WO2015170743A1 - Polishing solution composition for sapphire plate - Google Patents

Polishing solution composition for sapphire plate Download PDF

Info

Publication number
WO2015170743A1
WO2015170743A1 PCT/JP2015/063315 JP2015063315W WO2015170743A1 WO 2015170743 A1 WO2015170743 A1 WO 2015170743A1 JP 2015063315 W JP2015063315 W JP 2015063315W WO 2015170743 A1 WO2015170743 A1 WO 2015170743A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
sapphire
polished
acid
sapphire plate
Prior art date
Application number
PCT/JP2015/063315
Other languages
French (fr)
Japanese (ja)
Inventor
吉野太基
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2015170743A1 publication Critical patent/WO2015170743A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing liquid composition for a sapphire plate, a method for producing a sapphire plate using the same, and a method for polishing a sapphire plate to be polished.
  • Hard and brittle materials such as sapphire are indispensable as optical materials, electronic materials or mechanical materials.
  • artificial sapphire plates are used as materials for various applications such as integrated circuit boards, infrared detection lenses, watches, and mobile terminal devices such as smartphones.
  • mobile terminal devices such as smartphones.
  • the cover glass of a portable terminal device is desired to have a high surface smoothness in order to improve the beauty of the portable terminal device.
  • finish polishing using a polishing liquid composition containing silica particles is performed.
  • silica Mohs hardness 7 particles having a hardness lower than that of the sapphire ( ⁇ -alumina, Mohs hardness 9) plate as abrasive grains, pits and scratches are prevented from occurring on the surface of the sapphire plate.
  • sapphire is excellent in mechanical, chemical, and thermal stability, there is a problem that the polishing rate is low in finish polishing using silica particles.
  • Patent Document 1 discloses that the polishing rate is improved by controlling the pH of the polishing composition to make the zeta potentials of the silica particles and the sapphire substrate have opposite signs.
  • Patent Documents 4, 9, and 10 disclose a polishing composition containing an anionic surfactant added as a dispersing agent for abrasive grains and containing silica particles as abrasive grains.
  • the sapphire polishing slurry containing grains contains an anionic surfactant as a dispersant, it is not disclosed that the anionic surfactant is an anionic polymer (Patent Document 2). 3, 5, 6, 8, 11).
  • the present invention provides a polishing liquid composition for a sapphire plate that has a high polishing rate and can reduce the surface roughness, a method for producing a sapphire plate using the same, and a method for polishing a polished sapphire plate.
  • An example of the polishing composition for a sapphire plate of the present invention is a polishing composition for a sapphire plate containing alumina particles, an anionic polymer, and an aqueous medium.
  • polishing liquid composition for sapphire plates of the present invention is a polishing liquid composition for sapphire plates containing alumina particles, a rheology modifier, and an aqueous medium.
  • An example of the method for producing a sapphire plate of the present invention is a method for producing a sapphire plate, comprising the step of supplying the polishing composition for a sapphire plate of the present invention to polish the sapphire plate to be polished. Is the method.
  • Another example of the method for producing a sapphire plate of the present invention includes a step of supplying the polishing composition for a sapphire plate of the present invention to the polished sapphire plate and polishing the polished sapphire plate, and the above step. And a step of polishing a polished sapphire plate different from the polished sapphire plate using the used sapphire plate polishing liquid composition.
  • the polishing method for a polished sapphire plate of the present invention includes a step of supplying the polishing composition for a sapphire plate of the present invention to the polished sapphire plate and polishing the polished sapphire plate. This is a polishing method.
  • a polishing composition for a sapphire plate that has a high polishing rate and can reduce surface roughness, a method for manufacturing a sapphire plate using the same, and a method for polishing a sapphire plate to be polished are provided. it can.
  • the anionic polymer When an anionic polymer is added to an acidic polishing liquid composition used for polishing a glass substrate to be polished or an aluminum alloy substrate plated with Ni—P, the anionic polymer is adsorbed on the polishing pad, It is generally recognized that the polishing rate decreases because it functions as a protective film for the object to be polished.
  • the present invention is a polishing liquid composition used for polishing a sapphire plate to be polished, and the polishing liquid composition containing alumina particles and an aqueous medium has either an acidic or alkaline pH.
  • the addition of an anionic polymer improves the polishing rate when the polished sapphire plate is polished, and the surface roughness of the polished surface to be polished (hereinafter also referred to as “polishing surface”). Is based on the unexpected finding that
  • polishing liquid composition for sapphire plates of the present invention
  • polishing liquid composition a polishing liquid composition containing no anionic polymer
  • a decrease in shear viscosity is observed. Therefore, in the polishing composition of the present invention, a rheology modifier such as an anionic polymer loosens the aggregated alumina particles during polishing, and as a result, the number of effective abrasive grains is increased and effective. It is presumed that the polishing speed is improved and the surface roughness of the polished surface is reduced by reducing the grain size of the abrasive grains.
  • the polishing liquid composition of the present invention contains alumina particles (component A), an anionic polymer (component B), and an aqueous medium (component C).
  • the polishing composition of the present disclosure includes alumina particles as abrasive grains.
  • alumina particles include ⁇ -alumina, intermediate alumina, amorphous alumina, fumed alumina, and the like.
  • ⁇ -alumina is preferable from the viewpoint of improving the polishing rate.
  • the average particle diameter (average secondary particle diameter) measured by the dynamic light scattering method of alumina particles is preferably 0.2 ⁇ m or more, more preferably 0.25 ⁇ m or more, and still more preferably 0, from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness, it is preferably 1.0 ⁇ m or less, more preferably 0.95 ⁇ m or less, still more preferably 0.90 ⁇ m or less, and even more preferably. Is 0.80 ⁇ m or less.
  • this average secondary particle diameter can be calculated
  • the alpha conversion rate of the alumina particles is preferably 50% or more, more preferably 60% or more, from the viewpoint of improving the polishing rate and reducing the surface roughness.
  • This pregelatinization rate can be measured by powder X-ray diffraction, specifically, for example, by the method of the example.
  • the BET specific surface area of the alumina particles in the polishing liquid composition of the present disclosure is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, still more preferably 40 m 2 / g or more, from the viewpoint of improving the polishing rate.
  • 200 m 2 / g or less is preferable, 100 m 2 / g or less is more preferable, and 60 m 2 / g or less is more preferable.
  • the content of the alumina particles in the polishing liquid composition of the present disclosure is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and still more preferably from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness, it is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the polishing composition of the present invention contains a water-soluble polymer (component B) having an anionic group from the viewpoint of reducing the surface roughness of the polished object and improving the polishing rate. Further, when the polishing composition of the present invention contains a water-soluble polymer having an anionic group (hereinafter also referred to as “anionic polymer”), the polishing durability is also improved.
  • the anionic polymer is adsorbed on the surface of the alumina particles, and contributes to improving the dispersibility of the alumina particles and suppressing aggregation of the alumina particles by charge repulsion. Therefore, it is presumed that the anionic polymer contributes to the improvement of the polishing rate and the reduction of the surface roughness.
  • Water-soluble means having a solubility of 2 g / 100 ml or more in water.
  • anionic group of the anionic polymer (component B) examples include a carboxylic acid group, a sulfonic acid group, a sulfate ester group, a phosphate ester group, and a phosphonic acid group. These anionic groups may take the form of neutralized salts. From the viewpoint of reducing the surface roughness, the anionic polymer preferably has at least one of a sulfonic acid group and a carboxylic acid group, and dispersibility of the alumina particles by interacting with a sugar compound described later. From the viewpoint of further improving the ratio, it is more preferable to have a carboxylic acid group.
  • sulfonic acid group refers to a sulfonic acid group and / or salt thereof
  • carboxylic acid group refers to a carboxylic acid group and / or salt thereof.
  • the counter ion in case a sulfonic acid group or a carboxylic acid group takes the form of a salt, Specifically, a metal ion, an ammonium ion, an alkyl ammonium ion, etc. are mentioned. Specific examples of the metal include metals belonging to the periodic table (long period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8.
  • metals belonging to Group 1A, 3B, or Group 8 are preferable from the viewpoint of reducing surface roughness, and sodium and potassium belonging to Group 1A are more preferable.
  • alkylammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like.
  • the counter ions at least one selected from the group consisting of ammonium ions, sodium ions, and potassium ions is more preferable.
  • An anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group is obtained by polymerizing a monomer having an ionic hydrophilic group such as a monomer having a sulfonic acid group or a monomer having a carboxylic acid group. It is preferable that it was obtained by. Polymerization of these monomers may be random, block, or graft.
  • Examples of the monomer having a sulfonic acid group include isoprene sulfonic acid, 2- (meth) acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, and isoamyl sulfonic acid. Examples thereof include lensulfonic acid and naphthalenesulfonic acid. Examples of the monomer having a carboxylic acid group include itaconic acid, (meth) acrylic acid, maleic acid and the like.
  • the anionic polymer preferably includes a structural unit derived from (meth) acrylic acid, and more preferably includes a structural unit derived from acrylic acid.
  • the proportion of the structural unit derived from (meth) acrylic acid in the total structural unit of the anionic polymer is determined based on the polished object to be polished. From the viewpoint of reducing the surface roughness, preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, and from the viewpoint of improving the polishing rate, preferably 90 mol% or more, more preferably. Is 95% or more, more preferably 98 mol% or more, and still more preferably 100 mol%.
  • an anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group a monomer other than a monomer having a sulfonic acid group and a monomer having a carboxylic acid group can also be used. .
  • Examples of other monomers that can be used for polymerization of anionic polymers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, and p-methylstyrene, methyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as ethyl (meth) acrylate and octyl (meth) acrylate, aliphatics such as butadiene, isoprene, 2-chloro-1,3-butadiene and 1-chloro-1,3-butadiene Conjugated dienes, vinyl cyanide compounds such as (meth) acrylonitrile, vinylphosphonic acid, methacryloyloxymethyl phosphoric acid, methacryloyloxyethyl phosphoric acid, methacryloyloxybutyl phosphoric acid, methacryloyloxyhexyl phosphoric acid, methacrylyloxyoctyl Phos
  • anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group include polyacrylic acid and (meth) acrylic acid / isoprene from the viewpoint of reducing the surface roughness of the polished object.
  • Sulfonic acid copolymer (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer, (meth) acrylic acid / isoprenesulfonic acid / 2- (meth) acrylamide-2-methylpropane
  • examples include sulfonic acid copolymers, (meth) acrylic acid / maleic acid copolymers, formalin condensates of styrene sulfonic acid, and styrene / isoprene sulfonic acid copolymers.
  • anionic polymers polyacrylic acid and (meth) acrylic acid / 2- (meth) acrylamido-2-methylpropanesulfonic acid copolymer are used from the viewpoint of reducing the surface roughness of the polished object.
  • One or more anionic polymers selected from polymers are preferred, and polyacrylic acid is more preferred.
  • the weight average molecular weight of the anionic polymer is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more, from the viewpoint of reducing the surface roughness of the polished object.
  • the weight average molecular weight of the anionic polymer is preferably 120,000 or less, more preferably 100,000 or less, further preferably 30,000 or less, from the viewpoint of reducing the surface roughness of the polished object. The following is still more preferable, and 8000 or less is even more preferable.
  • the said weight average molecular weight is computable based on the peak in the chromatogram obtained by applying the gel permeation chromatography (GPC) method on the following conditions.
  • GPC gel permeation chromatography
  • anionic groups of the anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group may take the form of a neutralized salt.
  • the counter ion when a part of the anionic group takes a salt form is not particularly limited, and examples thereof include metal ions, ammonium ions, alkylammonium ions, and the like.
  • the content of the anionic polymer (component B) in the polishing liquid composition is preferably 1 mass ppm or more, more preferably 10 mass ppm or more, from the viewpoint of reducing the surface roughness of the polished object to be polished. Preferably it is 100 mass ppm or more, and still more preferably 200 mass ppm or more.
  • the content of the anionic polymer (component B) in the polishing composition is preferably 5000 ppm by mass or less, more preferably 4000 ppm by mass or less, from the viewpoint of reducing the surface roughness of the polished object. More preferably, it is 3000 mass ppm or less, More preferably, it is 2000 mass ppm or less.
  • alumina particle content (mass ppm) / anionic polymer content (mass ppm) Is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, and even more preferably 100 or more, from the viewpoint of reducing the surface roughness of the polished object to be polished. Therefore, it is preferably 200000 or less, more preferably 20000 or less, and still more preferably 2000 or less.
  • the rheology modifier contained in the polishing composition of the present invention is not limited to the anionic polymer as long as it can reduce the shear viscosity, and vinyl such as polyvinylpyrrolidone, polyvinyl alcohol, n-polyvinylformamide, and the like.
  • vinyl such as polyvinylpyrrolidone, polyvinyl alcohol, n-polyvinylformamide, and the like.
  • aqueous medium (component C) examples of the aqueous medium (component C) contained in the polishing liquid composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent.
  • a miscible solvent for example, an alcohol such as ethanol
  • ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable.
  • component C of the present invention is a mixed medium of water and a solvent
  • the ratio of water to the entire mixed medium is not particularly limited, but is preferably 95% by mass or more from the viewpoint of economy, and 98 More preferably, it is more preferably at least 100% by weight, still more preferably 100% by weight, and even more preferably 100% by weight.
  • the content of the aqueous medium (component C) in the polishing composition of the present invention is not particularly limited, and may be the remainder of component A, component B, and optional components described later.
  • the pH at 25 ° C. of the polishing composition of the present invention is preferably a strongly acidic region or strongly alkaline region other than 4-9 from the viewpoint of improving the polishing rate, preferably 3 or less, more preferably in the strongly acidic region. 2 or less, preferably 10 or more, more preferably 11 or more, preferably less than 14 in the strongly alkaline region.
  • the shear viscosity (Pa ⁇ s) of the polishing composition of the present invention at 25 ° C. at a shear rate of 100 (1 / s) measured in an environment of 25 ° C. and 50% RH is an improvement in polishing rate and surface roughness. From the viewpoint of reduction, it is preferably 0.01 (Pa ⁇ s) or less, more preferably 0.008 (Pa ⁇ s) or less, and still more preferably 0.007 (Pa ⁇ s) or less. Therefore, it is preferably 0.001 (Pa ⁇ s) or more, more preferably 0.0015 (Pa ⁇ s) or more, and still more preferably 0.002 (Pa ⁇ s) or more.
  • the rheology modifier contained in the polishing composition of the present invention has a function of reducing shear viscosity, it can also be called a shear viscosity reducing agent.
  • the shear viscosity ratio calculated by the following formula is preferably 0.6 or less, more preferably 0.4 or less, and still more preferably 0, from the viewpoint of reducing the surface roughness of the polished object and improving the polishing rate. From the viewpoint of improving the polishing rate, it is preferably 0.01 or more, more preferably 0.05 or more, and still more preferably 0.1 or more.
  • the shear viscosity is a value obtained by measuring the polishing composition (25 ° C.) in an environment of 25 ° C.
  • Shear viscosity ratio (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s))
  • the polishing liquid composition of the present invention may further contain conventionally known optional components depending on the intended use.
  • the polishing liquid composition of the present invention is, for example, a polishing liquid composition for a sapphire plate for a mobile terminal device such as a smartphone
  • the polishing liquid composition of the present invention is a compound having a sugar skeleton described below (component D).
  • An oxidizing agent (component E) a dispersant other than the alkaline polymer (component B), a pH adjuster (acid, alkali) (component F), an inorganic phosphate compound (component G), and the like. .
  • the polishing composition of the present invention is a saccharide compound or a derivative thereof (hereinafter collectively referred to as “a polishing compound” from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. And a compound having a sugar skeleton ”.
  • a polishing compound a saccharide compound or a derivative thereof
  • a compound having a sugar skeleton a saccharide compound or a derivative thereof
  • the polishing rate can be further improved and the surface roughness of the polished object can be further reduced.
  • the compound (component D) having a bulky sugar skeleton suppressing the agglomeration of abrasive grains during polishing of the sapphire plate the polishing durability is improved and the decrease in the polishing rate can be suppressed over a long period of time.
  • an anionic polymer (component B) and a compound having a sugar skeleton (component D) are used in combination, a further remarkable decrease in shear viscosity is observed.
  • the compound having a sugar skeleton may be any of monosaccharides, disaccharides, oligosaccharides, polysaccharides, and sugar alcohols.
  • monosaccharides include glucose, fructose, xylose, arabinose, erythrose galactose, xylulose and the like
  • disaccharides include sucrose, maltose, lactose and the like
  • sugar alcohols include xylitol, erythritol, maltitol, Examples include sorbitol.
  • These compounds having a sugar skeleton (component D) may be used alone or in combination of two or more.
  • a sugar alcohol a monosaccharide, or a disaccharide is preferable, and sorbitol, sucrose, At least one compound selected from the group consisting of galactose and maltitol is preferred, and sorbitol is more preferred.
  • the content of the compound having a sugar skeleton (component D) in the polishing composition is 10 mass ppm or more from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. More preferably, it is 50 mass ppm or more, More preferably, it is 100 mass ppm or more, More preferably, it is 500 mass ppm or more. Further, the content of the compound having a sugar skeleton (component D) in the polishing composition is preferably 10,000 ppm by mass or less, more preferably 5000 ppm by mass, from the viewpoint of reducing the surface roughness of the polished object. Hereinafter, it is more preferably 3000 ppm by mass or less, and still more preferably 1000 ppm by mass or less.
  • Content ratio of anionic polymer (component B) and a compound having a sugar skeleton (component D) [content of compound having a sugar skeleton (mass ppm) / content of anionic polymer in the polishing composition] (Mass ppm)] is preferably 0.01 or more, more preferably 0.1 or more, and still more preferably from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. Is 0.5 or more, still more preferably 1 or more.
  • the content ratio [content of the compound having a sugar skeleton (mass ppm) / content of anionic polymer (mass ppm)] improves the polishing rate, reduces the surface roughness of the polished object to be polished, From the viewpoint of improving polishing durability, it is preferably 5000 or less, more preferably 1000 or less, still more preferably 100 or less, and even more preferably 50 or less.
  • the polishing composition of the present invention may further contain an oxidizing agent (component E).
  • an oxidizing agent component E
  • peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt from the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object to be polished.
  • the salt, oxygen acid or its salt, metal salt, nitric acid, sulfuric acid etc. are mentioned.
  • These oxidizing agents may be used alone or in admixture of two or more.
  • Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide and the like.
  • Examples of permanganic acid or a salt thereof include potassium permanganate.
  • Examples of chromic acid or a salt thereof include a chromic acid metal salt and a dichromic acid metal salt.
  • Examples of peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid and the like. It is done.
  • oxygen acid or a salt thereof examples include hypochlorous acid, hypobromous acid, hypoiodous acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite and the like.
  • metal salts include iron (III) chloride, iron (III) nitrate, iron (III) sulfate, iron (III) citrate, and iron (III) ammonium sulfate.
  • the oxidizing agent (component E) is preferably hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished.
  • iron sulfate (III) and ammonium iron sulfate (III) are preferable, and hydrogen peroxide is more preferable from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive.
  • the content of the oxidizing agent (component E) in the polishing composition is preferably 1000 ppm by mass or more, more preferably 1500 from the viewpoints of improving the polishing rate and reducing the surface roughness of the polished object. From the viewpoint of reducing the surface roughness of the polished object, it is preferably 10000 mass ppm or less, more preferably 8500 mass ppm or less, and even more preferably 8000 mass. ppm or less.
  • the polishing composition of the present invention may contain an acid or alkali as a pH adjuster (component F) from the viewpoint of improving the polishing rate.
  • the alkali include sodium hydroxide and potassium hydroxide.
  • Acids include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, organic acids such as acetic acid, lactic acid, succinic acid, citric acid, nicotinic acid, oxalic acid, malonic acid, malic acid, tartaric acid, maleic acid, gluconic acid, etc. Is mentioned. These acids may be used alone or in combination of two or more. From the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object, inorganic acids and organic acids are used. It is preferable that both are included.
  • the pH adjuster contains both an inorganic acid and an organic acid.
  • sulfuric acid / citric acid sulfuric acid / tartaric acid, sulfuric acid / maleic acid, phosphoric acid / citric acid, phosphoric acid / tartaric acid, more preferably sulfuric acid / citric acid, sulfuric acid / tartaric acid, phosphoric acid / citric acid, Sulfuric acid / citric acid is preferred.
  • the mass ratio of the inorganic acid to the organic acid is preferably 0.1 or more from the viewpoint of improving the polishing durability. More preferably, it is 0.2 or more, more preferably 0.5 or more. From the viewpoint of improving the polishing rate, it is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less.
  • the organic acid is preferably used in the production of the polishing composition in the form of a salt having high solubility in an aqueous medium, and an alkali metal salt or the like is preferably used.
  • alkali metal salts of organic acids include alkali metal salts of acetic acid, lactic acid, succinic acid, citric acid, nicotinic acid, oxalic acid, malonic acid, malic acid, tartaric acid, maleic acid, and gluconic acid.
  • an organic acid salt having two or more carboxyl groups in one molecule is preferable, trisodium citrate or disodium maleate is more preferable, and trisodium citrate is still more preferable.
  • the polishing composition of the present invention preferably contains an inorganic phosphate compound (component G) from the viewpoint of improving the polishing rate and reducing the surface roughness.
  • the inorganic phosphate compound is one or more inorganic phosphates selected from the group consisting of orthophosphate, phosphite, and hypophosphite from the viewpoint of improving the polishing rate and reducing the surface roughness. Compounds are preferred, and orthophosphates and phosphites are more preferred.
  • the inorganic phosphate compound is preferably an alkali metal salt, an alkaline earth metal salt, or an ammonium salt.
  • the alkali metal or alkaline earth metal magnesium, calcium, sodium, and potassium are preferable.
  • the inorganic phosphate compound is more preferably at least one selected from sodium salts, potassium salts, and ammonium salts.
  • the inorganic phosphate compound (component G) include sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), and phosphoric acid from the viewpoint of improving the polishing rate and reducing the surface roughness.
  • the content of the inorganic phosphate compound (component G) contained in the polishing composition of the present invention is preferably 1 ppm by mass or more, more preferably 10 ppm by mass, from the viewpoint of improving the polishing rate and reducing the surface roughness. As mentioned above, More preferably, it is 100 mass ppm or more, More preferably, it is 200 mass ppm or more, More preferably, it is 500 mass ppm or more, More preferably, it is 800 ppm or more.
  • the content of the inorganic phosphate compound (component G) contained in the polishing liquid composition of the present invention is preferably 5000 ppm by mass or less, from the viewpoint of reducing the surface roughness of the polished object. Preferably it is 4000 mass ppm or less, More preferably, it is 3000 mass ppm or less, More preferably, it is 2000 mass ppm or less.
  • alumina particle content (ppm by mass) / inorganic phosphate compound content (Mass ppm) is preferably 2 or more, more preferably 20 or more, still more preferably 100 or more, preferably 10,000 or less, more preferably 4000 or less, and still more preferably 1000 or less, from the viewpoint of reducing the surface roughness.
  • the polishing liquid composition of this invention can be prepared by mixing each component by a well-known method.
  • the polishing composition is usually produced as a concentrated solution from the viewpoint of economy, and it is often diluted at the time of use.
  • the polishing composition may be used as it is, or diluted if it is a concentrated solution.
  • An example of a method for producing a sapphire plate of the present invention (sometimes abbreviated as “an example of a production method of the present invention”) and an example of a method for polishing a polished sapphire plate of the present invention (“of the polishing method of the present invention”).
  • the shape of the object to be polished In some cases, abbreviated as “example”). For example, not only the shape having a flat portion such as a disk shape, a plate shape, a slab shape, and a prism shape, The shape which has curved-surface parts, such as, may be sufficient.
  • the polishing liquid composition of this invention is a cover of the said portable terminal device especially. It is suitable as a polishing composition used in the polishing step of a method for producing a sapphire plate used as glass.
  • an example of the manufacturing method of the sapphire plate of this invention is a manufacturing method of the sapphire plate for portable terminal devices, Comprising: The process of grind
  • polishing method of the to-be-polished sapphire board of this invention is a grinding
  • the polishing liquid composition of the present invention is a semiconductor that requires high smoothness. It is suitable as a polishing composition used in a polishing step of a method for producing a sapphire substrate for electronic parts such as an element and further a sapphire substrate for LED.
  • the step of polishing the sapphire plate to be polished includes a first polishing step (rough polishing step) for planarizing a wafer obtained by slicing a sapphire single crystal ingot into a thin disc shape, and after etching the rough polished wafer
  • the polishing composition of the present invention can be used in both the first polishing step and the second polishing step, although it is divided into a second polishing step (finish polishing) for mirror-finishing the wafer surface.
  • the polishing composition of the present invention is preferably used in the second polishing step from the viewpoint of improving the surface smoothness and productivity of the sapphire plate.
  • the first polishing step it is common to use a polishing composition containing diamond as abrasive grains.
  • the polishing apparatus used in one example of the production method of the present invention and one example of the polishing method of the present invention is not particularly limited, and a jig (carrier: made of aramid, etc.) for holding the sapphire plate to be polished and a polishing cloth (polishing pad) Can be used, and may be either a double-side polishing apparatus or a single-side polishing apparatus.
  • the polishing pad is not particularly limited, and a conventionally known polishing pad can be used.
  • the material for the polishing pad include organic polymers, and examples of the organic polymer include polyurethane.
  • the shape of the polishing pad is preferably a nonwoven fabric.
  • SUBA800 manufactured by Nitta Haas
  • Nitta Haas is suitably used as the nonwoven fabric polishing pad.
  • the sapphire plate to be polished is sandwiched by a polishing surface plate that holds the sapphire plate to be polished by a carrier and has a polishing pad attached thereto.
  • the polishing liquid composition of the invention is supplied between a polishing pad and a sapphire plate to be polished, and the polishing pad and / or the sapphire plate to be polished is moved while contacting the sapphire plate to be polished and the polishing pad. A step of polishing the polished sapphire plate.
  • Polishing load in an example of an example and a polishing method of the production method of the present invention from the viewpoint of increasing the polishing rate, 50 g / cm 2 or more is preferable, 100 g / cm 2 or more, and more preferably from 150 g / cm 2 or more, Even more preferably 200 g / cm 2 or more. Further, the polishing load, device, considering the durability, such as pad, preferably 400 g / cm 2 or less, 350 g / cm 2 or less being more preferred.
  • the polishing load can be adjusted by applying air pressure or weight to the surface plate or the polished sapphire plate.
  • the polishing load means the pressure of the surface plate applied to the polishing surface of the polished sapphire plate during polishing.
  • the method of supplying the polishing liquid composition of the present invention is a method of supplying a polishing pad between a polishing pad and a sapphire plate to be polished by a pump or the like in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance.
  • a method of mixing and supplying the above components can be used.
  • the supply rate of the polishing composition is preferably 20 mL / min or less, more preferably 10 mL / min or less, and even more preferably 5 mL / min or less per 1 cm 2 of the polished sapphire plate from the viewpoint of cost reduction.
  • the supply rate is preferably 0.01 mL / min or more, more preferably 0.1 mL / min or more, and further preferably 0.5 mL / min or more from 1 cm 2 of the polished sapphire plate from the viewpoint of improving the polishing rate.
  • the polishing liquid composition of the present invention since the polishing liquid composition of the present invention is used, the polishing rate of the polished sapphire plate is high, and the surface roughness of the substrate surface after polishing is increased. Can be reduced.
  • a polishing liquid composition of the present invention is supplied to a polished sapphire plate to polish the polished sapphire plate, and the polishing liquid composition used in the step And polishing a polished sapphire plate different from the polished sapphire plate using an object.
  • the surface roughness is reduced by using the polishing liquid composition of the present invention, particularly a polishing liquid composition containing a compound having a sugar skeleton (component D). Can be manufactured with good productivity.
  • the present invention further discloses the following ⁇ 1> to ⁇ 33>.
  • a polishing liquid composition for a sapphire plate containing alumina particles, an anionic polymer, and an aqueous medium containing alumina particles, an anionic polymer, and an aqueous medium.
  • the anionic polymer preferably includes a structural unit derived from (meth) acrylic acid, and more preferably includes a structural unit derived from acrylic acid.
  • the proportion of structural units derived from (meth) acrylic acid in the total structural units of the anionic polymer is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more,
  • the polishing composition for sapphire plates according to ⁇ 2> which is more preferably 90 mol% or more, still more preferably 95% or more, still more preferably 98 mol% or more, and even more preferably 100 mol%.
  • the anionic polymer is preferably one or more anionic polymers selected from polyacrylic acid and (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer,
  • the polishing liquid composition for sapphire plates according to any one of ⁇ 1> to ⁇ 3>, which is more preferably polyacrylic acid.
  • the weight average molecular weight of the anionic polymer is preferably 500 or more, more preferably 1000 or more, still more preferably 1500 or more, preferably 120,000 or less, more preferably 100,000 or less, and further preferably 30,000 or less.
  • the polishing liquid composition for sapphire plates in any one of ⁇ 1> to ⁇ 4>.
  • the content of the anionic polymer in the polishing liquid composition for sapphire plate is preferably 1 ppm by mass or more, more preferably 10 ppm by mass or more, still more preferably 100 ppm by mass or more, and even more preferably 200 masses.
  • ⁇ 1> to ⁇ 5> which is at least ppm, preferably 5000 ppm by mass or less, more preferably 4000 ppm by mass or less, further preferably 3000 ppm by mass or less, and even more preferably 2000 ppm by mass or less.
  • Polishing liquid composition for sapphire plates ⁇ 7> Content ratio of the alumina particles and the anionic polymer in the polishing liquid composition for sapphire plate [alumina particle content (mass ppm) / anionic polymer content (mass ppm)] Is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, still more preferably 100 or more, preferably 200000 or less, more preferably 20000 or less, and even more preferably 2000 or less, from ⁇ 1>.
  • the polishing composition for sapphire plates according to any one of the above.
  • the sugar compound and / or derivative thereof is preferably a sugar alcohol, a monosaccharide, or a disaccharide, and more preferably at least one compound selected from the group consisting of sorbitol, sucrose, galactose, and maltitol.
  • the content of the sugar compound and / or derivative thereof in the sapphire plate polishing liquid composition is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, still more preferably 100 ppm by mass or more, and even more.
  • it is 500 ppm by mass or more, preferably 10,000 ppm by mass or less, more preferably 5000 ppm by mass or less, still more preferably 3000 ppm by mass or less, and even more preferably 1000 ppm by mass or less.
  • the polishing liquid composition for sapphire boards in any one of.
  • ⁇ 11> Content ratio of the anionic polymer and the sugar compound and / or derivative thereof in the polishing liquid composition for sapphire plate [content (mass ppm) of the sugar compound and / or derivative thereof / anionic high The molecular content (mass ppm)] is preferably 0.01 or more, more preferably 0.1 or more, still more preferably 0.5 or more, still more preferably 1 or more, preferably 5000 or less, more preferably 1000.
  • ⁇ 12> The polishing composition for sapphire plates according to any one of ⁇ 1> to ⁇ 11>, preferably further containing an oxidizing agent.
  • ⁇ 13> The polishing composition for sapphire plates according to any one of ⁇ 1> to ⁇ 12>, preferably further containing an acid.
  • ⁇ 14> The polishing composition for sapphire plates according to ⁇ 13>, wherein the acid preferably contains an organic acid and an inorganic acid.
  • the organic acid is preferably citric acid and the inorganic acid is sulfuric acid.
  • the inorganic phosphate compound is preferably at least one inorganic phosphate compound selected from the group consisting of orthophosphate, phosphite, and hypophosphite, more preferably orthophosphate.
  • the polishing composition for sapphire plates according to ⁇ 16> which is one or more inorganic phosphate compounds selected from the group consisting of phosphites and phosphites.
  • the inorganic phosphate compound is preferably one or more of alkali metal salts, alkaline earth metal salts, and ammonium salts, more preferably sodium salts, potassium salts, and ammonium salts.
  • the inorganic phosphate compound is preferably sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), disodium monohydrogen phosphate (Na 2 HPO 4 ), diphosphate phosphate.
  • Monosodium hydrogen NaH 2 PO 4
  • monopotassium dihydrogen phosphate KH 2 PO 4
  • monoammonium dihydrogen phosphate NH 4 H 2 PO 4
  • dipotassium monohydrogen phosphate K 2 HPO 4
  • Diammonium monohydrogen phosphate (NH 4 ) 2 HPO 4 ), sodium phosphite (Na 2 HPO 3 ), potassium phosphite (K 2 HPO 3 ), sodium hypophosphite (NaH 2 PO 2 )
  • more preferably dihydrogen phosphate Sodium, phosphorus ⁇ 16> which is at least one inorganic phosphate compound selected from the group consisting of dipotassium hydrogen monohydrogen, sodium phosphite, sodium hypophosphite, diammoni
  • the polishing liquid composition for sapphire plates according to any one of items.
  • the content of the inorganic phosphate compound (component G) in the polishing composition for a sapphire plate is preferably 1 mass ppm or more, more preferably 10 mass ppm or more, still more preferably 100 mass ppm or more.
  • polishing liquid composition for sapphire plates in any one of ⁇ 16> to ⁇ 19>.
  • ⁇ 21> Content ratio of alumina particles (component A) and inorganic phosphate compound (component G) in the polishing composition for sapphire plate is preferably 2 or more, more preferably 20 or more, still more preferably 100 or more, preferably 10,000 or less, more preferably 4000 or less, and even more preferably 1000 or less, from ⁇ 16> to ⁇ 20 >
  • the polishing liquid composition for sapphire plates in any one of. ⁇ 22> The pH at 25 ° C.
  • polishing composition for sapphire plates is preferably 10 or more, more preferably 11 or more, and preferably less than 14, according to any one of ⁇ 1> to ⁇ 21>.
  • the average particle diameter of the alumina particles measured by the dynamic light scattering method is preferably 0.2 ⁇ m or more, more preferably 0.25 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and even more preferably 0.00. Any one of ⁇ 1> to ⁇ 22>, which is 35 ⁇ m or more, preferably 1.0 ⁇ m or less, more preferably 0.95 ⁇ m or less, still more preferably 0.90 ⁇ m or less, and even more preferably 0.80 ⁇ m or less.
  • the content of alumina particles in the polishing composition for sapphire plate is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and even more preferably 10% by mass or more. Preferably, it is 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and even more preferably 20% by mass or less, according to any one of ⁇ 1> to ⁇ 23>.
  • Polishing liquid composition for sapphire plates. ⁇ 25> A polishing composition for a sapphire plate, containing alumina particles, a rheology modifier, and an aqueous medium.
  • Polishing liquid composition ⁇ 27> The polishing composition for sapphire plates according to ⁇ 25> or ⁇ 26>, preferably further containing a compound having a sugar skeleton.
  • the shear viscosity (Pa ⁇ s) at a shear rate of 100 (1 / s) of the polishing composition for a sapphire plate at 25 ° C. measured in an environment of 25 ° C. and 50% RH is preferably 0.00.
  • the shear viscosity ratio calculated by the following formula is preferably 0.6 or less, more preferably 0.4 or less, still more preferably 0.3 or less, preferably 0.01 or more, more preferably 0.
  • the polishing composition for sapphire plates according to any one of ⁇ 1> to ⁇ 29> which is 0.05 or more, more preferably 0.1 or more.
  • Shear viscosity ratio (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s)) ⁇ 31>
  • a sapphire plate comprising a step of supplying the polishing composition for a sapphire plate according to any one of ⁇ 1> to ⁇ 30> to polish the sapphire plate to be polished. Production method.
  • a step of supplying the polishing composition for a sapphire plate according to any one of ⁇ 1> to ⁇ 30> to polish the sapphire plate to be polished A step of polishing a polished sapphire plate different from the polished sapphire plate using the polishing liquid composition for sapphire plate used in the step.
  • a sapphire to be polished comprising a step of supplying the polishing composition for a sapphire plate according to any one of ⁇ 1> to ⁇ 30> and polishing the sapphire plate to be polished to a sapphire plate to be polished.
  • a method for polishing a plate is supplying the polishing composition for a sapphire plate according to any one of ⁇ 1> to ⁇ 30>.
  • the polishing compositions of Examples 1 to 50 and Comparative Examples 1 to 7 were prepared as follows. The contents of the particles, the anionic polymer, the compound having a sugar skeleton, the inorganic phosphate compound, and the oxidizing agent in the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7 are shown in Tables 1 to 4 as described. The solubility of the anionic polymer used in the preparation of the polishing composition of Examples 1 to 50 and Comparative Examples 1 to 7 in water at 20 ° C. was 2 g / 100 ml or more.
  • Examples 1 to 5 After adding polyacrylic acid as an anionic polymer into a beaker containing ion-exchanged water, 45 mass% alumina particles (abrasive grains, 90% alpha conversion rate, crystallite size 32 nm) in water dispersion are added. Was stirred to obtain an aqueous dispersion of an anionic polymer-added alumina particle. Immediately thereafter, the pH of the aqueous dispersion of the anionic polymer-added alumina particles was adjusted to 13 using a 48 mass% aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) to obtain a polishing composition. The average particle diameters of the alumina particles used in the preparation of Examples 1 to 5 were as shown in Table 1, respectively. In Table 1, except for Comparative Example 1, alumina particles were used as abrasive grains.
  • Examples 6 to 19 After adding polyacrylic acid as an anionic polymer into a beaker containing ion-exchanged water, a compound having a sugar skeleton was added. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% gelatinization rate, crystallite size 32 nm) was added and stirred to obtain an aqueous dispersion of anionic polymer-added alumina particles.
  • the pH of the aqueous dispersion of the anionic polymer-added alumina particles was adjusted to 13 using a 48% by mass aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) to obtain the polishing liquid compositions of Examples 6-19. It was.
  • Examples 20 to 22 Polishing liquid compositions of Examples 20 to 22 were prepared in the same manner as in Example 14 except that the content of the compound having a sugar skeleton was different.
  • Examples 23 and 24 The polishing liquid compositions of Examples 23 and 24 were prepared in the same manner as in Example 14 except that the content of abrasive grains (alumina particles) was different.
  • Example 25 A polishing composition of Example 25 was prepared in the same manner as Example 14 except that the content of the anionic polymer (polyacrylic acid) was different.
  • Example 26 The polishing liquid composition of Example 26 was the same as Example 14 except that the amount of 48 mass% sodium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Inc.) was different and the polishing composition had a pH of 11 at 25 ° C. A product was prepared.
  • Example 27 A polishing composition of Example 27 was prepared in the same manner as in Example 4 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
  • AA-AMPS Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.
  • Examples 28 to 31 Polishing of Examples 28 to 31 was carried out in the same manner as in Examples 14, 19, 7, and 17, except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.). A liquid composition was prepared.
  • AA-AMPS Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.
  • Examples 32 and 33 Polishing liquid compositions of Examples 32 and 33 were prepared in the same manner as Example 14 except that Na phosphite was further included as the inorganic phosphate compound.
  • Example 34 A polishing composition of Example 34 was prepared in the same manner as Example 19 except that Na phosphite was further included as an inorganic phosphate compound.
  • Examples 35 to 39 Polishing liquid compositions of Examples 35 to 39 were prepared in the same manner as in Example 33 except that the types of inorganic phosphate compounds were different.
  • Example 40 A polishing liquid composition of Example 40 was prepared in the same manner as in Example 34 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
  • AA-AMPS Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.
  • Examples 41 and 42 The polishing composition of Examples 41 and 42 was prepared in the same manner as in Examples 33 and 40 except that the compound having a sugar skeleton was not included.
  • Examples 43 and 44 After adding polyacrylic acid as an anionic polymer in a beaker containing ion-exchanged water, add 35% by mass hydrogen peroxide (concentration adjusted by diluting a reagent manufactured by Wako Pure Chemical Industries, Ltd.) did. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% gelatinization rate, crystallite size 32 nm) was added, and sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) diluted to 62.5% by mass with water was used. The pH was adjusted to 1.9 to obtain a polishing composition of Example 43.
  • Example 44 instead of diluting sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) to 62.5% by mass with water, the citric acid concentration of the system was 0.4% by mass in a beaker containing ion-exchanged water. A 50% by mass aqueous citric acid solution was added, and a solution obtained by diluting sulfuric acid to 62.5% by mass with water was added to adjust the pH to 1.9. Except this, the polishing composition of Example 44 was obtained in the same manner as in Example 43.
  • Example 45 In a beaker containing ion-exchanged water, polyacrylic acid is added as an anionic polymer, sorbitol (manufactured by Wako Pure Chemical Industries, Ltd.) is added as a compound having a sugar skeleton, and a 35% by mass hydrogen peroxide solution is added. (Wako Pure Chemical Industries, Ltd. reagent diluted with water to adjust the concentration) was added. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% alpha conversion, crystallite size 32 nm) was added, and the pH was adjusted to 1.9 using sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.). The polishing liquid composition of Example 45 was obtained.
  • Example 46 A polishing composition of Example 46 was prepared in the same manner as Example 45 except that Na phosphite was further included as the inorganic phosphate compound.
  • Example 47 A polishing liquid composition of Example 47 was prepared in the same manner as in Example 46 except that the compound having a sugar skeleton was not included.
  • Example 48 and 49 The polishing liquid compositions of Examples 48 and 49 were prepared in the same manner as in Examples 43 and 44 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.). Prepared.
  • AA-AMPS Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.
  • Example 50 A polishing liquid composition of Example 50 was prepared in the same manner as Example 47 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
  • AA-AMPS Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.
  • Comparative Example 1 In a beaker containing ion-exchanged water, a colloidal silica aqueous dispersion (average particle size 80 nm) and a 48% by mass aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) were added and stirred, and the pH was 10.6 A polishing liquid composition of Comparative Example 1 was prepared.
  • Comparative example 2 A polishing liquid composition of Comparative Example 2 was prepared in the same manner as in Example 4 except that the anionic polymer was not added.
  • Comparative Examples 3 and 4 A polishing composition of Comparative Examples 3 and 4 was prepared in the same manner as in Examples 14 and 19 except that the anionic polymer was not added.
  • Comparative Example 5 A polishing composition of Comparative Example 5 was prepared in the same manner as in Example 43 except that the anionic polymer was not added.
  • Comparative Example 6 A polishing composition of Comparative Example 6 was prepared in the same manner as in Example 45 except that the anionic polymer was not added.
  • Comparative Example 7 A polishing composition of Comparative Example 7 was prepared in the same manner as Comparative Example 6 except that sucrose was used in place of sorbitol as the compound having a sugar skeleton.
  • the average particle size (dispersed particle size) of colloidal silica (abrasive grains) in the polishing composition of Comparative Example 1 is a dynamic light scattering (DLS) particle size distribution meter (Zetasizer (registered trademark) Nano S, manufactured by Malvern). The volume-converted average particle size obtained was determined as the average particle size (dispersed particle size).
  • Solvent water (refractive index 1.333)
  • Abrasive grain colloidal silica (refractive index 1.45, attenuation coefficient 0.02) Measurement temperature: 25 ° C
  • the pH of the polishing composition was measured at 25 ° C. using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., HM-30G).
  • polishing was performed for 1 hour (first polishing) on the 3-inch sapphire plate (c surface) using the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7 under the following polishing conditions. Then, using the used polishing composition used for the polishing, another 3 inch sapphire plate (c surface) is polished for 1 hour under the following polishing conditions (second polishing), and polished.
  • the speed ratio (polishing speed of the second polishing / polishing speed of the first polishing ⁇ 100) is shown in Tables 1 and 2 as polishing durability. The closer the polishing rate ratio is to “100”, the better the polishing durability of the polishing composition.
  • the sapphire plate was polished under the following polishing conditions, then immersed in ultrapure water, then rinsed with running water (ultrapure water) and dried.
  • the surface roughnesses shown in Tables 3 and 4 are relative values when the polishing rate X when the polishing liquid compositions of Comparative Example 2 and Comparative Example 5 are used is “100”, respectively. It shows that the deterioration of surface roughness is suppressed, so that a value is small.
  • Shear viscosity ratio (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s))
  • the comparative example As shown in Tables 1 and 2, when comparing the examples and comparative examples for the alkaline polishing composition and the acid polishing composition, respectively, when the polishing composition of the example was used, the comparative example As compared with the case of using the above polishing liquid composition, the polishing rate 1 hour after the start of polishing is high, the surface roughness is small, and the deterioration with time of the polishing rate is suppressed. Further, as shown in Tables 3 and 4, the shear viscosity of the polishing liquid compositions of the examples is significantly smaller than the shear viscosity of the polishing liquid compositions of the comparative examples, and in particular, anionic polymers and sugar skeletons. The shear viscosity of the polishing composition of the example in combination with the compound having the is even smaller.
  • the polishing rate is fast, the surface roughness of the surface of the sapphire plate after polishing is reduced, and the polishing rate over time Deterioration is suppressed. Therefore, if the polishing liquid composition of this invention is used, the productivity of the sapphire plate used as a cover glass of portable terminal devices, such as a smart phone, will improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

This polishing solution composition for a sapphire plate contains alumina particles, an anionic polymer, and an aqueous medium. One example of a manufacturing method for a sapphire plate according to the present invention includes a step in which the polishing solution composition for a sapphire plate is supplied to a sapphire plate to be polished and the sapphire plate to be polished is polished. Another example of a manufacturing method for a sapphire plate according to the present invention includes a step in which the polishing solution composition for a sapphire plate is supplied to the sapphire plate to be polished and the sapphire plate to be polished is polished, and a step in which a sapphire plate to be polished, which is different from the previous sapphire plate to be polished, is polished using the polishing solution composition for a sapphire plate used in the previous step.

