WO2015168839A1 - 基站系统、设备和多点协同处理方法 - Google Patents
基站系统、设备和多点协同处理方法 Download PDFInfo
- Publication number
- WO2015168839A1 WO2015168839A1 PCT/CN2014/076780 CN2014076780W WO2015168839A1 WO 2015168839 A1 WO2015168839 A1 WO 2015168839A1 CN 2014076780 W CN2014076780 W CN 2014076780W WO 2015168839 A1 WO2015168839 A1 WO 2015168839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- radio frequency
- baseband
- processing
- frequency device
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 515
- 238000000034 method Methods 0.000 claims description 41
- 230000005540 biological transmission Effects 0.000 claims description 25
- 230000006870 function Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 18
- 230000003993 interaction Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/04—Reselecting a cell layer in multi-layered cells
Definitions
- Embodiments of the present invention relate to the field of communication technologies, and more particularly, to a base station system, a device, and a multipoint coordinated processing method. Background technique
- the base station is an important device in the radio access network, and is connected to the user equipment to transmit a wireless signal.
- the base station mainly includes an R (Radio Unit) and a BBU (Base Band Unite), where the RU is used.
- the uplink and downlink transmissions may include an RRU (Radio Remote Unite) or an RFU (Radio Frequency Unit), and the BBU is used for performing baseband processing on the transmitted data to implement master transmission and clock synchronization.
- the RXU and BBU are integrated to provide S1 and X2 interfaces.
- each sector's site includes integrated RRUs and BBUs, and each sector's sites are independently transmitted and processed. Therefore, coordinated multiple points (CoMP) cannot be achieved. )deal with. Summary of the invention
- the embodiments of the present invention provide a base station system, a device, and a multipoint coordinated processing method, which can implement multi-point coordinated processing and improve gain.
- a base station system in a first aspect, includes: a first radio frequency device, a second radio frequency device, and a digital processing device, where the first radio frequency device and the second radio frequency device respectively correspond to two fans in the same base station a first radio frequency device, configured to output first baseband data, and send the first baseband data to the digital processing device, where the type of the first baseband data includes time domain in-phase orthogonal IQ data, Frequency domain IQ data, hard bit data or L2 data; the digital processing device, configured to receive the first baseband data sent by the first radio frequency device, and send the first baseband data to the second radio frequency
- the second radio frequency device is configured to receive the first baseband data sent by the digital processing device, and implement coordinated multi-point CoMP processing in the base station according to the first baseband data.
- the first radio frequency device is further configured to receive first data from a user equipment, and output the first baseband according to the first data.
- the second radio frequency device is further configured to receive first data from the user equipment, output second baseband data according to the first data, and combine the second baseband data and the first baseband data to obtain a collaboration.
- the second radio frequency device is specifically configured to sequentially perform the baseband layer 1 on the collaborative data.
- Ll-Low processing, layer 1 high Ll-High processing, layer 2 processing, and layer 3 processing output the first user plane data; or the second radio frequency device is specifically configured to sequentially perform the baseband layer 1 on the collaborative data.
- High L1-High processing, layer 2 processing, and layer 3 processing output the first user plane data; or the second radio frequency device is specifically configured to sequentially perform baseband layer 2 processing and layer 3 processing output on the collaborative data.
- the first user plane data is used; or the second radio frequency device is specifically configured to perform baseband layer 3 processing on the collaborative data to output the first user plane data.
- the second radio frequency device is further configured to send the outputted first user plane data
- the digital processing device is further configured to receive the first user plane data sent by the second radio frequency device, and transmit the first user plane data to a core network by using a transmission protocol.
- the digital processing device is further configured to send the second user plane data to the first
- the first radio frequency device is further configured to receive the second user plane data from the digital processing device, perform baseband processing on the second user plane data, and output the first baseband data;
- the second radio frequency device is further configured to continue baseband processing on the first baseband data, perform radio frequency processing to output second data, or perform radio frequency processing on the first baseband data to output second data, and send the second data Give the user device.
- the digital processing device is further configured to perform the first radio frequency device and the first The two radio devices perform time synchronization.
- the digital processing apparatus is further configured to implement inter-sector coordinated scheduling or inter-base station coordinated scheduling. .
- a radio frequency device comprising: a receiving unit, configured to connect Receiving first baseband data sent by the digital processing device, wherein the first baseband data is output by the first radio frequency device, and the type of the first baseband data includes time domain in-phase orthogonal IQ data, frequency domain IQ data, and hard Bit data or L2 data; a processing unit, configured to implement multi-point coordinated CoMP processing in the base station according to the first baseband data received by the receiving unit.
