WO2015170674A1 - Porous film manufacturing method - Google Patents

Porous film manufacturing method Download PDF

Info

Publication number
WO2015170674A1
WO2015170674A1 PCT/JP2015/063052 JP2015063052W WO2015170674A1 WO 2015170674 A1 WO2015170674 A1 WO 2015170674A1 JP 2015063052 W JP2015063052 W JP 2015063052W WO 2015170674 A1 WO2015170674 A1 WO 2015170674A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor film
stretching
film
porous
stretched
Prior art date
Application number
PCT/JP2015/063052
Other languages
French (fr)
Japanese (ja)
Inventor
永井 雅之
宏樹 上原
健 山延
拓映 坂村
Original Assignee
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学 filed Critical 国立大学法人群馬大学
Publication of WO2015170674A1 publication Critical patent/WO2015170674A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention relates to a method for producing a porous film.
  • Polyacetal resin is sometimes used as a filter such as a fuel filter because of its excellent mechanical properties and solvent resistance.
  • the filter is made of a nonwoven fabric obtained by fiberizing a polyacetal resin by melt spinning (see, for example, Patent Document 1 below).
  • the filter described in Patent Document 1 is composed of a nonwoven fabric obtained by fiberizing a polyacetal resin by melt spinning, it is difficult to produce a filter having fine pores that may be required in the future. there were.
  • This invention is made
  • the present inventors have repeatedly studied to solve the above problems. For example, the present inventors have examined whether a polyacetal resin can be stretched to form openings. As a result, it has been clarified that no aperture is formed only by uniaxially stretching the polyacetal resin. It has also been found that there is a case where no opening can be formed even if biaxial stretching is performed. Thus, as a result of further earnest studies, the present inventors have found that the above problems can be solved only by setting the characteristics of the polyacetal resin, the temperature during stretching, and the stretching ratio within a specific range, and the present invention has been completed. It came to do.
  • a heating step of heating at least a part of a non-porous precursor film containing a polyacetal resin as a heated portion, and the heated portion of the precursor film are made porous by biaxial stretching.
  • the amount of units introduced is 5 mol or less, the melt flow rate of the polyacetal resin is 0.1 to 30 g / 10 min, the heated portion is heated at a temperature lower than the melting point of the precursor film, and the stretching In the process, it is defined by the following formula (1) with respect to the stretched portion of the precursor film.
  • Quality biaxial draw ratio to a value of more than 25 times, a method for producing a porous film.
  • Real biaxial stretching ratio d before / d after (1)
  • d before represents the thickness of the precursor film before biaxial stretching
  • d after represents the minimum thickness of the stretched portion of the precursor film after biaxial stretching
  • substantial biaxial stretching ratio means the product of the stretching ratios of two orthogonal stretching axes calculated on the assumption of the same volume change.
  • a porous film having fine pores can be easily manufactured. Moreover, according to the said manufacturing method, since a porous film is formed by extending
  • the amount of the oxyalkylene unit having 2 or more carbon atoms introduced into the polyacetal resin is 0.5 mol or more per 100 mol of the oxymethylene unit.
  • the substantial biaxial stretching ratio with respect to the stretched portion of the precursor film is 500 times or less. That is, it is preferable to perform biaxial stretching so that the substantially biaxial stretching ratio of the precursor film with respect to the heated portion is 500 times or less.
  • the precursor film is more difficult to break as compared with the case where the substantially biaxial stretch ratio with respect to the stretched portion of the precursor film exceeds 500 times.
  • the difference between the heating temperature of the heated portion of the precursor film and the melting point of the precursor film is preferably 50 ° C. or less.
  • the difference between the heating temperature of the heated portion of the precursor film and the melting point of the precursor film is preferably 1 ° C. or more.
  • the stretchability of the heated portion of the precursor film can be further improved.
  • a stretching speed of the heated portion is 1 mm / min or more.
  • a stretching speed of the heated portion is 500 mm / min or less.
  • the heated portion of the precursor film can be uniformly biaxially stretched without breaking.
  • the “melting point of the precursor film” refers to a value measured by DSC for the material constituting the precursor film, and specifically, at a heating rate of 10 ° C./min in a nitrogen atmosphere.
  • a method for producing a porous film that can easily produce a porous film having fine pores.
  • FIG. 1 It is a top view which shows 1 process of the manufacturing method of the porous film of this invention. It is a top view which shows the porous film obtained with the manufacturing method of the porous film of this invention. It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained in Example 1. FIG. It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained by the comparative example 3.
  • FIG. 1 It is a top view which shows 1 process of the manufacturing method of the porous film of this invention. It is a top view which shows the porous film obtained with the manufacturing method of the porous film of this invention. It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained in Example 1.
  • FIG. It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained by the comparative example 3.
  • FIG. 1 is a plan view showing one step of the method for producing a porous film of the present invention
  • FIG. 2 is a plan view showing the porous film obtained by the method for producing a porous film of the present invention.
  • the production method of the present invention includes a heating step of heating at least a part of a non-porous precursor film 10 containing a polyacetal resin as a heated portion 20, and a coating of the precursor film. And a stretching step of manufacturing a porous film 30 including a stretched portion that has been made porous by stretching the heating portion biaxially. And in this manufacturing method, a heating process is performed in an extending process at least. That is, at least in the stretching step, biaxial stretching of the heated portion 20 is performed while heating the heated portion 20.
  • the introduction amount of the oxyalkylene unit having 2 or more carbon atoms per 100 moles of the oxymethylene unit in the polyacetal resin is 5 moles or less, and the melt flow rate of the polyacetal resin is 0.1 to 30 g / 10.
  • the heated portion 20 is heated at a temperature lower than the melting point of the precursor film 10.
  • the substantially biaxial stretching ratio defined by the following formula (1) with respect to the stretched portion of the precursor film 10 is set to a value exceeding 25 times.
  • Real biaxial stretching ratio d before / d after (1) (In the above formula (1), d before represents the thickness of the precursor film before biaxial stretching, and d after represents the minimum thickness of the stretched portion of the precursor film 10 after biaxial stretching)
  • the porous film 30 is formed by biaxially stretching the heated portion 20 of the precursor film 10, so that the strength of the porous film 30 can be further increased. Become.
  • Heating process As described above, at least a part of the precursor film 10 is heated as the heated portion 20.
  • the precursor film 10 is non-porous and contains a polyacetal resin.
  • the introduction amount of oxyalkylene units having 2 or more carbon atoms per 100 moles of oxymethylene units (hereinafter simply referred to as “introduction amount of oxyalkylene units”) is 5 moles or less.
  • “the number of carbon atoms is 2 or more” means that the number of carbon atoms is plural.
  • Examples of the oxyalkylene unit having 2 or more carbon atoms include an oxyethylene unit, an oxypropylene unit, and an oxybutylene unit.
  • the introduction amount of the oxyalkylene unit is 5 mol or less, biaxial stretching can be performed more easily than in the case where the amount exceeds 5 mol, and the porous film 30 can be easily obtained.
  • the introduction amount of the oxyalkylene unit is preferably 3 mol or less, more preferably 2 mol or less.
  • the introduced amount of the oxyalkylene unit may be 0 mol. That is, the polyacetal resin may be a homopolyacetal resin that does not contain an oxyalkylene unit and has only an oxymethylene unit.
  • the introduction amount of the oxyalkylene unit is preferably 0.5 mol or more.
  • the strength of the porous film 30 can be further increased as compared with the case where the amount of oxyalkylene units introduced is less than 0.5 mol.
  • the melt flow rate (hereinafter referred to as “MFR”) of the polyacetal resin is 0.1 to 30 g / 10 minutes.
  • MFR melt flow rate
  • the productivity of the film is further improved as compared with the case where the MFR of the polyacetal resin is less than 0.1 g / 10 minutes.
  • the MFR of the polyacetal resin is 0.1 to 30 g / 10 min, it becomes easier to stretch compared to the case where the MFR of the polyacetal resin exceeds 30 g / 10 min.
  • the MFR of the polyacetal resin is preferably 1 to 20 g / 10 minutes, more preferably 2 to 10 g / 10 minutes, from the viewpoint of improving stretchability.
  • the thickness of the precursor film 10 is not particularly limited, but is preferably 1000 ⁇ m or less, and more preferably 500 ⁇ m or less. In this case, when the thickness of the precursor film 10 is 1000 ⁇ m or less, it becomes easier to stretch compared to the case where the thickness exceeds 1000 ⁇ m.
  • the precursor film 10 may further include a thermoplastic resin other than the polyacetal resin.
  • thermoplastic resins include polyester resins and polyether resins.
  • polyester resin include polylactic acid, polyhydroxybutyric acid, and polyglycolic acid.
  • polyether resin include polydioxolane, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the thermoplastic resin is preferably blended at a ratio of 1 to 200 parts by mass with respect to 100 parts by mass of the polyacetal resin.
  • the precursor film 10 includes an antioxidant, a heat stabilizer, a colorant, a nucleating agent, a fluorescent brightening agent, or a release agent such as a fatty acid ester-based or silicon-based compound such as pentaerythritol tetrastearate, a sliding agent, Antistatic agents such as polyethylene glycol and glycerin, higher fatty acid salts, UV absorbers such as benzotriazole or benzophenone compounds, or light stabilizers such as hindered amines, solvents necessary for porosity, plasticizers, An additive such as an inorganic filler may further be included as necessary.
  • the precursor film 10 can be obtained by, for example, melt press molding a material constituting the precursor film 10.
  • Melt press molding is obtained, for example, by sandwiching the above material with a pressure plate through a release film, pressing the obtained structure with a press while melting the material, and then gradually cooling to room temperature. Can do.
  • the melt press molding may be performed only once or a plurality of times.
  • the heating temperature of the heated portion 20 of the precursor film 10 is set to a temperature lower than the melting point of the precursor film 10.
  • the heating temperature of the heated portion 20 of the precursor film 10 is set to a temperature equal to or higher than the melting point of the precursor film 10, the heated portion 20 is in a molten state and is not sufficiently stretched, and the porous film 30 having fine pores. It is because you cannot get.
  • the heating temperature of the heated portion 20 of the precursor film 10 may be a temperature lower than the melting point of the precursor film 10.
  • the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is not particularly limited, but is preferably 50 ° C. or less. In this case, biaxial stretching can be easily performed compared to the case where the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 exceeds 50 ° C. It can be manufactured more efficiently.
  • the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is more preferably 30 ° C. or less from the viewpoint of improving the transparency of the film, and 5 ° C. or less. More preferably.
  • the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is 1 ° C. or more. More preferably.
  • the melting point of the precursor film 10 is usually 140 to 170 ° C.
  • the heating step is performed at least in the stretching step, but may be further performed before the stretching step.
  • the porous film 30 including the stretched portion made porous by biaxially stretching the heated portion 20 of the precursor film 10 is manufactured.
  • the substantially biaxial stretch ratio defined by the above formula (1) with respect to the stretched portion of the precursor film 10 is a value exceeding 25 times.
  • the substantially biaxial stretching ratio with respect to the stretched portion (porous film 30) of the precursor film 10 is defined by the above formula (1).
  • the biaxial stretching ratio is set to a value exceeding 25 times. In this case, it becomes easier to obtain the porous film 30 having fine pores as compared with the case where the substantially biaxial stretching ratio is 25 times or less.
  • the substantial biaxial stretching ratio is more preferably 40 times or more, still more preferably 50 times or more, and particularly preferably 60 times or more.
  • the substantially biaxial stretching ratio is 500 times or less. In this case, the precursor film 10 becomes more difficult to break.
  • the substantial biaxial stretching ratio is more preferably 200 times or less, and even more preferably 150 times or less.
  • the apparent draw ratio calculated based on the distance between chucks along the two draw axes A and B according to the following formula (2) is expressed as an apparent biaxial draw ratio.
  • Apparent biaxial draw ratio (L1 / L2) ⁇ (L3 / L4) (2)
  • L1 and L3 represent distances between two chucks after biaxial stretching along two stretching axes A and B, respectively
  • L2 and L4 represent two stretching axes A and B, respectively.
  • the two extending axes A and B are orthogonal to each other.
  • (L1 / L2) and (L3 / L4) in the apparent biaxial stretching ratio may be 1 or more, and may be the same or different.
  • the heated part 20 When only a part of the precursor film 10 is the heated part 20, only the stretched part of the precursor film 10 after biaxial stretching is cut out, and the cut-out stretched part is used as the porous film 30.
  • the substantial biaxial stretching ratio in the above formula (1) is larger than the apparent biaxial stretching ratio in the above formula (2). This means that the heated portion 20 is sufficiently stretched and thinned by being heated, and the portions other than the heated portion 20 are not sufficiently heated and thus are not sufficiently stretched and do not become thin.
  • the precursor film 10 may be entirely the heated part 20 or only a part thereof may be the heated part 20.
  • the entire precursor film 10 is used as the porous film 30 as it is.
  • the substantial biaxial stretch ratio in the above formula (1) is equal to the apparent biaxial stretch ratio in the above formula (2).
  • rate of the to-be-heated part 20 is not restrict
  • the stretching speed is preferably 500 mm / min or less and more preferably 20 mm / min or less from the viewpoint of uniformly biaxially stretching without breaking the heated portion 20 of the precursor film 10. preferable.
  • the stretching speed in the biaxial stretching according to the present invention is a value calculated based on the distance between chucks.
  • the porous film obtained by the production method of the present invention has fine openings and high strength, it can be suitably used as a reinforcing material for reinforcing a gas separation membrane, for example. This is due to the following reason. That is, since the porous film has fine pores, the gas that has permeated through the gas separation membrane can be permeated, and gas can be supplied to the gas separation membrane through the porous film. Moreover, since the porous film has high strength, it is possible to support a gas separation membrane having poor strength, and the gas separation membrane can be made thinner.
  • the porous film obtained by the production method of the present invention has fine pores, it can itself be suitably used as a filter for restricting the flow of fine particles.
  • the porous film obtained by the production method of the present invention is suitable as a filter used in a solvent. Examples of such a filter include a battery separator.
  • the polyacetal resin (hereinafter referred to as “POM”) used in Examples and Comparative Examples was as follows.
  • OM oxymethylene unit
  • OA oxyalkylene unit
  • MFR refers to a value measured under conditions of 190 ° C. and 2.16 kg based on the ASTM-D1238 standard.
  • Example 3 a polyimide film for mold release of 125 ⁇ m is placed on a 120 mm ⁇ 120 mm ⁇ 2 mm thick square stainless steel plate, and then a 105 mm ⁇ 105 mm window is placed on a 120 mm ⁇ 120 mm ⁇ 0.50 mm thick square stainless steel plate. About 10 g of pellets made of POM (POM1 to 3) shown in Table 1 were placed in the window. A mold release polyimide film having a thickness of 125 ⁇ m was placed thereon, and a square stainless steel plate having a thickness of 120 mm ⁇ 120 mm ⁇ thickness 2 mm was further placed thereon. Thus, the first structure was obtained.
  • the first structure thus obtained was sandwiched between upper and lower press mechanisms installed in a desktop press device, held at 160 ° C. for 5 minutes, and then melted at a pressure of 2.5 MPa (cylinder pressure 30 MPa) for 5 minutes.
  • the product was press-molded, slowly cooled to room temperature, and taken out.
  • a first film having a thickness of 500 ⁇ m was formed.
  • a polyimide film for mold release having a thickness of 125 ⁇ m is placed on a disk-shaped stainless steel plate having a diameter of 110 mm ⁇ thickness of 2 mm, and then a disk-shaped stainless steel plate having a diameter of 110 mm ⁇ thickness of 0.30 mm has a thickness of 70 mm ⁇ 70 mm.
  • a window was cut out and the second film was placed in the window.
  • a mold release polyimide film having a thickness of 125 ⁇ m was placed thereon, and a disc-shaped stainless steel plate having a diameter of 110 mm and a thickness of 2 mm was further placed thereon. A second structure was thus obtained.
  • the precursor film was biaxially stretched as follows using a biaxial stretching machine (product name “BIX704S” manufactured by Island Kogyo Co., Ltd.) to obtain a stretched film. That is, first, a precursor film is sandwiched and set at room temperature by four chucks of a biaxial stretching machine, and then a part to be heated is used as a part to be heated to blow heated air on the part to be heated. The temperature is raised to the stretching temperature shown in Table 1, and after maintaining at this temperature for 5 minutes, the substantial stretching ratio (substantially biaxial stretching ratio) becomes the value shown in Table 1 with respect to the heated portion of the precursor film. Thus, simultaneous biaxial stretching was performed at a stretching speed of 20 mm / min.
  • a biaxial stretching machine product name “BIX704S” manufactured by Island Kogyo Co., Ltd.
  • Comparative Example 1 The precursor film of Example 1 was used as the film of Comparative Example 1 (unstretched film).
  • Example 2 A thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the biaxial stretching was performed so that the substantial stretching ratio (substantially biaxial stretching ratio) and the apparent stretching ratio (apparent biaxial stretching ratio) were the values shown in Table 1. A stretched film was obtained.
  • this precursor film was uniaxially stretched as follows using a uniaxial stretching machine (product name “Tensilon Universal Testing Machine RTC-1325A” manufactured by Orientec Co., Ltd.) to obtain a stretched film. It was.
  • the thickness of the precursor film used for uniaxial stretching was 500 ⁇ m, and the precursor film was cut into a dumbbell shape having an initial sample length of 50 mm (length of stretched portion: 3 mm) and a width of 4 mm.
  • the precursor film was set on a chuck at a predetermined temperature in a thermostatic chamber, held for 5 minutes, and then uniaxially stretched at a stretching speed of 20 mm / min.
  • a stretched film comprising stretched portions having the film thicknesses shown in Table 1 was obtained.
  • the substantially uniaxial stretching ratio is defined by the following formula (3).
  • Real uniaxial stretching ratio S before / S after (3) (In the above formula (3), S before represents the cross-sectional area before uniaxial stretching in the precursor film, and S after represents the cross-sectional area of the stretched portion after uniaxial stretching)
  • Table 1 also shows the apparent stretch ratio (apparent uniaxial stretch ratio) (L1 / L2) of the entire precursor film.
  • Example 4 A precursor film was produced in the same manner as in Example 1 except that POM4 was used instead of POM1 as a constituent material. Then, biaxial stretching was attempted in the same manner as in Example 1 except that the stretching temperature was set as shown in Table 1 for the heated portion of the precursor film. However, the precursor film was broken during the stretching, and the biaxial stretching could not be performed.
  • the nitrogen gas permeability coefficient was measured using a differential pressure method based on JIS K7126. More specifically, the nitrogen gas permeability coefficient is a differential pressure type gas / vapor permeability measuring device (product name “GTR-30XAD, G6800T • F (S)”, GTR Tech Co., Ltd./Yanaco Technical) Science Co., Ltd.). The test differential pressure was 1 atm, and nitrogen gas in a dry state was used. The test temperature was 23 ⁇ 2 ° C., and the transmission area was 1.52 ⁇ 10 ⁇ 3 m 2 ( ⁇ 4.4 ⁇ 10 ⁇ 2 m)). The results are shown in Table 1. In Comparative Example 4, since the precursor film could not be stretched, “ ⁇ ” was displayed in Table 1.
  • the criteria for judging whether fine pores are formed in the stretched film or the unstretched film were as follows. That is, when an opening is observed in the observation result by AFM and the nitrogen gas permeability coefficient exceeds 1.0 ⁇ 10 ⁇ 14 (mol ⁇ m / m 2 ⁇ s ⁇ Pa), a fine opening is not obtained. It was judged that it was formed.