Description

サファイア板用研磨液組成物Polishing liquid composition for sapphire plate
 本発明は、サファイア板用研磨液組成物、及びそれを用いたサファイア板の製造方法並びに被研磨サファイア板の研磨方法に関する。 The present invention relates to a polishing liquid composition for a sapphire plate, a method for producing a sapphire plate using the same, and a method for polishing a sapphire plate to be polished.
 サファイア等の硬脆材料は、光学材料、電子材料又は機械材料として必要不可欠である。 Hard and brittle materials such as sapphire are indispensable as optical materials, electronic materials or mechanical materials.
 例えば、人工サファイア板は、集積回路基盤、赤外線探知用レンズ、時計、スマートフォン等の携帯端末装置等のさまざまな用途の材料として用いられている。特に、携帯端末装置の急速な普及に伴い、そのカバーガラスとして利用されるサファイア板の需要が急増している。携帯端末装置のカバーガラスは、携帯端末装置の美観向上のため、その表面平滑性が高いことが望まれる。 For example, artificial sapphire plates are used as materials for various applications such as integrated circuit boards, infrared detection lenses, watches, and mobile terminal devices such as smartphones. In particular, with the rapid spread of mobile terminal devices, the demand for sapphire plates used as cover glasses is increasing rapidly. The cover glass of a portable terminal device is desired to have a high surface smoothness in order to improve the beauty of the portable terminal device.
 サファイア板の表面平滑性を満足させるために、シリカ粒子を含む研磨液組成物を用いた仕上げ研磨が行われている。サファイア(α-アルミナ、モース硬度9)板よりも低硬度であるシリカ(モース硬度7)粒子を砥粒として用いることにより、サファイア板表面にピットやスクラッチが発生しないようにしている。しかしながら、サファイアは、機械的、化学的、熱的安定性に優れてはいるものの、シリカ粒子を用いた仕上げ研磨において、研磨速度が低いという問題がある。 In order to satisfy the surface smoothness of the sapphire plate, finish polishing using a polishing liquid composition containing silica particles is performed. By using silica (Mohs hardness 7) particles having a hardness lower than that of the sapphire (α-alumina, Mohs hardness 9) plate as abrasive grains, pits and scratches are prevented from occurring on the surface of the sapphire plate. However, although sapphire is excellent in mechanical, chemical, and thermal stability, there is a problem that the polishing rate is low in finish polishing using silica particles.
 研磨速度の問題に対し、例えば、特許文献1には、研磨液組成物のpHを制御してシリカ粒子とサファイア基板とのゼータ電位を反対符号にすることにより、研磨速度が向上することが開示されている。また、特許文献4,9,10には、砥粒の分散剤としてアニオン性界面活性剤が添加され、シリカ粒子を砥粒として含む研磨液組成物が開示され、特許文献7には、アルミナ砥粒を含むサファイア研磨用スラリーが、分散剤としてアニオン性界面活性剤を含むことが開示されているが、アニオン性界面活性剤がアニオン性高分子であることまでは開示されていない(特許文献2、3,5,6,8,11も参照)。 In response to the problem of the polishing rate, for example, Patent Document 1 discloses that the polishing rate is improved by controlling the pH of the polishing composition to make the zeta potentials of the silica particles and the sapphire substrate have opposite signs. Has been. Patent Documents 4, 9, and 10 disclose a polishing composition containing an anionic surfactant added as a dispersing agent for abrasive grains and containing silica particles as abrasive grains. Although it is disclosed that the sapphire polishing slurry containing grains contains an anionic surfactant as a dispersant, it is not disclosed that the anionic surfactant is an anionic polymer (Patent Document 2). 3, 5, 6, 8, 11).
特開2011-211178号公報JP 2011-2111178 A 特開2011-62815号公報JP 2011-62815 A 特表2006-524583号公報JP-T-2006-524583 特開2009-28814号公報JP 2009-28814 A 特開2008-211040号公報JP 2008-211040 A 特開2004-168622号公報JP 2004-168622 A WO2011/136387号公報WO2011 / 136387 特開2012-700号公報JP 2012-700 A 特開2011-183530号公報JP 2011-183530 A 特表2009-538236号公報Special table 2009-538236 WO2009/151120号公報WO2009 / 151120
 一方、生産性の向上を目的としてサファイア板の研磨速度をさらに向上させると同時に、表面平滑性をさらに向上させることが望まれている。 On the other hand, for the purpose of improving productivity, it is desired to further improve the surface smoothness while further improving the polishing rate of the sapphire plate.
 本発明は、研磨速度が大きく、且つ、表面粗さの低減を可能とするサファイア板用研磨液組成物、及びそれを用いたサファイア板の製造方法並びに被研磨サファイア板の研磨方法を提供する。 The present invention provides a polishing liquid composition for a sapphire plate that has a high polishing rate and can reduce the surface roughness, a method for producing a sapphire plate using the same, and a method for polishing a polished sapphire plate.
 本発明のサファイア板用研磨液組成物の一例は、アルミナ粒子、アニオン性高分子、及び水系媒体を含有するサファイア板用研磨液組成物である。 An example of the polishing composition for a sapphire plate of the present invention is a polishing composition for a sapphire plate containing alumina particles, an anionic polymer, and an aqueous medium.
 本発明のサファイア板用研磨液組成物の他の例は、アルミナ粒子、レオロジー改質剤、及び水系媒体を含有する、サファイア板用研磨液組成物である。 Another example of the polishing liquid composition for sapphire plates of the present invention is a polishing liquid composition for sapphire plates containing alumina particles, a rheology modifier, and an aqueous medium.
 本発明のサファイア板の製造方法の一例は、被研磨サファイア板に対して、本発明のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、サファイア板の製造方法である。 An example of the method for producing a sapphire plate of the present invention is a method for producing a sapphire plate, comprising the step of supplying the polishing composition for a sapphire plate of the present invention to polish the sapphire plate to be polished. Is the method.
 本発明のサファイア板の製造方法の他の一例は、被研磨サファイア板に対して、本発明のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程と、前記工程で使用した前記サファイア板用研磨液組成物を用いて、前記被研磨サファイア板とは別の被研磨サファイア板を研磨する工程と、を含むサファイア板の製造方法である。 Another example of the method for producing a sapphire plate of the present invention includes a step of supplying the polishing composition for a sapphire plate of the present invention to the polished sapphire plate and polishing the polished sapphire plate, and the above step. And a step of polishing a polished sapphire plate different from the polished sapphire plate using the used sapphire plate polishing liquid composition.
 本発明の被研磨サファイア板の研磨方法は、被研磨サファイア板に対して、本発明のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、被研磨サファイア板の研磨方法である。 The polishing method for a polished sapphire plate of the present invention includes a step of supplying the polishing composition for a sapphire plate of the present invention to the polished sapphire plate and polishing the polished sapphire plate. This is a polishing method.
 本発明によれば、研磨速度が大きく、且つ、表面粗さの低減を可能とするサファイア板用研磨液組成物、及びそれを用いたサファイア板の製造方法並びに被研磨サファイア板の研磨方法を提供できる。 According to the present invention, a polishing composition for a sapphire plate that has a high polishing rate and can reduce surface roughness, a method for manufacturing a sapphire plate using the same, and a method for polishing a sapphire plate to be polished are provided. it can.
 被研磨ガラス基板や被研磨Ni-Pメッキされたアルミニウム合金基板の研磨に用いられる酸性の研磨液組成物にアニオン性高分子を添加した場合、アニオン性高分子が研磨パッド等に吸着して、被研磨対象に対して保護膜として機能するため、研磨速度が低下する、というのが一般的認識である。これに対して、本発明は、被研磨サファイア板の研磨に用いられる研磨液組成物であって、アルミナ粒子と水系媒体とを含む研磨液組成物が、そのpHが酸性、アルカリ性のいずれであっても、アニオン性高分子の添加により、被研磨サファイア板を研磨した場合の研磨速度が向上し、且つ、研磨された被研磨対象の表面(以下「研磨面」とも呼ぶ。)の表面粗さが低減するという、予想外の知見に基づく。 When an anionic polymer is added to an acidic polishing liquid composition used for polishing a glass substrate to be polished or an aluminum alloy substrate plated with Ni—P, the anionic polymer is adsorbed on the polishing pad, It is generally recognized that the polishing rate decreases because it functions as a protective film for the object to be polished. In contrast, the present invention is a polishing liquid composition used for polishing a sapphire plate to be polished, and the polishing liquid composition containing alumina particles and an aqueous medium has either an acidic or alkaline pH. However, the addition of an anionic polymer improves the polishing rate when the polished sapphire plate is polished, and the surface roughness of the polished surface to be polished (hereinafter also referred to as “polishing surface”). Is based on the unexpected finding that
 被研磨サファイア板の研磨に、本発明のサファイア板用研磨液組成物(以下「研磨液組成物」)を用いた場合、アニオン性高分子を含まない研磨液組成物を用いる場合よりも、著しいせん断粘度の低下が観察される。このことから、本発明の研磨液組成物では、例えばアニオン性高分子のようなレオロジー改質剤が、凝集したアルミナ粒子を研磨最中にほぐし、その結果、有効砥粒数を増大し且つ有効砥粒の粒径が小さくなることにより、研磨速度が向上し且つ研磨面の表面粗さが低減されるものと推察される。 When the polishing liquid composition for sapphire plates of the present invention (hereinafter referred to as “polishing liquid composition”) is used for polishing the sapphire plate to be polished, it is significantly more than when a polishing liquid composition containing no anionic polymer is used. A decrease in shear viscosity is observed. Therefore, in the polishing composition of the present invention, a rheology modifier such as an anionic polymer loosens the aggregated alumina particles during polishing, and as a result, the number of effective abrasive grains is increased and effective. It is presumed that the polishing speed is improved and the surface roughness of the polished surface is reduced by reducing the grain size of the abrasive grains.
 本発明の研磨液組成物は、アルミナ粒子(成分A)、アニオン性高分子(成分B)、及び水系媒体(成分C)を含む。 The polishing liquid composition of the present invention contains alumina particles (component A), an anionic polymer (component B), and an aqueous medium (component C).
 [アルミナ粒子(成分A)]
 本開示の研磨液組成物は、砥粒としてアルミナ粒子を含む。アルミナ粒子としては、αアルミナ、中間アルミナ、アモルファスアルミナ、ヒュームドアルミナ等が挙げられるが、これらのなかでも、研磨速度向上の観点から、αアルミナが好ましい。
[Alumina particles (component A)]
The polishing composition of the present disclosure includes alumina particles as abrasive grains. Examples of the alumina particles include α-alumina, intermediate alumina, amorphous alumina, fumed alumina, and the like. Among these, α-alumina is preferable from the viewpoint of improving the polishing rate.
 アルミナ粒子の動的光散乱法で測定される平均粒径(平均二次粒子径)は、研磨速度向上の観点から、好ましくは0.2μm以上、より好ましくは0.25μm以上、更に好ましくは0.3μm以上、更により好ましくは0.35μm以上であり、表面粗さの低減の観点から、好ましくは1.0μm以下、より好ましくは0.95μm以下、更に好ましくは0.90μm以下、更により好ましくは0.80μm以下である。尚、該平均二次粒子径は、実施例に記載の方法により求めることができる。 The average particle diameter (average secondary particle diameter) measured by the dynamic light scattering method of alumina particles is preferably 0.2 μm or more, more preferably 0.25 μm or more, and still more preferably 0, from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness, it is preferably 1.0 μm or less, more preferably 0.95 μm or less, still more preferably 0.90 μm or less, and even more preferably. Is 0.80 μm or less. In addition, this average secondary particle diameter can be calculated | required by the method as described in an Example.
 アルミナ粒子のα化率は、一又は複数の実施形態において、研磨速度の向上及び表面粗さの低減の観点から、好ましくは50%以上、より好ましくは60%以上である。このα化率は、粉末X線回折により測定でき、具体的には、例えば、実施例の方法により測定される。 In one or a plurality of embodiments, the alpha conversion rate of the alumina particles is preferably 50% or more, more preferably 60% or more, from the viewpoint of improving the polishing rate and reducing the surface roughness. This pregelatinization rate can be measured by powder X-ray diffraction, specifically, for example, by the method of the example.
 本開示の研磨液組成物中のアルミナ粒子のBET比表面積は、研磨速度向上の観点から10m2/g以上が好ましく、20m2/g以上がより好ましく、40m2/g以上が更に好ましく、同様の観点から、200m2/g以下が好ましく、100m2/g以下がより好ましく、60m2/g以下が更に好ましい。 The BET specific surface area of the alumina particles in the polishing liquid composition of the present disclosure is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, still more preferably 40 m 2 / g or more, from the viewpoint of improving the polishing rate. In view of the above, 200 m 2 / g or less is preferable, 100 m 2 / g or less is more preferable, and 60 m 2 / g or less is more preferable.
 本開示の研磨液組成物におけるアルミナ粒子の含有量は、研磨速度を向上する観点から、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、更により好ましくは10質量%以上であり、表面粗さの低減の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30量%以下、更により好ましくは20質量%以下である。 The content of the alumina particles in the polishing liquid composition of the present disclosure is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and still more preferably from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness, it is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and even more preferably 20% by mass or less.
 [アニオン性高分子(成分B)]
 本発明の研磨液組成物は、研磨された被研磨対象の表面粗さの低減及び研磨速度向上の観点から、アニオン性基を有する水溶性高分子(成分B)を含有する。また、本発明の研磨液組成物にアニオン性基を有する水溶性高分子(以下「アニオン性高分子」とも言う。)が含まれていると、研磨耐久性も向上する。アニオン性高分子は、アルミナ粒子の表面に吸着し、電荷反発によりアルミナ粒子の分散性向上及びアルミナ粒子の凝集抑制に寄与する。そのため、アニオン性高分子は、研磨速度向上及び表面粗さの低減に寄与しているものと推定される。尚、「水溶性」とは、水に対して2g/100ml以上の溶解度を有することをいう。
[Anionic polymer (component B)]
The polishing composition of the present invention contains a water-soluble polymer (component B) having an anionic group from the viewpoint of reducing the surface roughness of the polished object and improving the polishing rate. Further, when the polishing composition of the present invention contains a water-soluble polymer having an anionic group (hereinafter also referred to as “anionic polymer”), the polishing durability is also improved. The anionic polymer is adsorbed on the surface of the alumina particles, and contributes to improving the dispersibility of the alumina particles and suppressing aggregation of the alumina particles by charge repulsion. Therefore, it is presumed that the anionic polymer contributes to the improvement of the polishing rate and the reduction of the surface roughness. “Water-soluble” means having a solubility of 2 g / 100 ml or more in water.
 アニオン性高分子(成分B)のアニオン性基としては、カルボン酸基、スルホン酸基、硫酸エステル基、リン酸エステル基、ホスホン酸基等が挙げられる。これらのアニオン性基は中和された塩の形態を取ってもよい。アニオン性高分子は、表面粗さの低減の観点から、スルホン酸基及びカルボン酸基の少なくとも一方を有していると好ましく、後述する糖化合物との相互作用をすることによりアルミナ粒子の分散性を更に向上させる観点から、カルボン酸基を有しているとより好ましい。 Examples of the anionic group of the anionic polymer (component B) include a carboxylic acid group, a sulfonic acid group, a sulfate ester group, a phosphate ester group, and a phosphonic acid group. These anionic groups may take the form of neutralized salts. From the viewpoint of reducing the surface roughness, the anionic polymer preferably has at least one of a sulfonic acid group and a carboxylic acid group, and dispersibility of the alumina particles by interacting with a sugar compound described later. From the viewpoint of further improving the ratio, it is more preferable to have a carboxylic acid group.
 本明細書において、「スルホン酸基」とはスルホン酸基及び/又はその塩をいい、「カルボン酸基」とはカルボン酸基及び/又はその塩をいう。スルホン酸基又はカルボン酸基が塩の形態を取る場合の対イオンについて、特に限定はないが、具体的には、金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属等が挙げられる。これらの金属の中でも、表面粗さ低減の観点から1A、3B、又は8族に属する金属が好ましく、1A族に属するナトリウム及びカリウムがより好ましい。アルキルアンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。上記対イオンの中でも、アンモニウムイオン、ナトリウムイオン及びカリウムイオンからなる群から選ばれる少なくとも1種がより好ましい。 In this specification, “sulfonic acid group” refers to a sulfonic acid group and / or salt thereof, and “carboxylic acid group” refers to a carboxylic acid group and / or salt thereof. Although there is no limitation in particular about the counter ion in case a sulfonic acid group or a carboxylic acid group takes the form of a salt, Specifically, a metal ion, an ammonium ion, an alkyl ammonium ion, etc. are mentioned. Specific examples of the metal include metals belonging to the periodic table (long period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these metals, metals belonging to Group 1A, 3B, or Group 8 are preferable from the viewpoint of reducing surface roughness, and sodium and potassium belonging to Group 1A are more preferable. Specific examples of alkylammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like. Among the counter ions, at least one selected from the group consisting of ammonium ions, sodium ions, and potassium ions is more preferable.
 スルホン酸基及びカルボン酸基の少なくとも一方を有するアニオン性高分子は、スルホン酸基を有する単量体、カルボン酸基を有する単量体等のイオン性親水基を有する単量体を重合することにより得られたものであることが好ましい。これら単量体の重合は、ランダム、ブロック、又はグラフトのいずれでも良い。 An anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group is obtained by polymerizing a monomer having an ionic hydrophilic group such as a monomer having a sulfonic acid group or a monomer having a carboxylic acid group. It is preferable that it was obtained by. Polymerization of these monomers may be random, block, or graft.
 スルホン酸基を有する単量体としては、例えば、イソプレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、ナフタレンスルホン酸等が挙げられる。カルボン酸基を有する単量体としては、例えば、イタコン酸、(メタ)アクリル酸、マレイン酸等が挙げられる。これらの単量体の中でも、研磨された被研磨対象の表面粗さの低減の観点から、(メタ)アクリル酸が好ましく、アクリル酸がより好ましい。即ち、アニオン性高分子は、(メタ)アクリル酸由来の構成単位を含んでいると好ましく、アクリル酸由来の構成単位を含んでいるとより好ましい。 Examples of the monomer having a sulfonic acid group include isoprene sulfonic acid, 2- (meth) acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, and isoamyl sulfonic acid. Examples thereof include lensulfonic acid and naphthalenesulfonic acid. Examples of the monomer having a carboxylic acid group include itaconic acid, (meth) acrylic acid, maleic acid and the like. Among these monomers, (meth) acrylic acid is preferable and acrylic acid is more preferable from the viewpoint of reducing the surface roughness of the polished object to be polished. That is, the anionic polymer preferably includes a structural unit derived from (meth) acrylic acid, and more preferably includes a structural unit derived from acrylic acid.
 アニオン性高分子が、(メタ)アクリル酸由来の構成単位を含む場合、アニオン性高分子の全構成単位中に占める(メタ)アクリル酸由来の構成単位の割合は、研磨された被研磨対象の表面粗さの低減の観点から、好ましくは50モル%以上、より好ましくは60モル%以上、更に好ましくは70モル%以上、また、研磨速度向上の観点から、好ましくは90モル%以上、より好ましくは95%以上、更に好ましくは98モル%以上、更により好ましくは100モル%である。 When the anionic polymer contains a structural unit derived from (meth) acrylic acid, the proportion of the structural unit derived from (meth) acrylic acid in the total structural unit of the anionic polymer is determined based on the polished object to be polished. From the viewpoint of reducing the surface roughness, preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, and from the viewpoint of improving the polishing rate, preferably 90 mol% or more, more preferably. Is 95% or more, more preferably 98 mol% or more, and still more preferably 100 mol%.
 また、スルホン酸基及びカルボン酸基の少なくとも一方を有するアニオン性高分子の合成には、スルホン酸基を有する単量体及びカルボン酸基を有する単量体以外の単量体を用いることもできる。アニオン性高分子の重合に用いることができる他の単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレン等の芳香族ビニル化合物、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸オクチル等の(メタ)アクリル酸アルキルエステル類、ブタジエン、イソプレン、2-クロル-1,3-ブタジエン、1-クロル-1,3-ブタジエン等の脂肪族共役ジエン、(メタ)アクリロニトリル等のシアン化ビニル化合物、ビニルホスホン酸、メタクロイルオキシメチルリン酸、メタクロリルオキシエチルリン酸、メタクロイルオキシブチルリン酸、メタクロリルオキシヘキシルリン酸、メタクロリルオキシオクチルリン酸、メタクロリルオキシデシルリン酸、メタクロリルオキシラウリルリン酸、メタロイルオキシステアリルリン酸、メタクロイルオキシ1、4-ジメチルシクロヘキシルリン酸等のホスホン酸化合物等が挙げられる。これらの単量体は1種又は2種以上使用できる。 For the synthesis of an anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group, a monomer other than a monomer having a sulfonic acid group and a monomer having a carboxylic acid group can also be used. . Examples of other monomers that can be used for polymerization of anionic polymers include aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, and p-methylstyrene, methyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as ethyl (meth) acrylate and octyl (meth) acrylate, aliphatics such as butadiene, isoprene, 2-chloro-1,3-butadiene and 1-chloro-1,3-butadiene Conjugated dienes, vinyl cyanide compounds such as (meth) acrylonitrile, vinylphosphonic acid, methacryloyloxymethyl phosphoric acid, methacryloyloxyethyl phosphoric acid, methacryloyloxybutyl phosphoric acid, methacryloyloxyhexyl phosphoric acid, methacrylyloxyoctyl Phosphoric acid, methacryloyloxydecyl phosphate, methacryloyloxy Lauryl phosphate, metallo-yl oxy stearyl phosphoric acid, phosphonic acid compounds such as methacryloyl oxy 1,4-dimethylcyclohexyl phosphate. These monomers can be used alone or in combination of two or more.
