WO2015169150A1 - 对时分双工网络中的小小区进行分簇的装置、方法及基站 - Google Patents

对时分双工网络中的小小区进行分簇的装置、方法及基站 Download PDF

Info

Publication number
WO2015169150A1
WO2015169150A1 PCT/CN2015/077173 CN2015077173W WO2015169150A1 WO 2015169150 A1 WO2015169150 A1 WO 2015169150A1 CN 2015077173 W CN2015077173 W CN 2015077173W WO 2015169150 A1 WO2015169150 A1 WO 2015169150A1
Authority
WO
WIPO (PCT)
Prior art keywords
clustering
small cell
information
base station
cluster
Prior art date
Application number
PCT/CN2015/077173
Other languages
English (en)
French (fr)
Inventor
崔琪楣
陶铭亮
梁辉
Original Assignee
索尼公司
崔琪楣
陶铭亮
梁辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔琪楣, 陶铭亮, 梁辉 filed Critical 索尼公司
Priority to EP15788656.5A priority Critical patent/EP3142402A4/en
Priority to US15/303,281 priority patent/US9854452B2/en
Publication of WO2015169150A1 publication Critical patent/WO2015169150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention generally relates to the field of wireless communications, and in particular to time division duplex (TDD) wireless communication technologies, and more particularly, to an apparatus and method for clustering small cells in a time division duplex network and including the The base station of the device. Furthermore, the invention relates to a computer program for implementing the above method, a computer readable storage medium comprising the computer program, and an electronic device comprising circuitry for performing the operations of the above method.
  • TDD time division duplex
  • LTE is a long-term evolution of the Universal Mobile Telecommunications System (UMTS) technology standard developed by the 3rd Generation Partnership Project (3GPP).
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • the LTE wireless network architecture is flatter, which reduces system delay and reduces network construction costs and maintenance costs.
  • TDD-LTE a small cell and a macro cell are provided, wherein the small cell is small in size and can be used indoors and outdoors, and generally covers an indoor space of 10 meters or a range of 2 kilometers in the field. It is characterized by dense layout and overlapping coverage.
  • the macro cell implements wide area coverage, and the small cell implements hotspot coverage.
  • the dynamic TDD-LTE system has 7 seed frame configurations, and different subframe configurations provide different uplink-downlink subframe ratios according to different uplink and downlink throughputs.
  • each small cell base station dynamically adjusts the subframe structure according to its own throughput requirement, and causes subframe interlace interference between adjacent small cells due to different transmission directions, as shown in FIG. 1 .
  • a small cell for use in a time division duplex network comprising: an information acquiring unit configured to acquire transmission characteristics between small cells in a time division duplex network and uplink traffic and/or downlink traffic of each small cell; and a clustering unit The small cell is configured to be clustered based on the transmission characteristics between the small cells acquired by the information acquiring unit and the uplink traffic and/or the downlink traffic of each small cell to obtain at least one small cell cluster.
  • a base station including the above apparatus.
  • a method for clustering small cells in a time division duplex network includes: acquiring transmission characteristics between small cells in a time division duplex network and each small cell Uplink traffic and/or downlink traffic; and clustering the small cells based on the acquired transmission characteristics between the small cells and the uplink traffic and/or downlink traffic of each small cell to obtain at least one small cell cluster .
  • an electronic device comprising: circuitry configured to perform an operation of acquiring transmission characteristics between small cells in a time division duplex network and uplink traffic of each small cell and And/or downlink traffic; and clustering the small cells based on the acquired transmission characteristics between the small cells and the uplink traffic and/or downlink traffic of each small cell to obtain at least one small cell cluster.
  • an apparatus for clustering a small cell in a time division duplex network comprising: a request receiving unit configured to receive a request from a small cell base station for dynamic clustering a clustering request; a clustering determining unit configured to determine whether to perform clustering based at least on the clustering request.
  • a base station including the above apparatus.
  • a base station comprising: a clustering request transmitting unit configured to send a clustering request to a control device.
  • a method for clustering a small cell in a time division duplex network comprising: receiving a clustering request from a small cell base station for dynamic clustering; and at least Whether to perform clustering based on the clustering request is determined.
  • an electronic device comprising: circuitry configured to: receive a clustering request from a small cell base station for dynamic clustering; and based at least on the clustering request To determine if clustering is done.
  • the present invention can achieve at least one of the following advantages by dynamically clustering small cells according to transmission characteristics between small cells and uplink and downlink traffic of each small cell: minimizing interlace interference, and making TDD network have high throughput. Quantity, which can improve the utilization efficiency of network resources.
  • FIG. 1 is a schematic diagram showing an example of a case where subframe interlace interference occurs between small cells
  • TDD time division duplex
  • FIG. 3 is a structural block diagram showing an apparatus for clustering small cells in a TDD network according to another embodiment of the present application.
  • FIG. 4 is a structural block diagram showing one configuration example of the information acquisition unit in FIG. 3;
  • FIG. 5 is a structural block diagram showing an apparatus for clustering small cells in a TDD network according to another embodiment of the present application.
  • FIG. 6 is a structural block diagram showing an apparatus for clustering small cells in a TDD network according to another embodiment of the present application.
  • FIG. 7 is a structural block diagram showing a base station according to another embodiment of the present application.
  • FIG. 8 is a diagram showing a small for use in a TDD network according to another embodiment of the present application. A flow chart of a method for clustering a cell;
  • Figure 9 is a flow chart showing the sub-steps of step S21 in Figure 8.
  • FIG. 10 is a structural block diagram showing an apparatus for clustering small cells in a TDD network according to another embodiment of the present application.
  • FIG. 11 is a structural block diagram showing one configuration example of the clustering unit shown in FIG. 10;
  • FIG. 12 is a structural block diagram showing another configuration example of the clustering unit shown in FIG. 10;
  • FIG. 13 is a structural block diagram showing an apparatus for clustering small cells in a TDD network according to another embodiment of the present application.
  • FIG. 14 is a flowchart illustrating a method for clustering small cells in a TDD network, according to another embodiment of the present application.
  • 15 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • each small cell base station dynamically adjusts the subframe structure, the result is that the subframe interlace interference between adjacent small cells is caused by the difference in the transmission direction.
  • This problem can be solved by clustering small cells. Specifically, small cell base stations that generate severe interlace interference can be divided into the same cluster and base stations in the same cluster have the same transmission direction at the same time, thereby avoiding interleaving. interference.
  • FIG. 2 illustrates a block diagram of an apparatus 100 for clustering small cells in a time division duplex (TDD) network, the apparatus 100 including a request receiving unit 101 configured to receive from, according to one embodiment of the present application,
  • the clustering determination unit 102 is configured to determine whether to perform clustering based on at least the clustering request.
  • the apparatus 100 is configured to receive a clustering request of a small cell base station within its control range, and determine whether to perform clustering based on related parameters of the clustering request, in other words, the device 100 adopts a triggered clustering scheme.
  • a clustering request is sent to the device 100 when at least one of the following conditions is met: the interference signal of the small cell base station is enhanced to a certain extent, and the change of the uplink and downlink traffic volume exceeds a predetermined value, small The cell throughput drops below a predetermined threshold.
  • the interference signal can be indicated, for example, by reference signal received power (RSRP), and the interference signal is enhanced to a certain extent to indicate interference enhancement from the adjacent small cell, so that clustering is needed to ensure communication quality.
  • RSRP reference signal received power
  • a decrease in small cell throughput above a predetermined threshold also indicates that the current network state has deteriorated beyond tolerance, and it is desirable to increase throughput by performing clustering.
  • the change of the uplink and downlink traffic volume exceeds a predetermined value as one of the conditions is based on the following considerations: dividing a small cell with a small difference between the uplink traffic or the downlink traffic or its proportion into a cluster can improve the adaptability of the service, This can increase throughput.
  • This principle will be described in detail below in conjunction with a specific clustering process. It should be understood that the determination condition for transmitting the clustering request is not limited to the above three conditions, but may be additionally added or replaced according to specific needs and applications.
  • the clustering request can be sent by each small cell base station through the X-2 interface.
  • the clustering request is a High Clustering Probability Flag (HCPI), which may be added to the LOAD INFORMATION message in the 36.423 standard and sent.
  • HCPI High Clustering Probability Flag
  • the clustering determining unit 102 is configured to determine to perform clustering when receiving a clustering request from more than a predetermined number of small cell base stations within a predetermined time period. Specifically, the clustering determining unit 102 can count the number of received HCPIs, and determines that clustering is to be triggered when the number is greater than the predetermined value. Of course, the clustering determining unit 102 can perform the determination of whether or not to trigger the clustering in any manner, and is not limited to the above example.
  • the device 100 makes the clustering more flexible and timely by adopting a scheme based on dynamic clustering of requests, thereby reducing interlace interference between small cells and improving network throughput.
  • FIG. 3 illustrates a block diagram of an apparatus 200 for clustering small cells in a TDD network, in addition to the various components shown in FIG. 2, including information acquisition, in accordance with another embodiment of the present application.
  • the unit 201 is configured to acquire information required for clustering from the respective small cell base stations after the clustering determining unit 102 determines that clustering is to be performed.
  • the information obtained depends on the clustering method to be used.
  • the information may include transmission characteristics and uplink/downlink traffic related data between the respective small cells.
  • the transmission characteristics may be transmission loss between small cells, and the transmission loss may be coupling loss or path loss between small cells.
  • the transmission feature may also be a backhaul link delay between small cell base stations.
  • the transmission feature may be a combination of the above or a part thereof.
  • the uplink/downlink traffic related data may include, for example, an uplink and downlink traffic volume distribution ratio.
  • the information acquiring unit 201 includes: a notifying module 2011 configured to send a notification of reporting information to each small cell base station and receive a reply thereof; And the information receiving module 2012 is configured to receive information from the corresponding small cell base station if the reply indicates that the notification is successful.
  • the notification module 2011 first sends a notification to each small cell base station, and the small cell base station checks whether the required information can be provided after receiving the notification. If yes, the response is successful, otherwise the reply fails.
  • the above notifications, replies and information can be transmitted via the X-2 interface.
