WO2015168892A1 - 保护倒换的方法、节点和控制设备 - Google Patents

保护倒换的方法、节点和控制设备 Download PDF

Info

Publication number
WO2015168892A1
WO2015168892A1 PCT/CN2014/077007 CN2014077007W WO2015168892A1 WO 2015168892 A1 WO2015168892 A1 WO 2015168892A1 CN 2014077007 W CN2014077007 W CN 2014077007W WO 2015168892 A1 WO2015168892 A1 WO 2015168892A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
node
fault
protection switching
protection
Prior art date
Application number
PCT/CN2014/077007
Other languages
English (en)
French (fr)
Inventor
郑瑜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14891497.1A priority Critical patent/EP3139527B1/en
Priority to PCT/CN2014/077007 priority patent/WO2015168892A1/zh
Priority to CN201480025173.7A priority patent/CN105264799B/zh
Publication of WO2015168892A1 publication Critical patent/WO2015168892A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method, a node, and a control device for protection switching. Background technique
  • Sub Network Connection Protection is a channel layer protection.
  • the biggest feature of this protection mechanism is that it can be applied to various network topologies, such as mesh type, chain type, and ring type. Or mix the topology arbitrarily.
  • SNCP can be used to protect a complete end-to-end channel in a network application, as well as to protect only a portion of the channel.
  • ASON Automatically Switched Optical Network
  • an SNCP protection group is created to implement dual-selection of services.
  • ASON Automatically Switched Optical Network
  • the working path and protection path of one SNCP protection group may be "simultaneously" faulted. If the fiber is repaired, the working path and protection path of the SNCP protection group are faulty.” At the same time “disappeared.
  • the time of detecting the work and protecting the path fault may be different due to various influencing factors.
  • the influencing factors are the working path and the protection path.
  • the length of the fiber is different, or the working path and the protection path are on different boards, and the CPUs of the respective CPUs are different in busyness. For example, when an SNCP protection group works in the working path, it first detects that the working path is faulty, triggers protection switching, and works on the protection path after switching. Immediately, it detects that the protection path is faulty, causing an invalid protection switching.
  • the same time will cause the detection of the work and the failure of the protection path to be different due to various influencing factors. For example, when an SNCP protection group works in the working path, it first detects that the protection path fault disappears, initiates protection switching, and changes to work in the protection path. It may detect that the working path failure also disappears immediately after the switching, which also causes an invalid Protection switching.
  • Embodiments of the present invention provide a method and a node for protection switching, which can solve the problem of invalid protection switching.
  • the first aspect provides a method for protection switching, the method comprising:
  • the sink node of the protection group receives an indication message including a failure confirmation time, and the indication message is used to indicate that the protection switching of the protection node of the protection group is performed according to the failure confirmation time;
  • the sink node of the protection group When it is detected that the first path is faulty, or when the fault of the second path is detected, the sink node of the protection group starts a timer whose timing is the fault confirmation time, where the first path is the protection.
  • the path of the service is selected by the sink node of the group, and the second path is the path of the non-selection service of the sink node of the protection group;
  • the sink node of the protection group determines whether to perform protection switching according to the result of the re-detection of the first path and the second path.
  • the timer that starts the timing of the fault confirmation time includes:
  • the opening timing is a timer of the fault confirmation time, including:
  • the timer is turned on;
  • the timer When it is detected that the fault of the second path disappears and the first path has a fault, the timer is turned on.
  • determining whether to perform protection switching Includes:
  • determining whether to perform protection switching include:
  • the protection switching is performed, so that the sink node of the protection group disconnects the first path, and on the second path Select business.
  • the fault confirmation time is The control device determines the delay difference between the first path and the second path.
  • the indication message is path establishment Message.
  • a method for protection switching comprising:
  • the path includes a first path and a second path between the first node and the second node;
  • determining a fault confirmation time of the sink node of the protection group includes:
  • the fault confirmation time is determined according to a delay difference between the first path and the second path.
  • the indication message is a path setup message.
  • the third aspect provides a node, the node comprising:
  • a receiving module configured to receive an indication message including a fault acknowledgement time, where the indication message is used to indicate that the protection switching of the node is performed according to the fault confirmation time;
  • a timing module configured to: when detecting that the first path fails, or when detecting that the fault of the second path disappears, the opening timing is a timing of the fault confirmation time received by the receiving module
  • the first path is a path for selecting a service of the node
  • the second path is a path for the non-selected service of the node
  • a detecting module configured to: when determining that the timer of the timing module times out, re-detecting the states of the first path and the second path;
  • a determining module configured to determine whether to perform protection switching according to the result of the re-detection of the detecting module.
  • the timing module is specifically configured to: when detecting that the first path is faulty, turn on the timer of the first path; or the timing The module is specifically configured to: when detecting that the fault of the second path disappears, turn on the timer of the second path.
  • the timing module is specifically configured to: when the first path is detected to be faulty, and the second path does not have a fault, the timer is started ; or
  • the timing module is specifically configured to: when the fault of the second path is detected to disappear, and the first path has a fault, the timer is turned on.
  • the determining module is specifically configured to: When the result of the re-detection is that the first path does not have a fault, or when both the first path and the second path have a fault, it is determined that the protection switching is not performed.
  • the determining module is specifically used to When the result of the re-detection is that the first path is faulty, and the second path does not have a fault, it is determined that the protection switching is performed, so that the node disconnects the first path, and the service is selected on the second path.
  • the receiving module receives the The fault confirmation time is determined by the control device according to a delay difference between the first path and the second path.
  • the receiving module receives the The indication message is a path establishment message.
  • a fourth aspect provides a control device, the control device comprising:
  • a first determining module configured to determine that the service path is connected to the first node and the second node that are interconnected, and the service path is reused in the ingress time slot of the first node, and the egress is separated, and is separated at the entrance of the second node, Reusing an egress time slot, the service path including a first path and a second path between the first node and the second node;
  • a second determining module configured to determine the second node determined by the first determining module as a sink node of the protection group
  • a third determining module configured to determine a fault confirmation time of the sink node of the protection group determined by the second determining module
  • a sending module configured to send, to the sink node of the protection group determined by the third determining module, an indication message including the fault confirmation time, to indicate that the protection switching of the sink node of the protection group is performed according to the fault confirmation time.
  • the third determining module is specifically configured to determine the fault confirmation time according to a delay difference between the first path and the second path .
  • the indication message sent by the sending module is a path setup message.
  • the method, the node, and the control device of the protection switching in the embodiment of the present invention when detecting that the path of the current working of the node is faulty or the path failure of the non-working path is recovered, the timer that starts the time is the fault confirmation time. When it is determined that the timer expires, whether to perform protection switching according to the current state of the two paths can effectively avoid invalid protection switching, thereby improving the efficiency of protection switching.
  • FIG. 1 is a schematic flowchart of a method for protection switching according to an embodiment of the present invention.
  • FIG. 2(a) and 2(b) are schematic views showing a method of protection switching according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart showing a method of protection switching according to another embodiment of the present invention.
  • FIG. 4 is another schematic flowchart of a method for protection switching according to another embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of a node of an embodiment of the present invention.
  • Fig. 6 shows a schematic block diagram of a control device of an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a node according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a control device according to another embodiment of the present invention. detailed description
  • control device may also be referred to as a control plane or a control plane, such as a control plane in an Automatically Switched Optical Network (ASON). This is not limited.
  • ASON Automatically Switched Optical Network
  • the node may also be referred to as a site.
  • the node in the embodiment of the present invention may specifically be a Synchronous Digital Hierarchy (SDH) transport network.
  • SDH Synchronous Digital Hierarchy
  • a node in a network such as an Opikal Transport Network (“OTN”), a Multi-Protocol Label Switching (“MPLS”) network, or an Ethernet network, which is not limited in this embodiment of the present invention. .
  • ASON Automatic Optical Switching Network ASON is a new generation optical transport network, also known as intelligent optical network. It introduces a control plane in the traditional optical network. Through the cooperation of components such as signaling and routing protocols, resource discovery, end-to-end service delivery, and re-routing recovery can enhance network connection management and fault recovery. Compared with traditional networks, it has more advantages in service configuration, bandwidth utilization and protection.
  • ASON On an ASON network, when ASON creates a 1+1 service, it creates an SNCP protection group to implement dual-issue selection of services.
  • the SNCP in the ASON network is automatically created or deleted by the control plane.
  • FIG. 1 is a schematic flowchart of a method 100 for protection switching according to an embodiment of the present invention.
  • the method 100 may be performed, for example, by a sink node of a protection group.
  • the method 100 includes: S110, protection The group of sink nodes receives an indication message including a failure confirmation time, the indication The message is used to indicate that the protection switching of the sink node of the protection group is performed according to the fault confirmation time;
  • the sink node of the protection group when detecting that the first path fails, or when detecting that the fault of the second path disappears, the sink node of the protection group starts a timer whose timing is the fault confirmation time, where the first path is The path of the protection node is selected by the sink node of the protection group, and the second path is the path of the non-selection service of the sink node of the protection group;
  • the sink node of the protection group determines whether to perform protection switching according to the result of the re-detection of the first path and the second path.
  • the sink node of the protection group performs protection switching according to the received indication message including the fault confirmation time, when it is detected that the first path of the current working of the node fails, or the non-working second path fails.
  • the timer is set to be the timer of the fault confirmation time.
  • the timer may be a timer on the path where the current detection is performed, or may be a control protocol-based timer of the node, which is in the embodiment of the present invention. This is not limited; when it is determined that the timer expires, the state of the two paths is detected; and based on the result of the detection of the first path and the second path, it is determined whether to perform protection switching.
  • the timer when it is detected that the path of the current working of the node is faulty or the path failure of the non-working path is recovered, the timer whose timing is the fault confirmation time is turned on, and when it is determined that the timer expires, according to The current state of the two paths determines whether to perform protection switching, which can effectively avoid invalid protection switching, thereby improving the efficiency of protection switching.
  • the service path is at node A and node.
  • the direction of the service path is as shown in Figure 2 from node A to node B.
  • the first path may be referred to as the primary path.
  • the second path is called the alternate path.
  • the node B disconnects the first path and connects the second path, and the path to be worked is converted from the first path to the second path, such as As shown in Figure 2(b), this process can be referred to as a protection switching of Node B.
  • the structure of a similar dual-selection switch composed of two source ends and one sink end in the node B may be referred to as a protection group of the node B, that is, It is understood that the protection switching of the node B is realized by changing the dual selection switch of the protection group.
  • protection group mentioned above may specifically be a Sub Network Connection Protection ("SNCP") group in the ASON network, and may also be other types of protection groups. No particular limitation is imposed.
  • SNCP Sub Network Connection Protection
  • a protection switching mechanism (or a protection configured for protection switching) may be set for the node.
  • Group such as the SNCP protection group).
  • the related content of the protection switching mechanism is configured in the prior art. For brevity, details are not described herein again.
  • the indication message including the fault confirmation time is received.
  • the indication message may be a message sent by the network management, the control device, or other nodes in the network to the sink node of the protection group. The example is not limited here.
  • the indication message may specifically be a path establishment message or the like, which is not limited by the embodiment of the present invention.
  • the indication message is a path establishment message.
  • the path setup message may be a signaling message sent by the control device, such as a Resource Reservation Protocol ("RS VP") signaling.
  • RS VP Resource Reservation Protocol
  • the SNCP protection group is taken as an example, in the RSVP.
  • Signaling Path message including object ⁇ SNCP_
  • Dir indicates the direction of the service. It occupies 2 bits. If the value is 0, it indicates the forward service. If the value is 1, it indicates the reverse service. For example, set the fault confirmation time Detect-Confirm-Time of the SNCP protection group to 10ms, and set the service direction indication information Dir according to the actual service direction.
  • the node receives the RSVP signaling, and by analyzing the Path message, it can be learned according to the The fault confirmation time is used to perform protection switching of the sink node of the protection group.
  • the indication message may be sent to the sink node of the protection group by other forms, which is not limited by the embodiment of the present invention.
  • the fault confirmation time is determined according to a delay difference between the first path and the second path.
  • the failure confirmation time does not exceed 30 ms.
  • the lengths of the fibers of the first path and the second path are different, which may result in a delay difference between the two paths.
  • the fault confirmation time may be determined according to the busyness of the CPUs of the two paths, which is not limited by the embodiment of the present invention.
  • the time of the protection switching is generally within 50 ms, that is, the technical solution in the embodiment of the present invention can solve the problem of invalid protection switching by the fault confirmation time, and generally does not cause the protection switching time of the protection group. For more than 50ms, avoid affecting the protection switching performance of the protection group.
  • the indication message may simultaneously indicate that the sink node is configured with a protection switching mechanism (hereinafter referred to as a configuration protection group) and a protection switching of the sink node of the protection group according to the failure confirmation time.
  • a protection switching mechanism hereinafter referred to as a configuration protection group
  • the timer when it is detected that the first path of the current working of the node fails, or when it is detected that the fault of the second path where the node is currently inoperative disappears, the timer whose timing is the failure confirmation time is turned on.
  • the timer may be a timer that currently detects the path.
  • the start timing is a timer of the fault confirmation time, and includes:
  • the timer of the first path When it is detected that the first path fails, the timer of the first path is turned on; or when it is detected that the fault of the second path disappears, the timer of the second path is turned on.
  • FIG. 2( a ) the specific scheme of starting the timer in two scenarios is illustrated by using FIG. 2( a ) as an example.
  • Scene (1) When it detects that the path where the current work is faulty, the timer is started. As shown in Figure 2(a), there are two paths between node A and node B. Node B currently works on the first path (also called node B is selected on the first path), that is, node A passes. The first path and the second path send the service signal to the Node B, and the Node B selects only the service signal on the first path to transmit to the next node.
  • the timer on the first path is started, and the timing of the timer is the fault confirmation time.
  • the node B may find that the first path is faulty by detecting the first path.
  • the first path may be faulty according to the fault indication message reported by the first path, such as a fault alarm message.
