WO2015170874A1 - 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2015170874A1
WO2015170874A1 PCT/KR2015/004516 KR2015004516W WO2015170874A1 WO 2015170874 A1 WO2015170874 A1 WO 2015170874A1 KR 2015004516 W KR2015004516 W KR 2015004516W WO 2015170874 A1 WO2015170874 A1 WO 2015170874A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
band
cell
rat
network
Prior art date
Application number
PCT/KR2015/004516
Other languages
English (en)
French (fr)
Inventor
정성훈
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201580023438.4A priority Critical patent/CN106465369B/zh
Priority to US15/305,635 priority patent/US20170048647A1/en
Publication of WO2015170874A1 publication Critical patent/WO2015170874A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to wireless communication, and more particularly, to a D2D operation method performed by a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission
  • LTE-Advanced LTE-A
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
  • the terminal may move between networks having different radio access technologies (RATs). For example, handover may be performed from an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN) to a wireless local area network (WLAN).
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • WLAN wireless local area network
  • the frequency of the second RAT may be a frequency at which the terminal does not support D2D operation. In this case, the terminal will have to stop the D2D operation. Therefore, there may be a problem that the continuity of the D2D operation is broken.
  • the technical problem to be solved by the present invention is to provide a D2D operation method performed by a terminal in a wireless communication system and a terminal using the same.
  • a method of operating a D2D performed by a terminal in a wireless communication system may generate RAT support information indicating whether D2D operation is supported when the terminal operating in a first RAT (radio access technology) receives a service by a network of a second RAT, and generates the RAT support information. It is characterized in that the transmission to the network of the first RAT.
  • a first RAT radio access technology
  • the RAT assistance information may be included in user equipment capability information of the terminal and transmitted.
  • the terminal capability information may further include D2D band information indicating a frequency band or a combination of frequency bands for which the terminal supports D2D operation.
  • the D2D operation may be D2D communication.
  • the RAT support information indicates whether the terminal supports the D2D operation when receiving the service by the network of the second RAT for each of the frequency bands or frequency band combinations supporting the D2D operation.
  • the first RAT may be an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), and the second RAT may be a UMTS Terrestrial Radio Access Network (UTRAN) or a wireless local area network (WLAN).
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • UTRAN UMTS Terrestrial Radio Access Network
  • WLAN wireless local area network
  • a terminal in another aspect, includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in combination with the RF unit, wherein the processor operates in a first radio access technology (RAT).
  • RF radio frequency
  • RAT radio access technology
  • the UE informs the network of the first RAT of the RAT and the frequency band supporting the D2D operation.
  • the network of the first RAT may handover the UE to a network of the RAT supporting D2D operation and an appropriate frequency band when handing over the UE based on information informed by the UE. Therefore, it is possible to prevent the D2D operation from being interrupted.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • FIG. 8 illustrates substates and substate transition processes that a UE may have in an RRC_IDLE state.
  • FIG 10 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • 11 shows a user plane protocol stack for ProSe direct communication.
  • FIG. 13 is an embodiment of a ProSe direct discovery process.
  • FIG. 15 illustrates a method of operating a D2D of a terminal according to an embodiment of the present invention.
  • 16 exemplifies terminal capability information including D2D band information according to the first method.
  • FIG 17 shows another example of terminal capability information according to the present invention.
  • FIG. 19 shows a D2D operation method of a terminal according to the present invention.
  • FIG. 20 illustrates a D2D operation method of a terminal according to an embodiment of the present invention.
  • FIG. 21 illustrates a method of operating a D2D of a terminal when applying the method of FIG. 20.
  • FIG. 22 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN.
  • RRC_IDLE Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE.
  • the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • System information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
  • the MIB may include a limited number of parameters, the most essential and most frequently transmitted, required to be obtained for other information from the cell.
  • the terminal first finds the MIB after downlink synchronization.
  • the MIB may include information such as downlink channel bandwidth, PHICH settings, SFNs that support synchronization and operate as timing criteria, and eNB transmit antenna settings.
  • the MIB may be broadcast transmitted on a broadband channel (BCH).
  • BCH broadband channel
  • SIB1 SystemInformationBlockType1
  • SIB2 SystemInformationBlockType2
  • SIB1 and all system information messages are sent on the DL-SCH.
  • the E-UTRAN may be dedicated signaling while the SIB1 includes a parameter set equal to a previously set value, and in this case, the SIB1 may be transmitted by being included in an RRC connection reconfiguration message.
  • SIB1 includes information related to UE cell access and defines scheduling of other SIBs.
  • SIB1 is a PLMN identifier of a network, a tracking area code (TAC) and a cell ID, a cell barring status indicating whether a cell can be camped on, a cell barring state used as a cell reselection criterion. It may include the lowest reception level, and information related to the transmission time and period of other SIBs.
  • TAC tracking area code
  • SIB2 may include radio resource configuration information common to all terminals.
  • SIB2 includes uplink carrier frequency and uplink channel bandwidth, RACH configuration, paging configuration, uplink power control configuration, sounding reference signal configuration, PUCCH configuration supporting ACK / NACK transmission, and It may include information related to the PUSCH configuration.
  • the UE may apply the acquisition and change detection procedure of the system information only to the primary cell (PCell).
  • the E-UTRAN may provide all system information related to the RRC connection state operation when the corresponding SCell is added through dedicated signaling.
  • the E-UTRAN may release the SCell under consideration and add it later, which may be performed with a single RRC connection reset message.
  • the E-UTRAN may set parameter values different from those broadcast in the SCell under consideration through dedicated signaling.
  • Essential system information can be defined as follows.
  • the UE When the UE is in the RRC idle state: The UE should ensure that it has valid versions of MIB and SIB1 as well as SIB2 to SIB8, which may be subject to the support of the considered radio access technology (RAT).
  • RAT radio access technology
  • the terminal When the terminal is in the RRC connection state: The terminal should ensure that it has a valid version of MIB, SIB1 and SIB2.
  • the system information can be guaranteed valid up to 3 hours after acquisition.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell a cell in which the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the cells whose measured signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the UE Whenever a cell is selected, the UE does not register with the access network, but registers with the network when the network information received from the system information (for example, Tracking Area Identity; TAI) is different from the network information known to the network. .
  • TAI Tracking Area Identity
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal provides better signal characteristics than the cell of the base station to which the terminal is currently connected if the strength or quality of the signal measured from the base station (serving base station) currently being served is lower than the value measured from the base station of the neighboring cell.
  • Select one of the other cells. This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • PLMN selection In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
  • HPLMN Home PLMN
  • MCC and MNC matching MCC and MNC of UE IMSI.
  • Equivalent HPLMN A PLMN that is equivalent to an HPLMN.
  • Registered PLMN A PLMN that has successfully completed location registration.
  • ELMN Equivalent PLMN
  • Each mobile service consumer subscribes to HPLMN.
  • HPLMN When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state.
  • a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs).
  • a single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the cell selection criteria may be defined as in Equation 1 below.
  • Equation 1 each variable of Equation 1 may be defined as shown in Table 1 below.
  • the signaled values Q rxlevminoffset and Q qualminoffset may be applied only when cell selection is evaluated as a result of a periodic search for a higher priority PLMN while the UE is camping on a regular cell in the VPLMN.
  • the terminal may perform cell selection evaluation using stored parameter values from other cells of the higher priority PLMN.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority (priority) for each frequency to inform the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having the same center-frequency as the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell using a RAT different from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the highest ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the UE attempts to stay at a frequency with the highest frequency priority (camp on: hereinafter referred to as camp on).
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with a parameter (for example, frequency-specific offset) used for cell reselection for each frequency.
  • a parameter for example, frequency-specific offset
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 2.
  • R s Q meas, s + Q hyst
  • R n Q meas, n – Q offset
  • R s is the terminal is currently camping on the serving cell ranking index
  • R n is the neighboring cell ranking index
  • Q meas, s is the quality value measured by the terminal for the serving cell
  • Q meas, n is the terminal The quality value measured for the neighboring cell
  • Q hyst is a hysteresis value for ranking
  • Q offset is an offset between two cells.
  • the terminal may alternately select two cells.
  • Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures R s of the serving cell and R n of the neighboring cell according to the above equation, considers the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • the terminal stops use of all radio bearers which have been set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S710).
  • SRB 0 Signaling Radio Bearer # 0
  • AS access stratum
  • each sublayer and physical layer are set to a default configuration.
  • the UE maintains an RRC connection state.
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S720).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the terminal After performing the cell selection procedure, the terminal checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S730). If it is determined that the selected cell is an appropriate E-UTRAN cell, the terminal transmits an RRC connection reestablishment request message to the cell (S740).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S750).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S760).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal performs the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • FIG. 8 illustrates substates and substate transition processes that a UE may have in an RRC_IDLE state.
  • the terminal performs an initial cell selection process (S801).
  • the initial cell selection process may be performed when there is no cell information stored for the PLMN or when no suitable cell is found.
  • the process transitions to an arbitrary cell selection state (S802).
  • the random cell selection state is a state in which neither the regular cell nor the acceptable cell is camped on, and the UE attempts to find an acceptable cell of any PLMN that can be camped. If the terminal does not find any cell that can camp, the terminal stays in any cell selection state until it finds an acceptable cell.
  • the normal camp state refers to a state of camping on a normal cell.
  • the system information selects and monitors a paging channel according to the given information and performs an evaluation process for cell reselection. Can be.
  • the cell reselection evaluation process S804 When the cell reselection evaluation process S804 is induced in the normal camp state S803, the cell reselection evaluation process S804 is performed. When a normal cell is found in the cell reselection evaluation process S804, the cell transitions back to the normal camp state S803.
  • any cell selection state S802 if an acceptable cell is found, transition to any cell camp state S805.
  • Any cell camp state is a state of camping on an acceptable cell.
  • the UE may select and monitor a paging channel according to the information given through the system information, and may perform an evaluation process (S806) for cell reselection. If an acceptable cell is not found in the evaluation process S806 for cell reselection, a transition to an arbitrary cell selection state S802 is made.
  • ProSe proximity based services
  • ProSe has ProSe communication and ProSe direct discovery.
  • ProSe direct communication refers to communication performed between two or more neighboring terminals.
  • the terminals may perform communication using a user plane protocol.
  • ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
  • ProSe capable terminals include both public safety UEs and non-public safety UEs.
  • the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
  • a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
  • ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
  • EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
  • ProSe direct communication may be referred to as D2D communication
  • ProSe direct discovery may be referred to as D2D discovery.
  • the reference structure for ProSe includes a plurality of UEs including an E-UTRAN, an EPC, a ProSe application program, a ProSe application server, and a ProSe function.
  • EPC represents the E-UTRAN core network structure.
  • the EPC may include MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • ProSe application server is a user of ProSe ability to create application functions.
  • the ProSe application server may communicate with an application program in the terminal.
  • An application program in the terminal may use the ProSe capability to create a coagulation function.
  • the ProSe function may include at least one of the following, but is not necessarily limited thereto.
  • PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
  • PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
  • PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
  • the setting for ProSe discovery and communication may be an example of the interaction.
  • PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
  • PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
  • PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
  • SGi can be used for application data and application level control information exchange.
  • ProSe direct communication is a communication mode that allows two public safety terminals to communicate directly through the PC 5 interface. This communication mode may be supported both in the case where the terminal receives service within the coverage of the E-UTRAN or in the case of leaving the coverage of the E-UTRAN.
  • FIG 10 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • terminals A and B may be located outside cell coverage.
  • UE A may be located within cell coverage and UE B may be located outside cell coverage.
  • UEs A and B may both be located within a single cell coverage.
  • UE A may be located within the coverage of the first cell and UE B may be located within the coverage of the second cell.
  • ProSe direct communication may be performed between terminals in various locations as shown in FIG.
  • IDs may be used for ProSe direct communication.
  • Source Layer-2 ID This ID identifies the sender of the packet on the PC 5 interface.
  • Destination Layer-2 ID This ID identifies the target of the packet on the PC 5 interface.
  • SA L1 ID This ID is the ID in the scheduling assignment (SA) in the PC 5 interface.
  • 11 shows a user plane protocol stack for ProSe direct communication.
  • the PC 5 interface is composed of a PDCH, RLC, MAC, and PHY layers.
  • the MAC header may include a source layer-2 ID and a destination layer-2 ID.
  • a ProSe capable terminal can use the following two modes for resource allocation for ProSe direct communication.
  • Mode 1 is a mode for scheduling resources for ProSe direct communication from a base station.
  • the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
  • the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
  • the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
  • ProSe BSR Buffer Status Report
  • Mode 2 is a mode in which the terminal directly selects a resource.
  • the terminal selects a resource for direct ProSe direct communication from a resource pool.
  • the resource pool may be set or predetermined by the network.
  • the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station.
  • mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station.
  • the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
  • ProSe direct discovery refers to a procedure used by a ProSe capable terminal to discover other ProSe capable terminals, and may also be referred to as D2D direct discovery or D2D discovery. At this time, the E-UTRA radio signal through the PC 5 interface may be used. Information used for ProSe direct discovery is referred to as discovery information hereinafter.
  • the PC 5 interface is composed of a MAC layer, a PHY layer, and a higher layer, ProSe Protocol layer.
  • the upper layer deals with the permission for the announcement and monitoring of discovery information, and the content of the discovery information is transparent to the access stratum (AS). )Do.
  • the ProSe Protocol ensures that only valid discovery information is sent to the AS for the announcement.
  • the MAC layer receives discovery information from a higher layer (ProSe Protocol).
  • the IP layer is not used for sending discovery information.
  • the MAC layer determines the resources used to announce the discovery information received from the upper layer.
  • the MAC layer creates a MAC protocol data unit (PDU) that carries discovery information and sends it to the physical layer.
  • PDU MAC protocol data unit
  • the base station provides the UEs with a resource pool configuration for discovery information announcement.
  • This configuration may be included in a system information block (SIB) and signaled in a broadcast manner.
  • SIB system information block
  • the configuration may be provided included in a terminal specific RRC message.
  • the configuration may be broadcast signaling or terminal specific signaling of another layer besides the RRC message.
  • the terminal selects a resource from the indicated resource pool by itself and announces the discovery information using the selected resource.
  • the terminal may announce the discovery information through a randomly selected resource during each discovery period.
  • the UE in the RRC_CONNECTED state may request a resource for discovery signal announcement from the base station through the RRC signal.
  • the base station may allocate resources for discovery signal announcement with the RRC signal.
  • the UE may be allocated a resource for monitoring the discovery signal within the configured resource pool.
  • the base station 1) may inform the SIB of the type 1 resource pool for discovery signal announcement.
  • ProSe direct UEs are allowed to use the Type 1 resource pool for discovery information announcement in the RRC_IDLE state.
  • the base station may indicate that the base station supports ProSe direct discovery through 2) SIB, but may not provide a resource for discovery information announcement. In this case, the terminal must enter the RRC_CONNECTED state for the discovery information announcement.
  • the base station may set whether the terminal uses a type 1 resource pool or type 2 resource for discovery information announcement through an RRC signal.
  • FIG. 13 is an embodiment of a ProSe direct discovery process.
  • a terminal A and a terminal B are running a ProSe-enabled application, and the applications can allow D2D communication with each other, that is, a 'friend' relationship with each other.
  • a relationship is set.
  • the terminal B may be expressed as a 'friend' of the terminal A.
  • the application program may be, for example, a social networking program.
  • “3GPP Layers" corresponds to the capabilities of the application program to use the ProSe discovery service, as defined by 3GPP.
  • Direct discovery of ProSe between terminals A and B may go through the following process.
  • terminal A performs regular application-layer communication with an application server. This communication is based on an application programming interface (API).
  • API application programming interface
  • the terminal A's ProSe capable application receives a list of application layer IDs that are in a "friend" relationship.
  • the application layer ID may usually be in the form of a network connection ID.
  • the application layer ID of the terminal A may be in the form of “adam@example.com”.
  • Terminal A requests private expressions codes for a user of terminal A and a personal expression codes for a friend of the user.
  • the 3GPP layers send a presentation code request to the ProSe server.
  • the ProSe server maps application layer IDs provided from the operator or third party application server to personal representation codes. For example, an application layer ID such as “adam@example.com” may be mapped to a personal expression code such as “GTER543 $ # 2FSJ67DFSF”. This mapping may be a parameter (eg, a mapping algorithm) received from an application server in the network. , Key value, etc.).
  • the ProSe server responds to the 3GPP layers with the derived presentation codes.
  • the 3GPP layers inform the ProSe-enabled application that the representation codes for the requested application layer ID were successfully received. Then, a mapping table between the application layer ID and the expression codes is generated.
  • the ProSe-enabled application asks the 3GPP layers to begin the discovery process. That is, it attempts to discover when one of the provided "friends" is near the terminal A and can communicate directly.
  • the 3GPP layers announce the personal expression code of the terminal A (ie, "GTER543 $ # 2FSJ67DFSF" which is the personal expression code of "adam@example.com” in the above example). This is referred to as 'announce' below.
  • the mapping between the application layer ID and the personal expression code of the corresponding application may be known only by 'friends' who have previously received such a mapping relationship, and may perform the mapping.
  • terminal B is running the same ProSe capable application as the terminal A, and has performed the above steps 3 to 6.
  • 3GPP layers on terminal B can perform ProSe discovery.
  • the terminal B determines whether the personal expression code included in the announcement is known to the user and mapped to the application layer ID. As described in step 8, since the terminal B also performed steps 3 to 6, the terminal B knows the personal expression code, the mapping between the personal expression code and the application layer ID, and the corresponding application program. Therefore, the terminal B can discover the terminal A from the announcement of the terminal A. In terminal B, the 3GPP layers inform the ProSe-enabled application that it found “adam@example.com”.
  • the discovery procedure has been described in consideration of all of terminals A, B, ProSe server, and application server.
  • the terminal A transmits a signal called an announcement (this process may be called an announcement), and the terminal B receives the announcement and receives the terminal A.
  • the discovery process of FIG. 13 may be referred to as a single step discovery procedure.
  • terminals 1 to 4 are terminals included in a specific group communication system enablers (GCSE) group. Assume that terminal 1 is a discoverer, and terminals 2, 3, and 4 are discoverers. Terminal 5 is a terminal irrelevant to the discovery process.
  • GCSE group communication system enablers
  • the terminal 1 and the terminal 2-4 may perform the following operation in the discovery process.
  • UE 1 broadcasts a targeted discovery request message (hereinafter, abbreviated as discovery request message or M1) to discover whether any UE included in the GCSE group is around.
  • the target discovery request message may include a unique application program group ID or layer-2 group ID of the specific GCSE group.
  • the target discovery request message may include a unique ID of the terminal 1, that is, an application program personal ID.
  • the target discovery request message may be received by the terminals 2, 3, 4, and 5.
  • UE 5 transmits no response message.
  • terminals 2, 3, and 4 included in the GCSE group transmit a target discovery response message (hereinafter, abbreviated as discovery response message or M2) in response to the target discovery request message.
  • the target discovery response message may include a unique application program personal ID of the terminal transmitting the message.
  • the discoverer (terminal 1) transmits a target discovery request message and receives a target discovery response message that is a response thereto.
  • the person who is found for example, the terminal 2 receives the target discovery request message
  • the person who is found for example, the terminal 2 transmits the target discovery response message in response thereto. Therefore, each terminal performs two steps of operation.
  • the ProSe discovery process of FIG. 14 may be referred to as a two-step discovery procedure.
  • the terminal 1 transmits a discovery confirm message (hereinafter abbreviated as M3) in response to the target discovery response message, this is a three-step discovery procedure. It can be called.
  • M3 a discovery confirm message
  • the network may control whether the D2D transmission is allowed.
  • the network may allow D2D transmission, ie, mode 2 D2D transmission, by the UE in the RRC idle state within a specific cell.
  • the network may inform, for example, whether the D2D transmission in mode 2 is supported through the system information broadcast in the specific cell. If the system information is not received, the UE may assume that D2D transmission of the RRC idle state is not allowed in the cell.
  • the network does not need to control D2D signal reception of the UE. That is, whether to receive the D2D signal may be determined by the terminal.
  • the UE may receive a D2D signal regardless of whether a specific cell supports D2D transmission in an RRC idle state.
  • the D2D transmission of the terminal is allowed only if it has a valid D2D setting that can be applied in the RRC connected state.
  • the network may provide to the UE through an RRC connection reconfiguration message including the D2D configuration.
  • the UE in the RRC connection state is allowed D2D transmission only when the network provides the D2D configuration.
  • the D2D setting may be provided through a dedicated signal for the terminal.
  • Receiving a D2D signal in the RRC connected state may be determined by the terminal as long as the network grants the D2D signal to the terminal. That is, the reception of the D2D signal is allowed regardless of whether the UE receives the D2D configuration through the dedicated signal.
  • the network may set which mode among modes 1 and 2, or which mode should operate in the terminal, and this is called mode setting.
  • the signaling for mode setting may use an upper layer signal such as RRC or a lower layer signal such as a physical layer signal. Since the aforementioned mode setting is not performed very often and is not sensitive to delay, an RRC signal may be used.
  • mode 2 Only mode 2 may be applied to the UE in the RRC idle state.
  • the UE in the RRC connected state is applicable to both modes 1 and 2. That is, selecting / setting one of the modes 1 and 2 is necessary only for the UE in the RRC connected state. Thus, dedicated RRC signaling can be used for mode setting.
  • the possible selection options can be selected from modes 1 and 2, or from modes 1, 2 and 1 & 2.
  • mode 1 & 2 the network may schedule a resource for D2D transmission at the request of the terminal, and the terminal may perform D2D transmission using the scheduled resource, and the terminal may select a specific resource in the resource pool. D2D transmission may be performed.
  • the network may set any one of mode 1, mode 2, or mode 1 & 2 to the terminal through dedicated RRC signaling.
  • the terminal when the terminal is set to the mode 1 to perform the D2D transmission, the terminal is scheduled for resources for D2D transmission from the network. Therefore, the terminal does not need to know the resource pool for D2D transmission.
  • the UE which has received the mode 2 performs D2D transmission, it should know a resource pool for D2D transmission.
  • the terminal in order for the terminal to receive the D2D transmission by the mode 1 of the other terminal, the terminal must know the mode 1 receiving resource pool.
  • the mode 1 receiving resource pool may be a sum set of resource pools used for D2D transmission by mode 1 of the serving cell and the neighbor cell.
  • the terminal In order for a terminal to receive D2D transmission by mode 2 of another terminal, the terminal needs to know a mode 2 receiving resource pool.
  • the mode 2 receiving resource pool may be a sum set of resource pools used for D2D transmission by mode 2 of the serving cell and the neighbor cell.
  • the terminal does not need to know the mode 1 transmission resource pool. This is because mode 1 D2D transmission is scheduled by the network.
  • the specific terminal needs to know the mode 1 transmission resource pool of the other terminals.
  • a specific cell wants to allow mode 1 D2D reception to a terminal in a cell, it may broadcast information indicating a mode 1 reception resource pool.
  • the mode 1 received resource pool information is applicable to both the RRC idle state and the RRC connected state for the terminal in the cell.
  • the UE In order to allow / enable mode 2 D2D transmission to the UE in the RRC idle state, the UE should inform the UE of the resource pool available for mode 2 D2D transmission in the RRC idle state.
  • the cell may broadcast resource pool information. That is, if a specific cell wants to allow D2D transmission for a UE in an RRC idle state, resource pool information indicating a resource pool applicable to D2D transmission in an RRC idle state may be broadcast through system information.
  • the UE should inform the resource pool for the mode 2 D2D reception.
  • the cell may broadcast receiving resource pool information indicating the receiving resource pool.
  • the specific cell may broadcast resource pool information indicating a resource pool applicable to D2D reception in the RRC idle state through system information.
  • Resource pool information indicating a resource pool applicable for D2D transmission in an RRC idle state may also be applied for mode 2 D2D transmission in an RRC connected state.
  • the network When the network configures a mode 2 operation to a specific terminal through a dedicated signal, the network may provide the same resource pool as the broadcast resource pool.
  • the broadcasted resource pool may be considered to be applicable to both D2D transmission and D2D reception in an RRC connected state.
  • This broadcasted resource pool may be considered valid in an RRC connected state as long as the terminal is set to mode 2. That is, unless other resources are indicated by dedicated signaling, the broadcasted mode 2 D2D resource pool information may also be used for mode 2 D2D communication in an RRC connected state.
  • resource pool information It is not necessary to inform resource pool information through a dedicated signal for a specific terminal within network coverage.
  • resource pool information is informed through dedicated signaling, optimization may be possible by reducing monitoring resources for the specific terminal. However, such an optimization may require complex network cooperation between cells.
  • the UE may simultaneously support existing cellular communication (ie, communication between the UE and the network, which may be referred to as normal operation) and D2D operation according to the capability in the same frequency band.
  • the terminal may simultaneously support the existing normal operation and the D2D operation in different frequency bands according to the capability. That is, normal operation and D2D operation may be simultaneously supported in the same frequency band or different frequency bands according to the capability of the terminal.
  • the terminal signals information indicating the capability of the terminal to the network, which is called UE capability information.
  • the terminal capability information since the terminal capability information according to the conventional standard standard only informs the frequency bands in which the terminal supports normal operation, that is, operation by cellular communication, the network determines which frequency band the terminal supports D2D operation and also in which There is a problem in whether it is possible to simultaneously support normal operation and D2D operation in a frequency band (or a combination of frequency bands).
  • the frequency band may be simply called a band.
  • EUTRA is illustrated as a network in cellular communication, but is not limited thereto.
  • D2D operation encompasses D2D communication, D2D discovery unless otherwise stated, and encompasses transmission and reception in terms of transmission and reception.
  • FIG. 15 illustrates a method of operating a D2D of a terminal according to an embodiment of the present invention.
  • the terminal generates UE-capability information including D2D band information indicating a frequency band supporting D2D operation (S210) and transmits the terminal capability information to a network (S210). S220).
  • the terminal in order to inform which frequency band or band combination (BC) a normal operation and a D2D operation are allowed, the terminal provides D2D band information indicating bands (band combination) supporting the D2D operation. You can tell the network.
  • the D2D band information may be included in the terminal capability information and transmitted to the network.
  • the bands indicated by the D2D band information may be bands in which the terminal may simultaneously support normal operation and D2D operation.
  • the UE may also transmit a list indicating the bands supporting the normal operation separately.
  • the band indicated together by the list indicating the bands supporting the normal operation and the bands indicating the bands supporting the D2D operation becomes a band in which both the normal operation and the D2D operation are supported.
  • the D2D band information may include a list directly indicating bands for which the terminal may simultaneously support normal operation and D2D operation.
  • the terminal may provide a list of bands that are carrier aggregated to support normal operation and bands that support D2D operation (bands that are carrier aggregated to support normal operation).
  • a list may be provided for each of the bands supporting the D2D operation or provided as one list).
  • Each frequency band or combination of frequency bands in the list represents a frequency band capable of performing normal operation and D2D operation simultaneously.
  • the expression that the terminal simply supports the band X means that the conventional cellular communication (normal operation) is supported for the band X, and will be described separately when supporting the D2D operation for the band X.
  • the UE supports band A, band B, and band C, and may also support carrier aggregation (CA) using two bands for downlink and one band for uplink. If the current carrier aggregation is not set to the terminal, if the band supported by the terminal is expressed as a list, the list includes ⁇ A ⁇ , ⁇ B ⁇ , and ⁇ C ⁇ .
  • CA carrier aggregation
  • carrier aggregation is currently configured for the terminal, the terminal needs to inform the network of a combination supported by the terminal among various combinations of bands A, B, and C.
  • carrier aggregation using two bands for downlink and one band for uplink there may be various combinations as shown in the following table.
  • Band combination Meaning ⁇ A, B ⁇ , A ⁇ Downlink support through bands A and B, uplink support through band A ⁇ A, B ⁇ , B ⁇ Downlink support through bands A and B, uplink support through band B ⁇ A, B ⁇ , C ⁇ Downlink support through bands A and C, Uplink support through band A ⁇ A, C ⁇ , A ⁇ Downlink support through bands A and C, Uplink support through band A ⁇ A, C ⁇ , C ⁇ Downlink support through bands A and C, Uplink support through band C ⁇ A, C ⁇ , B ⁇ Downlink support through bands A and C, Uplink support through band C ⁇ B, C ⁇ , B ⁇ Downlink support through bands B and C, Uplink support through band B ⁇ B, C ⁇ , C ⁇ Downlink support through bands B and C, Uplink support through band C ⁇ B, C ⁇ , A ⁇ Downlink support through bands B and C, Uplink support through band C ⁇ B, C ⁇ , A ⁇ Downlink support through bands B and C, Uplink support through band C ⁇ B, C ⁇ , A ⁇ Downlink
  • the terminal needs to inform the network of all band combinations in Table 2 and can send a list including all band combinations of Table 2 to the network. .
  • the terminal also supports the D2D operation, in addition to the band combination supporting the bands / carrier aggregation supported by the terminal, it will be necessary to inform the network of the band supporting the D2D operation.
  • the terminal when the terminal does not support the carrier aggregation or carrier aggregation is not set, and only supports the D2D operation, it can indicate the band and the D2D operation support band supported by the terminal as shown in the following table. Since carrier aggregation is not supported or not set, D2D operation is supported through one carrier (cell) rather than a plurality of carriers (cells).
