WO2015170462A1 - Blower unit for air conditioner - Google Patents

Blower unit for air conditioner Download PDF

Info

Publication number
WO2015170462A1
WO2015170462A1 PCT/JP2015/002247 JP2015002247W WO2015170462A1 WO 2015170462 A1 WO2015170462 A1 WO 2015170462A1 JP 2015002247 W JP2015002247 W JP 2015002247W WO 2015170462 A1 WO2015170462 A1 WO 2015170462A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction heating
heating coil
fan
temperature
alternating current
Prior art date
Application number
PCT/JP2015/002247
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 隆
高岡 彰
伊藤 功治
潤 山岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015170462A1 publication Critical patent/WO2015170462A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications

Definitions

  • This disclosure relates to a blower unit for an air conditioner applied to an air conditioner.
  • Patent Document 1 requires a temperature sensor to bring the temperature of the conditioned air heated by the induction-heated fan to an appropriate temperature. May lead to up.
  • an object of the present disclosure to provide an air conditioner blower unit that can adjust the temperature of air heated by induction heating to an appropriate temperature without using a temperature sensor.
  • the blower unit for an air conditioner of the present disclosure includes an electric motor and a fan that is rotationally driven by the electric motor. As the fan rotates, it draws in air and blows it out.
  • the air conditioner blower unit further includes an induction heating coil, an alternating current supply unit, an impedance detection unit, and a control device.
  • the induction heating coil is disposed in a non-contact manner with respect to the fan so as to face the fan.
  • the alternating current supply unit supplies an alternating current having a predetermined frequency to the induction heating coil.
  • the impedance detection unit detects the impedance of the induction heating coil.
  • the control device controls supply of alternating current by the alternating current supply unit.
  • the fan heats the inhaled air generated by induction heating by supplying an alternating current of a predetermined frequency to the induction heating coil.
  • the control device acquires the temperature of the fan based on the impedance of the induction heating coil detected by the impedance detection unit, and controls the supply of alternating current to the induction heating coil by the alternating current supply unit based on the temperature of the fan.
  • FIG. 2 is a sectional view taken along line II-II of the blower unit shown in FIG. It is a graph which shows the relationship between the impedance of an induction heating coil, and the temperature of a centrifugal fan. It is a graph which shows the change of the impedance of the induction heating coil accompanying the rotation of a centrifugal fan. It is a flowchart which shows the ventilation unit control process of 1st Embodiment. It is a flowchart which shows the ventilation unit control process of 2nd Embodiment.
  • a blower unit 10 for an in-vehicle air conditioner includes a scroll casing 11, a fan (centrifugal fan) 12, an electric motor 13, a motor drive circuit 14, and a coil (induction heating coil). ) 21, a power supply circuit 22, a resonance circuit 23, an impedance detection circuit 24, and a control circuit 25.
  • the power supply circuit 22 and the resonance circuit 23 constitute an alternating current supply unit.
  • the scroll casing 11 forms an air passage that guides air sucked from the air inlet to the air outlet.
  • the air inlet is provided on the upper side of the scroll casing 11, and the air outlet is provided on the right side of the scroll casing 11.
  • a centrifugal fan 12 that sends out air is provided inside the scroll casing 11.
  • a turbo fan or a sirocco fan can be used as the centrifugal fan 12.
  • the centrifugal fan 12 of this embodiment is made of iron (S45C) having a high relative permeability.
  • the centrifugal fan 12 includes a plurality of blades 12a.
  • the centrifugal fan 12 is provided with an electric motor 13 for rotating the centrifugal fan 12, and the rotating shaft of the electric motor 13 is connected to the centrifugal fan 12.
  • the scroll casing 11 is provided with a motor drive circuit 14 for driving the electric motor 13.
  • a dielectric heating coil 21 is disposed below the centrifugal fan 12.
  • the induction heating coil 21 constitutes a power transmission circuit 20 together with the power supply circuit 22, the resonance circuit 23, and the impedance detection circuit 24.
  • the dielectric heating coil 21 is disposed so as to face the bottom surface of the centrifugal fan 12. A predetermined interval is provided between the bottom surface of the centrifugal fan 12 and the induction heating coil 21, and the centrifugal fan 12 and the induction heating coil 21 are not in contact with each other.
  • the dielectric heating coil 21 is configured in a circular shape having a size corresponding to the bottom surface of the centrifugal fan 12.
  • the diameter of the centrifugal fan 12 is 12 cm
  • the diameter (outer diameter) of the induction heating coil 21 is 12 cm
  • the number of turns of the induction heating coil 21 is 16.
  • the induction heating coil 21 is fixed on the scroll casing 11 side, and the centrifugal fan 12 can rotate without contacting the induction heating coil 21.
  • the power supply circuit 22 is configured as an AC signal generation source.
  • the resonance circuit 23 is adjusted so as to perform magnetic field resonance in a state where the induction heating coil 21 is disposed below the centrifugal fan 12.
  • An alternating current having a predetermined frequency flows through the induction heating coil 21.
  • an alternating current of 25 kHz flows through the induction heating coil 21.
  • the magnetic field generated by the induction heating coil 21 causes the centrifugal fan 12 to be heated by induction heating.
  • the impedance detection circuit 24 is provided in the power transmission circuit 20 of the present embodiment.
  • the impedance detection circuit 24 is connected in parallel to the induction heating coil 23 and detects the impedance of the induction heating coil 23.
  • the impedance detection circuit 24 outputs a detection signal to the control circuit 25.
  • the control circuit 25 is composed of a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the control circuit 25 is configured as a control device, performs various arithmetic processes based on a control program stored in the ROM, and controls operations of the motor drive circuit 14 and the power supply circuit 22 connected to the output side.
