设的第三语音信息;
所述控制模块还用于依据所述行走路线信息形成所述第三语音信息,并控制所述语音输出模块输出所述第三语音信息。
实施本发明的一种盲人智能眼镜,具有以下有益效果:集传感器技术、图像采集及分析、语音识别与播报于一体,不仅结构设置合理,而且体积小、重量轻、使用方便、实用性强,提高了导盲用户体验。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 为本发明第一实施例提供的 一种 盲人智能眼镜 的 结构示意图 ;
图 2 为本发明第一实施例提供的 一种 盲人智能眼镜 的 框图 ;
图 3 为本发明第二实施例提供的 一种 盲人智能眼镜 的 结构示意图 ;
图 4 为本发明第二实施例提供的 一种 盲人智能眼镜 的 框图 ;
图 5 为本发明第三实施例提供的 一种 盲人智能眼镜 的 结构示意图 ;
图 6 为本发明第三实施例提供的 一种 盲人智能眼镜 的 框图 ;
图 7 为本发明第四实施例提供的 一种 盲人智能眼镜 的 结构示意图 ;
图 8 为本发明第四实施例提供的 一种 盲人智能眼镜 的 框图 ;
图 9 为本发明第五实施例提供的 一种 盲人智能眼镜 的 结构示意图 ;
图10为本发明第五实施例提供的一种盲人智能眼镜的框图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明解决了盲人在独自出行时,提供对外部的障碍物,如路障,陷阱等危险情况下的智能指引,智能语音提醒等功能,并可为盲人进行语音导航功能。不仅可以为盲人的语音指路,语音播报,语音提醒,还可以在危险状况下进行报警等。
图 1 为本发明第一实施例提供的 一种 盲人智能眼镜 的 结构示意图,如图 1 所示,该实施例提供一种盲人智能眼镜,该盲人智能眼镜包括:镜架前部 1 ;镜片 2 ,设置于所述镜架前部 1 内;镜腿 3 ,与所述镜架前部 1 的两端铰接。
所述盲人智能眼镜还包括:包括多个子传感器的传感器组件 4 ,依据传感器的作用不同,不用的子传感器可以设置于:镜架前部 1 、镜片 2 、镜腿 3 ;传感器组件 4 的子传感器用于检测所述盲人智能眼镜的各个状态参数;控制模块 5 可依据布线需要设置于以下任意一处:镜架前部 1 、镜片 2 、镜腿 3 ;控制模块 5 一般为 MCU (Micro Control Unit) 中文名称为微控制单元,是指随着 大规模集成电路 的出现及其发展,将计算机的 CPU 、 RAM 、 ROM 、定时计数器和多种 I/O 接口集成在一片 芯片 上,形成芯片级的计算机,为不同的应用场合做不同组合控制。控制模块 5 一般用于依据所述 传感器组件 4 所测得的状态参数执行预设的决策机制。例如:依据测距传感器所测得的障碍物距离,控制模块 5 向盲人用户发出预警提示。
图 2 为本发明第一实施例提供的 一种 盲人智能眼镜 的 框图,如图 2 所示, 在该盲人智能眼镜内部,传感器组件 4 与控制模块 5 电性连接。优选的,该盲人智能眼镜采用电池供电,该电池采用充电电路与锂电池的结合,耦接至控制模块为盲人智能眼镜供电,该充电电路包括 ChargerIO , ChargerIO 可保证充电的同时使用该盲人智能眼镜。
图 3 为本发明第二实施例提供的一种盲人智能眼镜的结构示意图,如图 3 所示,传感器组件 4 包括重力传感器 41 、加速度传感器 42 、以及指南针传感器 43 ;
所述重力传感器 41 用于检测所述状态参数中的重力感应值,并将所述重力感应值回传至所述控制模块 5 ;重力传感器是根据 压电效应 的原理来工作的。所谓的压电效应就是'对于不存在对称中心的异极晶体加在 晶体 上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应'。重力传感器 41 利用了其内部的由于 加速度 造成的晶体变形这个特性。由于这个变形会产生 电压 ,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作 加速度传感器 ,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。通过重力传感器测量由于重力引起的加速度,可以计算出设备相对于水平面的倾斜角度。即盲人用户的 行走姿势是否倾斜。
所述加速度传感器 42 用于检测所述状态参数中的速度变换值,并将所述速度变换值回传至所述控制模块 5 ;加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比 地球引力 ,也就是 重力 。加速力可以是个 常量 ,比如 g ,也可以是 变量 。 加速度计 有两种:一种是角加速度计,是由 陀螺仪 ( 角速度传感器 )的改进的。另一种就是线加速度计。通过分析动态加速度,可以分析出设备移动的速度。即盲人用户的行走速度。