  • Band combination Meaning ⁇ A, A (D2D) ⁇ Band A support, Band A support for D2D operation ⁇ A, B (D2D) ⁇ Band A support, Band B support for D2D operation ⁇ A , C (D2D) ⁇ Band A support, Band C support for D2D operation ⁇ B, A (D2D) ⁇ Band B support, Band A support for D2D operation ⁇ B, B (D2D) ⁇ Band B support, Band B support for D2D operation ⁇ B, C (D2D) ⁇ Band B support, Band C support for D2D operation ⁇ C, A (D2D) ⁇ Band C support, Band A support for D2D operation ⁇ C, B (D2D) ⁇ Band C support, Band B support for D2D operation ⁇ C, C (D2D) ⁇ Band C support, Band C support for D2D operation
  • the terminal supports D2D operation through a plurality of bands (ie, when the terminal can simultaneously support D2D operation through multiple bands while performing a cellular communication through one band), the terminal supports as shown in the following table.
  • a band and a D2D operation support band may be indicated.
  • Band combination Meaning ⁇ A, ⁇ A (D2D), B (D2D) ⁇ ⁇ Support band A, support band A, B for D2D operation ⁇ A, ⁇ A (D2D), C (D2D) ⁇ ⁇ Support band A, support band A, C for D2D operation ⁇ A, ⁇ B (D2D), C (D2D) ⁇ ⁇ Support band A, support bands B and C for D2D operation ⁇ A, ⁇ A (D2D), B (D2D), C (D2D) ⁇ ⁇ Support band A, support bands A, B, and C for D2D operation ⁇ B, ⁇ A (D2D), B (D2D) ⁇ ⁇ Band B support, Band A, B support for D2D operation ⁇ B, ⁇ A (D2D), C (D2D) ⁇ ⁇ Band B support, Band A, B support for D2D operation ⁇ B, ⁇ A (D2D), C (D2D) ⁇ ⁇ Band B support, Band A, C support for D
  • the terminal When the terminal supports carrier aggregation, the terminal may also inform band combinations supporting D2D operation together with band combinations supporting carrier aggregation.
  • the terminal when carrier aggregation using two bands for downlink and one band for uplink is set to a terminal supporting carrier aggregation, and the terminal supports D2D operation through one band, the terminal May indicate band combinations as shown in the following table.
  • Band combination Meaning ⁇ A, B ⁇ , A, A (D2D) ⁇ Supports D2D operation in band A with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, B (D2D) ⁇ Supports D2D operation in band B with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, C (D2D) ⁇ Supports D2D operation in band C with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , B, A (D2D) ⁇ Supports D2D operation in band A with carrier aggregation supporting downlink through bands A and B and uplink through band B ⁇ A, B ⁇ , B, B (D2D) ⁇ Supports D2D operation in band B with carrier aggregation supporting downlink through bands A and B and uplink through band B ⁇ A, B ⁇ , B, B (D2D) ⁇ Supports D2
  • the terminal when carrier aggregation using two bands for downlink and one band for uplink is configured for a terminal supporting carrier aggregation, and the terminal supports D2D operation through a plurality of bands, the terminal
  • the band combinations as shown in the table may be indicated.
  • Band combination Meaning ⁇ A, B ⁇ , A, ⁇ A (D2D), B (D2D) ⁇ ⁇ Support D2D operation in bands A and B with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, ⁇ A (D2D), C (D2D) ⁇ ⁇ Supports D2D operation in bands A and C with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, ⁇ B (D2D), C (D2D) ⁇ ⁇ Supports D2D operation in bands B and C with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, ⁇ A (D2D), B (D2D), C (D2D) ⁇ ⁇ Supports D2D operation in bands A, B, and C with carrier aggregation supporting downlink through bands A and B and uplink through band A ⁇ A, B ⁇ , A, ⁇ A (D2
  • the UE informs the network of bands supporting D2D operation together with bands supporting cellular communication.
  • any one of the following three methods may be used to inform the bands supporting the D2D operation.
  • the terminal When the terminal informs the network of a list of bands supporting cellular communication, that is, normal operation, it may indicate whether to support D2D operation for each band of the list (Yes / No).
  • This method has an advantage of reducing signaling size required to indicate band information supporting D2D operation, but has a disadvantage in that it does not support cellular communication but cannot indicate a band supporting only D2D.
  • the terminal When the terminal informs the network of a list of bands supporting cellular communication, that is, normal operation, the network notifies the network of a list supporting D2D operation separately from the list.
  • This method does not support cellular communication but has an advantage of indicating a band supporting only D2D operation, but has a disadvantage in that the signaling size is relatively large compared to the method 1-a.
  • the UE performs the D2D operation for each band of the list when the UE informs the network of the list of bands supporting the cellular communication using the method 1-a. Indicates whether to support (Yes / No). If there is a band that does not support cellular communication but only supports D2D operation, the band is notified by using method 1-b.
  • D2D communication and D2D discovery in D2D operation.
  • the UE may separately inform a band supporting D2D communication and a band supporting D2D discovery.
  • FIG. 16 illustrates terminal capability information including D2D band information according to the method 2-a.
  • the terminal capability information includes D2D band information, wherein the D2D band information indicates a list indicating bands supporting D2D communication (called 'commSupportedBands') and bands supporting D2D discovery. Include a separate list (called 'discSupportedBands').
  • the terminal supports D2D communication in band J and D2D discovery operation in band K.
  • the terminal includes band J in 'commSupportedBands' and band K in 'discSupportedBands'.
  • the UE may inform a band capable of D2D operation, that is, a comprehensive band without distinguishing between D2D communication and D2D discovery.
  • a terminal supporting carrier aggregation using two bands (band X, Y) for downlink and one band (band X) for uplink simultaneously supports D2D communication and D2D discovery operation in band J.
  • the terminal may include the band J in the D2D band information, and the network receiving the same may interpret that both the D2D communication and the D2D discovery are supported in the band J.
  • the terminal capability information transmits information of ⁇ band X for downlink, band Y for downlink ⁇ , X for uplink, and band J ⁇ for D2D operation to the network.
  • the terminal may transmit the D2D band information to the network through the above-described method.
  • the terminal considering the possibility that cellular communication (normal operation) and D2D operation may occur at the same time at the same time, it may be necessary for the terminal to provide the network with information on whether to support the simultaneous operation of the normal operation and the D2D operation.
  • the base station may need to adjust the scheduling of the normal operation or to restrict the D2D operation so that the simultaneous operation does not occur.
  • the UE performs the normal operation in band A and simultaneously performs the D2D operation in band B, but the normal operation is performed in band C and the D2D operation cannot be performed in band B, the base station performs the normal operation.
  • a mobility procedure (eg, handover) may be performed to perform in band A.
  • the following method may be used to inform the network of information on whether the UE supports simultaneous normal operation and D2D operation.
  • the UE When the UE informs the network of a list of bands or band combinations that support normal operation, it indicates (Yes / No) whether to support simultaneous execution of D2D operation for each band of the list.
  • the terminal may use only one of the method 3-a and the method 1 series (method 1-a, 1-b, 1-c) or separately use the method 3-a and the method 1 series, and the terminal may perform the D2D operation. Can be notified to the network.
  • the terminal may use only one of the method 3-a and the method 1 series.
  • indicating that the UE supports the D2D operation in a specific band means that the normal operation and the D2D operation can be simultaneously performed in the band.
  • the terminal may separately use the method 3-a and the method 1-a.
  • it may additionally indicate whether the normal operation and the D2D operation can be simultaneously performed in the band through the method 3-a.
  • the terminal informs the network of a list of band / band combinations supporting cellular communication (normal operation), the D2D band capable of simultaneously performing D2D operations for each entry in the list, that is, each of the band / band combinations. Inform the network.
  • the simultaneous D2D band information may be represented by a band list.
  • the simultaneous D2D band information may be expressed through a bitmap indicating whether the terminal supports simultaneous execution for each band included in the list of bands supporting the D2D operation through the method 1 series. have.
  • the number of bits of this bitmap may be equal to the number of bands indicated by the UE to support D2D operation through the method 1 series.
  • the UE informs the network of a band supporting D2D operation with a D2D support band list called ⁇ A, B, C ⁇ , and the UE is a combination of band A and band B in a combination capable of carrier aggregation ( ⁇ A, B ⁇ ) may further indicate a bitmap having a length of 3. Each bit of this bitmap indicates whether each band of the D2D support band list is supported. If the terminal instructs the bitmap as a bitmap for the band combination ⁇ A, B ⁇ indicated by the terminal that the carrier aggregation is possible, this information indicates that the carrier aggregation operation and the band A using the band combination ⁇ A, B ⁇ are performed. It supports simultaneous operation of D2D operation in.
  • the information may correspond to a carrier aggregation operation using the band combination ⁇ A, B ⁇ .
  • the UE supports the simultaneous operation of the D2D operation in the band A and the UE supports the simultaneous operation of the carrier aggregation operation using the band combination ⁇ A, B ⁇ and the D2D operation in the band B.
  • FIG 17 shows another example of terminal capability information according to the present invention.
  • the terminal capability information may further include D2D supported band information (“commSupportedBandsPerBC”) for each band combination in addition to the D2D band information described with reference to FIGS. 15 and 16.
  • D2D supported band information (“commSupportedBandsPerBC”) for each band combination in addition to the D2D band information described with reference to FIGS. 15 and 16.
  • the D2D support band information for each band combination simultaneously performs cellular communication (normal operation) performed by the UE with the network and D2D operation performed by another UE in a frequency combination (BC) including two or more frequency bands for cellular communication. It can indicate the supported frequency band.
  • cellular communication normal operation
  • CD frequency combination
  • the UE may transmit information such as ⁇ A, B ⁇ , A, A (D2D) ⁇ to the network, which means downlink support through bands A and B and through band A.
  • This is to inform the network that the carrier aggregation supporting uplink supports D2D operation in band A.
  • the terminal is instructing band A as a frequency band that simultaneously supports cellular communication and D2D operation for a band combination consisting of bands A and B.
  • the UE may inform that the band A simultaneously supports cellular communication and D2D operation in the band combination consisting of the bands A and B through the D2D support band information for each band combination.
  • Frequency bands that support cellular communication performed with the network and D2D operations performed with other terminals simultaneously may be included in the list of frequency bands that support the D2D operations.
  • the list may indicate one or more frequency bands.
  • the terminal may provide a bitmap mapped to each frequency band of a frequency band list including one or more frequency bands supporting D2D operation.
  • the bitmap may indicate a frequency band that simultaneously supports cellular communication performed by the terminal with the network and D2D operation performed with the other terminal.
  • a specific bit of the bitmap is 1, it may mean that cellular communication and D2D operation are simultaneously supported in a frequency band mapped to the specific bit. This has been described in Method 3-b.
  • the D2D support band information for each band combination may be received by the UE simultaneously with a signal based on cellular communication (eg, a signal from EUTRA) and a signal based on D2D communication for a specific band combination (BC). It may indicate the bands to support.
  • a signal based on cellular communication eg, a signal from EUTRA
  • a signal based on D2D communication for a specific band combination (BC) may indicate the bands to support.
  • the terminal may inform that the simultaneous transmission is supported through this parameter).
  • the D2D supported band information ('commSupportedBandsPerBC') for each band combination may also indicate bands that support the UE simultaneously transmitting a signal by EUTRA and a signal by D2D communication for a specific band combination.
  • the D2D support band information for each band combination basically indicates bands (receive bands) that support the UE to simultaneously receive a signal by EUTRA and a signal by D2D communication. In the case of informing that simultaneous transmission of signals by D2D communication is supported, this indicates that the UE supports simultaneous transmission of signals by EUTRA and signals by D2D communication in the reception bands.
  • the following table shows specific examples of the terminal capability information described with reference to FIGS. 15 to 17.
  • SupportedBandCombination-r10 SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10
  • SupportedBandCombination-v12xy :: SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v12xy ...
  • BandCombinationParameters-v12xy :: SEQUENCE ⁇ dc-Support-r12 SEQUENCE ⁇ supported-r12 SEQUENCE ⁇ asynchronous-r12 ENUMERATED ⁇ supported ⁇ OPTIONAL, supportedCellGrouping-r12 BIT STRING (SIZE (1..15)) OPTIONAL ⁇ OPTIONAL ⁇ , supportedNAICS-2CRS-AP-r12 BIT STRING (SIZE (1..maxNAICS-Entries-r12)) OPTIONAL, commSupportedBandsPerBC-r12 BIT STRING (SIZE (1 .. maxBands)) OPTIONAL, ... ⁇ ...
  • the terminal capability information is included in conventional terminal capability information such as category ('ue-Category'), physical layer parameter ('phyLayerParamters'), and radio frequency parameters ('rf-parameters') of the terminal. Contains information.
  • the radio frequency parameter includes 'supportedBandListEUTRA', which indicates bands (EUTRA bands) that support cellular communication.
  • the terminal capability information includes additional parameters according to the present invention.
  • the additional parameters are related to the D2D operation and include the aforementioned D2D band information and D2D support band information for each band combination.
  • the D2D band information may be, for example, 'commSupportedBands' and 'discSupportedBands' in Table 7 above.
  • 'CommSupportedBands' indicates bands for which the terminal supports D2D communication.
  • the plurality of bands may constitute a band combination.
  • 'CommSupportedBands' may be provided in the form of a bitmap.
  • Each bit of the bitmap constituting 'commSupportedBands' may correspond to each band included in 'supportedBandListEUTRA'. That is, the first bit of the bitmap constituting 'commSupportedBands' may correspond to the first band included in the 'supportedBandListEUTRA'.
  • the value of a specific bit is 1 in the bitmap constituting 'commSupportedBands', it may indicate that the corresponding band is supported in D2D communication in 'supportedBandListEUTRA'.
  • the 'commSupportedBands' may be provided as a separate list from the 'supportedBandListEUTRA'.
  • 'DiscSupportedBands' indicates bands for which the UE supports D2D discovery. 'DiscSupportedBands' may be provided in the form of a list including the bands that support the operation for D2D discovery.
  • the D2D band information may inform the user equipment of the band supporting D2D communication and the band supporting D2D discovery, respectively.
  • the D2D supported band information for each band combination may be 'commSupportedBandsPerBC' in Table 7 above.
  • 'CommSupportedBandsPerBC' indicates bands that support the UE to simultaneously receive a signal by EUTRA and a signal by D2D communication for a specific band combination (BC). If the terminal supports simultaneous transmission of signals by EUTRA and signals by D2D communication ('commSimultaneousTx' may indicate that the simultaneous transmission is supported and will be described later), 'commSupportedBandsPerBC' may correspond to a specific band combination. Also shown are bands that support the UE to transmit the signal by the EUTRA and the signal by the D2D communication at the same time (transmission).
  • 'commSupportedBandsPerBC' basically indicates bands (receive bands) that support the UE to simultaneously receive a signal by EUTRA and a signal by D2D communication. In the case of notifying that simultaneous transmission (transmission) of a signal is supported, this indicates that the terminal also supports simultaneous transmission of a signal by EUTRA and a signal by D2D in the reception bands.
  • a terminal indicates a frequency band simultaneously supporting cellular communication performed by the terminal with a network and D2D operation performed by another terminal in a frequency combination including two or more frequency bands.
  • D2D support band information for each combination is generated (S310).
  • the terminal transmits the D2D support band information for each band combination to the network (S320).
  • the terminal may further include additional information in the terminal capability information in addition to the D2D band information and the D2D support band information for each band combination.
  • the UE may inform whether a full duplex operation is supported between the band for the D2D operation and another band for the cellular operation.
  • the full duplex operation is a D2D transmitted by another terminal through band A while the terminal transmits a signal for cellular communication through band B between signal band A for D2D operation and another band B for cellular operation. It means that the signal can be received correctly.
  • the UE may inform a band for cellular communication that may operate in full duplex for a specific band supporting D2D operation. That is, it is possible to inform the band for the corresponding cellular communication that can operate in full duplex for each band supporting the D2D operation.
  • the terminal may inform whether the full duplex operation is supported for the first band for the D2D operation and the second band for the D2D operation.
  • the first band and the second band are different bands.
  • the terminal may provide the network with information informing that it supports full duplex for D2D operation for bands A and B.
  • the terminal may inform the network as a list of bands capable of performing D2D operation in full duplex.
  • the UE may inform the network whether it supports only half duplex in a band for D2D operation and a band for cellular communication.
  • the half duplex is an operation method in which cellular communication in another band is not supported when the D2D operation is performed in a specific band.
  • the D2D operation is not supported in another band.
  • the terminal while the terminal is transmitting a signal for D2D communication in band B, the terminal cannot receive a signal by cellular communication in band A. This is because the signal for D2D communication in band B affects the receiver of the terminal tuned to band A. This is also called self-interference. That is, a terminal supporting only half duplex cannot perform signal transmission in a specific band and signal reception in another band due to magnetic interference.
  • Such a terminal needs to inform the band supporting the D2D operation in half duplex together with the band for cellular communication.
  • the terminal may inform the network that the D2D operation is supported only in the half duplex scheme in the band B.
  • the UE may inform whether only the half duplex operation is supported for the first band for the D2D operation and the second band for the D2D operation.
  • the first band and the second band are different bands.
  • a terminal transmits a signal for D2D communication in band B and simultaneously the terminal cannot receive a D2D communication signal transmitted from another terminal in band A, the terminal performs D2D operation in bands A and B. It can be said that only supports the half duplex. Since the signal for the D2D communication transmitted by the terminal in band B interferes with the receiver of the terminal tuned in the band A, the terminal cannot receive the D2D communication signal transmitted by another terminal in the band A. .
  • the terminal may provide the network with information informing that it supports full duplex for D2D operation in bands A and B.
  • the UE may inform the network that the D2D operation is supported only in the half-duplex method in the band B (of course, the band B supporting the D2D operation may be When notifying the network, it may be informed that band A only supports D2D operation in a half duplex manner).
  • the terminal explicitly informs the duplex scheme supported by the terminal capability information
  • this is not a limitation. That is, the duplex scheme supported by the terminal capability information may not be explicitly informed.
  • the network when the terminal capability information does not include information on the duplex scheme explicitly supported, the network is considered to support full duplex or half duplex for all band combinations informed by the terminal. can do. For example, unless there is information in the terminal capability information that only a half duplex is explicitly supported for a specific band combination, the network is full duplex for all of the remaining band combinations except for the specific band combination among the band combinations indicated by the terminal. (Or unless there is information that the terminal capability information explicitly supports only full duplex for a specific band combination, the network may exclude the specific band combination from among the band combinations indicated by the terminal. Can be considered to support half duplex for all band combinations).
  • FIG. 19 shows a D2D operation method of a terminal according to the present invention.
  • terminal 1 provides terminal capability information to a network (S401).
  • the terminal capability information may include the aforementioned D2D band information and D2D support band information for each band combination.
  • the network provides the terminal 1 with D2D configuration information (S402). Since the network may know the D2D band supported by the terminal 1 based on the terminal capability information, a network suitable for the terminal 1 may be set for the D2D operation.
  • a procedure eg, handover or secondary cell replacement
  • a procedure for moving the serving frequency of the terminal to another band may be performed according to the capability information of the terminal.
  • UE 1 performs D2D configuration based on the D2D configuration information (S403).
  • UE 1 performs a D2D operation with UE 2 (S404).
  • the terminal 2 may also exchange the network, the terminal capability information, and the D2D configuration information before performing the D2D operation.
  • D2D operation may or may not be possible while the terminal is being serviced by a radio access technology (RAT) other than the E-UTRAN.
  • RAT radio access technology
  • the terminal is a terminal receiving a service by the first RAT.
  • the UE may or may not be able to perform a D2D operation when receiving a service in a second RAT.
  • the terminal transmits the terminal capability information indicating this fact to the network of the first RAT.
  • the terminal is a terminal operating in the E-UTRAN.
  • the terminal may support to perform D2D operation while receiving a service by the UTRAN according to the capability. If the capability of the terminal is informed to the network of the E-UTRAN, the network may command to hand over to the UTRAN when the communication quality of the E-UTRAN is poor. Even if this does not affect the continuity of the D2D operation of the terminal.
  • the terminal may not support performing a D2D operation while receiving a service by the UTRAN. If the UE informs the network of the E-UTRAN, the E-UTRAN network may not command the UE to hand over to the UTRAN even when the communication quality of the E-UTRAN is poor. This is because the continuity of the D2D operation may be broken when the terminal is handed over to the UTRAN.
  • the terminal is a terminal receiving a service by the first RAT.
  • the UE may or may not be able to perform a D2D operation when receiving a service in a second RAT.
  • the terminal transmits the terminal capability information indicating this fact to the network of the first RAT.
  • the network of the first RAT may support continuity of D2D operation by appropriately managing mobility of the terminal based on the terminal capability information.
  • FIG. 20 illustrates a D2D operation method of a terminal according to an embodiment of the present invention.
  • RAT support information indicating whether D2D operation is supported is generated (S510).
  • the RAT assistance information may be included in user equipment capability information of the terminal and transmitted.
  • the terminal capability information may further include D2D band information indicating a frequency band or a combination of frequency bands for which the terminal supports D2D operation.
  • the D2D operation may be D2D communication.
  • the RAT support information may inform whether the terminal supports D2D operation when receiving a service by the network of the second RAT for each of a frequency band or frequency band combinations supporting the D2D operation.
  • the first RAT is an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), and the second RAT is a UMTS Terrestrial Radio Access Network (UTRAN), a GSM EDGE radio access network (GERAN), and a code division multiplexing access (CDMA) system. Or a wireless local area network (WLAN).
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE radio access network
  • CDMA code division multiplexing access
  • WLAN wireless local area network
  • the terminal transmits the RAT assistance information to the network of the first RAT (S520).
  • the above method may be similarly applied when the first RAT is any one of UTRAN, GERAN, CDMA system or WLAN, and the second RAT is E-UTRAN.
  • the UE may inform whether to support D2D operation and cellular communication at the same time for each supported RAT.
  • a terminal is a terminal basically operated by a first RAT.
  • the first RAT may be an E-UTRAN.
  • the terminal is receiving the service by any one of the second RAT, for example, UTRAN, GERAN, CDMA SYSTEM, WLAN through the terminal capability information (that is, during cellular communication via the second RAT)
  • the RAT support information may indicate whether D2D operation is supported at the same time.
  • the terminal may simultaneously support the D2D operation and the cellular communication.
  • the band may be informed of the network of the first RAT.
  • the UE informs whether simultaneous support of the D2D operation and the cellular communication is possible for each frequency band or simultaneous support of the D2D operation and the cellular communication is possible.
  • the frequency bands of the second RAT may be announced.
  • the UE informs the network of the combination of the frequency band of the second RAT and the frequency band of the first RAT supporting the D2D operation, but the combination of the frequency bands is performed in the frequency band of the second RAT and the first RAT. This means that cellular communication is possible at the same time in the frequency band.
  • the UE may inform whether the D2D operation (eg, D2D communication) is simultaneously supported while receiving the service by the RAT other than the E-UTRAN through the RAT support information.
  • the RAT support information indicates whether the D2D operation is supported for each RAT.
  • the RAT support information does not indicate whether the D2D operation is supported for each RAT, but the service is provided by another RAT other than the E-UTRAN. The difference is that it only tells you whether it supports D2D behavior while receiving it.
  • the terminal may inform the network of the second RAT whether it simultaneously supports D2D operation in the first RAT while receiving the cellular service in the second RAT.
  • the terminal may inform the frequency band of the first RAT capable of supporting the simultaneous. Since a plurality of second RAT frequency bands capable of performing cellular operations are generally plural, the UE may inform the frequency bands of the first RATs capable of simultaneously supporting each frequency band of the second RAT supported by the UE.
  • the UE informs the network of the combination of the frequency band of the first RAT and the frequency band of the second RAT supporting the D2D operation, wherein the combination of the frequency bands is the D2D operation and the second in the frequency band of the first RAT. It means that the cellular operation in the frequency band of the RAT is possible at the same time.
  • the UE may transmit a message indicating that the UE intends to perform the D2D operation in the cell of the second RAT. have.
  • the UE may specifically notify a D2D operation to be performed. For example, the UE may inform whether to attempt D2D transmission, D2D reception, or both D2D transmission and reception.
  • the UE may inform the serving cell of the second RAT of the frequency of the first RAT to which the UE intends to perform the D2D operation.
  • the UE may inform the cell ID of the cell on which the D2D operation is performed (for example, the cell of the first RAT receiving the D2D configuration information) to the serving cell of the second RAT.
  • the UE When the UE changes the serving cell by a mobility procedure such as handover from the cell of the first RAT to the cell of the second RAT, the UE indicates that the UE intends to perform the D2D operation or the D2D operation to the cell of the second RAT. You can send a message.
  • the UE changes the serving cell by a mobility procedure such as handover from the cell of the second RAT to the cell of the first RAT the UE indicates that the UE intends to perform the D2D operation or the D2D operation to the cell of the first RAT. You can send a message.
  • the UE may additionally indicate whether the device supports full duplex or half duplex between D2D operation and cellular communication in the corresponding RAT.
  • the UE may inform a frequency band supporting D2D operation (eg, D2D communication) while receiving a service by another RAT other than the E-UTRAN.
  • a frequency band supporting D2D operation eg, D2D communication
  • the D2D operation of receiving or transmitting a D2D signal may be performed at a serving frequency or a non-serving frequency according to the terminal capability.
  • the serving frequency may be divided into a primary serving frequency and a secondary serving frequency.
  • the terminal may perform a D2D operation through a frequency band optimized for D2D communication using a dedicated radio frequency (RF) unit, or may perform a D2D operation using an RF unit that may be used for cellular communication. This may be determined according to the terminal capability.
  • RF radio frequency
  • the network must know this terminal capability in order to provide continuity of D2D operation. For example, if a network sets a specific frequency band or a combination of frequency bands to the terminal, the D2D operation may be stopped if the terminal does not support the D2D operation in the specific frequency band or frequency band combination. Then, the continuity of the D2D operation is broken.
  • the information indicating the frequency band / frequency band combination supporting the D2D operation may be a very important part in the terminal capability information.
  • the information indicating the frequency band / frequency band combination supporting the D2D operation is transmitted to the network by including information on the terminal capability information
  • a method of adding the information indicating the frequency band / frequency band combination supporting the cellular communication may be used. Can be.
  • terminal capability information transmitted to a network by a terminal (first terminal) that does not support D2D operation includes information indicating a frequency band / frequency band combination supporting cellular communication.
  • the terminal supporting the D2D operation (second terminal) should provide the network with information indicating the frequency band / frequency band combination supporting the cellular communication and the frequency band / frequency band combination supporting the D2D operation to the network.
  • information indicating a frequency band / frequency band combination supporting the D2D operation is added to the format of the terminal capability information used by the first terminal. It is efficient.
  • the network can know the frequency band / frequency band combination supporting cellular communication and the frequency band / frequency band combination supporting D2D operation through the terminal capability information transmitted by the second terminal, the frequency supporting D2D operation and cellular communication simultaneously.
  • the band can be identified.
  • the terminal may transmit information indicating the frequency band / frequency band combination supporting the D2D operation to the terminal capability information.
  • the terminal provides the terminal capability information to the network once upon initial attachment, after which the terminal capability information is managed by the network.
  • the terminal capability information is managed by the network when handover occurs due to terminal movement or when the RRC state changes.
  • the terminal may transmit information indicating a frequency band / frequency band combination supporting the D2D operation to the network. For example, whenever the RRC state is changed from the RRC idle state to the RRC connected state, the terminal may transmit information indicating a frequency band / frequency band combination supporting the D2D operation to the network. In addition, even when a handover occurs due to the movement of the terminal, information indicating a frequency band / frequency band combination supporting D2D operation may be transmitted to the network. This method is similar to how to inform MBMS.
  • the frequency band / frequency band combination supporting D2D operation is not changed while the UE is connected to the network, and the signaling overhead is small.
  • the first method is more convenient.
  • the one frequency band may be added to a combination of frequency bands supporting cellular communication. That is, a new element representing a frequency band supporting D2D operation is added to elements representing frequency bands supporting cellular communication.
  • the UE when the UE supports the D2D operation in a frequency band / frequency band combination in which cellular communication is performed, the UE informs whether the D2D operation and the operation by the cellular communication operate only in a time division multiplexing (TDM) method. You can additionally indicate the indicator.
  • TDM time division multiplexing
  • a subframe in which the D2D operation may be performed may be limited to a subframe in which cellular communication is not scheduled. That is, the D2D operation may not be performed in the subframe in which cellular communication is scheduled. This action can be informed via the indicator.
  • the UE may inform that the D2D operation and the operation by the cellular communication operate without the aforementioned limitation through the indicator. For example, it may be informed that the D2D operation may be performed regardless of whether or not cellular communication is scheduled in a specific subframe.
  • the UE may assume that D2D operation is possible regardless of whether cellular communication is scheduled in a specific subframe of a frequency band supporting simultaneous D2D operation and cellular communication.
  • the UE may consider that the D2D operation and cellular communication may be performed only in the TDM scheme.
  • the meaning of the frequency band supporting the D2D operation varies depending on whether information indicating the frequency band / frequency band combination supporting the D2D operation has been added to the information indicating the frequency band / frequency band combination supporting the cellular communication. Can be.
  • the D2D operation and the operation by the cellular communication may be regarded as possible only by the TDM method. have.
  • the D2D operation and the operation by the cellular communication may be considered to be operable without scheduling restriction. That is, the D2D operation may be performed regardless of whether cellular communication is scheduled in a specific subframe.
  • FIG. 21 illustrates a method of operating a D2D of a terminal when applying the method of FIG. 20.
  • UE 1 transmits UE capability information to E-UTRAN (S601).
  • the terminal capability information may include the above-described RAT support information and D2D band information.
  • the terminal 1 may include RAT support information indicating that the WLAN supports the D2D operation and D2D band information indicating the frequency band supporting the D2D operation in the terminal capability information.
  • the E-UTRAN and the terminal 1 may perform cellular communication (S602).
  • Terminal 1 may perform a D2D operation with the terminal 2 (S603).
  • the amount of traffic may increase or the communication quality with UE 1 may deteriorate. In this case, it may be desirable for the E-UTRAN to hand over UE 1 to another RAT.
  • the E-UTRAN may know that the UE 1 supports D2D operation in the WLAN based on the UE capability information received from the UE 1. Accordingly, the E-UTRAN can recognize that there is no problem in the continuity of the D2D operation even when the UE 1 is handed over to the WLAN.
  • the E-UTRAN transmits a handover command to the WLAN to the terminal 1 (S604).
  • the UE 1 may continue to perform the D2D operation with the UE 2 (S605).
  • FIG. 22 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 implements the proposed functions, processes, and / or methods. For example, when the UE operating in the first RAT is serviced by the network of the second RAT, the processor 1110 generates RAT support information indicating whether to support the D2D operation, and generates the generated RAT support information. May be transmitted to the network of the first RAT.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