  • the impedance Z of the induction heating coil 21 and the temperature T of the centrifugal fan 12 have a correlation, and the temperature T of the centrifugal fan 12 increases as the impedance Z of the induction heating coil 21 increases. ing.
  • the relationship between the impedance Z of the induction heating coil 21 and the temperature T of the centrifugal fan 12 can be expressed by the following formula F1.
  • the temperature (estimated temperature) T of the centrifugal fan 12 can be obtained indirectly from the impedance Z of the induction heating coil 21.
  • FIG. 4 shows a change in the impedance Z of the induction heating coil 21 when the centrifugal fan 12 is rotating at 1000 rpm at 25 ° C.
  • the impedance Z of the induction heating coil 21 slightly varies with the rotation of the centrifugal fan 12, but the rate of change is suppressed to within 0.3%.
  • the change rate of the impedance Z when the temperature T of the centrifugal fan 12 changes by 10 ° C. is 1.5%. That is, the change in the impedance Z due to the rotation of the centrifugal fan 12 is about 1/5 times the change in the impedance Z accompanying the change in the temperature of the centrifugal fan 12. It is considered that there is no influence when the temperature T of the fan 12 is obtained.
  • a magnetic field is generated around the induction heating coil 21 by an AC signal generated from a power supply circuit 22 as a frequency generation source.
  • an induced current is excited at a portion facing the induction heating coil 21 of the centrifugal fan 12 to generate an eddy current, and the centrifugal fan 12 is heated by Joule heat.
  • the centrifugal fan 12 is heated in a non-contact manner by induction heating with the electric power transmitted from the induction heating coil 21.
  • the centrifugal fan 12 rotates, and air is sucked into the scroll casing 11 from the intake port. At this time, the sucked air is heated by the centrifugal fan 12. The heated air is blown out radially outward of the blade 12 a by the rotation of the centrifugal fan 12. Air blown out from the centrifugal fan 12 is blown out from the outlet of the scroll casing 11 toward the vehicle interior.
  • the impedance detection circuit 24 detects the impedance Z of the induction heating coil 21 (S10), and acquires the temperature of the centrifugal fan 12 based on the impedance Z of the induction heating coil 21 (S11).
  • the temperature of the centrifugal fan 12 exceeds a predetermined upper limit temperature (S12).
  • the upper limit temperature is set to 200 ° C., for example.
  • the rotational speed of the centrifugal fan 12 is controlled based on the temperature of the centrifugal fan 12 (S15).
  • the rotational speed of the centrifugal fan 12 is controlled by adjusting the rotational speed of the electric motor 13 so that the temperature of the air blown from the centrifugal fan 12 becomes a desired temperature.
  • rotation control of the electric motor 13 is performed so that the rotational speed of the centrifugal fan 12 is low, and when the target temperature is low, the centrifugal fan 12 is controlled.
  • the rotation control of the electric motor 13 may be performed so as to increase the rotation speed of the motor.
  • the temperature of the centrifugal fan 12 is acquired from the impedance of the induction heating coil 21 and the power supplied to the induction heating coil 21 is controlled based on the temperature of the centrifugal fan 12. is doing. Thereby, the temperature of the centrifugal fan 12 can be grasped without using a temperature sensor, and the electric power supplied to the induction heating coil 21 can be appropriately controlled based on the temperature of the centrifugal fan 12. .
  • the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts will be described.
  • the rate of change of the impedance of the induction heating coil 21 exceeds a predetermined value (for example, 1%). It is determined whether or not (S16).
  • the impedance change rate may be determined by determining whether or not the variation in impedance detected a plurality of times within a predetermined time exceeds 1%.
  • the axial deviation of the centrifugal fan 12 can be detected based on the change in the impedance of the induction heating coil 21.
  • the failure can be prevented beforehand by stopping the electric motor 13.
  • blower unit of the present disclosure is used as the blower unit 10 for the in-vehicle air conditioner.
  • ventilation unit which concerns on this indication to air conditioners other than a vehicle-mounted air conditioner (for example, home air conditioner, commercial air conditioner).
  • the induction heating coil 23 is provided so as to face the bottom surface of the centrifugal fan 12.
  • the induction heating coil 23 may be provided so as to face a place other than the bottom surface of the centrifugal fan 12.
  • the centrifugal fan 10 is used as a fan used in the blower unit 10 of the present disclosure.
  • various fans such as a cross flow fan and an axial fan may be used.
  • the resonance circuit 22 is disposed outside the scroll casing 11.
  • the resonance circuit 22 may be disposed inside the scroll casing 11. Thereby, air (air conditioned wind) can be heated using the heat generated in the resonance circuit 22.
  • the power supply circuit 21 may be disposed inside the scroll casing 11, and in this case, air can be heated using heat generated by the power supply circuit 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A blower unit for an air conditioner is provided with an electric motor (13) and a fan (12). The blower unit for an air conditioner is further provided with an induction heating coil (21), an alternating current-supplying section (22 and 23), an impedance detection section (24), and a controller (25). The induction heating coil is placed facing the fan without contacting the fan. The current-supplying section supplies an alternating current with a predetermined frequency to the induction heating coil. The impedance detection section detects the impedance of the induction heating coil. The controller controls the alternating current supply from the alternating current-supplying section. The fan carries heat generated by the induction heating of the induction heating coil to which the alternating current with a predetermined frequency is supplied, and in turn heats intake air. The controller acquires the temperature of the fan on the basis of the impedance of the induction heating coil detected by the impedance detection section. Then, the controller controls, on the basis of the temperature of the fan, the alternating current supplied by the alternating current-supplying section to the induction heating coil.

