WO2015169036A1 - 干扰处理方法、基站、终端及系统 - Google Patents

干扰处理方法、基站、终端及系统 Download PDF

Info

Publication number
WO2015169036A1
WO2015169036A1 PCT/CN2014/087466 CN2014087466W WO2015169036A1 WO 2015169036 A1 WO2015169036 A1 WO 2015169036A1 CN 2014087466 W CN2014087466 W CN 2014087466W WO 2015169036 A1 WO2015169036 A1 WO 2015169036A1
Authority
WO
WIPO (PCT)
Prior art keywords
muting
cell
resource
interfering
resources
Prior art date
Application number
PCT/CN2014/087466
Other languages
English (en)
French (fr)
Inventor
弓宇宏
孙云锋
邬华明
王瑜新
张淑娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015169036A1 publication Critical patent/WO2015169036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to interference cancellation/suppression techniques in the field of communications, and in particular, to an interference processing method, a base station, a terminal, and a system.
  • the cell deployment density is higher and higher, and user interference in the same cell and co-channel interference between cells become more and more a major factor limiting network capacity.
  • it is mainly based on the interference avoidance and coordination technology on the network side.
  • the basic idea is to avoid interference on the transmitting side through precoding and cooperative scheduling on the network side.
  • the accuracy of the channel state information (CSI) of the feedback is largely dependent.
  • the advanced receiving method can also compress the interference well, and the terminal-based enhancement can alleviate the pressure of channel information feedback with respect to the interference coordination of the sender. Therefore, how to optimize the terminal reception to better compress the interference is an important direction to effectively improve the spectrum efficiency.
  • LTE Long Term Evolution
  • 4G Fourth Generation
  • a resource element is an orthogonal frequency division multiplexing (OFDM, Orthogonal Frequency). Division Multiplexing) One subcarrier in the symbol, and one downlink RB consists of 12 consecutive subcarriers and 7 consecutive (6 extended cyclic prefix) Orthogonal Frequency Division Multiplexing (OFDM) symbols. Composition.
  • a resource block is 180 kHz in the frequency domain and is the length of time of one slot in the time domain. When resource allocation is performed, one subframe (corresponding to two slots) The two resource blocks (also called a physical resource block pair) are allocated as basic units.
  • a common reference signal (CRS, Common Reference Signal) is used for pilot measurement and data demodulation, that is, all terminals use CRS for channel estimation.
  • CRS Common Reference Signal
  • the transmitting end needs to additionally notify the specific precoding matrix (also referred to as precoding weight) information used by the receiving end for data transmission, and the overhead of the pilot is large.
  • precoding matrix also referred to as precoding weight
  • MU-MIMO multi-user multi-input multi-output
  • the pilot measurement and the data demodulation function are separated, and two types of reference signals are respectively defined, that is, Demodulation Reference Signal (DMRS) and Channel State Information Reference Signal (CSI-RS).
  • CSI-RS is mainly used for channel measurement to obtain channel quality information (CQI) and feedback, so that the base station side can use the information to complete user scheduling and implement the modulation and coding scheme (MCS, Modulation and Coding Scheme).
  • MCS modulation and coding scheme
  • the DMRS is mainly used for channel estimation of the Physical Downlink Shared Channel (PDSCH) to complete data demodulation, and the DMRS transmission carries the corresponding physics. Precoding information of a downlink shared channel physical downlink shared channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • LTE in order to support adjustment of PDSCH transmission power of different terminals, two parameters of P A and P B are introduced to indicate the ratio of power (EPRE, Energy per Resource Element) to CRS EPRE on each resource element of the PDSCH.
  • EPRE Energy per Resource Element
  • the CRS performs power boosting, and the PDSCH needs to reduce a certain power. This results in a difference in the EPRE corresponding to the PDSCH on the OFDM symbol for transmitting the CRS and the OFDM symbol for which the CRS is not transmitted.
  • ⁇ A is defined as the ratio of PDSCH EPRE to CRS EPRE on the OFDM symbol without CRS
  • the advanced receivers involved mainly include: enhanced minimum mean square error interference suppression combining (E-MMSE-IRC, Enhanced Minimum Mean Square Error-Interference Rejection Combining) Receiver, Symbol Level Interference Cancellation (SL-IC) receiver, Reduced complexity Maximum Likelihood (R-ML) receiver.
  • E-MMSE-IRC enhanced minimum mean square error interference suppression combining
  • SL-IC Symbol Level Interference Cancellation
  • R-ML Reduced complexity Maximum Likelihood
  • the terminal needs to obtain related information of its strong interference signal, such as pilot information, precoding information, transmission mode information, modulation level information, etc., and then obtain target data after strong interference source cancellation/suppression based on the information.
  • the terminal may acquire the interference signal related information by means of blind detection or network side signaling notification.
  • the interference information number is estimated by the blind detection algorithm.
  • the complexity of the method is relatively high, and the estimated interference signal information has a certain error; the base station sends the relevant information of the interference signal to the terminal, and the complexity of the method is relatively It is relatively low, and the interference signal information acquired by the terminal is relatively high.
  • the disadvantage is that the corresponding information of the interfering signal sent by the base station increases the downlink overhead information. Especially when the interference signal is relatively large, the downlink overhead information is also relatively large.
  • the interference signal of the terminal often exists at the same time, due to the non-ideal between cells.
  • the impact of the backhaul delay, the base station is difficult to know in time the interference signal existing in the terminal when the data is received, and which signal is the interference signal that needs interference cancellation.
  • the terminal can theoretically The interference signal that needs to be eliminated/suppressed is determined by blind detection, however, this further increases the complexity of blind detection of the terminal, and the blind detection accuracy of some weak interference signal parameters is also very inaccurate. Therefore, in the case where multiple interference signals exist, how to reduce the blind detection complexity of the terminal and the signaling overhead of the network side without affecting the demodulation performance of the terminal, there is still no effective solution.
  • the embodiments of the present invention provide an interference processing method, a base station, a terminal, and a system, which can solve at least the above problems existing in the prior art.
  • An embodiment of the present invention provides an interference processing method, where the method includes:
  • the N sets of muting RE resources are used by the terminal to determine an interference cell in the M interfering cells that needs to perform interference cancellation/suppression; the downlink transmission parameter information is used by the terminal to perform interference cancellation/suppression The interference cell performs interference cancellation; M and N are positive integers.
  • An embodiment of the present invention further provides an interference processing method, where the method includes:
  • the downlink transmission corresponding to the determined interference cell The parameter information is blindly detected to obtain interference signal related transmission information from the determined interfering cell, and the interference signal related transmission information is used to perform interference cancellation/suppression; wherein M and N are positive integers.
  • An embodiment of the present invention provides an interference processing method, where the method includes:
  • the base station allocates the muting RE resources in the configured N sets of muting RE resources to the M interfering cells; and notifies the terminal of the downlink transmission parameter information of the M interfering cells;
  • the terminal determines, by using a received signal on a resource location corresponding to the muting RE resource allocated by each of the M interfering cells, an interference cell that needs to perform interference cancellation/suppression in the M interfering cells;
  • the terminal performs blind detection according to the downlink transmission parameter information of the determined interference cell in the obtained downlink transmission parameter information to obtain interference signal related transmission information from the determined interference cell, and uses the obtained interference signal correlation.
  • the information is transmitted for interference cancellation/suppression; wherein M and N are both positive integers.
  • An embodiment of the present invention provides a base station, where the base station includes:
  • a configuration unit configured to configure N sets of muting RE resources
  • An allocating unit configured to allocate, to the M interfering cells, the muting RE resources in the configured N sets of muting RE resources;
  • a first communication unit configured to notify, to the terminal, downlink transmission parameter information of the M interfering cells
  • the N sets of muting RE resources are used by the terminal to determine an interference cell in the M interfering cells that needs to perform interference cancellation/suppression; the downlink transmission parameter information is used by the terminal to perform interference cancellation/suppression The interference cell performs interference cancellation; M and N are positive integers.
  • the embodiment of the invention further provides a terminal, where the terminal includes:
  • a second communication unit configured to receive downlink transmission parameter information of the M interfering cells
  • a first determining unit configured to determine configuration information of the N sets of muting RE resources, and determine, according to the configuration information, a muting RE resource allocated to the M interfering cells in the N sets of muting RE resources;
  • a second determining unit configured to determine interference required to perform interference cancellation/suppression in the M interfering cells by using a received signal at a resource location corresponding to the muting RE resource allocated by each of the M interfering cells Community
  • the interference processing unit is configured to perform blind detection according to the downlink transmission parameter information of the determined interference cell in the downlink transmission parameter information, to obtain interference signal related transmission information from the determined interference cell, and obtain the obtained
  • the interference signal related transmission information performs interference cancellation/suppression; wherein M and N are positive integers.
  • An embodiment of the present invention further provides an interference processing system, where the system includes: a base station and a terminal;
  • the base station is configured to allocate the muting RE resources in the configured N sets of muting RE resources to the M interfering cells, and notify the terminal of the downlink transmission parameter information of the M interfering cells;
  • the terminal is configured to determine, according to the determined configuration information of the N sets of muting RE resources, a muting RE resource allocated to the M interfering cells in the N sets of muting RE resources;
  • the base station notifies the terminal of the downlink transmission parameter information of the M interfering cells, and indicates the resource positions of the N sets of muting REs to the terminal to assist the terminal to determine the interfering cell that needs to perform interference cancellation; Eliminating/suppressing the interfering cell, blindly detecting downlink transmission parameter information of the interference signal from the interfering cell based on downlink transmission parameter information of the interfering cell, and performing interference cancellation/suppression on the interference signal, where The received signal at the resource location of the resource determines the interfering cell that needs to perform interference cancellation/suppression; the resource unit overhead is small, which can effectively reduce the blind detection complexity of the terminal, improve the blind detection accuracy, and increase the signaling overhead of the base station. On the basis of not increasing the signaling overhead of the base station, the demodulation performance of the terminal can be improved, and the blind detection complexity of the terminal can be reduced.
  • FIG. 1 is a schematic diagram of a PRB in the related art
  • FIG. 2 is a schematic diagram 1 of an implementation flow of an interference processing method according to an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of an implementation process of an interference processing method according to an embodiment of the present invention.
  • 4a is a schematic diagram 1 showing a DMRS RE as a muting RE resource according to an embodiment of the present invention
  • 4b is a second schematic diagram of using a DMRS RE as a muting RE resource in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of using a CSI-RS RE as a muting RE resource in an embodiment of the present invention
  • FIG. 6 is a schematic flowchart 3 of an implementation process of an interference processing method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal in an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a structure of an interference processing system according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an interference scenario of downlink data of a terminal in an embodiment of the present invention.
  • 11a-11d are schematic diagrams showing the configuration of muting RE resources of different cells in the embodiment of the present invention.
  • the embodiment of the invention describes an interference processing method, which is applied to a network side base station, as shown in FIG. 2, and includes the following steps:
  • Step 201 The base station configures N sets of muting RE resources.
  • Step 202 Allocate the muting RE resources in the configured N sets of muting RE resources for the M interfering cells.
  • Step 203 Notify the terminal of the downlink transmission parameter information of the M interfering cells.
  • the base station configures N sets of muting RE resources in a manner agreed in advance with the terminal.
  • At least one set of muting RE resources of the N sets of muting RE resources is allocated to the interfering cell; the muting RE resources of the N sets of muting RE resources may also be allocated to the serving cell; M and N are positive integers, And M is less than or equal to N.
  • the embodiment of the present invention further describes an interference processing method, which is applied to the terminal side, as shown in FIG. 3, and includes the following steps:
  • Step 301 Determine configuration information of the N sets of muting RE resources, and determine, according to the configuration information, the muting RE resources allocated to the M interfering cells in the N sets of muting RE resources.
  • the terminal determines, according to the configuration information of the N sets of muting RE resources and the physical cell identifier (cell ID) of the M interfering cells, the allocation of the N sets of muting RE resources to the M interfering cells. Muting RE resources.
  • Step 302 Determine, by using a received signal on a resource location corresponding to the muting RE resource allocated by each of the M interfering cells, an interference cell that needs to perform interference cancellation/suppression in the M interfering cells.
  • Step 303 Perform blind detection to obtain an interference signal from the determined interfering cell according to the downlink transmission parameter information of the determined interfering cell in the obtained downlink transmission parameter information. Correlation is transmitted, and the interference signal related transmission information obtained is used for interference cancellation/suppression; wherein M and N are positive integers. Preferably, M is less than or equal to N.
  • the configuration information of the N sets of muting RE resources may be pre-agreed by the terminal and the base station.
  • the number of the interfering cells is not limited to M.
  • the eNodeB may select M interfering cells from the multiple interfering cells.
  • the downlink transmission parameter information of the M interfering cells is respectively notified to the terminal; the manner of selecting the M interfering cells is not limited in this embodiment, for example, the base station may select the M interfering cells closest to the serving cell where the terminal is located, or The base station may determine, according to the reference signal received power (RSRP, Reference Signal Receiving Power), which interference signals exist in the cell, and select the M interference cells with the strongest interference signal strength from the N cells in which the interference signal exists.
  • RSRP Reference Signal Receiving Power
  • the serving cell base station uses the downlink transmission parameter information of the M interfering cells as an index, or uses the CSI-RS configuration as an index, and sends a cell-specific high-level signaling broadcast notification to the serving cell base station.
  • An example of a terminal served by a base station transmitting downlink transmission parameters using the physical cell identifier as an index is shown in Table 1:
  • the cell ID (Cell ID) 1 is the physical cell identifier of the interfering cell 1
  • the Cell ID 2 is the physical cell identifier of the interfering cell 2.
  • the downlink transmission parameter of each interfering cell includes at least one of the following information:
  • MBSFN Multicast Broadcast Single Frequency Network
  • OFDM Orthogonal Frequency Division Multiplexing
  • TM Transmission Mode
  • VCID virtual channel IDentifier
  • CSI-RS Chinnel State Indication on Reference Signal
  • the resource allocation unit includes one physical resource block (PRB) pair or multiple PRB pairs.
  • PRB physical resource block