  • the timer of the current working path may be directly opened regardless of the state of the current non-working path.
  • the Node B may not detect the state of the first path and the second path, or even if two are received.
  • the indication information about the state change reported by the path may also be left unprocessed. After the timer expires, check the status of the two paths again to determine whether to perform protection switching.
  • Node B currently works on the first path (also called node B is selected on the first path), that is, node A passes.
  • the first path and the second path send the service signal to the Node B, and the Node B selects only the service signal on the first path to transmit to the next node.
  • the timer on the second path is turned on as the timer of the fault acknowledgement time.
  • the node B may find that the fault of the second path disappears by detecting the second path, and may also learn that the fault of the second path disappears according to the fault disappearing indication message reported by the second path, for example, the fault disappearing message.
  • the timer of the current non-working path may be directly opened regardless of the state of the current working path.
  • the Node B may not detect the state of the first path and the second path, or even if two are received.
  • the indication information about the state change reported by the path may also be left unprocessed. After the timer expires, check the status of the two paths again to determine whether to perform protection switching.
  • Node B in Figure 2(a) may correspond to the sink node of the protection group in the embodiment of the present invention, and the node A may correspond to other nodes connected to the sink node.
  • the current detection when it is detected that the first path of the current working of the node fails, or when it is detected that the fault of the second path where the node is currently inactive disappears, the current detection may be started.
  • the path timer that is, the delay operation of the protection switching is set on the path where the detection is performed, and the delay operation can also be set at the place where the node performs protection switching control.
  • the start timing is a timer of the fault confirmation time, and includes:
  • the timer is turned on;
  • the timer When it is detected that the fault of the second path disappears and the first path has a fault, the timer is turned on.
  • FIG. 2(a) is taken as an example.
  • the node B currently works on the first path (also referred to as Node B is selected on the first path, that is, node A sends the service signal to node B through the first path and the second path, and node B selects only the service signal on the first path to transmit to the next node.
  • the Node B continuously detects the status of the two paths, or monitors the indication messages reported by the two paths in real time, and detects that the first path of the current selection fails, and the second path that is not currently selected has no fault (the status is normal).
  • the timer with the time of the failure confirmation is turned on. .
  • the Node B may not detect the status of the first path and the second path before the timer expires, or may perform no processing even if the indication information about the status change reported by the two paths is received. After the timer expires, check the status of the two paths again to determine whether to perform protection switching.
  • Node B in Figure 2(a) may correspond to the sink node of the protection group in the embodiment of the present invention, and the node A may correspond to other nodes connected to the sink node.
  • the states of the first path and the second path are re-detected.
  • the fault confirmation time is 10 ms
  • the timing is 10 ms
  • S140 when the timer expires, it is determined whether to perform protection switching according to the re-detected states of the first path and the second path. Specifically, when it is detected that the states of the two paths are the same, for example, there is also a fault, or when both paths are in a normal state, the protection switching is not performed, that is, the node is still operated on the first path of the initial selection; or When it is detected that the state of the first path where the current work is normal, the state of the non-working second path may be no longer considered, and the update is The state of the first path continues to work on the first path.
  • determining whether to perform protection switching includes:
  • the node B initially works on the first path.
  • the timer expires, the state of the two paths is re-detected, and the first path is found to be normal, and is determined not to be executed.
  • the protection switching of the node B can update the state of the first path, and the node B continues to work (also referred to as selection) on the first path; or detects that both paths have faults, and also determines that the protection of the node B is not performed. Switched.
  • determining whether to perform protection switching includes:
  • the protection switching is performed, so that the sink node of the protection group disconnects the first path, and on the second path Select business.
  • the Node B initially works on the first path, and when the timer expires, the state of the two paths is re-detected, and the first path is found. If there is a fault, the second path is normal, and it is determined that the protection switching is performed. Specifically, as shown in FIG. 2(b), the node B is disconnected from the first path, and the second path is connected, that is, the node B works on the second path. , that is, the protection switching of node B is completed.
  • the path mentioned is faulty or the fault of the path disappears.
  • the failure of the first path may refer to the failure of the service signal on the first path (Signal Fail, referred to as "SF". ,), or the service signal degradation (Signal Degrade, abbreviated as "SD,”) on the first path, or may be the service signal on the first path changed from SD to SF, etc., or other signal quality is weakened.
  • the embodiment of the present invention does not limit this.
  • the fault of the second path disappears, which may be that the service signal on the second path is changed from SD to SD, or the service signal on the second path is restored by SF or SD, or other signals are invalid.
  • the embodiment of the present invention is not limited to the case where the signal quality is changed from the difference.
  • the method of protection switching is difficult to effectively avoid the protection switching of the node invalidation.
  • the invalid protection switching makes the service selection on the non-original selection path, and on the other hand increases the switching event caused by the protection switching or The report of the switching alarm is frequently reported. These switching events and switching alarms are frequently absent. Effectively affects the efficiency of network maintenance.
  • the protection switching method of the embodiment of the present invention when it is detected that the path of the current working of the node is faulty, or the current non-working path fault disappears, the timer is started, and when the timer expires, the timer is started, and when the timer expires, By detecting the status of the two paths, it is determined whether to perform protection switching, which can effectively avoid invalid protection switching, improve the efficiency of protection switching of nodes, and reduce the impact of invalid protection switching on network maintenance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the protection switching method of the embodiment of the present invention when detecting that the path of the current working of the node is faulty, or when the current non-working path fault disappears, by turning on the timer, and when the timer expires, the two are detected again.
  • the status of the path determines whether to perform protection switching. It can effectively avoid invalid protection switching, improve the efficiency of node protection switching, and reduce the impact of invalid protection switching on network maintenance.
  • a method 200 for protection switching may be performed, for example, by a control device, and the method 200 includes:
  • the service path includes a first path and a second path between the first node and the second node;
  • S230 Determine a fault confirmation time of the sink node of the protection group.
  • S240. Send an indication message including the fault confirmation time to the sink node of the protection group, and use the indication to perform protection switching of the sink node of the protection group according to the fault confirmation time.
  • the protection switching method of the embodiment of the present invention by sending an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, the invalid protection switching can be effectively avoided, and the node protection can be improved.
  • the efficiency of switching by sending an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, the invalid protection switching can be effectively avoided, and the node protection can be improved.
  • the service path has two paths between the node A and the node B, and the first Path and second path, assuming that the direction of the service path is as shown in Figure 2, from node A to node B, there are two service signal sources at the entrance of node B, and node B selects only one source at the same time, that is, only selects Working on a path, as shown in Figure 2(a), Node B is currently working on the first path.
  • the first path can be called the primary path and the second path is called the alternate path.
  • the node B disconnects the first path and connects the second path, and the path to be worked is converted from the first path to the second path, such as As shown in Figure 2(b), this process can be referred to as a protection switching of Node B.
  • a structure similar to a dual-select switch formed by two source ends and one sink end in the node B may be referred to as a protection group of the node B, that is, it may be understood as a change by changing the protection group.
  • the switch is selected to implement the protection switching of the node B.
  • protection group mentioned above may specifically be a Sub Network Connection Protection ("SNCP") group in the ASON network, and may also be other types of protection groups. No particular limitation is imposed.
  • SNCP Sub Network Connection Protection
  • the service path passes through the first node and the second node that are connected to each other, and the service path is reused in the ingress time slot of the first node, the egress is separated, and the time slot is separated and exited at the second node.
  • the service path includes a first path and a second path between the first node and the second node; and in S220, the second node is determined as a sink node of the protection group.
  • the service path is reused in the ingress slot of the node A (ie, the service path is a service path at the ingress of the node), and the egress is separated (ie, there are at least two exits at the node).
  • Service path) the node B is separated (that is, the interface of the node has at least two service paths), and the egress slot is reused (that is, the service path is merged into a service path at the egress of the node), and the node B can be The sink node of the protection group in the embodiment of the invention.
  • the other node may also pass through the path between the first node and the second node, that is, the first node and the second node may be adjacent nodes, or may be non-adjacent nodes. It is not limited as long as the first node and the second node are connected on the service path, and include two paths.
  • determining a failure confirmation time of the sink node of the protection group may be determined according to a delay difference between the first node and the second node.
  • S230 determines a fault confirmation time of the sink node of the protection group, including:
  • the fault confirmation time is determined according to a delay difference between the first path and the second path. Specifically, when the distance difference between the first path and the second path is within 1000 km, determining that the defect determination time is 10 ms;
  • the defect determination time is determined to be 20 ms
  • the defect determination time is determined to be 30 ms.
  • fault acknowledgment time may be determined according to the busyness of the CPUs of the two paths, which is not limited by the embodiment of the present invention.
  • the fault confirmation time does not exceed 30 ms.
  • the time of the protection switching is generally within 50 ms, that is, the technical solution in the embodiment of the present invention can solve the problem of invalid protection switching by the fault confirmation time, and generally does not cause the protection switching time of the protection group. For more than 50ms, avoid affecting the protection switching performance of the protection group.
  • control device sends an indication message including the fault confirmation time to the sink node of the protection group, and is used to indicate that the protection switching of the sink node of the protection group is performed according to the fault confirmation time.
  • the indication message may specifically be a path establishment message or the like, which is not limited by the embodiment of the present invention.
  • the indication message is a path establishment message.
  • the path setup message may be a signaling message sent by the control device, such as a Resource Reservation Protocol ("RS VP") signaling.
  • RS VP Resource Reservation Protocol
  • the node is a protection group as an SNCP protection group.
  • the object ⁇ SNCP_DETECTION_CONFIRM> is included, as follows:
  • Detect-Confirm-Time is the fault confirmation time of the SNCP protection group, occupying 16 bits, the unit is ms;
  • Dir is the service direction indication information, occupied Two bits, when the value is 0, indicates a forward service, and a value of 1 indicates a reverse service. For example, set the fault confirmation time Detect-Confirm-Time of the SNCP protection group to 10ms, and set the service direction indication information Dir according to the actual service direction.
  • the node receives the RSVP signaling, and by analyzing the Path message, it can learn that the protection switching of the protection node is performed according to the failure confirmation time.
  • control device may send the indication message to the node in other forms, which is not limited by the embodiment of the present invention.
  • the indication message may simultaneously indicate a configuration protection switching mechanism (hereinafter referred to as a configuration protection group) and a protection switching of the sink node of the protection group according to the failure confirmation time.
  • a configuration protection switching mechanism hereinafter referred to as a configuration protection group
  • the SNCP in the ASON network is taken as an example and described in detail in conjunction with FIG. 4.
  • the traffic is transmitted from Site A to Site 0 through the ASON network.
  • the current route is ABCD
  • the path between the BC sites is bc.
  • the service needs to be rerouted for some reason.
  • the signaling module of the control device requests the routing module to calculate the path. After the path calculation, the routing module finds that the new service path is ABCD, and the path between the BC sites is BC.
  • the service is reused in the ingress slot of the new and old path of the Node B, and the egress is separated, and the downstream C node is separated, but the egress slot is reused.
  • the SNCP protection group needs to be established in the same direction of the signal flow, and the SNCP needs to be configured with the "failure confirmation time" because, for example, if the fiber between the AB sites is interrupted, the primary and secondary channels (BC and be) of the SNCP at the C site will fail at the same time. .
  • the routing module calculates the path, it is calculated that the SNCP needs to be established in the reverse direction of the B node, and the "failure confirmation time" needs to be configured for the SNCP.
  • the routing module returns the information of the "failure confirmation time" of the SNCP in the forward direction of the C-node service to the signaling module as a result of the calculation.
  • the signaling module receives the information returned by the routing module.
  • the signaling adds a ⁇ SNCP_DETECTION_CONFIRM> object, fills in the SNCP fault confirmation time of 10ms, and the service direction information.
  • Detect-Confirm-Time SNCP fault confirmation time, 16 Bits, in ms. Dir: indicates the direction of the SNCP for the two-way service. Two bits, with a value of 0, indicate a forward service, and a value of 1, indicating a reverse service.
  • the signaling module starts the establishment of the service path.
  • the establishment process is completed by the signaling module initiating the RSVP path message.
  • the ⁇ SNCP_DETECTION_CONFIRM> object is added to the Path message to carry the information to be configured for the SNCP to configure the fault confirmation time. Corresponding site.
  • the Path message will be transmitted along the service path.
  • the signaling will take the ⁇ SNCP_DETECTION_CONFIRM> object information from the message, so that the C site knows that the SNCP needs to be established when establishing a new service path, and the SNCP needs to be configured. Failure confirmation time.
  • the signaling will also retrieve the ⁇ SNCP_DETECTION_CONFIRM> object information from the path message, so that the B site knows that the SNCP needs to be established when establishing a new path for the reverse service, and this The SNCP needs to configure the fault confirmation time.
  • Corresponding sites (C site and B site) get the information about the fault confirmation time for the established SNCP, notify the SNCP protocol module to create the SNCP protection group and configure the fault confirmation time to the SNCP protocol module.
  • the node with the fault confirmation time needs to be configured (when the service is positive: station Point C, when the service is reversed: Site B) corresponds to the sink node of the protection group of the embodiment of the invention.
  • the present invention is not intended to limit the scope of the embodiments of the present invention. A person skilled in the art will be able to make various modifications or changes in the embodiments according to the examples given, and such modifications or variations are also within the scope of the embodiments of the invention.
  • the method of protection switching is difficult to effectively avoid the protection switching of the node invalidation.
  • the invalid protection switching makes the service selection on the non-original selection path, and on the other hand increases the switching event caused by the protection switching or The report of the switching alarms, which frequently invalidate these switching events and switching alarms, affects the efficiency of network maintenance.
  • the method for protection switching in the embodiment of the present invention can effectively prevent the invalid protection switching by transmitting an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time. Improve the efficiency of node protection switching and reduce the impact of invalid protection switching on network maintenance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • sink node of the protection group in the protection switching method 200 of the embodiment of the present invention may correspond to the node B in FIG. 2 (a) and (b), or may correspond to the site C in FIG. 4,