 スルホン酸基及びカルボン酸基の少なくとも一方を有するアニオン性高分子の好ましい具体例としては、研磨された被研磨対象の表面粗さの低減の観点から、ポリアクリル酸、(メタ)アクリル酸/イソプレンスルホン酸共重合体、(メタ)アクリル酸/2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸共重合体、(メタ)アクリル酸/イソプレンスルホン酸/2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸共重合体、(メタ)アクリル酸/マレイン酸共重合体、スチレンスルホン酸のホルマリン縮合物、及びスチレン/イソプレンスルホン酸共重合体が挙げられる。これらのアニオン性高分子の中でも、研磨された被研磨対象の表面粗さの低減の観点から、ポリアクリル酸、及び(メタ)アクリル酸/2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸共重合体から選ばれる一種以上のアニオン性高分子が好ましく、ポリアクリル酸がさらに好ましい。 Preferred specific examples of the anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group include polyacrylic acid and (meth) acrylic acid / isoprene from the viewpoint of reducing the surface roughness of the polished object. Sulfonic acid copolymer, (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer, (meth) acrylic acid / isoprenesulfonic acid / 2- (meth) acrylamide-2-methylpropane Examples include sulfonic acid copolymers, (meth) acrylic acid / maleic acid copolymers, formalin condensates of styrene sulfonic acid, and styrene / isoprene sulfonic acid copolymers. Among these anionic polymers, polyacrylic acid and (meth) acrylic acid / 2- (meth) acrylamido-2-methylpropanesulfonic acid copolymer are used from the viewpoint of reducing the surface roughness of the polished object. One or more anionic polymers selected from polymers are preferred, and polyacrylic acid is more preferred.
 [アニオン性高分子の重量平均分子量]
 アニオン性高分子の重量平均分子量は、研磨された被研磨対象の表面粗さの低減の観点から、500以上が好ましく、1000以上がより好ましく、1500以上が更により好ましい。また、アニオン性高分子の重量平均分子量は、研磨された被研磨対象の表面粗さの低減の観点から、12万以下が好ましく、10万以下がより好ましく、3万以下が更に好ましく、1万以下が更により好ましく、8000以下が更により好ましい。
[Weight average molecular weight of anionic polymer]
The weight average molecular weight of the anionic polymer is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more, from the viewpoint of reducing the surface roughness of the polished object. The weight average molecular weight of the anionic polymer is preferably 120,000 or less, more preferably 100,000 or less, further preferably 30,000 or less, from the viewpoint of reducing the surface roughness of the polished object. The following is still more preferable, and 8000 or less is even more preferable.
 なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づいて算出できる。
カラム:G4000PWXL+G2500PWXL(東ソー株式会社)
溶離液:(0.2Mリン酸バッファー)/(CH3CN)=9/1(容量比)
流量:1.0mL/min
カラム温度:40℃
検出器:RI検出器
標準物質:ポリアクリル酸換算
In addition, the said weight average molecular weight is computable based on the peak in the chromatogram obtained by applying the gel permeation chromatography (GPC) method on the following conditions.
Column: G4000PWXL + G2500PWXL (Tosoh Corporation)
Eluent: (0.2 M phosphate buffer) / (CH 3 CN) = 9/1 (volume ratio)
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detector: RI detector Standard material: Polyacrylic acid equivalent
 スルホン酸基及びカルボン酸基の少なくとも一方を有するアニオン性高分子のアニオン性基の一部は、中和された塩の形態を取ってもよい。アニオン性基の一部が塩の形態を取る場合の対イオンとしては、特に限定はなく、金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられる。 Some of the anionic groups of the anionic polymer having at least one of a sulfonic acid group and a carboxylic acid group may take the form of a neutralized salt. The counter ion when a part of the anionic group takes a salt form is not particularly limited, and examples thereof include metal ions, ammonium ions, alkylammonium ions, and the like.
 研磨液組成物におけるアニオン性高分子(成分B)の含有量は、研磨された被研磨対象の表面粗さの低減の観点から、1質量ppm以上が好ましく、より好ましくは10質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは200質量ppm以上である。また、研磨液組成物におけるアニオン性高分子(成分B)の含有量は、研磨された被研磨対象の表面粗さの低減の観点から、5000質量ppm以下が好ましく、より好ましく4000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは2000質量ppm以下である。 The content of the anionic polymer (component B) in the polishing liquid composition is preferably 1 mass ppm or more, more preferably 10 mass ppm or more, from the viewpoint of reducing the surface roughness of the polished object to be polished. Preferably it is 100 mass ppm or more, and still more preferably 200 mass ppm or more. The content of the anionic polymer (component B) in the polishing composition is preferably 5000 ppm by mass or less, more preferably 4000 ppm by mass or less, from the viewpoint of reducing the surface roughness of the polished object. More preferably, it is 3000 mass ppm or less, More preferably, it is 2000 mass ppm or less.
 研磨液組成物中における、アルミナ粒子(成分A)とアニオン性高分子(成分B)との含有量比[アルミナ粒子の含有量(質量ppm)/アニオン性高分子の含有量(質量ppm)]は、研磨された被研磨対象の表面粗さの低減の観点から、好ましくは10以上、より好ましく20以上、更に好ましくは50以上、更により好ましくは100以上であり、研磨速度との両立の観点から、好ましくは200000以下、より好ましくは20000以下、更に好ましくは2000以下である。 Content ratio of alumina particles (component A) and anionic polymer (component B) in the polishing composition [alumina particle content (mass ppm) / anionic polymer content (mass ppm)] Is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, and even more preferably 100 or more, from the viewpoint of reducing the surface roughness of the polished object to be polished. Therefore, it is preferably 200000 or less, more preferably 20000 or less, and still more preferably 2000 or less.
 本発明の研磨液組成物に含まれるレオロジー改質剤としては、せん断粘度を低減できるものであれば、前記アニオン性高分子に限定されず、ポリビニルピロリドン、ポリビニルアルコール、n―ポリビニルホルムアミド等のビニル系ポリマー、ポリエチレングリコール、ポリエチレンオキサイド、ポリプロピレングリコール、ポリプロピレンオキサイド等のポリアルキレンオキサイド及びそれらの共重合体、及び上記ポリマーを構造の一部に含む他のポリマ―との共重合体から選ばれる少なくとも1種の高分子であってもよい。これらの高分子は、前記アニオン性高分子と併用されてもよい。 The rheology modifier contained in the polishing composition of the present invention is not limited to the anionic polymer as long as it can reduce the shear viscosity, and vinyl such as polyvinylpyrrolidone, polyvinyl alcohol, n-polyvinylformamide, and the like. At least one selected from polyethylene polymers, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, and other polyalkylene oxides and copolymers thereof, and copolymers with other polymers containing the above polymer as part of the structure It may be a seed polymer. These polymers may be used in combination with the anionic polymer.
 [水系媒体(成分C)]
 本発明の研磨液組成物に含まれる水系媒体(成分C)としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。本発明の成分Cが、水と溶媒との混合媒体である場合、混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましく、100質量%が更により好ましい。
[Aqueous medium (component C)]
Examples of the aqueous medium (component C) contained in the polishing liquid composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent. A miscible solvent (for example, an alcohol such as ethanol) is preferred. As the aqueous medium, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable. When component C of the present invention is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium is not particularly limited, but is preferably 95% by mass or more from the viewpoint of economy, and 98 More preferably, it is more preferably at least 100% by weight, still more preferably 100% by weight, and even more preferably 100% by weight.
 本発明の研磨液組成物における水系媒体(成分C)の含有量は、特に限定されるわけではなく、成分A、成分B、後述する任意成分の残余であってよい。 The content of the aqueous medium (component C) in the polishing composition of the present invention is not particularly limited, and may be the remainder of component A, component B, and optional components described later.
 本発明の研磨液組成物の25℃におけるpHは、研磨速度向上の観点から、pHが4-9以外の強酸性領域又は強アルカリ性領域が好ましく、強酸性領域では好ましくは3以下、より好ましくは2以下であり、強アルカリ性領域では好ましくは10以上、より好ましくは11以上であり、好ましくは14未満である。 The pH at 25 ° C. of the polishing composition of the present invention is preferably a strongly acidic region or strongly alkaline region other than 4-9 from the viewpoint of improving the polishing rate, preferably 3 or less, more preferably in the strongly acidic region. 2 or less, preferably 10 or more, more preferably 11 or more, preferably less than 14 in the strongly alkaline region.
 25℃の本発明の研磨液組成物の、25℃50%RHの環境にて測定したせん断速度100(1/s)におけるせん断粘度(Pa・s)は、研磨速度の向上及び表面粗さの低減の観点から、好ましくは0.01(Pa・s)以下、より好ましくは0.008(Pa・s)以下、更に好ましくは0.007(Pa・s)以下であり、研磨耐久性の観点から、好ましくは0.001(Pa・s)以上、より好ましくは0.0015(Pa・s)以上、更に好ましくは0.002(Pa・s)以上である。 The shear viscosity (Pa · s) of the polishing composition of the present invention at 25 ° C. at a shear rate of 100 (1 / s) measured in an environment of 25 ° C. and 50% RH is an improvement in polishing rate and surface roughness. From the viewpoint of reduction, it is preferably 0.01 (Pa · s) or less, more preferably 0.008 (Pa · s) or less, and still more preferably 0.007 (Pa · s) or less. Therefore, it is preferably 0.001 (Pa · s) or more, more preferably 0.0015 (Pa · s) or more, and still more preferably 0.002 (Pa · s) or more.
 本発明の研磨液組成物に含まれるレオロジー改質剤は、せん断粘度を低減する機能を有するため、せん断粘度低減剤と言うこともできる。下記式により算出されるせん断粘度比は、研磨された被研磨対象の表面粗さの低減及び研磨速度向上の観点から、好ましくは0.6以下、より好ましくは0.4以下、更に好ましくは0.3以下であり、研磨速度向上の観点から、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上である。尚、本願において、せん断粘度は、研磨液組成物(25℃)を25℃50%RHの環境にて、パラレルプレート型レオメーターを用い、プレート間ギャップを100μmとして測定した値であり、後述する実施例に記載の方法により求めることができる。
せん断粘度比=(研磨液組成物のせん断速度100(1/s)におけるせん断粘度)/(レオロジー改質剤を含まないこと以外は前記研磨液組成物と同じ組成の研磨液組成物のせん断速度100(1/s)におけるせん断粘度)
Since the rheology modifier contained in the polishing composition of the present invention has a function of reducing shear viscosity, it can also be called a shear viscosity reducing agent. The shear viscosity ratio calculated by the following formula is preferably 0.6 or less, more preferably 0.4 or less, and still more preferably 0, from the viewpoint of reducing the surface roughness of the polished object and improving the polishing rate. From the viewpoint of improving the polishing rate, it is preferably 0.01 or more, more preferably 0.05 or more, and still more preferably 0.1 or more. In the present application, the shear viscosity is a value obtained by measuring the polishing composition (25 ° C.) in an environment of 25 ° C. and 50% RH using a parallel plate rheometer and setting the gap between the plates to 100 μm. It can be determined by the method described in the examples.
Shear viscosity ratio = (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s))
 本発明の研磨液組成物は、その使用用途に応じて、従来から公知の任意成分を更に含んでいてもよい。本発明の研磨液組成物が、例えば、スマートフォン等の携帯端末装置用のサファイア板用研磨液組成物である場合、本発明の研磨液組成物は、後述する糖骨格を有する化合物(成分D)、酸化剤(成分E)、アルカリ性高分子(成分B)以外の分散剤、pH調整剤(酸、アルカリ)(成分F)、無機リン酸塩化合物(成分G)等を更に含んでいてもよい。 The polishing liquid composition of the present invention may further contain conventionally known optional components depending on the intended use. When the polishing liquid composition of the present invention is, for example, a polishing liquid composition for a sapphire plate for a mobile terminal device such as a smartphone, the polishing liquid composition of the present invention is a compound having a sugar skeleton described below (component D). , An oxidizing agent (component E), a dispersant other than the alkaline polymer (component B), a pH adjuster (acid, alkali) (component F), an inorganic phosphate compound (component G), and the like. .
 [糖骨格を有する化合物(成分D)]
 本発明の研磨液組成物は、研磨速度向上、研磨された被研磨対象の表面粗さの低減、及び研磨耐久性の向上の観点から、糖化合物もしくはその誘導体(以下、これらを総称して「糖骨格を有する化合物」と呼ぶ)を含んでいると好ましい。アニオン性高分子のカルボキシル基と糖骨格を有する化合物(成分D)の水酸基が相互作用することにより、バルキーな糖骨格を有する化合物(成分D)がアニオン性高分子を介してアルミナ粒子に吸着することにより、アルミナ粒子の分散性が更に向上し、その結果、研磨速度の更なる向上、且つ、研磨された被研磨対象の表面粗さの更なる低減が可能となっているものと推察される。また、バルキーな糖骨格を有する化合物(成分D)がサファイア板研磨時の砥粒凝集を抑制する結果、研磨耐久性が向上し、研磨速度の低下をより長期に渡り抑制できる。また、アニオン性高分子(成分B)と糖骨格を有する化合物(成分D)とを併用した本発明の研磨液組成物の一例では、更に顕著なせん断粘度の低下が観察される。
[Compound having a sugar skeleton (component D)]
The polishing composition of the present invention is a saccharide compound or a derivative thereof (hereinafter collectively referred to as “a polishing compound” from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. And a compound having a sugar skeleton ”. When the carboxyl group of the anionic polymer and the hydroxyl group of the compound having a sugar skeleton (component D) interact, the compound having a bulky sugar skeleton (component D) is adsorbed to the alumina particles via the anionic polymer. As a result, the dispersibility of the alumina particles is further improved. As a result, it is assumed that the polishing rate can be further improved and the surface roughness of the polished object can be further reduced. . Further, as a result of the compound (component D) having a bulky sugar skeleton suppressing the agglomeration of abrasive grains during polishing of the sapphire plate, the polishing durability is improved and the decrease in the polishing rate can be suppressed over a long period of time. Further, in an example of the polishing composition of the present invention in which an anionic polymer (component B) and a compound having a sugar skeleton (component D) are used in combination, a further remarkable decrease in shear viscosity is observed.
 糖骨格を有する化合物(成分D)は、単糖類、二糖類、オリゴ糖、多糖類、糖アルコールのいずれであってもよい。単糖類としては、グルコース、フルクトース、キシロース、アラビノース、エリトロースガラクトース、キシルロース等が挙げられ、二糖類としては、スクロース、マルトース、ラクトース等が挙げられ、糖アルコールとしては、キシリトール、エリスリトール、マルチトール、ソルビトール等が挙げられる。これらの糖骨格を有する化合物(成分D)は一種単独で用いてもよいが二種以上を混合して用いてもよい。上記糖骨格を有する化合物(成分D)の中でも、研磨速度向上の観点及び研磨された被研磨対象の表面粗さの低減の観点から、糖アルコール又は単糖類、二糖類が好ましく、ソルビトール、スクロース、ガラクトース、及びマルチトールからなる群から選ばれる少なくとも1種の化合物が好ましく、ソルビトールがより好ましい。 The compound having a sugar skeleton (component D) may be any of monosaccharides, disaccharides, oligosaccharides, polysaccharides, and sugar alcohols. Examples of monosaccharides include glucose, fructose, xylose, arabinose, erythrose galactose, xylulose and the like, and disaccharides include sucrose, maltose, lactose and the like, and sugar alcohols include xylitol, erythritol, maltitol, Examples include sorbitol. These compounds having a sugar skeleton (component D) may be used alone or in combination of two or more. Among the compounds having the sugar skeleton (component D), from the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object to be polished, a sugar alcohol, a monosaccharide, or a disaccharide is preferable, and sorbitol, sucrose, At least one compound selected from the group consisting of galactose and maltitol is preferred, and sorbitol is more preferred.
 研磨液組成物における糖骨格を有する化合物(成分D)の含有量は、研磨速度向上、研磨された被研磨対象の表面粗さの低減、及び研磨耐久性の向上の観点から、10質量ppm以上が好ましく、より好ましくは50質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは500質量ppm以上である。また、研磨液組成物における糖骨格を有する化合物(成分D)の含有量は、研磨された被研磨対象の表面粗さの低減の観点から、10000質量ppm以下が好ましく、より好ましくは5000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは1000質量ppm以下である。 The content of the compound having a sugar skeleton (component D) in the polishing composition is 10 mass ppm or more from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. More preferably, it is 50 mass ppm or more, More preferably, it is 100 mass ppm or more, More preferably, it is 500 mass ppm or more. Further, the content of the compound having a sugar skeleton (component D) in the polishing composition is preferably 10,000 ppm by mass or less, more preferably 5000 ppm by mass, from the viewpoint of reducing the surface roughness of the polished object. Hereinafter, it is more preferably 3000 ppm by mass or less, and still more preferably 1000 ppm by mass or less.
 研磨液組成物中における、アニオン性高分子(成分B)と糖骨格を有する化合物(成分D)の含有量比[糖骨格を有する化合物の含有量(質量ppm)/アニオン性高分子の含有量(質量ppm)]は、研磨速度向上、研磨された被研磨対象の表面粗さの低減、及び研磨耐久性の向上の観点から、好ましくは0.01以上、より好ましく0.1以上、更に好ましくは0.5以上、更により好ましくは1以上である。また、含有量比[糖骨格を有する化合物の含有量(質量ppm)/アニオン性高分子の含有量(質量ppm)]は、研磨速度向上、研磨された被研磨対象の表面粗さの低減、及び研磨耐久性の向上の観点から、好ましくは5000以下、より好ましく1000以下、更に好ましくは100以下、更により好ましくは50以下である。 Content ratio of anionic polymer (component B) and a compound having a sugar skeleton (component D) [content of compound having a sugar skeleton (mass ppm) / content of anionic polymer in the polishing composition] (Mass ppm)] is preferably 0.01 or more, more preferably 0.1 or more, and still more preferably from the viewpoint of improving the polishing rate, reducing the surface roughness of the polished object to be polished, and improving the polishing durability. Is 0.5 or more, still more preferably 1 or more. In addition, the content ratio [content of the compound having a sugar skeleton (mass ppm) / content of anionic polymer (mass ppm)] improves the polishing rate, reduces the surface roughness of the polished object to be polished, From the viewpoint of improving polishing durability, it is preferably 5000 or less, more preferably 1000 or less, still more preferably 100 or less, and even more preferably 50 or less.
 [酸化剤(成分E)]
 本発明の研磨液組成物には、酸化剤(成分E)が更に含まれていてもよい。酸化剤(成分E)としては、研磨速度向上、及び研磨された被研磨対象の表面粗さの低減の観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硝酸類、硫酸類等が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidizing agent (component E)]
The polishing composition of the present invention may further contain an oxidizing agent (component E). As the oxidizing agent (component E), peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt from the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object to be polished. The salt, oxygen acid or its salt, metal salt, nitric acid, sulfuric acid etc. are mentioned. These oxidizing agents may be used alone or in admixture of two or more.
 前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等が挙げられる。過マンガン酸又はその塩としては、過マンガン酸カリウム等が挙げられる。クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等が挙げられる。ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等が挙げられる。酸素酸又はその塩としては、次亜塩素、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられる。金属塩類としては、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。 Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide and the like. Examples of permanganic acid or a salt thereof include potassium permanganate. Examples of chromic acid or a salt thereof include a chromic acid metal salt and a dichromic acid metal salt. Examples of peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid and the like. It is done. Examples of the oxygen acid or a salt thereof include hypochlorous acid, hypobromous acid, hypoiodous acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite and the like. Examples of the metal salts include iron (III) chloride, iron (III) nitrate, iron (III) sulfate, iron (III) citrate, and iron (III) ammonium sulfate.
 酸化剤(成分E)としては、研磨速度向上、及び研磨された被研磨対象の表面粗さの低減の観点から、好ましくは、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等であり、より好ましくは、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素である。 The oxidizing agent (component E) is preferably hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished. Among them, iron sulfate (III) and ammonium iron sulfate (III) are preferable, and hydrogen peroxide is more preferable from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive.
 研磨液組成物中における前記酸化剤(成分E)の含有量は、研磨速度向上、及び研磨された被研磨対象の表面粗さの低減の観点から、好ましくは1000質量ppm以上、より好ましくは1500質量ppm以上、更に好ましくは2000質量ppm以上であり、研磨された被研磨対象の表面粗さの低減の観点から、好ましくは10000質量ppm以下、より好ましくは8500質量ppm以下、更に好ましくは8000質量ppm以下である。 The content of the oxidizing agent (component E) in the polishing composition is preferably 1000 ppm by mass or more, more preferably 1500 from the viewpoints of improving the polishing rate and reducing the surface roughness of the polished object. From the viewpoint of reducing the surface roughness of the polished object, it is preferably 10000 mass ppm or less, more preferably 8500 mass ppm or less, and even more preferably 8000 mass. ppm or less.
 [pH調整剤(成分F)]
 本発明の研磨液組成物には、研磨速度向上の観点から、pH調整剤(成分F)として酸又はアルカリが含まれていてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。酸は、硫酸、塩酸、硝酸又はリン酸等の無機酸、酢酸、乳酸、コハク酸、クエン酸、ニコチン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、マレイン酸、グルコン酸等の有機酸等が挙げられる。これらの酸は、1種単独で用いてもよいし2種以上を用いてもよいが、研磨速度の向上、研磨された被研磨対象の表面粗さの低減の観点から、無機酸と有機酸の両方を含んでいると好ましい。
[PH adjuster (component F)]
The polishing composition of the present invention may contain an acid or alkali as a pH adjuster (component F) from the viewpoint of improving the polishing rate. Examples of the alkali include sodium hydroxide and potassium hydroxide. Acids include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, organic acids such as acetic acid, lactic acid, succinic acid, citric acid, nicotinic acid, oxalic acid, malonic acid, malic acid, tartaric acid, maleic acid, gluconic acid, etc. Is mentioned. These acids may be used alone or in combination of two or more. From the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object, inorganic acids and organic acids are used. It is preferable that both are included.