  • the network side base station allocates, according to the physical cell identifier of the interfering cell, a set of muting RE resources in the N sets of muting RE resources for any one of the M interfering cells; for example, the muting of the N sets of muting
  • the RE resources are numbered 1 to N in the preset order.
  • the number of the muting RE resources may be used in other manners, for example, the N sets of muting RE resources are numbered 0 to (N-1) according to a preset order; correspondingly, the physical cell identifier of the interfering cell is determined to be N.
  • the method may be similar to the foregoing, that is, the N sets of muting RE resources are numbered 1 to N according to a preset sequence; The value j obtained by taking the remainder is the (j+1)th set of muting RE resources in the N sets of muting RE resources for the serving cell; wherein the ordering of the N sets of muting RE resources may be preset by the network side base station and the terminal .
  • the base station may notify the terminal of a NAICS identifier (the NAICS identifier and the serving cell).
  • the M interference cells are in a one-to-one correspondence, and are used to indicate to the terminal whether the muting RE resource of the interfering cell (or serving cell) configuration (ie, allocated) is enabled; for example, when the base station indicates the NAICS identifier of the interfering cell 1 to the terminal When it is 0, it indicates that the muting RE resource allocated by the interfering cell 1 is enabled; when the NAICS identifier of the interfering cell 1 is 0, it indicates that the muting RE resource configured by the interfering cell 1 is not enabled; of course, the base station may not be the terminal.
  • the NAICS identifier is indicated.
  • the terminal can enable the muting RE resource configured by the interfering cell 1 by default, and determine the value i of the remainder of the physical cell identifier of the interfering cell 1 to determine that the interfering cell 1 is configured with N sets of muting RE resources.
  • the i-th set of muting RE resources can enable the muting RE resource configured by the interfering cell 1 by default, and determine the value i of the remainder of the physical cell identifier of the interfering cell 1 to determine that the interfering cell 1 is configured with N sets of muting RE resources.
  • a set of muting RE resources allocated to one cell may be one or more resource units in a resource unit configured to be configured as DMRS port 9/10/12/14; DMRS Port 9/10/12/14 is not used for the serving cell to send to the terminal Send data.
  • the muting RE resource in FIG. 4a is composed of two consecutive resource units in the resource unit of the DMRS port 9/10/12/14, and each muting RE resource in FIG. 4b is provided by the DMRS port 9/10/12/14.
  • the two discrete resource units in the resource unit are composed.
  • the resource allocation unit is a PRB pair and there are 6 sets of muting RE resources configurable in each PRB pair, the 6 sets of muting RE resources can be numbered as 0. ⁇ 5, of course, in Figures 4a and 4b, the six sets of muting RE resources may also be numbered in other orders.
  • the muting RE resource is one or more resource units in a resource unit configured to be configured as a CSI-RS port.
  • each set of muting RE resources is composed of a resource unit corresponding to a two-antenna port CSI-RS. It is assumed that the resource allocation unit is a PRB pair, and each set of PRB pairs has configurable three sets of muting RE resources.
  • the three sets of muting RE resources may be numbered 0 to 2 according to a preset order. Of course, in FIG. 5, the three sets of muting RE resources may be numbered in other orders.
  • the muting RE resource is composed of two sets of discrete resource unit groups, and the two sets of discrete resource unit groups are corresponding to the first PRB and the second PRB in one physical resource block PRB pair.
  • the resource unit group is composed of one or more resource units; the two groups of discrete resource unit groups are composed of resource units other than the following resource units: support configured as CRS resource units; and support resource units configured as CSI-RS; Supporting one or more resource units other than the resource unit configured as DMRS port 7/8/11/13; or the two sets of discrete resource unit groups are composed of resource units other than the following resource units: support configuration is Resource unit of CRS; resource unit supporting CSI-RS; resource unit configured as DMRS port 7/8/11/13; resource unit configured as physical downlink control channel (PDCCH) One or more resource units outside.
  • PDCCH physical downlink control channel
  • the interfering cell When the base station configures a muting RE resource for an interfering cell (or a serving cell), the interfering cell transmits a zero-power signal at the allocated muting RE resource location, and the downlink data of the interfering cell is on the allocated muting RE resource according to the rate. Matching the way to map; as a In an embodiment, the muting RE resource allocated by the base station to the interfering cell (or the serving cell) corresponds to the resource allocation unit of the interfering cell (or the serving cell), that is, the muting RE resource may be according to the interfering cell (or the serving cell).
  • the resource allocation unit allocates units, that is, performs the same muting RE resource mapping on different resource allocation units.
  • the allocating RE resources in the configured N sets of muting RE resources for the M interfering cells include:
  • a set of muting RE resources of the N sets of muting RE resources to any one of the M interfering cells; for example, the following manner can be implemented:
  • the N sets of muting RE resources are numbered 1 to N in a preset order;
  • the muting RE resource allocated by the interfering cell is an imuting RE resource with the number (i+1) in the N sets of muting RE resources; wherein i is a non-negative integer smaller than N; the N sets of muting RE resources
  • the numbering sequence is consistent with the numbering sequence of the N sets of muting RE resources by the base station, and the numbering sequence may be pre-agreed by the terminal and the base station.
  • the terminal may determine, according to the foregoing manner, the muting RE resource allocated by the serving cell according to the physical cell identifier of the serving cell, that is, the N sets of muting RE resources are numbered 1 to N according to a preset sequence; Determining the value j of the physical cell identifier of the serving cell for N, and determining that the muting RE resource allocated by the serving cell is the (j+1)th set of muting RE resources in the N sets of muting RE resources.
  • the terminal determines the muting RE resource allocated by the M interfering cells, it is determined by default that the interfering cell sends a zero-power signal on the allocated muting RE resource, and is matched according to a rate matching manner.
  • the downlink data is mapped on the allocated muting RE resource.
  • the terminal when the terminal receives the NAICS enable identifier of the interfering cell, And when the NAICS enable identifier indicates that the muting RE resource allocated by the interfering cell is enabled, the terminal determines that the interfering cell sends a zero-power signal on the allocated muting RE resource, and the interfering cell matches the rate according to the rate.
  • the method maps downlink data on the allocated muting RE resources;
  • the terminal determines the muting RE resource allocated by the interfering cell
  • the interfering cell is determined when it is determined that the NAICS enable identifier indicating that the muting RE resource allocated by the interfering cell is enabled is received.
  • a zero-power signal is transmitted on the allocated muting RE resource, and the interfering cell maps the downlink data on the allocated muting RE resource in a rate matching manner.
  • the terminal When the terminal receives the NAICS enable identifier for the interfering cell sent by the base station, the terminal determines that the interfering cell configuration muting RE resource is enabled, and the interfering cell sends the zero at the resource location corresponding to the allocated muting RE resource. a power signal, and the downlink data of the serving cell is mapped in a rate matching manner on the allocated muting RE resource location; so that the terminal can receive the interference cancellation of the interfering cell on the resource location corresponding to the muting RE resource configured by the interfering cell.
  • the terminal when the terminal receives the NAICS enable identifier indicating that the muting RE resource allocated by the M interfering cells is enabled, the terminal corresponds to the muting RE resource configured in the M interfering cells.
  • the received signal at the resource location determines whether the M interfering cells need to perform interference cancellation/suppression, and when determining that the M interfering cells need to perform interference cancellation/suppression, based on the received downlink transmission parameter information of the M interfering cells Blind detection of downlink transmission parameter information of interference signals from M interfering cells , To obtain information related to the transmission of the interference signal, the interference signal based on the obtained information related to the transmission of complete interference cancellation signal interference / inhibition.
  • the terminal when the terminal receives the NAICS enable identifier corresponding to the M interfering cells, the received signal (the interference canceled signal) and the M signals according to the muting RE resource corresponding resource locations allocated in the M interfering cells.
  • Non-muting RE resource pair that interferes with cell configuration The received signal at the resource location (ie, the signal before the interference cancellation) is used to determine whether interference cancellation is required for the M interfering cells; for example, the signal power received before the interference cancellation of the M interfering cells and the M interfering cells may be The difference between the power of the received signal after the interference cancellation is compared with a predetermined threshold value. If the difference is less than the predetermined threshold value, the terminal determines that interference cancellation/suppression processing is not required, otherwise it is determined that interference cancellation is required/ Suppression treatment
  • the terminal may sequentially determine, according to the received signal of the muting RE resource corresponding resource location allocated by each of the M interfering cells, that each interfering cell needs to perform interference cancellation/suppression, For the interfering cell that needs to perform interference cancellation/suppression, the downlink transmission parameter information of the interference signal of the interfering cell that needs to perform interference cancellation/suppression is blindly detected based on the downlink transmission parameter information corresponding to the received interfering cell, to obtain interference. Signal-related transmission information, using the obtained interference signal-related transmission information for interference cancellation/suppression;
  • the serving cell needs to perform interference cancellation/suppression, the same manner may be adopted, that is, the receiving signal (the signal after the interference is eliminated) corresponding to the resource location according to the muting RE resource configured by the serving cell, and the configuration of the serving cell
  • the non-muting RE resource corresponds to the received signal at the resource location (ie, the signal before interference cancellation), and determines whether interference cancellation needs to be performed on the serving cell.
  • the downlink transmission parameter of the interference signal includes at least one of the following:
  • RI transmission layer number indication
  • the starting OFDM symbol of the data of the interference signal in one subframe is the starting OFDM symbol of the data of the interference signal in one subframe
  • the embodiment of the present invention further describes an interference processing method, which is applied to a base station and a terminal. As shown in FIG. 6, the method includes the following steps:
  • Step 601 The base station allocates the muting RE resources in the configured N sets of muting RE resources to the M interfering cells.
  • the base station can configure N sets of muting RE resources in a manner agreed with the terminal.
  • Step 602 The terminal determines, according to the configuration information of the N sets of muting RE resources, the muting RE resources allocated to the M interfering cells in the N sets of muting RE resources.
  • the terminal may determine configuration information of the N sets of muting RE resources according to a manner of configuring a muting RE resource agreed with the base station.
  • Step 603 The terminal determines, by using a received signal on a resource location corresponding to the muting RE resource allocated by each of the M interfering cells, an interference cell that needs to perform interference cancellation/suppression in the M interfering cells. .
  • Step 604 The terminal performs blind detection according to the downlink transmission parameter information of the determined interference cell in the obtained downlink transmission parameter information to obtain interference signal related transmission information from the determined interference cell, and uses the obtained The interference signal related transmission information is subjected to interference cancellation/suppression; wherein M and N are positive integers.
  • the embodiment of the invention further describes a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the interference processing method shown in FIG. 1, FIG. 2 or FIG.
  • the embodiment of the invention further describes a base station, as shown in FIG. 7, comprising:
  • the configuration unit 71 is configured to configure N sets of muting RE resources
  • the allocating unit 72 is configured to allocate, for the M interfering cells, the muting RE resources in the configured N sets of muting RE resources;
  • the first communication unit 73 is configured to notify, to the terminal, downlink transmission parameter information of the M interfering cells, where
  • the N sets of muting RE resources are used by the terminal to determine an interference cell in the M interfering cells that needs to perform interference cancellation/suppression; the downlink transmission parameter information is used by the terminal to perform interference cancellation/suppression The interference cell performs interference cancellation; M and N are positive integers.
  • the downlink transmission parameter information of any one of the M interfering cells includes at least one of the following information:
  • the downlink data of the interfering cell is in a starting OFDM symbol position in one subframe
  • any one of the N sets of muting RE resources is a muting RE
  • the resources include one or more of the resource units that support configuration as DMRS ports 9/10/12/14.
  • any one of the N sets of muting RE resources includes one or more of resource units configured to be configured as CSI-RS ports.
  • any one of the N sets of muting RE resources is composed of two sets of discrete resource unit groups, and the two sets of discrete resource unit groups are corresponding to a physical resource block PRB pair. On the first PRB and the second PRB; and,
  • the resource unit group is composed of one or more resource units.
  • any one of the N sets of muting RE resources is composed of at least one resource unit other than the following resource units:
  • the allocating unit 72 further allocates, according to the physical cell identifier of the interfering cell, a set of muting RE resources of the N sets of muting RE resources for any one of the M interfering cells. .
  • the dispensing unit 72 includes (not shown in Figure 7):
  • a first number subunit configured to number the N sets of muting RE resources in a preset order from 1 to N;
  • a first determining subunit configured to determine a value i of a remainder of a physical cell identifier pair N of each of the M interfering cells
  • an allocation subunit configured to configure, for the interfering cell, the (i+1)th set of muting RE resources in the N sets of muting RE resources; wherein i is a non-negative integer.
  • the muting RE resources allocated by the M interfering cells are used by the terminal to determine: the interfering cell sends a zero-power signal on the allocated muting RE resources, and matches according to a rate. Way to map on the allocated muting RE resource Downstream data.
  • the first communication unit 73 is further configured to notify the terminal of the NAICS enable identifier of the interfering cell after the downlink transmission parameter information of the M interfering cells is notified to the terminal;
  • the NAICS enable identifier is used to indicate to the terminal whether the muting RE resource allocated by the interfering cell is enabled.
  • the NAICS enable identifier of the interfering cell indicates that the muting RE resource allocated to the interfering cell is enabled
  • the NAICS enable identifier is used by the terminal to determine the following information: the interfering cell A zero power signal is transmitted on the resource location corresponding to the allocated muting RE resource, and the downlink data is mapped on the allocated muting RE resource in a rate matching manner.
  • the muting RE resource allocated by any one of the M interfering cells is mapped to all system bandwidth resources of the interfering cell in units of resource allocation units of the downlink data of the interfering cell.
  • the first communication unit 73 can be implemented by a receiver and a transmitter in a base station; the configuration unit 71 and the allocation unit 72 can be a central processing unit (CPU) in the base station, and a digital signal processor. (DSP, Digital Signal Processor) or Field Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the invention further describes a terminal, as shown in FIG. 8, comprising:
  • the second communication unit 81 is configured to receive downlink transmission parameter information of the M interfering cells.
  • a first determining unit 82 configured to determine configuration information of the N sets of muting RE resources, and determine, according to the configuration information, a muting RE resource allocated to the M interfering cells in the N sets of muting RE resources;
