WO2011076024A1 - 传送多协议标签交换网络系统和链路保护方法 - Google Patents

传送多协议标签交换网络系统和链路保护方法 Download PDF

Info

Publication number
WO2011076024A1
WO2011076024A1 PCT/CN2010/077107 CN2010077107W WO2011076024A1 WO 2011076024 A1 WO2011076024 A1 WO 2011076024A1 CN 2010077107 W CN2010077107 W CN 2010077107W WO 2011076024 A1 WO2011076024 A1 WO 2011076024A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
communication node
primary
protection
primary communication
Prior art date
Application number
PCT/CN2010/077107
Other languages
English (en)
French (fr)
Inventor
冷星星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10838587.3A priority Critical patent/EP2501084B1/en
Publication of WO2011076024A1 publication Critical patent/WO2011076024A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a T-MPLS (Transmission-Multiprotocol Label Switching) network system and a link protection method.
  • T-MPLS Transmission-Multiprotocol Label Switching
  • T-MPLS is a packet transport network technology standardized by the International Telecommunication Union (ITU-T), and its data is forwarded based on T-MPLS labels.
  • T-MPLS is a connection-oriented technology. It is an application of MPLS (Multiprotocol Label Switching) in the transport network. It adds a transport-oriented connection-oriented OAM (Operation, Management, and Management (based on MPLS). Administration ), Maintenance (Maintenance) and protection recovery features.
  • MPLS Multiprotocol Label Switching
  • T-MPLS satisfies the hierarchical structure defined by ITU-T G.805.
  • T-MPLS networks can be divided into: media layer, segment layer (TMS-T-MPLS Section), and channel layer (TMP-T-MPLS Path).
  • Circuit layer (TMC - T-MPLS Channel).
  • the media layer indicates the medium to be transmitted, such as: optical fiber, copper cable or wireless.
  • Segment layers represent physical connections, such as SDH (Synchronous Digital Hierarchy), Ethernet, or wavelength channels.
  • the path layer represents the characteristics of the end-to-end logical connection.
  • the circuit layer represents the characteristics of the service, such as the type of connection and topology type (point-to-point, point-to-multipoint, multi-point to multi-point), type of service, and so on.
  • the T-MPLS OAM runs in the T-MPLS domain and is hierarchically layered. Each layer can only detect OAM faults at its own level, including OAM at the segment layer, OAM at the path layer, and OAM at the circuit layer.
  • T-MPLS supports end-to-end protection switching, including: linear protection and ring protection.
  • Path protection is a type of linear protection, a type of protection detected by the path layer OAM, including protection type 1 + 1 and protection type 1: 1.
  • the protection type 1 + 1 is specifically as follows: Two data packets are duplicated at the entrance of the link, and are sent to the primary link and the protection link respectively. The data packet is analyzed and judged at the exit of the link, and if the current primary link is valid, the data packet of the primary link is received. The data packet of the protection link is discarded. Otherwise, the data packet of the protection link is received, and the data packet of the primary link is discarded.
  • the protection type is 1:1. Specifically, the link status is judged at the ingress of the link. If the primary link is valid, the data packet is sent out from the primary link. If the primary link is invalid, the data packet is received from the primary link. The protection link is sent out.
  • Ring network protection is a type of protection detected by segment OAM. Specifically, when a node on the network detects a network failure, the service forwarded to the failed neighbor node is switched to another neighbor node.
  • the traditional path protection and the ring network protection have certain defects. If you configure path protection, a large number of OAM alarm packets will be generated when the link is faulty. A large number of OAM alarm packets in the path layer will occupy too much system resources, resulting in a busy system and untimely response. If ring network protection is configured, when the intermediate communication node of the multi-segment link fails, such as power failure, effective protection cannot be performed.
  • the present invention provides a T-MPLS network system and a link protection method, which can provide more effective and reliable link protection for a T-MPLS network system.
  • the present invention provides a T-MPLS network system, including:
  • a primary link comprising at least three primary communication nodes
  • a linear protection link located between the head and tail primary communication nodes of the primary link
  • a first switching module configured to transmit a data message by using a ring protection link between two adjacent primary communication nodes when a primary link between two adjacent primary communication nodes fails;
  • the second switching module is configured to transmit the data message by using the linear protection link when the intermediate primary communication node of the primary link fails.
  • the primary communication node includes:
  • a first detection module configured to perform segment OAM detection, to determine whether a segment OAM detection packet sent by the adjacent primary communication node through the primary link is received, and is not received within a preset detection period.
  • segment OAM detection detects the packet, it determines that the primary link between the adjacent primary communication node is faulty.
  • the second detection module is configured to perform the path layer OAM detection to determine whether the channel layer OAM detection packet is received. When the path layer OAM detection message is not received within the preset detection period, it is determined that the intermediate primary communication node of the primary link is faulty;
  • the period in which the first detecting module performs the segment OAM detection is smaller than the period in which the second detecting module performs the path layer OAM detection.
  • the primary communication node further includes:
  • an update module configured to: when the primary link between the adjacent primary communication node fails, the T-MPLS network system has at least one standby communication node on the ring protection link; on the linear protection link Having at least one alternate communication node; the alternate communication node on the ring protection link and the alternate communication node on the linear protection link are implemented using the same alternate communication node.
  • the linear protection link uses a 1 + 1 protection type path protection or a 1 : 1 protection type path protection.
  • the present invention also provides a link protection method, which is applied to a T-MPLS network system.
  • the T-MPLS network system includes a primary link, and the primary link includes at least three primary communication nodes.
  • the link protection method includes the following steps:
  • the primary communication node determines whether the primary link between the adjacent primary communication node fails; when the primary link with the adjacent primary communication node fails, the primary communication node uses between the adjacent primary communication node
  • the ring network protection link transmits data packets
  • the primary communication node determines whether the intermediate primary communication node of the primary link is faulty; when the intermediate primary communication node of the primary link fails, the primary communication node uses the linear protection link between the primary and secondary primary communication nodes of the primary link Transmit data packets.
  • the step of the primary communication node determining whether the primary link between the adjacent primary communication node fails or not includes:
  • the primary communication node performs segment OAM detection to determine whether the segmental OAM detection packet sent by the adjacent primary communication node through the primary link is received, and when the segment OAM detection packet is not received within the preset detection period, the determination is performed.
  • the primary link between adjacent primary communication nodes fails;
  • the step of the primary communication node determining whether the intermediate primary communication node of the primary link has failed includes: the primary communication node performs path layer OAM detection, determines whether the channel layer OAM detection message is received, and does not receive the path layer in the preset detection period. When the OAM detects the packet, it determines that the intermediate primary communication node of the primary link is faulty;
  • the period in which the primary communication node performs segment OAM detection is smaller than the period in which the path layer OAM detection is performed.
  • the ring protection link has at least one standby communication node; the linear protection link has at least one standby communication node; the alternate communication node on the ring protection link and the linear protection link
  • the alternate communication node is implemented using the same alternate communication node.
  • the linear protection link uses a 1 + 1 protection type path protection or a 1 : 1 protection type path protection.
  • the ring network protection and linear protection are configured in the T-MPLS network system.
  • the ring network protection link is used to transmit data packets.
  • the intermediate communication node on the primary link fails, ⁇ Transmitting data packets with a linear protection link provides more efficient and reliable link protection for T-MPLS network systems.
  • FIG. 1 is a schematic structural diagram of a T-MPLS network system according to an embodiment of the present invention.
  • FIG. 2 is another schematic structural diagram of a T-MPLS network system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a primary communication node according to an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a T-MPLS network system according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a link protection method according to an embodiment of the present invention.
  • An embodiment of the present invention provides a T-MPLS network system, where the T-MPLS network system includes: a primary link, which includes at least three primary communication nodes.
  • a ring protection link which is located between two adjacent primary communication nodes, and the ring protection link includes at least one standby communication node;
  • a linear protection link that is located between the head and tail primary communication nodes of the primary link.
  • the head-to-tail primary communication node of the primary link refers to the first primary communication node and the last primary communication node on the primary link, and the other primary communication nodes on the primary link are referred to as intermediate primary communication nodes.
  • the linear protection link includes at least one standby communication node; the linear protection link may be a 1 + 1 protection type path protection or a 1 : 1 protection type path protection.
  • a first switching module configured to: when a primary link between two adjacent primary communication nodes fails, use a ring protection link between two adjacent primary communication nodes to transmit a data message;
  • a second switching module configured to transmit a data message by using a linear protection link when the intermediate primary communication node of the primary link fails.
  • the data packet is transmitted using the linear protection link.
  • FIG. 1 is a schematic structural diagram of a T-MPLS network system according to an embodiment of the present invention.