  • the above notification is indicated by a Coupling Loss and Traffic Ratio (CLTR) flag, which may be included in the Report Characteristics IE in the Resource Status Request message in the Resource Status Reporting Initiation procedure, and the reply is passed by each small cell base station through the Resource Status Response or Resource Status Failure is sent, where Resource Status Response indicates that the notification is successful, and Resource Status Failure indicates that the notification failed.
  • the CLTR flag can be, for example, the 6th bit of the Report Characteristics IE.
  • the data is maintained by the base station of the corresponding small cell, and there is a user reported buffer status report (BSR) in the user of the base station of the corresponding small cell.
  • BSR user reported buffer status report
  • the downlink traffic may be automatically updated according to the buffer status of the small cell base station, and the uplink traffic needs to be obtained by reporting the buffer status of the user of the small cell base station.
  • the user when the user has new data arrival or the uplink data cache state changes, the user automatically touches Sending a new BSR report, for users who have not uploaded a BSR, it can be considered that the uplink data cache status has not changed.
  • the small cell base station calculates its own coupling loss and reports it to the device 200.
  • the Resource Status Reporting program is executed to upload the above information to the device 200.
  • the information may be included as a CLTR status information in a Resource Status Update message.
  • the CLTR status information may include the following fields: a CLTR status indication, a CL status, and a TR status, wherein the CLTR status indication indicates whether the CL status and the TR status are valid, and the CL status indicates a coupling loss between the current small cell and other small cells,
  • the TR state indicates the distribution ratio of the uplink and downlink traffic of the current small cell.
  • the CL state can be represented by an integer string, each integer representing the coupling loss with a small cell, and the number of coupling losses that can be transmitted is limited by the size of the integer string.
  • the uplink and downlink traffic distribution ratio may be represented by an integer field quantized into a plurality of intervals, where each interval corresponds to a ratio.
  • the device 200 may further query the small cell base station for the cause of the failure.
  • the information acquisition unit 201 is configured to not acquire information from the small cell base station if the small cell is in an off state.
  • FIG. 5 shows a block diagram of an apparatus 300 for clustering small cells in a TDD network, in addition to the various components shown in FIG. 2, including: clustering, in accordance with another embodiment of the present application.
  • the unit 301 is configured to perform clustering on each small cell after the clustering determining unit 102 determines that clustering is to be performed; and the clustering instructing unit 302 is configured to, after the clustering unit 301 performs clustering, to each small cell
  • the base station indicates the clustering result.
  • the clustering unit 301 can perform clustering using various methods including, but not limited to, various clustering methods according to embodiments of the present invention to be described later.
  • clustering results can be sent over the X-2 interface.
  • the clustering result includes information of small cells included in each cluster, and may also include selection of cluster heads in each cluster.
  • the clustering result may be sent to the small cell base station by using a CLUSTERING INDICATION procedure, where the clustering result is sent in a Clustering Information message, the Clustering Information message includes a Cluster indicating whether the target small cell to which the indication is to be sent is a cluster head Head Indication IE, when the target small cell is a cluster head, the Clustering Information message further includes a Cluster Cell ID IE indicating information of all small cell IDs in the cluster, and when the target small cell is not a cluster head, the Clustering Information message is further A Cluster Head ID IE that includes information indicating the cluster heads in the cluster.
  • the clustering unit 301 can also determine the uplink and downlink subframe configuration of each cluster and provide it to each small cell in the Clustering Information message.
  • the Clustering Information message may also include a Cluster Configuration IE indicating the uplink and downlink subframe configuration in the cluster.
  • the cluster heads selected by the clustering unit 301 may also determine the uplink and downlink subframe configurations of the clusters and notify the ordinary small cells in the cluster.
  • the apparatus 300 may further include the information acquisition unit 201 described with reference to FIG. 3, and the clustering unit 301 performs clustering processing based on the information acquired by the information acquisition unit 201.
  • FIG. 6 shows a block diagram of an apparatus 400 for clustering small cells in a TDD network, in addition to the various components shown in FIG. 2, in accordance with yet another embodiment of the present application, the apparatus 400 further comprising: a timer 401, configured to issue a trigger signal to the cluster determining unit 102 at a predetermined period, wherein the cluster determining unit 102 is configured to receive no clustering within a predetermined period of time before the moment when the trigger signal is received Make sure to cluster when requested.
  • a timer 401 configured to issue a trigger signal to the cluster determining unit 102 at a predetermined period
  • the cluster determining unit 102 is configured to receive no clustering within a predetermined period of time before the moment when the trigger signal is received Make sure to cluster when requested.
  • the device 400 can implement a dynamic clustering scheme combining periodic clustering and triggered clustering.
  • the predetermined clustering period T c is preset by the network side so that the clustering is re-clustered every time T c without triggering clustering.
  • the above predetermined time period is set such that a case where the cycle clustering is started in the process of triggering the clustering does not occur.
  • timer 401 can also be configured to be reset after the clustering determining unit 102 determines that clustering is to be performed. This avoids the problem of unnecessarily frequent clustering, ensuring normal communication.
  • the apparatus 400 may further include an information acquisition unit 201 configured to acquire information required for clustering from the respective small cell base stations after the clustering determination unit 102 determines that clustering is to be performed.
  • the information may include transmission characteristics of each small cell and uplink/downlink traffic related data, wherein the uplink/downlink traffic related data of the small cell is maintained by the base station of the corresponding small cell, and in a predetermined period (for example, period T) c ) The same cycle is updated.
  • the device 400 can complement the two clustering modes to improve network throughput while reducing small cell interlace interference.
  • the devices 100-400 in the various embodiments described above may be separate control devices or may be located in a small cell base station or a macro cell base station as a control center.
  • the devices 100-400 can also be located in each of the small cell base stations and then dynamically activated by a particular command to perform the various control functions described above.
  • a base station is also essentially provided, including any of the devices 100-400.
  • the configuration of the base station on the small cell side is as shown in FIG. 7, in which a broken line frame indicates an optional component.
  • the base station 500 includes a clustering request transmitting unit 501 configured to transmit a clustering request to the control device.
  • the clustering request transmitting unit 501 transmits a clustering request.
  • the interference signal of each small cell base station is enhanced to a certain extent, the change of the uplink and downlink traffic volume exceeds a predetermined value, and the small cell throughput decreases by more than a predetermined threshold.
  • the control device is a device that manages clustering, and may be, for example, any one of the devices 100-400 described with reference to the first to fourth embodiments.
  • the base station 500 can transmit the clustering request in real time according to the actual communication state, so that the control device can appropriately perform dynamic clustering in response to the request, thereby improving the throughput of the network while ensuring the communication quality.
  • the base station 500 may further include: a notification receiving unit 502 configured to receive a notification from the control device for information required to report the clustering; the reply transmitting unit 503 configured to control the notification when the notification receiving unit 502 receives the notification The device transmits a reply; and the information transmitting unit 504 is configured to transmit the information to the control device after the reply transmitting unit 503 transmits the reply if the information can be obtained.
  • the base station 500 further includes a clustering indication receiving unit 505 configured to receive the clustering result from the control device.
  • the clustering result may include an information element indicating whether the small cell base station is designated as a cluster head, and if it is designated as a cluster head, the clustering result further includes the ID of each small cell of the cluster in which it is located, otherwise The cluster result also includes the ID of the cluster head of the cluster in which it resides.
  • the clustering result may also include an uplink and downlink subframe configuration of the cluster in which it is located.
  • the clustering indication receiving unit 505 may also receive information about the uplink and downlink subframe configuration from the cluster head of the cluster in which it is located.
  • apparatus 100-400 for clustering small cells in a TDD network it is apparent that some processes or methods are also disclosed. In the following, an overview of these methods is given without repeating some of the details already discussed above, but it should be noted that although these methods are disclosed in describing the process for clustering small cells in a TDD network, These methods are not necessarily those described or necessarily performed by those components.
  • apparatus 10-400 for clustering small cells in a TDD network may be implemented partially or completely using hardware and/or firmware, while discussed below for small cells in a TDD network
  • the method of clustering can be implemented entirely by computer executable programs, although these methods can also employ hardware and/or firmware for devices 100-400 for clustering small cells in a TDD network.
  • FIG. 8 shows a flowchart of a method for clustering small cells in a TDD network, the method comprising: receiving a clustering request from a small cell base station for dynamic clustering according to an embodiment of the present application ( S11); and determining whether to perform clustering based on at least the clustering request (S12).
  • the clustering request may be sent when at least one of the following conditions is met: the interference signal of each small cell base station is enhanced to a certain extent, the change of the uplink and downlink traffic volume exceeds a predetermined value, and the small cell throughput decreases by more than a predetermined threshold.
  • the clustering request can be sent by each small cell base station through the X-2 interface.
  • the clustering request is a high clustering probability flag, which is included in the LOAD INFORMATION message for transmission.
  • step S12 it is determined that clustering is performed when, for example, a clustering request is received from more than a predetermined number of small cell base stations within a predetermined time period.
  • step S21 may be performed to acquire information required for clustering from each small cell base station.
  • the information may include, for example, transmission characteristics of each small cell and uplink/downlink traffic related data.
  • the uplink/downlink traffic related data may include an uplink and downlink traffic volume distribution ratio.
  • step S21 may include the following substeps: transmitting a notification of reporting information to each small cell base station (S201); receiving its reply (S202); and from the corresponding small cell base station in response to the reply indicating that the notification is successful Receiving information (S203).
  • the above notifications, replies and information can be transmitted via the X-2 interface.
  • the notification may be indicated by a coupling loss and a traffic ratio CLTR flag, and the CLTR flag is included in the Report Characteristics IE in the Resource Status Request message in the Resource Status Reporting Initiation process, and the response is received by each small cell base station by Resource Status Response or Resource.
  • Status Failure is sent, where Resource Status Response indicates that the notification is successful, and Resource Status Failure indicates that the notification failed.
  • the reported information is included as a CLTR status information in the Resource Status Update message.
  • the CLTR status information includes the following fields: a CLTR status indication, a CL status, and a TR status, wherein the CLTR status indication indicates whether the CL status and the TR status are valid, and the CL status indicates a coupling loss between the current small cell and other small cells, and the TR status indicates The distribution ratio of uplink and downlink traffic of the current small cell.
  • the uplink/downlink traffic related data of the small cell mentioned above may be maintained by the base station of the corresponding small cell, and updated by updating the uplink traffic when there is a user reporting the buffer status report BSR in the user of the base station of the corresponding small cell.