무선 통신 시스템에서 단말에 의해 수행되는 D2D(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 제1 RAT(radio access technology)에서 동작하는 상기 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 및 상기 RAT 지원 정보를 상기 제1 RAT의 네트워크로 전송하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말에 의해 수행되는 D2D(DEVICE-TO-DEVICE) 동작 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말에 의하여 수행되는 D2D 동작 방법 및 이 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
한편, 단말은 서로 다른 RAT(radio access technology)를 가지는 네트워크들 간에서 이동을 할 수 있다. 예를 들어, E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)에서 WLAN(wireless local area network)로 핸드 오버를 할 수 있다. 전술한 바와 같이 단말이 제1 RAT에서 제2 RAT로 이동을 할 때, 제2 RAT의 주파수가 상기 단말이 D2D 동작을 지원하지 않는 주파수일 수 있다. 이 경우, 단말은 D2D 동작을 중단해야만 할 것이다. 따라서, D2D 동작의 연속성이 깨어지는 문제가 있을 수 있다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말에 의해 수행되는 D2D 동작 방법 및 이를 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말에 의해 수행되는 D2D 동작 방법을 제공한다. 상기 방법은 제1 RAT(radio access technology)에서 동작하는 상기 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 상기 RAT 지원 정보를 상기 제1 RAT의 네트워크로 전송하는 것을 특징으로 한다.
상기 RAT 지원 정보는 상기 단말의 단말 능력 정보(user equipment capability information)에 포함되어 전송될 수 있다.
상기 단말 능력 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역들의 조합을 나타내는 D2D 대역 정보를 더 포함할 수 있다.
상기 D2D 동작은 D2D 통신(communication)일 수 있다.
상기 RAT 지원 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역 조합들 각각에 대해 상기 제2 RAT의 네트워크에 의하여 서비스를 받을 경우 D2D 동작을 지원하는지 여부를 알려주는 것을 특징으로 한다.
상기 제1 RAT는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 RAT는 UTRAN(UMTS Terrestrial Radio Access Network) 또는 WLAN(wireless local area network)일 수 있다.
다른 측면에서 제공되는 단말은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 제1 RAT(radio access technology)에서 동작하는 상기 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 및 상기 RAT 지원 정보를 상기 제1 RAT의 네트워크로 전송하는 것을 특징으로 한다.
본 발명에 따르면, 단말은 D2D 동작을 지원하는 RAT 및 주파수 대역을 제1 RAT의 네트워크에게 알려준다. 제1 RAT의 네트워크는 상기 단말이 알려주는 정보에 기반하여, 상기 단말을 핸드 오버 시키고자 할 때 D2D 동작을 지원하는 RAT의 네트워크 및 적절한 주파수 대역으로 상기 단말을 핸드오버 시킬 수 있다. 따라서, D2D 동작이 중단되는 것을 방지할 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 8은 단말이 RRC_IDLE 상태에서 가질 수 있는 서브 상태(substate)들과 서브상태 천이 과정을 예시한다.
도 9는 ProSe를 위한 기준 구조를 나타낸다.
도 10은 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 11은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 12는 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 13은 ProSe 직접 발견 과정의 일 실시예이다.
도 14는 ProSe 직접 발견 과정의 다른 실시예이다.
도 15는 본 발명의 일 실시예에 따른 단말의 D2D 동작 방법을 나타낸다.
도 16은 상기 방법 1에 따른 D2D 대역 정보를 포함하는 단말 능력 정보를 예시한다.
도 17은 본 발명에 따른 단말 능력 정보의 다른 예를 나타낸다.
도 18은 본 발명의 다른 실시예에 따른 D2D 동작 방법을 나타낸다.
도 19는 본 발명에 따른 단말의 D2D 동작 방법을 나타낸다.
도 20은 본 발명의 일 실시예에 따른 단말의 D2D 동작 방법을 예시한다.
도 21은 도 20의 방법을 적용할 때 단말의 D2D 동작 방법을 예시한다.
도 22는 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 아이들 상태(RRC_IDLE)라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다. 시스템 정보는 MIB(Master Information Block) 및 복수의 SIB (System Information Block)로 나뉜다.
MIB는 셀로부터 다른 정보를 위해 획득될 것이 요구되는 가장 필수적이고 가장 자주 전송되는, 제한된 개수의 파라미터들을 포함할 수 있다. 단말은 하향링크 동기화 이후에 가장 먼저 MIB를 찾는다. MIB는 하향링크 채널 대역폭, PHICH 설정, 동기화를 지원하고 타이밍 기준으로서 동작하는 SFN, 및 eNB 전송 안테나 설정과 같은 정보를 포함할 수 있다. MIB는 BCH(broadcase channel) 상으로 브로드캐스트 전송될 수 있다.
포함된 SIB들 중 SIB1 (SystemInformationBlockType1) 은 “SystemInformationBlockType1” 메시지에 포함되어 전송되며, SIB1을 제외한 다른 SIB들은 시스템 정보 메시지에 포함되어 전송된다. SIB들을 시스템 정보 메시지에 맵핑시키는 것은 SIB1에 포함된 스케쥴링 정보 리스트 파라미터에 의하여 유동적으로 설정될 수 있다. 단, 각 SIB는 단일 시스템 정보 메시지에 포함되며, 오직 동일한 스케쥴링 요구치(e.g. 주기)를 가진 SIB들만이 동일한 시스템 정보 메시지에 맵핑될 수 있다. 또한, SIB2(SystemInformationBlockType2)는 항상 스케쥴링 정보 리스트의 시스템정보 메시지 리스트 내 첫번째 엔트리에 해당하는 시스템 정보 메시지에 맵핑된다. 동일한 주기 내에 복수의 시스템 정보 메시지가 전송될 수 있다. SIB1 및 모든 시스템 정보 메시지는 DL-SCH상으로 전송된다.
브로드캐스트 전송에 더하여, E-UTRAN은 SIB1은 기존에 설정된 값과 동일하게 설정된 파라미터를 포함한 채로 전용 시그널링(dedicated signaling)될 수 있으며, 이 경우 SIB1은 RRC 연결 재설정 메시지에 포함되어 전송될 수 있다.
SIB1은 단말 셀 접근과 관련된 정보를 포함하며, 다른 SIB들의 스케쥴링을 정의한다. SIB1은 네트워크의 PLMN 식별자들, TAC(Tracking Area Code) 및 셀 ID, 셀이 캠프온 할 수 잇는 셀인지 여부를 지시하는 셀 금지 상태(cell barring status), 셀 재선택 기준으로서 사용되는 셀내 요구되는 최저 수신 레벨, 및 다른 SIB들의 전송 시간 및 주기와 관련된 정보를 포함할 수 있다.
SIB2는 모든 단말에 공통되는 무선 자원 설정 정보를 포함할 수 있다. SIB2는 상향링크 반송파 주파수 및 상향링크 채널 대역폭, RACH 설정, 페이지 설정(paging configuration), 상량링크 파워 제어 설정, 사운딩 기준 신호 설정(Sounding Reference Signal configuration), ACK/NACK 전송을 지원하는 PUCCH 설정 및 PUSCH 설정과 관련된 정보를 포함할 수 있다.
단말은 시스템 정보의 획득 및 변경 감지 절차를 프라이머리 셀(primary cell: PCell)에 대해서만 적용할 수 있다. 세컨더리 셀(secondary cell: SCell)에 있어서, E-UTRAN은 해당 SCell이 추가될 때 RRC 연결 상태 동작과 관련있는 모든 시스템 정보를 전용 시그널링을 통해 제공해줄 수 있다. 설정된 SCell의 관련된 시스템 정보의 변경시, E-UTRAN은 고려되는 SCell을 해제(release)하고 차후에 추가할 수 있는데, 이는 단일 RRC 연결 재설정 메시지와 함께 수행될 수 있다. E-UTRAN은 고려되는 SCell 내에서 브로드캐스트 되었던 값과 다른 파라미터 값들을 전용 시그널링을 통하여 설정해줄 수 있다.
단말은 특정 타입의 시스템 정보에 대하여 그 유효성을 보장해야 하며, 이와 같은 시스템 정보를 필수 시스템 정보(required system information)이라 한다. 필수 시스템 정보는 아래와 같이 정의될 수 있다.
- 단말이 RRC 아이들 상태인 경우: 단말은 SIB2 내지 SIB8 뿐만 아니라 MIB 및 SIB1의 유효한 버전을 가지고 있도록 보장하여야 하며, 이는 고려되는 RAT(radio access technology)의 지원에 따를 수 있다.
- 단말이 RRC 연결 상태인 경우: 단말은 MIB, SIB1 및 SIB2의 유효한 버전을 가지고 있도록 보장하여야 한다.
일반적으로 시스템 정보는 획득 후 최대 3시간 까지 유효성이 보장될 수 있다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell): 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell): 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트래킹 영역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell): 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell): 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT, 무선 통신 방법)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예: Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예: Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 현재 서비스 받고 있는 기지국(서빙 기지국)으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 현재 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서는 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
이하에서 PLMN(public land mobile network)에 대하여 설명하도록 한다.
PLMN은 모바일 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운용한다. 각 PLMN은 MCC(Mobile Country Code) 및 MNC(Mobile Network Code)로 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다.
PLMN 선택, 셀 선택 및 셀 재선택에 있어서, 다양한 타입의 PLMN들이 단말에 의해 고려될 수 있다.
HPLMN(Home PLMN): 단말 IMSI의 MCC 및 MNC와 매칭되는 MCC 및 MNC를 가지는 PLMN.
EHPLMN(Equivalent HPLMN): HPLMN과 등가로 취급되는 PLMN.
RPLMN(Registered PLMN): 위치 등록이 성공적으로 마쳐진 PLMN.
EPLMN(Equivalent PLMN): RPLMN과 등가로 취급되는 PLMN.
각 모바일 서비스 수요자는 HPLMN에 가입한다. HPLMN 또는 EHPLMN에 의하여 단말로 일반 서비스가 제공될 때, 단말은 로밍 상태(roaming state)에 있지 않는다. 반면, HPLMN/EHPLMN 이외의 PLMN에 의하여 단말로 서비스가 제공될 때, 단말은 로밍 상태에 있으며, 그 PLMN은 VPLMN(Visited PLMN)이라고 불리운다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
다음은 종래 기술에서, 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
셀 선택 기준은 하기 식 1과 같이 정의될 수 있다.
[식 1]
Figure PCTKR2015004516-appb-I000001
여기서, 상기 식 1의 각 변수는 하기 표 1과 같이 정의될 수 있다.
Figure PCTKR2015004516-appb-T000001
시그널링된 값들인 Qrxlevminoffset 및 Qqualminoffset은 단말이 VPLMN내의 정규 셀에 캠프 하고 있는 동안 보다 높은 우선순위의 PLMN에 대한 주기적 탐색의 결과로서 셀 선택이 평가되는 경우에 한하여 적용될 수 있다. 위와 같이 보다 높은 우선순위의 PLMN에 대한 주기적 탐색동안, 단말은 이와 같은 보다 높은 우선순위의 PLMN의 다른 셀로부터 저장된 파라미터 값들을 사용하여 셀 선택 평가를 수행할 수 있다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위(priority)를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- 인트라-주파수(Intra-frequency) 셀 재선택: 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- 인터-주파수(Inter-frequency) 셀 재선택: 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- 인터-RAT(Inter-RAT) 셀 재선택: 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 최고 순위 셀(highest ranked cell)이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on: 이하 캠프 온이라 표현할 수 있다) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 식 2와 같이 정의된다.
[식 2]
Rs = Qmeas,s + Qhyst, Rn = Qmeas,n – Qoffset
여기서, Rs는 단말이 현재 캠프 온하고 있고 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최고 순위(highest ranked) 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
이제 무선 링크 실패에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)
- MAC 부계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.
- RLC 부계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.
- 핸드오버를 실패한 것으로 판단한 경우.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 7을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S710). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S720). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S730). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S740).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S750).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S760).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.
도 8은 단말이 RRC_IDLE 상태에서 가질 수 있는 서브 상태(substate)들과 서브상태 천이 과정을 예시한다.
도 8을 참조하면, 단말은 최초 셀 선택 과정을 수행한다(S801). 최초 셀 선택 과정은 PLMN에 대하여 저장한 셀 정보가 없거나 정규 셀(suitable cell)을 찾지 못한 경우에 수행될 수 있다.
최초 셀 선택 과정에서 정규 셀을 찾을 수 없으면 임의 셀 선택 상태(S802)로 천이한다. 임의 셀 선택 상태는 정규 셀에도 수용가능 셀에도 캠프 온(camp on)하지 못한 상태이며, 단말이 캠프할 수 있는 임의의 PLMN의 수용가능 셀(acceptable cell)을 찾기 위해 시도하는 상태이다. 단말이 캠프할 수 있는 어떤 셀도 찾지 못한 경우, 단말은 수용가능 셀을 찾을 때까지 계속 임의 셀 선택 상태에 머문다.
최초 셀 선택 과정에서 정규 셀을 찾으면 정규 캠프 상태(S803)로 천이한다. 정규 캠프 상태는 정규 셀에 캠프 온(camp on)한 상태를 말하며, 시스템 정보를 통해 주어진 정보에 따라 페이징 채널(paging channel)을 선택하고 모니터링할 수 있고, 셀 재선택을 위한 평가 과정을 수행할 수 있다.
정규 캠프 상태(S803)에서 셀 재선택 평가 과정(S804)이 유발되면 셀 재선택 평가 과정(S804)를 수행한다. 셀 재선택 평가 과정(S804)에서 정규 셀(suitable cell)이 발견되면 다시 정규 캠프 상태(S803)으로 천이한다.
임의 셀 선택 상태(S802)에서, 수용가능 셀이 발견되면 임의 셀 캠프 상태(S805)로 천이한다. 임의 셀 캠프 상태는 수용가능 셀에 캠프 온(camp on)한 상태이다.
임의 셀 캠프 상태(S805)에서 단말은 시스템 정보를 통해 주어진 정보에 따라 페이징 채널(paging channel)을 선택하고 모니터링할 수 있고, 셀 재선택을 위한 평가 과정(S806)을 수행할 수 있다. 상기 셀 재선택을 위한 평가 과정(S806)에서 수용가능 셀(acceptable cell)이 발견되지 않으면 임의 셀 선택 상태(S802)로 천이한다.
이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(communication)과 ProSe 직접 발견(direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 9는 ProSe를 위한 기준 구조를 나타낸다.
도 9를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응요 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
<ProSe 직접 통신(D2D 통신): ProSe Direct Communication>.
ProSe 직접 통신은 2개의 공용 안전 단말들이 PC 5 인터페이스를 통해 직접 통신을 할 수 있는 통신 모드이다. 이 통신 모드는 단말이 E-UTRAN의 커버리지 내에서 서비스를 받는 경우나 E-UTRAN의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 10은 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 10 (a)를 참조하면, 단말 A, B는 셀 커버리지 바깥에 위치할 수 있다. 도 10 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 10 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 10 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
ProSe 직접 통신은 도 10과 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
한편, ProSe 직접 통신에는 다음 ID들이 사용될 수 있다.
소스 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 전송자를 식별시킨다.
목적 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 타겟을 식별시킨다.
SA L1 ID: 이 ID는 PC 5 인터페이스에서 스케줄링 할당(scheduling assignment: SA)에서의 ID이다.
도 11은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 11을 참조하면, PC 5 인터페이스는 PDCH, RLC, MAC 및 PHY 계층으로 구성된다.
ProSe 직접 통신에서는 HARQ 피드백이 없을 수 있다. MAC 헤더는 소스 레이어-2 ID 및 목적 레이어-2 ID를 포함할 수 있다.

