WO2015169156A1 - D2d通信中的不同cp长度共存的配置 - Google Patents

D2d通信中的不同cp长度共存的配置 Download PDF

Info

Publication number
WO2015169156A1
WO2015169156A1 PCT/CN2015/077365 CN2015077365W WO2015169156A1 WO 2015169156 A1 WO2015169156 A1 WO 2015169156A1 CN 2015077365 W CN2015077365 W CN 2015077365W WO 2015169156 A1 WO2015169156 A1 WO 2015169156A1
Authority
WO
WIPO (PCT)
Prior art keywords
format
base station
subframe
resource
channel
Prior art date
Application number
PCT/CN2015/077365
Other languages
English (en)
French (fr)
Inventor
李波
蒋琦
刘仁茂
Original Assignee
夏普株式会社
李波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 李波 filed Critical 夏普株式会社
Priority to US15/309,287 priority Critical patent/US10285181B2/en
Priority to EP15789217.5A priority patent/EP3142437A4/en
Priority to JP2016566931A priority patent/JP6527530B2/ja
Publication of WO2015169156A1 publication Critical patent/WO2015169156A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention generally relates to the field of mobile communications, and in particular relates to a configuration in which D2D signals of different CP lengths coexist in a D2D communication system and a corresponding anti-interference scheme.
  • the D2D (Device to Device) technology refers to a communication method in which two peer-to-peer user nodes communicate directly.
  • Direct communication technology is very critical in many areas where 3GPP is not yet standardized.
  • Including the P2P (Peer to Peer) in the non-cellular working mode Ad hoc which has been continuously studied in the academic field in recent years, and the killer application that has always had great potential business needs - M2M (Machine to Machine) in the Internet of Things.
  • M2M Machine to Machine
  • each user node can transmit and receive signals and may have the function of automatically routing (forwarding messages).
  • the physical resources used to carry their communications may be configured by the network or by competition between the various direct communication communication terminals.
  • these terminal direct communication services are carried out under the configuration of the network, which is not only an effective supplement to the existing cellular system to more effectively utilize the air interface resources, but also can incorporate various physical devices into the connection system, so that the Internet of Things Services such as car networking have the potential to be implemented under the framework of 3GPP cellular networks.
  • the terminal direct communication service can work independently without the assistance of the base station, such as disaster areas (such as earthquakes and floods). Timely rescue, such as causing the network to be completely paralyzed, provides a powerful means, which is a very powerful complement to the existing cellular business.
  • the object of the present invention is to propose an anti-interference technique when D2D signals of different CP lengths coexist in a D2D communication system, and a set of mechanisms of corresponding physical layer and upper layer configuration, and their influence on 3GPP standardization.
  • the present invention cites several solutions against interference caused by coexistence of different CP lengths, and is applicable to various scenarios in which different CP length signals coexist in D2D communication.
  • the present invention designs several mechanisms for the problem that signals of different CP lengths coexist in the same air interface when the D2D service is scheduled, causing inter-symbol interference, resulting in the problem that the interfered traffic cannot pass normally.
  • two configurations of coexistence of D2D signals of CP length are disclosed, wherein each scheme has two to four different sub-schemes that may be employed.
  • the network allocates a resource pool of a specific CP format to a certain D2D channel of all users in the cell; in the scheme 1-2, the network configures a specific one for each D2D channel of each user.
  • the network configures a CP length for each D2D subframe, and signal multiplexing of different CP lengths is not allowed in the same subframe; in scheme 2-2, the system will cycle The CP length is configured.
  • the CP subframe of the degree wherein the most typical scheme is that the system configures different CP lengths for each PRB of the hybrid subframe; in schemes 2-4, the system periodically configures the CP length.
  • the network configures a CP length for each of the N2 D2D subframes, and for the remaining M D2D subframes, the system will divide the time and frequency.
  • CP subframes of different lengths in a multiplexed manner, wherein the most typical scheme is that the system configures each SC-FDMA/OFDM symbol in the hybrid subframe or each subcarrier set in each symbol group differently.
  • CP length in scenario 2-5, the network configures a CP length for each assigned time-frequency physical resource set.
  • the network can configure the corresponding configuration described above through high layer signaling, and these configurations are notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set; for the configuration related D2D receiving terminal, the CP format obtained from the network notification will be used correspondingly. Received signal detection;
  • the network can configure the corresponding configuration described above through high layer signaling, which will be notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the CP format obtained from the network notification will be used correspondingly.
  • Receive signal detection in summary, on the subframe set divided by the CP format, both the D2D transmission terminal and the D2D receiving terminal must limit the D2D transmission and reception behavior according to the corresponding CP format configured on the subframe or the subframe set. .
  • the long CP subframe set, the short CP subframe set, and the mixed subframe subframe number need to be configured through the upper layer RRC signaling or the DCI. And its corresponding mixed subframe configuration information.
  • the corresponding mixed subframe configuration information is notified by the RRC or is notified in the SA channel.
  • scheme 2-2 there are mixed subframes in which long and short CPs coexist in the form of time division multiplexing, and scheme 2-2, scheme 2-3, scheme 2-4, for example, for long and short CPs.
  • the system also informs the corresponding resources of a CP subframe set and the corresponding configuration of the hybrid subframes by RRC signaling.
  • the present invention generally provides a method for cyclic prefix CP configuration of device-to-device D2D communication resources and a corresponding base station.
  • the method includes: a base station configuring a CP format for a different subset of resources, the CP format including a long CP signal format and a short CP signal format; and the base station notifying the configuration to the D2D transmitting device and the D2D receiving device, where the base station
  • the configuration of the D2D transmitting device and the D2D receiving device notification includes: a configuration of a CP format adopted by a resource pool of a D2D discovery channel of the D2D transmitting device; and a configuration of a CP format adopted by a resource pool of a D2D communication channel of the D2D transmitting device And wherein the D2D transmitting device and the D2D receiving device transmit and receive in the resource subset in a CP format conforming to the configuration.
  • the configuration is notified by high layer RRC signaling or by SIB message or DCI.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring a resource pool occupied by each D2D channel, and a CP format corresponding to the resource pool.
  • the notifying the base station to the D2D transmitting device and the D2D receiving device that the configuration includes: the base station notifying the time-frequency resource included in the resource pool of each D2D channel, and the CP format corresponding to the resource pool.
  • the base station configuring the CP format for different resource subsets includes: the base station is configured to allocate a corresponding short CP resource pool of the D2D channel and the D2D channel long CP resource pool for each D2D channel.
  • the base station notifying the D2D sending device and the D2D receiving device of the configuration includes: the base station notifying each D2D terminal of the CP format of each D2D channel and the resource pool occupied by the D2D channel of the corresponding CP format of the D2D terminal in the cell.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring two subframe sets, and different CP formats adopted by each subframe set.
  • Notifying the configuration by the base station to the D2D transmitting device and the D2D receiving device includes: the base station notifying the time-frequency resources included in the two subframe sets, and different CP formats corresponding to the two subframe sets.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring two subframe sets and one or two mixed subframes, and the two subframe sets respectively adopting no The same CP format, how the one or two hybrid subframes adopt different CP formats in time division multiplexing.
  • the configuration comprises: the base station notifying the time-frequency resource included in the two subframe sets, the different CP format corresponding to the two subframe sets, the one or two hybrids The subframe number of the frame and the number and location of SC-FDMA/OFDM symbols corresponding to different CP format signals in the one or two mixed subframes.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring two subframe sets and one or two mixed subframes, different CP formats respectively adopted by the two subframe sets, and How one or two mixed subframes adopt different CP formats in frequency division multiplexing.
  • the configuration comprises: the base station notifying the time-frequency resource included in the two subframe sets, the different CP format corresponding to the two subframe sets, the one or two hybrids a subframe number of the frame, and a number, location, and power information of the physical resource block corresponding to the different CP format signals in the one or two mixed subframes, and physical resources occupied by the guard band in the hybrid subframe The number and location of the blocks.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring two subframe sets and one or two mixed subframes, different CP formats respectively adopted by the two subframe sets, and How to describe one or two mixed subframes in different CP formats in time division and frequency division multiplexing.
  • the configuration comprises: the base station notifying the time-frequency resource included in the two subframe sets, the different CP format corresponding to the two subframe sets, the one or two hybrids
  • the subframe number of the frame, and the number of SC-FDMA/OFDM symbol groups in the one or two mixed subframes, SC-FDMA/OFDM corresponding to different CP format signals in each SC-FDMA/OFDM symbol group The number of symbols and subcarriers, position and power information, and the number and location of subcarriers occupied by the guard bands in the same SC-FDMA/OFDM symbol group in the hybrid subframe.
  • the base station configuring the CP format for different resource subsets includes: the base station configuring two time-frequency physical resource sets, and the different CP formats respectively adopted by the two time-frequency physical resource sets.
  • the configuration comprises: the base station notifying the time-frequency resource included in the two time-frequency physical resource sets, and different CPs corresponding to the two time-frequency physical resource sets Format, power information and corresponding guard band position.
  • FIG. 1 is a schematic diagram of a subframe format according to a 1-1 of the present invention, in which a base station allocates a resource pool of a specific CP format for a certain D2D channel of all users in the cell;
  • FIG. 2 is a schematic diagram of a subframe format according to a 1-2 of the present invention, in which a base station allocates a resource pool of a specific CP format to a certain D2D channel of a certain user in the cell;
  • FIG. 3 is a schematic diagram showing a subframe format diagram of configuring a CP format according to a subframe set according to a 2-1 of the present invention, wherein subframes under each CP format subframe set are consecutive;
  • FIG. 4 is a schematic diagram showing a subframe format diagram of configuring a CP format according to a subframe set according to a 2-1 of the present invention, wherein subframes under each CP format subframe set are discontinuous;
  • FIG. 5 is a view schematically showing a subframe format diagram of configuring a CP format according to a subframe set according to the scheme 2-2 of the present invention
  • FIG. 6 is a diagram showing a subframe format diagram of configuring a CP format according to a subframe set according to a solution 2-3 of the present invention
  • FIG. 7 is a schematic diagram showing a subframe format diagram of configuring a CP format according to a subframe set according to a second to fourth aspect of the present invention, wherein a mixed subframe includes two symbol groups;
  • FIG. 8 is a schematic diagram showing a subframe format diagram of configuring a CP format according to a subframe set according to a second to fourth aspect of the present invention, wherein a mixed subframe includes five symbol groups;
  • FIG. 9 is a schematic diagram showing a subframe and a PRB format diagram of configuring a CP format according to a time-frequency physical resource set according to a second embodiment of the present invention.
  • FIG. 10 is a flow chart schematically showing a method of CP configuration of resources of device-to-device D2D communication according to the present invention.
  • Fig. 11 is a view schematically showing the structure of a base station according to the present invention.
  • the base station will semi-statically configure the sub-resource pool and its CP format for each specific D2D channel, including:
  • the subframe structure of the scheme is as shown in FIG. 1.
  • the base station allocates a resource pool of a specific CP format to a certain D2D channel of all users in the cell.
  • the base station also needs to notify the CP length of the subframe sets while notifying the D2D terminal of the configuration of the subframe set by the RRC signaling.
  • the signaling of the subframe set configuration mode of the base station includes:
  • the base station will configure a unified, unique CP format for each D2D channel.
  • the signals of a D2D channel corresponding to different D2D terminals are called on the resource pool configured for the D2D channel of the local cell, and all D2D mode 1 terminals in the coverage of the base station will adopt the CP format configured by the base station for the channel.
  • a unified and unique CP format of a resource pool and its channel resource pool is configured for a discovery channel of all D2D terminals in the cell, or a resource allocation channel (SA Channel) configuration for a D2D terminal.
  • SA Channel resource allocation channel
  • the base station allocates a specific CP format for each D2D channel, and the D2D channel is multiplexed for each D2D user in the cell, a resource pool allocated for the D2D channel, and a resource pool of other D2D channels.
  • it is time-division multiplexed in TDM mode, or frequency-division multiplexed in FDM mode, or multiplexed in TDM & FDM mode, regardless of the way of multiplexing, as long as the base station is a resource for each D2D channel.
  • the pool determines the specific CP format and is within the scope of the present invention.
  • the first configuration scheme uses the same CP format in the same D2D channel in the same cell, which has been described above.
  • the second configuration scheme is that the resource pool of the same D2D channel in the same cell includes two resource pool subsets, and the two resource pool subsets adopt different CP formats, and the D2D channel of each user is carried in one of the CPs. On a subset of resource pools of the format, a D2D channel of the same user is not allowed to be carried across resource pool subsets of different formats.
  • Embodiment 1-1 relates to the following physical layer processes:
  • the network may configure the corresponding configuration described above by high layer RRC signaling or by SIB message broadcast, such as the resource pool of each D2D channel in the cell, and the CP format of each D2D channel in the cell. Since the message is common throughout the cell, these configurations are notified to the D2D transmitter terminal and the D2D receiver terminal in a broadcast or other manner.
  • the network formatted CP format is adopted for the D2D signal transmitted on its corresponding resource pool;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the sub-resource pool and its CP format for each specific D2D channel, including:
  • a short CP resource pool allocated for a D2D channel in the cell 1.