所述指南针传感器 43 用于检测所述状态参数中的移动方向,并将所述移动方向回传至所述控制模块 5 ;指南针传感器主要由地磁传感器组成。现在的地磁传感器最小所能分辨出的方向角的误差是± 0.1 ° ,当每秒响应速度为 4 次时,每秒响应速度为 20 次时则大致为± 0.2 ° 。即测盲人用户的行走方向。
基于上述子传感器,控制模块 5 通过植入相应的软件以用于依据所述重力感应值计算出所述盲人智能眼镜相对于水平面的倾斜角度,并依据所述速度变换值计算出所述盲人智能眼镜的移动速度。
图 4 为本发明第二实施例提供的 一种 盲人智能眼镜 的 框图,如图 4 所示,该实施例不用于第一实施例之处在于 ,在盲人智能眼镜中,还包括与所述控制模块 5 电性连接的语音输出模块 6 ,所述语音输出模块 6 设置于所述镜腿 3 上(见图 3 ),镜腿 3 一般靠近盲人用户的耳朵,该设置便于盲人用户更易听到语音输出模块的语音播报,播报的内容为预设的第一语音信息。语音输出模块 6 还可以依据实际情况的危险程度,调大或调小音量以提醒盲人用户,针对该音量调节功能,可以在控制模块 5 中设置一安全等级,将传感器组件 4 所测得的状态参数与安全等级中预设的参数比对而得到安全等级,音量依据该安全等级进行调节。本发明所有实施例中涉及语音输出模块 6 的实施例均可同此实施例调节音量大小。
该实施例中,控制模块 5 还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为控制所述语音输出模块 6 输出所述第一语音信息。该实施例主要用于检测盲人用户的行走过程,例如:盲人用户佩戴该盲人智能眼镜时前进,当行进方向错误、行走姿势倾斜或者行走速度过快时,进行语音播报及发出提醒声音的第一语音信息,该第一语音信息一般为:'危险,行进方向错误''行进速度过快,请减慢行进速度'……等等。该实施例还用可以增设一用于进入该行走模式的按键,该按键用于触发该行走模式,行走模式包括以下步骤:
S1 、用户按下按键,进入行走模式;
S2 、用户前进,当偏离预设的路线、行走姿势倾斜或者行进速度过快时,进行语音播报,发出提醒声音,即第一语音信息。
该实施例的有益效果在于,检测盲人用户的行走方向、行走姿势或行走速度以保证盲人用户单独出行安全。
图 5 为本发明第三实施例提供的 一种 盲人智能眼镜 的 结构示意图 ,如图 5 所示,该盲人智能眼镜还包括设置于 镜架前部 1 两端的 GPS 模块 7 及无线通信模块 8 。 GPS 模块 7 及无线通信模块 8 并不限于设置于 镜架前部 1 两端,还可以设置与该盲人智能眼镜的其他位置。
图 6 为本发明第三实施例提供的 一种 盲人智能眼镜 的 框图 ,如图 6 所示,该实施例不同于第二实施例之处在于, 控制模块 5 与 GPS 模块 7 电性连接,所述 GPS 模块 7 用于获取所述盲人智能眼镜的定位信息;控制模块 5 与无线通信模块 8 电性连接,所述无线通信模块 8 用于与预设的远程服务器无线通信连接。
所述控制模块 5 还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为调用所述 GPS 模块 7 的所述定位信息,并生成一与所述定位信息绑定的急救信息,将所述定位信息及所述急救信息通过所述无线通信模块 8 发送至所述远程服务器。该实施例主要应用于盲人用户发生如摔倒等危险时发出求救信号至网络,通过网络拨通预存的电话号码,通知专人服务摔倒的盲人。以盲人用户摔倒为例,该实施例的操作流程如下:
S1 、盲人用户摔倒; 重力传感器 41 用于检测所述状态参数中的重力感应值,加速度传感器 42 用于检测所述状态参数中的速度变换值,指南针传感器 43 用于检测所述状态参数中的移动方向。
S2 、依据所述重力感应值计算出所述盲人智能眼镜相对于水平面的倾斜角度,并依据所述速度变换值计算出所述盲人智能眼镜的移动速度,并依此判断盲人用户摔倒。
S3 、调用 GPS 模块 7 的定位信息,该定位信息为盲人用户摔倒的事发地点。
S4 、将以上信息发送至远程服务器。
S5 、远程服务器安排专人到现场服务盲人用户,或者打电话至该盲人用户的家里,通知该盲人用户已发生摔倒事故。该步骤可依据需求灵活设置,并不限于该实施例例举情形。
该实施例的有益效果在于,当盲人用户发生危险事故时,及时发出求救信号以通知专人服务。
图 7 为本发明第四实施例提供的 一种 盲人智能眼镜 的 结构示意图,如图 7 所示 ,所述盲人智能眼镜还包括设置于所述镜片 2 后侧或所述镜架前部 1 上侧的摄像模块 9 、以及设置于所述镜腿 3 上的语音输出模块 6 。