<ProSe 직접 통신을 위한 무선 자원 할당>.
ProSe 가능 단말은 ProSe 직접 통신을 위한 자원 할당에 대해 다음 2가지 모드들을 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.

<ProSe 직접 발견(D2D 발견): ProSe direct discovery>
ProSe 직접 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 D2D 직접 발견 또는 D2D 발견이라 칭하기도 한다. 이 때, PC 5 인터페이스를 통한 E-UTRA 무선 신호가 사용될 수 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
도 12는 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 12를 참조하면, PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(anouncement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다.
MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.

RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 신호 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.

도 13은 ProSe 직접 발견 과정의 일 실시예이다.
도 13을 참조하면, 단말 A와 단말 B는 ProSe가 가능한 응용 프로그램(ProSe-enabled application)이 운용 되고 있으며, 상기 응용 프로그램에서 서로 간에 ‘친구’인 관계 즉, 서로 간에 D2D 통신을 허용할 수 있는 관계로 설정되어 있다고 가정하자. 이하에서 단말 B는 단말 A의 ‘친구’라고 표현할 수 있다. 상기 응용 프로그램은 예컨대, 소셜 네트워킹 프로그램일 수 있다. ‘3GPP Layers’는 3GPP에 의하여 규정된, ProSe 발견 서비스를 이용하기 위한 응용 프로그램의 기능들에 대응된다.
단말 A, B 간의 ProSe 직접 발견은 다음 과정을 거칠 수 있다.
1. 먼저, 단말 A는 응용 서버와 정규 응용 레이어 통신(regular application-Layer communication)을 수행한다. 이 통신은 응용 프로그램 인터페이스(Application programming interface: API)에 기반한다.
2. 단말 A의 ProSe 가능 응용 프로그램은 ‘친구’인 관계에 있는 응용 레이어 ID의 리스트를 수신한다. 상기 응용 레이어 ID는 보통 네트워크 접속 ID 형태일 수 있다. 예컨대, 단말 A의 응용 레이어 ID는 “adam@example.com”과 같은 형태일 수 있다.
3. 단말 A는 단말 A의 사용자를 위한 개인 표현 코드(private expressions codes), 상기 사용자의 친구를 위한 개인 표현 코드를 요청한다.
4. 3GPP layers는 ProSe 서버에게 표현 코드 요청을 전송한다.
5. ProSe 서버는 운영자 또는 제3자 응용 서버로부터 제공되는 응용 레이어 ID들을 개인 표현 코드들에 맵핑한다. 예를 들어, “adam@example.com”과 같은 응용 레이어 ID는 “GTER543$#2FSJ67DFSF”와 같은 개인 표현 코드에 맵핑될 수 있다.이 맵핑은 네트워크의 응용 서버로부터 받은 파라미터들(예컨대, 맵핑 알고리듬, 키 값 등)에 기반하여 수행될 수 있다.
6. ProSe 서버는 도출된 표현 코드들을 3GPP layers에게 응답한다. 3GPP layers는 요청된 응용 레이어 ID에 대한 표현 코드들이 성공적으로 수신되었음을 ProSe 가능 응용 프로그램에게 알린다. 그리고, 응용 레이어 ID와 표현 코드들 간의 맵핑 테이블을 생성한다.
7. ProSe 가능 응용 프로그램은 3GPP layers에게 발견 절차를 시작하도록 요청한다. 즉, 제공된 ‘친구’들 중 하나가 단말 A의 근처에 있고 직접 통신이 가능할 때 발견을 시도하도록 한다. 3GPP layers는 단말 A의 개인 표현 코드(즉, 상기 예에서 “adam@example.com”의 개인 표현 코드인 “GTER543$#2FSJ67DFSF”)를 알린다(announce). 이를 이하에서 ‘어나운스’라 칭한다. 해당 응용 프로그램의 응용 레이어 ID와 개인 표현 코드 간의 맵핑은, 이러한 맵핑관계를 미리 수신한 ‘친구’들만 알 수 있고 그 맵핑을 수행할 수 있다.
8. 단말 B는 단말 A와 동일한 ProSe 가능 응용 프로그램을 운용 중이고, 전술한 3 내지 6 단계를 실행했다고 가정하자. 단말 B에 있는 3GPP layers는 ProSe 발견을 실행할 수 있다.
9. 단말 B가 단말 A로부터 전술한 어나운스를 수신하면, 단말 B는 상기 어나운스에 포함된 개인 표현 코드가 자신이 알고 있는 것인지 및 응용 레이어 ID와 맵핑되는지 여부를 판단한다. 8 단계에서 설명하였듯이, 단말 B 역시 3 내지 6 단계를 실행하였으므로, 단말 A에 대한 개인 표현 코드, 개인 표현 코드와 응용 레이어 ID와의 맵핑, 해당 응용 프로그램이 무엇인지를 알고 있다. 따라서, 단말 B는 단말 A의 어나운스로부터 단말 A를 발견할 수 있다. 단말 B 내에서 3GPP layers는 ProSe 가능 응용 프로그램에게 “adam@example.com”를 발견하였음을 알린다.
도 13에서는 단말 A, B와 ProSe 서버, 응용 서버 등을 모두 고려하여 발견 절차를 설명하였다. 단말 A, B 간의 동작 측면에 국한하여 보면, 단말 A는 어나운스라고 불리는 신호를 전송(이 과정을 어나운스먼트라 칭할 수 있음)하고, 단말 B는 상기 어나운스를 수신하여 단말 A를 발견한다. 즉, 각 단말에서 행해지는 동작들 중 다른 단말과 직접적으로 관련된 동작은 한 가지 단계뿐이라는 측면에서, 도 13의 발견 과정은 단일 단계 발견 절차라 칭할 수도 있다.
도 14는 ProSe 직접 발견 과정의 다른 실시예이다.
도 14에서, 단말 1 내지 4는 특정 GCSE(group communication system enablers) 그룹에 포함된 단말들이라고 하자. 단말 1은 발견자(discoverer)이고, 단말 2, 3, 4는 발견되는 자(discoveree)라고 가정하자. 단말 5는 발견 과정과 무관한 단말이다.
단말 1 및 단말 2-4는 발견 과정에서 다음 동작을 수행할 수 있다.
먼저, 단말 1은 상기 GCSE 그룹에 포함된 임의의 단말이 주위에 있는지 발견하기 위하여 타겟 발견 요청 메시지(targeted discovery request message, 이하 발견 요청 메시지 또는 M1으로 약칭할 수 있다)를 브로드캐스트한다. 타겟 발견 요청 메시지에는 상기 특정 GCSE 그룹의 고유한 응용 프로그램 그룹 ID 또는 레이어-2 그룹 ID를 포함할 수 있다. 또한, 타겟 발견 요청 메시지에는 단말 1의 고유한 ID 즉, 응용 프로그램 개인 ID를 포함할 수 있다. 타겟 발견 요청 메시지는 단말 2, 3, 4 및 5에 의하여 수신될 수 있다.
단말 5는 아무런 응답 메시지를 전송하지 않는다. 반면, 상기 GCSE 그룹에 포함된 단말 2, 3, 4는 상기 타겟 발견 요청 메시지에 대한 응답으로 타겟 발견 응답 메시지(Targeted discovery response message, 이하 발견 응답 메시지 또는 M2로 약칭할 수 있다)를 전송한다. 타겟 발견 응답 메시지에는 이 메시지를 전송하는 단말의 고유한 응용 프로그램 개인 ID가 포함될 수 있다.
도 14에서 설명한 ProSe 발견 과정에서 단말들 간의 동작을 살펴보면, 발견자(단말 1)는 타겟 발견 요청 메시지를 전송하고, 이에 대한 응답인 타겟 발견 응답 메시지를 수신한다. 또한, 발견되는 자(예를 들어, 단말 2)도 타겟 발견 요청 메시지를 수신하면 이에 대한 응답으로 타겟 발견 응답 메시지를 전송한다. 따라서, 각 단말은 2 단계의 동작을 수행한다. 이러한 측면에서 도 14의 ProSe 발견 과정은 2단계 발견 절차라 칭할 수 있다.
상기 도 14에서 설명한 발견 절차에 더하여, 만약 단말 1(발견자)이 타겟 발견 응답 메시지에 대한 응답으로 발견 확인 메시지(discovery confirm message, 이하 M3로 약칭할 수 있다)를 전송한다면 이는 3단계 발견 절차라 칭할 수 있다.
이하에서는 본 발명이 적용되는 단말에게 적용된다고 가정하는 동작을 설명한다.
<RRC 아이들 상태에서 D2D 통신>
RRC 아이들 상태에서의 셀 내 D2D 전송에 대해, 네트워크는 상기 D2D 전송이 허용되는지 여부를 제어할 수 있다. 네트워크는 특정 셀 내에서 RRC 아이들 상태의 단말에 의한 D2D 전송 즉, 모드 2의 D2D 전송을 허용할 수 있다. 이 경우, 상기 네트워크는 예컨대, 상기 특정 셀의 브로드캐스트되는 시스템 정보를 통해 모드 2의 D2D 전송의 지원 여부를 상기 단말에게 알려줄 수 있다. 이러한 시스템 정보를 수신하지 못하면, 상기 단말은 상기 셀 내에서 RRC 아이들 상태의 D2D 전송은 허용되지 않는 것으로 간주할 수 있다.
RRC 아이들 상태에서의 셀 내 D2D 수신과 관련하여, 네트워크에 의하여 D2D 신호 수신이 허용되는 한, 네트워크가 단말의 D2D 신호 수신을 제어할 필요가 없다. 즉, D2D 신호의 수신 여부는 단말에 의해 결정될 수 있다. 특정 셀에서 RRC 아이들 상태에서의 D2D 전송을 지원하는지 여부에 관계없이 단말은 D2D 신호를 수신할 수 있다.