  • a long CP resource pool allocated for a D2D channel in the cell 1.
  • the subframe structure of the scheme is as shown in FIG. 2, and the base station allocates a resource pool of a specific CP format to a certain D2D channel of a certain user in the cell.
  • the base station also needs to notify the CP length of the subframe sets while notifying the D2D terminal of the configuration of the subframe set by the RRC signaling.
  • the signaling of the subframe set configuration mode of the base station includes:
  • the base station will configure a specific CP format for each D2D channel of each D2D terminal.
  • the signals of a certain D2D channel corresponding to different D2D terminals are called on the short CP resource pool configured for the D2D channel of the local cell, or the long CP resource pool, and all the D2D mode 1 terminals in the coverage of the base station will use the base station as the D2D terminal.
  • the CP format of the D2D channel configuration For example, a discovery channel short CP resource pool and a discovery channel long CP resource pool are allocated to a discovery channel of all D2D terminals in the cell, and a discovery channel of a D2D terminal can carry a discovery channel short CP in the cell.
  • the resource allocation channel may be carried in one of a resource allocation channel short CP resource pool or a resource allocation channel long CP resource pool in the cell.
  • the base station allocates a specific CP format for each D2D channel of each D2D terminal, and the D2D channel short (or long) CP resource pool is the D2D of the channel in each CP format under the cell.
  • the user is multiplexed, and the short (or long) CP resource pool allocated for the D2D channel, and the long (or short) CP resource pool allocated for the D2D channel, or
  • the resource pools of the D2D channels are time-division multiplexed in TDM mode, or frequency-division multiplexed in FDM mode, or multiplexed in TDM & FDM mode, regardless of the way of multiplexing, as long as the base station is
  • the resource pool of each D2D channel determines a specific CP format, and is within the scope of the present invention.
  • a specific D2D channel of each user in the cell is configured into a certain group of CP format resource pools of the D2D channel in the cell (a short CP resource pool of the D2D channel) Or a long CP resource pool of the D2D channel, that is, a certain channel of a user of the cell can only be allocated to one of the subset 1 or subset 2 of the channel resource pool, and the same channel of the same user crosses the resource. Pool allocation 1 or 2 for resource allocation is not allowed.
  • Embodiments 1-2 relate to the following physical layer processes:
  • the network may configure the corresponding configuration described above by high layer RRC signaling or by SIB message broadcast, such as the resource pool of each D2D channel in the cell, and the CP format of each D2D channel in the cell. Since the message is common throughout the cell, these configurations are notified to the D2D transmitter terminal and the D2D receiver terminal in a broadcast or other manner.
  • the network formatted CP format is adopted for the D2D signal transmitted on its corresponding resource pool;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the subframe set for the D2D communication channel and the D2D discovery channel, including:
  • the base station Subframe set configuration mode signaling includes
  • the subframes in the subframe set in each CP format may be consecutive, as shown in FIG. 3, or may be discontinuous, as shown in FIG. 4.
  • the subframe set configuration mode signaling of the base station is one of the above 1, 2 or 1, 2 simultaneous configuration.
  • This signaling is sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message. It is a good choice to define a new SIB format in the D2D specification to transfer this information.
  • the first configuration scheme is used for general configuration of all D2D channels in the current cell, that is, each channel can only be allocated to one of the time-frequency physical resource block set 1 and the time-frequency physical resource block set 2.
  • the second configuration scheme is configured to specifically configure each D2D channel of all D2D terminals in the cell, such as a discovery channel configuration subframe set of all D2D terminals of the cell and a CP format of the subframe set, or a cell of the same
  • the resource allocation channel (SA Channel) of all D2D terminals configures the subframe set and the CP format of the subframe set, or configures the time-frequency physical resource block set and the time-frequency physical resource of the D2D transmission channel of all D2D mobile phones of the cell.
  • SA Channel resource allocation channel
  • the third configuration scheme is configured to specifically configure each D2D channel of each D2D terminal in the cell, such as a discovery channel configuration subframe set of a D2D terminal of the cell and a CP format of the subframe set, or
  • the resource allocation channel (SA Channel) of a certain D2D terminal of the cell configures the subframe set and the CP format of the subframe set, or configures the time-frequency physical resource block set of the D2D transmission channel of a certain D2D mobile phone of the cell and the time The CP format of the frequency physical resource block set.
  • a certain D2D channel of a D2D terminal can be configured in one of the two different CP format resource pools of the D2D channel in the cell, and one D2D channel of one D2D terminal simultaneously crosses different CP formats. Resource pool hosting is not allowed.
  • the resources used to transmit the signal are selected in the set of subframes of the configuration, while its CP format fully complies with the configuration.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set; for the configuration related D2D receiving terminal, the CP format obtained from the network notification will be used correspondingly. Received signal detection;
  • the eNB should notify these subframe sets and their CP format configuration information to the D2D transmitting terminal and the receiving terminal, especially the subframe set nature of certain key channels, such as SA channel and D2D synchronization channel, etc., to meet their respective required coverage requirements. .
  • the configured subframe set may select consecutive subframes, as shown in FIG. 3, or may select discontinuous subframes, as shown in FIG.
  • Embodiment 2-1 relates to the following physical layer processes:
  • the network can configure the corresponding configuration described above through high layer signaling, which is notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the subframe set for the D2D communication channel and the D2D discovery channel, including:
  • the subframe structure in this embodiment is as shown in FIG. 5. among them A signal indicating that the signals of different CP formats coexist completely in the TDM manner in the mixed subframes in the same subframe. This parameter requires network configuration to the D2D terminal for corresponding operations such as D2D transmitter rate matching.
  • the base station notifies the D2D terminal of the configuration of the subframe set by the RRC signaling, and also needs to notify the same CP length of the corresponding subframe set of the D2D terminals.
  • the subframe set configuration mode signaling of the base station includes
  • the subframe number of the subframe in which the long CP signal and the short CP signal coexist and the number of SC-FDMA/OFDM symbols of the corresponding long CP or short CP signal, and their corresponding positions for example, a simplified embodiment, ie In the specification, the relative position of the long CP symbol and the short CP symbol is fixed (such as the short CP symbol first and the long CP symbol is followed), and the specification also agrees that the symbols of the long and short CPs are respectively continuous. And the sequence number of the last short CP symbol in the hybrid subframe is configured by the network.
  • the long CP symbol and the short CP symbol appear in the time domain.
  • the interval between several sampling points For example, the short CP is in the front, the long CP is in the backward, and the short CP symbols are continuous without interval (the long CP is also the same).
  • the length of the time interval between the short CP symbol and the long CP symbol should be one subframe duration minus The difference between the lengths of all long CP symbols and the length of a short CP time.
  • the subframe set configuration mode signaling of the base station is any combination of the above 1, 2, 3 subframes or subframe sets.
  • Such a configuration can satisfy various scenarios in which short CP and long CP signals coexist in the same subframe, for example, cellular data and D2D data coexist in the same subframe in different CP formats, and different D2D users ( Yes) Coexist their data in the same sub-frame in different CP formats.
  • This signaling is sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message.
  • the first configuration scheme is used for universally configuring all D2D channels in the cell, that is, all channels of the cell can only be allocated to the subframe set 1 and the short CP resources, the subframe set 2, and the mixed subframe within the hybrid subframe.
  • One of the long CP resources is specifically configured for each D2D channel, such as configuring a subframe set of a discovery channel of a D2D terminal and a CP format of the subframe set, or A subframe set and a CP format of the subframe set are configured for a resource allocation channel (SA Channel) of a D2D terminal.
  • SA Channel resource allocation channel
  • the third configuration scheme configures a certain group of CP formats for a specific D2D channel of each user in the cell, that is, a certain channel of a user of the cell can only be allocated to the channel resource pool subframe set 1 and the mixed subframe. In one of the short CP resources or the long CP resources in the subframe set 2 and the mixed subframe, resource allocation of the same channel of the same user across the resource pool subframe set 1 or 2 is not allowed.
  • the resources used to transmit the signal are selected in the set of subframes of the configuration, while its CP format fully complies with the configuration.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set; for the configuration related D2D receiving terminal, the CP format obtained from the network notification will be used correspondingly. Receive signal detection.
  • Embodiment 2-2 relates to the following physical layer processes:
  • the network may configure the corresponding configuration described above by high-layer RRC signaling (or partial signaling through DCI configuration), such as a long CP subframe set, a short CP subframe set, a mixed subframe subframe number, and its corresponding mixed subframe.
  • Configuration information including long CP (or short CP) symbol sets, etc. (the information in the hybrid subframe will be used for rate matching of D2D terminal transmitters, etc.).
  • the corresponding mixed subframe configuration information is notified by the RRC or is notified in the SA channel. These configurations are notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the subframe set for the D2D communication channel and the D2D discovery channel, including:
  • the subframe structure in this embodiment is as shown in FIG. 6. among them Representing the number of PRBs of short CP signals in a mixed subframe in which the signals of different CP formats coexist completely in the TDM manner. Indicates the number of PRBs occupied by the guard band of the interval between the long CP signal and the short CP signal in the mixed subframe of the same sub-frame in the TDM mode. These two parameters require network configuration to D2D. The terminal facilitates corresponding operations such as D2D transmitter rate matching.
  • the base station also needs to notify the CP length of the subframe sets while notifying the D2D terminal of the configuration of the subframe set by the RRC signaling.
  • the signaling of the subframe set configuration mode of the base station includes:
  • the subframe number of the subframe in which the long CP signal and the short CP signal coexist and the number of physical resource blocks of the corresponding long CP or short CP signal, and their corresponding positions: and the occupied frequency band between the long and short CPs The number of physical resource blocks, and the absolute or relative power of the long and short CP signals.
  • a fixed relative position of a long CP physical resource block and a short CP physical resource block may be agreed in the specification (eg, a short CP physical resource block is at a relatively low frequency position, and a long CP physical resource block is at a relatively high frequency position). ), and the specification also stipulates that the physical resource blocks in which the long and short CPs are located are consecutive in the frequency domain. And the sequence number of the last short CP physical resource block in the hybrid subframe is configured by the network.
  • the CP physical resource block and the short CP physics in the frequency domain are long.
  • the interval between several resource carriers may be required between the resource blocks, that is, the guard band is transmitted by the base station to the D2D terminal in the form of dedicated RRC signaling, or broadcast in the form of an SIB message.
  • the frequency domain subcarrier spacing may be between the cellular network signal and the D2D signal, or between different users or different D2D channels. Interference suppression capability due to coexistence of different CP formats in the same sub-frame, even with wide sub-carrier spacing isolation
  • the dynamic range of the cellular receive signal or the D2D receive signal may not be met, so it is possible to supplement the power control mechanism, that is, the priority of the signal coexisting in the same subframe in different CP formats (such as the cellular signal priority signal). Higher than the D2D signal) configures the power of signals of different CP formats coexisting in the same subframe. This signaling is also sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message.
  • the first configuration scheme is used for universally configuring all D2D channels in the cell, that is, all channels of the cell can only be allocated to the subframe set 1 and the short CP resources, the subframe set 2, and the mixed subframe within the hybrid subframe.
  • One of the long CP resources is specifically configured for each D2D channel, such as configuring a subframe set of a D2D terminal and a CP format of the subframe set, or assigning a channel to a resource of a D2D terminal (SA) Channel) configures the subframe set and the CP format of the subframe set.
  • SA D2D terminal
  • the third configuration scheme configures a certain group of CP formats for a specific D2D channel of each user in the cell, that is, a certain channel of a user of the cell can only be allocated to the channel resource pool subframe set 1 and the mixed subframe. In one of the short CP resources or the long CP resources in the subframe set 2 and the mixed subframe, resource allocation of the same channel of the same user across the resource pool subframe set 1 or 2 is not allowed.
  • the resources used to transmit the signal are selected in the set of subframes of the configuration, while its CP format fully complies with the configuration.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set; for the configuration related D2D receiving terminal, the CP format obtained from the network notification will be used correspondingly. Receive signal detection.
  • Embodiments 2-3 relate to the following physical layer processes:
  • the network may configure the corresponding configuration described above by high-layer RRC signaling (or by DCI), such as a long CP subframe set, a short CP subframe set, a mixed subframe subframe number, and corresponding configuration information in the hybrid subframe, including Short CP (long and short CP) PRB sets, and guard band PRB sets, as well as short CP signal PRB sets, power information of long CP signal PRB sets, and the like.
  • the corresponding mixed subframe configuration information is notified by the RRC or in the SA channel. These configurations are notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the subframe set for the D2D communication channel and the D2D discovery channel, including:
  • the subframe structure in this embodiment is as shown in FIG. among them Representing the number of PRBs of short CP signals of the first group of TDM symbol groups in a mixed subframe of the same subframe, in which signals of different CP formats are completely co-existed in TDM mode.