- the receiving unit is further configured to receive first data from the user equipment, and output second baseband data according to the first data;
- the unit is specifically configured to: combine the second baseband data and the first baseband data to obtain collaborative data, perform baseband processing on the collaborative data, and output first user plane data, where the first baseband data and the second The baseband data is the same baseband data type.
- the processing unit is specifically configured to: sequentially perform the baseband layer 1 low L1- on the collaborative data.
- Low processing, layer 1 high Ll-High processing, layer 2 processing, and layer 3 processing output the first user plane data; or the processing unit is specifically configured to: sequentially perform baseband layer 1 high Ll-High on the collaborative data Processing, layer 2 processing, and layer 3 processing output the first user plane data; or the processing unit is specifically configured to: sequentially perform baseband layer 2 processing and layer 3 processing on the collaborative data to output the first user plane data
- the processing unit is specifically configured to: perform baseband layer 3 processing on the collaborative data to output the first user plane data.
- the radio frequency device further includes a first sending unit, where the first sending unit is configured to The outputted first user plane data is sent to the digital processing device such that the digital processing device transmits the first user plane data to a core network via a transport protocol.
- the radio frequency device further includes a second sending module, where the processing unit is specifically configured to: The first baseband data continues to perform baseband processing and performs radio frequency processing to output second data or performs radio frequency processing on the first baseband data to output second data; the second sending module is configured to send the second data to And the first baseband data is output by the first radio frequency device according to the second user plane data received from the digital processing device.
- the third aspect provides a radio frequency apparatus, where the processing unit is configured to output first baseband data, where the type of the first baseband data includes time domain in-phase orthogonal IQ data, frequency domain IQ data, hard bit data, or L2 data.
- a sending unit configured to output the first baseband data by the processing unit Sending to the digital processing device, so that the digital processing device sends the first baseband data to the second radio frequency device, and the second radio frequency device implements multi-point coordinated CoMP processing in the base station according to the first baseband data .
- the radio frequency device further includes a first receiving unit, where the first receiving unit is configured to receive first data from a user equipment; For: outputting the first baseband data according to the first data received by the receiving unit.
- the radio frequency device further includes a second receiving unit, where the second receiving unit is configured to The digital processing device receives the second user plane data.
- the processing unit is configured to: perform baseband processing on the second user plane data received by the second receiving unit, and output the first baseband data.
- a digital processing device includes a receiving unit, configured to receive first baseband data output and transmitted by the first radio frequency device, where the type of the first baseband data includes time domain in-phase orthogonal The IQ data, the frequency domain IQ data, the hard bit data or the L2 data; the sending unit, configured to send the first baseband data received by the receiving unit to the second radio frequency equipment, so that the second radio frequency device is configured according to the The first baseband data implements multi-point coordinated CoMP processing in the base station.
- the receiving unit is further configured to receive first user plane data that is sent by the second radio frequency device, where the first user plane data is The second radio frequency device receives the first data from the user equipment, outputs the second baseband data according to the first data, combines the second baseband data and the first baseband data to obtain collaborative data, and performs baseband processing on the coordinated data. And outputting, wherein the first baseband data and the second baseband data are the same baseband data type.
- the sending unit is further configured to transmit the first user plane data to a core network by using a transport protocol.
- the sending unit is further configured to send the second user plane data to the first radio frequency And means, wherein the first radio frequency device performs baseband processing on the second user plane data to output the first baseband data.
- the digital processing device further includes a synchronization unit, where the synchronization unit is configured to Time synchronization with the first radio frequency device and the second radio frequency device, respectively.
- the digital processing apparatus further includes a collaboration unit, where the collaboration unit is configured to implement inter-sector Cooperative scheduling or coordinated scheduling between base stations.
- a multi-point cooperative processing method comprising: a first radio frequency device outputting first baseband data, and transmitting the first baseband data to a digital processing device, where the type of the first baseband data includes Domain in-phase orthogonal IQ data, frequency domain IQ data, hard bit data or L2 data; the digital processing device receives the first baseband data sent by the first radio frequency device, and sends the first baseband data to the first The second radio frequency device, the first radio frequency device and the second radio frequency device respectively correspond to two sector stations in the same base station; the second radio frequency device receives the first baseband data sent by the digital processing device, according to The first baseband data implements multi-point coordinated CoMP processing in a base station.