Abstract

Disclosed herein is a porous film manufacturing method including: a heating step in which at least a part of a non-porous precursor film that includes a polyacetal resin is heated as a heated part; and a stretching step in which a porous film comprising a stretched part that was made porous by biaxially stretching the heated part of the precursor film is manufactured. In this manufacturing method: the heating step is at least performed in the stretching step; in the heating step, at least 5 mol of oxyalkylene units having two or more carbon atoms is added with respect to 100 mol of oxymethylene units in the polyacetal resin; the melt flow rate of the polyacetal resin is 0.1-30 g/10 minutes; and the heated part is heated at a temperature less than the melting point of the precursor film, and in the stretching step, the real biaxial stretch ratio, as defined in formula (1) below, is a value greater than 25 times in the stretch part of the precursor film. Real biaxial stretch ratio=dbefore/dafter… (1) (In formula (1), dbefore represents the thickness of the precursor film before the biaxial stretching, and dafter represents the minimum thickness of the stretched part of the precursor film after the biaxial stretching)

Description

多孔フィルムの製造方法Method for producing porous film
 本発明は、多孔フィルムの製造方法に関する。 The present invention relates to a method for producing a porous film.
 ポリアセタール樹脂は、機械特性、耐溶剤性等に優れることから、燃料用フィルタ等のフィルタとして用いられることがある。この場合、フィルタは例えばポリアセタール樹脂を溶融紡糸により繊維化して得られる不織布によって構成される(例えば下記特許文献1参照)。 Polyacetal resin is sometimes used as a filter such as a fuel filter because of its excellent mechanical properties and solvent resistance. In this case, the filter is made of a nonwoven fabric obtained by fiberizing a polyacetal resin by melt spinning (see, for example, Patent Document 1 below).
特開2008-138326号公報JP 2008-138326 A
 しかし、上記特許文献1に記載のフィルタは以下に示す課題を有していた。 However, the filter described in Patent Document 1 has the following problems.
 すなわち、上記特許文献1記載のフィルタは、ポリアセタール樹脂を溶融紡糸により繊維化して得られる不織布で構成されるため、今後求められる可能性のある微細な開孔を有するフィルタを製造することが困難であった。 That is, since the filter described in Patent Document 1 is composed of a nonwoven fabric obtained by fiberizing a polyacetal resin by melt spinning, it is difficult to produce a filter having fine pores that may be required in the future. there were.
 本発明は、上記事情に鑑みてなされたものであり、微細な開孔を有する多孔フィルムを容易に製造できる多孔フィルムの製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and aims at providing the manufacturing method of the porous film which can manufacture the porous film which has a fine opening easily.
 本発明者らは、上記課題を解決するため検討を重ねた。例えば本発明者らはポリアセタール樹脂を延伸して開孔を形成できるかどうか検討した。その結果、ポリアセタール樹脂を1軸延伸するだけでは開孔が形成されないことが明らかとなった。また、2軸延伸を行っても開孔を形成できない場合があることも分かった。そこで、本発明者らはさらに鋭意研究を重ねた結果、ポリアセタール樹脂の特性、延伸時の温度及び延伸倍率を特定の範囲とすることによりはじめて上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have repeatedly studied to solve the above problems. For example, the present inventors have examined whether a polyacetal resin can be stretched to form openings. As a result, it has been clarified that no aperture is formed only by uniaxially stretching the polyacetal resin. It has also been found that there is a case where no opening can be formed even if biaxial stretching is performed. Thus, as a result of further earnest studies, the present inventors have found that the above problems can be solved only by setting the characteristics of the polyacetal resin, the temperature during stretching, and the stretching ratio within a specific range, and the present invention has been completed. It came to do.
 すなわち本発明は、ポリアセタール樹脂を含む非多孔質の前駆体フィルムの少なくとも一部を被加熱部として加熱する加熱工程と、前記前駆体フィルムの前記被加熱部を2軸延伸することにより多孔化した延伸部からなる多孔フィルムを製造する延伸工程とを含み、前記加熱工程が少なくとも前記延伸工程において行われ、前記加熱工程において、前記ポリアセタール樹脂における、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が5モル以下であり、前記ポリアセタール樹脂のメルトフローレートが0.1~30g/10分であり、前記被加熱部を前記前駆体フィルムの融点未満の温度で加熱し、前記延伸工程において、前記前駆体フィルムの前記延伸部に対して下記式(1)で定義される実質2軸延伸倍率を、25倍を超える値とする、多孔フィルムの製造方法である。
実質2軸延伸倍率=dbefore/dafter・・・(1)
(上記式(1)中、dbeforeは前記前駆体フィルムにおける2軸延伸前の厚さを表し、dafterは前記前駆体フィルムにおける2軸延伸後の延伸部の最小厚さを表す)
ここで、実質2軸延伸倍率とは、同体積変化を仮定して算出した、直交する2つの延伸軸の延伸倍率の積を意味する。
That is, in the present invention, a heating step of heating at least a part of a non-porous precursor film containing a polyacetal resin as a heated portion, and the heated portion of the precursor film are made porous by biaxial stretching. And a heating step in which the heating step is performed at least in the stretching step, and in the heating step, an oxyalkylene having 2 or more carbon atoms per 100 moles of oxymethylene units in the polyacetal resin. The amount of units introduced is 5 mol or less, the melt flow rate of the polyacetal resin is 0.1 to 30 g / 10 min, the heated portion is heated at a temperature lower than the melting point of the precursor film, and the stretching In the process, it is defined by the following formula (1) with respect to the stretched portion of the precursor film. Quality biaxial draw ratio to a value of more than 25 times, a method for producing a porous film.
Real biaxial stretching ratio = d before / d after (1)
(In the above formula (1), d before represents the thickness of the precursor film before biaxial stretching, and d after represents the minimum thickness of the stretched portion of the precursor film after biaxial stretching)
Here, the substantial biaxial stretching ratio means the product of the stretching ratios of two orthogonal stretching axes calculated on the assumption of the same volume change.
 この製造方法によれば、微細な開孔を有する多孔フィルムを容易に製造することが可能となる。また、上記製造方法によれば、多孔フィルムが、前駆体フィルムの被加熱部を2軸延伸することにより形成されるため、多孔フィルムを高強度化することも可能となる。 According to this manufacturing method, a porous film having fine pores can be easily manufactured. Moreover, according to the said manufacturing method, since a porous film is formed by extending | stretching the to-be-heated part of a precursor film biaxially, it also becomes possible to make a porous film high intensity | strength.
 また上記製造方法においては、前記加熱工程において、前記ポリアセタール樹脂における、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が0.5モル以上であることが好ましい。 In the above production method, it is preferable that in the heating step, the amount of the oxyalkylene unit having 2 or more carbon atoms introduced into the polyacetal resin is 0.5 mol or more per 100 mol of the oxymethylene unit.
 この場合、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が0.5モル未満である場合に比べて、多孔フィルムをより高強度化することが可能となる。 In this case, it is possible to increase the strength of the porous film as compared with the case where the introduction amount of the oxyalkylene unit having 2 or more carbon atoms relative to 100 mol of the oxymethylene unit is less than 0.5 mol.
 上記製造方法においては、前記延伸工程において、前記前駆体フィルムの前記延伸部に対する前記実質2軸延伸倍率を500倍以下とすることが好ましい。すなわち、前記前駆体フィルムの前記被加熱部に対する前記実質2軸延伸倍率が500倍以下となるように2軸延伸を行うことが好ましい。 In the manufacturing method, in the stretching step, it is preferable that the substantial biaxial stretching ratio with respect to the stretched portion of the precursor film is 500 times or less. That is, it is preferable to perform biaxial stretching so that the substantially biaxial stretching ratio of the precursor film with respect to the heated portion is 500 times or less.
 この場合、前駆体フィルムの延伸部に対する実質2軸延伸倍率が500倍を超える場合に比べて、前駆体フィルムがより破断しにくくなる。 In this case, the precursor film is more difficult to break as compared with the case where the substantially biaxial stretch ratio with respect to the stretched portion of the precursor film exceeds 500 times.
 上記製造方法においては、前記加熱工程において、前記前駆体フィルムの被加熱部の加熱温度と前記前駆体フィルムの融点との差が50℃以下であることが好ましい。 In the manufacturing method, in the heating step, the difference between the heating temperature of the heated portion of the precursor film and the melting point of the precursor film is preferably 50 ° C. or less.
 この場合、前駆体フィルムの被加熱部の加熱温度と前駆体フィルムの融点との差が50℃を超える場合に比べて、2軸延伸を容易に行うことができ、多孔フィルムをより効率よく製造できる。 In this case, compared with the case where the difference between the heating temperature of the heated portion of the precursor film and the melting point of the precursor film exceeds 50 ° C., biaxial stretching can be easily performed, and the porous film can be produced more efficiently. it can.
 上記製造方法においては、前記加熱工程において、前記前駆体フィルムの前記被加熱部の加熱温度と前記前駆体フィルムの融点との差が1℃以上であることが好ましい。 In the manufacturing method, in the heating step, the difference between the heating temperature of the heated portion of the precursor film and the melting point of the precursor film is preferably 1 ° C. or more.
 この場合、前駆体フィルムの被加熱部の延伸性をより向上させることが可能となる。 In this case, the stretchability of the heated portion of the precursor film can be further improved.
 上記製造方法においては、前記延伸工程において、前記被加熱部の延伸速度が1mm/分以上であることが好ましい。 In the manufacturing method, in the stretching step, it is preferable that a stretching speed of the heated portion is 1 mm / min or more.