  • the embodiment of the invention is not limited thereto.
  • the protection switching method of the embodiment of the present invention by sending an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, the invalid protection switching can be effectively avoided, and the node can be improved. Protect the efficiency of switching and reduce the impact of invalid protection switching on network maintenance.
  • FIG. 5 shows a schematic block diagram of a node 300 in accordance with an embodiment of the present invention.
  • the node includes:
  • the receiving module 310 is configured to receive an indication message that includes a fault confirmation time, where the indication message is used to indicate that protection switching of the sink node of the protection group is performed according to the fault confirmation time;
  • the timing module 320 is configured to: when detecting that the first path is faulty, or when detecting that the fault of the second path disappears, turning on a timer whose timing is the fault confirmation time received by the receiving module, where the first The path is a path for selecting a service of the node, and the second path is a path for the non-selected service of the node;
  • the detecting module 330 is configured to re-detect the states of the first path and the second path when determining that the timer of the timing module times out;
  • the determining module 340 is configured to determine whether to perform protection switching according to the result of the re-detection of the detecting module.
  • the timer that starts the time is the fault confirmation time, and when it is determined that the timer expires, according to the two paths.
  • the current state determines whether to perform protection switching, which can effectively avoid invalid protection switching, thereby improving the efficiency of protection switching.
  • the timing module is specifically configured to: when detecting that the first path fails, turn on the timer of the first path; or the timing The module is specifically configured to: when detecting that the fault of the second path disappears, turn on the timer of the second path.
  • the timing module is specifically configured to: when the first path is detected to be faulty, and the second path does not have a fault, the timer is started. ; or
  • the timing module is specifically configured to: when the fault of the second path is detected to disappear, and the first path has a fault, the timer is turned on.
  • the determining module is specifically configured to: when the result of the re-detection is that the first path does not have a fault, or the first path and the second When there is a fault in the path, it is determined that the protection switching is not performed.
  • the determining module is specifically configured to: when the result of the re-detection is that the first path has a fault, and the second path has no fault, determine Performing protection switching causes the node to disconnect the first path and select a service on the second path.
  • the receiving module receives The failure confirmation time is determined by the control device according to a delay difference between the first path and the second path.
  • the indication message received by the receiving module is a path establishment message.
  • the node 300 may correspond to the sink node of the protection group in the protection switching method 100 of the embodiment of the present invention, the sink node of the protection group in the protection switching method 200, and the corresponding The node B in FIG. 2 may also correspond to the site C in FIG. 4, and the above-mentioned and other operations and/or functions of the respective modules in the node 300 are respectively implemented in order to implement the respective processes of the respective methods in FIGS. 1 to 4. For the sake of brevity, it will not be repeated here.
  • the path mentioned is faulty or the fault of the path disappears.
  • the failure of the first path may refer to the failure of the service signal on the first path (Signal Fail, referred to as "SF". ,), or the service signal degradation (Signal Degrade, abbreviated as "SD,”) on the first path, or may be the service signal on the first path changed from SD to SF, etc., or other signal quality is weakened.
  • the embodiment of the present invention does not limit this.
  • the fault of the second path disappears, which may be that the service signal on the second path is changed from SD to SD, or the service signal on the second path is restored by SF or SD, or other signals are invalid.
  • the embodiment of the present invention is not limited to the case where the signal quality is changed from the difference.
  • the method of protection switching is difficult to effectively avoid the protection switching of the node invalidation.
  • the invalid protection switching makes the service selection on the non-original selection path, and on the other hand increases the switching event caused by the protection switching or The report of the switching alarms, which frequently invalidate these switching events and switching alarms, affects the efficiency of network maintenance.
  • the timer when it is detected that the path of the current working of the node is faulty, or the current non-working path fault disappears, the timer is started, and when the timer expires, the device detects again.
  • the status of the two paths determines whether to perform protection switching. It can effectively avoid invalid protection switching, improve the efficiency of node protection switching, and reduce the impact of invalid protection switching on network maintenance.
  • nodes of the embodiments of the present invention can be applied to non-ASON networks by using a "failure acknowledgement time” mechanism to avoid invalid protection switching. It should also be understood that the "failure confirmation time”, the mechanism can also be applied to other "double-issue” scenarios, which are not specifically limited by the embodiments of the present invention.
  • the node of the embodiment of the present invention detects that the path of the current working of the node is faulty.
  • the timer is turned on, and when the timer expires, the status of the two paths detected again is used to determine whether to perform protection switching, which can effectively avoid invalid protection switching and improve the node.
  • the efficiency of protection switching and reduces the impact of invalid protection switching on network maintenance.
  • FIG. 6 shows a schematic block diagram of a control device 400 in accordance with an embodiment of the present invention.
  • the control device 400 includes:
  • the first determining module 410 is configured to determine that the service path is connected to the first node and the second node that are connected to each other, and the service path is reused in the ingress time slot of the first node, and the egress is separated, and is separated at the entrance of the second node.
  • the egress time slot is reused, and the service path includes a first path and a second path between the first node and the second node;
  • a second determining module 420 configured to determine, by the first determining module, the second node as a sink node of the protection group
  • a third determining module 430 configured to determine a fault confirmation time of a sink node of the protection group determined by the second determining module
  • the sending module 440 is configured to send, to the sink node of the protection group determined by the third determining module, an indication message including the fault confirmation time, to indicate that the protection switching of the protection node is performed according to the fault confirmation time.
  • control device of the embodiment of the present invention can send an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, which can effectively avoid invalid protection switching, and can improve node protection switching. effectiveness.
  • the third determining module is specifically configured to determine the fault confirmation according to a delay difference between the first path and the second path. time.
  • determining that the defect determination time is 10 ms
  • the defect determination time is determined to be 20 ms
  • the defect determination time is determined to be 30 ms. It should be understood that the second determining module may further determine the fault confirmation time according to the busyness of the CPUs of the first path and the second path, which is not limited by the embodiment of the present invention.
  • the indication message sent by the sending module is a path establishment message.
  • the fault confirmation time determined by the second determining module does not exceed 30 ms.
  • the time of the protection switching is generally within 50 ms, that is, the technical solution in the embodiment of the present invention can solve the problem of invalid protection switching by the fault confirmation time, and generally does not cause the protection switching time of the protection group. For more than 50ms, avoid affecting the protection switching performance of the protection group.
  • the sending module 430 sends an indication message including the fault confirmation time to the sink node of the protection group determined by the second determining module, and can simultaneously indicate that the sink node of the protection group configures a protection switching mechanism (hereinafter referred to as configuration). Protection group) and protection switching of the sink node of the protection group according to the failure confirmation time.
  • configuration a protection switching mechanism
  • the method of protection switching is difficult to effectively avoid the protection switching of the node.
  • the invalid protection switching makes the service selection on the non-original selection path, and on the other hand increases the switching event caused by the protection switching or The report of the switching alarms, which frequently invalidate these switching events and switching alarms, affects the efficiency of network maintenance.
  • control device of the embodiment of the present invention can send an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, thereby effectively avoiding invalid protection switching and improving the node.
  • the efficiency of protection switching and reduces the impact of invalid protection switching on network maintenance.
  • control device 400 may correspond to the control device in the method of protection switching of the embodiment of the present invention, and that the above and other operations and/or functions of the respective modules in the control device 400 are respectively implemented for The corresponding processes of the respective methods in FIG. 1 to FIG. 4 are not described herein again for the sake of brevity.
  • an embodiment of the present invention further provides a node 500, which includes a processor 510, a memory 520, a bus system 530, and a receiver 540.
  • the processor 510 save The memory 520 and the receiver 540 are coupled by a bus system 530 for storing instructions for executing instructions stored by the memory 520 to control the receiver 540 to receive signals.
  • the receiver 540 is configured to receive an indication message that includes a fault acknowledgement time, where the indication message is used to indicate protection switching of the sink node of the protection group according to the fault confirmation time; and the processor 510 is configured to: when detecting When a path is faulty, or when the fault of the second path is detected to be lost, the timer is set to be the timer for the fault confirmation time, where the first path is the path of the node selection service, and the second path is The processor 510 is further configured to: when determining that the timer expires, re-detecting the states of the first path and the second path; the processor 510 is further configured to perform, according to the re-detection As a result, it is determined whether or not to perform protection switching.
  • the timer that starts the time is the fault confirmation time, and when it is determined that the timer expires, according to the two paths.
  • the current state determines whether to perform protection switching, which can effectively avoid invalid protection switching, thereby improving the efficiency of protection switching.
  • the processor 510 is specifically configured to: when detecting that the first path fails, turn on the timer of the first path; or
  • the processor 510 is specifically configured to: when it detects that the fault of the second path disappears, turn on the timer of the second path.
  • the processor 510 is specifically configured to: when detecting that the first path fails, and the second path does not have a fault, turn on the timer; or
  • the processor 510 is specifically configured to: when the fault of the second path is detected to be lost, and the first path has a fault, the timer is turned on.
  • the processor 510 is specifically configured to: when the result of the re-detection is that the first path does not have a fault, or the first path and the second path are both faulty, determining not to perform Protection switching.
  • the processor 510 is specifically configured to: when the result of the re-detection is that the first path has a fault, and the second path does not have a fault, determine to perform a protection switching, so that the node is disconnected. The first path, and the service is selected on the second path.
  • the indication message received by the receiver 540 is a path establishment message.
  • the processor 510 may be a central processing unit (Central)
  • the processor 510 can also be other general-purpose processors, Digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • DSP Digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor 510 may be any conventional processor or the like.
  • the memory 520 can include read only memory and random access memory and provides instructions and data to the processor 510. A portion of memory 520 may also include non-volatile random access memory. For example, the memory 520 can also store information of the device type.
  • the bus system 530 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 530 in the figure.
  • the steps of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 520.
  • the processor 510 reads the information in the memory 520 and completes the steps of the above method in combination with the hardware. To avoid repetition, it will not be described in detail here.
  • the node 500 may correspond to the sink node of the protection group in the protection switching method 100 of the embodiment of the present invention, and may also correspond to the sink node of the protection group in the method 200 for protection switching. It may also correspond to the Node B in FIG. 2, may also correspond to the site C in FIG. 4, may also correspond to the node 300 according to an embodiment of the present invention, and the above and other operations of the respective modules in the node 500 and/or For the sake of brevity, the functions of the respective methods in FIG. 1 to FIG. 4 are not described herein.
  • the node of the embodiment of the present invention when detecting that the path of the current working of the node is faulty, or the current non-working path fault disappears, by opening the timer, and when the timer expires, the two paths are detected again.
  • the status determines whether to perform protection switching. It can effectively avoid invalid protection switching, improve the efficiency of node protection switching, and reduce the impact of invalid protection switching on network maintenance.
  • an embodiment of the present invention further provides a control device 600, which includes a processor 610, a memory 620, a bus system 630, and a transmitter 640.
  • the processor 610, the memory 620 and the transmitter 640 are connected by a bus system 630, and the memory 620 is used for
  • the processor 610 is configured to execute an instruction stored in the memory 620 to control the transmitter 640 to transmit a signal.
  • the processor 610 is configured to determine that the service path is connected to the first node and the second node that are connected to each other, and the service path is reused in the ingress time slot of the first node, and the egress is separated, and is separated at the entrance of the second node.
  • the egress timer is reused, and the service path includes a first path and a second path between the first node and the second node.
  • the processor 610 is further configured to determine the second node as a sink of the protection group.
  • the processor 610 is further configured to determine a fault confirmation time of the sink node of the protection group, and the sender 640 is configured to send, to the sink node of the protection group, an indication message including the fault confirmation time, for indicating The protection switching of the sink node of the protection group is performed according to the failure confirmation time.
  • control device of the embodiment of the present invention can send an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, which can effectively avoid invalid protection switching, and can improve node protection switching. effectiveness.
  • the processor 610 is specifically configured to determine the fault confirmation time according to a delay difference between the first path and the second path.
  • the indication message sent by the sender 640 is a path establishment message.
  • the processor 610 may be a central processing unit (Central)
  • the processor 610 can also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic. Devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor 610. A portion of memory 620 may also include non-volatile random access memory. For example, the memory 620 can also store information of the device type.
  • the bus system 630 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 630 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read only memory, programmable only Read memory or electrically erasable programmable memory, registers, etc., which are well-established in the field of storage media.
  • the storage medium is located in the memory 620.
  • the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with hardware. To avoid repetition, it will not be described in detail here.
  • control device 600 may correspond to the control device in the method of protection switching of the embodiment of the present invention, may also correspond to the control device 400 according to an embodiment of the present invention, and control each of the devices 600
  • the above and other operations and/or functions of the modules are respectively implemented in order to implement the respective processes of the respective methods in FIG. 1 to FIG. 4, and are not described herein again for brevity.
  • control device of the embodiment of the present invention can send an indication message including a failure confirmation time to the node, so that the node performs protection switching according to the failure confirmation time, which can effectively avoid invalid protection switching, and can improve protection switching of the node. Efficiency, and reduce the impact of invalid protection switching on network maintenance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • Another point that is shown or discussed between each other The coupling or direct connection or communication connection may be an indirect connection or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供一种保护倒换的方法、节点和控制设备,该方法包括:接收到包括故障确认时间的指示消息,该指示消息用于指示根据该故障确认时间进行保护倒换;当检测到第一路径发生故障时,或者当检测到第二路径的故障消失时,开启定时时间为该故障确认时间的定时器;当确定该定时器超时时,重新检测该第一路径和该第二路径的状态;根据该第一路径和该第二路径的重新检测的结果,确定是否执行保护倒换。本发明实施例的保护倒换的方法、节点和控制设备,能够有效避免无效的保护倒换,从而能够提高保护倒换的效率。