  • a second determining unit 83 configured to determine, by using a received signal at a resource location corresponding to the muting RE resource allocated by each of the M interfering cells, to perform interference cancellation/suppression in the M interfering cells Interfering cell
  • the interference processing unit 84 is configured to perform blind detection according to the downlink transmission parameter information of the determined interference cell in the downlink transmission parameter information, to obtain interference signal related transmission information from the determined interference cell, and use the The obtained interference signal related transmission information performs interference cancellation/suppression; wherein M and N are both positive integers.
  • the downlink transmission parameter information of any one of the M interfering cells includes at least one of the following information:
  • the downlink data of the interfering cell is in a starting OFDM symbol position in one subframe
  • any one of the N sets of muting RE resources includes one or more of resource units configured to be configured as DMRS ports 9/10/12/14.
  • any one of the N sets of muting RE resources includes one or more of resource units configured to be configured as CSI-RS ports.
  • any one of the N sets of muting RE resources is a muting RE
  • the resource is composed of two sets of discrete resource unit groups corresponding to the first PRB and the second PRB in a PRB pair;
  • the resource unit group is composed of one or more resource units.
  • any one of the N sets of muting RE resources is composed of at least one resource unit other than the following resource units:
  • the first determining unit 82 is further configured to determine, according to the physical cell identifiers of the M interfering cells, the muting RE resources allocated by each of the M interfering cells.
  • the first determining unit 82 includes (not shown in FIG. 8):
  • a second number subunit configured to number the N sets of muting RE resources in a preset order from 1 to N;
  • a second determining subunit configured to determine a value i of a remainder of a physical cell identifier pair N of each of the M interfering cells
  • a third determining subunit configured to determine that the muting RE resource allocated by the interfering cell is the (i+1)th muting RE resource in the N sets of muting RE resources; wherein i is a non-negative integer.
  • the second determining unit 83 is further configured to: when determining the muting RE resources allocated by the M interfering cells, determine that the interfering cell sends the resource location corresponding to the allocated muting RE resource. A zero power signal and mapping downlink data on the allocated muting RE resources in a rate matched manner.
  • the second communications unit 81 is further configured to receive a NAICS enable identifier of the interfering cell
  • the second determining unit 83 is further configured to: when determining that the second communication unit 81 receives a NAICS enable identifier corresponding to the interfering cell, and the NAICS enable identifier indicates a muting RE allocated by the interfering cell When the resource is enabled, determining that the interfering cell corresponding to the NAICS enable identifier sends a zero-power signal on the allocated muting RE resource, and the interfering cell maps the downlink data on the allocated muting RE resource according to the rate matching manner. .
  • the first determining unit 82 is further configured to determine, according to a resource allocation unit of the interfering cell, a muting RE resource allocated by the interfering cell.
  • the second communication unit 81 can be implemented by a receiver and a transmitter in the terminal;
  • the first determining unit 82, the second determining unit 83, and the interference processing unit 84 can be implemented by a CPU, a DSP, or an FPGA in the terminal. .
  • the embodiment of the present invention further describes an interference processing system, as shown in FIG. 9, including a base station 91 and a terminal 92;
  • the base station 91 is configured to allocate the muting RE resources of the configured M sets of muting RE resources to the M interfering cells, and notify the terminal 92 of the downlink transmission parameter information of the M interfering cells;
  • the terminal 92 is configured to determine configuration information of the N sets of muting RE resources, and determine, according to the configuration information, the muting RE resources allocated to the M interfering cells in the N sets of muting RE resources;
  • the base station 91 is further configured to allocate, according to the physical cell identifier of the interfering cell, a set of muting RE resources of the N sets of muting RE resources for any one of the M interfering cells.
  • the base station 91 is further configured to number the N sets of muting RE resources in a preset order from 1 to N;
  • the base station 91 is further configured to notify the terminal 92 of the network assisted interference cancellation/inhibition NAICS enable identifier of the interfering cell;
  • the NAICS enable identifier is used to indicate to the terminal 92 whether the muting RE resource allocated by the interfering cell is enabled.
  • the muting RE resource allocated by any one of the M interfering cells is mapped to all system bandwidth resources of the interfering cell in units of resource allocation units of the downlink data of the interfering cell.
  • the terminal 92 is further configured to determine, according to the physical cell identifier of the interfering cell, a muting RE resource allocated to the M interfering cells.
  • the terminal 92 is further configured to number the N sets of muting RE resources in a preset order from 1 to N;
  • the muting RE resource allocated by the interfering cell is the (i+1)th muting RE resource in the N sets of muting RE resources; wherein i is a non-negative integer.
  • the terminal 92 is further configured to: when determining the muting RE resources allocated by the M interfering cells And determining, by the source, the interfering cell to send a zero-power signal on the allocated muting RE resource, and mapping the downlink data on the allocated muting RE resource according to a rate matching manner.
  • the downlink transmission parameter information of any one of the M interfering cells further includes:
  • a NAICS enable identifier configured to indicate whether a muting RE resource allocated to the interfering cell is enabled; the terminal 92 is further configured to: when receiving the NAICS enable identifier of the interfering cell, and the NAICS is enabled When the identifier indicates that the muting RE resource allocated by the interfering cell is enabled, determining that the interfering cell sends a zero-power signal on the allocated muting RE resource, and the interfering cell is in the allocated muting RE according to the rate matching manner. Downstream data is mapped on the resource.
  • Determining the muting RE resources allocated to the M interfering cells in the N sets of muting RE resources including:
  • the terminal 92 is further configured to determine, according to a resource allocation unit of the downlink data of the interfering cell, a muting RE resource allocated to the M interfering cells in the N sets of muting RE resources.
  • FIG. 10 is a schematic diagram of an interference scenario in which multiple terminals include downlink data according to an embodiment of the present invention.
  • base station A includes three cells: A1, A2, and A3, and base station B includes three cells: B1, B2, and B3. .
  • the serving cell of the terminal UE1 and the UE2 is A1, the serving cell of the terminal UE3 is A2, the serving cell of the terminal UE4 is A3, the serving cell of the terminal UE5 is B1, and the serving cell of the terminal UE6 is B2.
  • the physical cell identifier (Cell ID) of the cell A1 is 1, the physical cell identifier of the cell A2 is 2, the physical cell identifier of the cell A3 is 3, the physical cell identifier of the cell B1 is 4, and the physical cell identifier of the cell B2 is 5.
  • the physical cell identifier of cell B3 is 6.
  • UE1 is the target terminal.
  • the network side configures 6 sets of muting RE resources, and numbers them in the order agreed with the terminal side, as shown in Figure 4a.
  • the network side notifies the UE1 of the downlink transmission parameter information of the cells A2, A3, B1, B2, and B3, including the physical cell identifier, the CRS port, the MBSFN subframe configuration, the CRS and the data power ratio parameter P_B, , CRS and data power ratio parameter P_A value range, allowed transmission mode TM range, allowed DMRS VCID range and other information.
  • the network side allocates muting RE resources to different cells according to the physical cell identifier, that is, allocates the (i+1)th muting RE resource to the cell whose physical cell identifier meets the Cell ID mod 6 equal to i.
  • the third set of muting RE resources is allocated to the cell A2
  • the fourth muting RE resource is allocated to the cell A3
  • the fifth muting RE resource is allocated to the cell B1
  • the sixth muting RE resource is configured for the cell B2
  • the cell B3 is allocated for the cell B3. 1 set of muting RE resources.
  • the cell A2 transmits a zero-power signal in the downlink of the third set of muting RE resources, and if the cell A2 has downlink data, the downlink data is mapped in the rate matching manner at the location of the third muting RE resource; the cell A3 A zero-power signal is transmitted in the downlink of the fourth set of muting RE resources, and if there is downlink data in the cell A3, the downlink data is mapped in the rate matching manner at the location of the third set of muting RE resources; the cell B1 is in the fifth set.
  • the muting RE resource transmits the zero-power signal in the uplink and downlink, and if the cell B1 has downlink data, the downlink data is mapped in the rate matching manner at the location of the fifth set of muting RE resources; the cell B2 is in the sixth set of muting RE resources.
  • a zero-power signal is transmitted in the uplink and downlink, and if there is downlink data in the cell B2, the downlink data is mapped in a rate matching manner at the location of the sixth set of muting RE resources; the cell B3 is sent in the downlink of the first muting RE resource.
  • Zero power signal, and if there is downlink data in cell B3, the downlink data is in the first set of muting RE resources. Map in a rate matching manner at the location.
  • UE1 receives downlink transmission parameter information of cells A2, A3, B1, B2, and B3 to obtain physical cell identifier, CRS port, MBSFN subframe configuration, CRS and data power ratio parameter P_B, CRS, and data power ratio parameter of each cell.
  • the UE1 confirms the muting RE resources respectively allocated to A2, A3, B1, B2, and B3 according to the physical cell identifiers of the cells A2, A3, B1, B2, and B3.
  • the UE1 determines the muting RE resource in a manner that the physical cell identifier is reserved. For example, the physical cell identifier of the cell A2 is 2, and the remainder of the 6 (the total number of muting RE resource sets configured on the network side) is equal to 2, so the UE1 considers that the cell A2 is configured with the third set of muting RE resources; the physical cell identifier of the cell A3.
  • the remainder of 6 is equal to 3, so UE1 considers that cell A3 is configured with the fourth set of muting RE resources; similarly, UE1 confirms that cells B1, B2, and B3 are respectively configured with 5th, 6th, and 1 set of muting RE resources.
  • the UE1 obtains a received signal (first received signal) after interference cancellation on the interference signal of the cell A2 according to the signal received at the position of the third set of muting RE resources; according to the signal received at the position of the fourth set of muting RE resources, Obtaining a received signal (second received signal) after interference cancellation of the interference signal of the cell A3; obtaining a received signal after interference cancellation of the interference signal of the cell B1 according to the signal received at the position of the fifth set of muting RE resources (No.
  • Receiving a signal according to the signal received at the position of the sixth set of muting RE resources obtaining a received signal (fourth received signal) after interference cancellation of the interference signal of the cell B2; receiving according to the first set of muting RE resource locations The signal obtains a received signal (fifth received signal) after interference cancellation of the interference signal of the cell B3.
  • the UE1 judges the cells that need to perform interference cancellation/suppression according to the five received signals, for example, compares the powers of the five received signals, and the lowest power indicates that the received signal performance is best after the interference cancellation of the cell, so it is determined that the interference cell is needed. Interfering cell for interference cancellation/suppression.
  • the cell A2 is a cell that needs to perform interference cancellation/suppression according to the five received signals, and the UE1 will interfere with the interference signal from the cell A2 according to the obtained parameters of the downlink transmission of the cell A2.
  • the parameter of the number is blindly detected, wherein the range of the blind detection refers to the downlink transmission parameter of the obtained cell A2, and the blind detection of the parameter of the interference signal by the UE1 includes the downlink transmission mode TM of the interference signal of the interference signal, and the CRS of the interference signal.
  • P_A related to the power ratio of the data, the transmission layer number RI of the interference signal, the precoding weight of the interference signal (if the interference signal is based on CRS transmission), the DMRS port of the interference signal (if the interference signal is based on DMRS transmission)
  • the DMRS scrambling code of the interference signal if the interference signal is based on DMRS transmission
  • the DMRS virtual cell identifier VCID of the interference signal if the interference signal is based on DMRS transmission
  • the UE1 performs interference cancellation/suppression on the interference signal from the interfering cell A2 based on the received downlink transmission parameter of the cell A2 and the parameter of the interference signal from the cell A2 obtained by the blind detection.
  • the network side configures 6 sets of muting RE resources, and numbers them in the order agreed with the terminal side, as shown in Figure 4a.
  • the network side notifies the UE1 of the downlink transmission parameter information of the cells A2, A3, B1, B2, and B3, including the physical cell identifier, the CRS port, the MBSFN subframe configuration, the CRS and the data power ratio parameter P_B, The value range of the CRS and data power ratio parameter P_A, the allowed transmission mode TM range, the allowed DMRS VCID range, the NAICS identifier, and the like.
  • the NAICS identifier is used to indicate whether the muting RE resource configuration is enabled in the current cell.
  • the network side determines whether to allocate muting RE resources to the cell according to the NAICS identifier of the different cell. Assuming that the NAICS enable identifiers of cells B2 and B3 are characterized as muting RE resources are not enabled, the network side does not allocate muting RE resources to cells B2 and B3.
  • the network side allocates muting RE resources to the cells A2, A3, and B1 according to the physical cell identifier, that is, allocates the (i+1)th muting RE resource to the cell whose physical cell identifier meets the Cell ID mod 6 equal to i. For example, the third set of muting RE resources is allocated to the cell A2, and the fourth set of muting RE resources is allocated to the cell A3, which is the cell B1.
  • the cell A2 transmits a zero-power signal in the downlink of the third set of muting RE resources, and if the cell A2 has downlink data, the downlink data is mapped in the rate matching manner at the location of the third muting RE resource; the cell A3
  • the zero-power signal is transmitted on the downlink in the location of the fourth set of muting RE resources, and if there is downlink data in the cell A3, the downlink data is mapped in the rate matching manner at the location of the fourth set of muting RE resources; the cell B1 is in the fifth set.
  • the muting RE resource transmits a zero-power signal in the uplink and downlink, and if the cell B1 has downlink data, the downlink data is mapped in a rate matching manner at the location of the fifth set of muting RE resources.
  • UE1 receives downlink transmission parameter information of cells A2, A3, B1, B2, and B3 to obtain physical cell identifier, CRS port, MBSFN subframe configuration, CRS and data power ratio parameter P_B, CRS, and data power ratio parameter of each cell.
  • the UE1 learns that the network side only allocates muting RE resources for the cells A2, A3, and B1 according to the NAICS identification information.
  • the UE1 confirms the muting RE resources respectively allocated to A2, A3, and B1 according to the physical cell identifiers of the cells A2, A3, and B1.
  • the UE1 determines the muting RE resource in a manner that the physical cell identifier is reserved. For example, the physical cell identifier of cell A2 is 2, and the remainder of 6 (the total number of sets of muting RE resources on the network side) is equal to 2, so UE1 considers that cell A2 is configured with the third set of muting RE resources; the physical cell identifier of cell A3. 3, the remainder of 6 is equal to 3, so UE1 considers that cell A3 is configured with the fourth set of muting RE resources; similarly, UE1 confirms that cell B1 is configured with the fifth set of muting RE resources.
  • the UE1 obtains a received signal (first received signal) after interference cancellation on the interference signal of the cell A2 according to the received signal at the third set of muting RE resource locations; and obtains a pair according to the received signal at the position of the fourth set of muting RE resources.
  • the interference signal of the cell A3 is subjected to interference cancellation (second reception signal); and the received signal after interference cancellation of the interference signal of the cell B1 is obtained according to the received signal at the position of the fifth set of muting RE resources (third received signal) No.) obtaining a received signal (fourth received signal) after interference cancellation of the interference signal of the cell B2 by means of blind detection; obtaining a received signal after interference cancellation of the interference signal of the cell B3 by means of blind detection (No. Five receiving signals).