Description

空調装置用送風ユニットBlower unit for air conditioner 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年5月6日に出願された日本特許出願2014-095605号を基にしている。 This application is based on Japanese Patent Application No. 2014-095605 filed on May 6, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、空調装置に適用される空調装置用送風ユニットに関するものである。 This disclosure relates to a blower unit for an air conditioner applied to an air conditioner.
 ヒートポンプ式空調装置において、暖房運転の開始から温風が供給されるまでの時間の短縮を目的として、誘導加熱コイルに高周波数の交流電流を供給して導電性を有するファンを電磁誘導加熱し、電磁誘導加熱されたファンによって空調風を暖めることが提案されている(特許文献1参照)。 In the heat pump air conditioner, for the purpose of shortening the time from the start of the heating operation to the supply of warm air, high-frequency alternating current is supplied to the induction heating coil to electromagnetically heat the conductive fan. It has been proposed to warm the conditioned air with a fan heated by electromagnetic induction (see Patent Document 1).
特開2010-203699号公報JP 2010-203699 A
 しかしながら、本開示の発明者らによる検討によれば、上記特許文献1の装置では、誘導加熱されたファンによって加熱される空調風の温度を適切な温度にするために温度センサが必要となり、コストアップにつながる恐れがある。 However, according to the examination by the inventors of the present disclosure, the apparatus of Patent Document 1 requires a temperature sensor to bring the temperature of the conditioned air heated by the induction-heated fan to an appropriate temperature. May lead to up.
 本開示は上記点に鑑みて、温度センサを用いることなく、誘導加熱によって加熱される空気の温度を適切な温度に調整することが可能な空調装置用送風ユニットを提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide an air conditioner blower unit that can adjust the temperature of air heated by induction heating to an appropriate temperature without using a temperature sensor.
 本開示の空調装置用送風ユニットは、電動モータと、電動モータによって回転駆動されるファンとを備える。ファンは回転することで、空気を吸入して吹き出す。空調装置用送風ユニットは、誘導加熱コイルと、交流電流供給部と、インピーダンス検出部と、制御装置と、をさらに備える。誘導加熱コイルは、ファンに対向するようにファンに対して非接触で配置されている。交流電流供給部は、誘導加熱コイルに所定周波数の交流電流を供給する。インピーダンス検出部は、誘導加熱コイルのインピーダンスを検出する。制御装置は、交流電流供給部による交流電流の供給を制御する。 The blower unit for an air conditioner of the present disclosure includes an electric motor and a fan that is rotationally driven by the electric motor. As the fan rotates, it draws in air and blows it out. The air conditioner blower unit further includes an induction heating coil, an alternating current supply unit, an impedance detection unit, and a control device. The induction heating coil is disposed in a non-contact manner with respect to the fan so as to face the fan. The alternating current supply unit supplies an alternating current having a predetermined frequency to the induction heating coil. The impedance detection unit detects the impedance of the induction heating coil. The control device controls supply of alternating current by the alternating current supply unit.
 ファンは、誘導加熱コイルに所定周波数の交流電流を供給することで誘導加熱によって発熱して吸入した空気を加熱する。制御装置は、インピーダンス検出部によって検出された誘導加熱コイルのインピーダンスに基づいてファンの温度を取得し、ファンの温度に基づいて交流電流供給部による誘導加熱コイルへの交流電流の供給を制御する。 The fan heats the inhaled air generated by induction heating by supplying an alternating current of a predetermined frequency to the induction heating coil. The control device acquires the temperature of the fan based on the impedance of the induction heating coil detected by the impedance detection unit, and controls the supply of alternating current to the induction heating coil by the alternating current supply unit based on the temperature of the fan.
 これにより、温度センサを用いることなく、ファンの温度を把握することができる。そして、ファンの温度に基づいて誘導加熱コイルに供給される電力を適切に制御することができる。 This makes it possible to determine the fan temperature without using a temperature sensor. And the electric power supplied to an induction heating coil can be appropriately controlled based on the temperature of a fan.
第1実施形態の送風ユニットの構成を示す図である。It is a figure which shows the structure of the ventilation unit of 1st Embodiment. 図1に示す送風ユニットのII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the blower unit shown in FIG. 誘導加熱コイルのインピーダンスと遠心式ファンの温度との関係を示すグラフである。It is a graph which shows the relationship between the impedance of an induction heating coil, and the temperature of a centrifugal fan. 遠心式ファンの回転時に伴う誘導加熱コイルのインピーダンスの変化を示すグラフである。It is a graph which shows the change of the impedance of the induction heating coil accompanying the rotation of a centrifugal fan. 第1実施形態の送風ユニット制御処理を示すフローチャートである。It is a flowchart which shows the ventilation unit control process of 1st Embodiment. 第2実施形態の送風ユニット制御処理を示すフローチャートである。It is a flowchart which shows the ventilation unit control process of 2nd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。さらに、以下に説明する実施形態には、本開示の前提となる形態および参考となる形態も含まれている。
(第1実施形態)
 図1に示すように、本開示の実施形態に係る車載空調装置用の送風ユニット10は、スクロールケーシング11、ファン(遠心式ファン)12、電動モータ13、モータ駆動回路14、コイル(誘導加熱コイル)21、電源回路22、共振回路23、インピーダンス検出回路24、制御回路25を備えている。電源回路22および共振回路23は、交流電流供給部を構成している。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description. Further, the embodiments described below include a precondition of the present disclosure and a reference form.
(First embodiment)
As shown in FIG. 1, a blower unit 10 for an in-vehicle air conditioner according to an embodiment of the present disclosure includes a scroll casing 11, a fan (centrifugal fan) 12, an electric motor 13, a motor drive circuit 14, and a coil (induction heating coil). ) 21, a power supply circuit 22, a resonance circuit 23, an impedance detection circuit 24, and a control circuit 25. The power supply circuit 22 and the resonance circuit 23 constitute an alternating current supply unit.
 スクロールケーシング11は、吸気口から吸い込んだ空気を吹出口に導く空気通路を形成している。図1に示す例では、吸気口はスクロールケーシング11の上側に設けられ、吹出口はスクロールケーシング11の右側に設けられている。 The scroll casing 11 forms an air passage that guides air sucked from the air inlet to the air outlet. In the example shown in FIG. 1, the air inlet is provided on the upper side of the scroll casing 11, and the air outlet is provided on the right side of the scroll casing 11.