 この場合、より十分な生産性を確保することができる。 In this case, sufficient productivity can be secured.
 上記製造方法においては、前記延伸工程において、前記被加熱部の延伸速度が500mm/分以下であることが好ましい。 In the manufacturing method, in the stretching step, it is preferable that a stretching speed of the heated portion is 500 mm / min or less.
 この場合、前駆体フィルムの被加熱部を破断させることなく均一に2軸延伸することができる。 In this case, the heated portion of the precursor film can be uniformly biaxially stretched without breaking.
 なお、本発明において、「前駆体フィルムの融点」とは、前駆体フィルムを構成する材料についてDSCで測定された値を言い、具体的には、窒素雰囲気下、昇温速度10℃/分で30~200℃の温度範囲内で測定された融解ピークのピーク温度を言う。 In the present invention, the “melting point of the precursor film” refers to a value measured by DSC for the material constituting the precursor film, and specifically, at a heating rate of 10 ° C./min in a nitrogen atmosphere. The peak temperature of the melting peak measured in the temperature range of 30 to 200 ° C.
 本発明によれば、微細な開孔を有する多孔フィルムを容易に製造できる多孔フィルムの製造方法が提供される。 According to the present invention, there is provided a method for producing a porous film that can easily produce a porous film having fine pores.
本発明の多孔フィルムの製造方法の一工程を示す平面図である。It is a top view which shows 1 process of the manufacturing method of the porous film of this invention. 本発明の多孔フィルムの製造方法で得られた多孔フィルムを示す平面図である。It is a top view which shows the porous film obtained with the manufacturing method of the porous film of this invention. 実施例1で得られた延伸フィルムについての原子間力顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained in Example 1. FIG. 比較例3で得られた延伸フィルムについての原子間力顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the atomic force microscope about the stretched film obtained by the comparative example 3. FIG.
 以下、本発明の実施形態について図1及び図2を参照しながら詳細に説明する。図1は、本発明の多孔フィルムの製造方法の一工程を示す平面図、図2は、本発明の多孔フィルムの製造方法で得られた多孔フィルムを示す平面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a plan view showing one step of the method for producing a porous film of the present invention, and FIG. 2 is a plan view showing the porous film obtained by the method for producing a porous film of the present invention.
 図1及び図2に示すように、本発明の製造方法は、ポリアセタール樹脂を含む非多孔質の前駆体フィルム10の少なくとも一部を被加熱部20として加熱する加熱工程と、前駆体フィルムの被加熱部を2軸延伸することにより多孔化した延伸部からなる多孔フィルム30を製造する延伸工程とを含む多孔フィルム30の製造方法である。そして、この製造方法では、加熱工程が少なくとも延伸工程において行われる。すなわち、少なくとも延伸工程においては、被加熱部20を加熱しながら被加熱部20の2軸延伸が行われる。 As shown in FIGS. 1 and 2, the production method of the present invention includes a heating step of heating at least a part of a non-porous precursor film 10 containing a polyacetal resin as a heated portion 20, and a coating of the precursor film. And a stretching step of manufacturing a porous film 30 including a stretched portion that has been made porous by stretching the heating portion biaxially. And in this manufacturing method, a heating process is performed in an extending process at least. That is, at least in the stretching step, biaxial stretching of the heated portion 20 is performed while heating the heated portion 20.
 そして、上記加熱工程においては、ポリアセタール樹脂における、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が5モル以下であり、ポリアセタール樹脂のメルトフローレートが0.1~30g/10分であり、被加熱部20を前駆体フィルム10の融点未満の温度で加熱する。また上記延伸工程においては、前駆体フィルム10の延伸部に対して下記式(1)で定義される実質2軸延伸倍率を、25倍を超える値とする。
実質2軸延伸倍率=dbefore/dafter・・・(1)
(上記式(1)中、dbeforeは前駆体フィルムにおける2軸延伸前の厚さを表し、dafterは前駆体フィルム10における2軸延伸後の延伸部の最小厚さを表す)
In the heating step, the introduction amount of the oxyalkylene unit having 2 or more carbon atoms per 100 moles of the oxymethylene unit in the polyacetal resin is 5 moles or less, and the melt flow rate of the polyacetal resin is 0.1 to 30 g / 10. The heated portion 20 is heated at a temperature lower than the melting point of the precursor film 10. In the stretching step, the substantially biaxial stretching ratio defined by the following formula (1) with respect to the stretched portion of the precursor film 10 is set to a value exceeding 25 times.
Real biaxial stretching ratio = d before / d after (1)
(In the above formula (1), d before represents the thickness of the precursor film before biaxial stretching, and d after represents the minimum thickness of the stretched portion of the precursor film 10 after biaxial stretching)
 本発明の製造方法によれば、微細な開孔を有する多孔フィルム30を容易に製造することが可能となる。また、本発明の製造方法によれば、多孔フィルム30が、前駆体フィルム10の被加熱部20を2軸延伸することにより形成されるため、多孔フィルム30をより高強度化することが可能となる。 According to the production method of the present invention, it is possible to easily produce a porous film 30 having fine pores. In addition, according to the manufacturing method of the present invention, the porous film 30 is formed by biaxially stretching the heated portion 20 of the precursor film 10, so that the strength of the porous film 30 can be further increased. Become.
 以下、本発明の製造方法についてより詳細に説明する。具体的には、上記加熱工程及び上記延伸工程についてより詳細に説明する。 Hereinafter, the production method of the present invention will be described in more detail. Specifically, the heating step and the stretching step will be described in detail.
 <加熱工程>
 加熱工程においては、上述したように、前駆体フィルム10の少なくとも一部が被加熱部20として加熱される。
<Heating process>
In the heating step, as described above, at least a part of the precursor film 10 is heated as the heated portion 20.
 (前駆体フィルム)
 前駆体フィルム10は非多孔質となっており、ポリアセタール樹脂を含む。ここで、ポリアセタール樹脂においては、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量(以下、単に「オキシアルキレンユニットの導入量」と呼ぶ)が5モル以下となっている。ここで、「炭素数が2以上」とは、炭素原子数が複数個であることを意味する。炭素数が2以上のオキシアルキレンユニットとしては、例えばオキシエチレンユニット、オキシプロピレンユニット、及び、オキシブチレンユニットなどが挙げられる。
(Precursor film)
The precursor film 10 is non-porous and contains a polyacetal resin. Here, in the polyacetal resin, the introduction amount of oxyalkylene units having 2 or more carbon atoms per 100 moles of oxymethylene units (hereinafter simply referred to as “introduction amount of oxyalkylene units”) is 5 moles or less. Here, “the number of carbon atoms is 2 or more” means that the number of carbon atoms is plural. Examples of the oxyalkylene unit having 2 or more carbon atoms include an oxyethylene unit, an oxypropylene unit, and an oxybutylene unit.
 オキシアルキレンユニットの導入量が5モル以下であると、5モルを超える場合に比べて、2軸延伸をより容易に行うことができ、多孔フィルム30を容易に得ることができる。 When the introduction amount of the oxyalkylene unit is 5 mol or less, biaxial stretching can be performed more easily than in the case where the amount exceeds 5 mol, and the porous film 30 can be easily obtained.
 オキシアルキレンユニットの導入量は3モル以下であることが好ましく、2モル以下であることがより好ましい。なお、オキシアルキレンユニットの導入量は0モルであってもよい。すなわち、ポリアセタール樹脂は、オキシアルキレンユニットを含まず且つオキシメチレンユニットのみを有するホモポリアセタール樹脂であってもよい。 The introduction amount of the oxyalkylene unit is preferably 3 mol or less, more preferably 2 mol or less. The introduced amount of the oxyalkylene unit may be 0 mol. That is, the polyacetal resin may be a homopolyacetal resin that does not contain an oxyalkylene unit and has only an oxymethylene unit.
 但し、オキシアルキレンユニットの導入量は0.5モル以上であることが好ましい。この場合、オキシアルキレンユニットの導入量が0.5モル未満である場合に比べて、多孔フィルム30をより高強度化することが可能となる。 However, the introduction amount of the oxyalkylene unit is preferably 0.5 mol or more. In this case, the strength of the porous film 30 can be further increased as compared with the case where the amount of oxyalkylene units introduced is less than 0.5 mol.
 またポリアセタール樹脂のメルトフローレート(以下、「MFR」と呼ぶ)は0.1~30g/10分である。この場合、ポリアセタール樹脂のMFRが0.1g/10分未満である場合に比べて、フィルムの生産性がより向上する。一方、ポリアセタール樹脂のMFRが0.1~30g/10分であると、ポリアセタール樹脂のMFRが30g/10分を超える場合に比べて、より延伸しやすくなる。 The melt flow rate (hereinafter referred to as “MFR”) of the polyacetal resin is 0.1 to 30 g / 10 minutes. In this case, the productivity of the film is further improved as compared with the case where the MFR of the polyacetal resin is less than 0.1 g / 10 minutes. On the other hand, when the MFR of the polyacetal resin is 0.1 to 30 g / 10 min, it becomes easier to stretch compared to the case where the MFR of the polyacetal resin exceeds 30 g / 10 min.
 ポリアセタール樹脂のMFRは、延伸性を向上させる観点からは、1~20g/10分であることが好ましく、2~10g/10分であることがより好ましい。 The MFR of the polyacetal resin is preferably 1 to 20 g / 10 minutes, more preferably 2 to 10 g / 10 minutes, from the viewpoint of improving stretchability.
 前駆体フィルム10の厚さは特に制限されるものではないが、1000μm以下であることが好ましく、500μm以下であることがより好ましい。この場合、前駆体フィルム10の厚さが1000μm以下であると、1000μmを超える場合に比べて、より延伸しやすくなる。 The thickness of the precursor film 10 is not particularly limited, but is preferably 1000 μm or less, and more preferably 500 μm or less. In this case, when the thickness of the precursor film 10 is 1000 μm or less, it becomes easier to stretch compared to the case where the thickness exceeds 1000 μm.