  • the UE1 determines, according to the five received signals, the cell that needs to perform interference cancellation/suppression, and assumes that the UE1 determines, according to the five received signals, that the cell A2 is a cell that needs to perform interference cancellation/suppression, and the UE1 will perform downlink transmission parameters according to the obtained cell A2.
  • the interference signal of the cell A2 performs interference cancellation/suppression.
  • the UE1 performs interference cancellation/suppression on the interference signal from the interfering cell A2 based on the received downlink transmission parameter of the cell A2 and the parameter of the interference signal from the cell A2 obtained by the blind detection.
  • the network side configures 6 sets of muting RE resources, and numbers them in the order agreed with the terminal side, as shown in Figure 4a.
  • the base station of the cell A1 first determines that the interfering cell of the UE1 may be A2, A3, and B1 by using the large-scale information, that is, the cells B2 and B3 are far away from the serving cell A1 or the RSRP is small, so the cell is The base station of A1 is considered to be a weak interfering cell and can even be ignored. Therefore, although the cell A1 can obtain the downlink transmission parameter related information of each of A2, A3, B1, B2, and B3, the cell A1 only notifies the downlink transmission parameter information of the cells A2, A3, and B1. Give UE1.
  • the base station notifies the UE1 of the downlink transmission parameter information of the cells A2, A3, and B1, including the physical cell identifier, the CRS port, the MBSFN subframe configuration, the CRS and the data power ratio parameter P_B, the CRS, and the data power ratio parameter P_A.
  • the network side allocates muting RE resources to different cells according to the physical cell identifier, that is, the (i+1)th muting RE resource is configured for the cell whose physical cell identifier meets the Cell ID mod 6 equal to i.
  • the third set of muting RE resources is allocated to the cell A2
  • the fourth set of muting RE resources is allocated to the cell A3
  • the fifth set of muting RE resources is allocated to the cell B1.
  • the cell A2 transmits a zero-power signal in the downlink of the third set of muting RE resources, and if the cell A2 has downlink data, the downlink data is mapped in the rate matching manner at the location of the third muting RE resource; the cell A3
  • the zero-power signal is transmitted on the downlink in the location of the fourth set of muting RE resources, and if there is downlink data in the cell A3, the downlink data is mapped in the rate matching manner at the location of the fourth set of muting RE resources; the cell B1 is in the fifth set.
  • the muting RE resource transmits a zero-power signal in the uplink and downlink, and if the cell B1 has downlink data, the downlink data is mapped in a rate matching manner at the location of the fifth set of muting RE resources.
  • the UE1 receives the downlink transmission parameter information of the cells A2, A3, and B1 to obtain the range of the physical cell identifier, the CRS port, the MBSFN subframe configuration, the CRS and the data power ratio parameter P_B, the CRS, and the data power ratio parameter P_A of each cell. Information on the allowed transmission mode TM range, the allowed DMRS VCID range, and so on.
  • the UE1 confirms the muting RE resources respectively allocated to A2, A3, and B1 according to the physical cell identifiers of the cells A2, A3, and B1.
  • the UE1 determines the muting RE resource in a manner that the physical cell identifier is reserved. For example, the physical cell identifier of cell A2 is 2, and the remainder of 6 (the total number of muting RE resources configured on the network side) is equal to 2, so UE1 considers that cell A2 is configured with the third set of muting. RE resource; the physical cell identifier of cell A3 is 3, and the remainder of 6 is equal to 3. Therefore, UE1 considers that cell A3 is configured with the fourth set of muting RE resources; similarly, UE1 confirms that cell B1 is configured with the fifth set of muting RE resources.
  • the UE1 obtains a received signal (first received signal) after interference cancellation on the interference signal of the cell A2 according to the received signal at the third set of muting RE resource locations; and obtains a pair according to the received signal at the position of the fourth set of muting RE resources.
  • the interference signal of the cell A3 is subjected to interference cancellation (second reception signal); and the reception signal after interference cancellation of the interference signal of the cell B1 is obtained according to the received signal at the fifth set of muting RE resource positions (third received signal) ).
  • the UE1 judges the cells that need to perform interference cancellation/suppression according to the five received signals, for example, compares the powers of the three received signals, and the lowest power indicates that the received signal performance is best after the interference cancellation of the cell, so it is determined that the interference cell is needed. Interfering cell for interference cancellation/suppression.
  • the cell A2 is a cell that needs to perform interference cancellation/suppression according to the three received signals, and the UE1 will blindly detect the parameters of the interference signal from the cell A2 according to the obtained parameters of the downlink transmission of the cell A2, wherein the range of the blind detection is performed.
  • the blind detection of the parameter of the interference signal by the UE1 includes the downlink transmission mode TM of the interference signal of the interference signal, the P_A of the interference signal CRS and the power ratio of the data, and the interference signal.
  • the number of transmission layers RI The number of transmission layers RI, the precoding weight of the interference signal (if the interference signal is based on CRS transmission), the DMRS port of the interference signal (if the interference signal is based on DMRS transmission), the DMRS scrambling code identification of the interference signal (if the interference signal It is based on DMRS transmission), the DMRS virtual cell identifier VCID of the interference signal (if the interference signal is based on DMRS transmission) information, and the like.
  • the UE1 performs interference cancellation/suppression on the interference signal from the interfering cell A2 based on the received downlink transmission parameter of the cell A2 and the parameter of the interference signal from the cell A2 obtained by the blind detection.
  • the network side configures 6 sets of muting RE resources, and numbers them in the order agreed with the terminal side, as shown in Figure 4a.
  • the base station of the cell A1 first determines that the interfering cell of the UE1 may be A2, A3, and B1 by using the large-scale information, that is, the cells B2 and B3 are far away from the serving cell A1 or the RSRP is small, so the cell is The base station of A1 is considered to be a weak interfering cell and can even be ignored. Therefore, although the cell A1 can obtain the downlink transmission parameter related information of each of A2, A3, B1, B2, and B3, the cell A1 only notifies the UE1 of the downlink transmission parameter information of the cells A2, A3, and B1.
  • the base station notifies the UE1 of the downlink transmission parameter information of the cells A2, A3, and B1, including the physical cell identifier, the CRS port, the MBSFN subframe configuration, the CRS and the data power ratio parameter P_B, the CRS, and the data power ratio parameter P_A.
  • the network side allocates muting RE resources to different cells according to the physical cell identifier, that is, allocates the (i+1)th muting RE resource to the cell whose physical cell identifier meets the Cell ID mod 6 equal to i.
  • the third set of muting RE resources is configured for the cell A2
  • the fourth set of muting RE resources is configured for the cell A3
  • the fifth set of muting RE resources is allocated for the cell B1.
  • the cell A2 transmits a zero-power signal in the downlink of the third set of muting RE resources, and if the cell A2 has downlink data, the downlink data is mapped in the rate matching manner at the location of the third muting RE resource; the cell A3
  • the zero-power signal is transmitted on the downlink in the location of the fourth set of muting RE resources, and if there is downlink data in the cell A3, the downlink data is mapped in the rate matching manner at the location of the fourth set of muting RE resources; the cell B1 is in the fifth set.
  • the muting RE resource transmits a zero-power signal in the uplink and downlink, and if the cell B1 has downlink data, the downlink data is mapped in a rate matching manner at the location of the fifth set of muting RE resources.
  • UE1 receives downlink transmission parameter information of cells A2, A3, and B1 to obtain respective cells.
  • the UE1 confirms the muting RE resources respectively allocated to A2, A3, and B1 according to the physical cell identifiers of the cells A2, A3, and B1.
  • the UE1 determines the muting RE resource in a manner that the physical cell identifier is reserved. For example, the physical cell identifier of the cell A2 is 2, and the remainder of the 6 (the total number of sets of muting RE resources configured on the network side) is equal to 2, so the UE1 considers that the cell A2 is configured with the third set of muting RE resources; the physical cell identifier of the cell A3. 3, the remainder of 6 is equal to 3, so UE1 considers that cell A3 is configured with the fourth set of muting RE resources; similarly, UE1 confirms that cell B1 is configured with the fifth set of muting RE resources.
  • the UE1 obtains a received signal (first received signal) after interference cancellation on the interference signal of the cell A2 according to the received signal at the third set of muting RE resource locations; and obtains a pair according to the received signal at the position of the fourth set of muting RE resources.
  • the interference signal of the cell A3 is subjected to interference cancellation (second reception signal); and the reception signal after interference cancellation of the interference signal of the cell B1 is obtained according to the received signal at the fifth set of muting RE resource positions (third received signal) ).
  • the UE 1 obtains a reception signal (fourth reception signal) that does not perform any interference cancellation/suppression based on the reception signal at the non-muting RE resource location.
  • the UE 1 judges whether or not interference cancellation/suppression is required based on the four received signals, and a cell in which interference cancellation/suppression is required. For example, comparing whether the first to third received signal power and the fourth received signal power difference exceed a predetermined threshold, if the predetermined threshold is not exceeded, and the UE1 considers that its data transmission does not have a strong interference source, then the decision is made. Do not perform strong interference cancellation/suppression processing (for example, do not use NAICS advanced receiver processing techniques such as E-MMSE-IRC, SL-IC, R-ML), or perform interference suppression on interference in a conventional manner, such as using conventional MMSE or MMSE-IRC receiver processing technology.
  • NAICS advanced receiver processing techniques such as E-MMSE-IRC, SL-IC, R-ML
  • UE1 determines that interference cancellation/suppression processing is required, for example, comparing the power of the first received signal to the power of the third received signal, due to the minimum power
  • the received signal has the best performance after the interference cell interference is eliminated, so it is determined that the interference cell is an interference cell that needs to perform interference cancellation/suppression.
  • the cell A2 is a cell that needs to perform interference cancellation/suppression according to the five received signals, and the UE1 will blindly detect the parameters of the interference signal from the cell A2 according to the obtained parameters of the downlink transmission of the cell A2, wherein the range of the blind detection is performed.
  • the blind detection of the parameter of the interference signal by the UE1 includes the downlink transmission mode TM of the interference signal of the interference signal, the P_A of the interference signal CRS and the power ratio of the data, and the interference signal.
  • the number of transmission layers RI The number of transmission layers RI, the precoding weight of the interference signal (if the interference signal is based on CRS transmission), the DMRS port of the interference signal (if the interference signal is based on DMRS transmission), the DMRS scrambling code identification of the interference signal (if the interference signal It is based on DMRS transmission), the DMRS virtual cell identifier VCID of the interference signal (if the interference signal is based on DMRS transmission) information, and the like.
  • the UE1 performs interference cancellation/suppression on the interference signal from the interfering cell A2 based on the received downlink transmission parameter of the cell A2 and the parameter of the interference signal from the cell A2 obtained by the blind detection.
  • the network side and the terminal side agree that there are a total of 6 sets of configurable muting RE resources, and the 6 sets of muting RE resources are numbered according to a predetermined predetermined manner, for example, as shown in FIG. 4a.
  • interfering cell 1 there are three interfering cells in the serving cell where the terminal is located, which are the interfering cell 1, the interfering cell 2, and the interfering cell 3.
  • the three interfering cells respectively transmit the corresponding downlink data transmission parameter related information to the serving cell base station through an inter-cell backhaul (for example, an X2 interface), and the serving cell base station notifies all the terminals through a Cell-specific high-layer signaling broadcast.
  • the downlink data transmission parameter related information of each cell includes the downlink system bandwidth, the downlink cyclic prefix length, the Cell ID, the CRS port, the MBSFN subframe configuration, the allowed downlink transmission mode TM range, the allowed DMRS VCID range, and the CSI- One or more of the information such as RS resource configuration.
  • the Cell ID mod 6 of the serving cell is equal to 0, the Cell ID mod 6 of the interfering cell 1 is equal to 3, the Cell ID mod 6 of the interfering cell 2 is equal to 2, and the Cell ID mod 6 of the interfering cell 3 is equal to 4, respectively, 4, 3, and 5 sets of Muting RE resources are allocated to the serving cell, the interfering cell 1, the interfering cell 2, and the interfering cell 3, as shown in FIGS. 11a to 11d.
  • the terminal can obtain the received data signal power after canceling the user interference in the interfering cell 1 by using the received signal at the fourth set of muting RE resource locations; the terminal can obtain the interference by using the received signal at the third set of muting RE resource locations.
  • the received data signal power after the user interference in the cell 2 is eliminated; the terminal can obtain the received data signal power after the user interference from the interfering cell 3 is cancelled by using the received signal at the fifth set of muting RE resource locations.
  • the terminal will select the interfering cell user corresponding to the interference cell user that needs to perform interference cancellation/suppression when the received data signal power after the interference cancellation is the strongest.
  • the terminal performs blind detection on other related information of the interference signal based on the determined downlink transmission signal parameter configuration information of the interference cell that needs to perform interference cancellation/suppression.
  • the interference signal related information of the blind detection includes the downlink transmission mode TM, RI of the interference signal (if the interference signal is based on CRS transmission), the precoding weight (if the interference signal is based on CRS transmission), and the DMRS port (if the interference signal It is based on one or more of DMRS transmission), DMRS scrambling code ID (if the interference signal is based on DMRS transmission), DMRS VCID (if the interference signal is based on DMRS transmission), and PDSCH starting position.
  • the terminal utilizes the interference signal parameter configuration information received from the base station and the interference signal parameter information obtained by the blind detection, and performs interference cancellation on the interference signal based on an advanced receiver (eg, E-MMSE-IRC, SLIC, R-ML, etc.) technology. Suppress and demodulate and decode the data signal after interference cancellation/suppression.
  • an advanced receiver eg, E-MMSE-IRC, SLIC, R-ML, etc.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more of its A computer program product embodied on a computer usable storage medium (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage medium including but not limited to disk storage and optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the invention discloses an interference processing method, a base station, a terminal and a system, which can respectively notify downlink information of downlink transmission parameter information of M interference cells, and indicate N sets of muting REs to the terminal.
  • a resource location to assist the terminal in determining an interference cell that needs to perform interference cancellation determining an interference cell that needs to perform interference cancellation/suppression, and blindly detecting downlink transmission of the interference signal from the interference cell based on downlink transmission parameter information of the interference cell Parameter information, and performing interference cancellation/suppression on the interference signal, effectively reducing terminal blind detection complexity, improving blind detection accuracy, and not increasing signaling overhead of the base station, without increasing base station signaling overhead, It can improve the demodulation performance of the terminal and reduce the blind detection complexity of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种干扰处理方法、基站、终端和系统,所述方法包括:配置N套muting RE资源,为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端;其中,所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。