  • the format of the hybrid subframe in which the short CP signal and the long CP signal coexist in the form of TDM & FDM are defined in detail. It is specifically pointed out here that the TDM multiplexed symbols in each slot of the TDM&FDM hybrid subframe are 2-6 groups, and the adjacent two groups are separated by TDM, and the signals of different CP formats in each group of symbol groups are in accordance with FDM. Mode reuse.
  • the TDM symbol group is 2 groups, there must be an inter-symbols Gap between the two groups; if the TDM symbol group is greater than 2 groups, then each TDM&FDM There is at least one inter-symbols Gap between each TDM symbol group in each slot of the hybrid subframe, but there is no need to have an inter-group spacing region between any two adjacent groups.
  • the spacing region occupies the entire frequency band in the frequency domain.
  • the TDM multiplexed in each of the 2 to 6 groups or the mixed subframe in each slot is divided into TDMs in each subframe.
  • the length of the sample points in the time domain may be different, that is, in each SC-FDMA/OFDM symbol group spaced apart from each other in TDM mode, SC-FDMA/OFDM of two CP formats multiplexed in FDM
  • the signals may be unaligned in time, that is, in FIG.
  • the time-frequency resources that are not aligned in the TDM symbol group are vacant (the interval area occupies the frequency band occupied by the shorter time domain in the TDM symbol group in the frequency domain, as shown in FIG. 8), and Interval regions that may exist between groups (the interval regions occupy the entire frequency band in the frequency domain, as shown in FIG. 8), together constitute a blank resource in the TDM&FDM hybrid subframe that cannot transmit signals.
  • the base station when the base station notifies the D2D terminal of the configuration of the subframe set by the RRC signaling, it also needs to notify the CP length of the subframe set and the corresponding configuration of each hybrid subframe.
  • the subframe set configuration mode signaling of the base station includes
  • a simplified embodiment is to specify a fixed relative position of a long CP subcarrier set and a short CP subcarrier set in each TDM symbol group in the specification (eg, a short CP subcarrier set at a relatively low frequency position, a long CP subcarrier set).
  • the set of subcarriers in which the long and short CPs are located are consecutive in the frequency domain.
  • the sequence number of the last short CP subcarrier set in each TDM symbol group in the hybrid subframe is configured by the network.
  • the specification for a fixed relative position of the long CP symbol and the short CP object symbol in the hybrid subframe (for example, a short CP symbol is in front and a long CP symbol is in After), immediately after the short CP symbol, there will be a mixed symbol with a short CP and a long CP multiplexed in FDM mode.
  • the specification also agrees that the set of subcarriers in which the long and short CPs are located are consecutive in the frequency domain. And the sequence number of the last short CP subcarrier set in the mixed symbol is configured by the network.
  • the long CP subcarrier set in the frequency domain An interval of several subcarriers, that is, a guard band, may be required between the short CP subcarrier set and the short CP subcarrier set.
  • This signaling is sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message.
  • the frequency domain subcarrier spacing may be between the cellular network signal and the D2D signal, or between different users or different D2D channels.
  • the mutual interference suppression capability caused by the coexistence of different CP formats in the same symbol group may not meet the dynamic range requirement of the cellular network receiving signal or the D2D receiving signal even if a wide subcarrier isolation interval is used, so it may be supplemented by
  • the power control mechanism configures the power of signals of different CP formats coexisting in the same symbol group according to the priority of signals coexisting in the same symbol group in different CP formats (such as the cellular signal priority signal is higher than the D2D signal). This signaling is also sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message.
  • the first configuration scheme is used to generally configure all D2D channels in the cell, that is, all channels of the cell can only be allocated to subframes.
  • the second configuration scheme is specifically configured for each D2D channel, such as configuring a subframe set of a D2D terminal and a CP format of the subframe set, or assigning a channel to a resource of a D2D terminal (SA) Channel) configures the subframe set and the CP format of the subframe set.
  • SA D2D terminal
  • the third configuration scheme configures a certain group of CP formats for a specific D2D channel of each user in the cell, that is, a certain channel of a user of the cell can only be allocated to the channel resource pool subframe set 1 and the mixed subframe. In one of the short CP resources or the long CP resources in the subframe set 2 and the mixed subframe, resource allocation of the same channel of the same user across the resource pool subframe set 1 or 2 is not allowed.
  • the resources used to transmit the signal are selected in the set of subframes of the configuration, while its CP format fully complies with the configuration.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set; for the configuration related D2D receiving terminal, the CP format obtained from the network notification will be used correspondingly. Receive signal detection.
  • Embodiments 2-4 relate to the following physical layer processes:
  • the network may configure the corresponding configuration described above by high-layer RRC signaling (or partial signaling through DCI configuration), such as a long CP subframe set, a short CP subframe set, a mixed subframe subframe number, and its corresponding mixed subframe.
  • Configuration information including a long CP (or short CP) symbol set, and a long CP (or short CP) symbol set of mixed symbols in the hybrid subframe, and a short CP signal (or a long CP signal) that mixes the mixed symbols in the subframe.
  • the corresponding mixed subframe configuration information is notified by the RRC or in the SA channel. These configurations are notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the corresponding received signal detection will be performed by using the CP format obtained from the network notification;
  • both the D2D transmitting terminal and the D2D receiving terminal must limit the D2D sending and receiving behavior according to the corresponding CP format configured on the subframe or the subframe set.
  • the base station will semi-statically configure the time-frequency physical resource set for the D2D communication channel and the D2D discovery channel, including:
  • the base station notifies the D2D terminal of the configuration of the time-frequency physical resource set by the RRC signaling, and also needs to notify the CP length of the time-frequency physical resource set.
  • the signaling of the time-frequency physical resource set configuration mode of the base station includes:
  • the subframe format in the subframe set in each CP format and the subframe of the mixed subframe in which the short CP and the long CP signal coexist are present.
  • the format is shown in Figure 9.
  • TDM multiplexed symbol group is grouped in each slot of the hybrid subframe, or in each hybrid subframe. Grouped in. If it is grouped in each slot of the hybrid subframe, the symbols of TDM multiplexing in each slot of each TDM&FDM hybrid subframe are 2-6 groups (in the figure, only 2 groups are drawn for simplicity); The packets are grouped in a mixed subframe, and the symbols of TDM multiplexing in each TDM&FDM hybrid subframe are 2 to 13 groups.
  • the adjacent two groups are separated by TDM, and signals of different CP formats in each group of symbol groups can be multiplexed in an FDM manner.
  • the PRB combination mode in which the long and short CPs coexist is arbitrary, that is, the coexistence of the long and short CPs is 2-1, or the scheme 2-2.
  • any scheme of the subframe configuration in scheme 2-3 or scheme 2-4 coexists. That is to say, the subframe in which the short-CP (or long-CP) time-frequency physical resource set in the time-frequency physical resource set is located in the scheme may be scheme 2-1, scheme 2-2, scheme 2-3, scheme 2- Any of the four sub-frames.
  • the short CP signal and the long CP signal may coexist in the form of TDM, or may be in the form of FDM. Coexistence can also coexist in the form of TDM & FDM.
  • TDM & FDM The format of a hybrid subframe in which a short CP signal and a long CP signal can coexist in the form of TDM & FDM has been detailed in Schemes 2-4. It is specifically pointed out here that the TDM multiplexed symbols in each slot of the TDM&FDM hybrid subframe may be 2-6 groups, and the adjacent two groups are separated by TDM, and the signals of different CP formats in each group of symbol groups may be Reuse according to FDM.
  • the TDM symbol group is 2 groups, there must be an inter-symbols Gap between the two groups; if the TDM symbol group is greater than 2 groups, each time slot of each TDM&FDM mixed sub-frame There is at least one inter-symbols Gap between each TDM symbol group, but there is no need to have an inter-group spacing area between any two adjacent groups.
  • the spacing region occupies the entire frequency band in the frequency domain.
  • the TDM multiplexed in each of the 2 to 6 groups or the mixed subframe in each slot is divided into TDMs in each subframe.
  • the length of the sample points in the time domain may be different, that is, in each SC-FDMA/OFDM symbol group spaced apart from each other in TDM mode, SC-FDMA/OFDM of two CP formats multiplexed in FDM
  • the signals may be unaligned in time, that is, in FIG.
  • one of the sets of SC-FDMA/OFDM symbol groups multiplexed between groups by TDM wherein The number of sampling points of Normal CP PRBs and Extended CP PRBs multiplexed in FDM format is inconsistent.
  • the longer signal is transmitted in the time domain and the shorter signal is transmitted.
  • Untransmitted time interval (duration is the difference between the two)
  • the frequency domain is the frequency domain where the shorter one is located. On, will not send any signal. Note that the interval region occupies the frequency band occupied by the shorter time domain in the TDM symbol group in the frequency domain.
  • the time-frequency resources that are not aligned in the TDM symbol group are vacant (the interval area occupies the frequency band occupied by the shorter time domain in the TDM symbol group in the frequency domain, as shown in FIG. 8 The 1 area), and the interval area that may exist between the groups (the interval area occupies the entire frequency band in the frequency domain, as shown in FIG. 8), together constitute a blank resource in the TDM&FDM hybrid subframe that cannot transmit signals.
  • the time-frequency physical resource set configuration mode signaling of the base station is one of the above 1, 2 or 1, 2 simultaneous configuration.
  • This signaling is sent by the base station to the D2D terminal in the form of dedicated RRC signaling or in the form of an SIB message.
  • the standardization is standardized in the standard, in order to simplify the signaling overhead, it is necessary to determine whether the signals of different CP formats multiplexed in the FDM manner in the above-mentioned TDM symbol groups are left-aligned or right-justified in time, and The specification specifies which signal in the long CP format is longer than the signal in the short CP format. Thus, for the time domain information of the scheme, only the number of symbols of the long CP signal (or short CP signal) of each TDM symbol group needs to be notified in the signaling.
  • the first configuration scheme is used for general configuration of all D2D channels in the current cell, that is, each channel can only be allocated to one of the time-frequency physical resource set 1 and the time-frequency physical resource set 2.
  • the second configuration scheme is specifically configured for each D2D channel of all D2D terminals in the cell, for example, configuring a time-frequency physical resource set of the discovery channel of all D2D terminals of the cell and a CP format of the time-frequency physical resource set, Or configuring a time-frequency physical resource set and a CP format of the time-frequency physical resource set for a resource allocation channel (SA Channel) of all D2D terminals in a certain cell, or configuring a time-frequency physics of a D2D transmission channel of all D2D mobile phones in the cell.
  • SA Channel resource allocation channel
  • the resource set and the CP format of the time-frequency physical resource set are configured to specifically configure each D2D channel of each D2D terminal in the cell, such as a discovery channel configuration subframe set of a D2D terminal of the cell and a CP format of the subframe set, or
  • the resource allocation channel (SA Channel) of a certain D2D terminal of the cell configures a subframe set and a CP format of the subframe set, or configures a time-frequency physical resource set of the D2D transmission channel of a certain D2D mobile phone of the cell and the time-frequency thereof
  • the CP format of the physical resource set is configured to specifically configure each D2D channel of each D2D terminal in the cell, such as a discovery channel configuration subframe set of a D2D terminal of the cell and a CP format of the subframe set, or
  • a D2D channel of a D2D terminal Only one of the resource pools of the two different CP formats of the D2D channel in the cell may be configured. It is not allowed to simultaneously carry a D2D channel of a D2D terminal across resource pools of different CP formats.
  • the resources used to transmit the signal are selected in the configured time-frequency physical resource set, while its CP format fully complies with the configuration.
  • the D2D signal transmitted on its corresponding time-frequency physical resource block set will adopt the network configured CP format; for the D2D receiving terminal related to the configuration, the CP obtained from the network notification will be used.
  • the format performs corresponding received signal detection.
  • Embodiments 2-5 relate to the following physical layer processes:
  • the network may configure the corresponding configuration described above through high layer signaling, including a long CP subframe set, a short CP subframe set, a mixed subframe subframe number, and corresponding configuration information in the hybrid subframe, including a long CP (or a short CP). a set of symbols, and a long CP (or short CP) symbol set of the mixed symbols in the mixed sub-frame, and a short CP signal PRB set, a long CP signal PRB set, and a guard frequency PRB set time-frequency of the mixed symbols in the mixed sub-frame Resource and power information, etc.
  • the corresponding hybrid subframe configuration information can be notified in the SA channel in addition to the RRC notification. These configurations are notified to the D2D transmitter terminal and the D2D receiver terminal.
  • the network configuration CP format will be adopted for the D2D signal transmitted on its corresponding subframe set;
  • the corresponding received signal detection will be performed using the CP format obtained from the network notification.
  • the present invention generally provides a method for CP configuration of device-to-device D2D communication resources, including the steps shown in FIG. Specifically, in step S910, the base station configures a CP format for different resource subsets, where the CP format includes a long CP signal format and a short CP signal format.
  • step S920 the base station notifies the D2D transmitting device and the D2D receiving device of the configuration, wherein the configuration of the base station notifying the D2D transmitting device and the D2D receiving device includes: a CP format adopted by a resource pool of a D2D discovery channel of the D2D transmitting device And a configuration of a CP format employed by a resource pool of a D2D communication channel of the D2D transmitting device, and wherein the D2D transmitting device and the D2D receiving device are in the resource subset to conform to the configured CP
  • the format is sent and received.
  • FIG. 11 shows a block diagram according to the corresponding base station 1000.
  • the sending unit 1010 is configured to send a cyclic prefix CP format of the resource pool by using high layer signaling, where the resource pool includes a resource pool of the D2D discovery channel and/or a resource pool of the D2D communication channel.
  • the CP format may include a long CP signal format and a short CP signal format.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了D2D通信中不同CP长度的D2D信号共存的多种配置方案。在方案1-1中,网络为小区内所有用户的某一种D2D信道配置一个特定的CP长度;在方案1-2中,网络为小区内每个用户的每一种D2D信道配置一个特定的CP长度;在方案2-1中,网络为每一个D2D子帧配置一个CP长度;在方案2-2至2-4中,系统将周期性的配置CP长度,对于该配置周期内的N个D2D子帧,网络为其中N-M(M=1,2)个D2D子帧中的每一个D2D子帧配置一个CP长度,而对于剩下的M(M=1,2)个D2D子帧,系统将分别以时分复用、频分复用、以及时分与频分复用的方式复用不同长度CP的SC-FDMA/OFDM符号;在方案2-5中,网络为每一个分配的时频物理资源集配置一个CP长度。