  • step S21 when the small cell base station is in the off state, information is not acquired from the small cell base station in step S21.
  • step S12 after determining to perform clustering in step S12, performing the following steps: performing clustering on each small cell (S31); and indicating a clustering result to each small cell base station (S32).
  • the clustering result can be sent through the X-2 interface.
  • the clustering result is included in the Clustering Information message and sent through the CLUSTERING INDICATION procedure, the Clustering Information message including a small target indicating that an indication is to be sent to it Whether the cell is a cluster head Indication IE of the cluster head.
  • the Clustering Information message further includes a Cluster Cell ID IE indicating information of all small cell IDs in the cluster, and when the target small cell is not a cluster head
  • the Clustering Information message also includes a Cluster Head ID IE indicating information of the cluster head in the cluster.
  • the Clustering Information message may further include a Cluster Configuration IE indicating an uplink and downlink subframe configuration in the cluster.
  • step S21 and steps S31, S32 can both be performed.
  • the clustering in step S31 can be performed, for example, based on the information obtained in step S21.
  • the above method further includes the step S41 of receiving a periodic trigger signal from the timer having a predetermined period. Wherein, when the trigger signal is received in step S41, if the clustering request is not received within the predetermined time period before the time, it is determined in step S12 that clustering is to be performed.
  • step S42 of resetting the timer after determining that clustering is to be performed is also possible.
  • step S21 and steps S41, S42 can both be performed.
  • the uplink/downlink traffic related data of the small cell is maintained by the base station of the corresponding small cell, and is updated in the same cycle as the predetermined cycle. .
  • the apparatus 600 includes: an information acquiring unit 601 configured to acquire transmission characteristics between small cells in a time division duplex network and uplink traffic and/or downlink traffic of each small cell;
  • the cluster unit 602 is configured to cluster the small cells based on the transmission characteristics between the small cells acquired by the information acquiring unit 601 and the uplink traffic and/or the downlink traffic of each small cell to obtain at least one small cell cluster.
  • the current clustering method only considers the factor of large-scale path loss, which is fixed so that the clustering is fixed.
  • the same uplink and downlink subframe configuration is used in the same cluster. Therefore, the uplink and downlink throughput of some base stations may be limited.
  • the device 600 according to this embodiment considers a small cell Dynamic transmission clustering is achieved by the transmission characteristics between the transmission characteristics and the uplink traffic and/or downlink traffic of each small cell, so as to minimize interlace interference while maintaining high throughput.
  • the information acquisition unit 601 in the device 600 may adopt the configuration of the information acquisition unit 201 described above in the second embodiment, but is not limited thereto, and other appropriate structures or signaling procedures may be employed.
  • the transmission characteristics described herein may include transmission loss. However, this is not limiting and may include, for example, a backhaul link delay between base stations. As described above, the transmission loss may be a coupling loss or a path loss between small cells.
  • the clustering unit 602 performs clustering using the degree of separation between the small cells calculated based on the obtained transmission characteristics and the uplink traffic and/or the downlink traffic.
  • the degree of separation indicates the degree to which the corresponding two small cells are divided into one cluster. The smaller the value of the separation, the greater the probability of being assigned to a cluster, otherwise the probability is smaller.
  • the clustering unit 602 may include a separation degree calculation module 6021 configured to determine a difference between uplink traffic and/or downlink traffic between two small cells and determine two small cells.
  • the degree of separation wherein the smaller the transmission loss and the smaller the difference in traffic, the smaller the degree of separation, and the larger the transmission loss, the greater the difference in traffic, the greater the degree of separation, and the clustering unit 602 is based on This degree of separation is clustered.
  • the difference between the uplink traffic and/or the downlink traffic may be a difference in absolute magnitude, or may be a difference in the distribution ratio of the uplink traffic and the downlink traffic between the two small cells.
  • the difference is large, it indicates that the corresponding two small cells should be divided into different clusters as much as possible. Otherwise, it may be difficult to simultaneously meet the service requirements and reduce the utilization efficiency of the network resources.
  • the smaller the transmission loss the greater the interference, and should be divided into the same cluster as much as possible to mitigate interference.
  • the separation degree calculation module may calculate a separation utility function (DM) ⁇ that characterizes the degree of separation between the small cell i and the small cell j by the following equation (1), which is also referred to as a degree of separation hereinafter.
  • DM separation utility function
  • S i 1 indicates that the small cell i is in an on state
  • S i 0 indicates that the small cell i is in an off state.
  • TL ij is the transmission loss between the small cells i and j
  • avg. TL is the average value of the transmission loss.
  • the TL can be obtained by subtracting the transmission loss from the antenna transmission gain of the base station i and the antenna reception gain of the base station j.
  • ⁇ i , ⁇ j represent the distribution ratio of the uplink and downlink traffic of the small cells i and j, respectively, and ⁇ (0 ⁇ ⁇ ⁇ 1) is a value representing the importance degree of the transmission loss factor at the time of clustering and can be preset according to the demand. The larger the value, the greater the proportion of its corresponding transmission loss factor in clustering.
  • the DM can also be calculated by the following formula (2).
  • TU and TD represent uplink and downlink traffic, respectively.
  • the uplink traffic is obtained by the user of the base station reporting the amount of data to be transmitted in the uplink buffer area
  • the downlink traffic is the amount of data to be transmitted in the downlink buffer area of the base station
  • ⁇ , ⁇ and ⁇ are similar, respectively representing the uplink service.
  • the importance of the quantity factor and the downstream traffic factor, where ⁇ + ⁇ + ⁇ 1. It should be understood that ⁇ , ⁇ , and ⁇ can be determined by empirical values or by reasonable finite experiments.
  • the TL and the ⁇ or the TU/TD may be directly reported by the small cell base station to the device 600 through the information acquiring unit 601, or may be reported to the respective cluster heads and reported to the device 600 by the respective cluster heads.
  • may also be calculated at the cluster head or at the device 600 based on the TU and TD reported by the small cell base station, rather than being calculated by the small cell base station.
  • the clustering unit 602 After the separation calculation module calculates the DM values between all the cells, the clustering unit 602 performs clustering using various algorithms based on the obtained DM values.
  • clustering unit 602 can use clustering clustering module 6022 for clustering.
  • Threshold clustering module 6022 is configured to compare the separation between two small cells to a predetermined clustering threshold for any two small cells in the network, and to combine the two when the degree of separation is less than a predetermined clustering threshold The small cells are divided into a small cell cluster.
  • the predetermined clustering threshold can be set according to experience.
  • the clustering unit 602 may be configured to determine the small cell cluster based on the degree of separation by minimizing the degree of separation between the divided small cell clusters and the smallest degree of separation within the small cell cluster.
  • FIG. 12 shows an exemplary configuration of a clustering unit 602 employing the clustering method, in which the clustering unit 602 performs clustering using a clustering matrix, and the clustering unit 602 includes: clustering The matrix determining module 6023 is configured to determine, according to the degree of separation, a clustering matrix for clustering the small cells by maximizing the isolation between the divided small cell clusters; and the repeated partition eliminating module 6024, When the small cell is divided into a plurality of small cell clusters, it is configured to be divided into small cell clusters with the smallest average degree of separation.
  • the clustering matrix is an N ⁇ N symmetric matrix C.
  • each element C ij (where 1 ⁇ i, j ⁇ N) indicates whether the small cell i and the small cell j are divided into the same cluster.
  • the value of C ij may be 1 or 0.
  • a value of 1 indicates that the small cell i and the small cell j are divided into different clusters
  • 0 indicates that the small cell i and the small cell j are divided into the same cluster, and of course, the opposite definition may be made.
  • small cell clustering can be performed on the basis of it.
  • a clustering matrix that maximizes the isolation between the small cell clusters can be obtained by an optimization algorithm.
  • the clustering matrix determination module 6023 can employ a 0-1 integer programming algorithm to determine the clustering matrix. Specifically, the algorithm makes ⁇ ij c ij maximum when the following condition (3) is satisfied.
  • N-M represents the maximum number of small cells that can be allocated in each cluster, which can be determined empirically.
  • the clustering matrix determining module 6023 may have a small cell repeated allocation in the clustering result obtained by the above algorithm, that is, one small cell is allocated to multiple clusters, and therefore, the clustering unit 602 further includes repeated partitioning elimination. Module 6024 addresses this issue.
  • the repetition division elimination module 6024 calculates an average separation value within the cell cluster R i to which the repeatedly allocated small cell u can be allocated by the following equation (4).
  • the clustering unit 602 determines the clustering scheme. Due to the consideration of transmission characteristics And a variety of factors of uplink traffic and / or downlink traffic, therefore, the clustering scheme can maintain high network throughput while minimizing staggered interference.
  • the degree of separation between the small cells is calculated based on the coupling loss and the ratio of the uplink and downlink traffic to form a separation matrix U as follows.
  • the following clustering matrix C is obtained using a 0-1 integer programming algorithm.
  • clustering results can be obtained: cluster 1 ⁇ 1, 3 ⁇ ; cluster 2 ⁇ 2, 4 ⁇ ; cluster 3 ⁇ 1, 3, 5 ⁇ ; cluster 4 ⁇ 2, 4, 6 ⁇ ; cluster 5 ⁇ 3, 5 ⁇ ; cluster 6 ⁇ 4,6 ⁇ . Due to the phenomenon of repeated allocation, the final clustering result can be obtained by comparing the average resolution values in the cluster: cluster 3 ⁇ 1, 3, 5 ⁇ ; cluster 4 ⁇ 2, 4, 6 ⁇ .
  • the apparatus 600 may further include an uplink and downlink subframe configuration determining unit 603 configured to determine uplink and downlink sub-groups of the small cell cluster based on uplink and downlink traffic of at least one small cell cluster. Frame configuration.
  • the apparatus 600 can uniformly determine the subframe configuration for each cluster, which has the advantage that the subframe configuration of each cluster can be balanced, for example, the adjacent clusters can be prevented from using the same subframe configuration to minimize interference. .
  • the uplink and downlink subframe configuration determining unit 603 may further determine, for the small cell cluster, an uplink and downlink subframe configuration that is adapted to the proportion of the uplink and downlink traffic.