图 8 为本发明第四实施例提供的 一种 盲人智能眼镜 的 框图,如图 8 所示,该实施例不同于第一实施例之处在于, 控制模块 5 与摄像模块 9 电性连接,所述摄像模块 9 用于采集所述盲人智能眼镜前方的图像信息,并将所述图像信息传送至所述控制模块 5 ;控制模块 5 还用于依据所述图像信息计算出所述图像信息中的障碍信息。另外,盲人智能眼镜还包括与所述控制模块 5 电性连接的语音输出模块 6 ,用于输出预设的第二语音信息;所述控制模块 5 还用于依据所述障碍信息控制所述语音输出模块 6 输出所述第二语音信息。该实施例主要应用于盲人用户探路,如同第一实施例,该实施例还可以增设一用于触发探路模式的按键,该探路模式包括以下步骤:
S1 、用户按下按键,进入探路模式;
S2 、用户行进时实时摄像;
S3 、当遇到障碍物时,计算摄像所得的图像中的障碍物信息;
S4 、调用第二语音信息进行语音播报,发出提醒声音,例如'前方有障碍''请绕道行驶'等等。
该实施例的有益效果在于,识别盲人用户行走道路前方障碍,保障其安全出行。
图 9 为本发明第五实施例提供的 一种 盲人智能眼镜 的 结构示意图,如图 9 所示, 所述盲人智能眼镜还包括设置于所述镜架前部 1 的两端中的任意一端的语音输入模块 10 、 GPS 模块 7 、以及设置于所述镜腿 3 上的语音输出模块 6 。
图 10 为本发明第五实施例提供的 一种 盲人智能眼镜 的 框图,如图 10 所示,该实施例不同于第一实施例之处在于, 所述盲人智能眼镜还包括与所述控制模块 5 电性连接的语音输入模块 10 ,用于接收语音输入信息并将所述语音输入信息回传至所述控制模块 5 ,其中,所述语音输入信息为目标地点;与所述控制模块 5 电性连接的 GPS 模块 7 ,所述 GPS 模块 7 用于获取所述盲人智能眼镜的定位信息;与所述控制模块 5 电性连接的语音输出模块 6 ,用于输出预设的第三语音信息。
针对以上新增模块,控制模块 5 识别所述语音输入信息以确定所述目标地点后,依据所述定位信息及所述目标地点形成行走路线信息,依据行走路线信息为盲人用户导航,同时依据所述行走路线信息形成所述第三语音信息,控制所述语音输出模块 6 输出所述第三语音信息。该实施例应用于盲人用户导航,该实施例也可以增设一导航按钮,当用户按下该导航按钮时,触发用户导航模式,该导航模式包括以下步骤:
S1 、按下导航按钮,开启导航模式;
S2 、语音输入目标地点,如:'我要去'宝安体育中心'';
S3 、语音识别后,语音播报第三语音信息:'目的地距离现在三公里,在现在地点的西北处';如果目的地没有搜寻到,播报:'目标地点不存在,请重新输入';
S4 、确认目的地,按下预设的'确认键';
S5 、语音播报第三语音信息:'请注意目的地时宝安体育中心,请沿当前路径行走';
S6 、盲人按照语音指示,朝着目的地出发;
S7 、前面遇到障碍物,盲人智能眼镜通过图像采集,处理后,识别出障碍物,播报'前方 5 米有障碍物,请绕行';该步骤为结合第四实施例协同工作。
S8 、当盲人不小心摔倒,盲人智能眼镜会进行报警信息,到预先指定的接收端,发出危险情况以及当前位置信息,方便监护人及时了解,以应对紧急情况;该步骤为结合第三实施例协同工作
S9 、当到达目的地时,播报第三语音信息:'已到达目的地'。
该实施例的有益效果在于,为盲人用户导航,方便盲人用户出行。
以上实施例可以以任意形式相互结合实施,而并不局限于任一实施例单独实施。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1 、 一种盲人智能眼镜 ,包括:
镜架前部( 1 );
镜片( 2 ),设置于所述镜架前部( 1 )内;
镜腿( 3 ),与所述镜架前部( 1 )的两端铰接;
其特征在于,所述盲人智能眼镜还包括:
传感器组件( 4 ),设置于以下至少一处:所述镜架前部( 1 )、所述镜片( 2 )、所述镜腿( 3 );所述传感器组件( 4 )用于检测所述盲人智能眼镜的状态参数;
控制模块( 5 ),设置于以下任意一处:所述镜架前部( 1 )、所述镜片( 2 )、所述镜腿( 3 );所述控制模块( 5 )用于依据所述传感器组件( 4 )所测得的状态参数执行预设的决策机制。
2 、根据权利要求 1 所述的盲人智能眼镜,其特征在于,所述传感器组件( 4 )与所述控制模块( 5 )电性连接。
3 、根据权利要求 2 所述的 盲人智能眼镜 ,其特征在于,所述传感器组件( 4 )包括重力传感器( 41 )、加速度传感器( 42 )、以及指南针传感器( 43 );