  • the T-MPLS network system includes three primary communication nodes, and the three primary communication nodes are a primary communication node, a primary communication node B, and The main communication node C, wherein the main communication node A is the head main communication node, the main communication node B is the intermediate main communication node, the main communication node C is the tail main communication node, and the main communication node A and the main communication node B are the main The link is called the primary link AB, and the primary link between the primary communication node B and the primary communication node C is called the primary link BC.
  • the primary communication node A and the primary communication node B have a ring protection link ADBA, and the primary communication node B and the primary communication node C also have a ring protection link BDCB.
  • the standby communication node D serves as both the standby communication node on the ring protection link ADBA between the primary communication node A and the primary communication node B, and also serves as the primary communication node B and the primary communication node C.
  • the ring network protects the alternate communication node on the link BDCB, which can effectively reduce the system cost.
  • the alternate communication node D can also be used as the standby communication node on the ring protection link between the primary communication node A and the primary communication node B, and the standby communication node E is used as the primary communication node.
  • An alternate communication node on the ring protection link between B and the primary communication node C At this time, the ring protection link between the primary communication node A and the primary communication node B is ADBA, and the ring protection link between the primary communication node B and the primary communication node C is BECB.
  • the ring network protection link ADBA between the primary communication node A and the primary communication node B can transmit data packets in the primary communication.
  • the ring network protection link BCDB between the primary communication node B and the primary communication node C can transmit data packets.
  • the ring network protection mode is adopted, so that a large number of channel layer OAM alarm packets are generated when only the linear protection mode is configured, thereby occupying system resources and causing the system. Busy, unresponsive questions.
  • the linear protection link ADC between the primary communication node A and the primary communication node C can transmit data packets.
  • the linear protection mode is used, it is possible to effectively avoid the problem that the intermediate communication node cannot be effectively protected when the intermediate communication node fails.
  • the T-MPLS network system is described by taking three main communication nodes on the primary link as an example. In fact, there may be more than three primary communication nodes on the primary link.
  • the primary link has four primary communication nodes
  • the first and fourth primary communication nodes are head-to-tail primary communication nodes, respectively.
  • the second and third primary communication nodes are intermediate communication nodes, and each of the adjacent primary communication nodes has a ring protection link, and the first and fourth primary communication nodes have a linear protection link.
  • the T-MPLS network system Before performing the handover of the primary link and the protection link (the ring protection link or the linear protection link), it is also necessary to detect whether the primary link is faulty.
  • the following describes in detail the T-MPLS network system.
  • the process of performing link detection Since the ring network protection is a type of protection detected by the segment layer OAM, the T-MPLS network system needs to perform segment OAM detection to determine whether the primary link is faulty.
  • linear protection is a type of protection detected by the path layer OAM. Therefore, the T-MPLS network system also needs to perform channel layer OAM detection at the same time to determine whether the intermediate communication node is faulty.
  • FIG. 3 is a schematic structural diagram of a primary communication node according to an embodiment of the present invention, where the primary communication node includes:
  • the first detecting module 301 is configured to perform segment OAM detection, and determine whether the segment OAM detection packet sent by the adjacent primary communication node through the primary link is received, and the segment OAM detection is not received in the preset detection period. At the time of the message, it is determined that the primary link between the adjacent primary communication node has failed.
  • a first switching module 302 configured to transmit a data packet by using a ring protection link between two adjacent primary communication nodes when a primary link between two adjacent primary communication nodes fails
  • the second detecting module 303 is configured to perform the path layer OAM detection, determine whether the channel layer OAM detection message is received, and determine the middle of the main link when the path layer OAM detection message is not received within the preset detection period.
  • the primary communication node fails, and the period in which the first detection module performs the segment OAM detection is smaller than the period in which the second detection module performs the path layer OAM detection.
  • the second switching module 304 is configured to transmit a data message by using a linear protection link when the intermediate primary communication node of the primary link fails.
  • the primary communication node A is the primary communication node shown in FIG. 3.
  • the structures of the primary communication node B and the primary communication node C are both The same structure as the primary communication node A.
  • the primary communication node A performs segment OAM detection, and sends a segment OAM detection message TMS A to the primary communication node B through the primary link AB.
  • the primary communication node B also performs segment OAM detection through the main chain.
  • the route AB sends the segment layer OAM detection message TMS B1 to the primary communication node A, and transmits the segment layer OAM detection TMS B2 to the primary communication node C through the primary link BC; meanwhile, the primary communication node C also performs segment layer OAM Detection, the segment layer OAM detection message TMS C is sent to the primary communication node B through the primary link BC.
  • the primary communication node A also performs channel layer OAM detection, and transmits the channel layer OAM detection message to the primary communication node C through the intermediate primary communication node B.
  • the primary communication node C also The path layer OAM detection message is transmitted to the primary communication node A through the intermediate primary communication node B.
  • the primary communication node A can receive the segment layer OAM detection message TMS B1 sent by the primary communication node B during the preset detection period, when the primary communication node When the primary link AB between A and the primary communication node B fails, the primary communication node A cannot receive the segment layer OAM detection message TMS B1 transmitted by the primary communication node B within the preset detection period. Therefore, the primary communication node A can determine whether the primary link AB with the primary communication node B has failed according to whether the segment OAM detection message TMS B1 sent by the primary communication node B is received within the preset detection period.
  • the primary communication node A In order to ensure that when the primary link fails, first switch to the ring protection link instead of switching to the linear protection link, the primary communication node A needs to ensure that the period of performing the segment OAM detection is less than the period of performing the path layer OAM detection. That is, when performing the segment OAM detection and detecting that the primary link is faulty, the switch is first switched to the ring network protection link. Since the period of the OAM detection of the path layer is not available, a large number of OAM alarm packets can be avoided. System resources, resulting in a busy system and unresponsive response. Normally, the period for performing path layer OAM detection is set to be three times the period for performing segment OAM detection.
  • the primary communication node A and the primary communication node C transmit data packets through the primary link ABC;
  • the transmission link of the data packet between the primary communication node A and the primary communication node C is switched to ADBC; at this time, the primary communication node A
  • the path layer OAM detection message sent to the primary communication node C is also transmitted along with the data message via the transmission link ADBC.
  • the primary communication node A can receive the path layer OAM detection message sent by the primary communication node C in the preset detection period.
  • the primary communication node A is in advance. It is assumed that the path layer OAM detection message sent by the primary communication node C cannot be received within the detection period. Therefore, the primary communication node A can determine whether the intermediate primary communication node B has failed according to whether the channel layer OAM detection message sent by the primary communication node C is received within the preset detection period.
  • the primary communication node B When the intermediate primary communication node B fails, the transmission link of the data message between the primary communication node A and the primary communication node C is switched to the ADC.
  • the primary communication node further includes:
  • An update module 305 configured to send a path layer OAM detection packet by using a ring protection link between the adjacent primary communication node when the primary link between the adjacent primary communication node fails, thereby ensuring that If the intermediate primary communication node does not fail, it does not switch to the linear protection link and avoids a large number of path layer OAM alarm packets.
  • the following describes how to implement fault detection and link switching in the primary communication node.
  • a link forwarding table is stored in each of the primary communication nodes, and two data export information is stored in the link forwarding table, one is the primary export information, and one is the standby export information; the rrindex field is also stored in the link forwarding table.
  • the rrindex field corresponds to a fast switch table, the fast switch table has a backup flag bit, the backup flag bit indicates the current data exit information, and the backup flag bit can be set to 0 or 1.
  • the backup flag is 0, indicating that the current data export information is the primary export information
  • the backup flag is 1, indicating that the current data export information is the standby export information.
  • the link forwarding table is searched by the microcode, the rrindex field is obtained from the link forwarding table, the fast switching table is searched according to the rrindex field, and the data is selected according to the state of the backup flag bit in the fast switching table.