Description

干扰处理方法、基站、终端及系统 技术领域
本发明涉及通信领域中的干扰消除/抑制技术,尤其涉及一种干扰处理方法、基站、终端及系统。
背景技术
为获得更高的频谱效率提升,小区部署密度越来越高,同小区中用户干扰及小区间的共道干扰越来越成为限制网络容量的主要因素。在当前的研究中,主要是基于网络侧的干扰避免和协调技术,基本思想是通过网络侧的预编码、协作调度等方式,在发送侧实现干扰的避免。然而,基于发送方的干扰协作,很大程度上依赖于反馈的信道状态信息(CSI,Channel State Information)的精确度。根据相关研究资料表明,采用先进的接收方法也可以很好地压缩干扰,同时相对于发送方的干扰协作,基于终端的增强可以缓解信道信息反馈的压力。因此如何通过优化终端接收以更好地压缩干扰,是有效提高频谱效率的一个重要方向。
长期演进(LTE,Long Term Evolution)技术是第四代移动通信技术(4G,Fourth Generation)的无线蜂窝通信技术。
图1是根据相关技术的LTE系统物理资源块(PRB,Physical Resource Block)的示意图,如图1所示,一个资源单元(RE,Resource Element)为一个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号中的一个子载波,而一个下行RB由连续的12个子载波和连续的7个(扩展循环前缀的时候为6个)正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号构成。一个资源块在频域上为180kHz,时域上为一个时隙的时间长度。进行资源分配时,会以一个子帧(对应两个时隙) 上的两个资源块(也称为一个物理资源块对)为基本单位来进行分配。
在LTE系统中,采用的是公共参考信号(CRS,Common Reference Signal)进行导频测量和数据解调,即所有终端都使用CRS进行信道估计。在采用基于CRS的预编码处理方式时,需要发射端额外通知接收端数据发送时所使用的具体预编码矩阵(也称为预编码权值)信息,而且导频的开销较大。另外,在多用户多输入多输出(MU-MIMO,Multi-user Multi-input Multi-output)系统中,由于多个终端使用相同的CRS,无法实现导频的正交,且CRS传输不包含数据的预编码信息,因此无法估计干扰。
在增强的长期演进(LTE-A,Advanced Long Term Evolution)系统中,为了降低导频开销和提高信道估计准确度,将导频测量和数据解调功能分开,分别定义了两类参考信号,即解调参考信号(DMRS,Demodulation Reference Signal)和信道状态信息参考信号(CSI-RS,Channel State Information Referenced Signal)。其中,CSI-RS主要用于信道测量以获得信道质量信息(CQI,Channel Quality Information)并反馈,以便基站侧可以利用该信息完成用户调度以及实现调制编码方式(MCS,Modulation and Coding Scheme)的自适应分配,CSI-RS的传输中并不携带预编码信息;而DMRS主要用于物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的信道估计以完成数据的解调,DMRS的传输携带有相应物理下行共享信道物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的预编码信息。
在LTE中,为了支持对不同终端PDSCH发送功率的调整,引入了PA和PB两个参数用于指示PDSCH每个资源元素上的功率(EPRE,Energy per Resource Element)与CRS EPRE的比率。由于LTE中,支持对CRS的功率提高(power boosting),同时为了保证每个OFDM符号的发送功率一致性,在发送CRS的OFDM符号上,CRS进行power boosting的同时, PDSCH需要降低一定的功率,这就导致发送CRS的OFDM符号上和没有发送CRS的OFDM符号上,PDSCH对应的EPRE存在差异。为了区分这种差异,分别定义ρA表示没有CRS的OFDM符号上PDSCH EPRE与CRS EPRE的比率,ρB表示存在CRS的OFDM符号上,PDSCH EPRE与CRS EPRE的比率,此时PB=ρBA。其中,当PDSCH当基于4天线传输分集发送时,ρA=δpower-offset+PA+10log10(2),否则,ρA=δpower-offset+PA,其中δpower-offset在除MU-MIMO传输模式的场景下取值为0dB。
目前已经有多种高级接收算法以抑制干扰,提升接收端的解调性能。在当前的网络辅助干扰消除/抑制(NAICS,Network Assistance Interference/Suppression)技术研究中,涉及的高级接收机主要包括:增强的最小均方误差干扰抑制合并(E-MMSE-IRC,Enhanced Minimum Mean Square Error-Interference Rejection Combining)接收机、符号级干扰消除(SL-IC,Symbol Level Interference Cancellation)接收机、降低复杂度的最大似然(R-ML,Reduced complexity Maximum Likelihood)接收机。这些高级接收机的主要目的在于对终端的强干扰信号进行干扰消除/抑制处理,以提升终端的数据接收性能。因此,终端需要获取其强干扰信号的相关信息,比如导频信息、预编码信息、传输模式信息、调制等级信息等,然后根据这些信息获得强干扰源消除/抑制后的目标数据。终端可以采用盲检测或者网络侧信令通知的方式获取干扰信号相关信息。其中,通过盲检测算法估计出干扰信息号信息,这种方法复杂度相对比较高,而且估计出的干扰信号信息有一定的误差;基站给终端发送干扰信号的相关信息,这种方法复杂度相对比较低,且终端获取的干扰信号信息准确性相对较高,但缺点是基站发送干扰信号的相应信息会增加下行开销信息,尤其当干扰信号比较多时,下行开销信息也会比较多。
实际中,终端的干扰信号往往同时存在多个,由于受到小区间非理想 回程链路(backhaul)时延的影响,基站很难及时获知终端在数据接收的时候所存在的干扰信号、以及哪个/些信号是需要进行干扰消除的干扰信号,另一方面虽然理论上终端可以通过盲检测的方式确定需要消除/抑制的干扰信号,然而这会进一步增加终端盲检测的复杂度,同时对于一些弱干扰信号参数的盲检测准确度也会非常不准确。因此在多个干扰信号存在的情况下,如何降低终端的盲检测复杂度、网络侧信令开销,同时又不会影响终端解调性能,目前仍然无有效解决方案。
发明内容
有鉴于此,本发明实施例提供一种干扰处理方法、基站、终端及系统,能至少解决现有技术存在的上述问题。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种干扰处理方法,所述方法包括:
配置N套静默资源单元(muting RE)资源,为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;
将所述M个干扰小区的下行传输参数信息通知给终端;其中,
所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。
本发明实施例还提供一种干扰处理方法,所述方法包括:
确定N套muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输 参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
本发明实施例提供一种干扰处理方法,所述方法包括:
基站为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端;
所述终端根据所确定的所述N套静默资源单元muting RE资源的配置信息,确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
所述终端通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
所述终端根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
本发明实施例提供一种基站,所述基站包括:
配置单元,用于配置N套muting RE资源;
分配单元,用于为M个干扰小区分配所述配置的N套muting RE资源中的muting RE资源;
第一通信单元,用于将所述M个干扰小区的下行传输参数信息通知给终端;其中,
所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。
本发明实施例还提供一种终端,所述终端包括:
第二通信单元,用于接收M个干扰小区的下行传输参数信息;
第一确定单元,用于确定所述N套muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
第二确定单元,用于通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
干扰处理单元,用于根据所述下行传输参数信息中对应所述确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所述确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
本发明实施例还提供一种干扰处理系统,所述系统包括:基站和终端;其中,
所述基站,用于为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端;
所述终端,用于根据所确定的所述N套muting RE资源的配置信息,确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
通过在所述M个干扰小区中每个干扰小区所分配的muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
本发明实施例中,基站将M个干扰小区的下行传输参数信息分别通知给终端,并向终端指示N套muting RE的资源位置,以协助终端判断需要进行干扰消除的干扰小区;确定需要进行干扰消除/抑制的干扰小区,基于所述干扰小区的下行传输参数信息盲检测来自所述干扰小区的干扰信号的下行传输参数信息,并对所述干扰信号进行干扰消除/抑制,其中,通过muting RE资源所在资源位置上的接收的信号来确定需要进行干扰消除/抑制的干扰小区;资源单元开销小,可以有效降低终端盲检测复杂度、提高盲检测准确度,并且没有增加基站端的信令开销,在不增加基站端信令开销的基础上,可提高终端的解调性能,同时降低终端的盲检测复杂度。
附图说明
图1是相关技术中PRB的示意图;
图2是本发明实施例中干扰处理方法的实现流程示意图一;
图3是本发明实施例中干扰处理方法的实现流程示意图二;
图4a是本发明实施例中将DMRS RE作为muting RE资源的示意图一;
图4b是本发明实施例中将DMRS RE作为muting RE资源的示意图二;
图5是本发明实施例中将CSI-RS RE作为muting RE资源的示意图;
图6是本发明实施例中干扰处理方法的实现流程示意图三;
图7是本发明实施例中基站的组成结构示意图;
图8是本发明实施例中终端的组成结构示意图;
图9是本发明实施例中干扰处理系统的组成结构示意图;
图10是本发明实施例中终端下行数据的干扰场景示意图;
图11a~图11d是本发明实施例中不同小区muting RE资源的配置示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明,需要说明的是,在不冲突的情况下,本发明实施例及实施例中的特征可以相互组合。
本发明实施例记载了一种干扰处理方法,应用于网络侧基站,如图2所示,包括以下步骤:
步骤201,基站配置N套muting RE资源。
步骤202,为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源。
步骤203,将所述M个干扰小区的下行传输参数信息通知给终端。
优选地,基站按照与终端预先约定的方式配置N套muting RE资源。
其中,所述N套muting RE资源中至少有一套muting RE资源分配给所述干扰小区;所述N套muting RE资源中的muting RE资源还可以分配给服务小区;M和N均为正整数,且M小于等于N。
与图2所示的方法相对应地,本发明实施例还记载一种干扰处理方法,应用于终端侧,如图3所示,包括以下步骤:
步骤301,确定N套muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源。
实际应用中,终端基于所述N套muting RE资源的配置信息、以及所述M个干扰小区的物理小区标识(cell ID)等信息,确定所述N套mutingRE资源中分配给M个干扰小区的muting RE资源。
步骤302,通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区。
步骤303,根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号 相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。优选地,M小于等于N。
优选地,N套muting RE资源的配置信息可以由终端与基站预先约定。
实际应用中,干扰小区的数量往往不只M个,作为一个实施方式,在基站将M个干扰小区的下行传输参数信息通知给终端之前,基站还可以从多个干扰小区中选择M个干扰小区,以将这M个干扰小区的下行传输参数信息分别通知给终端;对于选择M个干扰小区的方式在本实施方式中不作限定,例如基站可以选择距离终端所在服务小区最近的M个干扰小区,或者,基站可以根据终端反馈的参考信号接收功率(RSRP,Reference Signal Receiving Power)判断哪些小区中存在干扰信号,从存在干扰信号的N个小区中,选择干扰信号强度最强的M个干扰小区。总之,基站选择M个干扰小区是基站侧的实现过程。
作为一个实施方式,服务小区基站将M个干扰小区的下行传输参数信息以不同的物理小区标识为索引、或者以CSI-RS配置为索引,通过小区特定(cell-specific)高层信令广播通知给基站所服务的终端,以物理小区标识为索引发送下行传输参数的一个示例如表1所示:
Figure PCTCN2014087466-appb-000001
表1
如表1所示,小区标识(Cell ID)1为干扰小区1的物理小区标识,Cell ID 2为干扰小区2的物理小区标识。
其中,每个干扰小区的下行传输参数包括以下信息至少之一:
1)干扰小区的物理小区标识;
2)干扰小区的小区专属参考信号(CRS,Cell-specific Reference Signals) 端口;
3)干扰小区的多播单频网络(MBSFN,Multicast Broadcast Single Frequency Network)子帧配置;
4)干扰小区的CRS与数据功率比值相关参数PB
5)干扰小区的CRS与数据功率比值参数P_A的取值范围;
6)干扰小区的系统带宽;
7)干扰小区的循环前缀长度;
8)干扰小区与服务小区是否同步的指示;
9)干扰小区的下行数据在一个子帧中的起始正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号位置;
10)干扰小区中支持使用的传输模式(TM,Transfer Mode)范围;
11)干扰小区中支持使用的解调参考信号(DMRS,Demodulation Ref erence Signal)虚拟信道标识(VCID,Virtual Channel IDentifier)范围;
12)干扰小区中允许使用的资源分配方式;
13)干扰小区的资源分配单元大小;
14)干扰小区的零功率/非零功率信道状态指示参考信号(CSI-RS,Ch annel State Indication on Reference Signal)资源配置信息。
其中,资源分配单元包括1个物理资源块(PRB,Physical Resource Block)对或者多个PRB对。
作为一个实施方式,网络侧基站根据干扰小区的物理小区标识,为M个干扰小区中的任一个干扰小区分配分配所述N套muting RE资源中的一套muting RE资源;例如可以对N套muting RE资源按照预设的顺序编号为1~N;
对于任一个干扰小区,确定所述干扰小区的物理小区标识对N取余数(即对N进行取模运算)得到的值i,即i=Cell ID mod N;为干扰小区配置 N套muting RE资源中的第(i+1)套muting RE资源(或者编号为i+1的muting RE资源);其中,i为非负整数;
当然,对muting RE资源的编号也可以采用其它方式,例如将N套muting RE资源按照预设顺序编号为0~(N-1);对应地,确定所述干扰小区的物理小区标识对N取余数(即对N进行取模运算)得到的值i,即i=Cell ID mod N;为干扰小区配置N套muting RE资源中编号为i的muting RE资源;其中,i为非负整数。
需要指出的是,基站为服务小区分配muting RE资源时,可以采取与以上类似的方式,即对所述N套muting RE资源按照预设顺序编号为1至N;将服务小区的物理小区标识对N取余数得到的值j,为服务小区分配所述N套muting RE资源中的第(j+1)套muting RE资源;其中,对于N套muting RE资源的排序可以网络侧基站和终端预设。
作为一个实施方式,基站在将第i套muting RE资源配置给物理小区标识对N取余数的值为i的干扰小区(或服务小区)之后,可以向终端通知一个NAICS标识(NAICS标识与服务小区、以及M个干扰小区一一对应),用于向终端指示干扰小区(或服务小区)配置(即所分配)的muting RE资源是否使能;例如,当基站向终端指示干扰小区1的NAICS标识为0时,表示该干扰小区1所分配的muting RE资源使能;当干扰小区1的NAICS标识为0时表示该干扰小区1配置的muting RE资源未使能;当然,基站也可以不向终端指示NAICS标识,此时,终端可以默认干扰小区1配置的muting RE资源使能,并根据干扰小区1的物理小区标识对N取余数的值i,确定干扰小区1配置了N套muting RE资源中的第i套muting RE资源。
作为一个实施方式,配置给一个小区的(干扰小区或服务小区)的一套muting RE资源可以为支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个资源单元;DMRS端口9/10/12/14不用于服务小区向终端发 送数据。例如图4a中muting RE资源由DMRS端口9/10/12/14的资源单元中的两个连续的资源单元构成,图4b中每一套muting RE资源由DMRS端口9/10/12/14的资源单元中的两个离散的资源单元构成,假设资源分配单元为1个PRB对,每个PRB对中共存在可配置的6套muting RE资源,则可将这6套muting RE资源对应编号为0~5,当然图4a和4b中也可以是按照其他顺序对这6套muting RE资源进行编号。
作为一个实施方式,muting RE资源为支持配置为CSI-RS端口的资源单元中的一个或多个资源单元。如图5所示,每一套muting RE资源由一个两天线端口CSI-RS对应的资源单元构成,假设资源分配单元为1个PRB对,每个PRB对中共存在可配置的3套muting RE资源,则可将这3套muting RE资源按照预设顺序对应编号为0~2,当然图5中也可以是按照其他顺序对这3套muting RE资源进行编号。