- the first radio frequency device output the first baseband data, including: the first radio frequency device receiving the first data from the user equipment, according to the first And the second radio frequency device is configured to receive the first data in the base station according to the first baseband data, where the second radio frequency device receives the first data from the user equipment, where Outputting second baseband data according to the first data, combining the second baseband data and the first baseband data to obtain collaborative data, performing baseband processing on the collaborative data to output first user plane data, where the first The baseband data and the second baseband data are of the same baseband data type.
- the second radio frequency device performs baseband processing on the collaborative data to output first user plane data
- the method includes: the second radio frequency device sequentially performs base layer 1 low L1-Low processing, layer 1 high L1-high processing, layer 2 processing, and layer 3 processing on the cooperative data to output the first user plane data; The second radio frequency device sequentially performs baseband layer 1 high L1-High processing, layer 2 processing, and layer 3 processing on the cooperative data to output the first user plane data; or the second radio frequency device sequentially performs the coordinated data Performing baseband layer 2 processing and layer 3 processing to output the first user plane data; or the second radio frequency device performs baseband layer 3 processing on the collaborative data to output the first user plane data.
- the method further includes: the first use by the second radio frequency device The user data is sent to the digital processing device; the digital processing device receives the first user plane data sent by the second radio frequency device, and transmits the first user plane data to a core network by using a transmission protocol.
- the method further includes: the digital processing device: sending, by the digital processing device, the second user plane data to the The first radio frequency device outputs the first baseband data
- the method includes: the first radio frequency device receiving the second user plane data from the digital processing device, and performing baseband on the second user plane data Outputting the first baseband data after processing; the second radio frequency device implementing multi-point coordinated CoMP processing in the base station according to the first baseband data, including: the second radio frequency device continuing to perform the first baseband data
- the baseband processes and performs radio frequency processing to output second data or performs radio frequency processing on the first baseband data to output second data, and sends the second data to the user equipment.
- the method further includes: the digital processing device and the first radio frequency device and the The second radio frequency device performs time synchronization.
- the method further includes: the digital processing device implements inter-sector coordinated scheduling or between base stations Collaborative scheduling.
- the base station system of the embodiment of the present invention includes a first radio frequency device, a second radio frequency device, and a digital processing device, where the first radio frequency device and the second radio frequency device respectively correspond to two sector sites in the same base station, and the digital processing device will be the first
- the first baseband data output by the radio frequency device is sent to the second radio frequency device, where the type of the first baseband data includes time domain in-phase orthogonal IQ data, frequency domain IQ data, hard bit data or L2 data, and the second radio frequency device is according to the first
- the baseband data implements CoMP processing within the base station. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- FIG. 1 is a schematic block diagram of a base station system according to an embodiment of the present invention.
- FIG. 2 is a schematic block diagram of a base station system according to another embodiment of the present invention.
- FIG. 3 is a schematic block diagram of a base station system according to still another embodiment of the present invention.
- FIG. 4 is a schematic block diagram of a radio frequency device according to an embodiment of the present invention.
- FIG. 5 is a schematic block diagram of a radio frequency device according to an embodiment of the present invention.
- Figure 6 is a schematic block diagram of a digital processing device in accordance with one embodiment of the present invention.
- FIG. 7 is a schematic block diagram of a radio frequency device according to another embodiment of the present invention.
- FIG. 8 is a schematic block diagram of a radio frequency device according to another embodiment of the present invention.
- Figure 9 is a schematic block diagram of a digital processing device in accordance with another embodiment of the present invention.
- FIG. 10 is a schematic flowchart of a multipoint collaborative processing method according to an embodiment of the present invention. detailed description
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE FDD Frequency Division Duplex
- LTE TDD Time Division Duplex
- UMTS Universal Mobile Telecommunications System
- the UE may be referred to as a terminal, an MS (Mobile Station), a mobile terminal, or the like, and the user equipment may be a Radio Access Network (Radio Access Network).
- the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc.
- the user device may also be portable, pocket, handheld, Computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
- connection between one component and another component may include wired and / Conductive cable or semiconductor circuit, etc.; or include other forms such as internal bus, circuit, backplane, etc.
- the wireless mode is a connection method capable of wireless communication, including but not limited to radio frequency, infrared, Bluetooth, and the like.