 前駆体フィルム10は、ポリアセタール樹脂以外の熱可塑性樹脂をさらに含んでもよい。このような熱可塑性樹脂としては、例えばポリエステル樹脂及びポリエーテル樹脂が挙げられる。ポリエステル樹脂としては、例えばポリ乳酸、ポリヒドロキシ酪酸、及びポリグリコール酸などが挙げられる。またポリエーテル樹脂としては、例えばポリジオキソラン、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールが挙げられる。熱可塑性樹脂は、ポリアセタール樹脂100質量部に対して1~200質量部の割合で配合されていることが好ましい。 The precursor film 10 may further include a thermoplastic resin other than the polyacetal resin. Examples of such thermoplastic resins include polyester resins and polyether resins. Examples of the polyester resin include polylactic acid, polyhydroxybutyric acid, and polyglycolic acid. Examples of the polyether resin include polydioxolane, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. The thermoplastic resin is preferably blended at a ratio of 1 to 200 parts by mass with respect to 100 parts by mass of the polyacetal resin.
 前駆体フィルム10は、酸化防止剤、熱安定剤、着色剤、核剤、蛍光増白剤、又はペンタエリスリトールテトラステアレート等の脂肪酸エステル系又はシリコン系化合物等の離型剤、摺動剤、ポリエチレングリコール、グリセリンのような帯電防止剤、高級脂肪酸塩、ペンゾトリアゾール系またはペンゾフェノン系化合物のような紫外線吸収剤、あるいはヒンダードアミン系のような光安定剤、多孔化に必要な溶剤、可塑剤、無機フィラー等の添加剤を必要に応じてさらに含んでいてもよい。 The precursor film 10 includes an antioxidant, a heat stabilizer, a colorant, a nucleating agent, a fluorescent brightening agent, or a release agent such as a fatty acid ester-based or silicon-based compound such as pentaerythritol tetrastearate, a sliding agent, Antistatic agents such as polyethylene glycol and glycerin, higher fatty acid salts, UV absorbers such as benzotriazole or benzophenone compounds, or light stabilizers such as hindered amines, solvents necessary for porosity, plasticizers, An additive such as an inorganic filler may further be included as necessary.
 前駆体フィルム10は、例えば前駆体フィルム10を構成する材料を溶融プレス成形することによって得ることができる。溶融プレス成形は、例えば上記材料を、離型フィルムを介して加圧板で挟み、得られた構造体を、上記材料を溶融しながらプレス機でプレスした後、室温まで徐冷することによって得ることができる。溶融プレス成形は、1回のみ行ってもよく、複数回行ってもよい。 The precursor film 10 can be obtained by, for example, melt press molding a material constituting the precursor film 10. Melt press molding is obtained, for example, by sandwiching the above material with a pressure plate through a release film, pressing the obtained structure with a press while melting the material, and then gradually cooling to room temperature. Can do. The melt press molding may be performed only once or a plurality of times.
 (延伸時の加熱温度)
 前駆体フィルム10の被加熱部20の加熱温度は前駆体フィルム10の融点未満の温度とする。前駆体フィルム10の被加熱部20の加熱温度を前駆体フィルム10の融点以上の温度とすると、被加熱部20が溶融状態となり、延伸が十分に行われず、微細な開孔を有する多孔フィルム30を得ることもできないためである。
(Heating temperature during stretching)
The heating temperature of the heated portion 20 of the precursor film 10 is set to a temperature lower than the melting point of the precursor film 10. When the heating temperature of the heated portion 20 of the precursor film 10 is set to a temperature equal to or higher than the melting point of the precursor film 10, the heated portion 20 is in a molten state and is not sufficiently stretched, and the porous film 30 having fine pores. It is because you cannot get.
 前駆体フィルム10の被加熱部20の加熱温度は前駆体フィルム10の融点未満の温度であればよい。前駆体フィルム10の被加熱部20の加熱温度と前駆体フィルム10の融点との差は特に制限されるものではないが、50℃以下であることが好ましい。この場合、前駆体フィルム10の被加熱部20の加熱温度と前駆体フィルム10の融点との差が50℃を超える場合に比べて、2軸延伸を容易に行うことができ、多孔フィルム30をより効率よく製造できる。 The heating temperature of the heated portion 20 of the precursor film 10 may be a temperature lower than the melting point of the precursor film 10. The difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is not particularly limited, but is preferably 50 ° C. or less. In this case, biaxial stretching can be easily performed compared to the case where the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 exceeds 50 ° C. It can be manufactured more efficiently.
 前駆体フィルム10の被加熱部20の加熱温度と前駆体フィルム10の融点との差は、フィルムの透明性を向上させるという観点からは、30℃以下であることがより好ましく、5℃以下であることがより好ましい。 The difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is more preferably 30 ° C. or less from the viewpoint of improving the transparency of the film, and 5 ° C. or less. More preferably.
 但し、前駆体フィルム10の被加熱部20の延伸性を向上させるという観点からは、前駆体フィルム10の被加熱部20の加熱温度と前駆体フィルム10の融点との差は、1℃以上であることがより好ましい。 However, from the viewpoint of improving the stretchability of the heated portion 20 of the precursor film 10, the difference between the heating temperature of the heated portion 20 of the precursor film 10 and the melting point of the precursor film 10 is 1 ° C. or more. More preferably.
 ここで、前駆体フィルム10の融点は通常は140~170℃である。
 なお、加熱工程は、少なくとも延伸工程において行われるが、延伸工程の前にさらに行われていてもよい。
Here, the melting point of the precursor film 10 is usually 140 to 170 ° C.
The heating step is performed at least in the stretching step, but may be further performed before the stretching step.
 <延伸工程>
 延伸工程においては、上述したように、前駆体フィルム10の被加熱部20を2軸延伸することにより多孔化した延伸部からなる多孔フィルム30が製造される。そして、延伸工程においては、前駆体フィルム10の延伸部に対して上記式(1)で定義される実質2軸延伸倍率が、25倍を超える値とする。
<Extension process>
In the stretching step, as described above, the porous film 30 including the stretched portion made porous by biaxially stretching the heated portion 20 of the precursor film 10 is manufactured. In the stretching step, the substantially biaxial stretch ratio defined by the above formula (1) with respect to the stretched portion of the precursor film 10 is a value exceeding 25 times.
 (実質2軸延伸倍率)
 前駆体フィルム10の延伸部(多孔フィルム30)に対する実質2軸延伸倍率は、上記式(1)で定義される。ここで、実質2軸延伸倍率は25倍を超える値とする。この場合、実質2軸延伸倍率が25倍以下である場合に比べて、微細な開孔を有する多孔フィルム30を得ることが容易となる。
(Substantially biaxial stretching ratio)
The substantially biaxial stretching ratio with respect to the stretched portion (porous film 30) of the precursor film 10 is defined by the above formula (1). Here, the biaxial stretching ratio is set to a value exceeding 25 times. In this case, it becomes easier to obtain the porous film 30 having fine pores as compared with the case where the substantially biaxial stretching ratio is 25 times or less.
 実質2軸延伸倍率は40倍以上であることがより好ましく、50倍以上であることがより一層好ましく、60倍以上であることが特に好ましい。 The substantial biaxial stretching ratio is more preferably 40 times or more, still more preferably 50 times or more, and particularly preferably 60 times or more.
 但し、実質2軸延伸倍率は500倍以下であることが好ましい。この場合、前駆体フィルム10がより破断しにくくなる。実質2軸延伸倍率は200倍以下であることがより好ましく、150倍以下であることがより一層好ましい。 However, it is preferable that the substantially biaxial stretching ratio is 500 times or less. In this case, the precursor film 10 becomes more difficult to break. The substantial biaxial stretching ratio is more preferably 200 times or less, and even more preferably 150 times or less.
 なお、本明細書においては、下記式(2)に従って2つの延伸軸A,Bに沿ったチャック間距離を基準として算出する延伸倍率を見かけ2軸延伸倍率として表記する。
見かけ2軸延伸倍率=(L1/L2)×(L3/L4)・・・(2)
(上記式(2)中、L1、L3はそれぞれ2つの延伸軸A,Bに沿った2軸延伸後の2つのチャック同士間の距離を表し、L2、L4はそれぞれ2つの延伸軸A,Bに沿った2軸延伸前の2つのチャック同士間の距離を表す)
 ここで、2つの延伸軸A,Bは互いに直交している。また見かけ2軸延伸倍率における(L1/L2)と(L3/L4)はそれぞれ、1以上であればよく、同じであってもよいし、異なっていてもよい。
In this specification, the apparent draw ratio calculated based on the distance between chucks along the two draw axes A and B according to the following formula (2) is expressed as an apparent biaxial draw ratio.
Apparent biaxial draw ratio = (L1 / L2) × (L3 / L4) (2)
(In the above formula (2), L1 and L3 represent distances between two chucks after biaxial stretching along two stretching axes A and B, respectively, and L2 and L4 represent two stretching axes A and B, respectively. Represents the distance between two chucks before biaxial stretching along
Here, the two extending axes A and B are orthogonal to each other. Further, (L1 / L2) and (L3 / L4) in the apparent biaxial stretching ratio may be 1 or more, and may be the same or different.
 前駆体フィルム10の一部のみが被加熱部20である場合には、2軸延伸後の前駆体フィルム10のうちその延伸部のみが切り出され、この切り出された延伸部が多孔フィルム30とされる。この場合、上記式(1)における実質2軸延伸倍率は上記式(2)における見かけ2軸延伸倍率よりも大きくなる。このことは、被加熱部20は加熱されることで十分に延伸されて薄くなり、被加熱部20以外の部分は十分に加熱されないため、十分に延伸されず、薄くはならないことを意味する。 When only a part of the precursor film 10 is the heated part 20, only the stretched part of the precursor film 10 after biaxial stretching is cut out, and the cut-out stretched part is used as the porous film 30. The In this case, the substantial biaxial stretching ratio in the above formula (1) is larger than the apparent biaxial stretching ratio in the above formula (2). This means that the heated portion 20 is sufficiently stretched and thinned by being heated, and the portions other than the heated portion 20 are not sufficiently heated and thus are not sufficiently stretched and do not become thin.
 また前駆体フィルム10は、その全部が被加熱部20であってもよく、その一部のみが被加熱部20であってもよい。ここで、2軸延伸後の前駆体フィルム10の全部が延伸部である場合、前駆体フィルム10全体がそれぞれそのまま多孔フィルム30とされる。なお、2軸延伸後の前駆体フィルム10の全部が延伸部となる場合、上記式(1)における実質2軸延伸倍率は、上記式(2)における見かけ2軸延伸倍率と等しくなる。 Further, the precursor film 10 may be entirely the heated part 20 or only a part thereof may be the heated part 20. Here, when the whole of the precursor film 10 after biaxial stretching is a stretched portion, the entire precursor film 10 is used as the porous film 30 as it is. When the entire biaxially stretched precursor film 10 is a stretched portion, the substantial biaxial stretch ratio in the above formula (1) is equal to the apparent biaxial stretch ratio in the above formula (2).
 被加熱部20の延伸速度は、特に制限されるものではないが、より十分な生産性を確保する観点から、1mm/分以上であることが好ましい。但し、延伸速度は、前駆体フィルム10の被加熱部20を破断させることなく均一に2軸延伸するという観点からは、500mm/分以下であることが好ましく、20mm/分以下であることがより好ましい。なお、本発明の2軸延伸における延伸速度は、チャック間距離を基準にして算出した値である。
 