作为一个实施方式,muting RE资源由两组离散的资源单元组构成,并且这两组离散的资源单元组对应位于一个物理资源块PRB对中的第1个PRB和第2个PRB上。其中,资源单元组由一个或多个资源单元构成;所述两组离散的资源单元组由以下资源单元以外的资源单元构成:支持配置为CRS资源单元;支持配置为CSI-RS的资源单元;支持配置为DMRS端口7/8/11/13的资源单元之外的一个或多个资源单元;或者,所述这两组离散的资源单元组由以下资源单元以外的资源单元构成:支持配置为CRS的资源单元;支持配置CSI-RS的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)的资源单元之外的一个或多个资源单元。
当基站为一个干扰小区(或服务小区)配置muting RE资源时,则干扰小区在所分配的muting RE资源位置上发送零功率信号,并且干扰小区的下行数据在所分配的muting RE资源上按照速率匹配的方式进行映射;作为一 个实施方式,基站为干扰小区(或服务小区)分配的muting RE资源,与干扰小区(或服务小区)的资源分配单元对应,也就是说,muting RE资源可以按照干扰小区(或服务小区)的资源分配单元为单位进行分配,即在不同的资源分配单元上进行相同的muting RE资源映射。
作为一个实施方式,所述为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源,包括:
根据所述干扰小区的物理小区标识,为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源;例如,可以通过以下方式实现:
对所述N套muting RE资源按照预设顺序编号为1至N;
确定所述干扰小区的物理小区标识对N取余数的值i;
确定所述干扰小区所分配的muting RE资源为所述N套muting RE资源中编号为(i+1)的imuting RE资源;其中,i为小于N的非负整数;所述N套muting RE资源的编号顺序与基站对所述N套muting RE资源的编号顺序一致,所述编号顺序可由终端和基站预先约定。
作为一个实施方式,终端可以根据以上类似的方式,根据服务小区的物理小区标识确定服务小区所分配的muting RE资源,即,对所述N套muting RE资源按照预设顺序编号为1至N;确定服务小区的物理小区标识对N取余数的值j,并确定服务小区所分配的muting RE资源为N套muting RE资源中的第(j+1)套muting RE资源。
作为一个实施方式,当终端确定所述M个干扰小区所分配的muting RE资源时,即默认确定所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
作为一个实施方式,当终端接收到所述干扰小区的NAICS使能标识, 且所述NAICS使能标识指示所述干扰小区所分配的muting RE资源使能时,终端确定所述干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据;
也就是说,当终端确定出干扰小区所分配的muting RE资源,还需要在确定接收到指示干扰小区所分配的muting RE资源被使能的NAICS使能标识时,才确定所述干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
当终端接收到基站发送的针对一干扰小区的NAICS使能标识时,则终端确定该干扰小区配置muting RE资源被使能,并且该干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,且服务小区的下行数据在所分配的muting RE资源位置上按照速率匹配的方式进行映射;从而终端可以在该干扰小区配置的muting RE资源对应的资源位置上接收该干扰小区的消除干扰后的信号;相应地,作为一个实施方式,当终端接收到指示M个干扰小区所分配的muting RE资源被使能的NAICS使能标识时,终端根据在M个干扰小区配置的muting RE资源对应的资源位置上的接收信号,判断M个干扰小区是否需要进行干扰消除/抑制,并在判定M个干扰小区需要进行干扰消除/抑制时,基于所接收的M个干扰小区的下行传输参数信息对来自M个干扰小区的干扰信号的下行传输参数信息进行盲检测,以得到干扰信号的相关传输信息,基于所得到的干扰信号相关传输信息完成对干扰信号的干扰消除/抑制。
作为一个实施方式,当终端接收到M个干扰小区对应的NAICS使能标识时,根据在M个干扰小区分配的muting RE资源对应资源位置上的接收信号(干扰消除后的信号),以及M个干扰小区配置的非muting RE资源对 应资源位置上的接收信号(即干扰消除前的信号),判断是否需要对M个干扰小区进行干扰消除;例如,可以将M个干扰小区的干扰消除前接收的信号功率与M个干扰小区的干扰消除后的接收信号的功率的差值,与预定的门限值比较,若差值小于该预定的门限值,则终端确定不需要进行干扰消除/抑制处理,否则确定需要进行干扰消除/抑制处理;
当判定需要进行干扰消除/抑制处理时,终端可以根据M个干扰小区中每个干扰小区所分配的muting RE资源对应资源位置上的接收信号,依次判断每个干扰小区需要进行干扰消除/抑制,对于判断出需要进行干扰消除/抑制的干扰小区,基于所接收的干扰小区对应的下行传输参数信息对需要进行干扰消除/抑制的干扰小区的干扰信号的下行传输参数信息进行盲检测,以得到干扰信号相关传输信息,利用所得到的干扰信号相关传输信息进行干扰消除/抑制;
需要说明的是,对于服务小区是否需要进行干扰消除/抑制,可以采用同样的方式,即根据服务小区配置的muting RE资源对应资源位置上接收信号(消除干扰后的信号),以及服务小区配置的非muting RE资源对应资源位置上的接收信号(即干扰消除前的信号),判断是否需要对该服务小区进行干扰消除。
作为一个实施方式,终端对需要进行干扰消除/抑制的干扰小区的干扰信号的下行传输参数进行盲检测时,所述干扰信号的下行传输参数包括以下至少之一:
所述干扰信号的下行TM;
所述干扰信号的传输层数秩指示(RI,Rank Indication);
所述干扰信号的预编码权值;
所述干扰信号的DMRS端口;
所述干扰信号的DMRS扰码标识;
所述干扰信号的DMRS虚拟小区标识VCID;
所述干扰信号的数据在一个子帧中的起始OFDM符号;
所述干扰信号的CRS与数据的功率比值相关的P_A。
本发明实施例还记载一种干扰处理方法,应用于基站和终端,如图6所示,包括以下步骤:
步骤601,基站为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源。
其中,基站可以按照与终端约定的方式配置N套muting RE资源。
步骤602,终端基于所述N套muting RE资源的配置信息,确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源。
相应地,终端可以根据与基站约定的配置muting RE资源的方式,确定所述N套muting RE资源的配置信息。
步骤603,所述终端通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区。
步骤604,所述终端根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
关于步骤601至步骤604的实施中为披露的细节,请参见上述关于图1、及图2中的实施细节的描述。
本发明实施例还记载一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行图1、图2或图6所示的干扰处理方法。
本发明实施例还记载一种基站,如图7所示,包括:
配置单元71,用于配置N套muting RE资源;
分配单元72,用于为M个干扰小区分配所述配置的N套muting RE资源中的muting RE资源;
第一通信单元73,用于将所述M个干扰小区的下行传输参数信息通知给终端;其中,
所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。
作为一个实施方式,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
所述干扰小区的物理小区标识;
所述干扰小区的CRS端口;
所述干扰小区的MBSFN子帧配置;
所述干扰小区的CRS与数据功率比值相关参数PB
所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
所述干扰小区的系统带宽;
所述干扰小区的循环前缀长度;
所述干扰小区的与所述终端服务小区是否同步的指示;
所述干扰小区的下行数据在一个子帧中的起始OFDM符号位置;
所述干扰小区支持使用的TM范围;
所述干扰小区支持使用的DMRS虚拟信道标识VCID的范围;
所述干扰小区支持使用的资源分配方式;
所述干扰小区的资源分配单元大小;
所述干扰小区零功率/非零功率CSI-RS的资源配置信息。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE 资源包括支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源包括支持配置为CSI-RS端口的资源单元中的一个或多个。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源由两组离散的资源单元组构成,并且所述两组离散的资源单元组对应位于一物理资源块PRB对中的第1个PRB和第2个PRB上;并且,
所述资源单元组由1个或多个资源单元组成。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
作为一个实施方式,所述分配单元72,还根据所述干扰小区的物理小区标识,为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源。
作为一个实施方式,所述分配单元72包括(图7中未示出):
第一编号子单元,用于对所述N套muting RE资源按照预设顺序编号为1至N;
第一确定子单元,用于确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
分配子单元,用于为所述干扰小区配置所述N套muting RE资源中的第(i+1)套muting RE资源;其中,i为非负整数。
作为一个实施方式,所述M个干扰小区所分配的muting RE资源,用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射 下行数据。
作为一个实施方式,所述第一通信单元73,还用于将M个干扰小区的下行传输参数信息通知给终端之后,向所述终端通知所述干扰小区的NAICS使能标识;其中,所述NAICS使能标识用于向终端指示所述干扰小区所分配的muting RE资源是否使能。
作为一个实施方式,当所述干扰小区的NAICS使能标识指示分配给所述干扰小区的muting RE资源使能时,所述NAICS使能标识用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
作为一个实施方式,所述M个干扰小区中任一干扰小区所分配的muting RE资源,以所述干扰小区的下行数据的资源分配单元为单位映射到所述干扰小区的全部系统带宽资源上。
实际应用中,所述第一通信单元73可由基站中的接收机和发射机实现;所述配置单元71、分配单元72可由基站中的中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)或现场可编程门阵列(FPGA,Field Programmable Gate Array)实现。
本发明实施例还记载一种终端,如图8所示,包括:
第二通信单元81,用于接收M个干扰小区的下行传输参数信息;
第一确定单元82,用于确定N套muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
第二确定单元83,用于通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
干扰处理单元84,用于根据所述下行传输参数信息中对应所述确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所述确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
作为一个实施方式,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
所述干扰小区的物理小区标识;
所述干扰小区的小区专属参考信号CRS端口;
所述干扰小区的MBSFN子帧配置;
所述干扰小区的CRS与数据功率比值相关参数PB
所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
所述干扰小区的系统带宽;
所述干扰小区的循环前缀长度;
所述干扰小区的与所述终端服务小区是否同步的指示;
所述干扰小区的下行数据在一个子帧中的起始OFDM符号位置;
所述干扰小区允许使用的TM范围;
所述干扰小区允许使用的DMRS虚拟信道标识VCID的范围;
所述干扰小区允许使用的资源分配方式;
所述干扰小区的资源分配单元大小;
所述干扰小区零功率/非零功率CSI-RS的资源配置信息。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源包括支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源包括支持配置为CSI-RS端口的资源单元中的一个或多个。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE 资源由两组离散的资源单元组构成,所述两组离散的资源单元组对应位于一PRB对中的第1个PRB和第2个PRB上;并且,
所述资源单元组由1个或多个资源单元组成。
作为一个实施方式,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
作为一个实施方式,所述第一确定单元82,还用于根据所述M个干扰小区的物理小区标识,确定所述M个干扰小区中每个干扰小区所分配的muting RE资源。
作为一个实施方式,所述第一确定单元82包括(图8中未示出):
第二编号子单元,用于对所述N套muting RE资源按照预设顺序进行编号为1至N;
第二确定子单元,用于确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
第三确定子单元,用于确定所述干扰小区所分配的muting RE资源为所述N套muting RE资源中的第(i+1)套muting RE资源;其中,i为非负整数。
作为一个实施方式,所述第二确定单元83,还用于在确定所述M个干扰小区所分配的muting RE资源时,确定所述干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
作为一个实施方式,所述第二通信单元81,还用于接收所述干扰小区的NAICS使能标识;
所述第二确定单元83,还用于当确定所述第二通信单元81接收到对应所述干扰小区的NAICS使能标识,且所述NAICS使能标识指示所述干扰小区所分配的muting RE资源使能时,确定所述NAICS使能标识对应的干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
作为一个实施方式,所述第一确定单元82,还用于以所述干扰小区的资源分配单元为单位,确定所述干扰小区所分配的muting RE资源。
实际应用中,所述第二通信单元81可由终端中的接收机和发射机实现;所述第一确定单元82、第二确定单元83、干扰处理单元84可由终端中的CPU、DSP或FPGA实现。
本发明实施例还记载一种干扰处理系统,如图9所示,包括基站91和终端92;其中,
所述基站91,用于为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端92;
所述终端92,用于确定N套muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
通过在所述M个干扰小区中每个干扰小区所分配的muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
所述基站91,还用于根据所述干扰小区的物理小区标识,为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源。
所述基站91,还用于对所述N套muting RE资源按照预设顺序编号为1至N;
确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
为所述干扰小区分配所述N套muting RE资源中的第(i+1)套muting RE资源;其中,i为非负整数。
所述基站91,还用于向所述终端92通知所述干扰小区的网络辅助干扰消除/抑制NAICS使能标识;
其中,所述NAICS使能标识用于向终端92指示所述干扰小区所分配的muting RE资源是否使能。
其中,所述M个干扰小区中任一干扰小区所分配的muting RE资源,以所述干扰小区的下行数据的资源分配单元为单位映射到所述干扰小区的全部系统带宽资源上。
所述终端92,还用于根据所述干扰小区的物理小区标识,确定分配给所述M个干扰小区的muting RE资源。
所述终端92,还用于对所述N套muting RE资源按照预设顺序进行编号为1至N;
确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
确定所述干扰小区所分配的muting RE资源为所述N套muting RE资源中的第(i+1)套muting RE资源;其中,i为非负整数。
所述终端92,还用于当确定所述M个干扰小区所分配的muting RE资 源时,确定所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息还包括:
NAICS使能标识,用于指示分配给所述干扰小区的muting RE资源是否被使能;所述终端92,还用于当接收到所述干扰小区的NAICS使能标识,且所述NAICS使能标识指示所述干扰小区所分配的muting RE资源使能时,确定所述干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
所述确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源,包括:
以所述干扰小区的下行数据的资源分配单元为单位,确定N套muting RE资源中分配给M个干扰小区的muting RE资源。
所述终端92,还用于以所述干扰小区的下行数据的资源分配单元为单位,确定N套muting RE资源中分配给M个干扰小区的muting RE资源。
下面结合具体应用场景对本发明实施例记载的技术方案进行描述。
图10为本发明实施例中多个终端包括下行数据的干扰场景示意图,图10中,基站A包含有3个小区:A1、A2和A3,基站B包含有3个小区:B1、B2和B3。终端UE1和UE2的服务小区为A1,终端UE3的服务小区为A2,终端UE4的服务小区为A3;终端UE5的服务小区为B1,终端UE6的服务小区为B2。
假设小区A1的物理小区标识(Cell ID)为1,小区A2的物理小区标识为2,小区A3的物理小区标识为3,小区B1的物理小区标识为4,小区B2的物理小区标识为5,小区B3的物理小区标识为6。
假设以UE1为目标终端。
具体实施方式1
网络侧配置6套muting RE资源,并且按照与终端侧约定好的顺序进行编号,例如图4a所示。
假设图10所示场景中,网络侧向UE1通知小区A2、A3、B1、B2、B3的下行传输参数信息,包括物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息。