  • Export information When the primary communication node needs to send data, the link forwarding table is searched by the microcode, the rrindex field is obtained from the link forwarding table, the fast switching table is searched according to the rrindex field, and the data is selected according to the state of the backup flag bit in the fast switching table.
  • FIG. 4 is still another schematic structural diagram of a T-MPLS network system according to an embodiment of the present invention.
  • the T-MPLS network system includes a primary link, and the primary communication node has primary communication nodes A, B, and C, and T-MPLS.
  • the network system also includes two ring protection links: Ring Protection Link 1 (ADBA) configured for the primary link AB, and Ring Protection Link 2 (BDCB) configured for the primary link BC, T-MPLS
  • the network system also includes a 1:1 protection type linear protection link (ADEC) configured for the primary link.
  • ADBA Ring Protection Link 1
  • BDCB Ring Protection Link 2
  • DRC 1:1 protection type linear protection link
  • the process of configuring the link forwarding table by the primary communication node A is as follows:
  • Step A1 Configure the primary link: Obtain the primary link information, and write the data export information corresponding to the primary link to the primary exit information of the link forwarding table.
  • Step A2 Configure the ring protection link 1: assign a rrindex field to the ring protection link 1, and save the data export information corresponding to the ring protection link 1.
  • Step A3 Configure a linear protection link: allocate a rrindex field for the linear protection link, and save the data export information corresponding to the linear protection link.
  • Step B1 configuring the primary link: acquiring the primary link information, and saving the data export information corresponding to the primary link to the primary link forwarding table;
  • Step B2 Configure the ring protection link 1: assign a rrindex field to the ring protection link 1, and save the data exit information corresponding to the ring protection link 1 (ie, the next hop A) to the ring protection link.
  • the forwarding table In the forwarding table;
  • Step B3 Configure the ring protection link 2: Assign a rrindex field to the ring protection link 2, and save the data exit information corresponding to the ring protection link 2 (ie, the next hop D).
  • the primary communication node A needs to complete the following operations:
  • Step 1 Find the rrindex field corresponding to the ring protection link, and set the backup flag in the fast switch table corresponding to the rrindex field to 1;
  • Step 2 Write the data exit information and the rrindex field corresponding to the ring protection link to the alternate exit information of the link forwarding.
  • the primary communication node B After the primary link AB fails, the primary communication node B needs to complete the following operations:
  • Step 1 Find the rrindex field corresponding to the ring protection link 1 and set the backup flag in the fast switch table corresponding to the rrindex field to 1;
  • Step 2 Write the data exit information (ie, the next hop C) and the rrindex field corresponding to the primary link to the alternate exit information of the ring protection link forwarding table.
  • the primary link AB fails, the data transmission link between the primary communication node A and the primary communication node B is switched from the primary link AB to the ring protection link 1, and at this time, the primary communication node A to the primary communication
  • the data transmission link of node C is ADBC.
  • the primary link BC also fails, the data transmission link between the primary communication node B and the primary communication node C is switched from the primary link BC to the ring protection link 2, at which time, the primary communication node A to the primary communication
  • the data transmission link of node C is ADBDEC.
  • the primary communication node B also needs to complete the following operations:
  • Step 1 Find the rrindex field corresponding to the ring protection link 2, and set the backup flag in the fast switch table corresponding to the rrindex field to 1;
  • Step 2 Write the egress information (next hop D) and rrindex field corresponding to the ring protection link 2 to the alternate egress information of the ring protection link forwarding table.
  • the segment layer first detects that the link is faulty, performs the switching of the ring protection link, and then the path layer also detects that the link is faulty, thereby switching to the linear protection link. At this time, the primary communication node A to the primary communication node
  • the data transmission link of C is ADEC.
  • the primary communication node A needs to complete the following operations:
  • Step 1 Find the rrindex field corresponding to the linear protection link, and set the backup flag bit in the fast switching table corresponding to the rrindex field to 1.
  • Step 2 Write the exit information and the rrindex field corresponding to the linear protection link to the alternate exit information in the link forwarding table.
  • FIG. 5 is a schematic flowchart of a link protection method according to an embodiment of the present invention.
  • the link protection method is applied to a T-MPLS network system, where the T-MPLS network system includes a primary link, and the primary link includes at least three
  • the primary communication node, the link protection method includes the following steps:
  • Step 501 The primary communication node determines whether a primary link between the primary communication node and the adjacent primary communication node is faulty.
  • Step 502 When the primary link between the primary communication node and the adjacent primary communication node fails, the primary communication node uses the ring protection link between the adjacent primary communication node to transmit the data packet.
  • Step 503 The primary communication node determines whether the intermediate primary communication node of the primary link is faulty.
  • Step 504 When the intermediate primary communication node of the primary link fails, the primary communication node uses the head-to-end primary communication node of the primary link.
  • the linear protection link transmits data packets.
  • the head-to-tail primary communication node of the primary link refers to the first primary communication node and the last primary communication node on the primary link, and the other primary communication nodes on the primary link are referred to as intermediate primary communication nodes.
  • the linear protection link can be either a 1 + 1 protection type path protection or a 1 : 1 protection type path protection.
  • At least one alternate communication node on the ring protection link at least one alternate communication node on the linear protection link; an alternate communication node on the ring protection link and an alternate communication node on the linear protection link in order to reduce system cost It can be implemented with the same alternate communication node.
  • the ring network protection link between the primary communication node and the adjacent primary communication node may be used to transmit data packets. Because the ring network protection mode is used, it can effectively avoid the problem that a large number of channel layer OAM alarm packets are generated when the linear protection mode is configured, which occupies system resources and causes the system to be busy and the response is not timely.
  • the data protection packet can be transmitted by using the linear protection link between the primary and secondary primary communication nodes of the primary link. In this case, because the linear protection mode is adopted, It can effectively avoid the problem that the intermediate communication node cannot be effectively protected when the intermediate communication node fails when only the ring network protection is configured.
  • the primary communication node performs the link in detail below. The process of detection.
  • ring protection is a type of protection detected by segment OAM
  • the main communication section The point needs to perform segment OAM detection to determine whether the primary link is faulty.
  • linear protection is a type of protection detected by the path layer OAM. Therefore, the primary communication node also needs to perform channel layer OAM detection simultaneously to determine whether the intermediate communication node has failed.
  • step 501 is specifically:
  • the primary communication node performs segment OAM detection, and determines whether the segment OAM detection packet sent by the adjacent primary communication node through the primary link is received, and the segment OAM detection packet is not received within the preset detection period. Determining that a primary link between the adjacent primary communication node fails;
  • step 503 is specifically:
  • the primary communication node performs the path layer OAM detection to determine whether the channel layer OAM detection message is received. When the path layer OAM detection message is not received within the preset detection period, it is determined that the intermediate primary communication node of the primary link is faulty.
  • the primary communication node A In order to ensure that when the primary link fails, first switch to the ring protection link instead of switching to the linear protection link, the primary communication node A needs to ensure that the period of performing the segment OAM detection is less than the period of performing the path layer OAM detection. That is, when performing the segment OAM detection and detecting that the primary link is faulty, the switch is first switched to the ring network protection link. Since the period of the OAM detection of the path layer is not available, a large number of OAM alarm packets can be avoided. System resources, resulting in a busy system and unresponsive response. Normally, the period for performing path layer OAM detection is set to be three times the period for performing segment OAM detection.
  • the transmission link of the data packet between the primary communication node and the adjacent primary communication node is switched to the ring protection link; at this time, the primary communication
  • the path layer OAM detection packet sent by the node is also transmitted along with the data packet through the ring protection link.
  • the primary communication node performs the path layer OAM detection to determine whether to receive the path layer OAM detection message before:
  • the primary communication node When the primary link between the adjacent primary communication node fails, the primary communication node simultaneously configures ring protection and linear protection in the T-MPLS network system by using the method provided by the foregoing embodiments.
  • the link fails, the ring network protection link transmits data packets.
  • the intermediate communication node on the primary link fails, the data link is transmitted through the linear protection link.
  • the ring network protection and linear protection are configured in the T-MPLS network system.
  • the ring network protection link is used to transmit data packets.
  • the intermediate communication node on the primary link fails, ⁇ Transmitting data packets with a linear protection link provides more efficient and reliable link protection for T-MPLS network systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种传送多协议标签交换T-MPLS网络系统和链路保护方法,T-MPLS网络系统包括:主链路,其包括至少三个主通信节点;环网保护链路,其位于相邻的两个主通信节点之间;线性保护链路,其位于主链路的头尾主通信节点之间;第一切换模块,其设置为在相邻的两个主通信节点之间的主链路发生故障时,采用相邻的两个主通信节点之间的环网保护链路传输数据报文;第二切换模块,其设置为在主链路的中间主通信节点发生故障时,采用线性保护链路传输数据报文。本发明能够为T-MPLS网络系统提供更加有效可靠的链路保护。