 pH調整剤(成分F)が、研磨速度の向上、研磨された被研磨対象の表面粗さの低減の観点から、無機酸と有機酸の両方を含む場合の無機酸と有機酸の組み合わせは、好ましくは硫酸/クエン酸、硫酸/酒石酸、硫酸/マレイン酸、リン酸/クエン酸、リン酸/酒石酸であり、より好ましくは硫酸/クエン酸、硫酸/酒石酸、リン酸/クエン酸であり、更に好ましくは硫酸/クエン酸である。 From the viewpoint of improving the polishing rate and reducing the surface roughness of the polished object to be polished, the pH adjuster (component F) contains both an inorganic acid and an organic acid. Preferably sulfuric acid / citric acid, sulfuric acid / tartaric acid, sulfuric acid / maleic acid, phosphoric acid / citric acid, phosphoric acid / tartaric acid, more preferably sulfuric acid / citric acid, sulfuric acid / tartaric acid, phosphoric acid / citric acid, Sulfuric acid / citric acid is preferred.
 酸が、無機酸と有機酸の両方を含む場合の無機酸と有機酸の質量比(無機酸の質量/有機酸の質量)は、研磨耐久性向上の観点から、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.5以上であり、研磨速度向上の観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下である。 When the acid contains both an inorganic acid and an organic acid, the mass ratio of the inorganic acid to the organic acid (the mass of the inorganic acid / the mass of the organic acid) is preferably 0.1 or more from the viewpoint of improving the polishing durability. More preferably, it is 0.2 or more, more preferably 0.5 or more. From the viewpoint of improving the polishing rate, it is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less.
 有機酸は、水系媒体に対する溶解性が高い塩の形で研磨液組成物の製造に用いられるのが好ましく、アルカリ金属塩等が好ましく用いられる。有機酸のアルカリ金属塩としては、例えば、酢酸、乳酸、コハク酸、クエン酸、ニコチン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、マレイン酸、グルコン酸のアルカリ金属塩が挙げられるが、これらの中でも、研磨速度向上の観点から、1分子内に2個以上のカルボキシル基有する有機酸塩が好ましく、クエン酸トリナトリウム又はマレイン酸ジナトリウムがより好ましく、クエン酸トリナトリウムが更に好ましい。 The organic acid is preferably used in the production of the polishing composition in the form of a salt having high solubility in an aqueous medium, and an alkali metal salt or the like is preferably used. Examples of alkali metal salts of organic acids include alkali metal salts of acetic acid, lactic acid, succinic acid, citric acid, nicotinic acid, oxalic acid, malonic acid, malic acid, tartaric acid, maleic acid, and gluconic acid. Among these, from the viewpoint of improving the polishing rate, an organic acid salt having two or more carboxyl groups in one molecule is preferable, trisodium citrate or disodium maleate is more preferable, and trisodium citrate is still more preferable.
 [無機リン酸塩化合物(成分G)]
 本発明の研磨液組成物は、研磨速度向上と表面粗さの低減の観点から、無機リン酸塩化合物(成分G)を含んでいると好ましい。無機リン酸塩化合物としては、研磨速度向上と表面粗さの低減の観点から、オルトリン酸塩、亜リン酸塩、及び次亜リン酸塩からなる群から選ばれる1種以上の無機リン酸塩化合物が好ましく、オルトリン酸塩、亜リン酸塩がより好ましい。また、無機リン酸塩化合物は、アルカリ金属塩、アルカリ土類金属塩、又はアンモニウム塩であると好ましい。アルカリ金属又はアルカリ土類金属としては、マグネシウム、カルシウム、ナトリウム、及びカリウムが好ましい。これらのなかでも、アルミナ粒子の凝集抑制の観点から、無機リン酸塩化合物は、ナトリウム塩、カリウム塩及びアンモニウム塩から選ばれる少なくとも1種がより好ましい。
[Inorganic phosphate compound (component G)]
The polishing composition of the present invention preferably contains an inorganic phosphate compound (component G) from the viewpoint of improving the polishing rate and reducing the surface roughness. The inorganic phosphate compound is one or more inorganic phosphates selected from the group consisting of orthophosphate, phosphite, and hypophosphite from the viewpoint of improving the polishing rate and reducing the surface roughness. Compounds are preferred, and orthophosphates and phosphites are more preferred. The inorganic phosphate compound is preferably an alkali metal salt, an alkaline earth metal salt, or an ammonium salt. As the alkali metal or alkaline earth metal, magnesium, calcium, sodium, and potassium are preferable. Among these, from the viewpoint of suppressing aggregation of alumina particles, the inorganic phosphate compound is more preferably at least one selected from sodium salts, potassium salts, and ammonium salts.
 無機リン酸塩化合物(成分G)の具体例としては、研磨速度向上と表面粗さの低減の観点から、リン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)、リン酸一水素二ナトリウム(Na2HPO4)、リン酸二水素一ナトリウム(NaH2PO4)、リン酸二水素一カリウム(KH2PO4)、リン酸二水素一アンモニウム(NH42PO4)、リン酸一水素二カリウム(K2HPO4)、リン酸一水素二アンモニウム((NH42HPO4)等のオルトリン酸塩;亜リン酸ナトリウム(Na2HPO3)、亜リン酸カリウム(K2HPO3)等の亜リン酸塩;次亜リン酸ナトリウム(NaH2PO2)、次亜リン酸カリウム(KH2PO2)、次亜リン酸アンモニウム(NH42PO2)等の次亜リン酸塩が挙げられるが、これらの中でも、研磨速度向上と表面粗さの低減の観点から、リン酸一水素二ナトリウム、リン酸一水素二カリウム、亜リン酸ナトリウム、次亜リン酸ナトリウム、リン酸一水素二アンモニウム((NH42HPO4)及び次亜リン酸アンモニウムからなる群から選ばれる1種以上の無機リン酸塩化合物が好ましい。また、これらの無機塩は水和物構造をしていてもよい。 Specific examples of the inorganic phosphate compound (component G) include sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), and phosphoric acid from the viewpoint of improving the polishing rate and reducing the surface roughness. Disodium monohydrogen (Na 2 HPO 4 ), monosodium dihydrogen phosphate (NaH 2 PO 4 ), monopotassium dihydrogen phosphate (KH 2 PO 4 ), monoammonium dihydrogen phosphate (NH 4 H 2 PO 4) ), Orthophosphate such as dipotassium monohydrogen phosphate (K 2 HPO 4 ), diammonium monohydrogen phosphate ((NH 4 ) 2 HPO 4 ); sodium phosphite (Na 2 HPO 3 ), phosphorous acid Phosphites such as potassium (K 2 HPO 3 ); sodium hypophosphite (NaH 2 PO 2 ), potassium hypophosphite (KH 2 PO 2 ), ammonium hypophosphite (NH 4 H 2 PO 2 ) And other hypophosphites Among these, from the viewpoint of improving the polishing rate and reducing the surface roughness, disodium monohydrogen phosphate, dipotassium monohydrogen phosphate, sodium phosphite, sodium hypophosphite, diammonium monohydrogen phosphate One or more inorganic phosphate compounds selected from the group consisting of ((NH 4 ) 2 HPO 4 ) and ammonium hypophosphite are preferred. These inorganic salts may have a hydrate structure.
 本発明の研磨液組成物に含まれる無機リン酸塩化合物(成分G)の含有量は、研磨速度向上と表面粗さの低減の観点から、好ましくは1質量ppm以上、より好ましくは10質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは200質量ppm以上、更により好ましくは500質量ppm以上、更により好ましくは800ppm以上である。また、本発明の研磨液組成物に含まれる無機リン酸塩化合物(成分G)の含有量は、研磨された被研磨対象の表面粗さの低減の観点から、好ましくは5000質量ppm以下、より好ましく4000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは2000質量ppm以下である。 The content of the inorganic phosphate compound (component G) contained in the polishing composition of the present invention is preferably 1 ppm by mass or more, more preferably 10 ppm by mass, from the viewpoint of improving the polishing rate and reducing the surface roughness. As mentioned above, More preferably, it is 100 mass ppm or more, More preferably, it is 200 mass ppm or more, More preferably, it is 500 mass ppm or more, More preferably, it is 800 ppm or more. In addition, the content of the inorganic phosphate compound (component G) contained in the polishing liquid composition of the present invention is preferably 5000 ppm by mass or less, from the viewpoint of reducing the surface roughness of the polished object. Preferably it is 4000 mass ppm or less, More preferably, it is 3000 mass ppm or less, More preferably, it is 2000 mass ppm or less.
 本発明の研磨液組成物中における、アルミナ粒子(成分A)と無機リン酸塩化合物(成分G)との含有量比[アルミナ粒子の含有量(質量ppm)/無機リン酸塩化合物の含有量(質量ppm)]は、表面粗さの低減の観点から、好ましくは2以上、より好ましく20以上、更に好ましくは100以上、好ましくは10000以下、より好ましく4000以下、更に好ましくは1000以下である。 Content ratio of alumina particles (component A) and inorganic phosphate compound (component G) in the polishing composition of the present invention [alumina particle content (ppm by mass) / inorganic phosphate compound content (Mass ppm)] is preferably 2 or more, more preferably 20 or more, still more preferably 100 or more, preferably 10,000 or less, more preferably 4000 or less, and still more preferably 1000 or less, from the viewpoint of reducing the surface roughness.
 [研磨液組成物の調製方法]
 本発明の研磨液組成物は、各成分を公知の方法で混合することにより、調製することができる。研磨液組成物は、経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。前記研磨液組成物は、そのまま使用してもよいし、濃縮液であれば希釈して使用すればよい。
[Method for preparing polishing liquid composition]
The polishing liquid composition of this invention can be prepared by mixing each component by a well-known method. The polishing composition is usually produced as a concentrated solution from the viewpoint of economy, and it is often diluted at the time of use. The polishing composition may be used as it is, or diluted if it is a concentrated solution.
 次に、本発明の研磨液組成物を用いた、本発明のサファイア板の製造方法の一例、及び本発明の被研磨サファイア板の研磨方法の一例について説明する。 Next, an example of the method for producing a sapphire plate of the present invention using the polishing liquid composition of the present invention and an example of the method for polishing a polished sapphire plate of the present invention will be described.
 [被研磨対象]
 本発明のサファイア板の製造方法の一例(「本発明の製造方法の一例」と略称する場合もある。)、及び本発明の被研磨サファイア板の研磨方法の一例(「本発明の研磨方法の一例」と略称する場合もある。)において研磨される被研磨対象の形状について特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状のみならず、レンズ等の曲面部を有する形状であってもよい。また、前記被研磨対象は、スマートフォン等の携帯端末装置のカバーガラスとして用いられるサファイア板、LED用サファイア基板等さまざまであるが、本発明の研磨液組成物は、中でも、前記携帯端末装置のカバーガラスとして用いられるサファイア板の製造方法の研磨工程で使用される研磨液組成物として適している。
[To be polished]
An example of a method for producing a sapphire plate of the present invention (sometimes abbreviated as “an example of a production method of the present invention”) and an example of a method for polishing a polished sapphire plate of the present invention (“of the polishing method of the present invention”). There is no particular limitation on the shape of the object to be polished in (In some cases, abbreviated as “example”). For example, not only the shape having a flat portion such as a disk shape, a plate shape, a slab shape, and a prism shape, The shape which has curved-surface parts, such as, may be sufficient. Moreover, although the said to-be-polished object is various, such as a sapphire board used as a cover glass of portable terminal devices, such as a smart phone, and a sapphire substrate for LED, the polishing liquid composition of this invention is a cover of the said portable terminal device especially. It is suitable as a polishing composition used in the polishing step of a method for producing a sapphire plate used as glass.
 故に、本発明のサファイア板の製造方法の一例は、携帯端末装置用サファイア板の製造方法であって、本発明の研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む。また、本発明の被研磨サファイア板の研磨方法の一例は、携帯端末装置用サファイア板の研磨方法であって、本発明の研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む。 Therefore, an example of the manufacturing method of the sapphire plate of this invention is a manufacturing method of the sapphire plate for portable terminal devices, Comprising: The process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition of this invention is included. Moreover, an example of the grinding | polishing method of the to-be-polished sapphire board of this invention is a grinding | polishing method of the sapphire board for portable terminal devices, Comprising: The process of grind | polishing to-be-polished sapphire board using the polishing liquid composition of this invention is included.
 尚、本発明の研磨液組成物に含まれるアルミナ粒子の平均粒径が小さく、例えば0.2μm以上1μm以下である場合は、本発明の研磨液組成物は、高い平滑性が要求される半導体素子等の電子部品用サファイア基板、さらには、LED用サファイア基板の製造方法の研磨工程で使用される研磨液組成物として適している。 When the average particle size of the alumina particles contained in the polishing liquid composition of the present invention is small, for example, 0.2 μm or more and 1 μm or less, the polishing liquid composition of the present invention is a semiconductor that requires high smoothness. It is suitable as a polishing composition used in a polishing step of a method for producing a sapphire substrate for electronic parts such as an element and further a sapphire substrate for LED.
 前記被研磨サファイア板を研磨する工程は、サファイア単結晶インゴットを薄円板状にスライスして得たウェーハを平面化する第一研磨工程(粗研磨工程)と粗研磨されたウェーハをエッチングした後、ウェーハ表面を鏡面化する第二研磨工程(仕上げ研磨)に分かれるが、本発明の研磨液組成物は、第一研磨工程及び第二研磨工程のいずれにも使用できる。しかし、本発明の研磨液組成物は、サファイア板の表面平滑性及び生産性の向上の観点から、第二研磨工程に使用するのが好ましい。第一研磨工程では、ダイヤモンドを砥粒として含む研磨液組成物を用いるのが一般的である。 The step of polishing the sapphire plate to be polished includes a first polishing step (rough polishing step) for planarizing a wafer obtained by slicing a sapphire single crystal ingot into a thin disc shape, and after etching the rough polished wafer The polishing composition of the present invention can be used in both the first polishing step and the second polishing step, although it is divided into a second polishing step (finish polishing) for mirror-finishing the wafer surface. However, the polishing composition of the present invention is preferably used in the second polishing step from the viewpoint of improving the surface smoothness and productivity of the sapphire plate. In the first polishing step, it is common to use a polishing composition containing diamond as abrasive grains.
 本発明の製造方法の一例及び本発明の研磨方法の一例で用いる研磨装置としては、特に制限はなく、被研磨サファイア板を保持する冶具(キャリア:アラミド製等)と研磨布(研磨パッド)とを備える研磨装置を用いることができ、両面研磨装置及び片面研磨装置のいずれであってもよい。 The polishing apparatus used in one example of the production method of the present invention and one example of the polishing method of the present invention is not particularly limited, and a jig (carrier: made of aramid, etc.) for holding the sapphire plate to be polished and a polishing cloth (polishing pad) Can be used, and may be either a double-side polishing apparatus or a single-side polishing apparatus.
 前記研磨パッドは、特に制限されず、従来公知のものが使用できる。研磨パッドの材質としては、有機高分子等が挙げられ、前記有機高分子としては、ポリウレタン等が挙げられる。前記研磨パッドの形状は、不織布状が好ましい。例えば、不織布研磨パッドとしてSUBA800(ニッタハース製)が好適に用いられる。 The polishing pad is not particularly limited, and a conventionally known polishing pad can be used. Examples of the material for the polishing pad include organic polymers, and examples of the organic polymer include polyurethane. The shape of the polishing pad is preferably a nonwoven fabric. For example, SUBA800 (manufactured by Nitta Haas) is suitably used as the nonwoven fabric polishing pad.
 該研磨装置を用いる、本発明の製造方法の一例及び本発明の研磨方法の一例では、被研磨サファイア板をキャリアで保持し研磨パッドを貼り付けた研磨定盤で被研磨サファイア板を挟み込み、本発明の研磨液組成物を研磨パッドと被研磨サファイア板との間に供給し、被研磨サファイア板と前記研磨パッドとを接触させながら、研磨パッド及び/又は被研磨サファイア板を動かすことにより、被研磨サファイア板を研磨する工程を含む。 In one example of the production method of the present invention and one example of the polishing method of the present invention using the polishing apparatus, the sapphire plate to be polished is sandwiched by a polishing surface plate that holds the sapphire plate to be polished by a carrier and has a polishing pad attached thereto. The polishing liquid composition of the invention is supplied between a polishing pad and a sapphire plate to be polished, and the polishing pad and / or the sapphire plate to be polished is moved while contacting the sapphire plate to be polished and the polishing pad. A step of polishing the polished sapphire plate.
 本発明の製造方法の一例及び研磨方法の一例における研磨荷重は、研磨速度向上の観点から、50g/cm2以上が好ましく、100g/cm2以上がより好ましく、150g/cm2以上が更に好ましく、200g/cm2以上が更により好ましい。また、前記研磨荷重は、装置、パッドなどの耐久性を考慮すると、400g/cm2以下が好ましく、350g/cm2以下がより好ましい。前記研磨荷重の調整は、定盤や被研磨サファイア板等への空気圧や重りの負荷によって行うことができる。研磨荷重は、研磨時に被研磨サファイア板の研磨面に加えられる定盤の圧力を意味する。 Polishing load in an example of an example and a polishing method of the production method of the present invention, from the viewpoint of increasing the polishing rate, 50 g / cm 2 or more is preferable, 100 g / cm 2 or more, and more preferably from 150 g / cm 2 or more, Even more preferably 200 g / cm 2 or more. Further, the polishing load, device, considering the durability, such as pad, preferably 400 g / cm 2 or less, 350 g / cm 2 or less being more preferred. The polishing load can be adjusted by applying air pressure or weight to the surface plate or the polished sapphire plate. The polishing load means the pressure of the surface plate applied to the polishing surface of the polished sapphire plate during polishing.
 本発明の研磨液組成物の供給方法は、予め研磨液組成物の構成成分が十分に混合された状態で研磨パッドと被研磨サファイア板の間にポンプ等で供給する方法、研磨の直前の供給ライン内等で前記構成成分を混合して供給する方法等を用いることができる。研磨速度向上の観点及び装置負荷低減の観点から、予め研磨液組成物の構成成分が十分に混合された状態で、研磨液組成物を、研磨パッドと被研磨サファイア板の間にポンプ等で供給する方法が好ましい。 The method of supplying the polishing liquid composition of the present invention is a method of supplying a polishing pad between a polishing pad and a sapphire plate to be polished by a pump or the like in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance. For example, a method of mixing and supplying the above components can be used. A method of supplying a polishing liquid composition between a polishing pad and a sapphire plate to be polished with a pump or the like in a state where constituents of the polishing liquid composition are sufficiently mixed in advance from the viewpoint of improving the polishing rate and reducing the load on the apparatus Is preferred.
 研磨液組成物の供給速度は、コスト低減の観点から、被研磨サファイア板1cm2あたり20mL/分以下が好ましく、10mL/分以下がより好ましく、5mL/分以下が更に好ましい。また、前記供給速度は、研磨速度向上の観点から、被研磨サファイア板1cm2あたり0.01mL/分以上が好ましく、0.1mL/分以上がより好ましく、0.5mL/分以上が更に好ましい。 The supply rate of the polishing composition is preferably 20 mL / min or less, more preferably 10 mL / min or less, and even more preferably 5 mL / min or less per 1 cm 2 of the polished sapphire plate from the viewpoint of cost reduction. The supply rate is preferably 0.01 mL / min or more, more preferably 0.1 mL / min or more, and further preferably 0.5 mL / min or more from 1 cm 2 of the polished sapphire plate from the viewpoint of improving the polishing rate.
 本発明の製造方法の一例及び本発明の研磨方法の一例では、本発明の研磨液組成物を用いているので、被研磨サファイア板の研磨速度が速く、研磨後の基板表面の表面粗さを低減できる。 In one example of the production method of the present invention and one example of the polishing method of the present invention, since the polishing liquid composition of the present invention is used, the polishing rate of the polished sapphire plate is high, and the surface roughness of the substrate surface after polishing is increased. Can be reduced.
 本発明の製造方法の他の一例では、被研磨サファイア板に対して、本発明の研磨液組成物を供給して前記被研磨サファイア板を研磨する工程と、前記工程で使用した前記研磨液組成物を用いて、前記被研磨サファイア板とは別の被研磨サファイア板を研磨する工程と、を含む。このような、循環研磨を行う本発明の製造方法において、本発明の研磨液組成物、特に、糖骨格を有する化合物(成分D)を含む研磨液組成物を用いれば、表面粗さが低減されたサファイア板を生産性よく製造できる。 In another example of the production method of the present invention, a polishing liquid composition of the present invention is supplied to a polished sapphire plate to polish the polished sapphire plate, and the polishing liquid composition used in the step And polishing a polished sapphire plate different from the polished sapphire plate using an object. In such a production method of the present invention in which cyclic polishing is performed, the surface roughness is reduced by using the polishing liquid composition of the present invention, particularly a polishing liquid composition containing a compound having a sugar skeleton (component D). Can be manufactured with good productivity.
 本発明は、更に以下〈1〉~〈33〉を開示する。 The present invention further discloses the following <1> to <33>.
〈1〉アルミナ粒子、アニオン性高分子、及び水系媒体を含有する、サファイア板用研磨液組成物。
〈2〉前記アニオン性高分子が、好ましくは(メタ)アクリル酸由来の構成単位を含み、より好ましくはアクリル酸由来の構成単位を含む、〈1〉に記載のサファイア板用研磨液組成物。
〈3〉アニオン性高分子の全構成単位中に占める(メタ)アクリル酸由来の構成単位の割合が、好ましくは50モル%以上、より好ましくは60モル%以上、更に好ましくは70モル%以上、更により好ましくは90モル%以上、更により好ましくは95%以上、更により好ましくは98モル%以上、更により好ましくは100モル%である、〈2〉に記載のサファイア板用研磨液組成物。
〈4〉前記アニオン性高分子が、好ましくはポリアクリル酸、及び(メタ)アクリル酸/2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸共重合体から選ばれる一種以上のアニオン性高分子、より好ましくはポリアクリル酸である、〈1〉から〈3〉のいずれかに記載のサファイア板用研磨液組成物。
〈5〉前記アニオン性高分子の重量平均分子量は、500以上が好ましく、1000以上がより好ましく、1500以上が更により好ましく、12万以下が好ましく、10万以下がより好ましく、3万以下が更に好ましく、1万以下が更により好ましく、8000以下が更により好ましい、〈1〉から〈4〉のいずれかに記載のサファイア板用研磨液組成物。
〈6〉前記サファイア板用研磨液組成物におけるアニオン性高分子の含有量が、好ましくは1質量ppm以上、より好ましくは10質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは200質量ppm以上であり、好ましくは5000質量ppm以下、より好ましく4000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは2000質量ppm以下である、〈1〉から〈5〉のいずれかに記載のサファイア板用研磨液組成物。
〈7〉前記サファイア板用研磨液組成物における、前記アルミナ粒子と前記アニオン性高分子との含有量比[アルミナ粒子の含有量(質量ppm)/アニオン性高分子の含有量(質量ppm)]は、好ましくは10以上、より好ましく20以上、更に好ましくは50以上、更により好ましくは100以上であり、好ましくは200000以下、より好ましくは20000以下、更に好ましくは2000以下である、〈1〉から〈6〉のいずれかに記載のサファイア板用研磨液組成物。
〈8〉好ましくは更に糖化合物及び/又はその誘導体を含有する、〈1〉から〈7〉のいずれかに記載のサファイア板用研磨液組成物。
〈9〉前記糖化合物及び/又はその誘導体は、好ましくは糖アルコール、単糖類、又は二糖類であり、更に好ましくはソルビトール、スクロース、ガラクトース、及びマルチトールからなる群から選ばれる少なくとも1種の化合物である、〈1〉から〈8〉のいずれかに記載のサファイア板用研磨液組成物。
〈10〉前記サファイア板用研磨液組成物における前記糖化合物及び/又はその誘導体の含有量は、好ましくは10質量ppm以上、より好ましくは50質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは500質量ppm以上であり、好ましくは10000質量ppm以下、より好ましくは5000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは1000質量ppm以下である、〈1〉から〈9〉のいずれかに記載のサファイア板用研磨液組成物。