Although the extending | stretching speed | rate of the to-be-heated part 20 is not restrict | limited in particular, It is preferable that it is 1 mm / min or more from a viewpoint of ensuring sufficient productivity. However, the stretching speed is preferably 500 mm / min or less and more preferably 20 mm / min or less from the viewpoint of uniformly biaxially stretching without breaking the heated portion 20 of the precursor film 10. preferable. The stretching speed in the biaxial stretching according to the present invention is a value calculated based on the distance between chucks.
 本発明の製造方法によって得られる多孔フィルムは、微細な開孔を有するとともに、高強度であるため、例えばガス分離膜などを補強する補強材に好適に用いることができる。これは以下の理由によるものである。すなわち、多孔フィルムは微細な開孔を有するため、ガス分離膜を透過したガスを透過させることができ、多孔フィルムを通してガス分離膜にガスを供給することも可能になる。また多孔フィルムは高強度であるため、強度に劣るガス分離膜を支持することも可能となり、ガス分離膜の薄膜化も可能とするからである。 Since the porous film obtained by the production method of the present invention has fine openings and high strength, it can be suitably used as a reinforcing material for reinforcing a gas separation membrane, for example. This is due to the following reason. That is, since the porous film has fine pores, the gas that has permeated through the gas separation membrane can be permeated, and gas can be supplied to the gas separation membrane through the porous film. Moreover, since the porous film has high strength, it is possible to support a gas separation membrane having poor strength, and the gas separation membrane can be made thinner.
 また本発明の製造方法によって得られる多孔フィルムは、微細な開孔を有しているため、それ自体、微細な粒子の流通を制限するフィルタとしても好適に用いることができる。特にポリアセタール樹脂は、耐溶剤性を有するため、本発明の製造方法で得られる多孔フィルムは、溶剤中で使用されるフィルタとして好適である。このようなフィルタとしては、電池のセパレータなどが挙げられる。 Moreover, since the porous film obtained by the production method of the present invention has fine pores, it can itself be suitably used as a filter for restricting the flow of fine particles. In particular, since a polyacetal resin has solvent resistance, the porous film obtained by the production method of the present invention is suitable as a filter used in a solvent. Examples of such a filter include a battery separator.
 以下、実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 実施例及び比較例で用いたポリアセタール樹脂(以下、「POM」と呼ぶ)は以下の通りとした。なお、以下、「オキシメチレンユニット」を「OM」、「オキシアルキレンユニット」を「OA」と略称する。また、以下、MFRは、ASTM-D1238規格に基づき、190℃、2.16kgの条件で測定された値を言う。
(1)POM1
以下の特性を有するアセタールコポリマー
OM100モルに対するOAの導入量:1.4モル
MFR:2.5g/10分
融点:165℃
(2)POM2
以下の特性を有するアセタールコポリマー
OM100モルに対するOAの導入量:1.4モル
MFR:9.0g/10分
融点:165℃
(3)POM3
以下の特性を有するアセタールコポリマー
OM100モルに対するOAの導入量:0.6モル
MFR:9.0g/10分
融点:165℃
(4)POM4
以下の特性を有するアセタールコポリマー
OM100モルに対するOAの導入量:5.1モル
MFR:9.0g/10分
融点:155℃
The polyacetal resin (hereinafter referred to as “POM”) used in Examples and Comparative Examples was as follows. Hereinafter, “oxymethylene unit” is abbreviated as “OM”, and “oxyalkylene unit” is abbreviated as “OA”. Hereinafter, MFR refers to a value measured under conditions of 190 ° C. and 2.16 kg based on the ASTM-D1238 standard.
(1) POM1
Amount of OA introduced per 100 mol of acetal copolymer OM having the following characteristics: 1.4 mol MFR: 2.5 g / 10 min Melting point: 165 ° C.
(2) POM2
Amount of OA introduced per 100 mol of acetal copolymer OM having the following characteristics: 1.4 mol MFR: 9.0 g / 10 min Melting point: 165 ° C.
(3) POM3
Amount of OA introduced per 100 mol of acetal copolymer OM having the following characteristics: 0.6 mol MFR: 9.0 g / 10 min Melting point: 165 ° C.
(4) POM4
Amount of OA introduced per 100 mol of acetal copolymer OM having the following characteristics: 5.1 mol MFR: 9.0 g / 10 min Melting point: 155 ° C.
 (実施例1~3)
 まず120mm×120mm×厚さ2mmの正方形ステンレス板の上に、厚さ125μmの離型用ポリイミドフィルムを置き、次に120mm×120mm×厚さ0.50mmの正方形ステンレス板に105mm×105mmの窓をくり抜いたものを置き、その窓内に、表1に示されるPOM(POM1~3)からなるペレットを約10g置いた。その上に厚さ125μmの離型用ポリイミド膜を置き、さらにその上に120mm×120mm×厚さ2mmの正方形ステンレス板を置いた。こうして第1構造体を得た。
(Examples 1 to 3)
First, a polyimide film for mold release of 125 μm is placed on a 120 mm × 120 mm × 2 mm thick square stainless steel plate, and then a 105 mm × 105 mm window is placed on a 120 mm × 120 mm × 0.50 mm thick square stainless steel plate. About 10 g of pellets made of POM (POM1 to 3) shown in Table 1 were placed in the window. A mold release polyimide film having a thickness of 125 μm was placed thereon, and a square stainless steel plate having a thickness of 120 mm × 120 mm × thickness 2 mm was further placed thereon. Thus, the first structure was obtained.
 こうして得られた第1構造体を、卓上プレス装置に設置された上下のプレス機構の間に挟み、160℃にて5分間保持した後、2.5MPa(シリンダー圧力30MPa)の圧力で5分間溶融プレス成形し、室温まで徐冷してから取出した。こうして厚さ500μmの第1フィルムを形成した。 The first structure thus obtained was sandwiched between upper and lower press mechanisms installed in a desktop press device, held at 160 ° C. for 5 minutes, and then melted at a pressure of 2.5 MPa (cylinder pressure 30 MPa) for 5 minutes. The product was press-molded, slowly cooled to room temperature, and taken out. Thus, a first film having a thickness of 500 μm was formed.
 この第1フィルムから、52mm×58mm×500μmの部分を第2フィルムとして切り出した。 From this first film, a 52 mm × 58 mm × 500 μm portion was cut out as a second film.
 次に、直径110mm×厚さ2mmの円盤状ステンレス板の上に、厚さ125μmの離型用ポリイミドフィルムを置き、次に直径110mm×厚さ0.30mmの円盤状ステンレス板に70mm×70mmの窓をくり抜いたものを置き、その窓内に上記第2フィルムを置いた。その上に厚さ125μmの離型用ポリイミド膜を置き、さらにその上に直径110mm×厚さ2mmの円盤状ステンレス板を置いた。こうして第2構造体を得た。そして、この第2構造体を200℃にて5分間保持した後、2.5MPa(シリンダー圧力30MPa)の圧力で5分間溶融プレス成形し、室温まで徐冷してから取り出した。こうして、厚さ300μmのプレスフィルムを作製した。そして、このプレスフィルムから、35mm×35mm×300μmの部分を切り出し、これを前駆体フィルムとした。 Next, a polyimide film for mold release having a thickness of 125 μm is placed on a disk-shaped stainless steel plate having a diameter of 110 mm × thickness of 2 mm, and then a disk-shaped stainless steel plate having a diameter of 110 mm × thickness of 0.30 mm has a thickness of 70 mm × 70 mm. A window was cut out and the second film was placed in the window. A mold release polyimide film having a thickness of 125 μm was placed thereon, and a disc-shaped stainless steel plate having a diameter of 110 mm and a thickness of 2 mm was further placed thereon. A second structure was thus obtained. And after hold | maintaining this 2nd structure at 200 degreeC for 5 minute (s), it melt-molded for 5 minutes at the pressure of 2.5MPa (cylinder pressure 30MPa), and took out, after cooling gradually to room temperature. Thus, a press film having a thickness of 300 μm was produced. And from this press film, a 35 mm × 35 mm × 300 μm portion was cut out and used as a precursor film.
 次に、この前駆体フィルムに対して2軸延伸機(アイランド工業社製、製品名「BIX704S」)を用いて以下のようにして2軸延伸を行い、延伸フィルムを得た。すなわち、まず室温にて2軸延伸機の4つのチャックで前駆体フィルムを挟んでセットした後、この前駆体フィルムの一部を被加熱部としてこの被加熱部に熱風を吹き付けることにより被加熱部を、表1に示す延伸温度まで昇温し、この温度で5分間保持した後に上記前駆体フィルムの被加熱部に対して実質延伸倍率(実質2軸延伸倍率)が表1に示す値となるように且つ延伸速度20mm/分で同時2軸延伸を行った。そして、2軸延伸後の前駆体フィルムから、被加熱部を延伸して得られる延伸部を切り出した。こうして表1に示すフィルム厚さを有する延伸部からなる延伸フィルムを得た。なお、表1には、前駆体フィルム全体の見かけ2軸延伸倍率((L1/L2)×(L3/L4))も示した。 Next, the precursor film was biaxially stretched as follows using a biaxial stretching machine (product name “BIX704S” manufactured by Island Kogyo Co., Ltd.) to obtain a stretched film. That is, first, a precursor film is sandwiched and set at room temperature by four chucks of a biaxial stretching machine, and then a part to be heated is used as a part to be heated to blow heated air on the part to be heated. The temperature is raised to the stretching temperature shown in Table 1, and after maintaining at this temperature for 5 minutes, the substantial stretching ratio (substantially biaxial stretching ratio) becomes the value shown in Table 1 with respect to the heated portion of the precursor film. Thus, simultaneous biaxial stretching was performed at a stretching speed of 20 mm / min. And the extending | stretching part obtained by extending | stretching a to-be-heated part was cut out from the precursor film after biaxial stretching. Thus, a stretched film comprising stretched portions having the film thicknesses shown in Table 1 was obtained. Table 1 also shows the apparent biaxial stretching ratio ((L1 / L2) × (L3 / L4)) of the entire precursor film.
 (比較例1)
 実施例1の前駆体フィルムを比較例1のフィルム(未延伸フィルム)とした。
(Comparative Example 1)
The precursor film of Example 1 was used as the film of Comparative Example 1 (unstretched film).
 (比較例2)