Description

D2D通信中的不同CP长度共存的配置 技术领域
本发明总体涉及移动通信领域,具体涉及D2D通信系统中不同CP长度的D2D信号共存时的配置及相应的抗干扰方案。
背景技术
终端直接通信(D2D:Device to Device)技术是指两个对等的用户节点之间直接进行通信的一种通信方式。直连通信技术在很多现在3GPP尚未标准化的领域得到非常关键的应用。包括近年来学术界持续研究的非蜂窝工作模式Ad hoc中的P2P(Peer to Peer),以及一直以来都具有巨大潜在业务需求的杀手级应用--物联网中的M2M(Machine to Machine)。在这种由终端直连通信用户组成的集中或分布式网络中,每个用户节点都能发送和接收信号并且可能具有自动路由(转发消息)的功能。承载其通信所用的物理资源可以由网络配置,也可以由各个直接通信通信终端之间的竞争获得。让蜂窝系统中的用户设备直接进行通信而不通过基站进行转接是一种观念的革新。显然,移动传播环境的天然衰减特性以及用户较低的发射天线,使得直接进行相互通信的两个用户设备具有相对较小的干扰区域。在这种场景下,物理隔离(比如信号衰减程度)达到一定程度的用户都可以共享相同的资源(空间、时间、频率、码字等)而不会引起相互之间的严重干扰。直观上看,每个小区中可以有数量可观的用户进行直连通信,在蜂窝网络下引入直连通信技术可以在很大程度上提高系统资源的空间复用效率,这样就大大缓解了网络资源的调度压力。这样就大大缓解了网络资源的调度压力。同时,这些终端直接通信服务是在网络的配置下进行的,不仅是对现有蜂窝系统更加有效利用空口资源的一个有效补充,而且可以把各种物理设备纳入到这个连接体系中,使物联网、车联网等业务有了在3GPP蜂窝网框架下实现的可能。同时,由于蜂窝业务只能运行于蜂窝网覆盖地区,而在没有网络覆盖的地区,终端直连通信业务也能够在无需基站辅助的条件下独立工作,这就为诸如灾害地区(诸如地震、洪灾等造成网络彻底瘫痪)的及时救援提供了有力的手段,这是对现有蜂窝业务非常有力的补充。有鉴于此,3GPP内 一直在推进终端直接通信的标准化。早在2013年初在马耳他举办的RAN1第72次会议上,3GPP就已决定对终端直接通信技术进行研究,并且于2014年3月在福冈举办的RAN第63次全会上通过了在LTE Rel-12对终端直接通信服务进行标准化的工作议题。LTE Rel-12标准将支持D2D业务,而本发明将解决其中不可避免会遇到的不同CP格式信号共存造成符号间干扰的问题。
发明内容
本发明的目的在于提出在D2D通信系统中不同CP长度的D2D信号共存时的抗干扰技术,以及相应的物理层和上层配置的一整套机制,及其对3GPP标准化的影响。本发明列举了若干种对抗不同CP长度共存带来的干扰的方案,适用于D2D通信中不同CP长度信号共存的各种场景。
具体地,针对在D2D服务被调度时出现不同CP长度的信号共存于同一空口中,造成符号间干扰,导致被干扰的业务不能正常通行的问题,本发明设计了若干机制。具体公开了两种CP长度的D2D信号共存的配置方案,其中每种方案又有两到四种可能采用的不同子方案。其中,方案1-1中,网络为小区内所有用户的某一种D2D信道分配特定CP格式的资源池;在方案1-2中,网络为每个用户的每一种D2D信道配置一个特定的CP长度;在方案2-1中,网络为每一个D2D子帧配置一个CP长度,且不同CP长度的信号复用在同一个子帧内是不允许的;在方案2-2中,系统将周期性地配置CP长度,对于该配置周期内的N个D2D子帧,网络为其中N-M个D2D子帧中的每一个D2D子帧配置一个CP长度,而对于剩下的M(M=1,2)个D2D子帧,系统将以时分复用的方式复用不同CP长度的SC-FDMA/OFDM符号,其中,最典型的方案就是系统为每个SC-FDMA/OFDM符号配置不同的CP长度;在方案2-3中,系统将周期性地配置CP长度,对于该配置周期内的N个D2D子帧,网络为其中N-M个D2D子帧中的每一个D2D子帧配置一个CP长度,而对于剩下的M(M=1,2)个D2D子帧,系统将以频分复用的方式复用不同长度的CP子帧,其中,最典型的方案就是系统为该混合子帧每个PRB配置不同的CP长度;在方案2-4中,系统将周期性地配置CP长度, 对于该配置周期内的N个D2D子帧,网络为其中N-M个D2D子帧中的每一个D2D子帧配置一个CP长度,而对于剩下的M个D2D子帧,系统将以时分&频分复用的方式复用不同长度的CP子帧,其中,最典型的方案就是系统为该混合子帧内的每个SC-FDMA/OFDM符号或每个符号组内的每个子载波集配置不同的CP长度;在方案2-5中,网络为每一个分配的时频物理资源集配置一个CP长度。
另外,在以上方案1-1,方案1-2,方案2-1,方案2-2,方案2-3,方案2-5中,涉及以下物理层过程:
1,对方案1-1,方案1-2,网络可通过高层信令配置前面描述的相应配置,这些配置会通知给D2D发射机终端和D2D接收机终端。对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
2,对方案2-1,网络可通过高层信令配置前面描述的相应配置,这些配置会通知给D2D发射机终端和D2D接收机终端。对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;总之,这些按照CP格式划分的子帧集上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
3,对于方案2-2,方案2-3,方案2-4,方案2-5,需要通过高层RRC信令或者DCI配置长CP子帧集、短CP子帧集、混合子帧子帧号及其相应的混合子帧配置信息。当然,相应的混合子帧配置信息由RRC通知,或者在SA信道中告知。
4,速率匹配。混合子帧中短CP与长CP复用时,如果采用TDM方式复用,则相应的速率匹配方式需要修改。
5,对方案2-2有长、短CP以时分复用的形式共存的混合子帧,以及对方案2-2,方案2-3,方案2-4,对于诸如有长、短CP以频分复用的形式共存的混合子帧,系统也会以RRC信令告知一种CP子帧集的相应资源以及混合子帧的相应配置。
综上,本发明总体上提供了一种对设备到设备D2D通信的资源进行循环前缀CP配置的方法以及相应的基站。所述方法包括:基站针对不同的资源子集配置CP格式,所述CP格式包括长CP信号格式和短CP信号格式;以及基站向D2D发送设备和D2D接收设备通知所述配置,其中,基站向D2D发送设备和D2D接收设备通知的配置包括:对D2D发送设备的D2D发现信道的资源池所采用的CP格式的配置;以及对D2D发送设备的D2D通信信道的资源池所采用的CP格式的配置,以及其中,所述D2D发送设备和所述D2D接收设备在所述资源子集中以符合所述配置的CP格式进行发送和接收。
所述配置通过高层RRC信令,或者通过SIB消息或DCI来通知。
具体地,对应于方案1-1,基站针对不同的资源子集配置CP格式包括:基站配置各D2D信道所占用的资源池、以及与该资源池对应的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知各D2D信道的资源池所包含的时频资源、以及与该资源池对应的CP格式。
对应于方案1-2,基站针对不同的资源子集配置CP格式包括:基站配置为各D2D信道分配相应的该D2D信道的短CP资源池与该D2D信道长CP资源池。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知各D2D终端其各D2D信道的CP格式及该小区内该D2D终端相应CP格式的D2D信道所占用的资源池。
对应于方案2-1,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集、以及每个子帧集所采用的不同的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、以及与两个子帧集对应的不同的CP格式。
对应于方案2-2,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不 同的CP格式、所述一个或二个混合子帧如何以时分复用方式采用不同的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中不同CP格式信号所对应的SC-FDMA/OFDM符号的个数和位置。
对应于方案2-3,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不同的CP格式、以及所述一个或二个混合子帧如何以频分复用方式采用不同的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中不同CP格式信号所对应的物理资源块的个数、位置和功率信息、以及所述混合子帧中保护带所占用的物理资源块的个数和位置。
对应于方案2-4,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不同的CP格式、以及所述一个或二个混合子帧如何以时分与频分复用方式采用不同的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中SC-FDMA/OFDM符号组的个数、每个SC-FDMA/OFDM符号组中不同CP格式信号所对应的SC-FDMA/OFDM符号和子载波的个数、位置和功率信息、以及所述混合子帧中同一SC-FDMA/OFDM符号组内保护带所占用的子载波的个数和位置。
对应于方案2-5,基站针对不同的资源子集配置CP格式包括:基站配置两个时频物理资源集、以及所述两个时频物理资源集分别采用的不同的CP格式。基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个时频物理资源集所包含的时频资源、以及与所述两个时频物理资源集相对应的不同的CP格式、功率信息以及相应的保护带位置。
附图说明
通过下面结合附图说明本发明的优选实施例,将使本发明的上述及其它目的、特征和优点更加清楚,其中:
图1示意地示出了根据本发明方案1-1的子帧格式图,其中,基站为该小区内所有用户的某一种D2D信道分配某一特定CP格式的资源池;
图2示意地示出了根据本发明方案1-2的子帧格式图,其中,基站为该小区内某一个用户的某一种D2D信道分配某一特定CP格式的资源池;
图3示意地示出了根据本发明方案2-1的按照子帧集配置CP格式的子帧格式图,其中,每种CP格式子帧集下的子帧连续;
图4示意地示出了根据本发明方案2-1的按照子帧集配置CP格式的子帧格式图,其中,每种CP格式子帧集下的子帧不连续;
图5示意地示出了根据本发明方案2-2的按照子帧集配置CP格式的子帧格式图;
图6示意地示出了根据本发明方案2-3的按照子帧集配置CP格式的子帧格式图;
图7示意地示出了根据本发明方案2-4的按照子帧集配置CP格式的子帧格式图,其中,混合子帧中包括2个符号组;
图8示意地示出了根据本发明方案2-4的按照子帧集配置CP格式的子帧格式图,其中,混合子帧中包括5个符号组;
图9示意地示出了根据本发明方案2-5的按照时频物理资源集集配置CP格式的子帧及PRB格式图;
图10示意地示出了根据本发明的对设备到设备D2D通信的资源进行CP配置的方法的流程图;以及
图11示意地示出了根据本发明的基站的结构的示意图。
具体实施方式
下面参照附图对本发明的优选实施例进行详细说明,在描述过程中 省略了对于本发明来说是不必要的细节和功能,以防止对本发明的理解造成混淆。
首先,参照图1至9,描述本发明提出的两种CP长度的D2D信号共存的配置方案1-1至2-5。
实施方式1-1
对于实施方式1-1,基站将为每种特定的D2D信道半静态地配置子资源池及其CP格式,包括:
1,该D2D信道所占用的资源池;
2,该D2D信道所占用资源池的CP格式。
该方案的子帧结构如图1所示,基站为该小区内所有用户的某一种D2D信道分配某一特定CP格式的资源池。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时,也需要通知这些子帧集的CP长度。这样,基站的子帧集配置方式的信令包括:
1,为本小区内所有D2D用户的D2D信道A的资源池所占据的时、频资源,以及该资源池的CP配置格式;
2,为本小区内所有D2D用户的D2D信道B的资源池所占据的时、频资源,以及该资源池的CP配置格式;
3,为本小区内所有D2D用户的D2D信道C的资源池所占据的时、频资源,以及该资源池的CP配置格式;
4,为本小区内所有D2D用户的D2D信道D的资源池所占据的时、频资源,以及该资源池的CP配置格式;等等。
如图1所示,该方案中基站将对每一种D2D信道配置统一的,且唯一的CP格式。不同的D2D终端对应的某D2D信道的信号在配置给本小区该D2D信道的资源池上调用,且所有该基站覆盖范围内的D2D模式1终端都将采用基站为该信道配置的CP格式。比如为该小区内所有的D2D终端的发现信道(discovery channel)配置资源池及其该信道资源池的统一的,且唯一的CP格式,或者为某一D2D终端的资源分配信道(SA Channel)配置资源池及其该信道资源池的统一的,且唯一的CP格式。
注意,该方案1-1中基站为每种D2D信道分配特定的CP格式,而该D2D信道为该小区下各D2D用户复用,为该D2D信道分配的资源池,与其他D2D信道的资源池之间,是以TDM方式时分复用的,或是以FDM方式频分复用的,或是以TDM&FDM方式复用的,无论是以哪种方式复用,只要是基站为每种D2D信道的资源池确定特定的CP格式,都属于本发明的保护范围。
另外注意,该实施方式可以以两种配置方案实现。第一种配置方案为同一小区内的同一种D2D信道采用该小区内统一的CP格式,上文已述。第二种配置方案为同一小区内的同一种D2D信道的资源池包含两个资源池子集,这两种资源池子集采用不同的CP格式,而每一个用户的该D2D信道将承载在其中一个CP格式的资源池子集上,同一用户的某个D2D信道跨不同格式的资源池子集承载是不被允许的。
实施方式1-1涉及以下物理层过程:
网络可通过高层RRC信令或者用SIB消息广播配置前面描述的相应配置,如该小区内各D2D信道的资源池,以及小区内每种D2D信道的CP格式。由于该消息是在整个小区范围内通用的,这些配置会以广播方式或其他方式通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应资源池上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些特定CP格式的资源池上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
实施方式1-2
对于实施方式1-2,基站将为每种特定的D2D信道半静态地配置子资源池及其CP格式,包括:
1,为本小区内某D2D信道分配的短CP资源池;
2,为本小区内某D2D信道分配的长CP资源池。
该方案的子帧结构如图2所示,基站为该小区内某一用户的某一种D2D信道分配某一特定CP格式的资源池。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时,也需要通知这些子帧集的CP长度。这样,基站的子帧集配置方式的信令包括:
1,为本小区D2D信道A的短CP资源池所占据的时、频资源,以及该资源池的CP配置格式;
2,为本小区D2D信道A的长CP资源池所占据的时、频资源,以及该资源池的CP配置格式;
3,为本小区D2D信道B的短CP资源池所占据的时、频资源,以及该资源池的CP配置格式;
4,为本小区D2D信道B的长CP资源池所占据的时、频资源,以及该资源池的CP配置格式;等等。