Description

传送多协议标签交换网络系统和链路保护方法
技术领域
本发明涉及通信技术领域, 尤其涉及一种 T-MPLS ( Transmission- Multiprotocol Label Switching, 传送多协议标签交换 ) 网络系统和链路保护方 法。
背景技术
T-MPLS是国际电信联盟(ITU-T )标准化的一种分组传送网技术, 其数 据是基于 T-MPLS标签进行转发的。 T-MPLS是面向连接的技术, 是 MPLS ( Multiprotocol Label Switching, 多协议标签交换)在传送网中的应用, 在 MPLS的基础上增加了传送风格的面向连接的 OAM (操作 ( Operation ) 、 管 理(Administration ) 、 维护 (Maintenance ) )和保护恢复的功能。
T-MPLS满足 ITU-TG.805定义的分层结构, T-MPLS网络可以分为: 媒 介层、 段层(TMS—— T-MPLS Section ) 、 通路层( TMP—— T-MPLS Path ) 和电路层(TMC—— T-MPLS Channel ) 。 其中, 媒介层表示传送的媒介, 例 如: 光纤、铜缆或无线等。段层表示物理连接,例如 SDH ( Synchronous Digital Hierarchy, 同步数字体系) 、 以太网或者波长通道。 通路层表示端到端的逻 辑连接的特性。 电路层表示业务的特性, 例如连接的类型和拓朴类型 (点到 点、 点到多点、 多点到多点) 、 业务的类型等。
T-MPLS OAM运行于 T-MPLS域内, 是分域分层的, 每个层次只能检测 出自己层面的 OAM故障,包括段层的 OAM、通路层的 OAM、电路层的 OAM。
T-MPLS网络的生存性通过网络保护和恢复技术实现。 T-MPLS支持端到 端的保护倒换, 包括: 线性保护和环网保护。
路径保护是线性保护的一种, 是通过通路层 OAM检测的一种保护类型, 包括保护类型 1 + 1和保护类型 1 : 1。 其中, 保护类型 1 + 1具体为: 在链路 的入口处复制两份数据报文, 分别发向主链路和保护链路。 在链路的出口处 对数据报文进行分析判断, 若当前主链路有效, 则接收主链路的数据报文, 将保护链路的数据报文丟弃; 否则, 接收保护链路的数据报文, 将主链路的 数据报文丟弃。保护类型为 1 : 1具体为:在链路的入口对链路状态进行判断, 若主链路有效, 将数据报文从主链路发送出去; 若主链路无效, 则将数据报 文从保护链路发送出去。
环网保护是通过段层 OAM检测的一种保护类型, 具体为: 当网络上的节 点检测到网络发生故障时, 将转发至发生故障相邻节点的业务倒换至另一相 邻节点。
对于配置了大量链路的网络, 釆用传统的路径保护和环网保护均存在一 定的缺陷, 即: 如果配置路径保护, 当链路发生故障时, 会产生大量的通路 层 OAM告警报文, 大量的通路层 OAM告警报文会占用过多的系统资源,导致 系统繁忙, 响应不及时。 如果配置环网保护, 当多段链路的中间通信节点发 生掉电等故障时, 则无法进行有效的保护。
发明内容
有鉴于此, 本发明提供一种 T-MPLS网络系统和链路保护方法, 能够为 T-MPLS网络系统提供更加有效可靠的链路保护。
为解决上述问题, 本发明提供一种 T-MPLS网络系统, 包括:
主链路, 其包括至少三个主通信节点;
环网保护链路, 其位于相邻的两个主通信节点之间;
线性保护链路, 其位于主链路的头尾主通信节点之间;
第一切换模块, 其设置为在相邻的两个主通信节点之间的主链路发生故 障时, 釆用相邻的两个主通信节点之间的环网保护链路传输数据报文;
第二切换模块, 其设置为在主链路的中间主通信节点发生故障时, 釆用 线性保护链路传输数据报文。
上述 T-MPLS网络系统中, 主通信节点包括:
第一检测模块, 其设置为执行段层 OAM检测, 判断是否接收到相邻主 通信节点通过主链路发送的段层 OAM检测报文, 在预设检测周期内未接收 到段层 OAM检测报文时, 判定与相邻主通信节点之间的主链路发生故障; 第二检测模块, 其设置为执行通路层 OAM检测, 判断是否接收到通路 层 OAM检测报文,在预设检测周期内未接收到通路层 OAM检测报文时,判 定主链路的中间主通信节点发生故障;
其中, 第一检测模块执行段层 OAM检测的周期小于第二检测模块执行 通路层 OAM检测的周期。
上述 T-MPLS网络系统中, 主通信节点还包括:
更新模块, 其设置为在与相邻主通信节点之间的主链路发生故障时, 通 上述 T-MPLS网络系统中,环网保护链路上具有至少一个备用通信节点; 线性保护链路上具有至少一个备用通信节点; 环网保护链路上的备用通信节 点和所述线性保护链路上的备用通信节点釆用相同的备用通信节点实现。
上述 T-MPLS网络系统中,线性保护链路釆用 1 + 1保护类型的路径保护 或 1 : 1保护类型的路径保护。
本发明还提供一种链路保护方法, 其应用于 T-MPLS 网络系统中, T-MPLS 网络系统包括主链路, 主链路包括至少三个主通信节点, 链路保护 方法包括以下步骤:
主通信节点判断与相邻主通信节点之间的主链路是否发生故障; 在与相 邻主通信节点之间的主链路发生故障时, 主通信节点釆用与相邻主通信节点 之间的环网保护链路传输数据报文;
主通信节点判断主链路的中间主通信节点是否发生故障; 在主链路的中 间主通信节点发生故障时, 主通信节点釆用主链路的头尾主通信节点之间的 线性保护链路传输数据报文。
上述链路保护方法中, 主通信节点判断与相邻主通信节点之间的主链路 是否发生故障的步骤包括:
主通信节点执行段层 OAM检测, 判断是否接收到相邻主通信节点通过 主链路发送的段层 OAM检测报文,在预设检测周期内未接收到段层 OAM检 测报文时, 判定与相邻主通信节点之间的主链路发生故障; 主通信节点判断主链路的中间主通信节点是否发生故障的步骤包括: 主通信节点执行通路层 OAM检测,判断是否接收到通路层 OAM检测报 文, 在预设检测周期内未接收到通路层 OAM检测报文时, 判定所述主链路 的中间主通信节点发生故障;
其中,主通信节点执行段层 OAM检测的周期小于执行通路层 OAM检测 的周期。
上述链路保护方法中, 环网保护链路上具有至少一个备用通信节点; 线 性保护链路上具有至少一个备用通信节点; 环网保护链路上的备用通信节点 和所述线性保护链路上的备用通信节点釆用相同的备用通信节点实现。
上述链路保护方法中,线性保护链路釆用 1 + 1保护类型的路径保护或 1 : 1保护类型的路径保护。
本发明具有以下有益效果:
在 T-MPLS网络系统中同时配置环网保护和线性保护, 在主链路发生故 障时, 釆用环网保护链路传输数据报文, 在主链路上的中间通信节点发生故 障时, 釆用线性保护链路传输数据报文, 能够为 T-MPLS网络系统提供更加 有效可靠的链路保护。
附图概述
图 1为本发明实施例的 T-MPLS网络系统的一结构示意图;
图 2为本发明实施例的 T-MPLS网络系统的另一结构示意图;
图 3为本发明实施例的主通信节点的一结构示意图;
图 4为本发明实施例的 T-MPLS网络系统的又一结构示意图;
图 5为发明实施例的链路保护方法的一流程示意图。
本发明的较佳实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 本发明实施例提供一种 T-MPLS网络系统,所述 T-MPLS网络系统包括: 主链路, 其包括至少三个主通信节点。
环网保护链路, 其位于相邻的两个主通信节点之间, 环网保护链路上包 括至少一个备用通信节点;
线性保护链路, 其位于主链路的头尾主通信节点之间。 主链路的头尾主 通信节点是指主链路上的第一个主通信节点和最后一个主通信节点, 主链路 上的其他主通信节点称为中间主通信节点。 线性保护链路上包括至少一个备 用通信节点; 线性保护链路可以为 1 + 1保护类型的路径保护, 也可以为 1 : 1保护类型的路径保护。
第一切换模块, 其用于在相邻的两个主通信节点之间的主链路发生故障 时, 釆用相邻的两个主通信节点之间的环网保护链路传输数据报文;
第二切换模块, 其用于在主链路的中间主通信节点发生故障时, 釆用线 性保护链路传输数据报文。 在主链路上的任一中间通信节点发生故障时, 均 釆用线性保护链路传输数据报文。
如图 1 所示为本发明实施例的 T-MPLS 网络系统的一结构示意图, T-MPLS 网络系统中包括三个主通信节点, 三个主通信节点分别为主通信节 点 、主通信节点 B和主通信节点 C, 其中, 主通信节点 A为头主通信节点、 主通信节点 B为中间主通信节点, 主通信节点 C为尾主通信节点, 主通信节 点 A和主通信节点 B之间的主链路称为主链路 AB , 主通信节点 B和主通信 节点 C之间的主链路称为主链路 BC。