 実質延伸倍率(実質2軸延伸倍率)及び見かけ延伸倍率(見かけ2軸延伸倍率)が表1に示す値となるように2軸延伸を行ったこと以外は実施例1と同様にして厚さ12μmの延伸フィルムを得た。
(Comparative Example 2)
A thickness of 12 μm was obtained in the same manner as in Example 1 except that the biaxial stretching was performed so that the substantial stretching ratio (substantially biaxial stretching ratio) and the apparent stretching ratio (apparent biaxial stretching ratio) were the values shown in Table 1. A stretched film was obtained.
 (比較例3)
 まず実施例1と同様にして前駆体フィルムを用意した。
(Comparative Example 3)
First, a precursor film was prepared in the same manner as in Example 1.
 次に、この前駆体フィルムに対して1軸延伸機(オリエンテック社製、製品名「テンシロン万能試験機RTC-1325A」)を用いて以下のようにして1軸延伸を行い、延伸フィルムを得た。1軸延伸に用いた前駆体フィルムの厚みは500μmであり、初期試料長50mm(延伸される部位の長さ:3mm)、幅4mmのダンベル型に切り抜き、前駆体フィルムとした。恒温槽内にて所定の温度で前駆体フィルムをチャックにセットし、5分間保持した後に、延伸速度20mm/分で1軸延伸を行った。こうして表1に示すフィルム厚さを有する延伸部からなる延伸フィルムを得た。実質1軸延伸倍率は、下記式(3)で定義される。
実質1軸延伸倍率=Sbefore/Safter・・・(3)
(上記式(3)中、Sbeforeは前駆体フィルムにおける1軸延伸前の断面積を表し、Safterは1軸延伸後の延伸部の断面積を表す)
なお、表1には、前駆体フィルム全体の見かけ延伸倍率(見かけ1軸延伸倍率)(L1/L2)も示した。
Next, this precursor film was uniaxially stretched as follows using a uniaxial stretching machine (product name “Tensilon Universal Testing Machine RTC-1325A” manufactured by Orientec Co., Ltd.) to obtain a stretched film. It was. The thickness of the precursor film used for uniaxial stretching was 500 μm, and the precursor film was cut into a dumbbell shape having an initial sample length of 50 mm (length of stretched portion: 3 mm) and a width of 4 mm. The precursor film was set on a chuck at a predetermined temperature in a thermostatic chamber, held for 5 minutes, and then uniaxially stretched at a stretching speed of 20 mm / min. Thus, a stretched film comprising stretched portions having the film thicknesses shown in Table 1 was obtained. The substantially uniaxial stretching ratio is defined by the following formula (3).
Real uniaxial stretching ratio = S before / S after (3)
(In the above formula (3), S before represents the cross-sectional area before uniaxial stretching in the precursor film, and S after represents the cross-sectional area of the stretched portion after uniaxial stretching)
Table 1 also shows the apparent stretch ratio (apparent uniaxial stretch ratio) (L1 / L2) of the entire precursor film.
 (比較例4)
 構成材料としてPOM1に代えてPOM4を用いたこと以外は実施例1と同様にして前駆体フィルムを作製した。そして、この前駆体フィルムの被加熱部に対して、延伸温度を表1に示す通りとしたこと以外は実施例1と同様にして2軸延伸を試みた。しかし、前駆体フィルムは延伸の途中で破れてしまい、2軸延伸を行うことができなかった。
(Comparative Example 4)
A precursor film was produced in the same manner as in Example 1 except that POM4 was used instead of POM1 as a constituent material. Then, biaxial stretching was attempted in the same manner as in Example 1 except that the stretching temperature was set as shown in Table 1 for the heated portion of the precursor film. However, the precursor film was broken during the stretching, and the biaxial stretching could not be performed.
 実施例1~3及び比較例1~3で得られた延伸フィルム又は未延伸フィルムについて以下のようにして特性評価を行った。 The properties of the stretched films or unstretched films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated as follows.
 [特性評価]
実施例1~3及び比較例1~3で得られた延伸フィルム又は未延伸フィルムについて開孔の有無を確認した。開孔の有無は、原子間力顕微鏡(AFM)による観察結果、及び、窒素ガス透過係数の結果に基づいて確認した。
[Characteristic evaluation]
The stretched films or unstretched films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were checked for the presence or absence of openings. The presence or absence of the opening was confirmed based on the result of observation with an atomic force microscope (AFM) and the result of the nitrogen gas permeability coefficient.
 (1)AFMによる観察結果
 まず、実施例1~3及び比較例1~3で得られた延伸フィルム又は未延伸フィルムについてAFM(SIINT社製E-sweep)にて観察した。結果を表1に示す。表1において、開孔が見られた場合には「有」と表示し、開孔が見られなかった場合には「無」と表示した。なお、比較例4については前駆体フィルムの延伸ができなかったため、表1において「-」と表示した。また実施例1で得られた延伸フィルムについては、AFMによる観察結果を図3に示し、比較例3で得られた延伸フィルムについては、AFMによる観察結果を図4に示す。
(1) Observation Results by AFM First, the stretched films or the unstretched films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were observed with AFM (E-sweep manufactured by SIINT). The results are shown in Table 1. In Table 1, when there was an opening, “present” was displayed, and when no opening was found, “no” was displayed. In Comparative Example 4, since the precursor film could not be stretched, “−” was displayed in Table 1. Moreover, about the stretched film obtained in Example 1, the observation result by AFM is shown in FIG. 3, and about the stretched film obtained in Comparative Example 3, the observation result by AFM is shown in FIG.
 (2)窒素ガス透過係数
 窒素ガス透過係数の測定は、JIS K7126に準拠した差圧法を用いて行った。詳細に述べると、窒素ガス透過係数は、ガスクロマトグラフを検出器とし、差圧式ガス・蒸気透過率測定装置(製品名「GTR-30XAD、G6800T・F(S)」、GTRテック株式会社・ヤナコテクニカルサイエンス株式会社製)を用いて測定した。試験差圧は1atmとし、窒素ガスとしては乾燥状態のものを用いた。試験温度は23±2℃、透過面積は1.52×10-3(φ4.4×10-2m))とした。結果を表1に示す。なお、比較例4については前駆体フィルムの延伸ができなかったため、表1において「-」と表示した。
(2) Nitrogen gas permeability coefficient The nitrogen gas permeability coefficient was measured using a differential pressure method based on JIS K7126. More specifically, the nitrogen gas permeability coefficient is a differential pressure type gas / vapor permeability measuring device (product name “GTR-30XAD, G6800T • F (S)”, GTR Tech Co., Ltd./Yanaco Technical) Science Co., Ltd.). The test differential pressure was 1 atm, and nitrogen gas in a dry state was used. The test temperature was 23 ± 2 ° C., and the transmission area was 1.52 × 10 −3 m 2 (φ4.4 × 10 −2 m)). The results are shown in Table 1. In Comparative Example 4, since the precursor film could not be stretched, “−” was displayed in Table 1.
 なお、延伸フィルム又は未延伸フィルムにおいて、微細な開孔が形成されているかどうかの判断基準は次の通りとした。すなわち、AFMによる観察結果で開孔が観察され、且つ、窒素ガス透過係数が1.0×10-14(mol・m/m・s・Pa)を超える場合には、微細な開孔が形成されているものと判断した。 In addition, the criteria for judging whether fine pores are formed in the stretched film or the unstretched film were as follows. That is, when an opening is observed in the observation result by AFM and the nitrogen gas permeability coefficient exceeds 1.0 × 10 −14 (mol · m / m 2 · s · Pa), a fine opening is not obtained. It was judged that it was formed.
 (3)機械強度
 実施例1~3及び比較例1~2で得られた延伸フィルム又は未延伸フィルムから、5mm×30mmの部分を切り出し、試験片を得た。また、比較例3で得られた延伸フィルムについては、幅が5mmより狭かったため、長さ30mmの部分を切り出し、試験片とした。そして、これらの試験片に対してボールドウィン株式会社製RTC-1325Aを用いて23±2℃で引張試験を行い、引張り速度20mm/minで記録された応力チャートの最大応力をフィルム断面積で割った値を引張強度とした。結果を表1に示す。なお、比較例4については前駆体フィルムの延伸ができなかったため、表1において「-」と表示した。
Figure JPOXMLDOC01-appb-T000001
(3) Mechanical strength A 5 mm × 30 mm portion was cut out from the stretched film or the unstretched film obtained in Examples 1 to 3 and Comparative Examples 1 and 2 to obtain test pieces. Moreover, about the stretched film obtained by the comparative example 3, since the width | variety was narrower than 5 mm, the part of length 30mm was cut out and it was set as the test piece. These test pieces were subjected to a tensile test at 23 ± 2 ° C. using an RTC-1325A manufactured by Baldwin Co., Ltd., and the maximum stress on the stress chart recorded at a tensile speed of 20 mm / min was divided by the film cross-sectional area. The value was taken as the tensile strength. The results are shown in Table 1. In Comparative Example 4, since the precursor film could not be stretched, “−” was displayed in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、実施例1~3の延伸フィルムは開孔を有していることが分かった。しかも、窒素ガス透過係数が高いことから、開孔が貫通孔であることも分かった。これに対し、比較例1~3の延伸フィルム又は未延伸フィルムは開孔を有していないことが分かった。また比較例4については、延伸フィルムを得ることができなかった。 From the results shown in Table 1, it was found that the stretched films of Examples 1 to 3 had pores. Moreover, since the nitrogen gas permeability coefficient was high, it was also found that the opening was a through hole. On the other hand, it was found that the stretched films or the unstretched films of Comparative Examples 1 to 3 did not have pores. In Comparative Example 4, a stretched film could not be obtained.
 従って、本発明の多孔フィルムの製造方法によれば、微細な開孔を有する多孔フィルムを容易に得ることができることが確認された。 Therefore, according to the method for producing a porous film of the present invention, it was confirmed that a porous film having fine pores can be easily obtained.
 10…前駆体フィルム
 20…被加熱部
 30…延伸部又は多孔フィルム
 A…延伸軸
 B…延伸軸
DESCRIPTION OF SYMBOLS 10 ... Precursor film 20 ... Heated part 30 ... Stretched part or porous film A ... Stretch axis B ... Stretch axis