〈11〉前記サファイア板用研磨液組成物における、アニオン性高分子と前記糖化合物及び/又はその誘導体の含有量比[前記糖化合物及び/又はその誘導体の含有量(質量ppm)/アニオン性高分子の含有量(質量ppm)]は、好ましくは0.01以上、より好ましく0.1以上、更に好ましくは0.5以上、更により好ましくは1以上であり、好ましくは5000以下、より好ましく1000以下、更に好ましくは100以下、更により好ましくは50以下である、〈1〉から〈10〉のいずれかに記載のサファイア板用研磨液組成物。
〈12〉好ましくは更に酸化剤を含有する、〈1〉から〈11〉のいずれかに記載のサファイア板用研磨液組成物。
〈13〉好ましくは更に酸を含有する、〈1〉から〈12〉のいずれかに記載のサファイア板用研磨液組成物。
〈14〉前記酸が、好ましくは有機酸及び無機酸を含む、〈13〉に記載のサファイア板用研磨液組成物。
〈15〉前記有機酸が、好ましくはクエン酸、前記無機酸が硫酸である、〈14〉に記載のサファイア板用研磨液組成物。
〈16〉好ましくは更に無機リン酸塩化合物を含有する、〈1〉から〈15〉のいずれかに記載のサファイア板用研磨液組成物。
〈17〉 前記無機リン酸塩化合物は、好ましくはオルトリン酸塩、亜リン酸塩、及び次亜リン酸塩からなる群から選ばれる1種以上の無機リン酸塩化合物、より好ましくはオルトリン酸塩及び亜リン酸塩からなる群から選ばれる1種以上の無機リン酸塩化合物である、〈16〉に記載のサファイア板用研磨液組成物。
〈18〉 前記の無機リン酸塩化合物は、好ましくはアルカリ金属塩、アルカリ土類金属塩、及びアンモニウム塩のうちの何れか1種又は2種以上、より好ましくはナトリウム塩、カリウム塩及びアンモニウム塩から選ばれる少なくとも1種である、〈16〉又は〈17〉に記載のサファイア板用研磨液組成物。
〈19〉 前記の無機リン酸塩化合物は、好ましくはリン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)、リン酸一水素二ナトリウム(Na2HPO4)、リン酸二水素一ナトリウム(NaH2PO4)、リン酸二水素一カリウム(KH2PO4)、リン酸二水素一アンモニウム(NH42PO4)、リン酸一水素二カリウム(K2HPO4)、リン酸一水素二アンモニウム((NH42HPO4)、亜リン酸ナトリウム(Na2HPO3)、亜リン酸カリウム(K2HPO3)、次亜リン酸ナトリウム(NaH2PO2)、次亜リン酸カリウム(KH2PO2)及び次亜リン酸アンモニウム(NH42PO2)からなる群から選ばれる1種以上の無機リン酸塩化合物、より好ましくはリン酸一水素二ナトリウム、リン酸一水素二カリウム、亜リン酸ナトリウム、次亜リン酸ナトリウム、リン酸一水素二アンモニウム及び次亜リン酸アンモニウムからなる群から選ばれる1種以上の無機リン酸塩化合物である、〈16〉から〈18〉のいずれかに記載のサファイア板用研磨液組成物。
〈20〉 前記サファイア板用研磨液組成物における無機リン酸塩化合物(成分G)の含有量は、好ましくは1質量ppm以上、より好ましくは10質量ppm以上、更に好ましくは100質量ppm以上、更により好ましくは200質量ppm以上、更により好ましくは500質量ppm以上、更により好ましくは800ppm以上であり、好ましくは5000質量ppm以下、より好ましくは4000質量ppm以下、更に好ましくは3000質量ppm以下、更により好ましくは2000質量ppm以下である、〈16〉から〈19〉のいずれかに記載のサファイア板用研磨液組成物。
〈21〉 前記サファイア板用研磨液組成物における、アルミナ粒子(成分A)と無機リン酸塩化合物(成分G)との含有量比[アルミナ粒子の含有量(質量ppm)/無機リン酸塩化合物の含有量(質量ppm)]は、好ましくは2以上、より好ましく20以上、更に好ましくは100以上、好ましくは10000以下、より好ましく4000以下、更に好ましくは1000以下である、〈16〉から〈20〉のいずれかに記載のサファイア板用研磨液組成物。
〈22〉前記サファイア板用研磨液組成物の25℃におけるpHが、好ましくは10以上、より好ましくは11以上であり、好ましくは14未満である、〈1〉から〈21〉のいずれかに記載のサファイア板用研磨液組成物。
〈23〉前記アルミナ粒子の動的光散乱法で測定される平均粒径が、好ましくは0.2μm以上、より好ましくは0.25μm以上、更に好ましくは0.3μm以上、更により好ましくは0.35μm以上であり、好ましくは1.0μm以下、より好ましくは0.95μm以下、更に好ましくは0.90μm以下、更により好ましくは0.80μm以下である、〈1〉から〈22〉のいずれかに記載のサファイア板用研磨液組成物。
〈24〉前記サファイア板用研磨液組成物におけるアルミナ粒子の含有量が、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、更により好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30量%以下、更により好ましくは20質量%以下である、〈1〉から〈23〉のいずれかに記載のサファイア板用研磨液組成物。
〈25〉 アルミナ粒子、レオロジー改質剤、及び水系媒体を含有する、サファイア板用研磨液組成物。
〈26〉 前記レオロジー改質剤がアニオン性高分子であり、好ましくは(メタ)アクリル酸由来の構成単位を含み、より好ましくはアクリル酸由来の構成単位を含む、〈25〉に記載のサファイア板用研磨液組成物。
〈27〉 好ましくは更に糖骨格を有する化合物を含有する、〈25〉又は〈26〉に記載のサファイア板用研磨液組成物。
〈28〉 好ましくは更に無機リン酸塩化合物を含有する、〈25〉から〈27〉のいずれかに記載のサファイア板用研磨液組成物。
〈29〉 25℃50%RHの環境にて測定した、25℃の前記サファイア板用研磨液組成物の、せん断速度100(1/s)におけるせん断粘度(Pa・s)は、好ましくは0.01(Pa・s)以下、より好ましくは0.008(Pa・s)以下、更に好ましくは0.007(Pa・s)以下であり、好ましくは0.001(Pa・s)以上、より好ましくは0.0015(Pa・s)以上、更に好ましくは0.002(Pa・s)以上である、〈1〉から〈28〉のいずれかに記載のサファイア板用研磨液組成物。
〈30〉 下記式により算出されるせん断粘度比が、好ましくは0.6以下、より好ましくは0.4以下、更に好ましくは0.3以下であり、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上である、〈1〉から〈29〉のいずれかに記載のサファイア板用研磨液組成物。
せん断粘度比=(研磨液組成物のせん断速度100(1/s)におけるせん断粘度)/(レオロジー改質剤を含まないこと以外は前記研磨液組成物と同じ組成の研磨液組成物のせん断速度100(1/s)におけるせん断粘度)
〈31〉被研磨サファイア板に対して、〈1〉から〈30〉のいずれかに記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、サファイア板の製造方法。
〈32〉被研磨サファイア板に対して、〈1〉から〈30〉のいずれかに記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程と、
 前記工程で使用した前記サファイア板用研磨液組成物を用いて、前記被研磨サファイア板とは別の被研磨サファイア板を研磨する工程と、を含むサファイア板の製造方法。
〈33〉被研磨サファイア板に対して、〈1〉から〈30〉のいずれかに記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、被研磨サファイア板の研磨方法。
<1> A polishing liquid composition for a sapphire plate containing alumina particles, an anionic polymer, and an aqueous medium.
<2> The polishing composition for a sapphire plate according to <1>, wherein the anionic polymer preferably includes a structural unit derived from (meth) acrylic acid, and more preferably includes a structural unit derived from acrylic acid.
<3> The proportion of structural units derived from (meth) acrylic acid in the total structural units of the anionic polymer is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, The polishing composition for sapphire plates according to <2>, which is more preferably 90 mol% or more, still more preferably 95% or more, still more preferably 98 mol% or more, and even more preferably 100 mol%.
<4> The anionic polymer is preferably one or more anionic polymers selected from polyacrylic acid and (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer, The polishing liquid composition for sapphire plates according to any one of <1> to <3>, which is more preferably polyacrylic acid.
<5> The weight average molecular weight of the anionic polymer is preferably 500 or more, more preferably 1000 or more, still more preferably 1500 or more, preferably 120,000 or less, more preferably 100,000 or less, and further preferably 30,000 or less. Preferably, 10,000 or less is still more preferable, and 8000 or less is still more preferable, The polishing liquid composition for sapphire plates in any one of <1> to <4>.
<6> The content of the anionic polymer in the polishing liquid composition for sapphire plate is preferably 1 ppm by mass or more, more preferably 10 ppm by mass or more, still more preferably 100 ppm by mass or more, and even more preferably 200 masses. <1> to <5>, which is at least ppm, preferably 5000 ppm by mass or less, more preferably 4000 ppm by mass or less, further preferably 3000 ppm by mass or less, and even more preferably 2000 ppm by mass or less. Polishing liquid composition for sapphire plates.
<7> Content ratio of the alumina particles and the anionic polymer in the polishing liquid composition for sapphire plate [alumina particle content (mass ppm) / anionic polymer content (mass ppm)] Is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, still more preferably 100 or more, preferably 200000 or less, more preferably 20000 or less, and even more preferably 2000 or less, from <1>. <6> The polishing composition for sapphire plates according to any one of the above.
<8> The polishing composition for sapphire plates according to any one of <1> to <7>, preferably further containing a sugar compound and / or a derivative thereof.
<9> The sugar compound and / or derivative thereof is preferably a sugar alcohol, a monosaccharide, or a disaccharide, and more preferably at least one compound selected from the group consisting of sorbitol, sucrose, galactose, and maltitol. The polishing composition for sapphire plates according to any one of <1> to <8>.
<10> The content of the sugar compound and / or derivative thereof in the sapphire plate polishing liquid composition is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, still more preferably 100 ppm by mass or more, and even more. Preferably, it is 500 ppm by mass or more, preferably 10,000 ppm by mass or less, more preferably 5000 ppm by mass or less, still more preferably 3000 ppm by mass or less, and even more preferably 1000 ppm by mass or less. <1> to <9> The polishing liquid composition for sapphire boards in any one of.
<11> Content ratio of the anionic polymer and the sugar compound and / or derivative thereof in the polishing liquid composition for sapphire plate [content (mass ppm) of the sugar compound and / or derivative thereof / anionic high The molecular content (mass ppm)] is preferably 0.01 or more, more preferably 0.1 or more, still more preferably 0.5 or more, still more preferably 1 or more, preferably 5000 or less, more preferably 1000. Hereinafter, the polishing composition for a sapphire plate according to any one of <1> to <10>, which is more preferably 100 or less, and still more preferably 50 or less.
<12> The polishing composition for sapphire plates according to any one of <1> to <11>, preferably further containing an oxidizing agent.
<13> The polishing composition for sapphire plates according to any one of <1> to <12>, preferably further containing an acid.
<14> The polishing composition for sapphire plates according to <13>, wherein the acid preferably contains an organic acid and an inorganic acid.
<15> The polishing composition for sapphire plates according to <14>, wherein the organic acid is preferably citric acid and the inorganic acid is sulfuric acid.
<16> The polishing composition for sapphire plates according to any one of <1> to <15>, preferably further containing an inorganic phosphate compound.
<17> The inorganic phosphate compound is preferably at least one inorganic phosphate compound selected from the group consisting of orthophosphate, phosphite, and hypophosphite, more preferably orthophosphate. And the polishing composition for sapphire plates according to <16>, which is one or more inorganic phosphate compounds selected from the group consisting of phosphites and phosphites.
<18> The inorganic phosphate compound is preferably one or more of alkali metal salts, alkaline earth metal salts, and ammonium salts, more preferably sodium salts, potassium salts, and ammonium salts. The polishing liquid composition for sapphire plates according to <16> or <17>, which is at least one selected from:
<19> The inorganic phosphate compound is preferably sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), disodium monohydrogen phosphate (Na 2 HPO 4 ), diphosphate phosphate. Monosodium hydrogen (NaH 2 PO 4 ), monopotassium dihydrogen phosphate (KH 2 PO 4 ), monoammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), dipotassium monohydrogen phosphate (K 2 HPO 4 ) Diammonium monohydrogen phosphate ((NH 4 ) 2 HPO 4 ), sodium phosphite (Na 2 HPO 3 ), potassium phosphite (K 2 HPO 3 ), sodium hypophosphite (NaH 2 PO 2 ) One or more inorganic phosphate compounds selected from the group consisting of potassium hypophosphite (KH 2 PO 2 ) and ammonium hypophosphite (NH 4 H 2 PO 2 ), more preferably dihydrogen phosphate Sodium, phosphorus <16> which is at least one inorganic phosphate compound selected from the group consisting of dipotassium hydrogen monohydrogen, sodium phosphite, sodium hypophosphite, diammonium monohydrogen phosphate, and ammonium hypophosphite. To <18> The polishing liquid composition for sapphire plates according to any one of items.
<20> The content of the inorganic phosphate compound (component G) in the polishing composition for a sapphire plate is preferably 1 mass ppm or more, more preferably 10 mass ppm or more, still more preferably 100 mass ppm or more. More preferably 200 mass ppm or more, still more preferably 500 mass ppm or more, still more preferably 800 ppm or more, preferably 5000 mass ppm or less, more preferably 4000 mass ppm or less, still more preferably 3000 mass ppm or less, More preferably, it is 2000 mass ppm or less, The polishing liquid composition for sapphire plates in any one of <16> to <19>.
<21> Content ratio of alumina particles (component A) and inorganic phosphate compound (component G) in the polishing composition for sapphire plate [alumina particle content (ppm by mass) / inorganic phosphate compound Content (mass ppm)] is preferably 2 or more, more preferably 20 or more, still more preferably 100 or more, preferably 10,000 or less, more preferably 4000 or less, and even more preferably 1000 or less, from <16> to <20 > The polishing liquid composition for sapphire plates in any one of.
<22> The pH at 25 ° C. of the polishing composition for sapphire plates is preferably 10 or more, more preferably 11 or more, and preferably less than 14, according to any one of <1> to <21>. Polishing liquid composition for sapphire plates.
<23> The average particle diameter of the alumina particles measured by the dynamic light scattering method is preferably 0.2 μm or more, more preferably 0.25 μm or more, still more preferably 0.3 μm or more, and even more preferably 0.00. Any one of <1> to <22>, which is 35 μm or more, preferably 1.0 μm or less, more preferably 0.95 μm or less, still more preferably 0.90 μm or less, and even more preferably 0.80 μm or less. The polishing liquid composition for sapphire plates as described.
<24> The content of alumina particles in the polishing composition for sapphire plate is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and even more preferably 10% by mass or more. Preferably, it is 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and even more preferably 20% by mass or less, according to any one of <1> to <23>. Polishing liquid composition for sapphire plates.
<25> A polishing composition for a sapphire plate, containing alumina particles, a rheology modifier, and an aqueous medium.
<26> The sapphire plate according to <25>, wherein the rheology modifier is an anionic polymer, preferably includes a structural unit derived from (meth) acrylic acid, and more preferably includes a structural unit derived from acrylic acid. Polishing liquid composition.
<27> The polishing composition for sapphire plates according to <25> or <26>, preferably further containing a compound having a sugar skeleton.
<28> The polishing composition for sapphire plates according to any one of <25> to <27>, preferably further containing an inorganic phosphate compound.
<29> The shear viscosity (Pa · s) at a shear rate of 100 (1 / s) of the polishing composition for a sapphire plate at 25 ° C. measured in an environment of 25 ° C. and 50% RH is preferably 0.00. 01 (Pa · s) or less, more preferably 0.008 (Pa · s) or less, still more preferably 0.007 (Pa · s) or less, preferably 0.001 (Pa · s) or more, more preferably Is a polishing liquid composition for sapphire plates according to any one of <1> to <28>, which is 0.0015 (Pa · s) or more, more preferably 0.002 (Pa · s) or more.
<30> The shear viscosity ratio calculated by the following formula is preferably 0.6 or less, more preferably 0.4 or less, still more preferably 0.3 or less, preferably 0.01 or more, more preferably 0. The polishing composition for sapphire plates according to any one of <1> to <29>, which is 0.05 or more, more preferably 0.1 or more.
Shear viscosity ratio = (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s))
<31> A sapphire plate comprising a step of supplying the polishing composition for a sapphire plate according to any one of <1> to <30> to polish the sapphire plate to be polished. Production method.
<32> A step of supplying the polishing composition for a sapphire plate according to any one of <1> to <30> to polish the sapphire plate to be polished,
A step of polishing a polished sapphire plate different from the polished sapphire plate using the polishing liquid composition for sapphire plate used in the step.
<33> A sapphire to be polished comprising a step of supplying the polishing composition for a sapphire plate according to any one of <1> to <30> and polishing the sapphire plate to be polished to a sapphire plate to be polished. A method for polishing a plate.
 下記の通り、実施例1~50、比較例1~7の研磨液組成物を調製した。実施例1~50、比較例1~7の研磨液組成物中にける、粒子、アニオン性高分子、糖骨格を有する化合物、無機リン酸塩化合物、酸化剤の含有量は各々表1~表4に記載の通りとした。尚、実施例1~50、比較例1~7の研磨液組成物の調製に用いたアニオン性高分子の20℃の水に対する溶解度は、いずれも2g/100ml以上であった。 The polishing compositions of Examples 1 to 50 and Comparative Examples 1 to 7 were prepared as follows. The contents of the particles, the anionic polymer, the compound having a sugar skeleton, the inorganic phosphate compound, and the oxidizing agent in the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7 are shown in Tables 1 to 4 as described. The solubility of the anionic polymer used in the preparation of the polishing composition of Examples 1 to 50 and Comparative Examples 1 to 7 in water at 20 ° C. was 2 g / 100 ml or more.
 実施例1~50、比較例1~7の研磨液組成物の調製に用いた各成分の詳細は下記の通りである。
 [アニオン性高分子]
(1)ポリアクリル酸(重量平均分子量:6000、POIZ(登録商標)530、花王社製)
(2)アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体(アクリル酸80モル%、2-アクリルアミド-2-メチルプロパンスルホン酸20モル%、重量平均分子量2000、40質量%水溶液、東亞合成株式会社製、アロン(登録商標)A-6016)
 [糖骨格を有する化合物]
(1)D(+)-グルコース(和光純薬工業社製)
(2)D(+)-ガラクトース(和光純薬工業社製)
(3)D(+)-キシロース(和光純薬工業社製)
(4)L(+)-アラビノース(和光純薬工業社製)
(5)D-エリトロース(和光純薬工業社製)
(6)D(-)-フルクトース(和光純薬工業社製)
(7)D-キシルロース(シグマ アルドリッチ ジャパン社製)
(8)D-エリトリロース(Carbosynth Limited社製)
(9)D(-)-ソルビトール(和光純薬工業社製)
(10)キシリトール(和光純薬工業社製)
(11)D(-)-マンニトール(和光純薬工業社製)
(12)マルチトール(東京化成工業社製)
(13)マルトース一水和物(和光純薬工業社製)
(14)スクロース(和光純薬工業社製)
The details of each component used for the preparation of the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7 are as follows.
[Anionic polymer]
(1) Polyacrylic acid (weight average molecular weight: 6000, POIZ (registered trademark) 530, manufactured by Kao Corporation)
(2) Acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer (80 mol% acrylic acid, 20 mol% 2-acrylamido-2-methylpropanesulfonic acid, weight average molecular weight 2000, 40 mass% aqueous solution, Toagosei Co., Ltd., Aron (registered trademark) A-6016)
[Compound having a sugar skeleton]
(1) D (+)-glucose (manufactured by Wako Pure Chemical Industries, Ltd.)
(2) D (+)-galactose (manufactured by Wako Pure Chemical Industries, Ltd.)
(3) D (+)-xylose (manufactured by Wako Pure Chemical Industries, Ltd.)
(4) L (+)-arabinose (Wako Pure Chemical Industries)
(5) D-erythrose (manufactured by Wako Pure Chemical Industries, Ltd.)
(6) D (-)-fructose (Wako Pure Chemical Industries, Ltd.)
(7) D-xylulose (manufactured by Sigma Aldrich Japan)
(8) D-erythrulose (manufactured by Carbosynth Limited)
(9) D (-)-sorbitol (Wako Pure Chemical Industries)
(10) Xylitol (Wako Pure Chemical Industries, Ltd.)
(11) D (-)-mannitol (Wako Pure Chemical Industries, Ltd.)
(12) Maltitol (manufactured by Tokyo Chemical Industry Co., Ltd.)
(13) Maltose monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
(14) Sucrose (Wako Pure Chemical Industries)
 <実施例1~5>
 イオン交換水の入ったビーカー内に、アニオン性高分子としてポリアクリル酸を添加した後、45質量%アルミナ粒子(砥粒、α化率90%、結晶子サイズ32nm)水分散液を添加しこれらを撹拌して、アニオン性高分子添加アルミナ粒子水分散液を得た。その後すぐに、48質量%水酸化ナトリウム水溶液(関東化学社製)を用いてアニオン性高分子添加アルミナ粒子水分散液のpHを13に調整して研磨液組成物を得た。実施例1~5の調製に用いたアルミナ粒子の平均粒径は各々表1に記載のとおりとした。尚、表1において、比較例1以外は、砥粒としてアルミナ粒子を用いた。
<Examples 1 to 5>
After adding polyacrylic acid as an anionic polymer into a beaker containing ion-exchanged water, 45 mass% alumina particles (abrasive grains, 90% alpha conversion rate, crystallite size 32 nm) in water dispersion are added. Was stirred to obtain an aqueous dispersion of an anionic polymer-added alumina particle. Immediately thereafter, the pH of the aqueous dispersion of the anionic polymer-added alumina particles was adjusted to 13 using a 48 mass% aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) to obtain a polishing composition. The average particle diameters of the alumina particles used in the preparation of Examples 1 to 5 were as shown in Table 1, respectively. In Table 1, except for Comparative Example 1, alumina particles were used as abrasive grains.
 <実施例6~19>
 イオン交換水の入ったビーカー内に、アニオン性高分子としてポリアクリル酸を添加した後、糖骨格を有する化合物を添加した。その後、45質量%アルミナ粒子(砥粒、α化率90%、結晶子サイズ 32nm)水分散液を添加しこれらを撹拌して、アニオン性高分子添加アルミナ粒子水分散液を得た。その後すぐに、48質量%水酸化ナトリウム水溶液(関東化学社製)を用いてアニオン性高分子添加アルミナ粒子水分散液のpHを13に調整して実施例6~19の研磨液組成物を得た。
<Examples 6 to 19>
After adding polyacrylic acid as an anionic polymer into a beaker containing ion-exchanged water, a compound having a sugar skeleton was added. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% gelatinization rate, crystallite size 32 nm) was added and stirred to obtain an aqueous dispersion of anionic polymer-added alumina particles. Immediately thereafter, the pH of the aqueous dispersion of the anionic polymer-added alumina particles was adjusted to 13 using a 48% by mass aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) to obtain the polishing liquid compositions of Examples 6-19. It was.
 <実施例20~22>
 糖骨格を有する化合物の含有量が異なること以外は実施例14と同様にして、実施例20~22の研磨液組成物を調製した。
<Examples 20 to 22>
Polishing liquid compositions of Examples 20 to 22 were prepared in the same manner as in Example 14 except that the content of the compound having a sugar skeleton was different.
 <実施例23、24>
 砥粒(アルミナ粒子)の含有量が異なること以外は実施例14と同様にして、実施例23、24の研磨液組成物を調製した。