如图2所示,该方案中基站将对每一个D2D终端的每一种D2D信道配置特定的CP格式。不同的D2D终端对应的某D2D信道的信号在配置给本小区该D2D信道的短CP资源池上,或长CP资源池上调用,且所有该基站覆盖范围内的D2D模式1终端都将采用基站为该D2D终端该D2D信道配置的CP格式。比如为该小区内所有的D2D终端的发现信道(discovery channel)分配了发现信道短CP资源池与发现信道长CP资源池,某一个D2D终端的发现信道可以承载在该小区内的发现信道短CP资源池或发现信道长CP资源池其中之一中;或者为某一D2D终端的资源分配信道(SA Channel)分配了资源分配信道短CP资源池与资源分配信道长CP资源池,某一个D2D终端的资源分配信道可以承载在该小区内的资源分配信道短CP资源池或资源分配信道长CP资源池其中之一中。
注意,该方案1-2中基站为每个D2D终端的每种D2D信道分配特定的CP格式,而该D2D信道短(或长)CP资源池为该小区下各样CP格式的该信道的D2D用户同复用,而为该D2D信道分配的短(或长)CP资源池,与为该D2D信道分配的长(或短)CP资源池之间,或与其 他D2D信道的资源池之间,是以TDM方式时分复用的,或是以FDM方式频分复用的,或是以TDM&FDM方式复用的,无论是以哪种方式复用,只要是基站为每种D2D信道的资源池确定特定的CP格式,都属于本发明的保护范围。
另外注意,该实施方式可以以以下配置方案实现:该小区内每一个用户的特定D2D信道被配置到该小区内该D2D信道的某一组CP格式资源池中(该D2D信道的短CP资源池或该D2D信道的长CP资源池),即该小区某一个用户的某种信道只能分配到该信道资源池内子集1或子集2其中之一中,同一个用户的同一种信道跨资源池子集1或2进行资源分配是不被允许的。
实施方式1-2涉及以下物理层过程:
网络可通过高层RRC信令或者用SIB消息广播配置前面描述的相应配置,如该小区内各D2D信道的资源池,以及小区内每种D2D信道的CP格式。由于该消息是在整个小区范围内通用的,这些配置会以广播方式或其他方式通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应资源池上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些特定CP格式的资源池上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
实施方式2-1
对于实施方式2-1,基站将为D2D通信信道与D2D发现信道半静态地配置子帧集,包括:
1,采用短CP的子帧集;
2,采用长CP的子帧集。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时时,也需要通知同样的这些D2D终端相应的子帧集的CP长度。这样,基站 的子帧集配置方式信令包括
1,子帧集1的时、频资源,以及该子帧集的CP配置格式;
2,子帧集2的时、频资源,以及该子帧集的CP配置格式。
其中,每种CP格式内的子帧集内的子帧可以连续,如附图3所示,也可以不连续,如图4所示。
基站的子帧集配置方式信令为上述1,2的其中之一或1,2同时配置。
这个信令由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。在D2D规范中定义新的SIB格式来传输该信息是很好的选择。
另外,该实施方式可以以三种配置方案实现。第一种配置方案用于通用的配置本小区内所有D2D信道,即每种信道只能分配到时频物理资源块集1、时频物理资源块集2其中之一中。第二种配置方案用于专门针对本小区内所有D2D终端的各个D2D信道进行配置,比如为本小区所有D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者为本小区所有D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式,或者为本小区所有D2D手机的D2D传输信道配置时频物理资源块集及其该时频物理资源块集的CP格式,等等。第三种配置方案用于专门针对本小区内各个D2D终端的各个D2D信道进行配置,比如为本小区某一D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者为本小区某一D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式,或者为本小区某一D2D手机的D2D传输信道配置时频物理资源块集及其该时频物理资源块集的CP格式。总之,某一个D2D终端的某一个D2D信道只能配置在该小区内该D2D信道两种不同CP格式的资源池的其中之一中,某一个D2D终端的某一个D2D信道同时跨不同CP格式的资源池承载是不允许的。
对于D2D发射机,其发送信号所用的资源是在该配置的子帧集中选择的,同时其CP格式完全遵守该配置。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
eNB应该通知这些子帧集及其CP格式配置信息给D2D发射终端和接收终端,特别是某些关键信道的子帧集性质,如SA信道与D2D同步信道等,以满足其各自需要的覆盖要求。
对于方案2-1,其配置的子帧集可选取连续的子帧,如图3所示,也可以选取不连续的子帧,如图4所示。
实施方式2-1涉及以下物理层过程:
网络可通过高层信令配置前面描述的相应配置,这些配置会通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些按照CP格式划分的子帧集上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
对于该实施方式2-1,由于D2D和蜂窝网不能共存于同一子帧中,那么因为无论是D2D数据还是蜂窝网数据在满负荷时通常都不会正好完全占据所有同一数据类型下的所有子帧而不浪费任何资源。而以下2-1至2-5实施方式将会实现最大化的资源利用率。
实施方式2-2
该实施方式下,基站将为D2D通信信道与D2D发现信道半静态地配置子帧集,包括:
1,采用短CP的子帧集1;
2,采用长CP的子帧集2;
3,1或2个长CP信号、短CP信号以TDM形式共存的子帧。
该实施方式下的子帧结构如图5所示。其中
Figure PCTCN2015077365-appb-000001
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的混合子帧内短CP符号的个数,该参数需要网络配置给D2D终端以便于诸如D2D发射机速率匹配等相应操作。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时,也需要通知同样的这些D2D终端相应的子帧集的CP长度。这样,基站的子帧集配置方式信令包括
1,子帧集1的时、频资源,以及该子帧集的CP配置格式;
2,子帧集2的时、频资源,以及该子帧集的CP配置格式;
3,长CP信号、短CP信号共存的子帧的子帧号与相应的长CP或短CP信号的SC-FDMA/OFDM符号个数,及其相应位置:比如一种简化的实施例,即在规范中约定长CP符号、短CP符号固定的相对位置(如短CP符号在前,长CP符号在后),并且规范也约定长、短CP所在的符号分别都是连续的。并且由网络配置该混合子帧内最后一个短CP符号的序号。
注意,长CP或短CP信号的TDM复用的混合子帧中,若长、短CP所在的符号分别都是连续且无间隔的,则时域上长CP符号和短CP符号之间会出现若干采样点的间隔。以短CP在前,长CP在后,短CP各符号之间无间隔连续(长CP也如此)为例,短CP符号与长CP符号之间的时间间隔长度应该为一个子帧持续时间减去所有长CP符号时间长度之差,模上一个短CP时间长度。
基站的子帧集配置方式信令为上述1,2,3三种子帧或子帧集的任意组合。
注意,这样的配置可以满足各种短CP、长CP信号共存于同一子帧中的场景,例如蜂窝网数据与D2D数据以不同的CP格式共存于同一子帧中,又如不同的D2D用户(对)以不同的CP格式将其数据共存于同一子帧中。
这个信令由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
另外,该实施方式可以以三种配置方案实现。第一种配置方案用于通用的配置该小区内所有D2D信道,即该小区所有信道只能分配到子帧集1以及混合子帧内的短CP资源、子帧集2及混合子帧内的长CP资源其中之一中。第二种配置方案用于专门针对各个D2D信道进行配置,比如为某一D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者 为某一D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式。第三种配置方案为该小区内每一个用户的特定D2D信道配置某一组CP格式,即该小区某一个用户的某种信道只能分配到该信道资源池子帧集1及混合子帧内的短CP资源或者子帧集2及混合子帧内的长CP资源其中之一中,同一个用户的同一种信道跨资源池子帧集1或2进行资源分配是不被允许的。
对于D2D发射机,其发送信号所用的资源是在该配置的子帧集中选择的,同时其CP格式完全遵守该配置。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测。
实施方式2-2涉及以下物理层过程:
网络可通过高层RRC信令(或者部分信令通过DCI配置)配置前面描述的相应配置,如长CP子帧集、短CP子帧集、混合子帧子帧号及其相应的混合子帧内配置信息,包括长CP(或短CP)符号集等(混合子帧内的信息将用于D2D终端发射机的速率匹配等行为)。当然,相应的混合子帧配置信息由RRC通知,或者在SA信道中告知。这些配置会通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些按照CP格式划分的子帧集上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
实施方式2-3
该实施方式下,基站将为D2D通信信道与D2D发现信道半静态地配置子帧集,包括:
1,采用短CP的子帧集1;
2,采用长CP的子帧集2;
3,1或2个长CP信号、短CP信号以FDM形式共存的子帧。
该实施方式下的子帧结构如图6所示。其中
Figure PCTCN2015077365-appb-000002
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的混合子帧内短CP信号的PRB个数,
Figure PCTCN2015077365-appb-000003
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的混合子帧内长CP信号与短CP信号之间间隔的保护频带所占用的PRB个数,这两个参数需要网络配置给D2D终端以便于诸如D2D发射机速率匹配等相应操作。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时,也需要通知这些子帧集的CP长度。这样,基站的子帧集配置方式的信令包括:
1,子帧集1的时、频资源,以及该子帧集的CP配置格式;
2,子帧集2的时、频资源,以及该子帧集的CP配置格式;
3,长CP信号、短CP信号共存的子帧的子帧号与相应的长CP或短CP信号的物理资源块个数,及其相应位置:以及长、短CP之间保护频带所占用的物理资源块个数,以及长、短CP信号的绝对或相对功率。比如一种简化的实施例,可以在规范中约定长CP物理资源块、短CP物理资源块固定的相对位置(如短CP物理资源块在相对低频位置,长CP物理资源块在相对高频位置),并且规范也约定长、短CP所在的物理资源块在频域上分别都是连续的。并且由网络配置该混合子帧内最后一个短CP物理资源块的序号。
注意,长CP或短CP信号的FDM复用的混合子帧中,若长、短CP所在的物理资源块分别都是连续且无间隔的,则频域上长CP物理资源块和短CP物理资源块之间会需要若干子载波的间隔,即保护频带这个信令由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
另外,由于蜂窝网信号、D2D信号分别的接收信号动态范围的要求可能会高达60dB或更高,上述频域子载波间隔对于对蜂窝网信号与D2D信号之间、或者不同用户或不同D2D信道之间由于不同CP格式共存于同一子帧带来的互相干扰的抑制能力即使采用很宽的子载波间隔隔离也 可能不能达到蜂窝网接收信号或者D2D接收信号的动态范围的要求,所以有可能辅以功率控制机制,即按照以不同CP格式共存于同一子帧的信号的优先级(比如蜂窝网信号优先级信号高于D2D信号)配置共存于同一子帧的不同CP格式的信号的功率。这个信令同样由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
此外,该实施方式可以以三种配置方案实现。第一种配置方案用于通用的配置该小区内所有D2D信道,即该小区所有信道只能分配到子帧集1以及混合子帧内的短CP资源、子帧集2及混合子帧内的长CP资源其中之一中。第二种配置方案用于专门针对各个D2D信道进行配置,比如为某一D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者为某一D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式。第三种配置方案为该小区内每一个用户的特定D2D信道配置某一组CP格式,即该小区某一个用户的某种信道只能分配到该信道资源池子帧集1及混合子帧内的短CP资源或者子帧集2及混合子帧内的长CP资源其中之一中,同一个用户的同一种信道跨资源池子帧集1或2进行资源分配是不被允许的。
对于D2D发射机,其发送信号所用的资源是在该配置的子帧集中选择的,同时其CP格式完全遵守该配置。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测。
实施方式2-3涉及以下物理层过程:
网络可通过高层RRC信令(或者通过DCI)配置前面描述的相应配置,如长CP子帧集、短CP子帧集、混合子帧子帧号及其相应的混合子帧内配置信息,包括短CP(长短CP)PRB集、以及保护频带PRB集,以及短CP信号PRB集、长CP信号PRB集的功率信息等。当然,相应的混合子帧配置信息由RRC通知之外,或者在SA信道中告知。这些配置会通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些按照CP格式划分的子帧集上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
实施方式2-4
该实施方式下,基站将为D2D通信信道与D2D发现信道半静态地配置子帧集,包括:
1,采用短CP的子帧集1;
2,采用长CP的子帧集2;
3,1或2个长CP信号、短CP信号以TDM&FDM形式共存的子帧。
该实施方式下的子帧结构如图7所示。其中
Figure PCTCN2015077365-appb-000004
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的某一混合子帧内第一组TDM符号组的短CP信号的PRB个数,
Figure PCTCN2015077365-appb-000005
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的某一混合子帧内第一组TDM符号组内长CP信号与短CP信号之间间隔的保护频带所占用的PRB个数,以此类推