 図2に示すように、スクロールケーシング11の内部には、空気を送出する遠心式ファン12が設けられている。遠心式ファン12としては、ターボファンやシロッコファンを用いることができる。本実施形態の遠心式ファン12は、比透磁率が高い鉄(S45C)によって構成されている。また、遠心式ファン12は、複数枚のブレード12aを備えている。 As shown in FIG. 2, a centrifugal fan 12 that sends out air is provided inside the scroll casing 11. As the centrifugal fan 12, a turbo fan or a sirocco fan can be used. The centrifugal fan 12 of this embodiment is made of iron (S45C) having a high relative permeability. The centrifugal fan 12 includes a plurality of blades 12a.
 図1に示すように、遠心式ファン12には、遠心式ファン12を回転させるための電動モータ13が設けられており、電動モータ13の回転軸は遠心式ファン12に接続されている。また、スクロールケーシング11には、電動モータ13を駆動するためのモータ駆動回路14が設けられている。 As shown in FIG. 1, the centrifugal fan 12 is provided with an electric motor 13 for rotating the centrifugal fan 12, and the rotating shaft of the electric motor 13 is connected to the centrifugal fan 12. The scroll casing 11 is provided with a motor drive circuit 14 for driving the electric motor 13.
 遠心式ファン12の下方には、誘電加熱コイル21が配置されている。誘導加熱コイル21は、電源回路22、共振回路23、インピーダンス検出回路24とともに、送電回路20を構成している。 A dielectric heating coil 21 is disposed below the centrifugal fan 12. The induction heating coil 21 constitutes a power transmission circuit 20 together with the power supply circuit 22, the resonance circuit 23, and the impedance detection circuit 24.
 誘電加熱コイル21は、遠心式ファン12の底面に対向するように配置されている。遠心式ファン12の底面と誘導加熱コイル21との間には所定間隔が設けられており、遠心式ファン12と誘導加熱コイル21は非接触となっている。 The dielectric heating coil 21 is disposed so as to face the bottom surface of the centrifugal fan 12. A predetermined interval is provided between the bottom surface of the centrifugal fan 12 and the induction heating coil 21, and the centrifugal fan 12 and the induction heating coil 21 are not in contact with each other.
 誘電加熱コイル21は、遠心式ファン12の底面に対応した大きさの円形に構成されている。本実施形態では、遠心式ファン12の直径を12cmとし、誘導加熱コイル21の直径(外径)を12cmとし、誘導加熱コイル21の巻き数を16としている。 The dielectric heating coil 21 is configured in a circular shape having a size corresponding to the bottom surface of the centrifugal fan 12. In this embodiment, the diameter of the centrifugal fan 12 is 12 cm, the diameter (outer diameter) of the induction heating coil 21 is 12 cm, and the number of turns of the induction heating coil 21 is 16.
 誘導加熱コイル21は、スクロールケーシング11側に固定されており、遠心式ファン12は、誘導加熱コイル21に接触することなく、回転可能となっている。 The induction heating coil 21 is fixed on the scroll casing 11 side, and the centrifugal fan 12 can rotate without contacting the induction heating coil 21.
 電源回路22は、交流信号発生源として構成されている。共振回路23は、誘導加熱コイル21が遠心式ファン12の下部に配置された状態で磁界共鳴するように調整されている。誘導加熱コイル21には所定周波数の交流電流が流れる。例えば、本実施形態では、25kHzの交流電流が誘導加熱コイル21に流れるようにしている。 The power supply circuit 22 is configured as an AC signal generation source. The resonance circuit 23 is adjusted so as to perform magnetic field resonance in a state where the induction heating coil 21 is disposed below the centrifugal fan 12. An alternating current having a predetermined frequency flows through the induction heating coil 21. For example, in the present embodiment, an alternating current of 25 kHz flows through the induction heating coil 21.
 誘導加熱コイル21にて磁界が発生することで、誘導加熱によって遠心式ファン12が加熱される。誘導加熱コイル21と遠心式ファン12の距離が近いほど、誘導加熱の効率が高くなる。このため、誘導加熱コイル21と遠心式ファン12は、できるだけ近接して配置することが望ましい。本実施形態では、誘導加熱コイル21と遠心式ファン12の距離を3mmとしている。 The magnetic field generated by the induction heating coil 21 causes the centrifugal fan 12 to be heated by induction heating. The closer the distance between the induction heating coil 21 and the centrifugal fan 12, the higher the efficiency of induction heating. For this reason, it is desirable to arrange the induction heating coil 21 and the centrifugal fan 12 as close as possible. In this embodiment, the distance between the induction heating coil 21 and the centrifugal fan 12 is 3 mm.
 本実施形態の送電回路20には、インピーダンス検出回路24が設けられている。インピーダンス検出回路24は、誘導加熱コイル23と並列接続されており、誘導加熱コイル23のインピーダンスを検出する。インピーダンス検出回路24は、検出信号を制御回路25に出力するようになっている。 The impedance detection circuit 24 is provided in the power transmission circuit 20 of the present embodiment. The impedance detection circuit 24 is connected in parallel to the induction heating coil 23 and detects the impedance of the induction heating coil 23. The impedance detection circuit 24 outputs a detection signal to the control circuit 25.
 制御回路25は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御回路25は制御装置として構成されており、ROM内に記憶された制御プログラムに基づいて各種演算処理を行い、出力側に接続されたモータ駆動回路14、電源回路22等の作動を制御する。 The control circuit 25 is composed of a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The control circuit 25 is configured as a control device, performs various arithmetic processes based on a control program stored in the ROM, and controls operations of the motor drive circuit 14 and the power supply circuit 22 connected to the output side.
 ここで、誘導加熱コイル21のインピーダンスZと遠心式ファン12の温度Tとの関係を図3、図4に基づいて説明する。 Here, the relationship between the impedance Z of the induction heating coil 21 and the temperature T of the centrifugal fan 12 will be described with reference to FIGS.
 図3に示すように、誘導加熱コイル21のインピーダンスZと遠心式ファン12の温度Tは相関関係があり、誘導加熱コイル21のインピーダンスZが大きくなるにしたがって遠心式ファン12の温度Tが上昇している。具体的には、誘導加熱コイル21のインピーダンスZと遠心式ファン12の温度Tとの関係は、下記の数式F1で表すことができる。 As shown in FIG. 3, the impedance Z of the induction heating coil 21 and the temperature T of the centrifugal fan 12 have a correlation, and the temperature T of the centrifugal fan 12 increases as the impedance Z of the induction heating coil 21 increases. ing. Specifically, the relationship between the impedance Z of the induction heating coil 21 and the temperature T of the centrifugal fan 12 can be expressed by the following formula F1.
 T=(Z-561.2)×0.94 ・・・F1
 この数式F1を用いることで、遠心式ファン12の温度(推定温度)Tは誘導加熱コイル21のインピーダンスZから間接的に求めることができる。
T = (Z−561.2) × 0.94... F1
By using Formula F1, the temperature (estimated temperature) T of the centrifugal fan 12 can be obtained indirectly from the impedance Z of the induction heating coil 21.