<Examples 23 and 24>
The polishing liquid compositions of Examples 23 and 24 were prepared in the same manner as in Example 14 except that the content of abrasive grains (alumina particles) was different.
 <実施例25>
 アニオン性高分子(ポリアクリル酸)の含有量が異なること以外は実施例14と同様にして、実施例25の研磨液組成物を調製した。
<Example 25>
A polishing composition of Example 25 was prepared in the same manner as Example 14 except that the content of the anionic polymer (polyacrylic acid) was different.
 <実施例26>
 48質量%水酸化ナトリウム水溶液(関東化学社製)の添加量が異なり、研磨液組成物の25℃におけるpHが11であること以外は実施例14と同様にして、実施例26の研磨液組成物を調製した。
<Example 26>
The polishing liquid composition of Example 26 was the same as Example 14 except that the amount of 48 mass% sodium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Inc.) was different and the polishing composition had a pH of 11 at 25 ° C. A product was prepared.
 <実施例27>
 アニオン性高分子が、AA-AMPS(アロン(登録商標)A-6012、東亜合成社製)であること以外は実施例4と同様にして、実施例27の研磨液組成物を調製した。
<Example 27>
A polishing composition of Example 27 was prepared in the same manner as in Example 4 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
 <実施例28~31>
 アニオン性高分子が、AA-AMPS(アロン(登録商標)A-6012、東亜合成社製)であること以外は実施例14、19、7、17と同様にして、実施例28~31の研磨液組成物を調製した。
<Examples 28 to 31>
Polishing of Examples 28 to 31 was carried out in the same manner as in Examples 14, 19, 7, and 17, except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.). A liquid composition was prepared.
 <実施例32、33>
 無機リン酸塩化合物として、亜リン酸Naを更に含むこと以外は実施例14と同様にして、実施例32、33の研磨液組成物を調製した。
<Examples 32 and 33>
Polishing liquid compositions of Examples 32 and 33 were prepared in the same manner as Example 14 except that Na phosphite was further included as the inorganic phosphate compound.
 <実施例34>
 無機リン酸塩化合物として、亜リン酸Naを更に含むこと以外は実施例19と同様にして、実施例34の研磨液組成物を調製した。
<Example 34>
A polishing composition of Example 34 was prepared in the same manner as Example 19 except that Na phosphite was further included as an inorganic phosphate compound.
 <実施例35~39>
 無機リン酸塩化合物の種類が異なること以外は実施例33と同様にして、実施例35~39の研磨液組成物を調製した。
<Examples 35 to 39>
Polishing liquid compositions of Examples 35 to 39 were prepared in the same manner as in Example 33 except that the types of inorganic phosphate compounds were different.
 <実施例40>
 アニオン性高分子が、AA-AMPS(アロン(登録商標)A-6012、東亜合成社製)であること以外は、実施例34と同様にして、実施例40の研磨液組成物を調製した。
<Example 40>
A polishing liquid composition of Example 40 was prepared in the same manner as in Example 34 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
 <実施例41、42>
 糖骨格を有する化合物を含まないこと以外は実施例33、40と同様にして、実施例41、42の研磨液組成物を調製した。
<Examples 41 and 42>
The polishing composition of Examples 41 and 42 was prepared in the same manner as in Examples 33 and 40 except that the compound having a sugar skeleton was not included.
 <実施例43、44>
 イオン交換水の入ったビーカー内に、アニオン性高分子としてポリアクリル酸を添加した後、35質量%過酸化水素水(和光純薬工業社製の試薬を水希釈し濃度調整したもの)を添加した。その後、45質量%アルミナ粒子(砥粒、α化率90%、結晶子サイズ 32nm)水分散液を添加し、硫酸(和光純薬工業社製)を水で62.5質量%に希釈したものを用いてpHを1.9に調整して、実施例43の研磨液組成物を得た。実施例44では、硫酸(和光純薬工業社製)を水で62.5質量%に希釈したものに代えて、イオン交換水の入ったビーカー内に系のクエン酸濃度が0.4質量%になるように50質量%クエン酸水溶液を加え、さらに硫酸を水で62.5質量%に希釈したものを加えてpHを1.9に調整した。このこと以外は実施例43と同じ方法により実施例44の研磨液組成物を得た。
<Examples 43 and 44>
After adding polyacrylic acid as an anionic polymer in a beaker containing ion-exchanged water, add 35% by mass hydrogen peroxide (concentration adjusted by diluting a reagent manufactured by Wako Pure Chemical Industries, Ltd.) did. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% gelatinization rate, crystallite size 32 nm) was added, and sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) diluted to 62.5% by mass with water was used. The pH was adjusted to 1.9 to obtain a polishing composition of Example 43. In Example 44, instead of diluting sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) to 62.5% by mass with water, the citric acid concentration of the system was 0.4% by mass in a beaker containing ion-exchanged water. A 50% by mass aqueous citric acid solution was added, and a solution obtained by diluting sulfuric acid to 62.5% by mass with water was added to adjust the pH to 1.9. Except this, the polishing composition of Example 44 was obtained in the same manner as in Example 43.
 <実施例45>
 イオン交換水の入ったビーカー内に、アニオン性高分子としてポリアクリル酸を添加した後、糖骨格を有する化合物としてソルビトール(和光純薬工業社製)を添加し、さらに35質量%過酸化水素水(和光純薬工業社製の試薬を水希釈し濃度調整したもの)を添加した。その後、45質量%アルミナ粒子(砥粒、α化率90%、結晶子サイズ 32nm)水分散液を添加し、硫酸(和光純薬工業社製)を用いてpHを1.9に調整して、実施例45の研磨液組成物を得た。
<Example 45>
In a beaker containing ion-exchanged water, polyacrylic acid is added as an anionic polymer, sorbitol (manufactured by Wako Pure Chemical Industries, Ltd.) is added as a compound having a sugar skeleton, and a 35% by mass hydrogen peroxide solution is added. (Wako Pure Chemical Industries, Ltd. reagent diluted with water to adjust the concentration) was added. Thereafter, an aqueous dispersion of 45% by mass alumina particles (abrasive grains, 90% alpha conversion, crystallite size 32 nm) was added, and the pH was adjusted to 1.9 using sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.). The polishing liquid composition of Example 45 was obtained.
 <実施例46>
 無機リン酸塩化合物として、亜リン酸Naを更に含むこと以外は実施例45と同様にして、実施例46の研磨液組成物を調製した。
<Example 46>
A polishing composition of Example 46 was prepared in the same manner as Example 45 except that Na phosphite was further included as the inorganic phosphate compound.
 <実施例47>
 糖骨格を有する化合物を含まないこと以外は実施例46と同様にして、実施例47の研磨液組成物を調製した。
<Example 47>
A polishing liquid composition of Example 47 was prepared in the same manner as in Example 46 except that the compound having a sugar skeleton was not included.
 <実施例48,49>
 アニオン性高分子が、AA-AMPS(アロン(登録商標)A-6012、東亜合成社製)であること以外は実施例43、44と同様にして、実施例48、49の研磨液組成物を調製した。
<Examples 48 and 49>
The polishing liquid compositions of Examples 48 and 49 were prepared in the same manner as in Examples 43 and 44 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.). Prepared.
 <実施例50>
 アニオン性高分子が、AA-AMPS(アロン(登録商標)A-6012、東亜合成社製)であること以外は実施例47と同様にして、実施例50の研磨液組成物を調製した。
<Example 50>
A polishing liquid composition of Example 50 was prepared in the same manner as Example 47 except that the anionic polymer was AA-AMPS (Aron (registered trademark) A-6012, manufactured by Toa Gosei Co., Ltd.).
 <比較例1>
 イオン交換水の入ったビーカー内に、コロイダルシリカ水分散液(平均粒径80 nm)と、48質量%水酸化ナトリウム水溶液(関東化学社製)を添加し撹拌して、pHが10.6の比較例1の研磨液組成物を調製した。
<Comparative Example 1>
In a beaker containing ion-exchanged water, a colloidal silica aqueous dispersion (average particle size 80 nm) and a 48% by mass aqueous sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) were added and stirred, and the pH was 10.6 A polishing liquid composition of Comparative Example 1 was prepared.
 <比較例2>
 アニオン性高分子を添加しなかったこと以外は、実施例4と同様にして、比較例2の研磨液組成物を調製した。
<Comparative example 2>
A polishing liquid composition of Comparative Example 2 was prepared in the same manner as in Example 4 except that the anionic polymer was not added.
 <比較例3、4>
 アニオン性高分子を添加しなかったこと以外は、実施例14、19と同様にして、比較例3,4の研磨液組成物を調製した。
<Comparative Examples 3 and 4>
A polishing composition of Comparative Examples 3 and 4 was prepared in the same manner as in Examples 14 and 19 except that the anionic polymer was not added.
 <比較例5>
 アニオン性高分子を添加しなかったこと以外は、実施例43と同様にして、比較例5の研磨液組成物を調製した。
<Comparative Example 5>
A polishing composition of Comparative Example 5 was prepared in the same manner as in Example 43 except that the anionic polymer was not added.
 <比較例6>
 アニオン性高分子を添加しなかったこと以外は、実施例45と同様にして、比較例6の研磨液組成物を調製した。
<Comparative Example 6>
A polishing composition of Comparative Example 6 was prepared in the same manner as in Example 45 except that the anionic polymer was not added.
 <比較例7>
 糖骨格を有する化合物としてソルビトールに代えてスクロースを用いたこと以外は比較例6と同様にして、比較例7の研磨液組成物を調製した。
<Comparative Example 7>
A polishing composition of Comparative Example 7 was prepared in the same manner as Comparative Example 6 except that sucrose was used in place of sorbitol as the compound having a sugar skeleton.
 [アルミナ粒子の体積平均粒子径(D50)の測定方法]
 実施例1~50、比較例2~7の研磨組成物中のアルミナ粒子(砥粒)の平均粒径は、0.5%ポイズ530(花王社製;特殊ポリカルボン酸型高分子界面活性剤)水溶液を分散媒として、下記測定装置内に投入し、続いて透過率が75~95%になるようにサンプルを投入し、その後、5分間超音波を掛けた後、粒径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
 得られた体積分布粒径の累積体積頻度が50%となる粒径をアルミナ粒子の体積平均粒子径(D50)とし、表1~4に示した。
[Method of measuring volume average particle diameter (D50) of alumina particles]
The average particle diameter of alumina particles (abrasive grains) in the polishing compositions of Examples 1 to 50 and Comparative Examples 2 to 7 was 0.5% poise 530 (manufactured by Kao Corporation; special polycarboxylic acid type polymer surfactant) ) Using an aqueous solution as a dispersion medium, the sample was introduced into the following measuring apparatus, and then a sample was introduced so that the transmittance was 75 to 95%. After that, ultrasonic waves were applied for 5 minutes, and the particle size was measured.
Measuring equipment: Laser diffraction / scattering type particle size distribution measuring instrument LA920 manufactured by HORIBA, Ltd.
Circulation strength: 4
Ultrasonic intensity: 4
The particle diameter at which the cumulative volume frequency of the obtained volume distribution particle diameter is 50% is defined as the volume average particle diameter (D50) of alumina particles, and is shown in Tables 1 to 4.
 [アルミナ粒子のα化率及び結晶子サイズの測定方法]
 アルミナスラリー20gを105℃で5時間乾燥させ、得られた乾燥物を乳鉢で解砕して粉末X線回折用サンプルを得た。各サンプルを粉末X線回折法にて分析し、104面におけるピーク面積を比較した。粉末X線回折法による測定条件は下記のとおりとした。
測定条件;
装置:(株)リガク製、粉末X線解析装置 RINT2500VC
X線発生電圧:40kV
放射線:Cu-Kα1線(λ=0.154050nm)
電流:120mA
Scan Speed:10度/分
測定ステップ:0.02度/分
α化率(%)=αアルミナ特有ピーク面積÷WA-1000のピーク面積×100
 また、結晶子サイズは、得られた粉末X線回折スペクトルから、粉末X線回折装置付属の粉末X線回折パターン総合解析ソフトJADE(MDI社、シェラーの式による自動計算)を用いて算出した。上記ソフトによる算出処理は、上記ソフトの取扱説明書(Jade(Ver.5)ソフトウェア、取扱説明書 Manual No.MJ13133E02、理学電機株式会社)に基づいて算出した。
[Measurement method of alumina particle alpha ratio and crystallite size]
20 g of alumina slurry was dried at 105 ° C. for 5 hours, and the resulting dried product was crushed with a mortar to obtain a powder X-ray diffraction sample. Each sample was analyzed by the powder X-ray diffraction method, and the peak areas on the 104th surface were compared. The measurement conditions by the powder X-ray diffraction method were as follows.
Measurement condition;
Apparatus: Rigaku Co., Ltd., powder X-ray analyzer RINT2500VC
X-ray generation voltage: 40 kV
Radiation: Cu-Kα1 line (λ = 0.154050 nm)
Current: 120 mA
Scan Speed: 10 degrees / minute Measurement step: 0.02 degrees / minute pregelatinization rate (%) = alpha alumina specific peak area ÷ WA−1000 peak area × 100
The crystallite size was calculated from the obtained powder X-ray diffraction spectrum using the powder X-ray diffraction pattern comprehensive analysis software JADE (MDI, automatically calculated by Scherrer's equation) attached to the powder X-ray diffractometer. The calculation process by the software was calculated based on the instruction manual of the software (Jade (Ver. 5) software, instruction manual Manual No. MJ13133E02, Rigaku Corporation).
 [コロイダルシリカの平均粒径の測定]
 比較例1の研磨組成物中のコロイダルシリカ(砥粒)の平均粒径(分散粒径)は、動的光散乱(DLS)粒度分布計(マルバーン社製、ゼータサイザー(登録商標)ナノS)を用いて下記の条件で測定し、得られる体積換算平均粒径を平均粒径(分散粒径)として求めた。
溶媒:水(屈折率1.333)
砥粒:コロイダルシリカ(屈折率1.45、減衰係数0.02)
測定温度:25℃
[Measurement of average particle size of colloidal silica]
The average particle size (dispersed particle size) of colloidal silica (abrasive grains) in the polishing composition of Comparative Example 1 is a dynamic light scattering (DLS) particle size distribution meter (Zetasizer (registered trademark) Nano S, manufactured by Malvern). The volume-converted average particle size obtained was determined as the average particle size (dispersed particle size).
Solvent: water (refractive index 1.333)
Abrasive grain: colloidal silica (refractive index 1.45, attenuation coefficient 0.02)
Measurement temperature: 25 ° C
 [研磨液組成物のpH測定]
 pHメーター(東亜電波工業社製、HM-30G)を用い、25℃にて研磨液組成物のpHを測定した。
[Measurement of pH of polishing composition]
The pH of the polishing composition was measured at 25 ° C. using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., HM-30G).
 [研磨評価]
 3インチのサファイア板(c面)に対して下記の研磨条件で、実施例1~50、比較例1~7の研磨液組成物を用いて、1時間研磨を行った。そして、サファイア板の研磨前後の重量変化を求め、サファイア密度(3.98g/cm3)、サファイア板面積(45.6cm2)から研磨速度X(μm/h)を算出した。実施例1~50、比較例2~7の研磨液組成物を用いた場合の研磨速度Xは、比較例1の研磨液組成物を用いた場合の研磨速度Xを「100」とした場合の相対値で、表1及び表2に示した。また、表3、表4に記載の研磨速度は、各々、比較例2、比較例5の研磨液組成物を用いた場合の研磨速度Xを「100」とした場合の相対値である。
[Polishing evaluation]
A 3-inch sapphire plate (c surface) was polished for 1 hour under the following polishing conditions using the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7. And the weight change before and behind grinding | polishing of a sapphire board was calculated | required, and polishing rate X (micrometer / h) was computed from the sapphire density (3.98g / cm < 3 >) and the sapphire board area (45.6cm < 2 >). The polishing rate X when using the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 2 to 7 is the same as that when the polishing rate X when using the polishing liquid composition of Comparative Example 1 was “100”. The relative values are shown in Tables 1 and 2. The polishing rates listed in Tables 3 and 4 are relative values when the polishing rate X when the polishing liquid compositions of Comparative Example 2 and Comparative Example 5 are used is “100”, respectively.
 また、3インチのサファイア板(c面)に対して下記の研磨条件で、実施例1~50、比較例1~7の研磨液組成物を用いて、1時間研磨(1回目研磨)を行った後、当該研磨に使用した使用済みの研磨液組成物を用いて、別の3インチのサファイア板(c面)に対して下記の研磨条件で1時間研磨(2回目研磨)を行い、研磨速度比(2回目研磨の研磨速度/1回目研磨の研磨速度×100)を研磨耐久性として表1及び表2に示した。研磨速度比が「100」に近いほど、研磨液組成物の研磨耐久性が優れることを意味する。尚、サファイア板を、下記の研磨条件で研磨した後、超純水に浸漬し、次いで、流水(超純水)で洗い流し、乾燥させた。 Further, polishing was performed for 1 hour (first polishing) on the 3-inch sapphire plate (c surface) using the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 1 to 7 under the following polishing conditions. Then, using the used polishing composition used for the polishing, another 3 inch sapphire plate (c surface) is polished for 1 hour under the following polishing conditions (second polishing), and polished. The speed ratio (polishing speed of the second polishing / polishing speed of the first polishing × 100) is shown in Tables 1 and 2 as polishing durability. The closer the polishing rate ratio is to “100”, the better the polishing durability of the polishing composition. The sapphire plate was polished under the following polishing conditions, then immersed in ultrapure water, then rinsed with running water (ultrapure water) and dried.
 (研磨条件)
 片面研磨機(テクノライズ製TR15M-TRK1、定盤径38cm)
 不織布研磨パッド(ニッタハース製SUBA800)
 研磨荷重300g/cm2
 定盤回転数120rpm
 キャリア回転数120rpm
 研磨液流量80mL/min(循環)
(Polishing conditions)
Single-side polishing machine (Technolize TR15M-TRK1, platen diameter 38cm)
Nonwoven polishing pad (Nitta Haas SUBA800)
Polishing load 300g / cm 2
Plate rotation speed 120rpm
Carrier rotation speed 120rpm
Polishing fluid flow rate 80mL / min (circulation)
 [表面粗さの測定方法]
 AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)を用いて、以下に示す条件で、洗浄後のサファイア板の内周縁と外周縁との中央部分を表裏1箇所ずつ測定し、中心線平均粗さAFM‐Raを測定した。2点の平均値を「表面粗さ」とした。実施例1~50、比較例2~7の研磨液組成物を用いた場合の表面粗さは、比較例1の研磨液組成物を用いた場合の表面粗さを「100」とした場合の相対値で、表1及び表2に示した。また、表3、表4に記載の表面粗さは、各々、比較例2、比較例5の研磨液組成物を用いた場合の研磨速度Xを「100」とした場合の相対値である。値が小さいほど表面粗さの悪化が抑制されていることを示す。
〔AFMの測定条件〕
Mode: Tapping mode
Area: 1×1μm
Scan rate: 1.0Hz
Cantilever: NCH-10V
Line: 512×512
[Measurement method of surface roughness]
Using an AFM (Digital Instrument NanoScope IIIa Multi Mode AFM), the center part of the inner and outer edges of the sapphire plate after cleaning was measured one by one on the front and back sides under the following conditions, and the centerline average roughness AFM- Ra was measured. The average value of the two points was defined as “surface roughness”. The surface roughness when the polishing liquid compositions of Examples 1 to 50 and Comparative Examples 2 to 7 are used is the surface roughness when the polishing liquid composition of Comparative Example 1 is used as “100”. The relative values are shown in Tables 1 and 2. The surface roughnesses shown in Tables 3 and 4 are relative values when the polishing rate X when the polishing liquid compositions of Comparative Example 2 and Comparative Example 5 are used is “100”, respectively. It shows that the deterioration of surface roughness is suppressed, so that a value is small.
[AFM measurement conditions]
Mode: Tapping mode
Area: 1 × 1μm
Scan rate: 1.0 Hz
Cantilever: NCH-10V
Line: 512 × 512
 [回転式レオメーターによるせん断粘度の測定方法]
 25℃における研磨液組成物の粘度を、粘弾性測定装置(AntonPaar社製、PhysicaMCR301)を用いて、25℃50%RHの環境にて測定した。具体的には、パラレルプレート(PP75、φ75mm)を使用し、パラレルプレート間のギャップを100μmとし、片方のプレートを回転させて、せん断速度を1(1/s)から10000(1/s)まで上昇させた後、次に10000(1/s)から1(1/s)まで徐々に下降させていき、せん断速度下降時の100(1/s)におけるせん断粘度を測定結果とし、表3及び表4に示した。また、下記式により算出されるせん断粘度比も、表3及び表4に示した。
せん断粘度比=(研磨液組成物のせん断速度100(1/s)におけるせん断粘度)/(レオロジー改質剤を含まないこと以外は前記研磨液組成物と同じ組成の研磨液組成物のせん断速度100(1/s)におけるせん断粘度)
[Measurement method of shear viscosity by rotary rheometer]
The viscosity of the polishing composition at 25 ° C. was measured in an environment of 25 ° C. and 50% RH using a viscoelasticity measuring device (manufactured by Anton Paar, Physica MCR301). Specifically, parallel plates (PP75, φ75 mm) are used, the gap between the parallel plates is 100 μm, one of the plates is rotated, and the shear rate is from 1 (1 / s) to 10000 (1 / s) Then, the pressure is gradually lowered from 10000 (1 / s) to 1 (1 / s), and the shear viscosity at 100 (1 / s) when the shear rate is lowered is taken as a measurement result. It is shown in Table 4. The shear viscosity ratio calculated by the following formula is also shown in Tables 3 and 4.
Shear viscosity ratio = (Shear viscosity at a shear rate of 100 (1 / s) of the polishing composition) / (Shear rate of a polishing composition having the same composition as the polishing composition except that it does not contain a rheology modifier) Shear viscosity at 100 (1 / s))
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示されるように、アルカリ系研磨液組成物及び酸系研磨液組成物について、実施例と比較例を各々比較すると、実施例の研磨液組成物を用いた場合、比較例の研磨液組成物を用いる場合よりも、研磨開始1時間後の研磨速度は速く、表面粗さは小さく、且つ、研磨速度についてその経時劣化が抑制されている。また、表3及び表4に示されるように、実施例の研磨液組成物のせん断粘度は、比較例の研磨液組成物のせん断粘度よりも顕著に小さく、特に、アニオン性高分子と糖骨格を有する化合物とを併用した実施例の研磨液組成物のせん断粘度は、よりいっそう小さい。 As shown in Tables 1 and 2, when comparing the examples and comparative examples for the alkaline polishing composition and the acid polishing composition, respectively, when the polishing composition of the example was used, the comparative example As compared with the case of using the above polishing liquid composition, the polishing rate 1 hour after the start of polishing is high, the surface roughness is small, and the deterioration with time of the polishing rate is suppressed. Further, as shown in Tables 3 and 4, the shear viscosity of the polishing liquid compositions of the examples is significantly smaller than the shear viscosity of the polishing liquid compositions of the comparative examples, and in particular, anionic polymers and sugar skeletons. The shear viscosity of the polishing composition of the example in combination with the compound having the is even smaller.
 以上説明した通り、本発明の研磨液組成物を用いた被研磨サファイア板の研磨において、研磨速度が速く、研磨後のサファイア板の表面の表面粗さが低減され、且つ、研磨速度についてその経時劣化が抑制されている。したがって、本発明の研磨液組成物を用いれば、スマートフォン等の携帯端末装置のカバーガラスとして用いられるサファイア板の生産性が向上する。 As described above, in the polishing of the sapphire plate to be polished using the polishing liquid composition of the present invention, the polishing rate is fast, the surface roughness of the surface of the sapphire plate after polishing is reduced, and the polishing rate over time Deterioration is suppressed. Therefore, if the polishing liquid composition of this invention is used, the productivity of the sapphire plate used as a cover glass of portable terminal devices, such as a smart phone, will improve.