Figure PCTCN2015077365-appb-000006
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的某一混合子帧内第n组TDM符号组的短CP信号的PRB个数,
Figure PCTCN2015077365-appb-000007
表示不同CP格式的信号完全以TDM方式共存于同一子帧中的某一混合子帧内第n组TDM符号组内长CP信号与短CP信号之间间隔的保护频带所占用的PRB个数,这些参数需要网络配置给D2D终端以便于诸如D2D发射机速率匹配等相应操作。
在该实施方式2-4中,详细定义了短CP信号和长CP信号以TDM&FDM形式共存的混合子帧的格式。这里特别指出,TDM&FDM混合子帧的每个时隙内TDM复用的符号是2~6组,相邻两组之间以TDM方式隔开,而每组符号组内不同CP格式的信号按照FDM方式复用。其中,即如果TDM符号组为2组,则两组之间一定有一个组间间隔区域(inter-symbols Gap);如果TDM符号组大于2组,则每个TDM&FDM 混合子帧的每个时隙内的各TDM符号组之间至少有一个组间间隔区域(inter-symbols Gap),但不必任何相邻两组之间一定存在组间间隔区域。该间隔区域在频域上占据整个频带。
同时,TDM&FDM混合子帧内按每个时隙划分符号组时每个时隙内TDM复用的2~6组或者混合子帧内按每个子帧划分符号组时每个子帧内TDM复用的2~13组TDM复用符号组的每一组内,可能存在两种CP格式的SC-FDMA/OFDM信号的FDM复用,这种FDM复用的两种CP格式的SC-FDMA/OFDM信号在时域上的采样点长度可能是不一样的,即在以TDM方式互相间隔的每个SC-FDMA/OFDM符号组内,其中的以FDM复用的两种CP格式的SC-FDMA/OFDM信号在时间上可能是无法对齐的,即在图7中,如图7所示的TDM&FDM混合子帧内,组间以TDM复用的其中的某一组SC-FDMA/OFDM符号组内,其中以FDM形式复用的Normal CP PRBs与Extended CP PRBs的采样点数是不一致的,在这两者中较长者的持续时间范围内,在时域上为较长者信号正常发送而较短者信号未发送的时间区间(持续时间为两者之差),且频域上为较短者所在的频域这段时频资源上,将不发送任何信号。注意,该间隔区域在频域上占据该TDM符号组内时域较短者所占用的频带。
故此,TDM符号组内未对齐以致空出来的时频资源(该间隔区域在频域上占据该TDM符号组内时域较短者所占用的频带,如图8所示的①区域),以及组间可能存在的间隔区域(该间隔区域在频域上占据整个频带,如图8所示的②区域),共同构成TDM&FDM混合子帧内不能发送信号的空白资源。
因此,基站在通过RRC信令通知D2D终端其配置子帧集的同时时,也需要通知这些子帧集的CP长度以及各混合子帧的相应配置。这样,基站的子帧集配置方式信令包括
1,子帧集1的时、频资源,以及该子帧集的CP配置格式;
2,子帧集2的时、频资源,以及该子帧集的CP配置格式;
3,长CP的、短CP信号共存的子帧的子帧号与相应的各TDM符号组及其符号组内FDM复用的长CP或短CP信号的子载波个数,及其相应位置:以及长、短CP之间保护频带所占用 的该符号组持续时间范围内子载波个数,以及长、短CP信号的绝对或相对功率。比如一种简化的实施例,即在规范中约定各TDM符号组内长CP子载波集、短CP子载波集固定的相对位置(如短CP子载波集在相对低频位置,长CP子载波集在相对高频位置),并且约定各符号组持续时间范围内长、短CP所在的子载波集在频域上分别都是连续的。并且由网络配置该混合子帧内各个TDM符号组内最后一个短CP子载波集的序号。并且,对于长CP或短CP信号共存的混合子帧,在规范中对于约定该混合子帧内,长CP符号、短CP物符号固定的相对位置(如短CP符号在前,长CP符号在后),紧接着短CP符号后将有一个短CP与长CP以FDM方式复用的混合符号。并且,在该混合符号中,规范也约定长、短CP所在的子载波集在频域上分别都是连续的。并且由网络配置该混合符号内最后一个短CP子载波集的序号。
注意,长CP或短CP信号的TDM&FDM复用的混合子帧内的混合符号中,若长、短CP所在的子载波集分别都是连续且无间隔的,则频域上长CP子载波集和短CP子载波集之间会需要若干子载波的间隔,即保护频带。
这个信令由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
另外,由于蜂窝网信号、D2D信号分别的接收信号动态范围的要求可能会高达60dB或更高,上述频域子载波间隔对于对蜂窝网信号与D2D信号之间、或者不同用户或不同D2D信道之间由于不同CP格式共存于同一符号组带来的互相干扰的抑制能力即使采用很宽的子载波隔离间隔也可能不能达到蜂窝网接收信号或者D2D接收信号的动态范围的要求,所以有可能辅以功率控制机制,即按照以不同CP格式共存于同一符号组的信号的优先级(比如蜂窝网信号优先级信号高于D2D信号)配置共存于同一符号组的不同CP格式的信号的功率。这个信令同样由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
此外,该实施方式可以以三种配置方案实现。第一种配置方案用于通用的配置该小区内所有D2D信道,即该小区所有信道只能分配到子帧 集1以及混合子帧内的短CP资源、子帧集2及混合子帧内的长CP资源其中之一中。第二种配置方案用于专门针对各个D2D信道进行配置,比如为某一D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者为某一D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式。第三种配置方案为该小区内每一个用户的特定D2D信道配置某一组CP格式,即该小区某一个用户的某种信道只能分配到该信道资源池子帧集1及混合子帧内的短CP资源或者子帧集2及混合子帧内的长CP资源其中之一中,同一个用户的同一种信道跨资源池子帧集1或2进行资源分配是不被允许的。
对于D2D发射机,其发送信号所用的资源是在该配置的子帧集中选择的,同时其CP格式完全遵守该配置。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测。
实施方式2-4涉及以下物理层过程:
网络可通过高层RRC信令(或者部分信令通过DCI配置)配置前面描述的相应配置,如长CP子帧集、短CP子帧集、混合子帧子帧号及其相应的混合子帧内配置信息,包括长CP(或短CP)符号集,以及混合子帧内混合符号的包括长CP(或短CP)符号集,以及混合子帧内混合符号的短CP信号(或长CP信号)PRB集、保护频带PRB集的时频资源与功率信息等。当然,相应的混合子帧配置信息由RRC通知之外,或者在SA信道中告知。这些配置会通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测;
总之,这些按照CP格式划分的子帧集上,无论是D2D发射终端还是D2D接收终端都必须按照相应的该子帧或子帧集上配置的CP格式来限制其D2D收发行为。
实施方式2-5
基站将为D2D通信信道与D2D发现信道半静态地配置时频物理资源集,包括:
1,采用短CP的时频物理资源集;
2,采用长CP的时频物理资源集。
因此,基站在通过RRC信令通知D2D终端其配置时频物理资源集的同时,也需要通知这些时频物理资源集的CP长度。这样,基站的时频物理资源集配置方式的信令包括:
1,时频物理资源集1的时、频资源,以及该时频物理资源集的CP配置格式;
2,时频物理资源集2的时、频资源,以及该时频物理资源集的CP配置格式。
在该实施方式所使用的两种CP格式的时频物理资源集配置下,每种CP格式内的子帧集内的子帧格式及存在短CP、长CP信号共存的混合子帧的子帧格式如图9所示。
图9是方案2-5按照时频物理资源集配置CP格式的子帧及PRB格式图,TDM复用符号组是在混合子帧的每个时隙中分组,或是在每个混合子帧中分组。如果是在混合子帧的每个时隙中分组,每个TDM&FDM混合子帧的每个时隙内TDM复用的符号是2~6组(图中为简便计只画了2组);如果是在混合子帧中分组,每个TDM&FDM混合子帧中TDM复用的符号是2~13组。无论这两种情况中的任何一种,相邻两组之间以TDM方式隔开,而每组符号组内不同CP格式的信号可以按照FDM方式复用。在这种按照时频物理资源集配置CP格式的配置模式下,长、短CP的共存的PRB组合方式是任意的,即长、短CP的共存以方案2-1,或方案2-2,或方案2-3,或方案2-4里子帧配置的任意方案共存。也就是说,该方案下时频物理资源集内的短CP(或长CP)时频物理资源集所在的子帧可以是方案2-1、方案2-2、方案2-3、方案2-4里的任意一种子帧。
并且,该配置模式下,每个存在短CP、长CP信号共存的混合子帧中,短CP信号和长CP信号可以以TDM形式共存,也可以以FDM形 式共存,也可以以TDM&FDM形式共存。
短CP信号和长CP信号可以以TDM形式共存的混合子帧的格式已在方案2-2中详述。
短CP信号和长CP信号可以以FDM形式共存的混合子帧的格式已在方案2-3中详述。
短CP信号和长CP信号可以以TDM&FDM形式共存的混合子帧的格式已在方案2-4中详述。这里特别指出,TDM&FDM混合子帧的每个时隙内TDM复用的符号可以是2~6组,相邻两组之间以TDM方式隔开,而每组符号组内不同CP格式的信号可以按照FDM方式复用。其中,即如果TDM符号组为2组,则两组之间一定有一个组间间隔区域(inter-symbols Gap);如果TDM符号组大于2组,则每个TDM&FDM混合子帧的每个时隙内的各TDM符号组之间至少有一个组间间隔区域(inter-symbols Gap),但不必任何相邻两组之间一定存在组间间隔区域。该间隔区域在频域上占据整个频带。
同时,TDM&FDM混合子帧内按每个时隙划分符号组时每个时隙内TDM复用的2~6组或者混合子帧内按每个子帧划分符号组时每个子帧内TDM复用的2~13组TDM复用符号组的每一组内,可能存在两种CP格式的SC-FDMA/OFDM信号的FDM复用,这种FDM复用的两种CP格式的SC-FDMA/OFDM信号在时域上的采样点长度可能是不一样的,即在以TDM方式互相间隔的每个SC-FDMA/OFDM符号组内,其中的以FDM复用的两种CP格式的SC-FDMA/OFDM信号在时间上可能是无法对齐的,即在图9中,如图9所示的TDM&FDM混合子帧内,组间以TDM复用的其中的某一组SC-FDMA/OFDM符号组内,其中以FDM形式复用的Normal CP PRBs与Extended CP PRBs的采样点数是不一致的,在这两者中较长者的持续时间范围内,在时域上为较长者信号正常发送而较短者信号未发送的时间区间(持续时间为两者之差),且频域上为较短者所在的频域这段时频资源上,将不发送任何信号。注意,该间隔区域在频域上占据该TDM符号组内时域较短者所占用的频带。
故此,TDM符号组内未对齐以致空出来的时频资源(该间隔区域在频域上占据该TDM符号组内时域较短者所占用的频带,如图8所示 的①区域),以及组间可能存在的间隔区域(该间隔区域在频域上占据整个频带,如图8所示的②区域),共同构成TDM&FDM混合子帧内不能发送信号的空白资源。
基站的时频物理资源集配置方式信令为上述1,2的其中之一或1,2同时配置。
这个信令由基站以专用RRC信令的形式发送给D2D终端,或者以SIB消息的形式广播。
若标准中对该实施方式标准化,为简化信令开销,需要确定上述的每一个TDM符号组中,以FDM方式复用的不同CP格式的信号在时间上是左对齐还是右对其的,以及在规范中规定长CP格式的信号与短CP格式的信号哪个更长。这样,对于该方案的时域信息,信令中只需要通知每个TDM符号组的长CP信号(或短CP信号)的符号数就可以了。当然,对于该方案的频域信息,为简化信令开销,也需要确定长CP格式的信号与短CP格式在频带上的相对位置,以及保护带的起始频域位置及带宽,这样,信令中只需要通知每个TDM符号组的长CP信号(或短CP信号)的带宽,以及保护带的带宽就可以了。
另外,该实施方式可以以三种配置方案实现。第一种配置方案用于通用的配置本小区内所有D2D信道,即每种信道只能分配到时频物理资源集1、时频物理资源集2其中之一中。第二种配置方案用于专门针对本小区内所有D2D终端的各个D2D信道进行配置,比如为本小区所有D2D终端的发现信道配置时频物理资源集及其该时频物理资源集的CP格式,或者为某一本小区所有D2D终端的资源分配信道(SA Channel)配置时频物理资源集及其该时频物理资源集的CP格式,或者为本小区所有D2D手机的D2D传输信道配置时频物理资源集及其该时频物理资源集的CP格式,等等。第三种配置方案用于专门针对本小区内各个D2D终端的各个D2D信道进行配置,比如为本小区某一D2D终端的发现信道配置子帧集及其该子帧集的CP格式,或者为本小区某一D2D终端的资源分配信道(SA Channel)配置子帧集及其该子帧集的CP格式,或者为本小区某一D2D手机的D2D传输信道配置时频物理资源集及其该时频物理资源集的CP格式。总之,某一个D2D终端的某一个D2D信道 只能配置在该小区内该D2D信道两种不同CP格式的资源池的其中之一中,某一个D2D终端的某一个D2D信道同时跨不同CP格式的资源池承载是不允许的。
对于D2D发射机,其发送信号所用的资源是在该配置的时频物理资源集中选择的,同时其CP格式完全遵守该配置。
对于该配置相关的D2D发射终端,将对在其相应时频物理资源块集上发射的D2D信号采用网络配置的CP格式;对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测。
实施方式2-5涉及以下物理层过程:
网络可通过高层信令配置前面描述的相应配置,包括长CP子帧集、短CP子帧集、混合子帧子帧号及其相应的混合子帧内配置信息,包括长CP(或短CP)符号集,以及混合子帧内混合符号的包括长CP(或短CP)符号集,以及混合子帧内混合符号的短CP信号PRB集、长CP信号PRB集、保护频带PRB集的时频资源与功率信息等。当然,相应的混合子帧配置信息除了由RRC通知之外,也可以在SA信道中告知。这些配置会通知给D2D发射机终端和D2D接收机终端。
对于该配置相关的D2D发射终端,将对在其相应子帧集上发射的D2D信号采用网络配置的CP格式;
对于该配置相关的D2D接收终端,将会用从网络通知获得的CP格式进行相应的接收信号检测。
综上,本发明总体上提供了一种对设备到设备D2D通信的资源进行CP配置的方法,包括如图10所示的步骤。具体地,在步骤S910,基站针对不同的资源子集配置CP格式,所述CP格式包括长CP信号格式和短CP信号格式。在步骤S920,基站向D2D发送设备和D2D接收设备通知所述配置,其中,基站向D2D发送设备和D2D接收设备通知的配置包括:对D2D发送设备的D2D发现信道的资源池所采用的CP格式的配置;以及对D2D发送设备的D2D通信信道的资源池所采用的CP格式的配置,以及其中,所述D2D发送设备和所述D2D接收设备在所述资源子集中以符合所述配置的CP格式进行发送和接收。
图11示出了根据相应的基站1000的框图。如图所示,基站1000 包括发送单元1010,用于通过高层信令发送资源池的循环前缀CP格式,所述资源池包括D2D发现信道的资源池和/或D2D通信信道的资源池。所述CP格式可以包括长CP信号格式和短CP信号格式。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (23)