- the base station system 100 of Figure 1 includes a digital processing device 103, a first radio frequency device 101, and a second radio frequency device 102, which are coupled to a first radio frequency device 101 and a second radio frequency device 102, respectively.
- the first radio frequency device 101 is configured to output first baseband data, and send the first baseband data to the digital processing device 103.
- the digital processing device 103 is configured to receive first baseband data sent by the first radio frequency device 101, and send the first baseband data to the second radio frequency device 102.
- the second radio frequency device 102 is configured to receive first baseband data sent by the digital processing device 103, and implement CoMP processing in the base station according to the first baseband data.
- the type of the first baseband data may include time domain IQ (In-phase Quadrature) data, frequency domain IQ data, hard bit data, or L2 (layer 2) data.
- the radio frequency device of the embodiment of the present invention may also be referred to as an enhanced radio frequency unit (eRU) capable of performing radio frequency processing (such as radio frequency processing) and baseband L1/L2/L3 (layer 1 / layer 2 / layer 3 ) Processing functions.
- the digital processing device may also be referred to as a simplified digital processing unit (sDU) for implementing baseband data exchange between radio frequency devices, and may also implement functions such as baseband cooperative scheduling, master control transmission, or clock processing.
- the RF transceiver and baseband processing functions in the RF unit can be integrated into one physical entity on a single chip, thus reducing system cost. It should be understood that the embodiments of the present invention are not limited thereto, and may not be integrated into one physical entity.
- the radio frequency devices of the embodiments of the present invention may all be high-power radio frequency devices, or all of them may be low-power radio frequency devices, and some high-frequency radio frequency devices may be used for some radio frequency devices, and low-power radio frequency devices may be used for some radio frequency devices.
- the interface between the digital processing device and the radio frequency processing device may include: user plane data, clock data, control plane data (including management and signaling, etc.) or scheduling data, in addition to the above baseband data.
- the base station system of the embodiment of the present invention includes a first radio frequency device, a second radio frequency device, and a digital processing device, where the first radio frequency device and the second radio frequency device respectively correspond to two sector sites in the same base station, and the digital processing device will be the first
- the first baseband data output by the radio frequency device is sent to the second radio frequency device
- the first radio frequency data includes a time domain in-phase orthogonal IQ data, frequency domain IQ data, hard bit data or L2 data
- the second radio frequency device implements CoMP processing in the base station according to the first baseband data. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the base station system 100 can further expand its functions.
- the first radio frequency device 101 may be further configured to receive the first data from the user equipment, and output the first baseband data according to the first data.
- the second radio frequency device 102 is further configured to receive the first data from the user equipment, output the second baseband data according to the first data, combine the second baseband data and the first baseband data to obtain the collaborative data, and perform baseband processing output on the coordinated data.
- User plane data wherein the first baseband data and the second baseband data are the same baseband data type. That is, uplink CoMP processing is implemented.
- the number of radio frequency devices is not limited in the embodiment of the present invention, and may be two or more.
- each sector site corresponds to one radio frequency device.
- the radio frequency devices performing uplink multi-point cooperative processing may be two or more.
- the second radio frequency device may receive one first baseband data sent by the other one first radio frequency device, combine one first baseband data and the second baseband data output by the second radio frequency device, and may also receive other And transmitting, by the plurality of radio frequency devices, the plurality of baseband data corresponding to the plurality of radio frequency devices, and combining the second baseband data and the plurality of baseband data.
- first baseband data output by the first radio frequency device may also be multi-point coordinated processing data, or the second radio frequency device performs baseband processing on the cooperative data, and then sends the data to the first radio frequency device through the digital processing device.
- Other radio frequency devices continue to perform multi-point coordinated processing by other radio frequency devices. This embodiment of the present invention is not limited thereto.
- the first radio device corresponding to sector 1 can implement a partial data interface, that is, only radio frequency processing or partial baseband processing on the data.
- the second radio frequency device may be specifically configured to sequentially perform baseband layer 1 low (Ll-Low) processing, layer 1 high (Ll-High) processing, layer 2 (L2) processing, and layer 3 (L3) on the cooperative data.
- Processing outputs first user plane data.
- the first radio frequency device corresponding to the first data sector 1 and the second radio frequency device corresponding to the sector 2 that are sent by the user equipment can be received, and the first radio frequency device 201 can be used to receive the first data received from the user equipment.
- Performing radio frequency processing and outputting first baseband data that is, time domain IQ data, and transmitting the first baseband data to the second radio frequency device through the digital processing device 203 Set 202.