所述重力传感器( 41 )用于检测所述状态参数中的重力感应值,并将所述重力感应值回传至所述控制模块( 5 );
所述加速度传感器( 42 )用于检测所述状态参数中的速度变换值,并将所述速度变换值回传至所述控制模块( 5 );
所述指南针传感器( 43 )用于检测所述状态参数中的移动方向,并将所述移动方向回传至所述控制模块( 5 );
所述控制模块( 5 )还用于依据所述重力感应值计算出所述盲人智能眼镜相对于水平面的倾斜角度,依据所述速度变换值计算出所述盲人智能眼镜的移动速度。
4 、根据权利要求 3 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的语音输出模块( 6 ),所述语音输出模块( 6 )设置于所述镜腿( 3 )上,用于输出预设的第一语音信息;
所述控制模块( 5 )还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为控制所述语音输出模块( 6 )输出所述第一语音信息。
5 、根据权利要求 3 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括:
与所述控制模块( 5 )电性连接的 GPS 模块( 7 ),所述 GPS 模块( 7 )用于获取所述盲人智能眼镜的定位信息;
与所述控制模块( 5 )电性连接的无线通信模块( 8 ),所述无线通信模块( 8 )用于与预设的远程服务器无线通信连接;
所述控制模块( 5 )还用于依据所述倾斜角度、所述移动速度、以及所述移动方向执行所述决策机制,其中,所述决策机制为调用所述 GPS 模块( 7 )的所述定位信息,并生成一与所述定位信息绑定的急救信息,将所述定位信息及所述急救信息通过所述无线通信模块( 8 )发送至所述远程服务器。
6 、根据权利要求 1 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的摄像模块( 9 ),设置于所述镜片( 2 )后侧或所述镜架前部( 1 )上侧,所述摄像模块( 9 )用于采集所述盲人智能眼镜前方的图像信息,并将所述图像信息传送至所述控制模块( 5 );
所述控制模块( 5 )还用于依据所述图像信息计算出所述图像信息中的障碍信息。
7 、 根据权利要求 6 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的语音输出模块( 6 ),设置于所述镜腿( 3 )上,用于输出预设的第二语音信息;
所述控制模块( 5 )还用于依据所述障碍信息控制所述语音输出模块( 6 )输出所述第二语音信息。
8 、根据权利要求 1 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的语音输入模块( 10 ),所述语音输入模块( 10 )设置于所述镜架前部( 1 )的两端中的任意一端,用于接收语音输入信息并将所述语音输入信息回传至所述控制模块( 5 ),其中,所述语音输入信息为目标地点;
所述控制模块( 5 )还用于识别所述语音输入信息以确定所述目标地点。
9 、 根据权利要求 8 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的 GPS 模块( 7 ),所述 GPS 模块( 7 )用于获取所述盲人智能眼镜的定位信息;
所述控制模块( 5 )还用于依据所述定位信息及所述目标地点形成行走路线信息。
10 、 根据权利要求 9 所述的 盲人智能眼镜 ,其特征在于,所述盲人智能眼镜还包括与所述控制模块( 5 )电性连接的语音输出模块( 6 ),所述语音输出模块( 6 )设置于所述镜腿( 3 )上,用于输出预设的第三语音信息;
所述控制模块( 5 )还用于依据所述行走路线信息形成所述第三语音信息,并控制所述语音输出模块( 6 )输出所述第三语音信息。
PCT/CN2014/079729 2014-05-15 2014-06-12 一种盲人智能眼镜 WO2015172418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410205684.9 2014-05-15
CN201410205684.9A CN103976854A (zh) 2014-05-15 2014-05-15 一种盲人智能眼镜

Publications (1)

Publication Number Publication Date
WO2015172418A1 true WO2015172418A1 (zh) 2015-11-19

Family