  1. 一种对设备到设备D2D通信的资源进行循环前缀CP配置的方法,包括:
    基站针对不同的资源子集配置CP格式,所述CP格式包括长CP信号格式和短CP信号格式;以及
    基站向D2D发送设备和D2D接收设备通知所述配置,其中,基站向D2D发送设备和D2D接收设备通知的配置包括:对D2D发送设备的D2D发现信道的资源池所采用的CP格式的配置;以及对D2D发送设备的D2D通信信道的资源池所采用的CP格式的配置,以及
    其中,所述D2D发送设备和所述D2D接收设备在所述资源子集中以符合所述配置的CP格式进行发送和接收。
  2. 根据权利要求1所述的方法,其中,所述配置是通过高层RRC信令、SIB消息或DCI来通知的。
  3. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置各D2D信道所占用的资源池、以及与该资源池对应的CP格式。
  4. 根据权利要求3所述的方法,所述D2D信道包括D2D通信信道和/或D2D发现信道。
  5. 根据权利要求3所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知各D2D信道的资源池所包含的时频资源、以及与该资源池对应的CP格式。
  6. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站针对各D2D信道分别配置两个资源池、以及与每个资源池对应的CP格式。
  7. 根据权利要求6所述的方法,所述D2D信道包括D2D通信信道和/或D2D发现信道。
  8. 根据权利要求6所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知各D2D信道分别的两个资源池分别包含的时频资源、以及与每个资源池对应的CP格式。
  9. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集、以及每个子帧集所采用的不同的CP格式。
  10. 根据权利要求9所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、以及与两个子帧集对应的不同的CP格式。
  11. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不同的CP格式、所述一个或二个混合子帧如何以时分复用方式采用不同的CP格式。
  12. 根据权利要求11所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中不同CP格式信号所对应的SC-FDMA或OFDM符号的个数和位置。
  13. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不同的CP格式、以及所述一个或二个混合子帧如何以频分复用方式采用不同的CP格式。
  14. 根据权利要求13所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中不同CP格式信号所对应的物理资源块的个数、位置和功率信息、以及所述混合子帧中保护带所占用的物理资源块的个数和位置。
  15. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置两个子帧集和一个或二个混合子帧、所述两个子帧集分别采用的不同的CP格式、以及所述一个或二个混合子帧如何以时分与频分复用方式采用不同的CP格式。
  16. 根据权利要求15所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个子帧集所包含的时频资源、与两个子帧集对应的不同的CP格式、所述一个或二个混合子帧的子帧号、以及所述一个或二个混合子帧中SC-FDMA或OFDM符号组的个数、每个SC-FDMA或OFDM符号组中不同CP格式信号所对应的SC-FDMA或OFDM符号和子载波的个数、位置和功率信息、以及所述混合子帧中同一SC-FDMA或OFDM符号组内保护带所占用的子载波的个数和位置。
  17. 根据权利要求1所述的方法,其中,基站针对不同的资源子集配置CP格式包括:基站配置两个时频物理资源集、以及所述两个时频物理资源集分别采用的不同的CP格式。
  18. 根据权利要求17所述的方法,其中,基站向D2D发送设备和D2D接收设备通知所述配置包括:基站通知所述两个时频物理资源集所包含的时频资源、以及与所述两个时频物理资源集相对应的不同的CP格式、功率信息以及相应的保护带位置。
  19. 一种基站,包括:
    发送单元,用于通过高层信令发送资源池的循环前缀CP格式,所述资源池包括设备到设备D2D发现信道的资源池和/或D2D通信信道的资源池。
  20. 根据权利要求19所述的基站,其中,所述CP格式包括长CP信号格式和短CP信号格式。
  21. 根据权利要求19所述的基站,其中,所述基站通过所述高层信令配置:各D2D信道所占用的资源池、以及与该资源池对应的CP格式,其中,所述D2D信道包括D2D发现信道和/或D2D通信信道。
  22. 根据权利要求21所述的基站,其中,所述基站通过高层信令向D2D发射机终端通知:
    该D2D发射机终端的D2D发现信道的资源池、及其对应物理资源、以及与该资源池对应的CP格式;以及
    该D2D发射机终端的D2D通信信道的资源池、及其对应物理资源、以及与该资源池对应的CP格式。
  23. 根据权利要求21所述的基站,其中,所述基站通过高层信令向D2D接收机终端通知不同CP格式的资源池及其对应物理资源,其中,所述CP格式包括长CP信号格式和短CP信号格式。
PCT/CN2015/077365 2014-05-08 2015-04-24 D2d通信中的不同cp长度共存的配置 WO2015169156A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/309,287 US10285181B2 (en) 2014-05-08 2015-04-24 Configuration of coexistence of different CP lengths in D2D communication
EP15789217.5A EP3142437A4 (en) 2014-05-08 2015-04-24 Configuration for different cp lengths coexistence in d2d communication
JP2016566931A JP6527530B2 (ja) 2014-05-08 2015-04-24 基地局および端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410192888.3A CN105101458B (zh) 2014-05-08 2014-05-08 D2d通信中的不同cp长度共存的配置
CN201410192888.3 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015169156A1 true WO2015169156A1 (zh) 2015-11-12