Description

保护倒换的方法、 节点和控制设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种保护倒换的方法、 节点和控制设备。 背景技术
子网连接保护( Sub Network Connection Protection, 简称为 SNCP )是一 种通道层的保护, 这种保护机制的最大特点是可以适用于各种网络拓朴结 构, 例如网孔型、 链型、 环型或任意混合拓朴。 SNCP在网络应用中即可以 用来保护完全的端到端通道, 又可以仅保护通道的一部分。 例如在自动光交 换网络( Automatically Switched Optical Network, 简称为 ASON ) 中, 当创 建 1+1业务时, 就会创建 SNCP保护组来实现业务的双发选收; 当创建 1:1 业务时, 会创建 SNCP保护组来实现业务的选发选收。
在实际网络中, 例如在 ASON中, 如果发生断纤, 可能导致一个 SNCP 保护组的工作路径和保护路径"同时"故障; 如果断纤修复, SNCP保护组的 工作路径和保护路径故障也就"同时"消失了。 其中, 在 SNCP保护组的工作 路径和保护路径"同时"故障的场景下, 可能会由于各种影响因素, 导致检测 到工作、 保护路径故障的时间不同, 这些影响因素有工作路径和保护路径的 光纤长度不同, 或者工作路径和保护路径在不同的板卡上, 其各自 CPU的 忙闲程度不同等。 例如一个 SNCP保护组工作在工作路径时, 先检测到工作 路径出现故障, 就会触发保护倒换, 倒换后工作在保护路径上, 马上又检测 到保护路径出现故障, 就造成一次无效的保护倒换。
在 SNCP保护组的工作路径和保护路径"同时"故障消失的场景下, 同样 的也会由于各种影响因素,导致检测到工作、保护路径故障消失的时间不同。 例如一个 SNCP保护组工作在工作路径时, 先检测到保护路径故障消失, 发 起保护倒换, 更改为工作在保护路径, 可能倒换后马上又会检测到工作路径 故障也消失, 这样也导致了一次无效保护倒换。
上述两种情况下的无效保护倒换, 导致业务选收在非原始的选收路径 上, 会增加因保护倒换带来的倒换事件或倒换告警的上报, 这些倒换事件和 倒换告警频繁无效的上报会影响对网络的维护的效率。 目前还没有相关针对上述无效保护倒换的问题的技术方案。 发明内容
本发明实施例提供一种保护倒换的方法和节点, 能够解决无效的保护倒 换的问题。
第一方面提供了一种保护倒换的方法, 该方法包括:
保护组的宿端节点接收到包括故障确认时间的指示消息, 该指示消息用 于指示根据该故障确认时间进行该保护组的宿端节点的保护倒换;
当检测到第一路径发生故障时, 或者当检测到第二路径的故障消失时, 该保护组的宿端节点开启定时时间为该故障确认时间的定时器, 其中, 该第 一路径为该保护组的宿端节点选收业务的路径, 该第二路径为该保护组的宿 端节点非选收业务的路径;
当该保护组的宿端节点确定该定时器超时时, 重新检测该第一路径和该 第二路径的状态;
该保护组的宿端节点根据该第一路径和该第二路径的重新检测的结果, 确定是否执行保护倒换。
结合第一方面, 在第一方面的第一种可能的实现方式中, 开启定时时间 为该故障确认时间的定时器, 包括:
当检测到该第一路径发生故障时, 开启该第一路径的该定时器; 或 当检测到该第二路径的故障消失时, 开启该第二路径的该定时器。 结合第一方面, 在第一方面的第二种可能的实现方式中, 该开启定时时 间为该故障确认时间的定时器, 包括:
当检测到该第一路径发生故障, 且该第二路径不存在故障时, 开启该定 时器; 或
当检测到该第二路径的故障消失, 且该第一路径存在故障时, 开启该定 时器。
结合第一方面和第一方面的第一种和第二种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第三种可能的实现方式中, 确定是否执行 保护倒换, 包括:
当重新检测的结果为该第一路径不存在故障时, 或者该第一路径与该第 二路径均存在故障时, 确定不执行保护倒换。 结合第一方面和第一方面的第一种和第二种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第四种可能的实现方式中, 确定是否执行 保护倒换, 包括:
当重新检测的结果为该第一路径存在故障, 且该第二路径不存在故障 时, 确定执行保护倒换, 使得该保护组的宿端节点断开该第一路径, 且在该 第二路径上选收业务。
结合第一方面和第一方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第五种可能的实现方式中, 该故障确认时 间为该控制设备根据该第一路径和该第二路径之间的时延差确定。
结合第一方面和第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第六种可能的实现方式中, 该指示消息为 路径建立消息。
第二方面, 提供了一种保护倒换的方法, 该方法包括:
确定业务路径经过互相连接的第一节点和第二节点,且该业务路径在该 第一节点的入口时隙重用、 出口分离, 并在该第二节点的入口分离、 出口时 隙重用, 该业务路径在该第一节点和该第二节点之间包括第一路径和第二路 径;
将该第二节点确定为保护组的宿端节点;
确定该保护组的宿端节点的故障确认时间;
向该保护组的宿端节点发送包括该故障确认时间的指示消息, 用于指示 根据该故障确认时间进行该保护组的宿端节点的保护倒换。
结合第二方面, 在第二方面的第一种可能的实现方式中, 确定该保护组 的宿端节点的故障确认时间, 包括:
根据该第一路径和该第二路径之间的时延差, 确定该故障确认时间。 结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二 种可能的实现方式中, 该指示消息为路径建立消息。
第三方面提供了一种节点, 该节点包括:
接收模块, 用于接收包括故障确认时间的指示消息, 该指示消息用于指 示根据该故障确认时间进行该节点的保护倒换;
定时模块, 用于当检测到第一路径发生故障时, 或者当检测到第二路径 的故障消失时, 开启定时时间为该接收模块接收的该故障确认时间的定时 器, 其中, 该第一路径为该节点选收业务的路径, 该第二路径为该节点非选 收业务的路径;
检测模块, 用于当确定该定时模块的该定时器超时时, 重新检测该第一 路径和该第二路径的状态;
确定模块, 用于根据该检测模块的该重新检测的结果, 确定是否执行保 护倒换。
结合第三方面, 在第三方面的第一种可能的实现方式中, 该定时模块具 体用于, 当检测到该第一路径发生故障时, 开启该第一路径的该定时器; 或 该定时模块具体用于, 当检测到该第二路径的故障消失时, 开启该第二 路径的该定时器。
结合第三方面, 在第三方面的第二种可能的实现方式中, 该定时模块具 体用于, 当检测到该第一路径发生故障, 且该第二路径不存在故障时, 开启 该定时器; 或
该定时模块具体用于, 当检测到该第二路径的故障消失, 且该第一路径 存在故障时, 开启该定时器。
结合第三方面和第三方面的第一种和第二种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第三种可能的实现方式中, 确定模块具体 用于, 当重新检测的结果为该第一路径不存在故障时, 或者该第一路径与该 第二路径均存在故障时, 确定不执行保护倒换。
结合第三方面和第三方面的第一种和第二种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第四种可能的实现方式中, 该确定模块具 体用于, 当重新检测的结果为该第一路径存在故障, 且该第二路径不存在故 障时, 确定执行保护倒换, 使得该节点断开该第一路径, 且在该第二路径上 选收业务。
结合第三方面和第三方面的第一种至第四种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第五种可能的实现方式中, 该接收模块接 收的该故障确认时间为该控制设备根据该第一路径和该第二路径之间的时 延差确定。
结合第三方面和第三方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式, 在第三方面的第六种可能的实现方式中, 该接收模块接 收的该指示消息为路径建立消息。 第四方面提供了一种控制设备, 该控制设备包括:
第一确定模块, 用于确定业务路径经过互相连接的第一节点和第二节 点, 且该业务路径在该第一节点的入口时隙重用、 出口分离, 并在该第二节 点的入口分离、 出口时隙重用, 该业务路径在该第一节点和该第二节点之间 包括第一路径和第二路径;
第二确定模块,用于将该第一确定模块确定的该第二节点确定为保护组 的宿端节点;
第三确定模块,用于确定该第二确定模块确定的该保护组的宿端节点的 故障确认时间;
发送模块, 用于向该第三确定模块确定的该保护组的宿端节点发送包括 该故障确认时间的指示消息, 用于指示根据该故障确认时间进行该保护组的 宿端节点的保护倒换。
结合第四方面, 在第四方面的第一种可能的实现方式中, 该第三确定模 块具体用于, 根据该第一路径和该第二路径之间的时延差, 确定该故障确认 时间。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二 种可能的实现方式中, 该发送模块发送的该指示消息为路径建立消息。
综上所述, 本发明实施例的保护倒换的方法、 节点和控制设备, 当检测 到节点当前工作的路径发生故障或者非工作的路径故障恢复时, 开启定时时 间为故障确认时间的定时器, 当确定定时器超时时, 根据两条路径当前的状 态, 确定是否执行保护倒换, 能够有效避免无效的保护倒换, 从而能够提高 保护倒换的效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1示出了本发明实施例的保护倒换的方法的示意性流程图。
图 2(a)和图 2(b)示出了本发明实施例的保护倒换的方法的示意图。 图 3示出了本发明另一实施例的保护倒换的方法的示意性流程图。 图 4示出了本发明另一实施例的保护倒换的方法的另一示意性流程图。 图 5示出了本发明实施例的节点的示意性框图。
图 6示出了本发明实施例的控制设备的示意性框图。
图 7示出了本发明另一实施例提供的节点的示意性框图。
图 8示出了本发明另一实施例提供的控制设备的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
还应理解,在本发明实施例中,控制设备也可称为控制层面或控制平面, 例如自动光交换网络 ( Automatically Switched Optical Network , 简称为 "ASON" ) 中的控制平面, 本发明实施例对此不作限定。
还应理解, 在本发明实施例中, 节点还可以称为站点, 具体地, 本发明 实施例中的节点具体地, 可以是同步数字体系 ( Synchronous Digital Hierarchy, 简称为 "SDH" )传送网、 光传送网 ( Opikal Transport Network, 简称为 "OTN" )、 多协议标签交换(Multi-Protocol Label Switching, 简称为 "MPLS" ) 网络或以太网等网络中的节点, 本发明实施例对此不作限定。
自动光交换网络 ASON是新一代光传送网络,也称智能光网络。 它在传 统光网络中引入了控制平面, 通过信令和路由协议等元件的配合, 可以实现 资源发现、 业务端到端发放、 重路由恢复等功能增强了网络连接管理和故障 恢复能力。 相对于传统网络, 在业务配置、 带宽利用率和保护方式上更具优 势。
在 ASON网络中, ASON创建 1+1业务时,就会创建 SNCP保护组来实 现业务的双发选收。 ASON网络中的 SNCP是由控制平面自动创建或删除的。
以下, 为了便于理解和说明, 作为示例而非限定, 以将本发明的保护倒 换的方法、 节点和控制设备在 ASON网络中的执行过程和动作进行说明。
图 1示出了本发明实施例的保护倒换的方法 100的示意性流程图,该方 法 100例如可以由保护组的宿端节点来执行,如图 1所示,该方法 100包括: S110, 保护组的宿端节点接收到包括故障确认时间的指示消息, 该指示 消息用于指示根据该故障确认时间进行该保护组的宿端节点的保护倒换;
S120, 当检测到第一路径发生故障时, 或者当检测到第二路径的故障消 失时,该保护组的宿端节点开启定时时间为该故障确认时间的定时器,其中, 该第一路径为该保护组的宿端节点选收业务的路径,该第二路径为该保护组 的宿端节点非选收业务的路径;
S130, 当该保护组的宿端节点确定该定时器超时时, 重新检测该第一路 径和该第二路径的状态;
S140,该保护组的宿端节点根据该第一路径和该第二路径的重新检测的 结果, 确定是否执行保护倒换。
具体地, 保护组的宿端节点根据接收到的包括故障确认时间的指示消 息, 进行保护倒换, 当检测到该节点当前工作的第一路径发生故障时, 或非 工作的第二路径故障恢复时, 开启定时时长为该故障确认时间的定时器, 具 体地, 该定时器可以是当前所检测所在的路径上的定时器, 也可以是该节点 的基于控制协议的定时器, 本发明实施例对此不作限定; 当确定该定时器超 时时,检测两条路径的状态;根据该第一路径和该第二路径的该检测的结果, 确定是否执行保护倒换。
因此, 本发明实施例的保护倒换的方法, 当检测到节点当前工作的路径 发生故障或者非工作的路径故障恢复时, 开启定时时间为故障确认时间的定 时器, 当确定定时器超时时, 根据两条路径当前的状态, 确定是否执行保护 倒换, 能够有效避免无效的保护倒换, 从而能够提高保护倒换的效率。
为了方便本领域技术人员更好地理解本发明实施例提供的技术方案, 下 面结合图 2详细描述保护倒换的方法, 具体地, 如图 2(a)所示, 例如业务路 径在节点 A和节点 B之间具有两条路径, 第一路径和第二路径, 假设业务 路径的方向如图 2所示为从节点 A流向节点 B, 在节点 B的入口有两个业 务信号源,节点 B同一时刻只选收一个信号源,即只选择工作在一个路径上, 如图 2(a)所示, 节点 B当前工作在第一路径上, 这种场景下, 第一路径可以 称为主用路径, 第二路径称为备用路径。 当当前工作的第一路径发生故障, 且当前备用的第二路径状态正常时,节点 B断开第一路径,并连接第二路径, 即将工作的路径由第一路径变换为第二路径, 如图 2(b)所示, 这一过程可以 称之为节点 B的一次保护倒换。 其中, 如图 2所示的, 在节点 B中由两个 源端和一个宿端构成的类似双选开关的结构可以称为节点 B的保护组,即可 以理解为通过改变该保护组的双选开关, 实现了节点 B的保护倒换。
还应理解,上述提到的保护组具体地可以为 ASON网络中的子网连接保 护( Sub Network Connection Protection, 简称为 "SNCP" )组, 还可以是其他 类型的保护组, 本发明实施例对比不作特别限定。
还应理解, 根据当前技术可知, 当业务路径在一个节点的入口具有至少 两个业务路径, 在其出口合并为一条业务路径, 可以为该节点设置保护倒换 机制 (或者配置用于保护倒换的保护组, 例如 SNCP保护组)。 为节点配置 保护倒换机制的相关内容为现有技术, 为了简洁, 这里不再赘述。
在 S110中, 接收包括故障确认时间的指示消息, 应理解, 在本发明实 施例中, 该指示消息可以是网管、 控制设备或者网络中其它节点向保护组的 宿端节点发送的消息, 本实施例在此不做限制。 此外, 该指示消息具体地可 以是路径建立消息等, 本发明实施例对此不作限定。
可选地, 作为一个实施例, 在图 1所示的方法 100中, 该指示消息为路 径建立消息。
具体地, 该路径建立消息可以为控制设备发送的信令消息, 例如资源预 留协议( Resource Reservation Protocol, 简称为 "RS VP" )信令, 具体地, 以 SNCP保护组为例, 在该 RSVP信令的 Path 消息中, 包括对象<SNCP_
DETECTION_CONFIRM> , 如下所示:
1 2 3 01234567890123456789012345678901