- the second radio frequency device 202 can also be configured to perform radio frequency processing on the first data received from the user equipment and output the second baseband data, and receive the first baseband data sent by the digital processing device 203, and combine the first baseband data and the second baseband data. The data is then subjected to subsequent baseband L1 (including Ll-Low and Ll-High), L2 and L3 processing, and the first user plane data is output and transmitted to the core network by the digital processing device 203.
- baseband L1 including Ll-Low and Ll-High
- L2 and L3 processing L2 and L3
- the second radio frequency device may be specifically configured to sequentially perform the baseband layer 1 high L1-High processing, the layer 2 processing, and the layer 3 processing on the cooperative data to output the first user plane data. That is, the baseband data type of the first baseband data and the second baseband data combined into the cooperative data is frequency domain IQ data.
- the first radio frequency device corresponding to the first data sector 1 and the second radio frequency device corresponding to the sector 2 that are sent by the user equipment can be received, and the first radio frequency device 201 can be used to receive the first data received from the user equipment.
- the radio frequency and L1-Low processing is performed and the first baseband data, that is, the frequency domain IQ data, is transmitted, and the first baseband data is transmitted to the second radio frequency device 202 by the digital processing device 203.
- the second radio frequency device 202 can also be configured to perform radio frequency and L1-Low processing on the first data received from the user equipment and output the second baseband data, and receive the first baseband data sent by the digital processing device 203, and merge the first baseband data.
- the second baseband data is then subjected to subsequent baseband L1-High, L2, and L3 processing to output first user plane data, which is transmitted to the core network by the digital processing device 203.
- the second radio frequency device may be specifically configured to sequentially perform baseband layer 2 processing and layer 3 processing on the cooperative data to output first user plane data, that is, the baseband data type of the first baseband data and the second baseband data merged into the cooperative data is Hard bit data.
- first user plane data that is, the baseband data type of the first baseband data and the second baseband data merged into the cooperative data is Hard bit data.
- the second radio frequency device may be specifically configured to perform baseband layer 3 processing on the coordinated data to output the first user plane data, that is, the baseband data type of the first baseband data and the second baseband data merged into the cooperative data is L2 data.
- the baseband data type of the first baseband data and the second baseband data merged into the cooperative data is L2 data.
- the digital processing device 203 is further configured to receive the first user plane data sent by the second radio frequency device 202, and send the first user plane data to the core network by using a transmission protocol.
- the digital processing device 103 can also be configured to send the second user plane data to the first radio frequency device 101.
- the first radio frequency device 101 can be further configured to receive the second user plane data from the digital processing device 103, perform baseband processing on the second user plane data, and output the first baseband data.
- the second radio frequency device 102 can be further configured to continue baseband processing on the first baseband data and perform radio frequency processing to output the second data or perform radio frequency processing on the first baseband data to output the second data, and send the second data to the user equipment. That is, downlink CoMP processing is implemented. It should be understood that the number of radio frequency devices is not limited in the embodiment of the present invention, and may be two or more.
- each sector site corresponds to one radio frequency device.
- the radio frequency devices performing downlink multi-point cooperative processing may be two or more.
- the first radio frequency device can receive baseband data of other radio frequency devices forwarded by the digital processing device, and the first radio frequency device outputs the first baseband data to the second radio frequency device via the digital processing device.
- the second radio frequency device processes the received first baseband data through the baseband and outputs the second baseband data, and forwards the data to the other radio frequency device through the digital processing device.
- the second radio frequency device may be specifically configured to sequentially perform baseband layer 2 processing, layer 1 high Ll-High processing, and layer 1 low Ll-Low on the received first baseband data that has undergone L3 processing by the first radio frequency device. Processing, and RF processing output second data. That is, the baseband data type of the first baseband data is L2 data.
- the second radio frequency device may be specifically configured to sequentially perform baseband L1-High processing, L1-Low processing, and radio frequency processing to output second data to the received first baseband data that has undergone L3 and L2 processing by the first radio frequency device. That is, the baseband data type of the first baseband data and the second baseband data combined into the cooperative data is hard bit data.
- the second radio frequency device may be specifically configured to sequentially perform baseband L1-Low processing and radio frequency processing on the received first baseband data that has undergone L3, L2 processing, and L1-High processing by the first radio frequency device to output second data.
- the baseband data type of the first baseband data is frequency domain IQ data.