Family

ID=54392118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077365 WO2015169156A1 (zh) 2014-05-08 2015-04-24 D2d通信中的不同cp长度共存的配置

Country Status (5)

Country Link
US (1) US10285181B2 (zh)
EP (1) EP3142437A4 (zh)
JP (1) JP6527530B2 (zh)
CN (1) CN105101458B (zh)
WO (1) WO2015169156A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018021008A1 (ja) * 2016-07-29 2019-03-14 日本電気株式会社 通信装置、方法、システム、プログラム及び記録媒体
CN109952733A (zh) * 2016-09-30 2019-06-28 摩托罗拉移动有限责任公司 灵活的无线电资源分配

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338467B (zh) * 2014-08-07 2019-04-02 电信科学技术研究院 一种设备到设备通信中数据接收方法、发送方法及设备
JPWO2016068072A1 (ja) * 2014-10-31 2017-08-10 三菱電機株式会社 通信システム
US20170048036A1 (en) * 2015-08-10 2017-02-16 Qualcomm Incorporated Extending lte-d discovery for v2v
CN106303918B (zh) * 2015-11-24 2020-06-02 北京智谷睿拓技术服务有限公司 设备间通信方法、设备间通信资源分配方法、及其装置
JP6750637B2 (ja) * 2016-01-26 2020-09-02 ソニー株式会社 装置及び方法
CN109716840A (zh) * 2016-09-28 2019-05-03 华为技术有限公司 数据传输方法、基站及用户设备
WO2018082928A1 (en) 2016-11-03 2018-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment, base station and wireless communications system
EP3358898B1 (en) * 2017-02-07 2021-04-28 Volkswagen Aktiengesellschaft Apparatuses, methods and computer programs for allocating transmission resources and for a mobile transceiver
CN108811074B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 信息传输方法及装置
WO2019093816A1 (ko) * 2017-11-10 2019-05-16 엘지전자 주식회사 사이드링크 신호를 위한 수신 윈도우를 제어하는 방법 및 장치
WO2019093810A1 (ko) * 2017-11-10 2019-05-16 엘지전자 주식회사 지연된 사이드링크 신호의 처리를 위한 방법 및 장치
WO2019100374A1 (zh) 2017-11-27 2019-05-31 华为技术有限公司 同步方法及装置
US10750492B2 (en) 2017-12-20 2020-08-18 Qualcomm Incorporated Resource assignment in NR-SS
BR112020024169A2 (pt) 2018-06-29 2021-03-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método para transmissão de dados, dispositivo terminal, chip e mídia de armazenamento legível por computador
CN111263440A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 一种防护频带指示方法及装置
US11102121B2 (en) 2019-10-23 2021-08-24 Cisco Technology, Inc. Path signatures for data flows
CN115720704A (zh) * 2020-04-16 2023-02-28 三星电子株式会社 用于在无线通信系统中发送和接收上行链路参考信号的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023001A1 (en) * 2012-08-09 2014-02-13 Qualcomm Incorporated Methods and apparatus for device to device communications
CN103686985A (zh) * 2012-09-25 2014-03-26 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及装置
WO2014058221A2 (ko) * 2012-10-09 2014-04-17 엘지전자 주식회사 무선 통신 시스템에서 단말간 통신을 수행하는 방법 및 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286787A (zh) * 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 传输同步信道的设备和方法
US10039121B2 (en) * 2012-06-22 2018-07-31 Lg Electronics Inc. Scheduling method for device-to-device communication and apparatus for same
US9756613B2 (en) * 2012-12-06 2017-09-05 Qualcomm Incorporated Transmission and reception timing for device-to-device communication system embedded in a cellular system
US9143497B2 (en) * 2013-07-19 2015-09-22 Symantec Corporation Systems and methods for securing email in mobile devices
WO2015020427A1 (ko) * 2013-08-06 2015-02-12 엘지전자 주식회사 D2d 신호 전송 방법 및 이를 위한 장치
JP6019005B2 (ja) 2013-10-31 2016-11-02 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US20150264552A1 (en) * 2014-03-14 2015-09-17 Gang Xiong Systems, methods, and devices for device-to-device discovery and communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023001A1 (en) * 2012-08-09 2014-02-13 Qualcomm Incorporated Methods and apparatus for device to device communications
CN103686985A (zh) * 2012-09-25 2014-03-26 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及装置
WO2014058221A2 (ko) * 2012-10-09 2014-04-17 엘지전자 주식회사 무선 통신 시스템에서 단말간 통신을 수행하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3142437A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018021008A1 (ja) * 2016-07-29 2019-03-14 日本電気株式会社 通信装置、方法、システム、プログラム及び記録媒体
JP2023017774A (ja) * 2016-07-29 2023-02-07 日本電気株式会社 基地局、基地局における方法、端末装置、及び、端末装置における方法
US11677599B2 (en) 2016-07-29 2023-06-13 Nec Corporation Communication apparatuses, methods, system, programs and recording media
CN109952733A (zh) * 2016-09-30 2019-06-28 摩托罗拉移动有限责任公司 灵活的无线电资源分配

Also Published As

Publication number Publication date
EP3142437A4 (en) 2017-12-06
US20170079026A1 (en) 2017-03-16
US10285181B2 (en) 2019-05-07
CN105101458A (zh) 2015-11-25
JP2017520148A (ja) 2017-07-20
EP3142437A1 (en) 2017-03-15
CN105101458B (zh) 2021-05-07
JP6527530B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2015169156A1 (zh) D2d通信中的不同cp长度共存的配置
US11647510B2 (en) Devices and method for communicating PDCCH information and PDSCH data
US11129153B2 (en) Telecommunications systems and methods for machine type communication
US11805498B2 (en) Flexible multiplexing of users with difference requirements in a 5G frame structure
CN105934999B (zh) 通信设备和方法
JP7364749B2 (ja) 通信装置、通信方法、及び無線通信システム
CN110392431A (zh) 一种实现边链路资源配置的方法、装置及系统
WO2015180551A1 (zh) 信息发送方法、信息接收方法、装置及系统
US10945278B2 (en) User equipment, base station, wireless communication network, data signal and method to provide enhanced SPS control and continuous SPS after handover
US20230269051A1 (en) Physically separated channels for narrowband, low complexity receivers
CN105101431B (zh) 一种设备到设备通信方法、装置及系统
TWI662844B (zh) 通訊控制裝置、通訊控制方法、無線通訊系統及終端裝置
US9167584B2 (en) Method and apparatus for allocating resources in a multi-node system
TWI642318B (zh) 通訊控制裝置、通訊控制方法、無線通訊系統及終端裝置
WO2014174878A1 (ja) 通信制御装置、通信制御方法、無線通信システム及び端末装置
JP7344870B2 (ja) 通信装置、通信方法、及びシステム
EP2991424B1 (en) Efficient band extension techniques for lte commuication systems
CN117501652A (zh) 用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566931

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015789217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015789217

Country of ref document: EP