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Length I Class-Num al C-Type I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Detect-Confirm- Time IDirl Reserved I + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ 其中, Detect-Confirm-Time: 为 SNCP保护组的故障确认时间, 占用 16 个 Bit, 单位为 ms; Dir: 为业务方向指示信息, 占用 2个 Bit, 取值为 0时 表示正向业务, 取值为 1时表示反向业务。 例如将 SNCP保护组的故障确认 时间 Detect-Confirm-Time设置为 10ms, 根据实际业务方向设置业务方向指 示信息 Dir。
该节点接收到上述 RSVP信令, 通过解析 Path消息, 可以获知根据该 故障确认时间来进行该保护组的宿端节点的保护倒换。
应理解, 该指示消息还可以通过其他形式下发到该保护组的宿端节点, 本发明实施例对此不作限定。
可选地, 作为一个实施例, 在图 1所示的方法 100中, 该故障确认时间 根据该第一路径和第二路径之间的时延差确定。
优选地, 该故障确认时间不超过 30ms。
具体地, 例如第一路径和第二路径的光纤长度不同, 可能导致两条路径 之间的时延差。 应理解, 还可以根据两条路径各自 CPU的忙闲程度, 来确 定该故障确认时间, 本发明实施例对此不作限定。
应理解, 当前技术中, 保护倒换的时间一般在 50ms之内, 即本发明实 施例中的技术方案既可以通过故障确认时间解决无效保护倒换的问题, 而且 一般不会引起保护组的保护倒换时间超过 50ms, 避免影响保护组的保护倒 换性能。
还应理解, 该指示消息可以同时指示为该宿端节点配置保护倒换机制 (下面简称配置保护组 )和根据故障确认时间进行该保护组的宿端节点的保 护倒换。
在 S120中, 当检测到该节点当前工作的第一路径发生故障时, 或者当 检测到该节点当前非工作的第二路径的故障消失时,开启定时时间为该故障 确认时间的定时器。 其中该定时器具体地, 可以为当前检测所在路径的定时 器。
可选地, 作为一个实施例, 在 S120中, 该开启定时时间为该故障确认 时间的定时器, 包括:
当检测到该第一路径发生故障时, 开启该第一路径的定时器; 或 当检测到该第二路径的故障消失时, 开启该第二路径的定时器。
具体地,下面还以图 2(a)为例说明在两种场景下开启定时器的具体方案。 场景 (一): 当检测到当前工作所在的路径发生故障时, 开启定时器。 如图 2(a)所示, 节点 A与节点 B之间具有两条路径, 节点 B当前工作 在第一路径上(也可称为节点 B选收在第一路径上), 即节点 A通过第一路 径和第二路径将业务信号双发到节点 B,节点 B只选收第一路径上的业务信 号以传输到下一个节点。 当检测到节点 B当前选收的第一路径发生故障时, 开启该第一路径上的定时器, 且该定时器的定时时间为故障确认时间。 应理解, 节点 B可以通过检测第一路径来发现该第一路径发生故障; 还 可以根据第一路径上报的故障指示消息, 例如故障报警报文来获知该第一路 径发生故障。
还应理解, 当检测到当前工作所在路径发生故障后, 可以不考虑当前非 工作路径的状态如何, 直接开启当前工作所在路径的定时器。
还应理解, 在开启第一路径上的定时时长为故障确认时间的定时器后、 且在该定时器超时之前, 节点 B可以不检测第一路径和第二路径的状态, 或 者即使接收到两条路径上报的关于状态变化的指示信息,也可以不作任何处 理。 直到定时器超时后, 再次检测确认两条路径的状态, 以判断是否执行保 护倒换。
场景 (二): 当检测到当前非工作所在的路径的故障消失时, 开启定时 器。
如图 2(a)所示, 节点 A与节点 B之间具有两条路径, 节点 B当前工作 在第一路径上(也可称为节点 B选收在第一路径上), 即节点 A通过第一路 径和第二路径将业务信号双发到节点 B,节点 B只选收第一路径上的业务信 号以传输到下一个节点。 当检测到当前非工作的第二路径的状态由故障变为 故障消失时, 开启该第二路径上的定时时间为故障确认时间的定时器。
应理解, 节点 B可以通过检测第二路径来发现该第二路径的故障消失, 还可以根据第二路径上报的故障消失指示消息, 例如故障消失报文来获知该 第二路径的故障消失。
还应理解, 当检测到当前非工作所在路径的故障消失后, 可以不考虑当 前工作所在的路径的状态如何, 直接开启当前非工作所在路径的定时器。
还应理解, 在开启第二路径上的定时时长为故障确认时间的定时器后、 且在该定时器超时之前, 节点 B可以不检测第一路径和第二路径的状态, 或 者即使接收到两条路径上报的关于状态变化的指示信息,也可以不作任何处 理。 直到定时器超时后, 再次检测确认两条路径的状态, 以判断是否执行保 护倒换。
应理解, 图 2(a)中的节点 B可以对应于本发明实施例中的保护组的宿端 节点, 节点 A可以对应于与该宿端节点彼此相连接的其他节点。
在 S120中, 当检测到该节点当前工作的第一路径发生故障时, 或者当 检测到该节点当前非工作的第二路径的故障消失时,可以开启当前检测所在 路径的定时器, 即保护倒换的拖延操作设置在检测所在的路径上, 也可以将 拖延操作设置在节点进行保护倒换控制的地方。
可选地, 作为一个实施例, 在 S120中, 该开启定时时间为该故障确认 时间的定时器, 包括:
当检测到该第一路径发生故障, 且该第二路径不存在故障时, 开启该定 时器; 或
当检测到该第二路径的故障消失, 且该第一路径存在故障时, 开启该定 时器。
具体地, 还以图 2(a)为例进行说明, 如图 2(a)所示, 节点 A与节点 B之 间具有两条路径, 节点 B 当前工作在第一路径上 (也可称为节点 B选收在 第一路径上 ),即节点 A通过第一路径和第二路径将业务信号双发到节点 B, 节点 B只选收第一路径上的业务信号以传输到下一个节点。 节点 B不断检 测两条路径的状态, 或者实时监测两条路径上报的指示消息, 当检测到当前 选收的第一路径发生故障,且当前未选收的第二路径不存在故障(状态正常) 时, 开启定时时间为故障确认时间的定时器; 当检测到当前非选收的第二路 径的故障消失, 且当前选收的第一路径存在故障时, 开启定时时间为故障确 认时间的定时器。
也应理解, 在该定时器超时之前, 节点 B可以不检测第一路径和第二路 径的状态, 或者即使接收到两条路径上报的关于状态变化的指示信息, 也可 以不作任何处理。 直到定时器超时后, 再次检测确认两条路径的状态, 以判 断是否执行保护倒换。
应理解, 图 2(a)中的节点 B可以对应于本发明实施例中的保护组的宿端 节点, 节点 A可以对应于与该宿端节点彼此相连接的其他节点。
在 S130中, 当确定该定时器超时时, 重新检测该第一路径和该第二路 径的状态, 具体地, 例如该故障确认时间为 10ms, 则定时 10ms之后, 重新 检测两个路径的状态。
在 S140中, 在定时器超时时, 根据重新检测到的该第一路径和该第二 路径的状态, 确定是否执行保护倒换。 具体地, 当检测到两个路径的状态相 同时, 例如同样存在故障, 或者两个路径均状态正常时, 不执行保护倒换, 即依然保持该节点工作在初始选收的第一路径上; 或者当检测到当前工作所 在的第一路径的状态正常时, 可以不再考虑非工作的第二路径的状态, 更新 第一路径的状态, 继续保持工作在第一路径上。
可选地, 作为一个实施例, 在 S140中, 该确定是否执行保护倒换, 包 括:
当重新检测的结果为该第一路径不存在故障时, 或者该第一路径与该第 二路径均存在故障时, 确定不执行保护倒换。
具体地, 还以图 2(a)所示为例, 节点 B初始工作在第一路径上, 在定时 器超时时, 重新检测两个路径的状态, 发现该第一路径状态正常, 确定不执 行节点 B的保护倒换, 可以更新第一路径的状态, 节点 B继续工作 (也可 称为选收)在第一路径上; 或者检测到两个路径都存在故障, 也确定不执行 节点 B的保护倒换。
可选地, 作为一个实施例, 在 S140中, 该确定是否执行保护倒换, 包 括:
当重新检测的结果为该第一路径存在故障, 且该第二路径不存在故障 时, 确定执行保护倒换, 使得该保护组的宿端节点断开该第一路径, 且在该 第二路径上选收业务。
具体地, 还以图 2所示为例, 如图 2(a)所示, 节点 B初始工作在第一路 径上, 在定时器超时时, 重新检测两个路径的状态, 发现该第一路径存在故 障, 第二路径状态正常, 确定执行保护倒换, 具体地, 如图 2(b)所示, 断开 节点 B与第一路径, 并连接第二路径, 即节点 B工作在第二路径上, 即完 成了节点 B的保护倒换。
应理解,在本文中,提到的路径出现故障或者路径的故障消失,具体地, 例如第一路径出现故障, 可以指的是, 第一路径上的业务信号失效(Signal Fail, 简称为 "SF,), 或者是第一路径上的业务信号劣化(Signal Degrade, 简 称为" SD,,), 或者还可以是第一路径上的业务信号从 SD变为 SF等, 或者是 其他信号质量弱化的状况, 本发明实施例对此不作限定。 对应地, 第二路径 的故障消失, 可以指的是, 第二路径上的业务信号由 SF变为 SD, 或者第二 路径上的业务信号由 SF或 SD恢复正常等, 或者是其他信号由无效变为有 效, 或者信号质量从差变好的状况, 本发明实施例对此不作限定。
当前有关保护倒换的方法, 很难有效避免节点无效的保护倒换, 无效的 保护倒换一方面使得业务选收在非原始的选收路径上, 另一方面会增加因保 护倒换带来的倒换事件或倒换告警的上报, 这些倒换事件和倒换告警频繁无 效的上 会影响对网络的维护的效率。
应理解,上述结合图 2所示的例子描述本发明的技术方案是为了帮助本 领域技术人员更好地理解本发明实施例, 而非要限制本发明实施例的范围。
综上所述, 在本发明实施例的保护倒换的方法中, 当检测到节点当前工 作的路径发生故障, 或者当前非工作的路径故障消失时, 通过开启定时器, 并在定时器超时时, 通过再次检测的两个路径的状况, 确定是否执行保护倒 换, 能够有效避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并 降低无效的保护倒换对网络维护的影响。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
还应理解,本发明的技术方案还可以应用于非 ASON网络中,通过使用 "故障确认时间 "机制来避免无效的保护倒换。 还应理解, "故障确认时间,,机 制还可以应用于其他 "双发选收"的场景, 本发明实施例并不对此作特定限 制。
因此, 本发明实施例的保护倒换的方法, 当检测到节点当前工作的路径 发生故障, 或者当前非工作的路径故障消失时, 通过开启定时器, 并在定时 器超时时, 通过再次检测的两个路径的状况, 确定是否执行保护倒换, 能够 有效避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效 的保护倒换对网络维护的影响。
上文中结合图 1和图 2, 从节点的角度详细描述了根据本发明实施例的 保护倒换的方法, 下面将结合图 3, 从控制设备的角度描述根据本发明实施 例的保护倒换的方法。
如图 3所示, 根据本发明实施例的保护倒换的方法 200, 例如可以由控 制设备执行, 该方法 200包括:
S210, 确定业务路径经过互相连接的第一节点和第二节点, 且该业务路 径在该第一节点的入口时隙重用、 出口分离, 并在该第二节点的入口分离、 出口时隙重用, 该业务路径在该第一节点和该第二节点之间包括第一路径和 第二路径;
S220, 将该第二节点确定为保护组的宿端节点;
S230, 确定该保护组的宿端节点的故障确认时间; S240, 向该保护组的宿端节点发送包括该故障确认时间的指示消息, 用 于指示根据该故障确认时间进行该保护组的宿端节点的保护倒换。
因此, 本发明实施例的保护倒换的方法, 通过向节点发送包括故障确认 时间的指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有 效避免无效的保护倒换, 并可以提高节点保护倒换的效率。
为了方便理解本发明技术方案, 下面结合图 2(a)和图 2(b), 详细说明进 行节点的保护倒换的过程, 例如业务路径在节点 A和节点 B之间具有两条 路径, 第一路径和第二路径,假设业务路径的方向如图 2所示为从节点 A流 向节点 B,在节点 B的入口有两个业务信号源, 节点 B同一时刻只选收一个 信号源, 即只选择工作在一个路径上, 如图 2(a)所示, 节点 B当前工作在第 一路径上, 这种场景下, 第一路径可以称为主用路径, 第二路径称为备用路 径。 当当前工作的第一路径发生故障, 且当前备用的第二路径状态正常时, 节点 B断开第一路径, 并连接第二路径, 即将工作的路径由第一路径变换为 第二路径, 如图 2(b)所示, 这一过程可以称之为节点 B的一次保护倒换。 其 中, 如图 2所示的, 在节点 B中由两个源端和一个宿端构成的类似双选开关 的结构可以称为节点 B的保护组,即可以理解为通过改变该保护组的双选开 关, 实现了节点 B的保护倒换。
还应理解,上述提到的保护组具体地可以为 ASON网络中的子网连接保 护( Sub Network Connection Protection, 简称为 "SNCP" )组, 还可以是其他 类型的保护组, 本发明实施例对比不作特别限定。
在 S210中, 确定业务路径经过互相连接的第一节点和第二节点, 且该 业务路径在该第一节点的入口时隙重用、 出口分离, 并在该第二节点的入口 分离、 出口时隙重用, 该业务路径在该第一节点和该第二节点之间包括第一 路径和第二路径; 且在 S220中, 将该第二节点确定为保护组的宿端节点。
具体地, 如图 2(a)所示, 业务路径在节点 A的入口时隙重用 (即业务路 径在该节点的入口为一条业务路径)、 出口分离 (即在该节点的出口具有至 少两个业务路径), 在节点 B的入口分离 (即在该节点的接口具有至少两个 业务路径)、 出口时隙重用 (即业务路径在该节点的出口合并为一条业务路 径), 节点 B可以为本发明实施例中的保护组的宿端节点。 根据当前技术可 知, 当业务路径在一个节点的入口分离 (即在该节点的入口具有至少两个业 务路径), 在其出口时隙重用 (即业务路径在该节点的出口合并为一条业务 路径), 可以为该节点设置保护倒换机制(或者配置用于保护倒换的保护组, 例如 SNCP保护组)。 为节点配置保护倒换机制的相关内容为现有技术, 为 了简洁, 这里不再赘述。
应理解, 在第一节点与第二节点之间的路径上还可以经过其他节点, 即 第一节点与第二节点可以是相邻节点, 也可以是不相邻节点, 本发明实施例 对此不作限定, 只要第一节点与第二节点在业务路径上有连接, 且包括两条 路径即可。
在 S230中, 确定该保护组的宿端节点的故障确认时间, 具体地, 可以 根据第一节点和第二节点之间的时延差来确定。
可选地, 作为一个实施例, 在图 3所示的方法 200中, S230确定该保 护组的宿端节点的故障确认时间, 包括:
根据该第一路径和该第二路径之间的时延差, 确定该故障确认时间。 具体地, 可选地, 当该第一路径和该第二路径之间的距离差在 1000km 以内时, 确定该缺陷确定时间为 10ms;
当该第一路径和该第二路径之间的距离差大于 1000km, 且小于等于
3000km时, 确定该缺陷确定时间为 20ms;
当该第一路径和该第二路径之间的距离差大于 3000km, 且小于等于 5000km时, 确定该缺陷确定时间为 30ms。
应理解, 还可以根据两条路径各自 CPU的忙闲程度, 来确定该故障确 认时间, 本发明实施例对此不作限定。
可选地, 作为一个实施例, 在图 3所示的方法 200中, 该故障确认时间 不超过 30ms。
应理解, 当前技术中, 保护倒换的时间一般在 50ms之内, 即本发明实 施例中的技术方案既可以通过故障确认时间解决无效保护倒换的问题, 而且 一般不会引起保护组的保护倒换时间超过 50ms, 避免影响保护组的保护倒 换性能。
在 S240中, 控制设备向该保护组的宿端节点发送包括该故障确认时间 的指示消息, 用于指示根据该故障确认时间进行该保护组的宿端节点的保护 倒换。