主通信节点 A和主通信节点 B之间具有一环网保护链路 ADBA, 主通信 节点 B和主通信节点 C之间也具有一环网保护链路 BDCB。 从图 1中可以看 出,备用通信节点 D既作为主通信节点 A和主通信节点 B之间的环网保护链 路 ADBA上的备用通信节点,也同时作为主通信节点 B和主通信节点 C之间 的环网保护链路 BDCB上的备用通信节点, 该种组网结构能够有效减少系统 成本。 当然, 如图 2所示, 也可以釆用备用通信节点 D作为主通信节点 A和 主通信节点 B之间的环网保护链路上的备用通信节点, 釆用备用通信节点 E 作为主通信节点 B和主通信节点 C之间的环网保护链路上的备用通信节点, 此时, 主通信节点 A和主通信节点 B之间的环网保护链路为 ADBA, 主通信 节点 B和主通信节点 C之间的环网保护链路为 BECB。
头主通信节点 A和尾主通信节点 C之间还具有一线性保护链路 ADC。 从图 1 中可以看出, 环网保护链路上的备用通信节点与线性保护链路上的备 用通信节点釆用相同的备用通信节点 D来实现, 即环网保护链路上的一部分 链路与线性保护链路上的一部分链路重合, 该种组网结构能够进一步减少系 统成本。 当然, 如图 2所示, 环网保护链路也可以与线性保护链路不重合, 此时, 主通信节点 A和 C之间的线性保护链路为 AFC。
在主通信节点 A和主通信节点 B之间的主链路 AB发生故障时, 可以釆 用主通信节点 A和主通信节点 B之间的环网保护链路 ADBA传输数据报文, 在主通信节点 B和主通信节点 C之间的主链路 BC发生故障时, 可以釆用主 通信节点 B和主通信节点 C之间的环网保护链路 BCDB传输数据报文。上述 实施例中, 当主链路发生故障时, 由于釆用的是环网保护方式, 因此, 可以 有效避免仅配置线性保护方式时产生大量的通路层 OAM告警报文, 从而占 用系统资源, 导致系统繁忙, 响应不及时的问题。
在中间主通信节点 B发生故障 (如掉电等故障) 时, 可以釆用主通信节 点 A和主通信节点 C之间的线性保护链路 ADC传输数据报文。 上述实施例 中, 当中间主通信节点发生故障时, 由于釆用的是线性保护方式, 因此, 可 以有效避免仅配置环网保护时, 中间通信节点发生故障时无法进行有效的保 护的问题。
上述实施例中, 是以主链路上具有三个主通信节点为例, 对本发明实施 例的 T-MPLS网络系统进行说明。 实际上, 主链路上的主通信节点可能会多 于三个, 例如, 主链路具有四个主通信节点时, 其中第一个和第四个主通信 节点分别为头尾主通信节点, 第二个和第三个主通信节点为中间通信节点, 相邻主通信节点之间均具有一环网保护链路, 第一个和第四个主通信节点具 有一线性保护链路。
可以理解的是, 在执行主链路与保护链路(环网保护链路或线性保护链 路)的切换之前,还必须检测主链路是否发生故障, 下面将详细描述 T-MPLS 网络系统中执行链路检测的过程。 由于环网保护是通过段层 OAM检测的一种保护类型, 因此, T-MPLS网 络系统需要进行段层 OAM检测, 以判断主链路是否发生故障。 另外, 线性 保护是通过通路层 OAM检测的一种保护类型, 因此, T-MPLS网络系统还需 要同时进行通路层 OAM检测, 以判断中间通信节点是否发生故障。
如图 3所示为本发明实施例的主通信节点的一结构示意图, 主通信节点 包括:
第一检测模块 301 , 其用于执行段层 OAM检测, 判断是否接收到相邻主 通信节点通过主链路发送的段层 OAM检测报文, 在预设检测周期内未接收 到段层 OAM检测报文时, 判定与相邻主通信节点之间的主链路发生故障。
第一切换模块 302, 其用于在相邻的两个主通信节点之间的主链路发生 故障时, 釆用相邻的两个主通信节点之间的环网保护链路传输数据报文; 第二检测模块 303 , 其用于执行通路层 OAM检测, 判断是否接收到通路 层 OAM检测报文,在预设检测周期内未接收到通路层 OAM检测报文时,判 定主链路的中间主通信节点发生故障, 第一检测模块执行段层 OAM检测的 周期小于第二检测模块执行通路层 OAM检测的周期。
第二切换模块 304, 其用于在主链路的中间主通信节点发生故障时, 釆 用线性保护链路传输数据报文。
以图 1中的 T-MPLS网络系统为例, 4叚设主通信节点 A为图 3中所示的 主通信节点, 当然, 可以理解的是, 主通信节点 B和主通信节点 C的结构均 与主通信节点 A的结构相同。
其中, 主通信节点 A会执行段层 OAM检测, 通过主链路 AB向主通信 节点 B发送段层 OAM检测报文 TMS A; 另外, 主通信节点 B也会执行段层 OAM检测,通过主链路 AB向主通信节点 A发送段层 OAM检测报文 TMS B1 , 通过主链路 BC向主通信节点 C发送段层 OAM检测 ^艮文 TMS B2; 同时, 主 通信节点 C也会执行段层 OAM检测, 通过主链路 BC向主通信节点 B发送 段层 OAM检测报文 TMS C。
另外, 主通信节点 A还会执行通路层 OAM检测, 通过中间主通信节点 B向主通信节点 C发送通路层 OAM检测报文, 同样的, 主通信节点 C也会 通过中间主通信节点 B向主通信节点 A发送通路层 OAM检测报文。
当主通信节点 A和主通信节点 B之间的主链路 AB正常时, 主通信节点 A在预设检测周期内能够接收到主通信节点 B发送的段层 OAM检测报文 TMS B1 , 当主通信节点 A和主通信节点 B之间的主链路 AB发生故障时,主 通信节点 A在预设检测周期内无法接收到主通信节点 B发送的段层 OAM检 测报文 TMS B1。 因此, 主通信节点 A可以根据是否在预设检测周期内接收 到主通信节点 B发送的段层 OAM检测报文 TMS B1 ,来判断与主通信节点 B 之间的主链路 AB是否发生故障。
为了保证在主链路发生故障时, 首先切换到环网保护链路, 而不是切换 到线性保护链路, 主通信节点 A需要保证执行段层 OAM检测的周期小于执 行通路层 OAM检测的周期,即在执行段层 OAM检测发现主链路发生故障时, 首先切换到环网保护链路, 由于此时通路层 OAM检测的周期未至, 从而能 够避免产生大量的通路层 OAM告警报文, 占用系统资源, 导致系统繁忙, 响应不及时。通常情况下,设置执行通路层 OAM检测的周期为执行段层 OAM 检测的周期的三倍。
当主链路 AB和 BC均正常时, 主通信节点 A和主通信节点 C之间通过 主链路 ABC传输数据报文;
当主通信节点 A和主通信节点 B之间的主链路 AB发生故障时, 主通信 节点 A和主通信节点 C之间的数据报文的传输链路切换为 ADBC; 此时, 主 通信节点 A向主通信节点 C发送的通路层 OAM检测报文也随数据报文一起 通过传输链路 ADBC传输。
当中间主通信节点 B正常时, 主通信节点 A在预设检测周期内能够接收 到主通信节点 C发送的通路层 OAM检测报文, 当中间主通信节点 B发生故 障, 主通信节点 A在预设检测周期内无法接收到主通信节点 C发送的通路层 OAM检测报文。 因此, 主通信节点 A可以根据是否在预设检测周期内接收 到主通信节点 C发送的通路层 OAM检测报文, 判断中间主通信节点 B是否 发生故障。
当中间主通信节点 B发生故障时,主通信节点 A和主通信节点 C之间的 数据报文的传输链路切换为 ADC。 基于上述描述, 可以得知主通信节点还包括:
更新模块 305 , 其用于在与相邻主通信节点之间的主链路发生故障时, 通过与相邻主通信节点之间的环网保护链路发送通路层 OAM检测报文, 从 而保证只要中间主通信节点未发生故障, 则不切换到线性保护链路, 避免出 现大量通路层 OAM告警报文。
下面对主通信节点中如何实现故障检测以及链路切换的方法进行详细说 明。
首先说明主通信节点中的链路配置流程:
每一主通信节点中均保存有链路转发表, 链路转发表中保存了两条数据 出口信息, 一条为主用出口信息, 一条为备用出口信息; 链路转发表中还保 存有 rrindex字段, rrindex字段对应一快速切换表,快速切换表中具有一 backup 标志位, backup标志位表示当前数据的出口信息, backup标志位可以置为 0 或 1。 本发明实施例中, 假设 backup标志位为 0, 表示当前数据的出口信息 为主用出口信息, backup标志位为 1时, 表示当前数据的出口信息为备用出 口信息。
在主通信节点需要发送数据时, 通过微码查找链路转发表, 从链路转发 表中获取 rrindex字段,根据 rrindex字段查找快速切换表, 并根据快速切换表 中 backup标志位的状态, 选择数据的出口信息。
如图 4 所示为本发明实施例的 T-MPLS 网络系统的又一结构示意图, T-MPLS网络系统包括一主链路,主链路上具有主通信节点 A、 B、 C, T-MPLS 网络系统还包括两个环网保护链路: 为主链路 AB 配置的环网保护链路 1 ( ADBA ) , 以及为主链路 BC配置的环网保护链路 2 ( BDCB ) , T-MPLS 网络系统还包括一为主链路配置的 1 : 1保护类型的线性保护链路(ADEC )。