<RRC 연결 상태에서 D2D 통신>
단말이 RRC 연결 상태가 되면, RRC 연결 상태에서 적용할 수 있는 유효한 D2D 설정을 가지고 있는 경우에 한하여 상기 단말의 D2D 전송이 허용된다. 이를 위해, 네트워크는 D2D 설정을 포함하는 RRC 연결 재설정 메시지를 통해 단말에게 제공할 수 있다.
즉, RRC 연결 상태에 있는 단말은 네트워크가 D2D 설정을 제공한 경우에 한하여 D2D 전송이 허용된다. 상기 D2D 설정은 상기 단말에 대한 전용 신호를 통해 제공될 수 있다.
RRC 연결 상태에서 D2D 신호를 수신하는 것은 네트워크가 상기 단말에게 D2D 신호를 허가한 이상 단말에 의해 결정될 수 있다. 즉, 단말이 전용 신호를 통해 D2D 설정을 제공받는지 여부에 관계 없이 D2D 신호의 수신은 허용된다.

<모드 설정>
네트워크는 단말에게 모드 1, 2 중 어느 모드로 동작할 수 있는지, 또는 어느 모드로 동작해야 하는지 등을 설정할 수 있으며 이를 모드 설정이라 하자. 이 때, 모드 설정을 위한 시그널링은 RRC와 같은 상위 계층 신호를 이용하거나 또는 물리 계층 신호와 같은 하위 계층 신호를 이용할 수 있다. 전술한 모드 설정은 그리 자주 수행되지 않고 지연에 민감하지 않으므로 RRC 신호가 사용될 수 있다.
RRC 아이들 상태의 단말에 대해서는 모드 2만 적용될 수 있다. 반면, RRC 연결 상태의 단말은 모드 1, 2 모두 적용 가능하다. 즉, 모드 1, 2 중 어느 하나를 선택/설정하는 것은 RRC 연결 상태의 단말에 대해서만 필요하다. 따라서, 전용 RRC 시그널링이 모드 설정을 위해 사용될 수 있다.
한편, 모드 설정에서, 가능한 선택 옵션은 모드 1, 2 중에서 선택하거나, 또는 모드 1, 2 및 1&2 중에서 선택할 수 있다. 모드 1&2가 설정되면, 단말의 요청에 의하여 네트워크가 D2D 전송을 위한 자원을 스케줄링하고 단말은 상기 스케줄링된 자원을 이용하여 D2D 전송을 수행할 수도 있고, 또한, 단말은 자원 풀 내에서 특정 자원을 선택하여 D2D 전송을 수행할 수도 있다.
네트워크는 전용 RRC 시그널링을 통해 단말에게 모드 1, 모드 2 또는 모드 1&2 중에서 어느 하나의 모드를 설정할 수 있다.

<자원 풀 설정 및 시그널링>
단말의 D2D 신호 전송 측면에서 살펴보면, 모드 1을 설정 받은 단말이 D2D 전송을 수행할 경우, 상기 단말은 네트워크로부터 D2D 전송을 위한 자원을 스케줄링 받게 된다. 따라서, 상기 단말은 D2D 전송을 위한 자원 풀을 알 필요가 없다. 모드 2를 설정 받은 단말이 D2D 전송을 수행할 경우, D2D 전송을 위한 자원 풀을 알아야 한다.
단말의 D2D 신호 수신 측면에서 살펴보면, 타 단말의 모드 1에 의한 D2D 전송을 단말이 수신하려면, 상기 단말은 모드 1 수신 자원 풀을 알아야 한다. 여기서, 모드 1 수신 자원 풀은 서빙 셀 및 이웃 셀의 모드 1에 의한 D2D 전송에 사용되는 자원 풀들의 합 집합일 수 있다. 타 단말의 모드 2에 의한 D2D 전송을 단말이 수신하려면, 상기 단말은 모드 2 수신 자원 풀을 알아야 한다. 여기서, 모드 2 수신 자원 풀은 서빙 셀 및 이웃 셀의 모드 2에 의한 D2D 전송에 사용되는 자원 풀들의 합 집합일 수 있다.
모드 1의 자원 풀에 있어서, 단말은 모드 1 전송 자원 풀은 알 필요가 없다. 왜냐하면, 모드 1 D2D 전송은 네트워크에 의하여 스케줄링되기 때문이다. 그러나, 특정 단말이 다른 단말로부터 모드 1 D2D 전송을 수신하려면 상기 특정 단말은 상기 다른 단말들의 모드 1 전송 자원 풀을 알아야 한다. RRC 아이들 상태에서 상기 특정 단말이 모드 1 D2D 전송을 수신할 수 있도록 하기 위해서는, 셀이 모드 1 수신 자원 풀을 알려주는 정보를 브로드캐스트하는 것이 필요할 수 있다. 이 정보는 RRC 아이들 상태나 RRC 연결 상태 모두에서 적용 가능할 수 있다.
특정 셀이 셀 내 단말에게 모드 1 D2D 수신을 허용하고 싶으면, 모드 1 수신 자원 풀을 알려주는 정보를 브로드캐스트할 수 있다. 상기 모드 1 수신 자원 풀 정보는 셀 내 단말에 대해 RRC 아이들 상태 및 RRC 연결 상태에서 모두 적용 가능하다.
RRC 아이들 상태의 단말에게 모드 2 D2D 전송을 허용/가능하게 하기 위해서는, 상기 단말에게 RRC 아이들 상태에서 모드 2 D2D 전송에 사용 가능한 자원 풀을 알려 주어야 한다. 이를 위해, 셀은 자원 풀 정보를 브로드캐스트할 수 있다. 즉, 특정 셀이 RRC 아이들 상태인 단말에 대해 D2D 전송을 허용하고 싶다면, RRC 아이들 상태에서 D2D 전송에 적용될 수 있는 자원 풀을 나타내는 자원 풀 정보를 시스템 정보를 통해 브로드캐스트할 수 있다.
마찬가지로, RRC 아이들 상태의 단말에게 모드 2 D2D 수신을 허용/가능하게 하기 위해서, 상기 단말에게 모드 2 D2D 수신을 위한 자원 풀을 알려 주어야 한다. 이를 위해, 셀은 수신 자원 풀을 나타내는 수신 자원 풀 정보를 브로드캐스트할 수 있다.
즉, 특정 셀이 RRC 아이들 상태의 단말에 의한 D2D 수신을 허용하고 싶다면, 상기 특정 셀은 RRC 아이들 상태에서 D2D 수신에 적용될 수 있는 자원 풀을 나타내는 자원 풀 정보를 시스템 정보를 통해 브로드캐스트할 수 있다.
RRC 아이들 상태에서 D2D 전송을 위하여 적용할 수 있는 자원 풀을 나타내는 자원 풀 정보는 RRC 연결 상태에서 모드 2 D2D 전송을 위하여서도 적용할 수 있다. 네트워크가 전용 시그널을 통해 특정 단말에게 모드 2 동작을 설정할 때, 브로드캐스트되는 자원 풀과 동일한 자원 풀을 제공하도록 할 수 있다. 또는 브로드캐스트되는 자원 풀은 RRC 연결 상태에서의 D2D 전송 및 D2D 수신에 모두 적용 가능한 것으로 간주할 수 있다. 이 브로드캐스트되는 자원 풀은 단말이 모드 2로 설정되어 있는 한, RRC 연결 상태에서 유효한 것으로 간주될 수 있다. 즉, 전용 시그널링에 의하여 다른 자원이 지시되지 않는 이상, 브로드캐스트되는 모드 2 D2D 자원 풀 정보는 RRC 연결 상태에서 모드 2 D2D 통신을 위하여서도 사용될 수 있다.
네트워크 커버리지 내에서 특정 단말에 대하여 반드시 전용 시그널을 통해 자원 풀 정보를 알려줄 필요가 없다. 전용 시그널링을 통해 자원 풀 정보를 알려줄 경우, 상기 특정 단말에 대한 모니터링 자원을 줄임으로써 최적화가 가능할 수 있다. 다만, 이러한 최적화는 셀들 간에서 복잡한 네트워크 협력이 요구될 수 있다.
이제 본 발명에 대해 설명한다.
단말은 능력(capability)에 따라 기존의 셀룰러 통신(즉, 단말과 네트워크 간의 통신을 의미하며, 이를 노멀 동작(normal operation)이라 칭할 수 있다)과 D2D 동작을 동일 주파수 대역에서 동시에 지원할 수 있다. 또는 단말은 능력에 따라 기존 노멀 동작과 D2D 동작을 서로 다른 주파수 대역들에서 동시에 지원할 수도 있다. 즉, 단말의 능력(capability)에 따라 동일 주파수 대역 또는 서로 다른 주파수 대역에서 노멀 동작과 D2D 동작을 동시에 지원할 수 있다.
단말은 자신의 능력을 알려주는 정보를 네트워크에게 시그널링하는데, 이를 단말 능력 정보(UE capability information)이라 칭한다. 그런데, 종래 표준 규격에 의한 단말 능력 정보는 단말이 노멀 동작 즉, 셀룰러 통신에 의한 동작을 지원하는 주파수 대역만을 알려줄 뿐이었기 때문에, 네트워크는 어떤 주파수 대역에서 상기 단말이 D2D 동작을 지원하는지, 또한 어떤 주파수 대역(또는 주파수 대역의 조합)에서 노멀 동작과 D2D 동작을 동시에 지원하는지를 알 수 없는 문제가 있다. 이하, 주파수 대역은 간단히 대역이라 칭할 수 있다. 이하, 셀룰러 통신에서 네트워크로 EUTRA를 예시하나 이에 제한되는 것은 아니다. D2D 동작은 특별한 언급이 없으면 D2D 통신, D2D 발견을 포괄하는 것이며, 송수신 측면에서 전송 및 수신을 포괄하는 것이다.
도 15는 본 발명의 일 실시예에 따른 단말의 D2D 동작 방법을 나타낸다.
도 15를 참조하면, 단말은 D2D 동작을 지원하는 주파수 대역을 지시하는 D2D 대역 정보를 포함하는 단말 능력 정보(UE-capability information)을 생성하고(S210), 상기 단말 능력 정보를 네트워크로 전송한다(S220).
즉, 단말은 어떤 주파수 대역 또는 대역 조합(band combination: BC)에서 노멀 동작과 D2D 동작이 허용되는지를 알려주기 위해, 단말은 D2D 동작을 지원하는 대역들(대역 조합)을 지시하는 D2D 대역 정보를 네트워크에게 알려줄 수 있다. D2D 대역 정보는 단말 능력 정보에 포함되어 네트워크로 전송될 수 있다.
D2D 대역 정보에 의하여 지시되는 대역들은 단말이 노멀 동작과 D2D 동작을 동시에 지원할 수 있는 대역들일 수 있다. 예를 들어, 단말이 D2D 동작을 지원하는 대역들을 지시하는 리스트를 포함하는 D2D 대역 정보를 전송하면서, 이와 별개로 노멀 동작을 지원하는 대역들을 지시하는 리스트도 전송할 수 있다. 이 때, 노멀 동작을 지원하는 대역들을 지시하는 리스트와 D2D 동작을 지원하는 대역들을 지시하는 리스트에 의하여 함께 지시되는 대역은 노멀 동작과 D2D 동작이 모두 지원되는 대역이 된다. 또는 D2D 대역 정보는 단말이 노멀 동작과 D2D 동작을 동시에 지원할 수 있는 대역들을 직접 가리키는 리스트를 포함할 수도 있다.
한편, 상기 단말이 반송파 집성을 지원할 경우, 상기 단말은 반송파 집성되어 노멀 동작을 지원하는 대역들과 D2D 동작을 지원하는 대역들의 리스트를 제공할 수 있다(반송파 집성되어 노멀 동작을 지원하는 대역들과 D2D 동작을 지원하는 대역들 각각에 대해 리스트가 제공되거나 또는 하나의 리스트로 제공될 수 있다). 상기 리스트의 각 주파수 대역 또는 주파수 대역의 조합 각각은 노멀 동작과 D2D 동작을 동시에 할 수 있는 주파수 대역을 나타낸다. 이하 편의상 단말이 단순히 대역 X를 지원한다는 표현은 대역 X에 대해 종래의 셀룰러 통신(노멀 동작)을 지원한다는 것을 의미하며, 대역 X에 대하여 D2D 동작을 지원할 경우에는 별도로 언급하기로 한다.
단말이 대역 A, 대역 B, 대역 C를 지원하고, 하향링크에 2개의 대역 및 상향링크에 하나의 대역을 사용하는 반송파 집성(carrier aggregation: CA)도 지원할 수 있다고 가정해보자. 만약, 상기 단말에게 현재 반송파 집성이 설정되지 않은 경우라면, 상기 단말이 지원하는 대역을 리스트로 표현하면, {A}, {B}, {C} 를 포함하는 리스트가 될 것이다.
상기 단말에게 현재 반송파 집성이 설정되어 있다면, 상기 단말은 대역 A, B, C의 다양한 조합들 중 상기 단말이 지원하는 조합을 네트워크에게 알려줄 필요가 있다. 하향링크에 2개의 대역 및 상향링크에 하나의 대역을 사용하는 반송파 집성의 경우, 다음 표와 같은 다양한 조합들이 있을 수 있다.
대역 조합
(band combination)
의미(meaning)
{{A,B},A} 대역 A,B를 통해 하향링크 지원, 대역 A를 통해 상향링크 지원
{{A,B},B} 대역 A,B를 통해 하향링크 지원, 대역 B를 통해 상향링크 지원
{{A,B},C} 대역 A,C를 통해 하향링크 지원, 대역 A를 통해 상향링크 지원
{{A,C},A} 대역 A,C를 통해 하향링크 지원, 대역 A를 통해 상향링크 지원
{{A,C},C} 대역 A,C를 통해 하향링크 지원, 대역 C를 통해 상향링크 지원
{{A,C},B} 대역 A,C를 통해 하향링크 지원, 대역 C를 통해 상향링크 지원
{{B,C},B} 대역 B,C를 통해 하향링크 지원, 대역 B를 통해 상향링크 지원
{{B,C},C} 대역 B,C를 통해 하향링크 지원, 대역 C를 통해 상향링크 지원
{{B,C},A} 대역 B,C를 통해 하향링크 지원, 대역 C를 통해 상향링크 지원
만약, 단말이 상기 표 2와 같은 대역 조합을 모두 지원한다면, 상기 단말은 상기 표 2의 모든 대역 조합들을 네트워크에게 알려줄 필요가 있고, 표 2의 모든 대역 조합들을 포함하는 리스트를 네트워크에게 전송할 수 있다.
한편, 단말이 D2D 동작도 지원한다면, 단말이 지원하는 대역들/반송파 집성을 지원하는 대역 조합에 더하여, D2D 동작을 지원하는 대역도 네트워크에게 알려줄 필요가 있을 것이다.
먼저, 단말이 반송파 집성을 지원하지 않거나 반송파 집성이 설정되지 않고, D2D 동작만 지원할 경우 다음 표와 같은 방법으로 단말이 지원하는 대역 및 D2D 동작 지원 대역을 지시할 수 있다. 반송파 집성이 지원되지 않거나 설정되지 않았으므로, D2D 동작은 복수의 반송파들(셀들)이 아니라 하나의 반송파(셀)를 통해 지원된다.
대역 조합
(band combination)
의미(meaning)
{A, A(D2D)} 대역 A 지원, D2D 동작에 대역 A 지원
{A, B(D2D)} 대역 A 지원, D2D 동작에 대역 B 지원
{A, C(D2D)} 대역 A 지원, D2D 동작에 대역 C 지원
{B, A(D2D)} 대역 B 지원, D2D 동작에 대역 A 지원
{B, B(D2D)} 대역 B 지원, D2D 동작에 대역 B 지원
{B, C(D2D)} 대역 B 지원, D2D 동작에 대역 C 지원
{C, A(D2D)} 대역 C 지원, D2D 동작에 대역 A 지원
{C, B(D2D)} 대역 C 지원, D2D 동작에 대역 B 지원
{C, C(D2D)} 대역 C 지원, D2D 동작에 대역 C 지원
단말이 복수의 대역들을 통한 D2D 동작을 지원하는 경우, (즉, 단말이 하나의 대역을 통해 셀룰러 통신을 수행하는 동안 복수 대역들을 통해 D2D 동작을 동시에 지원할 수 있는 경우) 다음 표와 같이 단말이 지원하는 대역 및 D2D 동작 지원 대역을 지시할 수 있다.
대역 조합
(band combination)
의미(meaning)
{A, {A(D2D), B(D2D)}} 대역 A 지원, D2D 동작에 대역 A, B 지원
{A, {A(D2D), C(D2D)}} 대역 A 지원, D2D 동작에 대역 A, C 지원
{A, {B(D2D), C(D2D)}} 대역 A 지원, D2D 동작에 대역 B, C 지원
{A, {A(D2D), B(D2D), C(D2D) }} 대역 A 지원, D2D 동작에 대역 A, B, C 지원
{B, {A(D2D), B(D2D)}} 대역 B 지원, D2D 동작에 대역 A, B 지원
{B, {A(D2D), C(D2D)}} 대역 B 지원, D2D 동작에 대역 A, C 지원
{B, {B(D2D), C(D2D)}} 대역 B 지원, D2D 동작에 대역 B, C 지원
{B, {A(D2D), B(D2D), C(D2D) }} 대역 B 지원, D2D 동작에 대역 A, B, C 지원
{C, {A(D2D), B(D2D)}} 대역 C 지원, D2D 동작에 대역 A, B 지원
{C, {A(D2D), C(D2D)}} 대역 C 지원, D2D 동작에 대역 A, C 지원
{C, {B(D2D), C(D2D)}} 대역 C 지원, D2D 동작에 대역 B, C 지원
{C, {A(D2D), B(D2D), C(D2D) }} 대역 C 지원, D2D 동작에 대역 A, B, C 지원
단말이 반송파 집성을 지원하는 경우, 단말은 반송파 집성을 지원하는 대역 조합들과 함께, D2D 동작을 지원하는 대역 조합들 역시 알려줄 수 있다.
예를 들어, 반송파 집성을 지원하는 단말에게 하향링크에 2개의 대역 및 상향링크에 하나의 대역을 사용하는 반송파 집성이 설정되고, 상기 단말이 하나의 대역을 통한 D2D 동작을 지원하는 경우, 상기 단말은 다음 표와 같은 대역 조합들을 지시할 수 있다.
대역 조합
(band combination)
의미(meaning)
{{A,B},A, A(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{A,B},A, B(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{A,B},A, C(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
{{A,B},B, A(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{A,B},B, B(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{A,B},B, C(D2D)} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
{{A,C},A, A(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{A,C},A, B(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{A,C},A, C(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
{{A,C},C, A(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{A,C},C, B(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{A,C},C, C(D2D)} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
{{B,C},A, A(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{B,C},A, B(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{B,C},A, C(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
{{B,C},C, A(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원
{{B,C},C, B(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B에서 D2D 동작 지원
{{B,C},C, C(D2D)} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 C에서 D2D 동작 지원
한편, 반송파 집성을 지원하는 단말에게 하향링크에 2개의 대역 및 상향링크에 하나의 대역을 사용하는 반송파 집성이 설정되고, 상기 단말이 복수의 대역들을 통한 D2D 동작을 지원하는 경우, 상기 단말은 다음 표와 같은 대역 조합들을 지시할 수 있다.
대역 조합
(band combination)
의미(meaning)
{{A,B},A, {A(D2D), B(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A, B에서 D2D 동작 지원
{{A,B},A, {A(D2D), C(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{A,B},A, {B(D2D), C(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B, C에서 D2D 동작 지원
{{A,B},A, {A(D2D), B(D2D),C(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
{{A,B},B, {A(D2D), B(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B에서 D2D 동작 지원
{{A,B},B, {A(D2D), C(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{A,B},B, {B(D2D), C(D2D)}} 대역 A,B를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B,C에서 D2D 동작 지원
{{A,B},B, {A(D2D), B(D2D),C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 B를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
{{A,C},A, {A(D2D), B(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B에서 D2D 동작 지원
{{A,C},A, {A(D2D), C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{A,C},A, {B(D2D), C(D2D) 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B,C에서 D2D 동작 지원
{{A,C},A, {A(D2D), B(D2D), C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
{{A,C},C, {A(D2D), B(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B에서 D2D 동작 지원
{{A,C},C, {A(D2D), C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{A,C},C, {B(D2D), C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B,C에서 D2D 동작 지원
{{A,C},C, {A(D2D), B(D2D), C(D2D)}} 대역 A,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
{{B,C},A, {A(D2D), B(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B에서 D2D 동작 지원
{{B,C},A, {A(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{B,C},A, {B(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B,C에서 D2D 동작 지원
{{B,C},A, {A(D2D), B(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 A를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
{{B,C},C, {A(D2D), B(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B에서 D2D 동작 지원
{{B,C},C, {A(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,C에서 D2D 동작 지원
{{B,C},C, {B(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 B,C에서 D2D 동작 지원
{{B,C},C {A(D2D), B(D2D), C(D2D)}} 대역 B,C를 통해 하향링크 지원하고 대역 C를 통해 상향링크 지원하는 반송파 집성과 함께 대역 A,B,C에서 D2D 동작 지원
표 3 내지 6에서 설명한 바와 같이, 단말은 셀룰러 통신을 지원하는 대역들과 함께 D2D 동작을 지원하는 대역들도 네트워크에게 알려준다.