应理解, 该指示消息具体地可以是路径建立消息等, 本发明实施例对此 不作限定。 可选地, 作为一个实施例, 在图 3所示的方法 200中, 该指示消息为路 径建立消息。
具体地, 该路径建立消息可以为控制设备发送的信令消息, 例如资源预 留协议( Resource Reservation Protocol, 简称为 "RS VP" )信令, 具体地, 以 该节点为保护组为 SNCP保护组为例,在该 RSVP信令的 Path消息中, 包括 对象<SNCP_ DETECTION_CONFIRM>, 如下所示:
1 2 3
01234567890123456789012345678901
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Length I Class-Num I C-Type I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Detect-Confirm- Time IDirl Reserved I
+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ 其中, Detect-Confirm-Time: 为 SNCP保护组的故障确认时间, 占用 16 个 Bit, 单位为 ms; Dir: 为业务方向指示信息, 占用 2个 Bit, 取值为 0时 表示正向业务, 取值为 1时表示反向业务。 例如将 SNCP保护组的故障确认 时间 Detect-Confirm-Time设置为 10ms, 根据实际业务方向设置业务方向指 示信息 Dir。
该节点接收到上述 RSVP信令,通过解析 Path消息,可以获知根据该故 障确认时间来进行该保护组的宿端节点的保护倒换。
应理解, 控制设备还可以通过其他形式向该节点发送该指示消息, 本发 明实施例对此不作限定。
还应理解, 该指示消息可以同时指示配置保护倒换机制(下面简称配置 保护组 )和根据故障确认时间进行该保护组的宿端节点的保护倒换。
为了便于理解本发明的技术方案, 下面以 ASON网络中的 SNCP为例, 结合图 4进行详细说明。 如图 4所示, 业务要从站点 A通过 ASON网络传 输到站点0, 当前路由为 A-B-C-D, 在 BC站点间走的路径是 bc。 业务因为 某种原因需要重路由, 例如控制设备的信令模块向路由模块请求算路, 路由 模块进行路径计算后发现业务新的路径为 A-B-C-D, 且在 BC站点间走的路 径是 BC。 这样业务在 B节点新老路径的入口时隙重用, 出口分离, 在下游 的 C节点入口是分离的, 但出口时隙重用。 这样在 C节点, 在和正向业务 信号流相同的方向上需要建立 SNCP保护组, 且此 SNCP需要配置"故障确 认时间", 因为例如如果 AB站点间的光纤中断, C站点上的 SNCP的主备通 道(BC和 be)会同时故障。 如果业务是双向业务, 则路由模块算路后, 会 计算出在 B节点在反方向业务上需要建立 SNCP,且需要为此 SNCP配置"故 障确认时间"。路由模块将 C节点业务正向方向上的 SNCP需要配置"故障确 认时间 "这个信息作为算路结果返回给信令模块。
信令模块收到路由模块返回的信息,在对应节点的 RSVP报文 Path消息 中, 信令新增<SNCP_ DETECTION_CONFIRM〉对象, 填入 SNCP的故障确 认时间 10ms, 和业务方向信息。
0 1 2 3
01234567890123456789012345678901
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Length I Class-Num I C-Type I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Detect-Confirm- Time IDirl Reserved I
+-+ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 其中, Detect-Confirm-Time: SNCP的故障确认时间, 16个 Bit, 单位 ms。 Dir: 为双向业务指示此 SNCP的方向, 2个 Bit, 取值为 0, 表示正向 业务, 取值为 1, 表示反向业务。
1)信令模块开始业务路径的建立, 建路过程由信令模块发起 RSVP 的 path消息来完成, Path消息中新增了 <SNCP_ DETECTION_CONFIRM〉对象, 来携带要给 SNCP配置故障确认时间的信息给对应的站点。
2) Path消息会沿业务路径传递,在 C站点,信令会从报文中取 <SNCP_ DETECTION_CONFIRM〉对象信息, 这样 C站点就知道在建立业务新路径 时需要建立 SNCP, 和此 SNCP需要配置的故障确认时间。
3)同理, 如果是双向业务, 在站点 B, 信令也会从 path 消息中取出 <SNCP_ DETECTION_CONFIRM〉对象信息,这样 B站点就知道在建立反向 业务的新路径时需要建立 SNCP, 和此 SNCP需要配置的故障确认时间。
4)对应站点( C站点 和 B站点 )得到要为建立的 SNCP配置故障确认 时间的信息,通知 SNCP协议模块创建 SNCP保护组并将故障确认时间配置 给 SNCP协议模块。
应理解, 在上述例子中需要配置故障确认时间的节点(业务正向时: 站 点 C, 业务反向时: 站点 B )对应于发明实施例的保护组的宿端节点。 本发明实施例, 而非要限制本发明实施例的范围。 本领域技术人员根据所给 出的例子, 显然可以进行各种等价的修改或变化, 这样的修改或变化也落入 本发明实施例的范围内。
当前有关保护倒换的方法, 很难有效避免节点无效的保护倒换, 无效的 保护倒换一方面使得业务选收在非原始的选收路径上, 另一方面会增加因保 护倒换带来的倒换事件或倒换告警的上报, 这些倒换事件和倒换告警频繁无 效的上 会影响对网络的维护的效率。
综上所述, 本发明实施例的保护倒换的方法, 通过向节点发送包括故障 确认时间的指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能 够有效避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无 效的保护倒换对网络维护的影响。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
还理解,本发明实施例的保护倒换的方法 200中的保护组的宿端节点可 以对应于图 2(a)和 (b)中的节点 B, 也可以对应于图 4中的站点 C, 本发明实 施例对此不作限定。
还应理解,本发明的技术方案还可以应用于非 ASON网络中,通过使用
"故障确认时间 "机制来避免无效的保护倒换。 还应理解, "故障确认时间,,机 制还可以应用于其他 "双发选收"的场景, 本发明实施例并不对此作特定限 制。
因此, 本发明实施例的保护倒换的方法, 通过向节点发送包括故障确认 时间的指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有 效避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的 保护倒换对网络维护的影响。
上文中结合图 1至图 4, 详细描述了根据本发明实施例的保护倒换的方 法, 下面将结合图 5至图 6,详细描述根据本发明实施例的节点和控制设备。
图 5示出了根据本发明实施例的节点 300的示意性框图。 如图 5所示, 该节点包括: 接收模块 310, 用于接收包括故障确认时间的指示消息, 该指示消息用 于指示根据该故障确认时间进行该保护组的宿端节点的保护倒换;
定时模块 320, 用于当检测到第一路径发生故障时, 或者当检测到第二 路径的故障消失时, 开启定时时间为该接收模块接收的该故障确认时间的定 时器, 其中, 该第一路径为该节点选收业务的路径, 该第二路径为该节点非 选收业务的路径;
检测模块 330, 用于当确定该定时模块的该定时器超时时, 重新检测该 第一路径和该第二路径的状态;
确定模块 340, 用于根据该检测模块的该重新检测的结果, 确定是否执 行保护倒换。
因此, 本发明实施例的节点, 当检测到节点当前工作的路径发生故障或 者非工作的路径故障恢复时, 开启定时时间为故障确认时间的定时器, 当确 定定时器超时时, 根据两条路径当前的状态, 确定是否执行保护倒换, 能够 有效避免无效的保护倒换, 从而能够提高保护倒换的效率。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该定时模块具体 用于, 当检测到该第一路径发生故障时, 开启该第一路径的该定时器; 或 该定时模块具体用于, 当检测到该第二路径的故障消失时, 开启该第二 路径的该定时器。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该定时模块具体 用于, 当检测到该第一路径发生故障, 且该第二路径不存在故障时, 开启该 定时器; 或
该定时模块具体用于, 当检测到该第二路径的故障消失, 且该第一路径 存在故障时, 开启该定时器。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该确定模块具体 用于, 当重新检测的结果为该第一路径不存在故障时, 或者该第一路径与该 第二路径均存在故障时, 确定不执行保护倒换。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该确定模块具体 用于, 当重新检测的结果为该第一路径存在故障, 且该第二路径不存在故障 时, 确定执行保护倒换, 使得该节点断开该第一路径, 且在该第二路径上选 收业务。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该接收模块接收 的该故障确认时间为该控制设备根据该第一路径和第二路径之间的时延差 确定。
可选地, 作为一个实施例, 在图 5所示的节点 300中, 该接收模块接收 的该指示消息为路径建立消息。
应理解,根据本发明实施例的节点 300可对应于本发明实施例的保护倒 换的方法 100中的保护组的宿端节点、保护倒换的方法 200中的保护组的宿 端节点, 以及对应于图 2中的节点 B, 还可以对应于图 4中的站点 C, 并且 节点 300中的各个模块的上述和其它操作和 /或功能分别为了实现图 1至图 4 中的各个方法的相应流程, 为了简洁, 在此不再赘述。
应理解,在本文中,提到的路径出现故障或者路径的故障消失,具体地, 例如第一路径出现故障, 可以指的是, 第一路径上的业务信号失效(Signal Fail, 简称为 "SF,), 或者是第一路径上的业务信号劣化(Signal Degrade, 简 称为" SD,,), 或者还可以是第一路径上的业务信号从 SD变为 SF等, 或者是 其他信号质量弱化的状况, 本发明实施例对此不作限定。 对应地, 第二路径 的故障消失, 可以指的是, 第二路径上的业务信号由 SF变为 SD, 或者第二 路径上的业务信号由 SF或 SD恢复正常等, 或者是其他信号由无效变为有 效, 或者信号质量从差变好的状况, 本发明实施例对此不作限定。
当前有关保护倒换的方法, 很难有效避免节点无效的保护倒换, 无效的 保护倒换一方面使得业务选收在非原始的选收路径上, 另一方面会增加因保 护倒换带来的倒换事件或倒换告警的上报, 这些倒换事件和倒换告警频繁无 效的上 会影响对网络的维护的效率。
综上所述, 在本发明实施例的节点, 当检测到节点当前工作的路径发生 故障, 或者当前非工作的路径故障消失时, 通过开启定时器, 并在定时器超 时时, 通过再次检测的两个路径的状况, 确定是否执行保护倒换, 能够有效 避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的保 护倒换对网络维护的影响。
还应理解,本发明实施例的节点可以应用于非 ASON网络中,通过使用 "故障确认时间 "机制来避免无效的保护倒换。 还应理解, "故障确认时间,,机 制还可以应用于其他 "双发选收"的场景, 本发明实施例并不对此作特定限 制。
因此, 本发明实施例的节点, 当检测到节点当前工作的路径发生故障, 或者当前非工作的路径故障消失时, 通过开启定时器, 并在定时器超时时, 通过再次检测的两个路径的状况, 确定是否执行保护倒换, 能够有效避免无 效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的保护倒换 对网络维护的影响。
上文中结合图 5, 详细描述了根据本发明实施例的节点, 下面将结合图
6, 详细描述根据本发明实施例的控制设备。
图 6示出了根据本发明实施例的控制设备 400的示意性框图。如图 6所 示, 该控制设备 400包括:
第一确定模块 410, 用于确定业务路径经过互相连接的第一节点和第二 节点, 且该业务路径在该第一节点的入口时隙重用、 出口分离, 并在该第二 节点的入口分离、 出口时隙重用, 该业务路径在该第一节点和该第二节点之 间包括第一路径和第二路径;
第二确定模块 420, 用于将该第一确定模块确定的该第二节点确定为保 护组的宿端节点;
第三确定模块 430, 用于确定该第二确定模块确定的该保护组的宿端节 点的故障确认时间;
发送模块 440, 用于向该第三确定模块确定的该保护组的宿端节点发送 包括该故障确认时间的指示消息, 用于指示根据该故障确认时间进行该保护 组的宿端节点的保护倒换。
因此, 本发明实施例的控制设备, 通过向节点发送包括故障确认时间的 指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有效避免 无效的保护倒换, 并可以提高节点保护倒换的效率。
可选地, 作为一个实施例, 在图 6所示的控制设备 400中, 该第三确定 模块具体用于, 根据该第一路径和该第二路径之间的时延差, 确定该故障确 认时间。
可选地, 当该第一路径和该第二路径之间的距离差在 1000km以内时, 确定该缺陷确定时间为 10ms;
当该第一路径和该第二路径之间的距离差大于 1000km, 且小于等于 3000km时, 确定该缺陷确定时间为 20ms;
当该第一路径和该第二路径之间的距离差大于 3000km, 且小于等于
5000km时, 确定该缺陷确定时间为 30ms。 应理解, 该第二确定模块还可以根据第一路径和第二路径各自 CPU的 忙闲程度, 来确定该故障确认时间, 本发明实施例对此不作限定。
可选地, 作为一个实施例, 在图 6所示的控制设备 400中, 该发送模块 发送的该指示消息为路径建立消息。
可选地, 作为一个实施例, 在图 6所示的控制设备 400中, 该第二确定 模块确定的该故障确认时间不超过 30ms。
应理解, 当前技术中, 保护倒换的时间一般在 50ms之内, 即本发明实 施例中的技术方案既可以通过故障确认时间解决无效保护倒换的问题, 而且 一般不会引起保护组的保护倒换时间超过 50ms, 避免影响保护组的保护倒 换性能。
还应理解,发送模块 430向该第二确定模块确定的该保护组的宿端节点 发送包括该故障确认时间的指示消息, 可以同时指示该保护组的宿端节点配 置保护倒换机制(下面简称配置保护组)和根据故障确认时间进行该保护组 的宿端节点的保护倒换。
当前有关保护倒换的方法, 艮难有效避免节点无效的保护倒换, 无效的 保护倒换一方面使得业务选收在非原始的选收路径上, 另一方面会增加因保 护倒换带来的倒换事件或倒换告警的上报, 这些倒换事件和倒换告警频繁无 效的上 会影响对网络的维护的效率。
综上所述, 本发明实施例的控制设备, 通过向节点发送包括故障确认时 间的指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有效 避免无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的保 护倒换对网络维护的影响。
应理解,本发明的技术方案还可以应用于非 ASON网络中,通过使用"故 障确认时间,,机制来避免无效的保护倒换。 还应理解, "故障确认时间,,机制 还可以应用于其他 "双发选收,,的场景, 本发明实施例并不对此作特定限制。