  • the apparatus 600 may further include: a cluster head selection unit 604 configured to select, among the clusters of the small cells determined by the clustering unit 602, for managing the clusters in the small cell cluster.
  • the cluster head of the small cell sends the small cell information included in the small cell cluster to the cluster head.
  • the apparatus 600 further includes the uplink and downlink subframe configuration determining unit 603
  • the set 600 can also send the determined information of the uplink and downlink subframe configuration to the corresponding cluster head and then provide the cluster head to each small cell of the cluster in which it is located.
  • the device 600 can also directly send information of the uplink and downlink subframe configuration to each small cell including the cluster head.
  • the cluster head can determine the uplink and downlink subframe configuration by itself and notify each small cell managed by the cluster head.
  • the cluster head selection unit 604 may select a small cell having the smallest average distance among all small cells of the small cell cluster and other small cells as the cluster head.
  • criteria can also be used for selection, and are not limited thereto.
  • the device 600 can also notify each normal small cell of the information of the cluster head of the cluster in which it is located. Alternatively, the information is provided by the cluster head to the small cell it manages.
  • the related signaling procedure for transmitting the clustering result has been described in detail in the third embodiment and will not be repeated here.
  • FIG. 13 is a block diagram showing the structure of an apparatus 700 for clustering small cells in a TDD network, except for the information acquisition unit 601 and the clustering unit 602 described with reference to FIG. 10, according to another embodiment of the present application.
  • the apparatus 700 further includes a triggering unit 701 configured to trigger the information acquiring unit 601 and the clustering unit 602 to perform an operation of clustering the small cells in the TDD network if the predetermined condition is satisfied.
  • the predetermined condition may include at least one of the following: a predetermined time elapses from the last clustering operation; the network state changes.
  • setting the first condition can implement periodic clustering with a predetermined time period
  • setting the second condition can implement dynamic triggering clustering. When both are set, a combination of the two can be achieved.
  • the change in network status may include at least one of the following: interference signal enhancement, uplink and downlink traffic changes, and network throughput degradation.
  • interference signal enhancement may include at least one of the following: interference signal enhancement, uplink and downlink traffic changes, and network throughput degradation.
  • network throughput degradation may include at least one of the following: interference signal enhancement, uplink and downlink traffic changes, and network throughput degradation.
  • other indicators can also be used to indicate changes in network status, without being limited to this.
  • a base station including any of the devices 600 and 700, is also substantially provided.
  • the base station may be a small cell base station or a macro cell base station.
  • the device 600 or 700 clusters a plurality of small cells that are within the coverage of the macrocell base station. Additionally, devices 600 and 700 can also be located in a Radio Network Controller (RNC).
  • RNC Radio Network Controller
  • the base station further receives an indication including designating the base station to manage other base stations, and activating the apparatus 600 or 700 for clustering small cells in the TDD network according to the indication.
  • a certain device 600 or 700 can be designated to perform the clustering operation by receiving an indication from an upper layer such as a macro cell base station, an RNC, or another control center.
  • the method for clustering small cells in a TDD network includes: acquiring coupling loss between small cells in a TDD network and uplink traffic and/or downlink traffic of each small cell (S61); The small cell is clustered by the coupling loss between the acquired small cells and the uplink traffic and/or downlink traffic of each small cell (S62).
  • the transmission characteristics may include, for example, transmission loss.
  • step S62 the difference between the uplink traffic and/or the downlink traffic between the two small cells is determined and the degree of separation between the two small cells is determined, wherein the smaller the transmission loss, the smaller the difference in traffic volume, The smaller the degree of separation, the larger the transmission loss and the larger the difference in traffic, the greater the degree of separation, and clustering based on the degree of separation.
  • the difference may include a difference in the distribution ratio of the uplink traffic and the downlink traffic between the two small cells.
  • step S62 based on the degree of separation, the small cell cluster is determined by maximizing the degree of separation between the divided small cell clusters and the minimum degree of separation within the small cell cluster.
  • the specific algorithm is described in the seventh embodiment, and is not repeated here.
  • the method may further include the step S63: determining an uplink and downlink subframe configuration of the small cell cluster based on uplink and downlink traffic of the at least one small cell cluster.
  • step S63 an uplink and downlink subframe configuration adapted to the proportion of its uplink and downlink traffic may be determined for the small cell cluster.
  • the above method may further include the step S64: selecting, in the determined each small cell cluster, a cluster head for managing a small cell in the small cell cluster, and the small cell included in the small cell cluster Information is sent to the cluster head.
  • the cluster head for example, all small cells of a small cell cluster can be selected. The small cell with the smallest average distance between the other small cells is used as the cluster head.