 また、図4は、25℃において遠心式ファン12が1000rpmで回転している際の誘導加熱コイル21のインピーダンスZの変化を示している。図4に示すように、誘導加熱コイル21のインピーダンスZは、遠心式ファン12の回転によって若干変動するが、変化率は0.3%以内に抑えられている。一方、図3に示すように、遠心式ファン12の温度Tが10℃変化する際のインピーダンスZの変化率は1.5%となっている。つまり、遠心式ファン12が回転することによるインピーダンスZの変化は、遠心式ファン12の温度の変化に伴うインピーダンスZの変化の1/5倍程度であり、誘導加熱コイル21のインピーダンスZから遠心式ファン12の温度Tを求める際に影響しないと考えられる。 FIG. 4 shows a change in the impedance Z of the induction heating coil 21 when the centrifugal fan 12 is rotating at 1000 rpm at 25 ° C. As shown in FIG. 4, the impedance Z of the induction heating coil 21 slightly varies with the rotation of the centrifugal fan 12, but the rate of change is suppressed to within 0.3%. On the other hand, as shown in FIG. 3, the change rate of the impedance Z when the temperature T of the centrifugal fan 12 changes by 10 ° C. is 1.5%. That is, the change in the impedance Z due to the rotation of the centrifugal fan 12 is about 1/5 times the change in the impedance Z accompanying the change in the temperature of the centrifugal fan 12. It is considered that there is no influence when the temperature T of the fan 12 is obtained.
 次に、本実施形態の送風ユニット10の作動について説明する。まず、送電回路20では、周波数発生源としての電源回路22から発生される交流信号によって誘導加熱コイル21の周囲に磁界が発生する。これに伴って、遠心式ファン12の誘導加熱コイル21に対向する部位に誘導電流が励起して渦電流が発生し、ジュール熱によって遠心式ファン12が加熱される。この結果、誘導加熱コイル21から送電する電力によって、遠心式ファン12を誘導加熱によって非接触で加熱される。 Next, the operation of the blower unit 10 of this embodiment will be described. First, in the power transmission circuit 20, a magnetic field is generated around the induction heating coil 21 by an AC signal generated from a power supply circuit 22 as a frequency generation source. Along with this, an induced current is excited at a portion facing the induction heating coil 21 of the centrifugal fan 12 to generate an eddy current, and the centrifugal fan 12 is heated by Joule heat. As a result, the centrifugal fan 12 is heated in a non-contact manner by induction heating with the electric power transmitted from the induction heating coil 21.
 そして、電動モータ13が回転すると、遠心式ファン12が回転し、吸気口からスクロールケーシング11の内部に空気が吸い込まれる。このとき、吸い込まれた空気が遠心式ファン12によって加熱される。この加熱された空気が遠心式ファン12の回転によって、ブレード12aの径方向外側に吹き出される。遠心式ファン12から吹き出された空気はスクロールケーシング11の吹出口から車室内に向かって吹き出される。 When the electric motor 13 rotates, the centrifugal fan 12 rotates, and air is sucked into the scroll casing 11 from the intake port. At this time, the sucked air is heated by the centrifugal fan 12. The heated air is blown out radially outward of the blade 12 a by the rotation of the centrifugal fan 12. Air blown out from the centrifugal fan 12 is blown out from the outlet of the scroll casing 11 toward the vehicle interior.
 次に、本実施形態の送風ユニット10の送電制御について図5のフローチャートに基づいて説明する。 Next, power transmission control of the blower unit 10 of the present embodiment will be described based on the flowchart of FIG.
 まず、インピーダンス検出回路24にて誘導加熱コイル21のインピーダンスZを検出し(S10)、誘導加熱コイル21のインピーダンスZに基づいて遠心式ファン12の温度を取得する(S11)。 First, the impedance detection circuit 24 detects the impedance Z of the induction heating coil 21 (S10), and acquires the temperature of the centrifugal fan 12 based on the impedance Z of the induction heating coil 21 (S11).
 次に、遠心式ファン12の温度が所定の上限温度を上回っているか否かを判定する(S12)。本実施形態では、上限温度が例えば200℃に設定されている。この結果、遠心式ファン12の温度が上限温度(200℃)を上回っていると判定された場合には(S12:YES)、遠心式ファン12が過熱状態になっていると判断し、誘導加熱コイル21への送電を停止する(S13)。 Next, it is determined whether or not the temperature of the centrifugal fan 12 exceeds a predetermined upper limit temperature (S12). In the present embodiment, the upper limit temperature is set to 200 ° C., for example. As a result, when it is determined that the temperature of the centrifugal fan 12 is higher than the upper limit temperature (200 ° C.) (S12: YES), it is determined that the centrifugal fan 12 is in an overheated state, and induction heating is performed. Power transmission to the coil 21 is stopped (S13).
 一方、遠心式ファン12の温度が前記上限温度(200℃)を上回っていないと判定された場合には(S12:NO)、遠心式ファン12の温度に基づいて誘導加熱コイル21への送電(交流電流の供給)を制御する(S14)。具体的には、遠心式ファン12の所定温度(例えば150℃)より高い場合は、交流電流(供給電力)を小さくし、遠心式ファン12の温度が所定温度(150℃)より低い場合は、交流電流を大きくすればよい。 On the other hand, when it is determined that the temperature of the centrifugal fan 12 does not exceed the upper limit temperature (200 ° C.) (S12: NO), power transmission to the induction heating coil 21 based on the temperature of the centrifugal fan 12 ( (AC current supply) is controlled (S14). Specifically, when the temperature is higher than a predetermined temperature (for example, 150 ° C.) of the centrifugal fan 12, the alternating current (supplied power) is reduced, and when the temperature of the centrifugal fan 12 is lower than the predetermined temperature (150 ° C.), What is necessary is just to enlarge an alternating current.
 次に、遠心式ファン12の温度に基づいて遠心式ファン12の回転速度を制御する(S15)。遠心式ファン12の回転速度の制御は、遠心式ファン12から吹き出される空気の温度が所望温度になるように電動モータ13の回転速度を調整することによって行う。具体的には、目標とする温度が高い場合には、遠心式ファン12の回転速度が低くなるように電動モータ13の回転制御を行い、目標とする温度が低い場合には、遠心式ファン12の回転速度が高くなるように電動モータ13の回転制御を行えばよい。 Next, the rotational speed of the centrifugal fan 12 is controlled based on the temperature of the centrifugal fan 12 (S15). The rotational speed of the centrifugal fan 12 is controlled by adjusting the rotational speed of the electric motor 13 so that the temperature of the air blown from the centrifugal fan 12 becomes a desired temperature. Specifically, when the target temperature is high, rotation control of the electric motor 13 is performed so that the rotational speed of the centrifugal fan 12 is low, and when the target temperature is low, the centrifugal fan 12 is controlled. The rotation control of the electric motor 13 may be performed so as to increase the rotation speed of the motor.
 以上説明した本実施形態の送風ユニット10では、誘導加熱コイル21のインピーダンスから遠心式ファン12の温度を取得し、この遠心式ファン12の温度に基づいて誘導加熱コイル21に供給される電力を制御している。これにより、温度センサを用いることなく、遠心式ファン12の温度を把握することができ、遠心式ファン12の温度に基づいて誘導加熱コイル21に供給される電力の制御を適切に行うことができる。
(第2実施形態)
 次に、第2実施形態について説明する。本第2実施形態において、上記第1実施形態と同様の部分は同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
In the blower unit 10 of the present embodiment described above, the temperature of the centrifugal fan 12 is acquired from the impedance of the induction heating coil 21 and the power supplied to the induction heating coil 21 is controlled based on the temperature of the centrifugal fan 12. is doing. Thereby, the temperature of the centrifugal fan 12 can be grasped without using a temperature sensor, and the electric power supplied to the induction heating coil 21 can be appropriately controlled based on the temperature of the centrifugal fan 12. .