还应理解,根据本发明实施例的控制设备 400可对应于本发明实施例的 保护倒换的方法中的控制设备, 并且控制设备 400中的各个模块的上述和其 它操作和 /或功能分别为了实现图 1至图 4中的各个方法的相应流程,为了简 洁, 在此不再赘述。
如图 7所示, 本发明实施例还提供了一种节点 500, 该节点 500包括处 理器 510、 存储器 520、 总线系统 530和接收器 540。 其中, 处理器 510、 存 储器 520和接收器 540通过总线系统 530相连,该存储器 520用于存储指令, 该处理器 510用于执行该存储器 520存储的指令, 以控制接收器 540接收信 号。 其中, 接收器 540, 用于接收包括故障确认时间的指示消息, 该指示消 息用于指示根据该故障确认时间进行该保护组的宿端节点的保护倒换; 处理 器 510, 用于当检测到第一路径发生故障时, 或者当检测到第二路径的故障 消失时, 开启定时时间为该故障确认时间的定时器, 其中, 该第一路径为该 节点选收业务的路径,该第二路径为该节点非选收业务的路径; 处理器 510, 还用于当确定该定时器超时时, 重新检测该第一路径和该第二路径的状态; 处理器 510, 还用于根据该重新检测的结果, 确定是否执行保护倒换。
因此, 本发明实施例的节点, 当检测到节点当前工作的路径发生故障或 者非工作的路径故障恢复时, 开启定时时间为故障确认时间的定时器, 当确 定定时器超时时, 根据两条路径当前的状态, 确定是否执行保护倒换, 能够 有效避免无效的保护倒换, 从而能够提高保护倒换的效率。
可选地, 作为一个实施例, 该处理器 510具体用于, 当检测到该第一路 径发生故障时, 开启该第一路径的该定时器; 或
该处理器 510具体用于, 当检测到该第二路径的故障消失时, 开启该第 二路径的该定时器。
可选地, 作为一个实施例, 该处理器 510具体用于, 当检测到该第一路 径发生故障, 且该第二路径不存在故障时, 开启该定时器; 或
该处理器 510具体用于, 当检测到该第二路径的故障消失, 且该第一路 径存在故障时, 开启该定时器。
可选地, 作为一个实施例, 该处理器 510具体用于, 当重新检测的结果 为该第一路径不存在故障时, 或者该第一路径与该第二路径均存在故障时, 确定不执行保护倒换。
可选地, 作为一个实施例, 该处理器 510具体用于, 当重新检测的结果 为该第一路径存在故障, 且该第二路径不存在故障时, 确定执行保护倒换, 使得该节点断开该第一路径, 且在该第二路径上选收业务。
可选地, 作为一个实施例, 该接收器 540接收的该指示消息为路径建立 消息。
应理解,在本发明实施例中,该处理器 510可以是中央处理单元( Central
Processing Unit, 简称为 "CPU" ), 该处理器 510还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器 510也可以是任何常规的处理器 等。
该存储器 520可以包括只读存储器和随机存取存储器, 并向处理器 510 提供指令和数据。存储器 520的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 520还可以存储设备类型的信息。
该总线系统 530除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 530。
在实现过程中,上述方法的各步骤可以通过处理器 510中的硬件的集成 逻辑电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 520, 处理器 510读取存储器 520中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
应理解,根据本发明实施例的节点 500可对应于本发明实施例的保护倒 换的方法 100中的保护组的宿端节点,也可对应于保护倒换的方法 200中的 保护组的宿端节点, 还可以对应于图 2中的节点 B, 还可以对应于图 4中的 站点 C, 也可以对应于根据本发明实施例的节点 300, 并且节点 500中的各 个模块的上述和其它操作和 /或功能分别为了实现图 1至图 4中的各个方法的 相应流程, 为了简洁, 在此不再赘述。
因此, 本发明实施例的节点, 当检测到节点当前工作的路径发生故障, 或者当前非工作的路径故障消失时, 通过开启定时器, 并在定时器超时时, 通过再次检测的两个路径的状况, 确定是否执行保护倒换, 能够有效避免无 效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的保护倒换 对网络维护的影响。
如图 8所示,本发明实施例还提供了一种控制设备 600,该控制设备 600 包括处理器 610、 存储器 620、 总线系统 630和发送器 640。 其中, 处理器 610、 存储器 620和发送器 640通过总线系统 630相连, 该存储器 620用于 存储指令, 该处理器 610用于执行该存储器 620存储的指令, 以控制发送器 640发送信号。 其中, 处理器 610, 用于确定业务路径经过互相连接的第一 节点和第二节点, 且该业务路径在该第一节点的入口时隙重用、 出口分离, 并在该第二节点的入口分离、 出口时隙重用, 该业务路径在该第一节点和该 第二节点之间包括第一路径和第二路径; 该处理器 610还用于, 将该第二节 点确定为保护组的宿端节点; 该处理器 610, 还用于确定该保护组的宿端节 点的故障确认时间; 发送器 640, 用于向该保护组的宿端节点发送包括该故 障确认时间的指示消息, 用于指示根据该故障确认时间进行该保护组的宿端 节点的保护倒换。
因此, 本发明实施例的控制设备, 通过向节点发送包括故障确认时间的 指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有效避免 无效的保护倒换, 并可以提高节点保护倒换的效率。
可选地, 作为一个实施例, 该处理器 610具体用于, 根据该第一路径和 该第二路径之间的时延差, 确定该故障确认时间。
可选地, 作为一个实施例, 该发送器 640发送的指示消息为路径建立消 息。
应理解,在本发明实施例中,该处理器 610可以是中央处理单元( Central
Processing Unit, 简称为 "CPU" ), 该处理器 610还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 620可以包括只读存储器和随机存取存储器, 并向处理器 610 提供指令和数据。存储器 620的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 620还可以存储设备类型的信息。
该总线系统 630除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 630。
在实现过程中,上述方法的各步骤可以通过处理器 610中的硬件的集成 逻辑电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 620, 处理器 610读取存储器 620中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
应理解,根据本发明实施例的控制设备 600可对应于本发明实施例的保 护倒换的方法中的控制设备, 也可以对应于根据本发明实施例的控制设备 400, 并且控制设备 600中的各个模块的上述和其它操作和 /或功能分别为了 实现图 1至图 4中的各个方法的相应流程, 为了简洁, 在此不再赘述。
因此, 本发明实施例的控制设备, 通过向节点发送包括故障确认时间的 指示消息, 以便于该节点根据该故障确认时间进行保护倒换, 能够有效避免 无效的保护倒换, 并能够提高节点的保护倒换的效率, 并降低无效的保护倒 换对网络维护的影响。
应理解, 本文中术语"和 /或", 仅仅是一种描述关联对象的关联关系, 表 示可以存在三种关系, 例如, A和 /或 可以表示: 单独存在 , 同时存在 八和 单独存在 B这三种情况。 另外, 本文中字符" /,,, 一般表示前后关联 对象是一种"或"的关系。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接辆合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种保护倒换的方法, 其特征在于, 包括:
保护组的宿端节点接收到包括故障确认时间的指示消息, 所述指示消息 用于指示根据所述故障确认时间进行所述保护组的宿端节点的保护倒换; 当检测到第一路径发生故障时, 或者当检测到第二路径的故障消失时, 所述保护组的宿端节点开启定时时间为所述故障确认时间的定时器, 其中, 所述第一路径为所述保护组的宿端节点选收业务的路径, 所述第二路径为所 述保护组的宿端节点非选收业务的路径;
当所述保护组的宿端节点确定所述定时器超时时, 重新检测所述第一路 径和所述第二路径的状态;
所述保护组的宿端节点根据所述第一路径和所述第二路径的重新检测 的结果, 确定是否执行保护倒换。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述保护组的宿端节点 开启定时时间为所述故障确认时间的定时器, 包括:
当检测到所述第一路径发生故障时, 开启所述第一路径的所述定时器; 或
当检测到所述第二路径的故障消失时, 开启所述第二路径的所述定时 器。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述保护组的宿端节点 开启定时时间为所述故障确认时间的定时器, 包括:
当检测到所述第一路径发生故障, 且所述第二路径不存在故障时, 开启 所述定时器; 或
当检测到所述第二路径的故障消失, 且所述第一路径存在故障时, 开启 所述定时器。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述确定 是否执行保护倒换, 包括:
当重新检测的结果为所述第一路径不存在故障时, 或者所述第一路径与 所述第二路径均存在故障时, 确定不执行保护倒换。
5、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述确定 是否执行保护倒换, 包括:
当重新检测的结果为所述第一路径存在故障,且所述第二路径不存在故 障时, 确定执行保护倒换, 使得所述保护组的宿端节点断开所述第一路径, 且在所述第二路径上选收业务。
6、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述故障 确认时间根据所述第一路径和所述第二路径之间的时延差确定。
7、 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述指示 消息为路径建立消息。
8、 一种保护倒换的方法, 其特征在于, 包括:
确定业务路径经过互相连接的第一节点和第二节点,且所述业务路径在 所述第一节点的入口时隙重用、 出口分离, 并在所述第二节点的入口分离、 出口时隙重用, 所述业务路径在所述第一节点和所述第二节点之间包括第一 路径和第二路径;
将所述第二节点确定为保护组的宿端节点;
确定所述保护组的宿端节点的故障确认时间;
向所述保护组的宿端节点发送包括所述故障确认时间的指示消息, 用于 指示根据所述故障确认时间进行所述保护组的宿端节点的保护倒换。
9、 根据权利要求 8所述的方法, 其特征在于, 所述确定所述保护组的 宿端节点的故障确认时间, 包括:
根据所述第一路径和所述第二路径之间的时延差,确定所述故障确认时 间。
10、 根据权利要求 8或 9中任一项所述的方法, 其特征在于, 所述指示 消息为路径建立消息。
11、 一种节点, 其特征在于, 包括:
接收模块, 用于接收包括故障确认时间的指示消息, 所述指示消息用于 指示根据所述故障确认时间进行所述节点的保护倒换;
定时模块, 用于当检测到第一路径发生故障时, 或者当检测到第二路径 的故障消失时, 开启定时时间为所述接收模块接收的所述故障确认时间的定 时器, 其中, 所述第一路径为所述节点选收业务的路径, 所述第二路径为所 述节点非选收业务的路径;
检测模块, 用于当确定所述定时模块的所述定时器超时时, 重新检测所 述第一路径和所述第二路径的状态;
确定模块, 用于根据所述检测模块的重新检测的结果, 确定是否执行保 护倒换。
12、 根据权利要求 11 所述的节点, 其特征在于, 所述定时模块具体用 于, 当检测到所述第一路径发生故障时, 开启所述第一路径的所述定时器; 或
所述定时模块具体用于, 当检测到所述第二路径的故障消失时, 开启所 述第二路径的所述定时器。
13、 根据权利要求 11 所述的节点, 其特征在于, 所述定时模块具体用 于, 当检测到所述第一路径发生故障, 且所述第二路径不存在故障时, 开启 所述定时器; 或
所述定时模块具体用于, 当检测到所述第二路径的故障消失, 且所述第 一路径存在故障时, 开启所述定时器。
14、 根据权利要求 11至 13中任一项所述的节点, 其特征在于, 所述确 定模块具体用于, 当重新检测的结果为所述第一路径不存在故障时, 或者所 述第一路径与所述第二路径均存在故障时, 确定不执行保护倒换。
15、 根据权利要求 11至 13中任一项所述的节点, 其特征在于, 所述确 定模块具体用于, 当重新检测的结果为所述第一路径存在故障, 且所述第二 路径不存在故障时, 确定执行保护倒换, 使得所述节点断开所述第一路径, 且在所述第二路径上选收业务。
16、 根据权利要求 11至 15中任一项所述的节点, 其特征在于, 所述接 收模块接收的所述故障确认时间为根据所述第一路径和所述第二路径之间 的时延差确定。
17、 根据权利要求 11至 16中任一项所述的节点, 其特征在于, 所述接 收模块接收的所述指示消息为路径建立消息。
18、 一种控制设备, 其特征在于, 包括:
第一确定模块, 用于确定业务路径经过互相连接的第一节点和第二节 点, 且所述业务路径在所述第一节点的入口时隙重用、 出口分离, 并在所述 第二节点的入口分离、 出口时隙重用, 所述业务路径在所述第一节点和所述 第二节点之间包括第一路径和第二路径;
第二确定模块,用于将所述第一确定模块确定的所述第二节点确定为保 护组的宿端节点;
第三确定模块,用于确定所述第二确定模块确定的所述保护组的宿端节 点的故障确认时间;
发送模块, 用于向所述第三确定模块确定的所述保护组的宿端节点发送 包括所述故障确认时间的指示消息, 用于指示根据所述故障确认时间进行所 述保护组的宿端节点的保护倒换。
19、 根据权利要求 18所述的控制设备, 其特征在于, 所述第三确定模 块具体用于, 根据所述第一路径和所述第二路径之间的时延差, 确定所述故 障确认时间。
20、 根据权利要求 18或 19中任一项所述的控制设备, 其特征在于, 所 述发送模块发送的所述指示消息为路径建立消息。
PCT/CN2014/077007 2014-05-08 2014-05-08 保护倒换的方法、节点和控制设备 WO2015168892A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14891497.1A EP3139527B1 (en) 2014-05-08 2014-05-08 Protection switching method, node and control device
PCT/CN2014/077007 WO2015168892A1 (zh) 2014-05-08 2014-05-08 保护倒换的方法、节点和控制设备
CN201480025173.7A CN105264799B (zh) 2014-05-08 2014-05-08 保护倒换的方法、节点和控制设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077007 WO2015168892A1 (zh) 2014-05-08 2014-05-08 保护倒换的方法、节点和控制设备