  • the above method may further include step S71: judging whether the predetermined condition is satisfied, and performing the operations of steps S61 and S62 in the case of the determination of YES, otherwise continuing to wait.
  • the predetermined condition may include at least one of the following: a predetermined time elapses from the last clustering operation; the network state changes.
  • the change in network status includes at least one of the following: interference signal enhancement, uplink and downlink traffic changes, and network throughput degradation.
  • the present invention also provides a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1500 shown in FIG. 15), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1501 executes various processes in accordance with a program stored in a read only memory (ROM) 1502 or a program loaded from a storage portion 1508 to a random access memory (RAM) 1503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processes and the like is also stored as needed.
  • the CPU 1501, the ROM 1502, and the RAM 1503 are connected to each other via a bus 1504.
  • Input/output interface 1505 is also coupled to bus 1504.
  • the following components are connected to the input/output interface 1505: an input portion 1506 (including a keyboard, a mouse, etc.), an output portion 1507 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1508 (including a hard disk or the like), the communication portion 1509 (including a network interface card such as a LAN card, a modem, etc.). Communication department
  • the minute 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 can also be connected to the input/output interface 1505 as needed.
  • a removable medium 1511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1510 as needed, so that the computer program read therefrom is installed into the storage portion 1508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1511.
  • such a storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1511 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1502, a hard disk included in the storage portion 1508, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

本发明公开了一种用于对时分双工网络中的小小区进行分簇的装置和方法以及包括该装置的基站,该装置包括:请求接收单元,被配置为接收来自小小区基站的请求进行动态分簇的分簇请求;分簇确定单元,被配置为至少基于该分簇请求来确定是否进行分簇。

Description

对时分双工网络中的小小区进行分簇的装置、方法及基站 技术领域
本发明总体上涉及无线通信领域,具体地涉及时分双工(TDD)无线通信技术,更具体地,本发明涉及用于对时分双工网络中的小小区进行分簇的装置和方法以及包括该装置的基站。此外,本发明还涉及用于实现上述方法的计算机程序,包括该计算机程序的计算机可读存储介质,以及包括执行上述方法的操作的电路的电子设备。
背景技术
LTE是由第三代合作伙伴计划(3GPP)组织制定的通用移动通信系统(UMTS)技术标准的长期演进。LTE无线网络架构更加扁平化,减小了系统时延,降低了建网成本和维护成本。在TDD-LTE中,设置有小小区和宏小区,其中,小小区体积很小,可用于室内和室外,一般可以覆盖10米的室内空间或野外2公里的范围。其特点在于布置密集,覆盖范围相互交叉。在LTE-A异构网络场景中,宏小区实现广域覆盖,小小区实现热点覆盖。
目前,动态的TDD-LTE系统有7种子帧配置,不同子帧配置根据上下行吞吐量的不同提供不同的上下行子帧比率。然而,每个小小区基站根据自己的吞吐量需求,动态地调整子帧结构,会因为传输方向的不同而导致相邻小小区之间的子帧交错干扰,如图1所示。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于对时分双工网络中的小小区 进行分簇的装置,包括:信息获取单元,被配置为获取时分双工网络中的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量;以及分簇单元,被配置为基于信息获取单元获取的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量来对小小区进行分簇以得到至少一个小小区簇。
根据本申请的另一个发明,提供了一种基站,包括上述装置。
根据本申请的又一个方面,提供了一种用于对时分双工网络中的小小区进行分簇的方法,包括:获取时分双工网络中的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量;以及基于所获取的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量来对小小区进行分簇以得到至少一个小小区簇。
依据本发明的其它方面,还提供了用于实现上述用于对时分双工网络中的小小区进行分簇的方法的计算机程序代码和计算机程序产品以及其上记录有该用于对时分双工网络中的小小区进行分簇的方法的计算机程序代码的计算机可读存储介质。
根据本申请的还一个方面,还提供了一种电子设备,包含:电路,被配置为执行如下操作:获取时分双工网络中的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量;以及基于所获取的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量来对小小区进行分簇以得到至少一个小小区簇。
此外,根据本申请的一个方面,提供了一种用于对时分双工网络中的小小区进行分簇的装置,包括:请求接收单元,被配置为接收来自小小区基站的请求进行动态分簇的分簇请求;分簇确定单元,被配置为至少基于该分簇请求来确定是否进行分簇。
根据本申请的另一个方面,提供了一种基站,包括上述装置。
根据本申请的另一个方面,还提供了一种基站,包括:分簇请求发送单元,被配置为向控制装置发送分簇请求。
根据本申请的另一个方面,还提供了一种用于对时分双工网络中的小小区进行分簇的方法,包括:接收来自小小区基站的请求进行动态分簇的分簇请求;以及至少基于该分簇请求来确定是否进行分簇。
依据本发明的其它方面,还提供了用于实现上述用于对时分双工网络中的小小区进行分簇的方法的计算机程序代码和计算机程序产品以及其 上记录有该用于对时分双工网络中的小小区进行分簇的方法的计算机程序代码的计算机可读存储介质。
根据本申请的还一个方面,还提供了一种电子设备,包含:电路,被配置为执行如下操作:接收来自小小区基站的请求进行动态分簇的分簇请求;以及至少基于该分簇请求来确定是否进行分簇。
本申请通过根据小小区之间的传输特征以及各个小小区的上下行业务量对小小区进行动态分簇,能够实现以下优点中的至少一个:尽量减少交错干扰,使得TDD网络具有较高的吞吐量,从而能够提高网络资源的利用效率。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了小小区之间发生子帧交错干扰的情况的示例的示意图;
图2是示出了根据本申请的一个实施例的用于对时分双工(TDD)网络中的小小区进行分簇的装置的结构框图;
图3是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置的结构框图;
图4是示出了图3中的信息获取单元的一个配置示例的结构框图;
图5是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置的结构框图;
图6是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置的结构框图;
图7是示出了根据本申请的另一个实施例的基站的结构框图;
图8是示出了根据本申请的另一个实施例的用于对TDD网络中的小 小区进行分簇的方法的流程图;
图9是示出了图8中的步骤S21的子步骤的流程图;
图10是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置的结构框图;
图11是示出了图10中所示的分簇单元的一个配置示例的结构框图;
图12是示出了图10中所示的分簇单元的另一个配置示例的结构框图;
图13是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置的结构框图;
图14是示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的方法的流程图;以及
图15是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
如上所述,在动态TDD系统中,由于每个小小区基站动态地调整子帧结构,结果会因为传输方向的不同而导致相邻小小区之间的子帧交错干扰。可以通过将小小区进行分簇来解决这一问题,具体地,可以将产生严重交错干扰的小小区基站分在同一簇中并且同一簇中的基站在同一时刻拥有相同的传输方向,从而避免交错干扰。
<第一实施例>
图2示出了根据本申请的一个实施例的用于对时分双工(TDD)网络中的小小区进行分簇的装置100的框图,装置100包括:请求接收单元101,被配置为接收来自小小区基站的请求进行动态分簇的分簇请求;分簇确定单元102,被配置为至少基于该分簇请求来确定是否进行分簇。
具体地,装置100用于接收其控制范围内的小小区基站的分簇请求,并基于该分簇请求的相关参数来确定是否要进行分簇,换言之,装置100采用了触发式分簇方案。
作为一个示例,针对每一个小小区基站,当满足如下条件的至少之一时向装置100发送分簇请求:该小小区基站的干扰信号增强到一定程度,上下行业务量的变化超过预定值,小小区吞吐量下降超过预定阈值。其中,干扰信号例如可以通过参考信号接收功率(RSRP)来指示,干扰信号增强到一定程度表明来自相邻小小区的干扰增强,从而需要进行分簇来保证通信质量。类似地,小小区吞吐量下降超过预定阈值也表明当前的网络状态恶化超过能够容忍的程度,期望通过进行分簇来提高吞吐量。此外,将上下行业务量的变化超过预定值作为条件之一基于如下考虑:将上行业务量或下行业务量或其比例的差异较小的小小区分到一簇中可以提高业务的适应性,从而可以提高吞吐量。下文中将结合具体的分簇处理来对这一原理进行详细描述。应该理解,发送分簇请求的确定条件不限于上述三个条件,而是可以根据具体需求和应用来额外增加或替换。
分簇请求可以由各个小小区基站通过X-2接口来发送。例如,该分簇请求为高分簇概率标记(HCPI),该HCPI可以添加到36.423标准中的LOAD INFORMATION消息中并发送。
在一个示例中,分簇确定单元102被配置为在预定时间段内从多于预定数量的小小区基站接收到分簇请求时,确定进行分簇。具体地,分簇确定单元102可以统计接收到的HCPI的数量,并且当该数量大于预定值时确定要触发分簇。当然,分簇确定单元102可以采用任何方式来进行是否触发分簇的确定,并不限于上述示例。
可以看出,装置100通过采用基于请求的动态分簇的方案,使得分簇变得更为灵活和及时,从而可以降低小小区之间的交错干扰并且提高网络吞吐量。
<第二实施例>
图3示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置200的框图,除了图2所示的各个部件之外,装置200还包括:信息获取单元201,被配置为在分簇确定单元102确定要进行分簇之后,从各个小小区基站获取分簇所需的信息。
其中,所获取的信息取决于要使用的分簇方法。例如,该信息可以包括各个小小区之间的传输特征和上行/下行业务量相关的数据。传输特征可以是小小区之间的传输损耗,传输损耗可以是小小区之间的耦合损耗或路径损耗。此外,传输特征也可以是小小区基站间的回传链路时延。可替选地,传输特征可以是上述各项或其一部分的组合。上行/下行业务量相关的数据例如可以包括上下行业务量分布比例。