(Second Embodiment)
Next, a second embodiment will be described. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts will be described.
 図6のフローチャートに示すように、本第2実施形態では、S10の処理で誘導加熱コイル21のインピーダンスを検出した後に、誘導加熱コイル21のインピーダンスの変化率が所定値(例えば1%)を超えているか否かを判定する(S16)。S16の処理では、インピーダンスの変化率は、所定時間内に複数回検出したインピーダンスのバラツキが1%を超えているか否かを判定すればよい。 As shown in the flowchart of FIG. 6, in the second embodiment, after the impedance of the induction heating coil 21 is detected in the process of S10, the rate of change of the impedance of the induction heating coil 21 exceeds a predetermined value (for example, 1%). It is determined whether or not (S16). In the process of S16, the impedance change rate may be determined by determining whether or not the variation in impedance detected a plurality of times within a predetermined time exceeds 1%.
 この結果、インピーダンスの変化率が所定値を超えていると判定された場合には(S16:YES)、遠心式ファン12の軸ずれが発生してインピーダンスのバラツキが大きくなっていると判断し、電動モータ13を停止し(S17)、誘導加熱コイル21への送電を停止する(S13)。遠心式ファン12の軸ずれは、ファン内部に異物が侵入すること等によって発生し、このような軸ずれは故障につながるので、電動モータ13を停止して遠心式ファン12の回転を停止させる。一方、インピーダンスの変化率が所定値を超えていないと判定された場合には(S16:NO)、S11~S15の処理を行う。 As a result, when it is determined that the rate of change of impedance exceeds a predetermined value (S16: YES), it is determined that the axial deviation of the centrifugal fan 12 has occurred and the variation in impedance has increased, The electric motor 13 is stopped (S17), and power transmission to the induction heating coil 21 is stopped (S13). The axial deviation of the centrifugal fan 12 occurs due to the entry of foreign matter inside the fan, and such an axial deviation leads to failure. Therefore, the electric motor 13 is stopped to stop the rotation of the centrifugal fan 12. On the other hand, when it is determined that the impedance change rate does not exceed the predetermined value (S16: NO), the processing of S11 to S15 is performed.
 以上説明した本第2実施形態によれば、誘導加熱コイル21のインピーダンスの変化に基づいて遠心式ファン12の軸ずれを検出することが可能となる。遠心式ファン12の軸ずれを検出した場合には、電動モータ13を停止させることで、故障を未然に防ぐことができる。
(他の実施形態)
 以上、本開示の実施形態について説明したが、本開示はこれに限定されるものではなく、本開示の趣旨を逸脱しない限り、適宜変更できる。さらに、当業者がそれらから容易に置き換えられる範囲内で、当業者が通常有する知識に基づく改良を適宜付加することができる。
According to the second embodiment described above, the axial deviation of the centrifugal fan 12 can be detected based on the change in the impedance of the induction heating coil 21. When the axial deviation of the centrifugal fan 12 is detected, the failure can be prevented beforehand by stopping the electric motor 13.
(Other embodiments)
As mentioned above, although embodiment of this indication was described, this indication is not limited to this, It can change suitably, unless it deviates from the meaning of this indication. Furthermore, improvements based on the knowledge that a person skilled in the art normally has can be added as appropriate within the range that a person skilled in the art can easily replace them.
 上記各実施形態では、遠心式ファン12の温度が上限温度を上回っていると判定された場合には、誘導加熱コイル21への送電を停止した(図5のS13参照)。しかしながら、例えば、遠心式ファン(ファン)の温度が所定の上限温度(例えば200℃)を超えている場合に、誘導加熱コイル(交流電流供給部)への交流電流を完全に停止するのではなく、誘導加熱コイルへの交流電流の供給(電力供給)を抑制してもよい。具体的には、遠心式ファンの温度が所定の上限温度を超えている場合に(図5のS12:YES)、誘導加熱コイルへ供給する交流電流を、遠心式ファンの温度が所定温度を超えていない場合よりも小さくする。 In each of the above embodiments, when it is determined that the temperature of the centrifugal fan 12 is higher than the upper limit temperature, power transmission to the induction heating coil 21 is stopped (see S13 in FIG. 5). However, for example, when the temperature of the centrifugal fan (fan) exceeds a predetermined upper limit temperature (eg, 200 ° C.), the AC current to the induction heating coil (AC current supply unit) is not completely stopped. The supply of AC current (power supply) to the induction heating coil may be suppressed. Specifically, when the temperature of the centrifugal fan exceeds a predetermined upper limit temperature (S12 in FIG. 5: YES), the AC current supplied to the induction heating coil is changed to the temperature of the centrifugal fan exceeding the predetermined temperature. Make it smaller than not.
 例えば、上記各実施形態では、本開示の送風ユニットを車載空調装置用の送風ユニット10として用いた例について説明した。しかしながら、本開示に係る送風ユニットを車載空調装置以外の他の空調装置(例えば、家庭用空調装置、業務用空調装置)に適用してもよい。 For example, in each of the above-described embodiments, the example in which the blower unit of the present disclosure is used as the blower unit 10 for the in-vehicle air conditioner has been described. However, you may apply the ventilation unit which concerns on this indication to air conditioners other than a vehicle-mounted air conditioner (for example, home air conditioner, commercial air conditioner).
 また、上記各実施形態では、遠心式ファン12の底面に対向するように誘導加熱コイル23を設けた。しかしながら、遠心式ファン12の底面以外の場所に対向するように誘導加熱コイル23を設けてもよい。 In each of the above embodiments, the induction heating coil 23 is provided so as to face the bottom surface of the centrifugal fan 12. However, the induction heating coil 23 may be provided so as to face a place other than the bottom surface of the centrifugal fan 12.
 また、上記各実施形態では、本開示の送風ユニット10に用いられるファンとして遠心式ファン10を用いた。しかしながら、クロスフローファン、軸流ファン等の各種のファンを用いてもよい。 In each of the above embodiments, the centrifugal fan 10 is used as a fan used in the blower unit 10 of the present disclosure. However, various fans such as a cross flow fan and an axial fan may be used.
 また、上記各実施形態では、共振回路22をスクロールケーシング11の外部に配置した。しかしながら、共振回路22をスクロールケーシング11の内部に配置してもよい。これにより、共振回路22で発生する熱を利用して空気(空調風)を加熱することができる。さらに電源回路21をスクロールケーシング11の内部に配置してもよく、この場合には電源回路21で発生する熱を利用して空気を加熱することができる。 Further, in each of the above embodiments, the resonance circuit 22 is disposed outside the scroll casing 11. However, the resonance circuit 22 may be disposed inside the scroll casing 11. Thereby, air (air conditioned wind) can be heated using the heat generated in the resonance circuit 22. Further, the power supply circuit 21 may be disposed inside the scroll casing 11, and in this case, air can be heated using heat generated by the power supply circuit 21.