其中, 主通信节点 A配置链路转发表的过程如下:
步骤 A1 , 配置主链路: 获取主链路信息, 将主链路对应的数据出口信息 写到链路转发表的主用出口信息处;
步骤 A2, 配置环网保护链路 1 : 为环网保护链路 1分配一 rrindex字段, 保存环网保护链路 1对应的数据出口信息; 步骤 A3 , 配置线性保护链路: 为线性保护链路分配一 rrindex字段, 保 存线性保护链路对应的数据出口信息。
由于中间主通信节点 B上接收到的数据有不同的入口 (主链路入口和环 网入口) , 因此, 中间主通信节点 B上需要配置两个链路转发表: 主链路转 发表和环网保护链路转发表。中间主通信节点 B配置链路转发表的过程如下: 步骤 B1 , 配置主链路: 获取主链路信息, 将主链路对应的数据出口信息 保存到主链路转发表中;
步骤 B2, 配置环网保护链路 1 : 为环网保护链路 1分配一 rrindex字段, 并将环网保护链路 1对应的数据出口信息 (即下一跳 A )保存到环网保护链 路转发表中;
步骤 B3 , 配置环网保护链路 2: 为环网保护链路 2分配一 rrindex字段, 保存环网保护链路 2对应的数据出口信息 (即下一跳 D ) 。
然后说明主通信节点中的链路切换流程:
(一)主链路 AB发生故障
在主链路 AB发生故障时, 主通信节点 A和主通信节点 B之间的数据传 输链路由主链路 AB切换到环网保护链路 1 , 此时, 由主通信节点 A至主通 信节点 C的数据传输链路为 ADBC。 同时, 修改通路层 OAM检测报文的出 通信节点^
在主链路 AB发生故障后, 主通信节点 A需要完成以下操作:
步骤一,查找环网保护链路对应的 rrindex字段,并置 rrindex字段对应的 快速切换表中的 backup标志位为 1 ;
步骤二, 将环网保护链路对应的数据出口信息和 rrindex字段写到链路转 发表的备用出口信息处。
在主链路 AB发生故障后, 主通信节点 B需要完成以下操作:
步骤一,查找环网保护链路 1对应的 rrindex字段,并置 rrindex字段对应 的快速切换表中的 backup标志位为 1 ; 步骤二, 将主链路对应的数据出口信息(即下一跳 C )和 rrindex字段写 到环网保护链路转发表的备用出口信息处。
(二 )主链路 AB和主链路 BC均发生故障
在主链路 AB发生故障时, 主通信节点 A和主通信节点 B之间的数据传 输链路由主链路 AB切换到环网保护链路 1 , 此时, 由主通信节点 A至主通 信节点 C的数据传输链路为 ADBC,主通信节点 A和主通信节点 B上需要完 成的操作请参考上述情况(一) 中所述。
若主链路 BC也发生故障, 主通信节点 B和主通信节点 C之间的数据传 输链路由主链路 BC切换到环网保护链路 2, 此时, 由主通信节点 A至主通 信节点 C的数据传输链路为 ADBDEC。
此时, 主通信节点 B还需要完成以下操作:
步骤一,查找环网保护链路 2对应的 rrindex字段, 并置 rrindex字段对应 的快速切换表中的 backup标志位为 1 ;
步骤二, 将环网保护链路 2对应的出口信息(下一跳 D )和 rrindex字段 写到环网保护链路转发表的备用出口信息处。
(三) 中间主通信节点 B发生故障
段层首先检测到链路发生故障, 执行环网保护链路的切换, 然后, 通路 层也检测链路发生故障, 从而切换到线性保护链路, 此时, 由主通信节点 A 至主通信节点 C的数据传输链路为 ADEC。
执行线性保护链路切换时, 主通信节点 A需要完成以下操作:
步骤一,查找线性保护链路对应的 rrindex字段,置 rrindex字段对应的快 速切换表中的 backup标志位为 1。
步骤二, 将线性保护链路对应的出口信息和 rrindex字段写到链路转发表 中的备用出口信息处。
通过上述实施例提供的 T-MPLS网络系统, 同时配置环网保护和线性保 护, 在主链路发生故障时, 釆用环网保护链路传输数据报文, 在主链路上的 中间通信节点发生故障时,釆用线性保护链路传输数据报文,能够为 T-MPLS 网络系统提供更加有效可靠的链路保护。 如图 5所示为本发明实施例的链路保护方法的一流程示意图, 链路保护 方法应用于 T-MPLS 网络系统中, T-MPLS 网络系统包括主链路, 主链路上 包括至少三个主通信节点, 链路保护方法包括以下步骤:
步骤 501 , 主通信节点判断与相邻主通信节点之间的主链路是否发生故 障;
步骤 502, 在与相邻主通信节点之间的主链路发生故障时, 主通信节点 釆用与相邻主通信节点之间的环网保护链路传输数据报文;
步骤 503 , 主通信节点判断主链路的中间主通信节点是否发生故障; 步骤 504, 在主链路的中间主通信节点发生故障时, 主通信节点釆用主 链路的头尾主通信节点之间的线性保护链路传输数据报文。 主链路的头尾主 通信节点是指主链路上的第一个主通信节点和最后一个主通信节点, 主链路 上的其他主通信节点称为中间主通信节点。线性保护链路可以为 1 + 1保护类 型的路径保护, 也可以为 1 : 1保护类型的路径保护。
环网保护链路上具有至少一个备用通信节点; 线性保护链路上具有至少 一个备用通信节点; 为了减少系统成本, 环网保护链路上的备用通信节点和 线性保护链路上的备用通信节点可以釆用相同的备用通信节点实现。
上述实施例中, 在与相邻主通信节点之间的主链路发生故障时, 可以釆 用主通信节点和相邻主通信节点之间的环网保护链路传输数据报文, 此时, 由于釆用的是环网保护方式, 因此, 可以有效避免仅配置线性保护方式时产 生大量的通路层 OAM告警报文, 从而占用系统资源, 导致系统繁忙, 响应 不及时的问题。 在主链路的中间主通信节点发生故障时, 可以釆用主链路的 头尾主通信节点之间的线性保护链路传输数据报文, 此时, 由于釆用的是线 性保护方式, 因此, 可以有效避免仅配置环网保护时, 中间通信节点发生故 障时无法进行有效的保护的问题。
可以理解的是, 在执行主链路与保护链路(环网保护链路或线性保护链 路) 的切换之前, 还必须检测主链路是否发生故障, 下面将详细描述主通信 节点执行链路检测的过程。
由于环网保护是通过段层 OAM检测的一种保护类型, 因此, 主通信节 点需要进行段层 OAM检测, 以判断主链路是否发生故障。 另外, 线性保护 是通过通路层 OAM检测的一种保护类型, 因此, 主通信节点还需要同时进 行通路层 OAM检测, 以判断中间通信节点是否发生故障。
即, 上述步骤 501具体为:
主通信节点执行段层 OAM检测, 判断是否接收到相邻主通信节点通过 主链路发送的段层 OAM检测报文, 在预设检测周期内未接收到所述段层 OAM检测报文时, 判定与所述相邻主通信节点之间的主链路发生故障;
上述步骤 503具体为:
主通信节点执行通路层 OAM检测,判断是否接收到通路层 OAM检测报 文, 在预设检测周期内未接收到通路层 OAM检测报文时, 判定主链路的中 间主通信节点发生故障。
为了保证在主链路发生故障时, 首先切换到环网保护链路, 而不是切换 到线性保护链路, 主通信节点 A需要保证执行段层 OAM检测的周期小于执 行通路层 OAM检测的周期,即在执行段层 OAM检测发现主链路发生故障时, 首先切换到环网保护链路, 由于此时通路层 OAM检测的周期未至, 从而能 够避免产生大量的通路层 OAM告警报文, 占用系统资源, 导致系统繁忙, 响应不及时。通常情况下,设置执行通路层 OAM检测的周期为执行段层 OAM 检测的周期的三倍。
当与相邻主通信节点之间的主链路发生故障时, 主通信节点和相邻主通 信节点之间的数据报文的传输链路切换为环网保护链路上; 此时, 主通信节 点发送的通路层 OAM检测报文也随数据报文一起通过环网保护链路传输。
基于以上描述可知, 在主通信节点执行通路层 OAM检测, 判断是否接 收到通路层 OAM检测报文之前还包括:
在与相邻主通信节点之间的主链路发生故障时, 主通信节点通过与相邻 通过上述实施例提供的方法, 在 T-MPLS网络系统中同时配置环网保护 和线性保护, 在主链路发生故障时, 釆用环网保护链路传输数据报文, 在主 链路上的中间通信节点发生故障时, 釆用线性保护链路传输数据报文, 能够 为 T-MPLS网络系统提供更加有效可靠的链路保护。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。
工业实用性
在 T-MPLS网络系统中同时配置环网保护和线性保护, 在主链路发生故 障时, 釆用环网保护链路传输数据报文, 在主链路上的中间通信节点发生故 障时, 釆用线性保护链路传输数据报文, 能够为 T-MPLS网络系统提供更加 有效可靠的链路保护。