图4示出了信息获取单元201的示例性结构的框图,如图4所示,信息获取单元201包括:通知模块2011,被配置为向各个小小区基站发送上报信息的通知以及接收其答复;以及信息接收模块2012,被配置为在该答复表示通知成功的情况下从相应的小小区基站接收信息。
其中,通知模块2011首先向各个小小区基站发送通知,小小区基站在接收到该通知后查看能否提供要求的信息,如果可以,则答复成功,否则答复失败。
以上通知、答复和信息可以通过X-2接口传输。例如,上述通知由耦合损耗和业务比(CLTR)标记来指示,该CLTR标记可以包括在Resource Status Reporting Initiation过程中的Resource Status Request消息中的Report Characteristics IE中,并且答复由各个小小区基站通过Resource Status Response或Resource Status Failure发送,其中,Resource Status Response表示通知成功,Resource Status Failure表示通知失败。具体地,CLTR标记例如可以作为Report Characteristics IE的第6比特。
作为一个示例,在要上报的信息包括上行/下行业务量相关数据的情况下,这些数据由相应小小区的基站维护,并且通过在相应小小区的基站的用户中存在用户上报缓存状态报告(BSR)时更新上行业务量来更新。具体地,下行业务量可以有小小区基站根据其缓存状态自动更新,上行业务量则需要通过小小区基站的用户分别上报其缓存状态来获得。根据现有技术的配置,当用户有新数据到达或上行数据缓存状态改变时,会自动触 发上传新的BSR报告,对于没有上传BSR的用户,可以认为其上行数据缓存状态没有发生改变。因此,可以在有用户上报BSR时,对该用户的上行业务量进行更新,同时保持其他没有上报BSR的用户的上行业务量不变。类似地,小小区基站还计算其自身的耦合损耗并上报给装置200。
当小小区基站确认它可以提供要求的信息并发送了表示成功的答复之后,执行Resource Status Reporting程序以向装置200上传上述信息。具体地,可以将所述信息作为CLTR状态信息包括在Resource Status Update消息中。
作为一个示例,CLTR状态信息可以包括如下字段:CLTR状态指示、CL状态和TR状态,其中,CLTR状态指示表示CL状态和TR状态是否有效,CL状态表示当前小小区与其他小小区的耦合损耗,TR状态表示当前小小区的上下行业务量分布比例。CL状态可以用整数串来表示,每一个整数代表与一个小小区的耦合损耗,通过限定整数串的大小来限定能够发送的耦合损耗的个数。上下行业务分布比例可以通过被量化为多个区间的整数字段表示,其中,每个区间对应于一种比例。
而当小小区基站确认它由于某种原因无法提供要求的信息并发送了表示失败的答复之后,装置200还可以进一步向该小小区基站询问失败的原因。
此外,考虑到在未来网络中,小小区可能会处于关闭状态,在一个示例中,信息获取单元201被配置为在小小区处于关闭状态的情况下不从该小小区基站获取信息。
<第三实施例>
图5示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置300的框图,除了图2所示的各个部件之外,装置300还包括:分簇单元301,被配置为在分簇确定单元102确定要进行分簇之后对各个小小区执行分簇;以及分簇指示单元302,被配置为在分簇单元301进行分簇之后,向各个小小区基站指示分簇结果。
其中,分簇单元301可以使用各种方法来执行分簇,包括但不限于后文中将要描述的根据本发明的实施例的各种分簇方法。
作为示例,分簇结果可以通过X-2接口发送。这里,分簇结果包括每个簇中包括的小小区的信息,还可以包括每个簇中的簇头的选择。
可以通过CLUSTERING INDICATION过程来向小小区基站发送分簇结果,其中,分簇结果包括在Clustering Information消息中进行发送,该Clustering Information消息包括表示要向其发送指示的目标小小区是否是簇头的Cluster Head Indication IE,当目标小小区是簇头时,该Clustering Information消息还包括表示该簇中所有小小区ID的信息的Cluster Cell ID IE,而当目标小小区不是簇头时,该Clustering Information消息还包括表示该簇中簇头的信息的Cluster Head ID IE。
此外,分簇单元301还可以同时确定了各个簇的上下行子帧配置并将其包括在Clustering Information消息中提供给各个小小区。换言之,Clustering Information消息还可以包括表示该簇中的上下行子帧配置的Cluster Configuration IE。通过由分簇单元301统一决定各簇的子帧配置,可以尽量实现分配上的平衡,比如为相邻的两簇分配不同的配置以最大可能避免相互干扰。
作为另一个示例,也可以由分簇单元301选择的簇头来分别确定所在簇的上下行子帧配置并通知簇中的普通小小区。
虽然图5中未示出,但是可以理解,装置300还可以包括参照图3所描述的信息获取单元201,并且分簇单元301基于信息获取单元201获取的信息来进行分簇处理。
<第四实施例>
图6示出了根据本申请的又一个实施例的用于对TDD网络中的小小区进行分簇的装置400的框图,除了图2所示的各个部件之外,装置400还包括:定时器401,被配置为以预定周期向分簇确定单元102发出触发信号,其中,分簇确定单元102被配置为在收到该触发信号时,在该时刻前的预定时间段内没有收到分簇请求时确定要进行分簇。
通过包括定时器401,装置400可以实现周期式分簇和触发式分簇相结合的动态分簇方案。具体地,由网络侧预设预定分簇周期Tc,以使得在没有触发分簇的情况下每隔时间Tc重新分簇。其中,将上述预定时间段设置为使得不会出现在触发分簇的过程中开始周期分簇的情况。
此外,定时器401还可以被配置为在分簇确定单元102确定要进行分簇之后复位。这可以避免出现不必要地频繁进行分簇的问题,从而确保进行正常的通信。
虽然图6中未示出,但是装置400还可以包括:信息获取单元201,被配置为在分簇确定单元102确定要进行分簇之后,从各个小小区基站获取分簇所需的信息。该信息可以包括各个小小区的传输特征和上行/下行业务量相关数据,其中,小小区的上行/下行业务量相关数据由相应小小区的基站维护,并且以与上述预定周期(例如,周期Tc)相同的周期来更新。
装置400可以使两种分簇方式互为补充,从而在降低小小区交错干扰的同时提高了网络吞吐量。
一般而言,上述各个实施例中的装置100-400可以是单独的控制装置,或者可以位于作为控制中心的小小区基站或宏小区基站中。此外,装置100-400也可以位于每一个小小区基站中,然后通过特定指令将其中一个动态激活来执行上述各个控制功能。
<第五实施例>
以上已经描述了网络侧用于对TDD网络中的小小区进行分簇的装置的结构和功能。在描述以上各个装置的过程中,实质上也提供了一种基站,包括装置100至400中的任意一个。对应地,小小区侧的基站的配置如图7所示,其中,虚线框表示可选的部件。
可以看出,基站500包括分簇请求发送单元501,被配置为向控制装置发送分簇请求。如前所述,当该基站500检测到为了满足通信质量和吞吐量要求需要进行分簇时发送分簇请求,例如,当满足如下条件的至少之一时,分簇请求发送单元501发送分簇请求:每一个小小区基站的干扰信号增强到一定程度,上下行业务量的变化超过预定值,小小区吞吐量下降超过预定阈值。其中,控制装置是管理分簇的装置,例如可以是参照第一至第四实施例所述的装置100-400中的任意一个。
因此,基站500可以根据实际通信状态来实时发送分簇请求,以使得控制装置能够响应于该请求适当地进行动态分簇,从而在保证通信质量的同时提高网络的吞吐量。
此外,在以上第二实施例中,控制装置在确定进行分簇之后,可能需要从各个小小区基站获取相关信息。相应地,基站500还可以包括:通知接收单元502,被配置接收来自控制装置的要求上报分簇需要的信息的通知;答复发送单元503,被配置为在通知接收单元502接收到通知时向控 制装置发送答复;以及信息发送单元504,被配置为在能够获得信息的情况下,在答复发送单元503发送答复之后向控制装置发送该信息。
在另一个示例中,基站500还包括:分簇指示接收单元505,被配置为从控制装置接收分簇结果。如上所述,分簇结果可以包括指示该小小区基站是否被指定为簇头的信息元素,如果其被指定为簇头,则分簇结果还包括其所在簇的各个小小区的ID,否则分簇结果还包括其所在簇的簇头的ID。此外,分簇结果还可以包括所在簇的上下行子帧配置。
可替选地,当基站500不是簇头时,分簇指示接收单元505也可以从其所在簇的簇头接收关于上下行子帧配置的信息。
其中,通知的接收和答复、信息的上报、分簇结果的接收等相关的信令流程、信息的类型已在第二实施例中详细进行了描述,在此不再重复。
<第六实施例>
在上文的实施方式中描述用于对TDD网络中的小小区进行分簇的装置100-400的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于对TDD网络中的小小区进行分簇的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于对TDD网络中的小小区进行分簇的装置10-400的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于对TDD网络中的小小区进行分簇的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于对TDD网络中的小小区进行分簇的装置100-400的硬件和/或固件。
图8示出了根据本申请的实施例的用于对TDD网络中的小小区进行分簇的方法的流程图,该方法包括:接收来自小小区基站的请求进行动态分簇的分簇请求(S11);以及至少基于该分簇请求来确定是否进行分簇(S12)。
在一个示例中,分簇请求可以在满足如下条件的至少之一时发送:每一个小小区基站的干扰信号增强到一定程度,上下行业务量的变化超过预定值,小小区吞吐量下降超过预定阈值。分簇请求可以由各个小小区基站通过X-2接口发送。例如,分簇请求为高分簇概率标记,该高分簇概率标记包含在LOAD INFORMATION消息中进行发送。
在步骤S12中,例如当在预定时间段内从多于预定数量的小小区基站接收到分簇请求时,确定进行分簇。
图8中所示的虚线框表示可选的步骤。其中,在S12中确定要进行分簇之后,可以执行步骤S21以从各个小小区基站获取分簇所需的信息。该信息例如可以包括各个小小区的传输特征和上行/下行业务量相关数据。作为一个示例,该上行/下行业务量相关数据可以包括上下行业务量分布比例。
如图9所示,步骤S21可以包括如下子步骤:向各个小小区基站发送上报信息的通知(S201);接收其答复(S202);以及在答复表示通知成功的情况下从相应的小小区基站接收信息(S203)。
上述通知、答复和信息可以通过X-2接口传输。其中,通知可以由耦合损耗和业务比CLTR标记来指示,CLTR标记包括在Resource Status Reporting Initiation过程中的Resource Status Request消息中的Report Characteristics IE中,并且答复由各个小小区基站通过Resource Status Response或Resource Status Failure发送,其中,Resource Status Response表示通知成功,Resource Status Failure表示通知失败。
此外,上报的信息作为CLTR状态信息包括在Resource Status Update消息中。例如,CLTR状态信息包括如下字段:CLTR状态指示、CL状态和TR状态,其中,CLTR状态指示表示CL状态和TR状态是否有效,CL状态表示当前小小区与其他小小区的耦合损耗,TR状态表示当前小小区的上下行业务量分布比例。
以上提及的小小区的上行/下行业务量相关数据可以由相应小小区的基站维护,并且通过在相应小小区的基站的用户中存在用户上报缓存状态报告BSR时更新上行业务量来更新。
此外,当小小区基站处于关闭状态的情况下,在步骤S21中不从该小小区基站获取信息。
可选地,在步骤S12中确定要进行分簇之后,还可以执行如下步骤:对各个小小区执行分簇(S31);以及向各个小小区基站指示分簇结果(S32)。
其中,分簇结果可以通过X-2接口发送。例如,分簇结果包括在Clustering Information消息中并通过CLUSTERING INDICATION过程发送,该Clustering Information消息包括表示要向其发送指示的目标小 小区是否是簇头的Cluster Head Indication IE,当目标小小区是簇头时,该Clustering Information消息还包括表示该簇中所有小小区ID的信息的Cluster Cell ID IE,而当目标小小区不是簇头时,该Clustering Information消息还包括表示该簇中簇头的信息的Cluster Head ID IE。
此外,Clustering Information消息还可以包括表示该簇中的上下行子帧配置的Cluster Configuration IE。
当然,步骤S21和步骤S31、S32可以均执行。此时,例如可以基于步骤S21中获得的信息进行步骤S31中的分簇。
在另一个示例中,上述方法还包括步骤S41:接收来自定时器的具有预定周期的周期性触发信号。其中,当在步骤S41中接收到该触发信号时,如果在该时刻前的预定时间段内没有收到分簇请求,则在步骤S12中确定要进行分簇。
此外,还可以包括在确定要进行分簇之后复位定时器的步骤S42。
当然,步骤S21和步骤S41、S42可以均执行。此时,当信息包括各个小小区的传输特征和上行/下行业务量相关数据时,小小区的上行/下行业务量相关数据由相应小小区的基站维护,并且以与预定周期相同的周期来更新。
可以理解,还可以执行图8中的所有步骤作为用于对时分双工网络中的小小区进行分簇的方法。
<第七实施例>