Claims (5)

  1.  電動モータ(13)と、前記電動モータ(13)によって回転駆動されるファン(12)とを備え、前記ファン(12)は回転することで、空気を吸入して吹き出す空調装置用送風ユニットであって、
     前記ファン(12)に対向するように前記ファンに対して非接触で配置された誘導加熱コイル(21)と、
     前記誘導加熱コイル(21)に所定周波数の交流電流を供給する交流電流供給部(22、23)と、
     前記誘導加熱コイル(21)のインピーダンスを検出するインピーダンス検出部(24)と、
     前記交流電流供給部(22、23)による交流電流の供給を制御する制御装置(25)と、を備え、
     前記ファン(12)は、前記誘導加熱コイル(21)に所定周波数の交流電流を供給することで誘導加熱によって発熱して吸入した空気を加熱し、
     前記制御装置(25)は、
      前記インピーダンス検出部(24)によって検出された前記誘導加熱コイル(21)のインピーダンスに基づいて前記ファン(12)の温度を取得し、
      前記ファン(12)の温度に基づいて前記交流電流供給部(22、23)による前記誘導加熱コイル(21)への交流電流の供給を制御する空調装置用送風ユニット。
    An air conditioner blower unit that includes an electric motor (13) and a fan (12) that is rotationally driven by the electric motor (13). The fan (12) rotates to suck in and blow out air. And
    An induction heating coil (21) disposed in non-contact with the fan so as to face the fan (12);
    An alternating current supply unit (22, 23) for supplying an alternating current of a predetermined frequency to the induction heating coil (21);
    An impedance detector (24) for detecting the impedance of the induction heating coil (21);
    A control device (25) for controlling the supply of alternating current by the alternating current supply unit (22, 23),
    The fan (12) heats the inhaled air generated by induction heating by supplying an alternating current of a predetermined frequency to the induction heating coil (21),
    The control device (25)
    Obtaining the temperature of the fan (12) based on the impedance of the induction heating coil (21) detected by the impedance detector (24);
    A blower unit for an air conditioner that controls supply of alternating current to the induction heating coil (21) by the alternating current supply unit (22, 23) based on the temperature of the fan (12).
  2.  前記制御装置(25)は、前記ファン(12)の温度が所定の上限温度を超えている場合に、前記交流電流供給部(22、23)による前記誘導加熱コイル(21)への交流電流の供給を停止する請求項1に記載の空調装置用送風ユニット。 When the temperature of the fan (12) exceeds a predetermined upper limit temperature, the control device (25) generates an AC current to the induction heating coil (21) by the AC current supply unit (22, 23). The blower unit for an air conditioner according to claim 1, wherein the supply is stopped.
  3.  前記制御装置(25)は、前記ファン(12)の温度が所定の上限温度を超えている場合に、前記交流電流供給部(22、23)による前記誘導加熱コイル(21)への交流電流の供給を抑制させる請求項1に記載の空調装置用送風ユニット。 When the temperature of the fan (12) exceeds a predetermined upper limit temperature, the control device (25) generates an AC current to the induction heating coil (21) by the AC current supply unit (22, 23). The air blower unit for an air conditioner according to claim 1, wherein supply is suppressed.
  4.  前記制御装置(25)は、前記ファン(12)の温度に基づいて前記電動モータ(13)の回転制御を行う請求項1~3のいずれか1つに記載の空調装置用送風ユニット。 The air blower unit for an air conditioner according to any one of claims 1 to 3, wherein the control device (25) controls rotation of the electric motor (13) based on a temperature of the fan (12).
  5.  前記制御装置(25)は、前記インピーダンス検出部(24)によって検出された前記誘導加熱コイル(21)のインピーダンスに基づいて、前記電動モータ(13)の軸がずれているか否かを判定する請求項1~4のいずれか1つに記載の空調装置用送風ユニット。 The said control apparatus (25) determines whether the axis | shaft of the said electric motor (13) has shifted | deviated based on the impedance of the said induction heating coil (21) detected by the said impedance detection part (24). Item 5. The air blower unit for an air conditioner according to any one of Items 1 to 4.
PCT/JP2015/002247 2014-05-06 2015-04-24 Blower unit for air conditioner WO2015170462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-095605 2014-05-06
JP2014095605A JP2015212597A (en) 2014-05-06 2014-05-06 Blower unit for air-conditioning device