Claims (7)

  1.  ポリアセタール樹脂を含む非多孔質の前駆体フィルムの少なくとも一部を被加熱部として加熱する加熱工程と、
     前記前駆体フィルムの前記被加熱部を2軸延伸することにより多孔化した延伸部からなる多孔フィルムを製造する延伸工程とを含み、
     前記加熱工程が少なくとも前記延伸工程において行われ、
     前記加熱工程において、前記ポリアセタール樹脂における、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が5モル以下であり、前記ポリアセタール樹脂のメルトフローレートが0.1~30g/10分であり、前記被加熱部を前記前駆体フィルムの融点未満の温度で加熱し、
     前記延伸工程において、前記前駆体フィルムの前記延伸部に対して下記式(1)で定義される実質2軸延伸倍率を、25倍を超える値とする、多孔フィルムの製造方法。
    実質2軸延伸倍率=dbefore/dafter・・・(1)
    (上記式(1)中、dbeforeは前記前駆体フィルムにおける2軸延伸前の厚さを表し、dafterは前記前駆体フィルムにおける2軸延伸後の前記延伸部の最小厚さを表す)
    A heating step of heating at least a part of a non-porous precursor film containing a polyacetal resin as a heated portion;
    Including a stretching step of producing a porous film composed of a stretched portion made porous by stretching the heated portion of the precursor film biaxially,
    The heating step is performed at least in the stretching step,
    In the heating step, the polyacetal resin has an introduction amount of oxyalkylene units having 2 or more carbon atoms to 100 mol of oxymethylene units of 5 mol or less, and a melt flow rate of the polyacetal resin of 0.1 to 30 g / 10 min. And heating the heated part at a temperature below the melting point of the precursor film,
    The method for producing a porous film, wherein, in the stretching step, a substantially biaxial stretching ratio defined by the following formula (1) is set to a value exceeding 25 times with respect to the stretching portion of the precursor film.
    Real biaxial stretching ratio = d before / d after (1)
    (In the above formula (1), d before represents the thickness of the precursor film before biaxial stretching, and d after represents the minimum thickness of the stretched portion of the precursor film after biaxial stretching)
  2.  前記加熱工程において、前記ポリアセタール樹脂における、オキシメチレンユニット100モルに対する炭素数2以上のオキシアルキレンユニットの導入量が0.5モル以上である請求項1に記載の多孔フィルムの製造方法。 2. The method for producing a porous film according to claim 1, wherein, in the heating step, an introduction amount of an oxyalkylene unit having 2 or more carbon atoms per 100 mol of oxymethylene units in the polyacetal resin is 0.5 mol or more.
  3.  前記延伸工程において、前記前駆体フィルムの前記延伸部に対する前記実質2軸延伸倍率を500倍以下とする、請求項1又は2に記載の多孔フィルムの製造方法。 The method for producing a porous film according to claim 1 or 2, wherein, in the stretching step, the substantially biaxial stretching ratio with respect to the stretched portion of the precursor film is set to 500 times or less.
  4.  前記加熱工程において、前記前駆体フィルムの前記被加熱部の加熱温度と前記前駆体フィルムの融点との差が50℃以下である、請求項1~3のいずれか一項に記載の多孔フィルムの製造方法。 The porous film according to any one of claims 1 to 3, wherein, in the heating step, a difference between a heating temperature of the heated portion of the precursor film and a melting point of the precursor film is 50 ° C or less. Production method.
  5.  前記加熱工程において、前記前駆体フィルムの前記被加熱部の加熱温度と前記前駆体フィルムの融点との差が1℃以上である、請求項4に記載の多孔フィルムの製造方法。 The method for producing a porous film according to claim 4, wherein, in the heating step, a difference between a heating temperature of the heated portion of the precursor film and a melting point of the precursor film is 1 ° C or more.
  6.  前記延伸工程において、前記被加熱部の延伸速度が1mm/分以上である、請求項1~5のいずれか一項に記載の多孔フィルムの製造方法。 The method for producing a porous film according to any one of claims 1 to 5, wherein, in the stretching step, a stretching speed of the heated portion is 1 mm / min or more.
  7.  前記延伸工程において、前記被加熱部の延伸速度が500mm/分以下である、請求項6に記載の多孔フィルムの製造方法。 The method for producing a porous film according to claim 6, wherein in the stretching step, the stretched speed of the heated portion is 500 mm / min or less.
PCT/JP2015/063052 2014-05-07 2015-05-01 Porous film manufacturing method WO2015170674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096234 2014-05-07
JP2014096234A JP6351358B2 (en) 2014-05-07 2014-05-07 Method for producing porous film