网络侧根据物理小区标识分别为不同的小区分配muting RE资源,即为物理小区标识满足Cell ID mod 6等于i的小区分配第(i+1)套muting RE资源。例如为小区A2分配第3套muting RE资源,为小区A3分配第4套muting RE资源,为小区B1分配第5套muting RE资源,为小区B2配置第6套muting RE资源,为小区B3分配第1套muting RE资源。于是,小区A2在第3套muting RE资源所在位置上下行发送零功率信号,且若小区A2存在下行数据,下行数据在第3套muting RE资源所在位置上按照速率匹配的方式进行映射;小区A3在第4套muting RE资源所在位置上下行发送零功率信号,且若小区A3存在下行数据,下行数据在第3套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B1在第5套muting RE资源所在位置上下行发送零功率信号,且若小区B1存在下行数据,下行数据在第5套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B2在第6套muting RE资源所在位置上下行发送零功率信号,且若小区B2存在下行数据,下行数据在第6套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B3在第1套muting RE资源所在位置上下行发送零功率信号,且若小区B3存在下行数据,下行数据在第1套muting RE资源所在位置上按照速率匹配的方式进行映射。
UE1接收小区A2、A3、B1、B2、B3的下行传输参数信息,以获得各个小区的物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息。
UE1根据小区A2、A3、B1、B2、B3的物理小区标识确认分别分配给A2、A3、B1、B2、B3的muting RE资源。UE1按照对物理小区标识取余的方式确定muting RE资源。例如,小区A2的物理小区标识为2,对6(网络侧配置的总的muting RE资源套数)取余数等于2,因此UE1认为小区A2配置了第3套muting RE资源;小区A3的物理小区标识为3,对6取余数等于3,因此UE1认为小区A3配置了第4套muting RE资源;同样地,UE1确认小区B1、B2和B3分别配置了第5、6和1套muting RE资源。
于是,UE1根据第3套muting RE资源位置上接收的信号,获得对小区A2的干扰信号进行干扰消除后的接收信号(第一接收信号);根据第4套muting RE资源位置上接收的信号,获得对小区A3的干扰信号进行干扰消除后的接收信号(第二接收信号);根据第5套muting RE资源位置上接收的信号,获得对小区B1的干扰信号进行干扰消除后的接收信号(第三接收信号);根据第6套muting RE资源位置上接收的信号,获得对小区B2的干扰信号进行干扰消除后的接收信号(第四接收信号);根据第1套muting RE资源位置上的接收信号,获得对小区B3的干扰信号进行干扰消除后的接收信号(第五接收信号)。
UE1根据这五种接收信号判断需要进行干扰消除/抑制的小区,例如比较这五种接收信号的功率,功率最小者表示对该小区干扰消除后接收信号性能最好,因此确定该干扰小区为需要进行干扰消除/抑制的干扰小区。
假设根据这五种接收信号判断小区A2是需要进行干扰消除/抑制的小区,UE1将根据所获得的小区A2下行传输的参数对来自小区A2的干扰信 号的参数进行盲检测,其中盲检测的范围参考所获得小区A2的下行传输参数,UE1对干扰信号的参数的盲检测包括该干扰信号的所述干扰信号的下行传输模式TM、干扰信号的CRS与数据的功率比值相关的P_A、干扰信号的传输层数RI、干扰信号的预编码权值(若干扰信号是基于CRS传输的)、干扰信号的DMRS端口(若干扰信号是基于DMRS传输的)、干扰信号的DMRS扰码标识(若干扰信号是基于DMRS传输的)、干扰信号的DMRS虚拟小区标识VCID(若干扰信号是基于DMRS传输的)信息等。
UE1基于所接收的小区A2的下行传输参数以及盲检测获得的来自小区A2的干扰信号的参数,对来自干扰小区A2的干扰信号进行干扰消除/抑制。
具体实施方式2
网络侧配置6套muting RE资源,并且按照与终端侧约定好的顺序进行编号,例如图4a所示。
假设图10所示场景中,网络侧向UE1通知小区A2、A3、B1、B2、B3的下行传输参数信息,包括物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围、NAICS标识等信息。其中NAICS标识用于指示当前小区是否使能muting RE资源配置。
网络侧根据不同小区的NAICS标识决定是否对该小区分配muting RE资源。假设小区B2和B3的NAICS使能标识表征为muting RE资源不使能,则网络侧不对小区B2和B3分配muting RE资源。网络侧根据物理小区标识对小区A2、A3和B1分配muting RE资源,即为物理小区标识满足Cell ID mod 6等于i的小区分配第(i+1)套muting RE资源。例如为小区A2分配第3套muting RE资源,为小区A3分配第4套muting RE资源,为小区B1 分配第5套muting RE资源。于是,小区A2在第3套muting RE资源所在位置上下行发送零功率信号,且若小区A2存在下行数据,下行数据在第3套muting RE资源所在位置上按照速率匹配的方式进行映射;小区A3在第4套muting RE资源所在位置上下行发送零功率信号,且若小区A3存在下行数据,下行数据在第4套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B1在第5套muting RE资源所在位置上下行发送零功率信号,且若小区B1存在下行数据,下行数据在第5套muting RE资源所在位置上按照速率匹配的方式进行映射。
UE1接收小区A2、A3、B1、B2、B3的下行传输参数信息,以获得各个小区的物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围、NAICS标识等信息。
UE1根据NAICS标识信息获知网络侧只为小区A2、A3、B1分配了muting RE资源。UE1根据小区A2、A3、B1的物理小区标识确认分别分配给A2、A3、B1的muting RE资源。UE1按照对物理小区标识取余的方式确定muting RE资源。例如,小区A2的物理小区标识为2,对6(网络侧配置muting RE资源的总的套数)取余数等于2,因此UE1认为小区A2配置了第3套muting RE资源;小区A3的物理小区标识为3,对6取余数等于3,因此UE1认为小区A3配置了第4套muting RE资源;同样地,UE1确认小区B1配置了第5套muting RE资源。
于是,UE1根据第3套muting RE资源位置上的接收信号获得对小区A2的干扰信号进行干扰消除后的接收信号(第一接收信号);根据第4套muting RE资源位置上的接收信号获得对小区A3的干扰信号进行干扰消除后的接收信号(第二接收信号);根据第5套muting RE资源位置上的接收信号获得对小区B1的干扰信号进行干扰消除后的接收信号(第三接收信 号);通过盲检测的方式获得对小区B2的干扰信号进行干扰消除后的接收信号(第四接收信号);通过盲检测的方式获得对小区B3的干扰信号进行干扰消除后的接收信号(第五接收信号)。
UE1根据这五种接收信号判断需要进行干扰消除/抑制的小区,假设UE1根据这五种接收信号判断小区A2是需要进行干扰消除/抑制的小区,UE1将根据所获得的小区A2下行传输的参数对来自小区A2的干扰信号的参数进行盲检测,其中盲检测的范围参考所获得小区A2的下行传输参数,UE1对干扰信号的参数的盲检测包括该干扰信号的所述干扰信号的下行传输模式TM、干扰信号的CRS与数据的功率比值相关的P_A、干扰信号的传输层数RI、干扰信号的预编码权值(若干扰信号是基于CRS传输的)、干扰信号的DMRS端口(若干扰信号是基于DMRS传输的)、干扰信号的DMRS扰码标识(若干扰信号是基于DMRS传输的)、干扰信号的DMRS虚拟小区标识VCID(若干扰信号是基于DMRS传输的)信息等,并对来自干扰小区A2的干扰信号进行干扰消除/抑制。
UE1基于所接收的小区A2的下行传输参数以及盲检测获得的来自小区A2的干扰信号的参数,对来自干扰小区A2的干扰信号进行干扰消除/抑制。
具体实施方式3
网络侧配置6套muting RE资源,并且按照与终端侧约定好的顺序进行编号,例如图4a所示。
假设图10所示场景中,小区A1的基站首先通过大尺度信息确定UE1的干扰小区可能为A2、A3、B1,即小区B2、B3离服务小区A1距离较远或者RSRP较小,因此被小区A1的基站认为是弱干扰小区甚至可以被忽略。因此虽然这时小区A1可以获得A2、A3、B1、B2、B3各自的下行传输参数相关信息,但小区A1仅会将小区A2、A3、B1的下行传输参数信息通知 给UE1。
基站向UE1通知小区A2、A3、B1的下行传输参数信息,包括物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息;其中也可以包括NAICS标识信息。
假设NAICS标识使能,网络侧根据物理小区标识分别为不同的小区分配muting RE资源,即为物理小区标识满足Cell ID mod 6等于i的小区配置第(i+1)套muting RE资源。例如为小区A2分配第3套muting RE资源,为小区A3分配第4套muting RE资源,为小区B1分配第5套muting RE资源。于是,小区A2在第3套muting RE资源所在位置上下行发送零功率信号,且若小区A2存在下行数据,下行数据在第3套muting RE资源所在位置上按照速率匹配的方式进行映射;小区A3在第4套muting RE资源所在位置上下行发送零功率信号,且若小区A3存在下行数据,下行数据在第4套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B1在第5套muting RE资源所在位置上下行发送零功率信号,且若小区B1存在下行数据,下行数据在第5套muting RE资源所在位置上按照速率匹配的方式进行映射。
UE1接收小区A2、A3、B1的下行传输参数信息,以获得各个小区的物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息。
UE1根据小区A2、A3、B1的物理小区标识确认分别分配给A2、A3、B1的muting RE资源。UE1按照对物理小区标识取余的方式确定muting RE资源。例如,小区A2的物理小区标识为2,对6(网络侧配置的muting RE资源总的套数)取余数等于2,因此UE1认为小区A2配置了第3套muting  RE资源;小区A3的物理小区标识为3,对6取余数等于3,因此UE1认为小区A3配置了第4套muting RE资源;同样地,UE1确认小区B1配置了第5套muting RE资源。
于是,UE1根据第3套muting RE资源位置上的接收信号获得对小区A2的干扰信号进行干扰消除后的接收信号(第一接收信号);根据第4套muting RE资源位置上的接收信号获得对小区A3的干扰信号进行干扰消除后的接收信号(第二接收信号);根据第5套muting RE资源位置上的接收信号获得对小区B1的干扰信号进行干扰消除后的接收信号(第三接收信号)。
UE1根据这五种接收信号判断需要进行干扰消除/抑制的小区,例如比较这三种接收信号的功率,功率最小者表示对该小区干扰消除后接收信号性能最好,因此确定该干扰小区为需要进行干扰消除/抑制的干扰小区。
假设根据这三种接收信号判断小区A2是需要进行干扰消除/抑制的小区,UE1将根据所获得的小区A2下行传输的参数对来自小区A2的干扰信号的参数进行盲检测,其中盲检测的范围参考所获得小区A2的下行传输参数,UE1对干扰信号的参数的盲检测包括该干扰信号的所述干扰信号的下行传输模式TM、干扰信号的CRS与数据的功率比值相关的P_A、干扰信号的传输层数RI、干扰信号的预编码权值(若干扰信号是基于CRS传输的)、干扰信号的DMRS端口(若干扰信号是基于DMRS传输的)、干扰信号的DMRS扰码标识(若干扰信号是基于DMRS传输的)、干扰信号的DMRS虚拟小区标识VCID(若干扰信号是基于DMRS传输的)信息等。
UE1基于所接收的小区A2的下行传输参数以及盲检测获得的来自小区A2的干扰信号的参数,对来自干扰小区A2的干扰信号进行干扰消除/抑制。
具体实施方式4
网络侧配置6套muting RE资源,并且按照与终端侧约定好的顺序进行编号,例如图4a所示。
假设图10所示场景中,小区A1的基站首先通过大尺度信息确定UE1的干扰小区可能为A2、A3、B1,即小区B2、B3离服务小区A1距离较远或者RSRP较小,因此被小区A1的基站认为是弱干扰小区甚至可以被忽略。因此虽然这时小区A1可以获得A2、A3、B1、B2、B3各自的下行传输参数相关信息,但小区A1仅会将小区A2、A3、B1的下行传输参数信息通知给UE1。
基站向UE1通知小区A2、A3、B1的下行传输参数信息,包括物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息。其中也可能包括NAICS标识信息。
假设NAICS标识使能,网络侧根据物理小区标识分别为不同的小区分配muting RE资源,即为物理小区标识满足Cell ID mod 6等于i的小区分配第(i+1)套muting RE资源。例如为小区A2配置第3套muting RE资源,为小区A3配置第4套muting RE资源,为小区B1分配第5套muting RE资源。于是,小区A2在第3套muting RE资源所在位置上下行发送零功率信号,且若小区A2存在下行数据,下行数据在第3套muting RE资源所在位置上按照速率匹配的方式进行映射;小区A3在第4套muting RE资源所在位置上下行发送零功率信号,且若小区A3存在下行数据,下行数据在第4套muting RE资源所在位置上按照速率匹配的方式进行映射;小区B1在第5套muting RE资源所在位置上下行发送零功率信号,且若小区B1存在下行数据,下行数据在第5套muting RE资源所在位置上按照速率匹配的方式进行映射。
UE1接收小区A2、A3、B1的下行传输参数信息,以获得各个小区的 物理小区标识、CRS端口、MBSFN子帧配置、CRS与数据功率比值参数P_B、、CRS与数据功率比值参数P_A的取值范围、允许使用的传输模式TM范围、允许使用的DMRS VCID范围等信息。
UE1根据小区A2、A3、B1的物理小区标识确认分别分配给A2、A3、B1的muting RE资源。UE1按照对物理小区标识取余的方式确定muting RE资源。例如,小区A2的物理小区标识为2,对6(网络侧配置的muting RE资源总的套数)取余数等于2,因此UE1认为小区A2配置了第3套muting RE资源;小区A3的物理小区标识为3,对6取余数等于3,因此UE1认为小区A3配置了第4套muting RE资源;同样地,UE1确认小区B1配置了第5套muting RE资源。
于是,UE1根据第3套muting RE资源位置上的接收信号获得对小区A2的干扰信号进行干扰消除后的接收信号(第一接收信号);根据第4套muting RE资源位置上的接收信号获得对小区A3的干扰信号进行干扰消除后的接收信号(第二接收信号);根据第5套muting RE资源位置上的接收信号获得对小区B1的干扰信号进行干扰消除后的接收信号(第三接收信号)。同时,UE1根据非muting RE资源位置上的接收信号获得不进行任何干扰消除/抑制的接收信号(第四接收信号)。
UE1根据这四种接收信号判断是否需要进行干扰消除/抑制,以及需要进行干扰消除/抑制的小区。例如比较这第一至第三接收信号功率与第四接收信号功率差值是否超过了预定门限值,若没有超过预定门限值,而UE1认为它的数据传输不存在强干扰源,于是决定不进行强干扰消除/抑制处理(例如不采用E-MMSE-IRC、SL-IC、R-ML等NAICS高级接收机处理技术),或者按照传统方式对干扰进行干扰抑制,例如采用传统的MMSE或者MMSE-IRC接收机处理技术。否则,UE1判断为需要进行干扰消除/抑制处理,例如比较第一接收信号的功率至第三接收信号的功率,由于功率最小 的干扰小区干扰消除后接收信号性能最好,因此确定该干扰小区为需要进行干扰消除/抑制的干扰小区。
假设根据这五种接收信号判断小区A2是需要进行干扰消除/抑制的小区,UE1将根据所获得的小区A2下行传输的参数对来自小区A2的干扰信号的参数进行盲检测,其中盲检测的范围参考所获得小区A2的下行传输参数,UE1对干扰信号的参数的盲检测包括该干扰信号的所述干扰信号的下行传输模式TM、干扰信号的CRS与数据的功率比值相关的P_A、干扰信号的传输层数RI、干扰信号的预编码权值(若干扰信号是基于CRS传输的)、干扰信号的DMRS端口(若干扰信号是基于DMRS传输的)、干扰信号的DMRS扰码标识(若干扰信号是基于DMRS传输的)、干扰信号的DMRS虚拟小区标识VCID(若干扰信号是基于DMRS传输的)信息等。
UE1基于所接收的小区A2的下行传输参数以及盲检测获得的来自小区A2的干扰信号的参数,对来自干扰小区A2的干扰信号进行干扰消除/抑制。
具体实施方式5
假设网络侧和终端侧约定总共存在可配置的muting RE资源包括6套,并按照预定预定的方式对这6套muting RE资源进行编号,例如图4a所示。
假设终端所在服务小区存在3个干扰小区,分别为干扰小区1、干扰小区2、干扰小区3。
这3个干扰小区分别将各自对应的下行数据传输参数相关信息通过小区间回程链路(backhual)例如X2接口传递给服务小区基站,服务小区基站通过Cell-specific高层信令广播通知给所有终端。其中各小区下行数据传输参数相关信息包括该小区下行系统带宽、下行循环前缀长度、Cell ID、CRS端口、MBSFN子帧配置、允许使用的下行传输模式TM范围、允许使用的DMRS VCID范围、CSI-RS资源配置等信息中的一项或多项。
假设服务小区的Cell ID mod 6等于0、干扰小区1的Cell ID mod 6等于3,干扰小区2的Cell ID mod 6等于2,干扰小区3的Cell ID mod 6等于4,则分别将第1、4、3、5套Muting RE资源分配给服务小区、干扰小区1、干扰小区2和干扰小区3,如图11a~图11d所示。
于是,终端利用第4套muting RE资源位置处的接收信号可以获得将干扰小区1中的用户干扰消除之后的接收数据信号功率;终端利用第3套muting RE资源位置处的接收信号可以获得将干扰小区2中的用户干扰消除之后的接收数据信号功率;终端利用第5套muting RE资源位置处的接收信号可以获得将来自干扰小区3的用户干扰消除之后的接收数据信号功率。
终端将选择干扰消除之后的接收数据信号功率最强时对应的那个干扰小区用户为需要进行干扰消除/抑制的干扰小区用户。
终端基于所确定的需要进行干扰消除/抑制的干扰小区的下行传输信号参数配置信息对干扰信号其它相关信息进行盲检测。其中盲检测的干扰信号相关信息包括干扰信号的下行传输模式TM、RI(若干扰信号是基于CRS传输的)、预编码权值(若干扰信号是基于CRS传输的)、DMRS端口(若干扰信号是基于DMRS传输的)、DMRS扰码ID(若干扰信号是基于DMRS传输的)、DMRS VCID(若干扰信号是基于DMRS传输的)、PDSCH起始位置等信息中的一项或多项。
终端利用从基站接收到的干扰信号参数配置信息以及盲检测获得的干扰信号参数信息,基于高级接收机(例如E-MMSE-IRC、SLIC、R-ML等)技术对该干扰信号进行干扰消除/抑制,并对干扰消除/抑制之后的数据信号进行解调、解码。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明公开了一种干扰处理方法、基站、终端及系统,能够将M个干扰小区的下行传输参数信息分别通知给终端,并向终端指示N套muting RE 的资源位置,以协助终端判断需要进行干扰消除的干扰小区;确定需要进行干扰消除/抑制的干扰小区,基于所述干扰小区的下行传输参数信息盲检测来自所述干扰小区的干扰信号的下行传输参数信息,并对所述干扰信号进行干扰消除/抑制,有效降低终端盲检测复杂度、提高盲检测准确度,并且没有增加基站端的信令开销,在不增加基站端信令开销的基础上,可提高终端的解调性能,同时降低终端的盲检测复杂度。