ID=51269190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079729 WO2015172418A1 (zh) 2014-05-15 2014-06-12 一种盲人智能眼镜

Country Status (2)

Country Link
CN (1) CN103976854A (zh)
WO (1) WO2015172418A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111643324A (zh) * 2020-07-13 2020-09-11 江苏中科智能制造研究院有限公司 一种智能盲人眼镜
CN113350132A (zh) * 2021-06-17 2021-09-07 山东新一代信息产业技术研究院有限公司 一种融合人工智能的新型导盲手表及其使用方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104473717A (zh) * 2014-12-04 2015-04-01 上海交通大学 针对全盲人群的可穿戴式引导设备
CN104407709B (zh) 2014-12-09 2015-12-02 北京银河润泰科技有限公司 可穿戴设备的穿戴状态的处理方法及装置
CN106092118A (zh) * 2016-08-18 2016-11-09 安玉 基于北斗卫星导航系统的老人安全助行监测器
CN106389077A (zh) * 2016-09-14 2017-02-15 上海高智科技发展有限公司 移动终端、导盲前端设备和导盲系统
CN106377401A (zh) * 2016-09-14 2017-02-08 上海高智科技发展有限公司 导盲前端设备、导盲后端设备及导盲系统
CN106389078A (zh) * 2016-11-24 2017-02-15 贵州大学 一种智能导盲眼镜系统及其导盲方法
CN108652929A (zh) * 2018-05-02 2018-10-16 安徽机电职业技术学院 充电系统及盲人智能眼镜
CN109125003A (zh) * 2018-09-12 2019-01-04 张仁义 盲人安全导航拐杖
CN109674628A (zh) * 2019-01-29 2019-04-26 桂林电子科技大学 一种智能眼镜
CN109917562A (zh) * 2019-02-19 2019-06-21 广州市丹爵通讯科技有限公司 一种用于智慧医疗的防摔倒后二次伤害的智能眼镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498845A (zh) * 2009-01-14 2009-08-05 长春大学 智能盲人导航眼镜
CN101642405A (zh) * 2009-06-19 2010-02-10 中国科学院声学研究所 一种超声导盲方法及其便携式超声导盲装置
CN101797197A (zh) * 2009-11-23 2010-08-11 常州达奇信息科技有限公司 便携式盲人自主导航系统
KR20100123036A (ko) * 2009-05-14 2010-11-24 주식회사 마카비즈 보행 보조 장치
CN103191006A (zh) * 2013-03-26 2013-07-10 北京美尔斯通科技发展股份有限公司 一种室内无线全方位定位导盲系统
CN103385795A (zh) * 2013-07-18 2013-11-13 杭州微感科技有限公司 基于运动传感器的导盲眼镜及其工作方法
CN103720576A (zh) * 2013-11-27 2014-04-16 山东科技大学 一种盲人导航眼镜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986735B1 (en) * 1997-06-03 2003-01-15 Stephen Bide Portable navigation system comprising direction detector, position detector and database
US20060129308A1 (en) * 2004-12-10 2006-06-15 Lawrence Kates Management and navigation system for the blind
CN101986673A (zh) * 2010-09-03 2011-03-16 浙江大学 一种智能手机导盲器及导盲方法
CN102164344B (zh) * 2011-02-21 2014-01-15 中国华录集团有限公司 盲人导航手机