본 발명에 따르면, D2D 동작을 지원하는 대역들을 알려주는 방식은 다음 3가지 중 어느 하나가 이용될 수 있다.
<방법 1-a>
단말이 셀룰러 통신, 즉 노멀 동작을 지원하는 대역의 리스트를 네트워크에 알릴 때, 상기 리스트의 각 대역에 대해 D2D 동작을 지원하는지 여부(Yes/No)를 지시할 수 있다. 이 방법은 D2D 동작을 지원하는 대역 정보를 지시하는데 소요되는 시그널링 크기를 줄일 수 있는 장점이 있지만, 셀룰러 통신을 지원하지 않지만 D2D만 지원하는 대역을 지시할 수 없는 단점이 있다.
<방법 1-b>
단말이 셀룰러 통신, 즉 노멀 동작을 지원하는 대역의 리스트를 네트워크에 알릴 때, 상기 리스트와 별도로 D2D 동작을 지원하는 리스트를 네트워크에 알린다. 이 방법은 셀룰러 통신을 지원하지 않지만 D2D 동작만 지원하는 대역을 지시할 수 있는 장점이 있지만 시그널링 사이즈가 방법 1-a에 비해 상대적으로 큰 단점이 있다.
<방법 1-c>
상기 방법 1-a와 방법 1-b 각각의 장점만 취하는 방법으로, 단말이 방법 1-a를 사용하여 셀룰러 통신을 지원하는 대역의 리스트를 네트워크에 알릴 때, 상기 리스트의 각 대역에 대해 D2D 동작을 지원하는지 여부(Yes/No)를 지시한다. 만약 셀룰러 통신을 지원하지 않지만 D2D 동작만 지원하는 대역이 있을 경우 방법 1-b를 추가로 사용하여 상기 대역을 별도의 리스트로 알린다.

한편, D2D 동작에는 D2D 통신과 D2D 발견이 있다. 단말이 각 D2D 동작을 지원하는 대역을 네트워크로 알리는 방법에는 다음 두 가지 방법이 있다.
<방법 2-a>
단말은 D2D 통신을 지원하는 대역과 D2D 발견을 지원하는 대역을 따로 알려줄 수 있다.
도 16은 상기 방법 2-a에 따른 D2D 대역 정보를 포함하는 단말 능력 정보를 예시한다.
도 16을 참조하면, 단말 능력 정보는 D2D 대역 정보를 포함하는데, 상기 D2D 대역 정보는 D2D 통신을 지원하는 대역들을 지시하는 리스트(이를 ‘commSupportedBands’라 칭한다)와 D2D 발견을 지원하는 대역들을 지시하는 리스트(이를 ‘discSupportedBands’라 칭한다)를 별개로 포함한다.
예를 들어, 단말이 대역 J에서의 D2D 통신과 대역 K에서의 D2D 발견 동작을 지원한다고 가정하자. 이 경우, 상기 단말은 ‘commSupportedBands’에 대역 J를 포함하고, ‘discSupportedBands’에 대역 K를 포함한다.
<방법 2-b>
방법 2-b에서는 방법 2-a과 달리, 단말은 D2D 동작이 가능한 대역 즉, D2D 통신과 D2D 발견 따로 구분하지 않고 포괄하여 가능한 대역을 알려줄 수 있다. 예를 들어, 하향링크에 2개의 대역(대역 X, Y) 및 상향링크에 하나의 대역(대역 X)을 사용하는 반송파 집성을 지원하는 단말이 대역 J에서의 D2D 통신 및 D2D 발견 동작을 동시에 지원한다고 가정하자. 이 경우, 단말은 D2D 대역 정보에 대역 J를 포함하고, 이를 수신한 네트워크는 대역 J에서 D2D 통신 및 D2D 발견이 모두 지원되는 것으로 해석할 수 있다. 단말 능력 정보는 {{하향링크에 대역 X, 하향링크에 대역 Y}, 상향링크에 X, D2D 동작을 위해 대역 J}의 정보를 네트워크에 전달한다.
전술한 방법을 통해 단말은 D2D 대역 정보를 네트워크로 전달할 수 있다. 한편, 셀룰러 통신(노멀 동작)과 D2D 동작이 동일 시점에 동시에 발생할 수 있는 가능성을 고려할 때, 단말은 노멀 동작과 D2D 동작의 동시 수행을 지원하는지에 대한 정보를 네트워크로 제공하는 것이 필요할 수 있다. 만약 단말이 노멀 동작과 D2D 동작의 동시 수행을 지원하지 않으면, 기지국은 상기 동시 수행이 발생하지 않도록 노멀 동작의 스케줄링을 조정하거나 또는 D2D 동작에 제약을 가하는 것이 필요할 수 있다. 만약 단말이 노멀 동작을 대역 A에서 수행하는 동시에 D2D 동작을 대역 B에서 수행할 수 있지만 노멀 동작을 대역 C에서 수행하는 동시에 D2D 동작을 대역 B에서 수행할 수 없을 때, 기지국은 단말이 노멀 동작을 대역 A에서 수행하도록 이동성 절차(예:핸드오버)를 수행할 수 있다. 단말이 노멀 동작과 D2D 동작의 동시 수행을 지원하는지에 대한 정보를 네트워크로 알리기 위해 다음 방법을 사용할 수 있다.
<방법 3-a>
단말이 노멀 동작을 지원하는 대역 또는 대역 조합의 리스트를 네트워크에 알릴 때, 상기 리스트의 각 대역에 대해 D2D 동작의 동시 수행을 지원하는지 여부(Yes/No)를 지시한다.
단말은 방법 3-a와 방법 1 계열(방법 1-a,1-b,1-c) 중 한 가지만을 사용하거나 또는 방법 3-a와 방법 1 계열을 별도로 사용하여 단말의 D2D 동작에 대한 능력을 네트워크로 알릴 수 있다. 방법 3-a와 방법 1 계열 중 한 가지만을 사용하는 예로, 단말은 방법 3-a과 방법 1-a 중에서 둘 중 한 가지만 사용하는 것이 가능하다. 이 경우, 단말이 특정 대역에서 D2D 동작을 지원한다고 지시하는 것은, 상기 대역에서 노멀 동작과 D2D 동작의 동시 수행이 가능하다는 것을 의미한다. 방법 3-a와 방법 1 계열을 별도로 사용하는 한 실시예로, 단말은 방법3-a와 방법 1-a를 별도로 사용하는 것이 가능하다. 이 경우, 단말이 방법 1-a를 통해 D2D 동작을 지원한다고 알리는 대역에 대해, 추가적으로 방법 3-a를 통해 상기 대역에서 노멀 동작과 D2D 동작의 동시 수행이 가능한지를 별도로 지시할 수 있다.
<방법 3-b>
단말이 셀룰러 통신(노멀 동작)을 지원하는 대역/대역 조합의 리스트를 네트워크에 알릴 때, 상기 리스트 내 각 엔트리(entry), 즉 각 상기 대역/대역 조합에 대해 D2D 동작의 동시 수행이 가능한 D2D 대역 정보를 네트워크에 알린다.
상기 동시 수행이 가능한 D2D 대역 정보는 대역 리스트로 표현될 수 있다. 또는 상기 동시 수행이 가능한 D2D 대역 정보는 단말이 방법 1 계열을 통해 D2D 동작을 지원하는 대역의 리스트에 포함된 각 대역에 대해 단말이 동시 수행을 지원하는지 여부를 지시하는 비트맵을 통해 표현될 수 있다. 이 비트맵의 비트 개수는 단말이 방법 1 계열을 통해 D2D 동작을 지원한다고 지시한 대역의 개수와 동일할 수 있다.
방법 3-b에 따른 예로, 단말이 D2D 동작을 지원하는 대역을 {A,B,C}라는 D2D 지원 대역 리스트로 네트워크에 알리고, 단말은 반송파 집성이 가능한 조합으로 대역 A와 대역 B의 조합({A,B})을 지시하면서 길이가 3인 비트맵을 추가로 지시할 수 있다. 이 비트맵의 각 비트는 상기 D2D 지원 대역 리스트의 각 대역을 지원하는지를 지시한다. 만약 단말이 반송파 집성이 가능하다고 지시한 대역 조합 {A,B}에 대해 단말이 비트맵으로 100이라고 지시하면, 이 정보는 단말은 대역 조합 {A,B}를 사용하는 반송파 집성 동작과 대역 A에서의 D2D 동작의 동시 동작을 지원한다. 유사하게 만약 단말이 반송파 집성이 가능하다고 지시한 대역 조합 {A,B}에 대해 단말이 비트맵으로 110이라고 지시하면, 이 정보는 단말은 대역 조합 {A,B}를 사용하는 반송파 집성 동작과 대역 A에서 D2D 동작의 동시 동작을 지원하고 또한 단말은 대역 조합 {A,B}를 사용하는 반송파 집성 동작과 대역 B에서 D2D 동작의 동시 동작을 지원함을 의미한다.
도 17은 본 발명에 따른 단말 능력 정보의 다른 예를 나타낸다.
도 17을 참조하면, 단말 능력 정보는 도 15, 16을 참조하여 설명한 D2D 대역 정보 이외에 대역 조합 별 D2D 지원 대역 정보(‘commSupportedBandsPerBC’)를 더 포함할 수 있다.
대역 조합 별 D2D 지원 대역 정보는 셀룰러 통신을 위한 2 이상의 주파수 대역들로 구성된 주파수 조합(band combination: BC)에서 단말이 네트워크와 수행하는 셀룰러 통신(노멀 동작) 및 다른 단말과 수행하는 D2D 동작을 동시에 지원하는 주파수 대역을 지시할 수 있다.
예컨대, 상기 표 5에서 단말은 {{A,B},A, A(D2D)}와 같은 정보를 네트워크에게 전달할 수 있는데, 그 의미는 대역 A,B를 통해 하향링크를 지원하고 대역 A를 통해 상향링크를 지원하는 반송파 집성과 함께 대역 A에서 D2D 동작 지원한다는 것을 네트워크에게 알려주는 것이다. 이 때, 단말은 대역 A, B로 구성되는 대역 조합에 대하여 셀룰러 통신 및 D2D 동작을 동시에 지원하는 주파수 대역으로 대역 A를 지시하고 있는 것이다. 이 경우, 단말은 대역 조합 별 D2D 지원 대역 정보를 통해 대역 A,B로 구성되는 대역 조합에 있어서 대역 A가 셀룰러 통신 및 D2D 동작을 동시에 지원함을 알려줄 수 있는 것이다.
네트워크와 수행하는 셀룰러 통신 및 다른 단말과 수행하는 D2D 동작을 동시에 지원하는 주파수 대역은 상기 D2D 동작을 지원하는 주파수 대역들의 리스트에 포함될 수 있다. 상기 리스트는 하나 이상의 주파수 대역을 지시할 수 있다.
단말은 D2D 동작을 지원하는 한 개 이상의 주파수 대역으로 구성된 주파수 대역 리스트의 각 주파수 대역에 매핑된 비트맵(bitmap)을 제공할 수 있다. 상기 비트맵을 통해 상기 단말이 상기 네트워크와 수행하는 셀룰러 통신 및 상기 다른 단말과 수행하는 D2D 동작을 동시에 지원하는 주파수 대역을 지시할 수 있다.
예를 들어, 상기 비트맵의 특정 비트가 1이면, 상기 특정 비트에 매핑된 주파수 대역에서 셀룰러 통신 및 D2D 동작을 동시에 지원한다는 것을 의미할 수 있다. 이에 대해서는 방법 3-b에서 설명한 바 있다.
보다 구체적으로, 대역 조합 별 D2D 지원 대역 정보는 특정 대역 조합(band combination: BC)에 대해 단말이 셀룰러 통신에 의한 신호(예컨대, EUTRA에 의한 신호)와 D2D 통신에 의한 신호를 동시에 수신(reception)하는 것을 지원하는 대역들을 나타낼 수 있다.
만약, 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호의 동시 전송(transmission)을 지원한다면(이를 알려주는 파라미터를‘commSimultaneousTx’라 하며, 단말은 이 파라미터를 통해 상기 동시 전송을 지원함을 알릴 수 있음), 대역 조합 별 D2D 지원 대역 정보(‘commSupportedBandsPerBC’)는 특정 대역 조합에 대해 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 전송(transmission)하는 것을 지원하는 대역들도 나타낼 수 있다.
즉, 대역 조합 별 D2D 지원 대역 정보는 기본적으로 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 수신(reception)하는 것을 지원하는 대역들(수신 대역들)을 나타내는데, 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호의 동시 전송(transmission)을 지원한다고 알리는 경우에는, 상기 수신 대역들에서 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 전송하는 것도 지원함을 나타낸다는 것이다.
다음 표는 도 15 내지 도 17을 참조하여 설명한 단말 능력 정보의 구체적 예를 나타낸다.
-- ASN1STA

UE-EUTRA-Capability ::= SEQUENCE {
accessStratumRelease AccessStratumRelease,
ue-Category INTEGER (1..5),
pdcp-Parameters PDCP-Parameters,
phyLayerParameters PhyLayerParameters,
rf-Parameters RF-Parameters,
measParameters MeasParameters,
...
},
nonCriticalExtension UE-EUTRA-Capability-v920-IEs OPTIONAL
}

RF-Parameters ::= SEQUENCE {
supportedBandListEUTRA SupportedBandListEUTRA
}
...
SupportedBandCombination-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10

SupportedBandCombination-v12xy ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v12xy

...

BandCombinationParameters-v12xy ::=SEQUENCE {
dc-Support-r12 SEQUENCE {
supported-r12 SEQUENCE {
asynchronous-r12 ENUMERATED {supported} OPTIONAL,
supportedCellGrouping-r12 BIT STRING (SIZE (1..15)) OPTIONAL
} OPTIONAL
},
supportedNAICS-2CRS-AP-r12 BIT STRING (SIZE (1..maxNAICS-Entries-r12)) OPTIONAL,
commSupportedBandsPerBC-r12 BIT STRING (SIZE (1.. maxBands)) OPTIONAL,
...
}
...


Prose-Parameters-r12 ::= SEQUENCE {
commSimultaneousTx-r12 ENUMERATED {supported} OPTIONAL,
commSupportedBands-r12 FreqBandIndicatorListEUTRA-r12 OPTIONAL,
discSupportedBands-r12 ProseSupportedBandInfoList-r12 OPTIONAL,
discScheduledResourceAlloc-r12 ENUMERATED {supported} OPTIONAL,
disc-UE-SelectedResourceAlloc-r12 ENUMERATED {supported} OPTIONAL,
disc-SLSS-r12 ENUMERATED {supported} OPTIONAL,
discSupportedProc-r12 ENUMERATED {n50, n400} OPTIONAL
}

ProseSupportedBandInfoList-r12 ::= SEQUENCE (SIZE (1..maxBands)) OF ProseSupportedBandInfo-r12

ProseSupportedBandInfo-r12 ::= SEQUENCE {
support-r12 ENUMERATED {supported}OPTIONAL
}

FreqBandIndicatorListEUTRA-r12 ::= SEQUENCE (SIZE (1..maxBands)) OF FreqBandIndicator-r11
상기 표 7을 참조하면, 단말 능력 정보는 단말의 카테고리(‘ue-Category’), 물리 계층 파라미터(‘phyLayerParamters’), 무선 주파수 파라미터(‘rf-parameters’) 등과 같은 종래 단말 능력 정보에 포함된 정보들을 포함한다. 무선 주파수 파라미터는 ‘supportedBandListEUTRA’를 포함하는데 이는 셀룰러 통신을 지원하는 대역들(EUTRA 대역들)을 나타낸다.
한편, 단말 능력 정보는 본 발명에 따른 추가적인 파라미터들을 포함한다. 추가적인 파라미터들은 D2D 동작에 관련된 것으로, 전술한 D2D 대역 정보 및 대역 조합 별 D2D 지원 대역 정보를 포함한다.
D2D 대역 정보는 상기 표 7에서 예컨대, ‘commSupportedBands’, ‘discSupportedBands’일 수 있다.
‘commSupportedBands’는 단말이 D2D 통신을 지원하는 대역들을 지시한다. ‘commSupportedBands’가 복수의 대역들을 지시할 경우, 상기 복수의 대역들은 대역 조합을 구성한다고 할 수 있다. ‘commSupportedBands’는 비트맵 형태로 제공될 수 있다. ‘commSupportedBands’ 를 구성하는 비트맵의 각 비트는 ‘supportedBandListEUTRA’에 포함된 각 대역에 대응할 수 있다. 즉, ‘commSupportedBands’ 를 구성하는 비트맵의 첫번째 비트는 ‘supportedBandListEUTRA’에 포함된 첫번째 대역에 대응할 수 있다. ‘commSupportedBands’ 를 구성하는 비트맵에서 특정 비트의 값이 1이면 ‘supportedBandListEUTRA’에서 대응하는 대역이 D2D 통신을 지원하는 대역임을 지시할 수 있다. 또는 ‘commSupportedBands’는 ‘supportedBandListEUTRA’와 별개의 리스트로 제공될 수도 있다.
‘discSupportedBands’는 단말이 D2D 발견을 지원하는 대역들을 지시한다. ‘discSupportedBands’는 D2D 발견을 위한 동작을 지원하는 대역들을 포함하는 리스트(list) 형태로 제공될 수 있다.
즉, 상기 표 7에 나타낸 바와 같이, D2D 대역 정보는 단말이 D2D 통신을 지원하는 대역과 D2D 발견을 지원하는 대역을 각각 알려줄 수 있다.
대역 조합 별 D2D 지원 대역 정보는 상기 표 7에서, ‘commSupportedBandsPerBC’일 수 있다. ‘commSupportedBandsPerBC’는 특정 대역 조합(band combination: BC)에 대해 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 수신(reception)하는 것을 지원하는 대역들을 나타낸다. 만약, 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호의 동시 전송(transmission)을 지원한다면(‘commSimultaneousTx’는 상기 동시 전송을 지원함을 알릴 수 있으며 후술함), ‘commSupportedBandsPerBC’는 특정 대역 조합에 대해 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 전송(transmission)하는 것을 지원하는 대역들도 나타낸다. 즉, ‘commSupportedBandsPerBC’는 기본적으로 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 수신(reception)하는 것을 지원하는 대역들(수신 대역들)을 나타내는데, 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호의 동시 전송(transmission)을 지원한다고 알리는 경우에는, 상기 수신 대역들에서 단말이 EUTRA에 의한 신호와 D2D 통신에 의한 신호를 동시에 전송하는 것도 지원함을 나타낸다는 것이다.
상기 표 7에서, ‘commSimultaneousTx’는 단말이 D2D 동작을 지원한다고 알린 대역 조합의 모든 대역들에서 EUTRA에 의한 신호와 D2D 통신에 의한 신호의 동시 전송을 지원하는지 여부를 알린다.
도 18은 본 발명의 다른 실시예에 따른 D2D 동작 방법을 나타낸다.
도 18을 참조하면, 단말은 2개 이상의 주파수 대역들로 구성된 주파수 조합(band combination)에서 상기 단말이 네트워크와 수행하는 셀룰러 통신 및 다른 단말과 수행하는 D2D 동작을 동시에 지원하는 주파수 대역을 지시하는 대역 조합 별 D2D 지원 대역 정보를 생성한다(S310).
단말은 상기 대역 조합 별 D2D 지원 대역 정보를 상기 네트워크로 전송한다(S320).
한편, 단말은 D2D 대역 정보, 대역 조합 별 D2D 지원 대역 정보 이외에 추가적인 정보를 단말 능력 정보에 더 포함할 수도 있다.
예를 들어, 단말은 D2D 동작을 위한 대역에 대해, D2D 동작을 위한 대역과 셀룰러 동작을 위한 다른 대역 간에서 풀 듀플렉스(full duplex) 동작을 지원하는지 여부를 알려줄 수 있다.
여기서, 풀 듀플렉스 동작은 D2D 동작을 위한 신호 대역 A와 셀룰러 동작을 위한 다른 대역 B 간에서 단말이 대역 B를 통해 셀룰러 통신을 위한 신호를 전송하는 동안 단말은 대역 A를 통해 다른 단말이 전송한 D2D 신호를 정확하게 수신할 수 있는 것을 의미한다.
단말은 D2D 동작을 지원하는 특정 대역에 대해 풀 듀플렉스로 동작할 수 있는 셀룰러 통신을 위한 대역을 알려줄 수 있다. 즉, D2D 동작을 지원하는 대역 별로 풀 듀플렉스로 동작할 수 있는 대응되는 셀룰러 통신을 위한 대역을 알려줄 수 있다.
또는 단말은 D2D 동작을 위한 제1 대역과 D2D 동작을 위한 제2 대역에 대해 풀 듀플렉스 동작을 지원하는지를 알려줄 수 있다. 여기서, 제1 대역과 제2 대역은 서로 다른 대역이다. 예를 들어, 단말은 대역 B에서 D2D 통신을 위한 신호를 전송하면서, 동시에 대역 A에서 다른 단말이 전송한 D2D 통신 신호를 수신할 수 있다면, 상기 단말은 대역 A, B에서 D2D 동작을 위한 풀 듀플렉스를 지원한다고 할 수 있다. 이 경우, 상기 단말은 대역 A, B에 대해 D2D 동작을 위한 풀 듀플렉스를 지원한다는 것을 알리는 정보를 네트워크에게 제공할 수 있다.
또는 상기 단말은 D2D 동작을 풀 듀플렉스로 할 수 있는 대역들을 리스트로 해서 네트워크에게 알려줄 수 있다.