下面将参照图10至图12描述采用根据本发明的实施例的分簇方法对TDD网络中的小小区进行分簇的装置的配置。注意,图10中所示的虚线框表示可选的部件。如图10所示,该装置600包括:信息获取单元601,被配置为获取时分双工网络中的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量;以及分簇单元602,被配置为基于信息获取单元601获取的小小区之间的传输特征以及各个小小区的上行业务量和/或下行业务量来对小小区进行分簇以得到至少一个小小区簇。
目前的分簇方法仅考虑大尺度路径损耗的因素,该因素是固定的从而分簇是固定的。同一簇内采用相同的上下行子帧配置,因此,一些基站的上下行吞吐量可能会受到限制。根据该实施例的装置600通过考虑小小区 之间的传输特征以及各个小小区的上行业务量和/或下行业务量多个因素,实现动态分簇,以使得尽量减少交错干扰的同时保持较高的吞吐量。
注意,装置600中的信息获取单元601可以采用以上在第二实施例中描述的信息获取单元201的配置,但并不限于此,也可以采用其他适当的结构或信令流程。
其中,这里所述的传输特征可以包括传输损耗。但这并不是限制性的,也可以包括例如基站间的回传链路时延。如上所述,传输损耗可以是小小区之间的耦合损耗或路径损耗。
在该实施例中,分簇单元602使用基于所获得的传输特征和上行业务量和/或下行业务量计算得到的小小区之间的分离度来执行分簇。分离度表明将对应的两个小小区分到一簇中的可能程度,分离度的值越小,则表明分到一簇中的可能性越大,否则可能性越小。
具体地,如图11所示,分簇单元602可以包括分离度计算模块6021,被配置为确定两个小小区之间的上行业务量和/或下行业务量的差异并确定两个小小区之间的分离度,其中,传输损耗越小、业务量的差异越小,则分离度越小,而传输损耗越大、业务量的差异越大,则分离度越大,并且分簇单元602基于该分离度进行分簇。
其中,上行业务量和/或下行业务量的差异可以是绝对量值的差异,也可以是两个小小区之间的上行业务量和下行业务量的分布比例的差异。当该差异较大时,说明应该尽量将相应的两个小小区分到不同的簇中,否则可能难以同时满足其业务需求,而降低网络资源的利用效率。另一方面,传输损耗越小,说明干扰越大,应当尽量将其分到同一簇中以减轻干扰。
作为一个示例,分离度计算模块可以通过下式(1)来计算表征小小区i和小小区j之间的分离度的分离度效用函数(DM)μ,以下也将DM称为分离度。
Figure PCTCN2015077173-appb-000001
其中,参数Si为小小区状态指示参数,其中,Si=1表示小小区i处于开状态,Si=0表示小小区i处于关状态。这是由于在未来网络中,小小区开关状态将成为一个重要参数,当发生小小区的开关状态之间的转换时,会对分簇产生重大影响。由式(1)可以看出,当小小区i处于关状态时,其与其他所有小小区之间的分离度为无穷大,即,在分簇时可以忽略该小 小区的影响。
TLij为小小区i和j之间的传输损耗,avg.TL是传输损耗的平均值。当传输损耗为耦合损耗时,TL可以通过将传输损耗减去基站i的天线发射增益和基站j的天线接收增益获得。λi、λj分别表示小小区i和j的上下行业务量的分布比例,α(0≤α≤1)是代表分簇时传输损耗因素的重要程度的值并且可以根据需求预先设定,该值越大,表明其对应的传输损耗因素在分簇时占据的比重越大。
在另一个示例中,DM也可以通过下式(2)来计算。
Figure PCTCN2015077173-appb-000002
其中,与上述式(1)中相同的符号具有相同的含义,TU和TD分别代表上行和下行业务量。如上所述,上行业务量通过基站的用户上报其上行缓存区的待传输数据量获得,下行业务量为基站的下行缓存区中的待传输数据量,β、γ与α类似,分别代表上行业务量因素和下行业务量因素的重要程度,其中α+β+γ=1。应该理解,α、β和γ可以通过经验值确定,或者通过合理的有限次实验确定。
在上述示例中,TL和λ或TU/TD可以由各个小小区基站通过信息获取单元601直接上报至装置600,也可以先上报至各自的簇头并且由各个簇头上报至装置600。另外,λ也可以在簇头处或装置600处基于小小区基站上报的TU和TD计算得到,而不是由小小区基站进行计算。获得上述信息的具体的信令流程例如可以参照第二实施例所述,在此不再重复。
在分离度计算模块计算得到所有小区之间的DM值之后,分簇单元602基于所获得的DM值使用各种算法来进行分簇。
如图11所示,分簇单元602可以使用阈值分簇模块6022来进行分簇。阈值分簇模块6022被配置为:针对网络中的任意两个小小区,将两个小小区之间的分离度与预定分簇阈值进行比较,并且在分离度小于预定分簇阈值时将这两个小小区划分到一个小小区簇中。其中,预定分簇阈值可以根据经验设定。
此外,分簇单元602可以被配置为基于该分离度,通过使划分得到的小小区簇之间的分离度最大,小小区簇内的分离度最小来确定小小区簇。图12示出了采用该分簇方式的分簇单元602的一种示例性配置,在该示例中,分簇单元602使用分簇矩阵来进行分簇,分簇单元602包括:分簇 矩阵确定模块6023,被配置为基于分离度,通过使划分得到的小小区簇之间的隔离度最大,来确定用于对小小区进行分簇的分簇矩阵;以及重复划分消除模块6024,被配置为在小小区被划分到多个小小区簇中时,将其划分到平均分离度最小的小小区簇中。
假设存在总共N个小小区,则分簇矩阵为N×N的对称矩阵C。在矩阵C中,每一个元素Cij(其中,1≤i,j≤N)表示小小区i和小小区j是否划分到同一簇。例如,Cij取值可以为1或0,比如定义为1表示小小区i和小小区j划分到不同簇,0表示小小区i和小小区j划分到同一簇,当然也可以作相反的定义。可以看出,当确定了分簇矩阵之后,可以以其为基础进行小小区分簇。
由于已经获得了各个小小区之间的分离度,因此可以通过最优化算法来获得使得小小区簇之间的隔离度最大的分簇矩阵。
作为一个示例,分簇矩阵确定模块6023可以采用0-1整数规划算法来确定分簇矩阵。具体地,该算法使得在满足如下条件(3)的情况下∑μijcij最大。
其中,N-M表示每个簇中可以分配的最大小小区数量,该数量可以根据经验确定。
然而,通过分簇矩阵确定模块6023采用以上算法获得的分簇结果中可能存在小小区重复分配的现象,即一个小小区被分配到多个簇中,因此,分簇单元602还包括重复划分消除模块6024来解决这一问题。
例如,重复划分消除模块6024通过下式(4)来计算被重复分配的小小区u可以被分配到的小区簇Ri内的平均分离度值。
Figure PCTCN2015077173-appb-000004
其中,
Figure PCTCN2015077173-appb-000005
表示小区簇Ri内的小小区数目。
通过上述处理,分簇单元602确定了分簇方案。由于考虑了传输特征 和上行业务量和/或下行业务量多种因素,因此,该分簇方案可以在尽量减少交错干扰的同时仍然保持较高的网络吞吐量。
为了便于理解,以下给出对6个小小区进行分簇的实例。首先,基于耦合损耗和上下行业务比例计算得到各个小小区之间的分离度以形成如下分离度矩阵U。
Figure PCTCN2015077173-appb-000006
然后,假定每个簇内最多允许有3个小区,使用0-1整数规划算法获得如下分簇矩阵C。
Figure PCTCN2015077173-appb-000007
即,可以获得如下分簇结果:簇1{1,3};簇2{2,4};簇3{1,3,5};簇4{2,4,6};簇5{3,5};簇6{4,6}。由于存在重复分配的现象,因此通过比较簇内平均分离度值,可以获得最终分簇结果:簇3{1,3,5};簇4{2,4,6}。
此外,如图10中的虚线框所示,该装置600还可以包括上下行子帧配置确定单元603,被配置为基于至少一个小小区簇的上下行业务量确定该小小区簇的上下行子帧配置。在这种情况下,装置600可以统一为各个簇确定子帧配置,其优势在于可以使各簇的子帧配置趋于平衡,例如可以避免相邻的簇使用相同的子帧配置以尽量减轻干扰。
其中,上下行子帧配置确定单元603还可以为该小小区簇确定适应其上下行业务量比例的上下行子帧配置。
进一步地,如图10中的虚线框所示,该装置600还可以包括:簇头选择单元604,被配置为在分簇单元602确定的各个小小区簇中选择用于管理小小区簇内的小小区的簇头,并将小小区簇所包含的小小区信息发送至簇头。
此外,在装置600还包括上下行子帧配置确定单元603的情况下,装 置600还可以将确定的上下行子帧配置的信息发送给相应的簇头然后由簇头提供给其所在簇的各个小小区。当然,也可以由装置600直接向包括簇头的各个小小区发送上下行子帧配置的信息。另一方面,在装置600不包括上下行子帧配置确定单元603的情况下,可以由簇头自行确定上下行子帧配置,并通知其管理的各个小小区。
在一个示例中,簇头选择单元604可以选择小小区簇的所有小小区中与其他小小区之间的平均距离最小的小小区作为簇头。当然,也可以采用其他标准进行选择,并不限于此。
注意,装置600还可以同时向各个普通小小区通知其所在簇的簇头的信息。或者,由簇头向其管理的小小区提供该信息。发送分簇结果的相关信令流程已经在第三实施例中进行了详细描述,在此不再重复。
<第八实施例>
图13示出了根据本申请的另一个实施例的用于对TDD网络中的小小区进行分簇的装置700的结构框图,除了参照图10描述的信息获取单元601和分簇单元602之外,装置700还包括:触发单元701,被配置为在满足预定条件的情况下触发信息获取单元601和分簇单元602来执行对TDD网络中的小小区进行分簇的操作。
预定条件可以包括以下中的至少一个:从上一次进行分簇操作起过去了预定时间;网络状态发生变化。其中,设置第一个条件可以实现以预定时间为周期的周期性分簇,设置第二个条件可以实现动态触发分簇。当两个均设置时,可以实现二者的结合。
网络状态发生变化可以包括以下中的至少一个:干扰信号增强、上下行业务量变化、网络吞吐量下降。当然,也可以采用其他指标来指示网络状态的变化,而不限于此。
在描述以上装置600和700的过程中,实质上也提供了一种基站,包括装置600和700中的任意一个。
应该理解,该基站可以是小小区基站,也可以是宏小区基站。在宏小区基站的情况下,装置600或700对处于该宏小区基站覆盖范围内的多个小小区进行分簇。此外,装置600和700也可以位于无线网络控制器(RNC)中。
作为一个示例,上述基站还接收包含将该基站指定为用于管理其他基站的指示,根据该指示激活上述用于对TDD网络中的小小区进行分簇的装置600或700。
具体地,例如当每个小小区基站中均包含装置600或700时,可以通过接收来自上层比如宏小区基站、RNC或其他控制中心的指示来指定某一个装置600或700来执行分簇操作。
<第九实施例>
在上文的实施方式中描述用于对TDD网络中的小小区进行分簇的装置600和700的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,类似地,这些方法不一定采用所描述的那些部件或不一定由那些部件执行。
如图14所示,其中的虚线框表示可选的步骤。该用于对TDD网络中的小小区进行分簇的方法包括:获取TDD网络中的小小区之间的耦合损耗以及各个小小区的上行业务量和/或下行业务量(S61);以及基于所获取的小小区之间的耦合损耗以及各个小小区的上行业务量和/或下行业务量来对小小区进行分簇(S62)。其中,传输特征例如可以包括传输损耗。
在步骤S62中,确定两个小小区之间的上行业务量和/或下行业务量的差异并确定两个小小区之间的分离度,其中,传输损耗越小、业务量的差异越小,则分离度越小,而传输损耗越大、业务量的差异越大,则分离度越大,并且基于该分离度进行分簇。该差异可以包括两个小小区之间的上行业务量和下行业务量的分布比例的差异。
此外,在步骤S62中,基于分离度,通过使划分得到的小小区簇之间的分离度最大,小小区簇内的分离度最小来确定小小区簇。具体的算法参见第七实施例所述,在此不再重复。
上述方法还可以包括步骤S63:基于至少一个小小区簇的上下行业务量确定该小小区簇的上下行子帧配置。在该步骤S63中,可以为该小小区簇确定适应其上下行业务量比例的上下行子帧配置。
可替选地或附加地,上述方法还可以包括步骤S64:在所确定的各个小小区簇中选择用于管理小小区簇内的小小区的簇头,并将小小区簇所包含的小小区信息发送至簇头。其中,例如可以选择小小区簇的所有小小区 中与其他小小区之间的平均距离最小的小小区作为簇头。
可替选地或附加地,上述方法还可以包括步骤S71:判断是否满足预定条件,并且在判断为“是”的情况下执行步骤S61和S62的操作,否则继续等待。
预定条件可以包括以下中的至少一个:从上一次进行分簇操作起过去了预定时间;网络状态发生变化。网络状态发生变化包括以下中的至少一个:干扰信号增强、上下行业务量变化、网络吞吐量下降。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本编程技能就能实现的。
因此,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部 分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (27)

  1. 一种用于对时分双工网络中的小小区进行分簇的装置,包括:
    请求接收单元,被配置为接收来自小小区基站的请求进行动态分簇的分簇请求;
    分簇确定单元,被配置为至少基于所述分簇请求来确定是否进行分簇。
  2. 根据权利要求1所述的装置,其中,所述分簇请求由各个小小区基站通过X-2接口发送。
  3. 根据权利要求2所述的装置,其中,所述分簇请求在满足如下条件的至少之一时发送:每一个小小区基站的干扰信号增强到一定程度,上下行业务量的变化超过预定值,小小区吞吐量下降超过预定阈值。
  4. 根据权利要求2所述的装置,其中,所述分簇请求为高分簇概率标记,该高分簇概率标记包含在LOAD INFORMATION消息中进行发送。
  5. 根据权利要求1至4中的任意一项所述的装置,其中,所述分簇确定单元被配置为在预定时间段内从多于预定数量的小小区基站接收到分簇请求时,确定进行分簇。
  6. 根据权利要求1至4中的任意一项所述的装置,还包括:
    信息获取单元,被配置为在所述分簇确定单元确定要进行分簇之后,从各个小小区基站获取分簇所需的信息。
  7. 根据权利要求6所述的装置,其中,所述信息获取单元包括:
    通知模块,被配置为向各个小小区基站发送上报所述信息的通知以及接收其答复;以及
    信息接收模块,被配置为在所述答复表示通知成功的情况下从相应的小小区基站接收所述信息。
  8. 根据权利要求7所述的装置,其中,所述信息包括各个小小区之间的传输特征和上行/下行业务量相关数据。
  9. 根据权利要求8所述的装置,其中,所述上行/下行业务量相关数 据包括上下行业务量分布比例。
  10. 根据权利要求9所述的装置,其中所述通知、所述答复和所述信息通过X-2接口传输。