Claims

权 利 要 求 书
1. 一种传送多协议标签交换 T-MPLS网络系统, 包括:
主链路, 其包括至少三个主通信节点;
环网保护链路, 其位于相邻的两个主通信节点之间;
线性保护链路, 其位于所述主链路的头尾主通信节点之间;
第一切换模块, 其设置为在所述相邻的两个主通信节点之间的主链路发 生故障时, 釆用所述相邻的两个主通信节点之间的环网保护链路传输数据报 文; 以及
第二切换模块, 其设置为在所述主链路的中间主通信节点发生故障时, 釆用所述线性保护链路传输数据报文。
2. 根据权利要求 1所述的 T-MPLS网络系统, 其中, 所述主通信节点包 括:
第一检测模块, 其设置为执行段层 OAM (操作、 管理、 维护)检测, 判 断是否接收到相邻主通信节点通过所述主链路发送的段层 OAM检测报文, 在预设检测周期内未接收到所述段层 OAM检测报文时, 判定与所述相邻主 通信节点之间的主链路发生故障; 以及
第二检测模块, 其设置为执行通路层 OAM检测, 判断是否接收到通路 层 OAM检测报文,在预设检测周期内未接收到所述通路层 OAM检测报文时, 判定所述主链路的中间主通信节点发生故障;
其中, 所述第一检测模块执行段层 OAM检测的周期小于所述第二检测 模块执行通路层 OAM检测的周期。
3. 根据权利要求 2所述的 T-MPLS网络系统, 其中, 所述主通信节点还 包括:
更新模块, 其设置为在与相邻主通信节点之间的主链路发生故障时, 通 过与所述相邻主通信节点之间的所述环网保护链路发送通路层 OAM检测报 文。
4. 根据权利要求 1所述的 T-MPLS网络系统, 其中: 所述环网保护链路上具有至少一个备用通信节点;
所述线性保护链路上具有至少一个备用通信节点;
所述环网保护链路上的备用通信节点和所述线性保护链路上的备用通信 节点釆用相同的备用通信节点实现。
5. 根据权利要求 1所述的 T-MPLS网络系统, 其中, 所述线性保护链路 釆用 1 + 1保护类型的路径保护或 1 : 1保护类型的路径保护。
6. 一种链路保护方法,应用于传送多协议标签交换 T-MPLS网络系统中, 所述 T-MPLS网络系统包括主链路, 所述主链路包括至少三个主通信节点, 所述方法包括以下步骤:
所述主通信节点判断与相邻主通信节点之间的所述主链路是否发生故 障; 在与所述相邻主通信节点之间的所述主链路发生故障时, 所述主通信节 点釆用与所述相邻主通信节点之间的环网保护链路传输数据报文; 以及
所述主通信节点判断所述主链路的中间主通信节点是否发生故障; 在所 述主链路的中间主通信节点发生故障时, 所述主通信节点釆用所述主链路的 头尾主通信节点之间的线性保护链路传输数据报文。
7. 根据权利要求 6所述的链路保护方法, 其中:
所述主通信节点判断与相邻主通信节点之间的所述主链路是否发生故障 的步骤包括: 所述主通信节点执行段层 OAM (操作、 管理、 维护)检测, 判 断是否接收到所述相邻主通信节点通过所述主链路发送的段层 OAM检测报 文, 在预设检测周期内未接收到所述段层 OAM检测报文时, 判定与所述相 邻主通信节点之间的主链路发生故障;
所述主通信节点判断所述主链路的中间主通信节点是否发生故障的步骤 包括: 所述主通信节点执行通路层 OAM检测, 判断是否接收到通路层 OAM 检测报文, 在预设检测周期内未接收到所述通路层 OAM检测报文时, 判定 所述主链路的中间主通信节点发生故障;
其中, 所述主通信节点执行段层 OAM检测的周期小于执行通路层 OAM 检测的周期。
8. 根据权利要求 6所述的链路保护方法, 其中: 所述环网保护链路上具有至少一个备用通信节点;
所述线性保护链路上具有至少一个备用通信节点;
所述环网保护链路上的备用通信节点和所述线性保护链路上的备用通信 节点釆用相同的备用通信节点实现。
9. 根据权利要求 6所述的链路保护方法, 其中, 所述线性保护链路釆用
1 + 1保护类型的路径保护或 1 : 1保护类型的路径保护。
PCT/CN2010/077107 2009-12-24 2010-09-19 传送多协议标签交换网络系统和链路保护方法 WO2011076024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10838587.3A EP2501084B1 (en) 2009-12-24 2010-09-19 Transmission multi-protocol label switching network system and link protection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910260891.3 2009-12-24
CN2009102608913A CN101771610B (zh) 2009-12-24 2009-12-24 传送多协议标签交换网络系统和链路保护方法