단말은 D2D 동작을 위한 대역과 셀룰러 통신을 위한 대역에서 하프 듀플렉스(Half duplex)만을 지원하는지 여부를 네트워크에게 알려줄 수 있다. 여기서, 하프 듀플렉스는 특정 대역에서 D2D 동작을 할 경우, 다른 대역에서의 셀룰러 통신이 지원되지 않는 동작 방식이다. 반대로 특정 대역에서 셀룰러 통신에 의한 동작을 할 경우, 다른 대역에서 D2D 동작이 지원되지 않는 동작 방식이다.
예를 들어, 단말이 대역 B에서 D2D 통신을 위한 신호를 전송하고 있는 동안, 상기 단말은 대역 A에서 셀룰러 통신에 의한 신호를 수신할 수 없게 되는 것이다. 왜냐하면, 대역 B에서의 D2D 통신을 위한 신호가 대역 A로 튜닝(tunning)된 상기 단말의 수신기에 영향을 미치기 때문이다. 이를 자기 간섭(self-interference)라 칭하기도 한다. 즉, 하프 듀플렉스만 지원하는 단말은 자기 간섭으로 인해 특정 대역에서의 신호 전송과 다른 대역에서의 신호 수신을 동시에 수행할 수 없게 된다.
이러한 단말은 D2D 동작을 하프 듀플렉스로 지원하는 대역도 셀룰러 통신을 위한 대역과 함께 알려줄 필요가 있다. 상기 예에서, 단말은 대역 A를 네트워크에 알려줄 때, 대역 B에서 하프 듀플렉스 방식으로만 D2D 동작을 지원함을 네트워크에게 알려줄 수 있는 것이다.
단말은 D2D 동작을 위한 제1 대역과 D2D 동작을 위한 제2 대역에 대해 하프 듀플렉스 동작만을 지원하는지를 알려줄 수 있다. 여기서, 제1 대역과 제2 대역은 서로 다른 대역이다.
예를 들어, 단말은 대역 B에서 D2D 통신을 위한 신호를 전송하면서, 동시에 상기 단말이 대역 A에서 다른 단말이 전송한 D2D 통신 신호를 수신할 수 없다면, 상기 단말은 대역 A, B에서 D2D 동작을 위한 하프 듀플렉스만을 지원한다고 할 수 있다. 단말이 대역 B에서 전송한 D2D 통신을 위한 신호가 대역 A에 튜닝된 상기 단말의 수신기에 자기 간섭을 미치므로, 상기 단말은 대역 A에서 다른 단말이 전송한 D2D 통신 신호를 수신할 수 없게 되는 것이다.
이 경우, 상기 단말은 대역 A, B에서 D2D 동작을 위한 풀 듀플렉스를 지원한다는 것을 알리는 정보를 네트워크에게 제공할 수 있다. 상기 예에서, 단말은 D2D 동작을 지원하는 대역 A를 네트워크에 알려줄 때, 대역 B에서 하프 듀플렉스 방식으로만 D2D 동작을 지원함을 네트워크에게 알려줄 수 있는 것이다(물론 반대로, D2D 동작을 지원하는 대역 B를 네트워크에 알려줄 때, 대역 A에서 하프 듀플렉스 방식으로만 D2D 동작을 지원함을 알려줄 수도 있다).
상기에서는 단말이 단말 능력 정보에 자신이 지원하는 듀플렉스 방식을 명시적으로 알려주는 예를 설명하였으나, 이는 제한이 아니다. 즉, 단말 능력 정보에 자신이 지원하는 듀플렉스 방식을 명시적으로 알려주지 않을 수도 있다.
이처럼, 단말 능력 정보에 명시적으로 지원하는 듀플렉스 방식에 대한 정보가 포함되지 않은 경우, 네트워크는 단말이 알려주는 대역 조합들 모두에 대하여 풀 듀플렉스를 지원하는 것으로 간주하거나 또는 하프 듀플렉스를 지원하는 것으로 간주할 수 있다. 예컨대, 상기 단말 능력 정보에 특정 대역 조합에 대해서는 명시적으로 하프 듀플렉스만을 지원한다는 정보가 없는 이상, 네트워크는 단말이 알려주는 대역 조합들 중에서 상기 특정 대역 조합을 제외한 나머지 대역 조합들 모두에 대하여 풀 듀플렉스를 지원하는 것으로 간주할 수 있다(또는 상기 단말 능력 정보가 특정 대역 조합에 대해서는 명시적으로 풀 듀플렉스만을 지원한다는 정보가 없는 이상, 네트워크는 단말이 알려주는 대역 조합들 중에서 상기 특정 대역 조합을 제외한 나머지 대역 조합들 모두에 대하여 하프 듀플렉스를 지원하는 것으로 간주할 수 있다).
도 19는 본 발명에 따른 단말의 D2D 동작 방법을 나타낸다.
도 19를 참조하면, 단말 1은 네트워크에게 단말 능력 정보를 제공한다(S401). 단말 능력 정보는 전술한 D2D 대역 정보 및 대역 조합 별 D2D 지원 대역 정보를 포함할 수 있다.
네트워크는 단말 1에게 D2D 설정 정보를 제공한다(S402). 네트워크는 상기 단말 능력 정보에 의하여 단말 1이 지원하는 D2D 대역을 알 수 있으므로 단말 1에게 적절한 대역을 D2D 동작을 위해 설정할 수 있다. 네트워크가 단말 1에게 D2D 설정 정보를 제공할 때 단말의 능력 정보에 따라 단말의 서빙 주파수를 다른 대역으로 이동시키기 위한 절차(예: 핸드오버 또는 세컨더리 셀 교체 등)를 수행할 수 도 있다.
단말 1은 D2D 설정 정보에 기반하여 D2D 설정을 수행한다(S403).
단말 1은 단말 2와 D2D 동작을 수행한다(S404). 도 19에는 도시하지 않았지만, 단말 2 역시 네트워크와 단말 능력 정보 및 D2D 설정 정보를 D2D 동작을 수행하기 전에 미리 교환할 수 있다.
이하에서는 복수 개의 RAT(radio access technology)을 지원하는 단말이 RAT 간에서 이동성 절차를 수행하는 경우에도, D2D 동작의 연속성을 보장하는 D2D 동작 방법을 설명한다.
단말의 능력(capability)에 따라, 단말이 E-UTRAN이 아닌 다른 RAT(radio access technology)에 의하여 서비스 받고 있는 동안 D2D 동작이 가능할 수도 있고 가능하지 않을 수도 있다. 즉, 단말이 제1 RAT에 의해 서비스를 받고 있는 단말이라고 하자. 상기 단말은 제2 RAT에서 서비스를 받을 때 D2D 동작을 수행하는 것이 가능할 수도 있고 가능하지 않을 수도 있다. 이 경우, 단말은 제1 RAT의 네트워크에게 이러한 사실을 알리는 단말 능력 정보를 전송하는 것이 바람직하다.
예를 들어, 단말이 E-UTRAN에서 동작하는 단말이라고 가정해 보자. 상기 단말은 능력에 따라 UTRAN에 의해 서비스를 받고 있는 동안에도 D2D 동작을 수행하는 것을 지원할 수 있다. 이러한 단말의 능력을 E-UTRAN의 네트워크에게 알려준다면, 상기 네트워크는 E-UTRAN의 통신 품질이 좋지 않을 때 UTRAN으로 핸드 오버하라는 명령을 할 수 있다. 이렇게 하더라도 상기 단말의 D2D 동작의 연속성에는 영향을 미치지 않을 것이다.
또는 상기 단말은 UTRAN에 의해 서비스를 받고 있는 동안에는 D2D 동작을 수행하는 것을 지원하지 않을 수도 있다. 상기 단말이 이러한 사실을 E-UTRAN의 네트워크에게 알려준다면, 상기 E-UTRAN의 네트워크는 E-UTRAN의 통신 품질이 좋지 않을 때도 상기 단말에게 UTRAN으로 핸드 오버하라는 명령을 하지 않을 수 있다. 상기 단말이 UTRAN으로 핸드 오버하게 되면 D2D 동작의 연속성이 깨어질 수 있기 때문이다.
즉, 단말이 제1 RAT에 의해 서비스를 받고 있는 단말이라고 하자. 상기 단말은 제2 RAT에서 서비스를 받을 때 D2D 동작을 수행하는 것이 가능할 수도 있고 가능하지 않을 수도 있다. 이 경우, 단말은 제1 RAT의 네트워크에게 이러한 사실을 알리는 단말 능력 정보를 전송하는 것이다. 상기 제1 RAT의 네트워크는 상기 단말 능력 정보에 기반하여 상기 단말의 이동성(mobility)을 적절히 관리함으로써 D2D 동작의 연속성을 지원할 수 있다.
도 20은 본 발명의 일 실시예에 따른 단말의 D2D 동작 방법을 예시한다.
도 20을 참조하면, 제1 RAT에서 동작하는 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우 D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성한다(S510).
상기 RAT 지원 정보는 상기 단말의 단말 능력 정보(user equipment capability information)에 포함되어 전송될 수 있다.
상기 단말 능력 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역들의 조합을 나타내는 D2D 대역 정보를 더 포함할 수 있다.
상기 D2D 동작은 D2D 통신(D2D communication)일 수 있다.
상기 RAT 지원 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역 조합들 각각에 대해 상기 제2 RAT의 네트워크에 의하여 서비스를 받을 경우 D2D 동작을 지원하는지 여부를 알려줄 수 있다.
상기 제1 RAT는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 RAT는 UTRAN(UMTS Terrestrial Radio Access Network), GERAN(GSM EDGE radio access network), CDMA(code division multiplexing access) 시스템 또는 WLAN(wireless local area network) 중 어느 하나일 수 있다.
단말은 RAT 지원 정보를 제1 RAT의 네트워크에게 전송한다(S520).
상기 방법은 제1 RAT가 UTRAN, GERAN, CDMA 시스템 또는 WLAN 중 어느 하나이고, 제2 RAT는 E-UTRAN인 경우에도 마찬가지로 적용될 수 있다.
이제 단말이 제공하는, RAT 지원 정보를 포함하는 단말 능력 정보를 구성하는 예에 대해 설명한다.
단말은 지원하는 RAT 별로 D2D 동작과 셀룰러 통신을 동시에 지원하는지 여부를 알려줄 수 있다. 예를 들어, 단말이 기본적으로 제1 RAT에 의하여 동작하는 단말이라고 가정해보자. 상기 제1 RAT는 E-UTRAN일 수 있다. 이 때, 상기 단말은 단말 능력 정보를 통해, 제2 RAT, 예컨대, UTRAN, GERAN, CDMA SYSTEM, WLAN 중 어느 하나에 의하여 서비스를 받고 있는 동안(즉, 제2 RAT를 통해 셀룰러 통신을 하는 동안) D2D 동작도 동시에 지원하는지를 RAT 지원 정보를 통해 알려줄 수 있다.
단말이 지원하는 제2 RAT의 주파수 대역들 중 특정 주파수 대역에서의 셀룰러 통신과 상기 D2D 동작의 동시 지원이 가능한지 여부를 알리기 위하여, 단말은 D2D 동작과 셀룰러 통신의 동시 지원이 가능한 제 2 RAT의 주파수 대역을 제1 RAT의 네트워크에게 알릴 수 있다.
제2 RAT에서 D2D 동작을 수행할 수 있는 주파수 대역이 복수 개인 경우, 단말은 각 주파수 대역에 대해 D2D 동작과 셀룰러 통신의 동시 지원이 가능한지 여부를 알리거나 또는 D2D 동작과 셀룰러 통신의 동시 지원이 가능한 제2 RAT의 주파수 대역들을 알릴 수 있다.
이를 일반화하면, 단말은 D2D 동작을 지원하는 제2 RAT의 주파수 대역과 제1 RAT의 주파수 대역의 조합을 네트워크에 알리되, 이 주파수 대역 조합은 제2 RAT의 주파수 대역에서 D2D 동작과 제1 RAT의 주파수 대역에서 셀룰러 통신이 동시에 가능함을 알리는 것을 의미한다.
또는 단말은 RAT 지원 정보를 통해, E-UTRAN이 아닌 다른 RAT에 의하여 서비스를 받고 있는 동안 D2D 동작(예컨대, D2D 통신)을 동시에 지원하는지 여부를 알려줄 수 있다. 상기 예에서는 RAT 지원 정보가 각 RAT 별로 D2D 동작의 지원 여부를 알려주었으나, 본 예에서는 RAT 지원 정보가 각 RAT 별로 D2D 동작의 지원 여부를 알려주는 것이 아니라 E-UTRAN이 아닌 다른 RAT에 의하여 서비스를 받고 있는 동안 D2D 동작을 지원하는지 여부만을 알려주는 차이점이 있다.
또는, 단말은 제2 RAT에서 셀룰러 서비스를 받고 있는 동안 제1 RAT에서의 D2D 동작을 동시에 지원하는지 여부를 제2 RAT의 네트워크에게 알릴 수 있다. 단말이 지원하는 제1 RAT의 주파수 대역들 중 특정 주파수 대역에서 D2D 동시 동작이 가능한 것을 알리기 위하여, 단말은 상기 동시 지원이 가능한 제1 RAT의 주파수 대역을 알릴 수 있다. 셀룰러 동작을 수행할 수 있는 제2 RAT 주파수 대역은 복수개인 것이 일반적이므로, 단말은 자신이 지원하는 제2 RAT의 각 주파수 대역에 대해 상기 동시 지원이 가능한 제1 RAT의 주파수 대역을 알릴 수 있다.
이를 일반화하면, 단말은 D2D 동작을 지원하는 제1 RAT의 주파수 대역과 제2 RAT의 주파수 대역의 조합을 네트워크에 알리되, 이 주파수 대역 조합은 제1 RAT의 상기 주파수 대역에서 D2D 동작과 제2 RAT의 상기 주파수 대역에서 셀룰러 동작이 동시에 가능함을 알리는 것을 의미한다.
단말이 제2 RAT의 셀에서 셀룰러 동작을 수행하는 동안 제1 RAT에서 D2D 동작을 수행하고자 하거나 또는 이미 수행 중이라면 단말은 상기 제2 RAT의 셀로 D2D 동작을 수행하고자 함을 지시하는 메시지를 전송할 수 있다. 이 때 단말은 수행하고자 하는 D2D 동작을 구체적으로 알려줄 수 수 있다. 예를 들어 단말이 D2D 전송을 하려고 하는지 D2D 수신을 하려고 하는지 또는 D2D 전송과 수신을 모두 하려고 하는지를 알려줄 수 있다. 이 때 단말은 단말이 D2D 동작을 수행하고자 하는 제1 RAT의 주파수를 제2 RAT의 서빙 셀로 알릴 수 있다. 단말은 D2D 동작을 수행할 때 상기 D2D 동작 수행이 기반하는 셀(예: D2D 설정 정보를 수신한 제1 RAT의 셀)의 셀 ID을 제2 RAT의 서빙 셀로 알릴 수 있다.
단말이 제1 RAT의 셀에서 제2 RAT의 셀로 핸드오버와 같은 이동성 절차에 의해 서빙 셀을 바꾼 경우, 단말은 상기 제2 RAT의 셀로 D2D 동작을 수행하고자 하거나 또는 D2D 동작을 수행 중임을 지시하는 메시지를 전송할 수 있다. 단말이 제2 RAT의 셀에서 제1 RAT의 셀로 핸드오버와 같은 이동성 절차에 의해 서빙 셀을 바꾼 경우, 단말은 상기 제1 RAT의 셀로 D2D 동작을 수행하고자 하거나 또는 D2D 동작을 수행 중임을 지시하는 메시지를 전송할 수 있다.
단말은 상기 단말 능력 정보 전송 시에, D2D 동작과 해당 RAT에서의 셀룰러 통신 간에 전이중 통신(full duplex:풀 듀플렉스)를 지원하는지 아니면 반이중 통신 (half duplex: 반 듀플렉스)만을 지원하는지를 추가적으로 알려줄 수 있다.
또한, 단말은 E-UTRAN이 아닌 다른 RAT에 의하여 서비스를 받고 있는 동안 D2D 동작(예컨대, D2D 통신)을 지원하는 주파수 대역을 알려줄 수 있다.
D2D 신호를 수신하거나 전송하는 D2D 동작은 단말 능력에 따라 서빙 주파수(serving frequency) 또는 비-서빙 주파수(non-serving frequency)에서 수행될 수 있다. 서빙 주파수는 프라이머리 서빙 주파수와 세컨더리 서빙 주파수로 구분될 수 있다.
단말은 전용 RF(radio frequency) 부를 이용하여 D2D 통신에 최적화된 주파수 대역을 통해 D2D 동작을 수행할 수도 있고, 셀룰러 통신에 사용될 수 있는 RF 부를 이용하여 D2D 동작을 수행할 수도 있다. 이는 단말 능력에 따라 결정될 수 있다.
네트워크는 D2D 동작의 연속성을 제공하기 위해서, 이러한 단말 능력을 반드시 알아야 한다. 예를 들어, 네트워크가 단말에게 특정 주파수 대역 또는 주파수 대역들의 조합을 설정하였는데, 상기 특정 주파수 대역 또는 주파수 대역들 조합에서 상기 단말이 D2D 동작을 지원하지 않는다면 D2D 동작은 중단될 수 밖에 없다. 그러면, D2D 동작의 연속성이 깨어지게 된다. 이러한 관점에서, D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보는 단말 능력 정보에서 매우 중요한 부분이라 할 수 있다.
한편, D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 단말 능력 정보에 포함하여 네트워크에게 전송할 경우, 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보에 추가하는 방식을 사용할 수 있다.
예를 들어, D2D 동작을 지원하지 않는 단말(제1 단말)이 네트워크에 전송하는 단말 능력 정보에는 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보가 포함된다고 가정해 보자. D2D 동작을 지원하는 단말(제2 단말)은 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보 및 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 네트워크에게 제공해야 할 것이다. 이 때, 제2 단말을 위해 단말 능력 정보의 새로운 형식(format)을 만드는 것보다는 제1 단말이 사용하는 단말 능력 정보의 형식에 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 추가하는 것이 효율적이다.
네트워크는 제2 단말이 전송한 단말 능력 정보를 통해 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합 및 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알 수 있으므로 D2D 동작과 셀룰러 통신을 동시에 지원하는 주파수 대역을 식별할 수 있다.
이처럼, 단말은 단말 능력 정보에 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 추가하여 전송할 수 있다. 이 경우, 단말은 최초 접속(initial attachment) 시에 한번 단말 능력 정보를 네트워크에게 제공하고, 그 후에는 네트워크에 의하여 상기 단말 능력 정보가 관리된다. 예컨대, 단말 이동에 의하여 핸드오버가 발생하거나 RRC 상태 변화 시에 네트워크에 의하여 상기 단말 능력 정보가 관리된다.
또는, 단말은 RRC 상태가 변경될 때마다 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 네트워크에게 전송할 수도 있다. 예를 들어, RRC 아이들 상태에서 RRC 연결 상태로 RRC 상태가 변경될 때마다 단말은 상기 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 네트워크에게 전송할 수 있다. 또한, 단말 이동에 의하여 핸드오버가 발생할 경우에도 네트워크에게 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보를 전송할 수 있다. 이 방법은 MBMS 관련 정보를 알려주는 방법과 유사하다.
상기 2가지 방법들 중 어느 방법이 사용되어도 무방하나, 단말이 네트워크에 접속해 있는 동안 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합이 변경되는 것은 아니라는 점, 시그널링 오버헤드가 작다는 점 등을 고려할 때, 첫번째 방법이 보다 간편한 방법이라 할 수 있다.
이하에서는 단말 능력 정보에 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 포함하는 방법의 구체적 실시예에 대해 설명한다.
예를 들어, 단말이 하나의 주파수 대역에서 D2D 동작을 지원한다면, 상기 하나의 주파수 대역을 셀룰러 통신을 지원하는 주파수 대역들 조합에 추가할 수 있다. 즉, D2D 동작을 지원하는 주파수 대역을 나타내는 새로운 요소(element)를 셀룰러 통신을 지원하는 주파수 대역들을 나타내는 요소들에 추가하는 것이다.
이 경우, D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주기 위해 별도로 단말 능력 정보를 시그널할 필요가 없다. 그 구체적 방법에 대해서는 표 4 내지 6을 참조하여 설명한 바 있다.
한편, 단말은 셀룰러 통신이 수행되는 주파수 대역/주파수 대역 조합에서 D2D 동작이 지원된다고 할 때, 상기 D2D 동작과 셀룰러 통신에 의한 동작이 서로 TDM(time division multiplexing) 방식으로만 동작하는지 여부를 알려주는 지시자를 추가적으로 알려줄 수 있다.
예를 들어, 제1 주파수에서 D2D 동작과 셀룰러 통신에 의한 동작을 동시에 지원한다고 하자. 이 경우, D2D 동작이 수행될 수 있는 서브프레임은 셀룰러 통신이 스케줄링되지 않은 서브프레임에 한정될 수 있다. 즉, 셀룰러 통신이 스케줄링된 서브프레임에서는 D2D 동작이 수행될 수 없을 수 있다. 이러한 동작을 상기 지시자를 통해 알려줄 수 있다.
또는 셀룰러 통신이 수행되는 주파수 대역/주파수 대역 조합에서 D2D 동작이 지원된다고 할 때, 단말은 상기 지시자를 통해, D2D 동작과 셀룰러 통신에 의한 동작이 전술한 제한 없이 동작함을 알려줄 수도 있다. 예를 들어, 특정 서브프레임에 셀룰러 통신이 스케줄링되었는지 여부와 무관하게 D2D 동작이 수행될 수 있음을 알려줄 수 있다.
상기 지시자가 없을 경우, 단말은 D2D 동작과 셀룰러 통신을 동시 지원하는 주파수 대역의 특정 서브프레임에서 셀룰러 통신이 스케줄링되었는지 여부에 무관하게 D2D 동작이 가능하다고 간주할 수 있다.
또는 상기 지시자가 없을 경우, D2D 동작과 셀룰러 통신을 동시 지원하는 주파수 대역에서, 단말은 D2D 동작과 셀룰러 통신이 TDM 방식으로만 수행될 수 있다고 간주할 수 있다.
한편, 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보에 D2D 동작을 지원하는 주파수 대역/주파수 대역 조합을 알려주는 정보가 추가되었는지 여부에 따라 D2D 동작을 지원하는 주파수 대역의 의미가 달라질 수 있다.
즉, D2D 동작을 지원하는 주파수 대역/주파수 대역 조합이 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합과 동일하거나 포함된 경우, D2D 동작과 셀룰러 통신에 의한 동작은 TDM 방식으로만 가능하다고 간주될 수 있다.
D2D 동작을 지원하는 주파수 대역/주파수 대역 조합이 셀룰러 통신을 지원하는 주파수 대역/주파수 대역 조합에 포함되어 있지 않으면, D2D 동작과 셀룰러 통신에 의한 동작은 스케줄링 제한 없이 동작 가능하다고 간주될 수 있다. 즉, 특정 서브프레임에 셀룰러 통신이 스케줄링되었는지 여부와 무관하게 D2D 동작이 수행될 수 있다.
도 21은 도 20의 방법을 적용할 때 단말의 D2D 동작 방법을 예시한다.
도 21을 참조하면, 단말 1은 E-UTRAN으로 단말 능력 정보를 전송한다(S601). 단말 능력 정보는 전술한 RAT 지원 정보 및 D2D 대역 정보를 포함할 수 있다.
예를 들어, 단말 1은 WLAN에서 D2D 동작을 지원함을 나타내는 RAT 지원 정보와 D2D 동작을 지원하는 주파수 대역을 나타내는 D2D 대역 정보를 단말 능력 정보에 포함하여 전송할 수 있다.
E-UTRAN과 단말 1은 셀룰러 통신을 수행할 수 있다(S602).
단말 1은 단말 2와 D2D 동작을 수행할 수 있다(S603).
E-UTRAN에서 트래픽의 양이 증가하거나 또는 단말 1과의 통신 품질이 악화될 수 있다. 이 경우, E-UTRAN은 단말 1을 다른 RAT로 핸드 오버 시키는 것이 바람직할 수 있다.
E-UTRAN은 단말 1로부터 수신한 단말 능력 정보에 기반하여 단말 1이 WLAN에서도 D2D 동작을 지원함을 알 수 있다. 따라서, E-UTRAN은 단말 1을 WLAN으로 핸드 오버 시켜도 D2D 동작의 연속성에 문제가 없음을 알 수 있다.
따라서, E-UTRAN은 단말 1에게 WLAN으로 핸드 오버 명령을 전송한다(S604).
단말 1은 WLAN으로 핸드오버 한 후에도, 단말 2와 D2D 동작을 계속 수행할 수 있다(S605).
도 22는 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 22를 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다. 프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(1110)는 제1 RAT에서 동작하는 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 생성한 RAT 지원 정보를 제1 RAT의 네트워크로 전송할 수 있다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.