  11. 根据权利要求10所述的装置,其中,所述通知由耦合损耗和业务比CLTR标记来指示,所述CLTR标记包括在Resource Status Reporting Initiation过程中的Resource Status Request消息中的Report Characteristics IE中,并且所述答复由各个小小区基站通过Resource Status Response或Resource Status Failure发送,其中,Resource Status Response表示通知成功,Resource Status Failure表示通知失败。
  12. 根据权利要求11所述的装置,其中,所述信息作为CLTR状态信息包括在Resource Status Update消息中。
  13. 根据权利要求12所述的装置,其中,所述CLTR状态信息包括如下字段:CLTR状态指示、CL状态和TR状态,其中,CLTR状态指示表示CL状态和TR状态是否有效,CL状态表示当前小小区与其他小小区的耦合损耗,TR状态表示当前小小区的上下行业务量分布比例。
  14. 根据权利要求8所述的装置,其中,小小区的所述上行/下行业务量相关数据由相应小小区的基站维护,并且通过在相应小小区的基站的用户中存在用户上报缓存状态报告BSR时更新上行业务量来更新。
  15. 根据权利要求6所述的装置,其中,在小小区基站处于关闭状态的情况下,不从该小小区基站获取所述信息。
  16. 根据权利要求1至4中的任意一项所述的装置,还包括:
    分簇单元,被配置为在所述分簇确定单元确定要进行分簇之后对各个小小区执行分簇;以及
    分簇指示单元,被配置为在所述分簇单元进行分簇之后,向各个小小区基站指示分簇结果。
  17. 根据权利要求16所述的装置,其中,所述分簇结果通过X-2接口发送。
  18. 根据权利要求17所述的装置,其中,所述分簇结果包括在Clustering Information消息中并通过CLUSTERING INDICATION过程发送,该Clustering Information消息包括表示要向其发送指示的目标小小区是否是簇头的Cluster Head Indication IE,当目标小小区是簇头时, 该Clustering Information消息还包括表示该簇中所有小小区ID的信息的Cluster Cell ID IE,而当目标小小区不是簇头时,该Clustering Information消息还包括表示该簇中簇头的信息的Cluster Head ID IE。
  19. 根据权利要求16所述的装置,其中,所述Clustering Information消息还包括表示该簇中的上下行子帧配置的Cluster Configuration IE。
  20. 根据权利要求1至4中的任意一项所述的装置,还包括:
    定时器,被配置为以预定周期向所述分簇确定单元发出触发信号,
    其中,所述分簇确定单元被配置为在收到所述触发信号时,在该时刻前的预定时间段内没有收到所述分簇请求时确定要进行分簇。
  21. 根据权利要求20所述的装置,其中,所述定时器还被配置为在所述分簇确定单元确定要进行分簇之后复位。
  22. 根据权利要求20所述的装置,还包括:
    信息获取单元,被配置为在所述分簇确定单元确定要进行分簇之后,从各个小小区基站获取分簇所需的信息,
    所述信息包括各个小小区的传输特征和上行/下行业务量相关数据,
    其中,小小区的所述上行/下行业务量相关数据由相应小小区的基站维护,并且以与所述预定周期相同的周期来更新。
  23. 一种基站,包括根据权利要求1至22中的任意一项所述的装置。
  24. 一种基站,包括:
    分簇请求发送单元,被配置为向控制装置发送分簇请求。
  25. 根据权利要求24所述的基站,还包括:
    通知接收单元,被配置接收来自控制装置的要求上报分簇需要的信息的通知;
    答复发送单元,被配置为在所述通知接收单元接收到所述通知时向所述控制装置发送答复;以及
    信息发送单元,被配置为在能够获得所述信息的情况下,在所述答复发送单元发送所述答复之后向所述控制装置发送所述信息。
  26. 根据权利要求24或25所述的基站,还包括:
    分簇指示接收单元,被配置为从所述控制装置接收分簇结果。
  27. 一种用于对时分双工网络中的小小区进行分簇的方法,包括:
    接收来自小小区基站的请求进行动态分簇的分簇请求;以及
    至少基于所述分簇请求来确定是否进行分簇。
PCT/CN2015/077173 2014-05-08 2015-04-22 对时分双工网络中的小小区进行分簇的装置、方法及基站 WO2015169150A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15788656.5A EP3142402A4 (en) 2014-05-08 2015-04-22 Device and method for clustering small cells in time division duplex network, and base station
US15/303,281 US9854452B2 (en) 2014-05-08 2015-04-22 Device and method for clustering small cells in time division duplex network, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410193669.7A CN105101234B (zh) 2014-05-08 2014-05-08 对时分双工网络中的小小区进行分簇的装置、方法及基站
CN201410193669.7 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015169150A1 true WO2015169150A1 (zh) 2015-11-12

Family

ID=54392116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077173 WO2015169150A1 (zh) 2014-05-08 2015-04-22 对时分双工网络中的小小区进行分簇的装置、方法及基站

Country Status (4)

Country Link
US (1) US9854452B2 (zh)
EP (1) EP3142402A4 (zh)
CN (1) CN105101234B (zh)
WO (1) WO2015169150A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996248A (zh) 2017-12-29 2019-07-09 索尼公司 用于无线通信的电子设备和方法以及计算机可读存储介质
US11057882B1 (en) * 2018-04-03 2021-07-06 T-Mobile Innovations Llc Systems and methods for dynamically setting frame configuration in a wireless network
WO2021080479A1 (en) * 2019-10-23 2021-04-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for interference mitigation for tdd ul/dl configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121825A1 (en) * 2009-04-23 2010-10-28 Nec Europe Ltd. A method for operating a network and a network
CN102612042A (zh) * 2012-04-13 2012-07-25 北京邮电大学 毫微微蜂窝网络中基于感知的频谱自管理方法
CN103391168A (zh) * 2012-05-11 2013-11-13 电信科学技术研究院 一种进行干扰控制的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130098A1 (en) * 2009-05-22 2011-06-02 Qualcomm Incorporated Systems, apparatus and methods for distributed scheduling to facilitate interference management
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
CN103200577B (zh) * 2013-03-26 2016-01-20 东莞宇龙通信科技有限公司 Tdd交叉干扰的分组管理方法和基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121825A1 (en) * 2009-04-23 2010-10-28 Nec Europe Ltd. A method for operating a network and a network
CN102612042A (zh) * 2012-04-13 2012-07-25 北京邮电大学 毫微微蜂窝网络中基于感知的频谱自管理方法
CN103391168A (zh) * 2012-05-11 2013-11-13 电信科学技术研究院 一种进行干扰控制的方法及装置

Also Published As

Publication number Publication date
CN105101234A (zh) 2015-11-25
US20170034714A1 (en) 2017-02-02
EP3142402A1 (en) 2017-03-15
EP3142402A4 (en) 2018-02-28
CN105101234B (zh) 2020-10-02
US9854452B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US10524158B2 (en) Determining network congestion based on target user throughput
CN105101227B (zh) 对时分双工网络中的小小区进行分簇的装置、方法及基站
US11166331B2 (en) Apparatus configured to report aperiodic channel state information for dual connectivity
US10681569B2 (en) Facilitating enhanced beam management in a wireless communication system
US10728839B2 (en) System and method for dynamically configurable air interfaces
EP3720221A1 (en) Resource allocation methods and equipments for device to device signal transmission
US11026133B2 (en) Flexible quality of service for inter-base station handovers within wireless network
WO2021204208A1 (zh) 信道状态信息csi报告的确定方法和通信设备
JP6736586B2 (ja) データ伝送方法、送信装置及び受信装置
WO2015131677A1 (zh) 虚拟小区的构建、协作节点的选择方法及装置
TWI753175B (zh) 用於無線通訊的電子裝置和方法以及電腦可讀儲存媒體
WO2019170398A1 (en) Methods and apparatus for adjusting a carrier aggregation operation in a wireless communication system
US10708926B2 (en) Base station clustering method, base station control method, and apparatus
WO2015169150A1 (zh) 对时分双工网络中的小小区进行分簇的装置、方法及基站
US11929938B2 (en) Evaluating overall network resource congestion before scaling a network slice
US10075255B2 (en) Physical downlink control channel (PDCCH) inter-cell-interference coordination
US20210212022A1 (en) Control apparatus, resource allocation method and program
WO2021063165A1 (zh) 波束失败恢复请求的发送、接收方法、终端及基站
WO2022027386A1 (zh) 一种天线选择方法及装置
WO2020199938A1 (zh) 一种远程干扰管理方法及装置
CN105474676B (zh) 资源调度方法及设备
US20230099849A1 (en) Full duplex communications in wireless networks
CN109309959B (zh) 用户设备、基站、信号传输方法及计算机可读存储介质
CN111447642B (zh) 一种bsr上报的方法及设备
Wu et al. Capacity of reuse partitioning schemes for OFDMA wireless data networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015788656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015788656

Country of ref document: EP