Claims (18)

  1.  アルミナ粒子、アニオン性高分子、及び水系媒体を含有する、サファイア板用研磨液組成物。 Polishing liquid composition for sapphire plates containing alumina particles, anionic polymer, and aqueous medium.
  2.  前記アニオン性高分子が、アクリル酸由来の構成単位を含む、請求項1に記載のサファイア板用研磨液組成物。 The polishing composition for a sapphire plate according to claim 1, wherein the anionic polymer contains a structural unit derived from acrylic acid.
  3.  更に糖骨格を有する化合物を含有する、請求項1又は2に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to claim 1 or 2, further comprising a compound having a sugar skeleton.
  4.  更に無機リン酸塩化合物を含有する、請求項1から3のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to any one of claims 1 to 3, further comprising an inorganic phosphate compound.
  5.  前記無機リン酸塩化合物が、オルトリン酸塩、亜リン酸塩、及び次亜リン酸塩からなる群から選ばれる1種以上の無機リン酸塩化合物である、請求項4に記載のサファイア板用研磨液組成物。 The sapphire plate according to claim 4, wherein the inorganic phosphate compound is one or more inorganic phosphate compounds selected from the group consisting of orthophosphate, phosphite, and hypophosphite. Polishing liquid composition.
  6.  前記の無機リン酸塩化合物が、アルカリ金属塩、アルカリ土類金属塩、及びアンモニウム塩のうちの何れか1種又は2種以上である、請求項4又は5に記載のサファイア板用研磨液組成物。 The polishing liquid composition for sapphire plates according to claim 4 or 5, wherein the inorganic phosphate compound is one or more of alkali metal salts, alkaline earth metal salts, and ammonium salts. object.
  7.  更に酸化剤を含有する、請求項1から6のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for a sapphire plate according to any one of claims 1 to 6, further comprising an oxidizing agent.
  8.  更に酸を含有する、請求項1から7のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to any one of claims 1 to 7, further comprising an acid.
  9.  前記酸が、有機酸及び無機酸を含む、請求項8に記載のサファイア板用研磨液組成物。 The polishing composition for a sapphire plate according to claim 8, wherein the acid comprises an organic acid and an inorganic acid.
  10.  前記サファイア板用研磨液組成物の25℃におけるpHが10以上14未満である、請求項1から9のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to any one of claims 1 to 9, wherein the pH of the polishing composition for sapphire plates at 25 ° C is 10 or more and less than 14.
  11.  前記アルミナ粒子の動的光散乱法で測定される平均粒径が0.2μm以上1.0μm以下である請求項1から10のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for a sapphire plate according to any one of claims 1 to 10, wherein an average particle diameter of the alumina particles measured by a dynamic light scattering method is 0.2 µm or more and 1.0 µm or less.
  12.  アルミナ粒子、レオロジー改質剤、及び水系媒体を含有する、サファイア板用研磨液組成物。 A polishing composition for a sapphire plate containing alumina particles, a rheology modifier, and an aqueous medium.
  13.  前記レオロジー改質剤が、アニオン性高分子であり、アクリル酸由来の構成単位を含む、請求項12に記載のサファイア板
    用研磨液組成物。
    The polishing composition for sapphire plates according to claim 12, wherein the rheology modifier is an anionic polymer and contains a structural unit derived from acrylic acid.
  14.  更に糖骨格を有する化合物を含有する、請求項12又は13に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to claim 12 or 13, further comprising a compound having a sugar skeleton.
  15.  更に無機リン酸塩化合物を含有する、請求項12から14のいずれかの項に記載のサファイア板用研磨液組成物。 The polishing composition for sapphire plates according to any one of claims 12 to 14, further comprising an inorganic phosphate compound.
  16.  被研磨サファイア板に対して、請求項1から15のいずれかの項に記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、サファイア板の製造方法。 The manufacturing method of a sapphire board including the process of supplying the polishing liquid composition for sapphire boards in any one of Claims 1-15 with respect to a to-be-polished sapphire board, and grind | polishing the said to-be-polished sapphire board.
  17.  被研磨サファイア板に対して、請求項1から15のいずれかの項に記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程と、
     前記工程で使用した前記サファイア板用研磨液組成物を用いて、前記被研磨サファイア板とは別の被研磨サファイア板を研磨する工程と、を含むサファイア板の製造方法。
    A step of supplying the polishing composition for a sapphire plate according to any one of claims 1 to 15 to polish the sapphire plate to be polished,
    A step of polishing a polished sapphire plate different from the polished sapphire plate using the polishing liquid composition for sapphire plate used in the step.
  18.  被研磨サファイア板に対して、請求項1から15のいずれかの項に記載のサファイア板用研磨液組成物を供給して前記被研磨サファイア板を研磨する工程を含む、被研磨サファイア板の研磨方法。 Polishing of a to-be-polished sapphire plate, comprising a step of supplying the polishing composition for a sapphire plate according to any one of claims 1 to 15 to polish the to-be-polished sapphire plate. Method.
PCT/JP2015/063315 2014-05-08 2015-05-08 Polishing solution composition for sapphire plate WO2015170743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097135 2014-05-08
JP2014097135 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170743A1 true WO2015170743A1 (en) 2015-11-12