Publications (1)

Publication Number Publication Date
WO2011076024A1 true WO2011076024A1 (zh) 2011-06-30

Family

ID=42504221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077107 WO2011076024A1 (zh) 2009-12-24 2010-09-19 传送多协议标签交换网络系统和链路保护方法

Country Status (3)

Country Link
EP (1) EP2501084B1 (zh)
CN (1) CN101771610B (zh)
WO (1) WO2011076024A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771610B (zh) * 2009-12-24 2012-05-09 中兴通讯股份有限公司 传送多协议标签交换网络系统和链路保护方法
CN101895455B (zh) * 2010-07-19 2013-05-08 南京邮电大学 一种基于mpls-tp的环网快速保护方法
CN102739432A (zh) * 2011-03-30 2012-10-17 中兴通讯股份有限公司 跨环业务的传输方法和系统
CN102868620B (zh) * 2011-07-06 2018-07-06 中兴通讯股份有限公司 跨环业务保护方法及装置
CN102957613B (zh) * 2011-08-29 2015-09-23 盛科网络(苏州)有限公司 Mpls-tp网络中oam报文和数据报文统一转发路径的方法及装置
CN102315987B (zh) * 2011-09-13 2017-05-10 中兴通讯股份有限公司 环网保护组链路回切方法及装置
CN102891767B (zh) * 2012-09-27 2016-03-30 华为技术有限公司 一种链路保护方法、网元及系统
CN104158733B (zh) * 2013-05-13 2019-04-05 华为技术有限公司 一种快速重路由方法及装置、传输网络
CN103490998B (zh) * 2013-09-09 2017-09-05 新华三技术有限公司 保护隧道建立方法及装置,流量切换方法及装置
CN112787917A (zh) * 2019-11-11 2021-05-11 中兴通讯股份有限公司 灵活以太网的保护方法、端节点、保护组网和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425971A (zh) * 2008-12-02 2009-05-06 中兴通讯股份有限公司 一种t-mpls通路层隧道切换的方法
CN101431459A (zh) * 2008-12-17 2009-05-13 烽火通信科技股份有限公司 一种传送多协议标签交换网络的环网保护方法
CN101599862A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 传送多协议标签交换环网保护维护实体组配置方法和装置
CN101771610A (zh) * 2009-12-24 2010-07-07 中兴通讯股份有限公司 传送多协议标签交换网络系统和链路保护方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145333C (zh) * 2001-06-27 2004-04-07 华为技术有限公司 多协议标签交换快速保护倒换方法
CN101193052B (zh) * 2006-11-22 2011-06-01 华为技术有限公司 在多协议标签交换中实现子网连接保护的方法和系统
CN101291191A (zh) * 2008-06-06 2008-10-22 中兴通讯股份有限公司 一种光传送网的线性保护系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425971A (zh) * 2008-12-02 2009-05-06 中兴通讯股份有限公司 一种t-mpls通路层隧道切换的方法
CN101431459A (zh) * 2008-12-17 2009-05-13 烽火通信科技股份有限公司 一种传送多协议标签交换网络的环网保护方法
CN101599862A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 传送多协议标签交换环网保护维护实体组配置方法和装置
CN101771610A (zh) * 2009-12-24 2010-07-07 中兴通讯股份有限公司 传送多协议标签交换网络系统和链路保护方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2501084A4 *

Also Published As

Publication number Publication date
CN101771610A (zh) 2010-07-07
EP2501084B1 (en) 2015-12-23
CN101771610B (zh) 2012-05-09
EP2501084A1 (en) 2012-09-19
EP2501084A4 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2011076024A1 (zh) 传送多协议标签交换网络系统和链路保护方法
JP4687176B2 (ja) パケット中継装置
US9871708B2 (en) Method and system for ring protection switching
JP4031500B2 (ja) ノード冗長方法、インタフェースカード、インタフェースデバイス、ノード装置およびパケットリングネットワークシステム
US7043541B1 (en) Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks
JP4899959B2 (ja) Vpn装置
KR100537746B1 (ko) 광인터넷에서의 MPλS 보호 및 절체방법
JP4743201B2 (ja) パケットリングネットワークシステム、パケットリング間の接続方法、およびリング間接続ノード
US20080304407A1 (en) Efficient Protection Mechanisms For Protecting Multicast Traffic in a Ring Topology Network Utilizing Label Switching Protocols
WO2007086157A1 (ja) ネットワークシステム
WO2010124557A1 (zh) 环网保护方法、网络节点及环网络
WO2006025296A1 (ja) 障害回復方法およびネットワーク装置ならびにプログラム
JP2007282153A (ja) ネットワークシステムおよび通信装置
WO2008089633A1 (fr) Procédé et appareil pour protéger un anneau éthernet
WO2008083590A1 (fr) Procédé et appareil de convergence rapide d'un service point à point
WO2006081767A1 (fr) Méthode d’implémentation d’un chemin de transmission maître et de sauvegarde
JP2015201751A (ja) 中継システムおよびスイッチ装置
CN102282805B (zh) 一种业务保护方法及接入设备
US8787147B2 (en) Ten gigabit Ethernet port protection systems and methods
WO2008046358A1 (fr) Procédé et dispositif destinés à réaliser une pénétration d'un statut de liaison de réseau point à multipoint
JP2008166990A (ja) リングノード装置
WO2008119294A1 (fr) Procédé et matériel de restauration du commerce en réseau
WO2013185567A1 (zh) 一种分组传送网络保护倒换装置和方法
WO2010020146A1 (zh) 流量工程隧道的关联保护方法、装置及系统
WO2011095101A1 (zh) 一种分组传送网络的线性1:n保护方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010838587

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015277

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015277

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120620