Publications (1)

Publication Number Publication Date
WO2015170462A1 true WO2015170462A1 (en) 2015-11-12

Family

ID=54392322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002247 WO2015170462A1 (en) 2014-05-06 2015-04-24 Blower unit for air conditioner

Country Status (2)

Country Link
JP (1) JP2015212597A (en)
WO (1) WO2015170462A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017163621A1 (en) * 2016-03-24 2018-08-09 株式会社デンソー Heating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216279A (en) * 1975-07-29 1977-02-07 Dai Ichi High Frequency Co Ltd Measuring method of temperature in high-frequency inductive heating
JPH04320759A (en) * 1991-04-19 1992-11-11 Mitsubishi Electric Home Appliance Co Ltd Hot air heater
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
JPH09286231A (en) * 1996-04-22 1997-11-04 Fuji Heavy Ind Ltd Heater for vehicle
JPH10183326A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Control method for induction heating device
JP2010203699A (en) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp Air conditioning device
JP2013138036A (en) * 2007-09-13 2013-07-11 Neturen Co Ltd Method of determining positional relation between heating coil and work

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245871A (en) * 2011-05-27 2012-12-13 Tbk:Kk Electrical heating device and electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216279A (en) * 1975-07-29 1977-02-07 Dai Ichi High Frequency Co Ltd Measuring method of temperature in high-frequency inductive heating
JPH04320759A (en) * 1991-04-19 1992-11-11 Mitsubishi Electric Home Appliance Co Ltd Hot air heater
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
JPH09286231A (en) * 1996-04-22 1997-11-04 Fuji Heavy Ind Ltd Heater for vehicle
JPH10183326A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Control method for induction heating device
JP2013138036A (en) * 2007-09-13 2013-07-11 Neturen Co Ltd Method of determining positional relation between heating coil and work
JP2010203699A (en) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp Air conditioning device

Also Published As

Publication number Publication date
JP2015212597A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
CN103134191B (en) There is the hand-held hot air device of the digit manipulation device of band general operation parts
JP6254276B2 (en) How to detect fan and motor airflow
RU2013130011A (en) DRYER WITH HEAT PUMP AND METHOD FOR MANAGING ITS OPERATION
CN105443404B (en) Turbomolecular pump
JP2016142418A5 (en)
JP6453115B2 (en) Air conditioner indoor unit
JP2008534211A5 (en)
JP6170372B2 (en) Blower unit for air conditioner
US20160169751A1 (en) Method and device for determining a surface temperature of an inductively heated roller shell
CN113864986B (en) Air conditioner control method
WO2015170462A1 (en) Blower unit for air conditioner
US10277149B2 (en) Air blower equipped with brushless DC motor
JP2005083316A (en) Motor control system and vacuum pump mounting the same
JP6285794B2 (en) Blower unit for air conditioner
JP2016160917A (en) Vacuum pump temperature control device
US20150159882A1 (en) Domestic appliance
US20160320112A1 (en) Hvac blower motor with speed sensor
JP6349102B2 (en) Blower unit for air conditioner
JP2015183874A (en) Air conditioner
KR101775367B1 (en) Apparatus for monitoring vacuum motor using a thermal sensor
KR20130027264A (en) Control method of a electric compressor
CN105762986A (en) Automatic speed-regulating ECM motor and freezer using same
CN112864487A (en) Battery cooling system
JP2015121358A5 (en)
WO2019234826A1 (en) Monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789974

Country of ref document: EP

Kind code of ref document: A1