Family

ID=54392591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063315 WO2015170743A1 (en) 2014-05-08 2015-05-08 Polishing solution composition for sapphire plate

Country Status (3)

Country Link
JP (1) JP2015227446A (en)
TW (1) TWI652336B (en)
WO (1) WO2015170743A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
JP2017179221A (en) * 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition
CN114347281A (en) * 2022-01-18 2022-04-15 锦州神工半导体股份有限公司 Monocrystalline silicon wafer cutting method
CN114761628A (en) * 2019-12-02 2022-07-15 住友电气工业株式会社 Silicon carbide substrate and method for producing silicon carbide substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018088370A1 (en) * 2016-11-09 2019-10-03 株式会社フジミインコーポレーテッド Polishing composition and silicon wafer polishing method
CN111775348B (en) * 2020-07-24 2021-11-26 宁夏圣特保温材料有限公司 Polyphenyl granule partition plate fixing system for automatic cutout production line

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method
JP2012000700A (en) * 2010-06-15 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
JP2012000734A (en) * 2010-06-18 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
WO2013191139A1 (en) * 2012-06-19 2013-12-27 株式会社 フジミインコーポレーテッド Polishing composition and substrate fabrication method using same
JP2014024156A (en) * 2012-07-26 2014-02-06 Fujimi Inc Abradant, abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate
JP2014024157A (en) * 2012-07-26 2014-02-06 Fujimi Inc Abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate
JP2014024960A (en) * 2012-07-26 2014-02-06 Fujimi Inc Polishing composition, method for polishing oxide material, and method for producing oxide material substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007062A (en) * 1999-06-18 2001-01-12 Hitachi Chem Co Ltd Cmp-polishing agent and method for polishing substrate
US20130200038A1 (en) * 2010-09-08 2013-08-08 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates for electrical, mechanical and optical devices
EP2649144A4 (en) * 2010-12-10 2014-05-14 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
JP5725832B2 (en) * 2010-12-16 2015-05-27 株式会社クラレ Chemical mechanical polishing method and slurry used therefor
JP5575837B2 (en) * 2011-06-29 2014-08-20 三洋化成工業株式会社 Polishing liquid for electronic materials
JP2014142987A (en) * 2012-12-27 2014-08-07 Sanyo Chem Ind Ltd Polishing liquid for electronic material
JP2014141667A (en) * 2012-12-27 2014-08-07 Sanyo Chem Ind Ltd Polishing liquid for electronic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method
JP2012000700A (en) * 2010-06-15 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
JP2012000734A (en) * 2010-06-18 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
WO2013191139A1 (en) * 2012-06-19 2013-12-27 株式会社 フジミインコーポレーテッド Polishing composition and substrate fabrication method using same
JP2014024156A (en) * 2012-07-26 2014-02-06 Fujimi Inc Abradant, abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate
JP2014024157A (en) * 2012-07-26 2014-02-06 Fujimi Inc Abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate
JP2014024960A (en) * 2012-07-26 2014-02-06 Fujimi Inc Polishing composition, method for polishing oxide material, and method for producing oxide material substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179221A (en) * 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition
WO2017170062A1 (en) * 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition
CN108473851A (en) * 2016-03-31 2018-08-31 福吉米株式会社 Composition for polishing
US11261346B2 (en) 2016-03-31 2022-03-01 Fujimi Incorporated Polishing composition
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
JP2017197707A (en) * 2016-04-26 2017-11-02 株式会社フジミインコーポレーテッド Polishing material, polishing composition, and polishing method
WO2017187689A1 (en) * 2016-04-26 2017-11-02 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
US10920104B2 (en) 2016-04-26 2021-02-16 Fujimi Incorporated Abrasive, polishing composition, and polishing method
CN114761628A (en) * 2019-12-02 2022-07-15 住友电气工业株式会社 Silicon carbide substrate and method for producing silicon carbide substrate
CN114347281A (en) * 2022-01-18 2022-04-15 锦州神工半导体股份有限公司 Monocrystalline silicon wafer cutting method

Also Published As

Publication number Publication date
JP2015227446A (en) 2015-12-17
TWI652336B (en) 2019-03-01
TW201602326A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
WO2015170743A1 (en) Polishing solution composition for sapphire plate
JP6017315B2 (en) Abrasive material and polishing composition
TWI538971B (en) Aqueous polishing composition and process for chemically mechanically polishing substrates for electrical, mechanical and optical devices
JP5385141B2 (en) Method for polishing silicon carbide using soluble oxidizer in water
JP6196155B2 (en) Aqueous abrasive composition and method for polishing substrate materials for electrical, mechanical and optical devices
JP6352060B2 (en) Polishing liquid composition for polishing silicon oxide film
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
TWI653325B (en) Polishing composition and method for polishing magnetic disc substrates
JP6940315B2 (en) Abrasive composition for magnetic disk substrates
JP2007137972A (en) Silica sol for polishing and polishing composition containing the sol
US9053736B2 (en) Method for manufacturing an aluminosilicate glass substrate for hard disks
JP2007191696A (en) Polishing liquid composition for glass substrate
SG185977A1 (en) Polishing composition for nickel-phosphorous memory disks
JP4202157B2 (en) Polishing composition
WO2012169515A1 (en) Abrasive and polishing composition
JPWO2011058816A1 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JPWO2019065994A1 (en) Polishing composition
US20080096475A1 (en) Polishing Composition and Polishing Method
JP2011161570A (en) Abrasive and polishing method
JP5940754B1 (en) Polishing liquid composition for sapphire plate
JP2014024960A (en) Polishing composition, method for polishing oxide material, and method for producing oxide material substrate
JP6811090B2 (en) Abrasive liquid composition for silicon oxide film
JP2004277615A (en) Polishing slurry and method
JP2001093866A (en) Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
TWI808978B (en) Silicon oxide slurry for polishing liquid composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788611

Country of ref document: EP

Kind code of ref document: A1