Claims (12)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 D2D(device-to-device) 동작 방법에 있어서,
    제1 RAT(radio access technology)에서 동작하는 상기 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 및
    상기 RAT 지원 정보를 상기 제1 RAT의 네트워크로 전송하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 RAT 지원 정보는 상기 단말의 단말 능력 정보(user equipment capability information)에 포함되어 전송되는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서, 상기 단말 능력 정보는
    상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역들의 조합을 나타내는 D2D 대역 정보를 더 포함하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 D2D 동작은 D2D 통신(communication)인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서, 상기 RAT 지원 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역 조합들 각각에 대해
    상기 제2 RAT의 네트워크에 의하여 서비스를 받을 경우 D2D 동작을 지원하는지 여부를 알려주는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 제1 RAT는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 RAT는 UTRAN(UMTS Terrestrial Radio Access Network) 또는 WLAN(wireless local area network)인 것을 특징으로 하는 방법.
  7. 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    제1 RAT(radio access technology)에서 동작하는 상기 단말이 제2 RAT의 네트워크에 의하여 서비스를 받을 경우, D2D 동작을 지원하는지 여부를 알려주는 RAT 지원 정보를 생성하고, 및
    상기 RAT 지원 정보를 상기 제1 RAT의 네트워크로 전송하는 것을 특징으로 하는 단말.
  8. 제 7 항에 있어서, 상기 RAT 지원 정보는 상기 단말의 단말 능력 정보(user equipment capability information)에 포함되어 전송되는 것을 특징으로 하는 단말.
  9. 제 8 항에 있어서, 상기 단말 능력 정보는
    상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역들의 조합을 나타내는 D2D 대역 정보를 더 포함하는 것을 특징으로 하는 단말.
  10. 제 7 항에 있어서, 상기 D2D 동작은 D2D 통신(communication)인 것을 특징으로 하는 단말.
  11. 제 7항에 있어서, 상기 RAT 지원 정보는 상기 단말이 D2D 동작을 지원하는 주파수 대역 또는 주파수 대역 조합들 각각에 대해
    상기 제2 RAT의 네트워크에 의하여 서비스를 받을 경우 D2D 동작을 지원하는지 여부를 알려주는 것을 특징으로 하는 단말.
  12. 제 7 항에 있어서, 상기 제1 RAT는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 RAT는 UTRAN(UMTS Terrestrial Radio Access Network) 또는 WLAN(wireless local area network)인 것을 특징으로 하는 단말.
PCT/KR2015/004516 2014-05-06 2015-05-06 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말 WO2015170874A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580023438.4A CN106465369B (zh) 2014-05-06 2015-05-06 在无线通信系统中由终端执行的装置对装置(d2d)操作的方法及使用该方法的终端
US15/305,635 US20170048647A1 (en) 2014-05-06 2015-05-06 Method for device-to-device (d2d) operation executed by terminal in wireless communication system and terminal using the method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201461988925P 2014-05-06 2014-05-06
US201461988924P 2014-05-06 2014-05-06
US61/988,925 2014-05-06
US61/988,924 2014-05-06
US201462075813P 2014-11-05 2014-11-05
US62/075,813 2014-11-05

Publications (1)

Publication Number Publication Date
WO2015170874A1 true WO2015170874A1 (ko) 2015-11-12

Family

ID=54392681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004516 WO2015170874A1 (ko) 2014-05-06 2015-05-06 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말

Country Status (3)

Country Link
US (1) US20170048647A1 (ko)
CN (1) CN106465369B (ko)
WO (1) WO2015170874A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077381A1 (en) * 2016-10-25 2018-05-03 Telecom Italia S.P.A. Proximity service access in a mobile communication network
WO2017192006A3 (ko) * 2016-05-02 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 신호 전송 방법 및 상기 방법을 이용하는 단말

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179336B2 (en) 2013-02-19 2015-11-03 Mimosa Networks, Inc. WiFi management interface for microwave radio and reset to factory defaults
US9930592B2 (en) 2013-02-19 2018-03-27 Mimosa Networks, Inc. Systems and methods for directing mobile device connectivity
US9362629B2 (en) 2013-03-06 2016-06-07 Mimosa Networks, Inc. Enclosure for radio, parabolic dish antenna, and side lobe shields
WO2014137370A1 (en) 2013-03-06 2014-09-12 Mimosa Networks, Inc. Waterproof apparatus for cables and cable interfaces
US10742275B2 (en) 2013-03-07 2020-08-11 Mimosa Networks, Inc. Quad-sector antenna using circular polarization
US9191081B2 (en) 2013-03-08 2015-11-17 Mimosa Networks, Inc. System and method for dual-band backhaul radio
US9295103B2 (en) 2013-05-30 2016-03-22 Mimosa Networks, Inc. Wireless access points providing hybrid 802.11 and scheduled priority access communications
US10938110B2 (en) 2013-06-28 2021-03-02 Mimosa Networks, Inc. Ellipticity reduction in circularly polarized array antennas
US9001689B1 (en) * 2014-01-24 2015-04-07 Mimosa Networks, Inc. Channel optimization in half duplex communications systems
US9780892B2 (en) 2014-03-05 2017-10-03 Mimosa Networks, Inc. System and method for aligning a radio using an automated audio guide
US9998246B2 (en) 2014-03-13 2018-06-12 Mimosa Networks, Inc. Simultaneous transmission on shared channel
WO2015142123A1 (ko) * 2014-03-20 2015-09-24 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
CN106664647B (zh) * 2014-07-08 2021-07-20 夏普株式会社 终端装置、基站装置、通信系统、通信方法以及集成电路
EP3180880B1 (en) * 2014-08-11 2020-03-11 Telefonaktiebolaget LM Ericsson (publ) D2d and cellular operation on different carrier frequencies or frequency bands
US10958332B2 (en) 2014-09-08 2021-03-23 Mimosa Networks, Inc. Wi-Fi hotspot repeater
WO2016122270A1 (ko) * 2015-01-29 2016-08-04 엘지전자 주식회사 무선 통신 시스템에서 단말의 발견 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2017081907A1 (ja) * 2015-11-13 2017-05-18 ソニー株式会社 装置及び方法
WO2017123558A1 (en) 2016-01-11 2017-07-20 Mimosa Networks, Inc. Printed circuit board mounted antenna and waveguide interface
WO2018022526A1 (en) 2016-07-29 2018-02-01 Mimosa Networks, Inc. Multi-band access point antenna array
CN111034301B (zh) * 2017-08-11 2023-12-01 三星电子株式会社 用于支持补充上行链路频率的方法和装置
WO2019049348A1 (ja) * 2017-09-08 2019-03-14 株式会社Nttドコモ ユーザ装置、及び能力情報通知方法
US10993212B2 (en) * 2017-09-22 2021-04-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for indicating number of transmitting ports of UE, UE and network device
US11063733B2 (en) 2017-11-09 2021-07-13 Qualcomm Incorporated Duplexing modes based on power configurations for transmissions
CN111108778A (zh) * 2017-12-28 2020-05-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US10511074B2 (en) 2018-01-05 2019-12-17 Mimosa Networks, Inc. Higher signal isolation solutions for printed circuit board mounted antenna and waveguide interface
US11069986B2 (en) 2018-03-02 2021-07-20 Airspan Ip Holdco Llc Omni-directional orthogonally-polarized antenna system for MIMO applications
US11330478B2 (en) * 2018-08-10 2022-05-10 Qualcomm Incorporated Idle cell reselection and user equipment capability signaling
US11289821B2 (en) 2018-09-11 2022-03-29 Air Span Ip Holdco Llc Sector antenna systems and methods for providing high gain and high side-lobe rejection
WO2020062042A1 (zh) * 2018-09-28 2020-04-02 Oppo广东移动通信有限公司 无线通信方法和设备
WO2020087468A1 (zh) 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 无线通信方法和设备
MX2021007107A (es) * 2018-12-21 2021-08-11 Ericsson Telefon Ab L M Metodo y aparato para la seleccion de tecnologia de comunicacion.
JP7315697B2 (ja) * 2019-03-28 2023-07-26 オッポ広東移動通信有限公司 情報送信方法、情報受信方法及びデバイス
US11013054B2 (en) 2019-04-12 2021-05-18 Ofinno, Llc UE-assistance to support multiple systems based on frequency band combinations
US11722882B2 (en) * 2019-06-14 2023-08-08 Qualcomm Incorporated Sidelink capability signaling and configuration
CN110809325A (zh) * 2019-11-06 2020-02-18 东阳市人民医院 一种基于长期演进通信系统的智能医学检验系统
US20230083283A1 (en) * 2021-09-14 2023-03-16 Qualcomm Incorporated Dynamic full-duplex mode switching for sidelink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034082A1 (en) * 2011-08-01 2013-02-07 Kamran Etemad Opportunistic device-to-device communication
KR20130137234A (ko) * 2011-03-30 2013-12-16 퀄컴 인코포레이티드 다중―라디오 공존
WO2014045832A1 (en) * 2012-09-24 2014-03-27 Nec Corporation Reducing interference resulting from device-to-device communication
KR20140048051A (ko) * 2012-10-14 2014-04-23 엘지전자 주식회사 기기간 통신을 수행하는 기기 및 그 방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622677A (zh) * 2003-11-27 2005-06-01 皇家飞利浦电子股份有限公司 一种无线通信网络中支持点到点通信切换的方法
EP2509345A1 (en) * 2011-04-05 2012-10-10 Panasonic Corporation Improved small data transmissions for machine-type-communication (MTC) devices
CN103179575A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 一种邻近设备通信的方法和系统、网络侧设备和用户设备
ES2526459T3 (es) * 2012-05-15 2015-01-12 Telefonaktiebolaget L M Ericsson (Publ) Gestión de baliza para la comunicación de dispositivo a dispositivo asistida por red
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
US10028204B2 (en) * 2012-08-24 2018-07-17 Blackberry Limited Supporting device-to-device communication in a rich communication service context
CN103686676A (zh) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 设备到设备通信系统的通信方法、装置及系统
WO2014047907A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson(Publ) Method for d2d radiocommunication
EP2717646B1 (en) * 2012-10-04 2017-02-01 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for device-to-device communication
EP2914056B1 (en) * 2012-10-29 2018-05-23 KYOCERA Corporation Apparatuses and method for device-to-device (d2d) communications in a mobile communication system
JP6045602B2 (ja) * 2012-11-28 2016-12-14 京セラ株式会社 移動通信システム、基地局、プロセッサ、及び通信制御方法
WO2014102335A1 (en) * 2012-12-28 2014-07-03 Koninklijke Kpn N.V. Multi-operator device-to-device multicast or broadcast communication
JP6162209B2 (ja) * 2013-02-19 2017-07-12 京セラ株式会社 ユーザ端末、プロセッサ、及び移動通信システム
WO2014180517A1 (en) * 2013-05-08 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Improved handling of simultaneous network communication transmission and d2d communication reception or simultaneous network communication reception and d2d communication transmission
EP2995159B1 (en) * 2013-05-08 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Improved selection of scheduling policy for network communications links and d2d communications links
JP6108980B2 (ja) * 2013-06-27 2017-04-05 京セラ株式会社 移動通信システム及びユーザ端末
US9591681B2 (en) * 2013-07-24 2017-03-07 Htc Corporation Method and related communication device for configuring timing resource in device to device communication
WO2015019900A1 (ja) * 2013-08-06 2015-02-12 シャープ株式会社 端末装置および基地局装置
EP3515135B1 (en) * 2014-01-29 2021-03-10 Interdigital Patent Holdings, Inc. Resource selection for device to device discovery or communication
US20160050698A1 (en) * 2014-04-01 2016-02-18 Telefonaktiebolaget L M Ericsson (Publ) System and Method for Obtaining and Using Device-to-Device Frequency-Related Capability and Configuration Preferences
JP6495335B2 (ja) * 2014-04-29 2019-04-03 エルジー エレクトロニクス インコーポレイティド 全二重通信をサポートする無線通信システムにおける全二重通信動作をサポートするための方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130137234A (ko) * 2011-03-30 2013-12-16 퀄컴 인코포레이티드 다중―라디오 공존
US20130034082A1 (en) * 2011-08-01 2013-02-07 Kamran Etemad Opportunistic device-to-device communication
WO2014045832A1 (en) * 2012-09-24 2014-03-27 Nec Corporation Reducing interference resulting from device-to-device communication
KR20140048051A (ko) * 2012-10-14 2014-04-23 엘지전자 주식회사 기기간 통신을 수행하는 기기 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC GROUP: "Discussion and Recommendation for D2D channel modelling", RL-130 376, 3GPP TSG RAN WG1 MEETING #72, 18 January 2013 (2013-01-18), St. Julian's, Malta, XP050663455, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_72/Docs> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192006A3 (ko) * 2016-05-02 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 신호 전송 방법 및 상기 방법을 이용하는 단말
US10750513B2 (en) 2016-05-02 2020-08-18 Lg Electronics Inc. Signal transmission method performed by terminal in wireless communication system and terminal using same method
WO2018077381A1 (en) * 2016-10-25 2018-05-03 Telecom Italia S.P.A. Proximity service access in a mobile communication network
KR20190072595A (ko) * 2016-10-25 2019-06-25 텔레콤 이탈리아 소시에떼 퍼 아찌오니 이동 통신 네트워크에서의 근접 서비스 액세스
CN110024354A (zh) * 2016-10-25 2019-07-16 意大利电信股份公司 移动通信网络中的邻近服务访问
US10567913B2 (en) 2016-10-25 2020-02-18 Telecom Italia S.P.A. Proximity service access in a mobile communication network
CN110024354B (zh) * 2016-10-25 2022-05-03 意大利电信股份公司 移动通信网络中的邻近服务访问
KR102610862B1 (ko) * 2016-10-25 2023-12-06 텔레콤 이탈리아 소시에떼 퍼 아찌오니 이동 통신 네트워크에서의 근접 서비스 액세스

Also Published As

Publication number Publication date
CN106465369A (zh) 2017-02-22
CN106465369B (zh) 2019-11-12
US20170048647A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2015170874A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
KR102165874B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
KR102052146B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015065109A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2016060481A1 (ko) 무선 통신 시스템에서 단말의 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015046944A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 통신 방법 및 이를 지원하는 장치
KR102073902B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2016060524A1 (ko) 무선 통신 시스템에서 단말의 d2d(device-to-device) 데이터 전송 방법 및 상기 방법을 이용하는 단말
WO2015115847A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
KR101918612B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
KR101921729B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015065106A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 셀 재선택 방법 및 상기 방법을 이용하는 단말
WO2015142093A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2015170898A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 셀 커버리지 판단 방법 및 상기 방법을 이용하는 단말
WO2016048114A1 (ko) 무선 통신 시스템에서 단말의 d2d(device-to-device) 동작에 관한 설정 관리 방법 및 상기 방법을 이용하는 단말
WO2016021943A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 단말
WO2015115823A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2015142090A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015167305A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015167304A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015115837A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2016068678A1 (ko) 무선 통신 시스템에서 단말이 d2d(device-to-device) 동작을 위한 동기화 신호를 전송하는 방법 및 상기 방법을 이용하는 단말
WO2015115871A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 셀 재선택 방법 및 상기 방법을 이용하는 단말
WO2016064232A2 (ko) 무선 통신 시스템에서 단말이 예외적 자원을 사용하여 d2d(device-to-device) 동작을 수행하는 방법 및 상기 방법을 이용하는 단말
WO2015115836A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 동기화 신호 전송 상태 리포팅 방법 및 상기 방법을 이용하는 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305635

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788680

Country of ref document: EP

Kind code of ref document: A1