Publications (1)

Publication Number Publication Date
WO2015170674A1 true WO2015170674A1 (en) 2015-11-12

Family

ID=54392524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063052 WO2015170674A1 (en) 2014-05-07 2015-05-01 Porous film manufacturing method

Country Status (2)

Country Link
JP (1) JP6351358B2 (en)
WO (1) WO2015170674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113128A (en) * 2016-06-23 2016-11-16 湖北祥源新材科技股份有限公司 A kind of polymer flake, manufacture method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502176B1 (en) * 1969-11-13 1975-01-24
JPS50111175A (en) * 1973-12-28 1975-09-01
JP2004107630A (en) * 2002-07-24 2004-04-08 Toray Ind Inc Polylactic acid-based film
JP2012188675A (en) * 2006-02-21 2012-10-04 Celgard Llc Biaxially oriented microporous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502176B1 (en) * 1969-11-13 1975-01-24
JPS50111175A (en) * 1973-12-28 1975-09-01
JP2004107630A (en) * 2002-07-24 2004-04-08 Toray Ind Inc Polylactic acid-based film
JP2012188675A (en) * 2006-02-21 2012-10-04 Celgard Llc Biaxially oriented microporous membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113128A (en) * 2016-06-23 2016-11-16 湖北祥源新材科技股份有限公司 A kind of polymer flake, manufacture method and application

Also Published As

Publication number Publication date
JP6351358B2 (en) 2018-07-04
JP2015214598A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
TWI444286B (en) Polyolefin-based porous film and a method for producing the same
US9564624B2 (en) Microporous composite film with high thermostable organic/inorganic coating layer
TW201139113A (en) Method for preparing microporous polyolefin film with improved productivity and easy control of physical properties
JP2008144039A (en) Fluid-permeable fine porous material and its manufacturing method
JP2015120835A (en) Polyolefin microporous film, separator for secondary battery, and secondary battery
KR101959778B1 (en) Microporous membrane
JP2010265414A (en) Microporous film, method for producing the same and battery separator
JPH107832A (en) High strength porous film of polypropylene and its production
JP2016032934A (en) Manufacturing method of polyolefin-based multilayer composite porous film
JP2013199545A (en) Fine porous film and battery separator
JP5731762B2 (en) Microporous film, method for producing the same, and battery separator
JP2628788B2 (en) Method for producing microporous membrane and fusing resistant microporous membrane produced by the method
JP2016191006A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2015208894A (en) Polyolefin-made laminated microporous film
Du et al. Structure formation and characterization of PVDF hollow fiber membranes by melt‐spinning and stretching method
KR102038766B1 (en) Polyolefin microporous membrane
WO2015170674A1 (en) Porous film manufacturing method
Cai et al. Structure and properties of melt‐stretching polypropylene/silicon dioxide compound microporous membrane
JP6034635B2 (en) Microporous film and battery separator
JP5765960B2 (en) Method for producing microporous film and battery separator
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP2012015073A (en) Microporous film, method for producing the same, and battery separator
JP2010052237A (en) Laminated microporous film and process for manufacturing the same
JP2018119083A (en) Production method of polypropylene microporous film
JP6262596B2 (en) Gas separator and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789552

Country of ref document: EP

Kind code of ref document: A1