CN203315290U (zh) * 2013-06-04 2013-12-04 浙江工商职业技术学院 导盲眼镜
CN203447481U (zh) * 2013-09-13 2014-02-26 昆山市玉山镇仕龙设计工作室 盲人导航太阳能眼镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498845A (zh) * 2009-01-14 2009-08-05 长春大学 智能盲人导航眼镜
KR20100123036A (ko) * 2009-05-14 2010-11-24 주식회사 마카비즈 보행 보조 장치
CN101642405A (zh) * 2009-06-19 2010-02-10 中国科学院声学研究所 一种超声导盲方法及其便携式超声导盲装置
CN101797197A (zh) * 2009-11-23 2010-08-11 常州达奇信息科技有限公司 便携式盲人自主导航系统
CN103191006A (zh) * 2013-03-26 2013-07-10 北京美尔斯通科技发展股份有限公司 一种室内无线全方位定位导盲系统
CN103385795A (zh) * 2013-07-18 2013-11-13 杭州微感科技有限公司 基于运动传感器的导盲眼镜及其工作方法
CN103720576A (zh) * 2013-11-27 2014-04-16 山东科技大学 一种盲人导航眼镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111643324A (zh) * 2020-07-13 2020-09-11 江苏中科智能制造研究院有限公司 一种智能盲人眼镜
CN113350132A (zh) * 2021-06-17 2021-09-07 山东新一代信息产业技术研究院有限公司 一种融合人工智能的新型导盲手表及其使用方法

Also Published As

Publication number Publication date
CN103976854A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2015172418A1 (zh) 一种盲人智能眼镜
CN104127301B (zh) 导盲智能眼镜及其导盲方法
WO2016086440A1 (zh) 针对全盲人群的可穿戴式引导设备
WO2015169072A1 (zh) 盲人眼镜
CN106291984A (zh) 一种基于眼电传感控制的运动监测智能眼镜
WO2016099052A1 (ko) 시각장애인을 위한 3차원 장애물 안내장치와 이를 이용한 주위 정보 안내시스템 및 그 방법
CN104688498A (zh) 一种智能导盲拐杖
WO2018082271A1 (zh) 可穿戴智能导盲系统
CN105561543B (zh) 水下眼镜及其控制方法
WO2005108926A1 (ja) 情報処理装置、携帯機器及び情報処理方法
CN104127302A (zh) 一种视障人士行路安全导航方法
CN103745569A (zh) 检测人体跌倒的方法和终端
WO2017171157A1 (ko) 웨어러블 디바이스
WO2018082264A1 (zh) 耳机式智能导盲系统
CN205665839U (zh) 可穿戴智能跌倒检测警报通知系统
KR20190111262A (ko) 시각 장애인을 위한 장애물 거리 측정 단말기
KR101463986B1 (ko) 초음파 펄스 반향을 이용한 시각 보조 장치 및 그 제어방법
CN205598177U (zh) 一种多功能导盲仪
CN105974492B (zh) 多功能生命探测仪
CN109009904A (zh) 一种智能导盲杖
CN110101179A (zh) 一种多信息远程监控的智能手杖及其使用方法
CN205958783U (zh) 多功能生命探测仪
JP2015118667A (ja) 接近報知装置
CN112385927A (zh) 一种用于应急定距测温的智能安全帽及导航方法
CN217385998U (zh) 一种治安检查巡检ar眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.04.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14892155

Country of ref document: EP

Kind code of ref document: A1