Claims (49)

  1. 一种干扰处理方法,所述方法包括:
    配置N套静默资源单元muting RE资源;
    为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源;
    将所述M个干扰小区的下行传输参数信息通知给终端;其中,所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。
  2. 根据权利要求1所述的方法,其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
    所述干扰小区的物理小区标识;
    所述干扰小区的小区专属参考信号CRS端口;
    所述干扰小区的多播单频网络MBSFN子帧配置;
    所述干扰小区的CRS与数据功率比值相关参数PB
    所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
    所述干扰小区的系统带宽;
    所述干扰小区的循环前缀长度;
    所述干扰小区的与所述终端服务小区是否同步的指示;
    所述干扰小区的下行数据在一个子帧中的起始正交频分复用OFDM符号位置;
    所述干扰小区支持使用的传输模式TM范围;
    所述干扰小区支持使用的解调参考信号DMRS虚拟信道标识VCID的范围;
    所述干扰小区支持使用的资源分配方式;
    所述干扰小区的资源分配单元大小;
    所述干扰小区零功率/非零功率信道状态指示参考信号CSI-RS的资源配置信息。
  3. 根据权利要求1所述的方法,其中,所述N套muting RE资源中的任一套muting RE资源包括:支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
  4. 根据权利要求1所述的方法,其中,所述N套muting RE资源中的任一套muting RE资源包括支持:配置为CSI-RS端口的资源单元中的一个或多个。
  5. 根据权利要求1所述的方法,其中,所述N套muting RE资源中的任一套muting RE资源由两组离散的资源单元组构成,并且所述两组离散的资源单元组对应位于一物理资源块PRB对中的第1个PRB和第2个PRB上;并且,
    所述资源单元组由1个或多个资源单元组成。
  6. 根据权利要求1所述的方法,其中,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
    支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
  7. 根据权利要求1所述的方法,其中,所述为M个干扰小区分配所配置的N套muting RE资源中的muting RE资源,包括:
    根据所述干扰小区的物理小区标识,为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源。
  8. 根据权利要求7所述的方法,其中,所述为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源, 包括:
    对所述N套muting RE资源按照预设顺序编号为1至N;
    确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
    为所述干扰小区分配所述N套muting RE资源中的第(i+1)套muting RE资源;其中,i为非负整数。
  9. 根据权利要求1所述的方法,其中,所述M个干扰小区所分配的muting RE资源,用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述终端通知所述干扰小区的网络辅助干扰消除/抑制NAICS使能标识;
    其中,所述NAICS使能标识用于向终端指示所述干扰小区所分配的muting RE资源是否使能。
  11. 根据权利要求10所述的方法,其中,当所述干扰小区的NAICS使能标识指示分配给所述干扰小区的muting RE资源使能时,
    所述NAICS使能标识用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  12. 根据权利要求1至11任一项所述的方法,其中,
    所述M个干扰小区中任一干扰小区所分配的muting RE资源,以所述干扰小区的下行数据的资源分配单元为单位映射到所述干扰小区的全部系统带宽资源上。
  13. 一种干扰处理方法,所述方法包括:
    确定N套静默资源单元muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
    通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
    根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
  14. 根据权利要求13所述的方法,其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
    所述干扰小区的物理小区标识;
    所述干扰小区的小区专属参考信号CRS端口;
    所述干扰小区的多播单频网络MBSFN子帧配置;
    所述干扰小区的CRS与数据功率比值相关参数PB
    所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
    所述干扰小区的系统带宽;
    所述干扰小区的循环前缀长度;
    所述干扰小区的与所述终端服务小区是否同步的指示;
    所述干扰小区的下行数据在一个子帧中的起始正交频分复用OFDM符号位置;
    所述干扰小区允许使用的传输模式TM范围;
    所述干扰小区允许使用的解调参考信号DMRS虚拟信道标识VCID的范围;
    所述干扰小区允许使用的资源分配方式;
    所述干扰小区的资源分配单元大小;
    所述干扰小区零功率/非零功率信道状态指示参考信号CSI-RS的资源配置信息。
  15. 根据权利要求13所述的方法,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
  16. 根据权利要求13所述的方法,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为CSI-RS端口的资源单元中的一个或多个。
  17. 根据权利要求13所述的方法,其中,
    所述N套muting RE资源中的任一套muting RE资源由两组离散的资源单元组构成,所述两组离散的资源单元组对应位于一物理资源块PRB对中的第1个PRB和第2个PRB上;并且,
    所述资源单元组由1个或多个资源单元组成。
  18. 根据权利要求13所述的方法,其中,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
    支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
  19. 根据权利要求13所述的方法,其中,所述确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源,包括:
    根据所述干扰小区的物理小区标识,确定分配给所述M个干扰小区的muting RE资源。
  20. 根据权利要求19所述的方法,其中,确定所述N套muting RE资源中分配给所述M个干扰小区的muting RE资源包括:
    对所述N套muting RE资源按照预设顺序进行编号为1至N;
    确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
    确定所述干扰小区所分配的muting RE资源为所述N套muting RE资源中的第i+1套muting RE资源;其中,i为非负整数。
  21. 根据权利要求13所述的方法,其中,当确定所述M个干扰小区所分配的muting RE资源时,所述方法还包括:
    确定所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  22. 根据权利要求14所述的方法,其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息还包括:
    NAICS使能标识,用于指示分配给所述干扰小区的muting RE资源是否被使能。
  23. 根据权利要求22所述的方法,其中,当接收到所述干扰小区的NAICS使能标识,且所述NAICS使能标识指示所述干扰小区所分配的muting RE资源使能时,所述方法还包括:
    确定所述干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  24. 根据权利要求13至23任一项所述的方法,其中,所述确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源,包括:
    以所述干扰小区的下行数据的资源分配单元为单位,确定N套muting RE资源中分配给M个干扰小区的muting RE资源。
  25. 一种干扰处理方法,所述方法包括:
    基站为M个干扰小区分配所配置的N套静默资源单元muting RE资源 中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端;
    所述终端根据所确定的所述N套muting RE资源的配置信息,确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
    所述终端通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
    所述终端根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
  26. 一种基站,所述基站包括:
    配置单元,配置为配置N套静默资源单元muting RE资源;
    分配单元,配置为为M个干扰小区分配所述配置的N套muting RE资源中的muting RE资源;
    第一通信单元,配置为将所述M个干扰小区的下行传输参数信息通知给终端;其中,所述N套muting RE资源用于供所述终端确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;所述下行传输参数信息用于供所述终端对需要进行干扰消除/抑制的干扰小区进行干扰消除;M和N均为正整数。
  27. 根据权利要求26所述的基站,其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
    所述干扰小区的物理小区标识;
    所述干扰小区的小区专属参考信号CRS端口;
    所述干扰小区的多播单频网络MBSFN子帧配置;
    所述干扰小区的CRS与数据功率比值相关参数PB
    所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
    所述干扰小区的系统带宽;
    所述干扰小区的循环前缀长度;
    所述干扰小区的与所述终端服务小区是否同步的指示;
    所述干扰小区的下行数据在一个子帧中的起始正交频分复用OFDM符号位置;
    所述干扰小区支持使用的传输模式TM范围;
    所述干扰小区支持使用的解调参考信号DMRS虚拟信道标识VCID的范围;
    所述干扰小区支持使用的资源分配方式;
    所述干扰小区的资源分配单元大小;
    所述干扰小区零功率/非零功率信道状态指示参考信号CSI-RS的资源配置信息。
  28. 根据权利要求26所述的基站,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
  29. 根据权利要求26所述的基站,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为CSI-RS端口的资源单元中的一个或多个。
  30. 根据权利要求26所述的基站,其中,
    所述N套muting RE资源中的任一套muting RE资源由两组离散的资源单元组构成,并且所述两组离散的资源单元组对应位于一物理资源块PRB对中的第1个PRB和第2个PRB上;并且,
    所述资源单元组由1个或多个资源单元组成。
  31. 根据权利要求26所述的基站,其中,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
    支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
  32. 根据权利要求26所述的基站,其中,所述分配单元,配置为根据所述干扰小区的物理小区标识,为所述M个干扰小区中的任一个干扰小区分配所述N套muting RE资源中的一套muting RE资源。
  33. 根据权利要求32所述的基站,其中,所述分配单元包括:
    第一编号子单元,配置为对所述N套muting RE资源按照预设顺序编号为1至N;
    第一确定子单元,配置为确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
    分配子单元,配置为为所述干扰小区分配所述N套muting RE资源中的第i+1套muting RE资源;其中,i为非负整数。
  34. 根据权利要求26所述的基站,其中,所述M个干扰小区所分配的muting RE资源,用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  35. 根据权利要求26所述的基站,其中,
    所述第一通信单元,配置为在将M个干扰小区的下行传输参数信息通知给终端之后,向所述终端通知所述干扰小区的网络辅助干扰消除/抑制NAICS使能标识;
    其中,所述NAICS使能标识用于向终端指示所述干扰小区所分配的muting RE资源是否使能。
  36. 根据权利要求35所述的基站,其中,当所述干扰小区的NAICS使能标识指示分配给所述干扰小区的muting RE资源使能时,所述NAICS使能标识用于供所述终端确定以下信息:所述干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  37. 根据权利要求26至36任一项所述的基站,其中,
    所述M个干扰小区中任一干扰小区所分配的muting RE资源,以所述干扰小区的下行数据的资源分配单元为单位映射到所述干扰小区的全部系统带宽资源上。
  38. 一种终端,所述终端包括:
    第二通信单元,配置为接收M个干扰小区的下行传输参数信息;
    第一确定单元,配置为确定所述N套静默资源单元muting RE资源的配置信息,基于所述配置信息确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;
    第二确定单元,配置为通过在所述M个干扰小区中每个干扰小区所分配muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;
    干扰处理单元,配置为根据所述下行传输参数信息中对应所述确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所述确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
  39. 根据权利要求38所述的终端,其中,所述M个干扰小区中任一个干扰小区的下行传输参数信息包括以下信息至少之一:
    所述干扰小区的物理小区标识;
    所述干扰小区的小区专属参考信号CRS端口;
    所述干扰小区的多播单频网络MBSFN子帧配置;
    所述干扰小区的CRS与数据功率比值相关参数PB
    所述干扰小区的CRS与数据功率比值相关参数PA的取值范围;
    所述干扰小区的系统带宽;
    所述干扰小区的循环前缀长度;
    所述干扰小区的与所述终端服务小区是否同步的指示;
    所述干扰小区的下行数据在一个子帧中的起始正交频分复用OFDM符号位置;
    所述干扰小区允许使用的传输模式TM范围;
    所述干扰小区允许使用的解调参考信号DMRS虚拟信道标识VCID的范围;
    所述干扰小区允许使用的资源分配方式;
    所述干扰小区的资源分配单元大小;
    所述干扰小区零功率/非零功率信道状态指示参考信号CSI-RS的资源配置信息。
  40. 根据权利要求38所述的终端,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为DMRS端口9/10/12/14的资源单元中的一个或多个。
  41. 根据权利要求38所述的终端,其中,
    所述N套muting RE资源中的任一套muting RE资源包括支持配置为CSI-RS端口的资源单元中的一个或多个。
  42. 根据权利要求38所述的终端,其中,
    所述N套muting RE资源中的任一套muting RE资源由两组离散的资源单元组构成,所述两组离散的资源单元组对应位于一物理资源块PRB对中的第1个PRB和第2个PRB上;并且,
    所述资源单元组由1个或多个资源单元组成。
  43. 根据权利要求38所述的终端,其中,所述N套muting RE资源中的任一套muting RE资源由以下资源单元之外的至少一个资源单元构成:
    支持配置为CRS端口的资源单元;支持配置为CSI-RS端口的资源单元;支持配置为DMRS端口7/8/11/13的资源单元;支持配置为物理下行控制信道PDCCH的OFDM符号。
  44. 根据权利要求38任一项所述的终端,其中,所述第一确定单元,配置为根据所述M个干扰小区的物理小区标识,确定所述M个干扰小区中每个干扰小区所分配的muting RE资源。
  45. 根据权利要求44所述的终端,其中,所述第一确定单元包括:
    第二编号子单元,配置为对所述N套muting RE资源按照预设顺序进行编号为1至N;
    第二确定子单元,配置为确定所述M个干扰小区中每个干扰小区的物理小区标识对N取余数的值i;
    第三确定子单元,配置为用于确定所述干扰小区所分配的muting RE资源为所述N套muting RE资源中的第i+1套muting RE资源;其中,i为非负整数。
  46. 根据权利要求38所述的终端,其中,
    所述第二确定单元,配置为当确定所述M个干扰小区所分配的muting RE资源时,确定所述干扰小区在所分配的muting RE资源对应的资源位置上发送零功率信号,并且按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  47. 根据权利要求38所述的终端,其中,
    所述第二通信单元,配置为接收所述干扰小区的NAICS使能标识;
    所述第二确定单元,配置为当确定所述第二通信单元接收到对应所述 干扰小区的NAICS使能标识,且所述NAICS使能标识指示所述干扰小区所分配的muting RE资源使能时,确定所述NAICS使能标识对应的干扰小区在所分配的muting RE资源上发送零功率信号,且所述干扰小区按照速率匹配的方式在所分配的muting RE资源上映射下行数据。
  48. 根据权利要求38至47任一项所述的终端,其中,
    所述第一确定单元,配置为以所述干扰小区的资源分配单元为单位,确定所述干扰小区所分配的muting RE资源。
  49. 一种干扰处理系统,所述系统包括:基站和终端;其中,
    所述基站,配置为为M个干扰小区分配所配置的N套静默资源单元muting RE资源中的muting RE资源;将所述M个干扰小区的下行传输参数信息通知给终端;
    所述终端,配置为根据所确定的所述N套静默资源单元muting RE资源的配置信息,确定所述N套muting RE资源中分配给M个干扰小区的muting RE资源;通过在所述M个干扰小区中每个干扰小区所分配的muting RE资源对应的资源位置上的接收信号,确定所述M个干扰小区中需要进行干扰消除/抑制的干扰小区;根据所获取的下行传输参数信息中对应所确定的干扰小区的下行传输参数信息,进行盲检测以得到来自所确定的干扰小区的干扰信号相关传输信息,并利用所得到的干扰信号相关传输信息进行干扰消除/抑制;其中,M和N均为正整数。
PCT/CN2014/087466 2014-05-09 2014-09-25 干扰处理方法、基站、终端及系统 WO2015169036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410196573.6 2014-05-09
CN201410196573.6A CN105101423A (zh) 2014-05-09 2014-05-09 干扰处理方法、基站、终端及系统

Publications (1)

Publication Number Publication Date
WO2015169036A1 true WO2015169036A1 (zh) 2015-11-12

Family

ID=54392074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087466 WO2015169036A1 (zh) 2014-05-09 2014-09-25 干扰处理方法、基站、终端及系统

Country Status (2)

Country Link
CN (1) CN105101423A (zh)
WO (1) WO2015169036A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204817A (zh) * 2016-03-16 2017-09-26 电信科学技术研究院 一种干扰检测方法及终端
CN114900215A (zh) * 2022-05-09 2022-08-12 西安电子科技大学 基于松弛正交预编码的空分多址接入方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590667B1 (en) * 2015-09-15 2017-03-07 Mediatek Inc. Method and apparatus for interference cancellation by a user equipment
CN108234048A (zh) * 2017-12-26 2018-06-29 广东欧珀移动通信有限公司 信号传输控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法
CN102065490A (zh) * 2011-01-17 2011-05-18 大唐移动通信设备有限公司 基站间下行发射功率的协调方法和设备
US20130114435A1 (en) * 2011-11-09 2013-05-09 Telefonaktiebolaget L M Ericsson (Publ) Almost-Blank Subframe Configuration Detection in Heterogeneous Networks
CN103313337A (zh) * 2012-03-13 2013-09-18 北京三星通信技术研究有限公司 一种消除小区间下行干扰的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055986A2 (en) * 2009-11-08 2011-05-12 Lg Electronics Inc. A method and a base station for transmitting a csi-rs, and a method and a user equipment for receiving the csi-rs
KR101819502B1 (ko) * 2010-02-23 2018-01-17 엘지전자 주식회사 간섭 측정 방법 및 단말과, 간섭 정보 수신 방법 및 기지국
CN102186247B (zh) * 2011-05-05 2013-12-11 新邮通信设备有限公司 一种小区间干扰协调的方法和系统
CN103391581A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 干扰协调方法及系统
CN103581073B (zh) * 2012-07-21 2019-01-25 中兴通讯股份有限公司 干扰消除方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827053A (zh) * 2010-02-08 2010-09-08 清华大学 抑制小区间干扰的方法
CN102065490A (zh) * 2011-01-17 2011-05-18 大唐移动通信设备有限公司 基站间下行发射功率的协调方法和设备
US20130114435A1 (en) * 2011-11-09 2013-05-09 Telefonaktiebolaget L M Ericsson (Publ) Almost-Blank Subframe Configuration Detection in Heterogeneous Networks
CN103313337A (zh) * 2012-03-13 2013-09-18 北京三星通信技术研究有限公司 一种消除小区间下行干扰的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204817A (zh) * 2016-03-16 2017-09-26 电信科学技术研究院 一种干扰检测方法及终端
CN114900215A (zh) * 2022-05-09 2022-08-12 西安电子科技大学 基于松弛正交预编码的空分多址接入方法
CN114900215B (zh) * 2022-05-09 2023-09-08 西安电子科技大学 基于松弛正交预编码的空分多址接入方法

Also Published As

Publication number Publication date
CN105101423A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN109417453B (zh) 通信系统中的参考信号的发射
KR102199653B1 (ko) 간섭 제거 및 억제 수신기를 이용한 csi 강화를 위한 사용자 장치 및 방법
JP6683378B2 (ja) 基準信号を送受信するための方法及び装置
US10103797B2 (en) Quasi co-location and PDSCH resource element mapping signaling for network assisted interference mitigation
CN111294298B (zh) 消除相邻小区数据传输的方法及用户设备
KR102213836B1 (ko) 복조 참조 신호들의 밀도를 적응시키기 위한 방법들
EP2774310B1 (en) Network node, user equipment and methods therein
EP2926472B1 (en) Mimo transmission method and apparatus for use in wireless communication system
JP2020115692A (ja) ユーザ装置、無線通信方法及び基地局
TWI717440B (zh) 通訊裝置及通訊方法
AU2014261928B2 (en) Method and device for processing interference, network control unit and user equipment
EP3051741B1 (en) Enhanced link adaptation
WO2016091008A1 (zh) 非正交用户设备间干扰处理及信令通知方法和装置、存储介质
US9806834B2 (en) User terminal, radio base station, downlink control channel receiving method and mobile communication system
JP6197244B2 (ja) 同一チャネルセル干渉を処理するための方法、装置、及びシステム
KR20140111136A (ko) 무선 통신 시스템에서 간섭 제어 방법 및 장치
US10075879B2 (en) Methods for detecting interferers for handling interference mitigation
KR20140144221A (ko) 제어 채널 자원 전송 방법, 사용자 장비 및 기지국
WO2014166455A1 (zh) 一种干扰测量方法、网络侧设备及终端侧设备
WO2014166443A1 (zh) 一种干扰测量方法、系统、相关设备及存储介质
WO2013085336A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치
WO2015139419A1 (zh) 干扰消除或抑制的信令通知方法及系统、接收方法及装置
JP2017516425A (ja) 無線通信システムにおいて干渉を除去し信号を受信する方法及び装置
WO2015169036A1 (zh) 干扰处理方法、基站、终端及系统
WO2013168298A1 (ja) 移動局および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891191

Country of ref document: EP

Kind code of ref document: A1