Publications (1)

Publication Number Publication Date
WO2015168892A1 true WO2015168892A1 (zh) 2015-11-12

Family

ID=54391980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077007 WO2015168892A1 (zh) 2014-05-08 2014-05-08 保护倒换的方法、节点和控制设备

Country Status (3)

Country Link
EP (1) EP3139527B1 (zh)
CN (1) CN105264799B (zh)
WO (1) WO2015168892A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129809A1 (zh) * 2019-12-27 2021-07-01 中兴通讯股份有限公司 Otn检测、路径确定、数据传输方法及装置、可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995336B (zh) * 2019-11-15 2021-05-11 武汉光迅信息技术有限公司 一种olp传输链路的切换方法、装置、存储介质及olp
CN113131997B (zh) * 2019-12-31 2022-09-02 华为技术有限公司 一种电层子网连接保护的方法、装置和系统
CN113114349B (zh) * 2021-04-19 2022-11-04 国网湖北省电力有限公司信息通信公司 Sdh系统sncp保护业务检测方法及功率分配优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141364A (zh) * 2006-09-07 2008-03-12 华为技术有限公司 在环状以太网中实现保护倒换的方法和装置
CN101662329A (zh) * 2008-08-29 2010-03-03 华为技术有限公司 倒换方法、网络节点和网络系统
CN101877646A (zh) * 2009-04-28 2010-11-03 华为技术有限公司 一种保护倒换方法和节点设备
CN101998186A (zh) * 2009-08-13 2011-03-30 中兴通讯股份有限公司 网络保护方法及装置
CN102857316A (zh) * 2011-06-29 2013-01-02 中兴通讯股份有限公司 一种实现源环网保护的方法及系统
US20130083652A1 (en) * 2011-09-29 2013-04-04 Electronics And Telecommunications Research Institute Apparatus and method of shared mesh protection switching

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377677B (zh) * 2011-11-21 2014-04-02 盛科网络(苏州)有限公司 Mpls网络中保护路径的快速切换方法及系统
CN103368712A (zh) * 2013-07-18 2013-10-23 华为技术有限公司 主、备用设备切换方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141364A (zh) * 2006-09-07 2008-03-12 华为技术有限公司 在环状以太网中实现保护倒换的方法和装置
CN101662329A (zh) * 2008-08-29 2010-03-03 华为技术有限公司 倒换方法、网络节点和网络系统
CN101877646A (zh) * 2009-04-28 2010-11-03 华为技术有限公司 一种保护倒换方法和节点设备
CN101998186A (zh) * 2009-08-13 2011-03-30 中兴通讯股份有限公司 网络保护方法及装置
CN102857316A (zh) * 2011-06-29 2013-01-02 中兴通讯股份有限公司 一种实现源环网保护的方法及系统
US20130083652A1 (en) * 2011-09-29 2013-04-04 Electronics And Telecommunications Research Institute Apparatus and method of shared mesh protection switching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129809A1 (zh) * 2019-12-27 2021-07-01 中兴通讯股份有限公司 Otn检测、路径确定、数据传输方法及装置、可读存储介质

Also Published As

Publication number Publication date
EP3139527B1 (en) 2018-08-15
CN105264799B (zh) 2018-11-16
EP3139527A1 (en) 2017-03-08
EP3139527A4 (en) 2017-05-17
CN105264799A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
US9871708B2 (en) Method and system for ring protection switching
EP1845656B1 (en) A method for implementing master and backup transmission path
WO2007071189A1 (fr) Procede et dispositif de restauration d&#39;un reseau maille partage
WO2006026930A1 (fr) Procede de restauration d&#39;un service de maillage optique
US20070253327A1 (en) System and method of multi-nodal APS control protocol signalling
WO2009082923A1 (fr) Procédé de traitement de défaut de liaison et dispositif de transfert de données
WO2011095101A1 (zh) 一种分组传送网络的线性1:n保护方法、装置和系统
CN110417564B (zh) 全网状的链路保护方法、装置、设备及存储介质
CN101944951A (zh) 网络间链路快速回切的方法及装置
WO2011076024A1 (zh) 传送多协议标签交换网络系统和链路保护方法
CN101702658A (zh) 一种环网保护的实现方法及系统
WO2008119294A1 (fr) Procédé et matériel de restauration du commerce en réseau
US20150186202A1 (en) Method and Device for Sending Inter-Domain Fault Information
CN102238067B (zh) 一种快速环网保护协议环上的切换方法和装置
WO2013049981A1 (zh) 一种基于共享通道的混合环网保护方法及系统
WO2015168892A1 (zh) 保护倒换的方法、节点和控制设备
CN101436975A (zh) 一种在环网中实现快速收敛的方法、装置及系统
EP2652918A1 (en) Segment recovery in connection-oriented network
WO2010121459A1 (zh) 一种自动交换光网络中实现保护与恢复的方法及系统
WO2013040940A1 (zh) 环网的保护方法及装置
CN101155179A (zh) 一种多协议标签交换中环路拆除的方法
US10033573B2 (en) Protection switching method, network, and system
CN106161232B (zh) 一种隧道保护切换的方法和装置
CN101902396A (zh) 一种多协议标签交换流量工程中隧道保护的方法和系统
JP5004758B2 (ja) レイヤ2ネットワークおよびネットワーク接続装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025173.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014891497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891497

Country of ref document: EP