- the second radio frequency device may be specifically configured to perform radio frequency processing on the received first baseband data that has undergone L3, L2 processing, and L1-High and L1-Low processing by the first radio frequency device to output the second data.
- the baseband data type of the first baseband data is time domain IQ data.
- the digital processing device 103 and each radio device can be connected via an ETH (Ethernet) interface.
- ETH Ethernet
- the digital processing device 103 can also be used for time synchronization with the first radio frequency device and the second radio device, respectively, and further, can be used for time synchronization by a synchronous Ethernet method.
- the digital processing device 103 can also be used to implement coordinated scheduling between sectors or coordinated scheduling between base stations.
- the information of each sector can be collected, the scheduling process can be unified, and then the scheduling command can be sent to each radio device.
- the scheduling command can indicate that the radio device performs CoMP processing.
- the digital processing device 103 can also be used to implement the OM of the base station system. Management, operation and maintenance), for example, to configure, update, load or maintain internal data of the base station.
- multiple RF devices can share a digital processing device for transmission, operation and maintenance, and synchronization. There is no need to configure a corresponding digital processing device for each RF device, thereby reducing the cost of the system.
- the digital processing device 103 can also be used for data interaction between the user plane or the control plane through a transport protocol, such as a security protocol including IPSEC. Specifically, the interaction can be performed through an S1 interface or an X2 interface.
- a transport protocol such as a security protocol including IPSEC.
- the interaction can be performed through an S1 interface or an X2 interface.
- the base station system 100 can also provide a baseband interface, which can be deployed in the digital processing device 103.
- the base station 1 includes three sectors, each sector corresponding to one radio frequency device, 3
- the radio frequency devices share a digital processing device, and the digital processing device controls the SW (Switch, Switch) unit to implement data interaction between the radio frequency devices, and can perform transmission protocol processing, realize interaction with the core network, or perform time synchronization, etc.
- the baseband interface may be provided externally, and the baseband data in the base station 1 includes but is not limited to time domain IQ data, frequency domain IQ data or L2 data, etc., and may be output through the baseband interface, and realize interaction with baseband data of other base stations through the switching module. , such as the interaction of the base station 2, that is, the coordinated transmission between the base stations.
- the radio frequency device 400 of FIG. 4 is an example of a second radio frequency device in the above base station system, and the radio frequency device 400 includes a receiving unit 401 and a processing unit 402.
- the receiving unit 401 is configured to receive first baseband data sent by the digital processing device, where the first baseband data is output by the first radio frequency device.
- the processing unit 402 is configured to implement CoMP processing in the base station according to the first baseband data received by the receiving unit 401.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the radio frequency device of the embodiment of the present invention may also be referred to as an enhanced radio frequency unit (eRU) capable of performing radio frequency processing (such as radio frequency processing) and baseband L1/L2/L3 (layer 1 / layer 2 / layer 3 ) Processing functions.
- the digital processing device may also be referred to as a simplified digital processing unit (sDU) for implementing baseband data exchange between radio frequency devices, and may also implement functions such as baseband cooperative scheduling, master transmission, or clock processing.
- the RF transceiver and baseband processing functions in the RF device can be integrated into one physical entity on a single chip, thus reducing system cost. It should be understood that the present invention The embodiment is not limited thereto, and may not be integrated on one physical entity.
- the digital processing device and each of the radio frequency devices can be connected through an ETH interface.
- the radio frequency devices in the embodiments of the present invention may all be high-power radio frequency devices, or may be low-power radio frequency devices, and some high-frequency radio frequency devices may be used for some radio frequency devices, and low-power radio frequency devices may be used for some radio frequency devices.
- the interface between the digital processing device and the radio frequency processing device may include: user plane data, clock data, control plane data (including management and signaling, etc.) or scheduling data, in addition to the above baseband data.
- the second radio frequency device implements CoMP processing in the base station according to the first baseband data forwarded by the data processing module from the first radio frequency device. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the radio frequency device 400 can implement the functions involved in the second radio frequency device in the above base station system. To avoid redundancy, the description similar to that in the above base station system will be omitted as appropriate.
- the receiving unit 401 is further configured to receive the first data from the user equipment, and output the second baseband data according to the first data.
- the processing unit 402 may be specifically configured to combine the second baseband data and the first baseband data to obtain the coordinated data, and perform baseband processing on the coordinated data to output the first user plane data, where the first baseband data and the second baseband data are the same baseband data type. . That is, uplink CoMP processing is implemented.
- the number of radio frequency devices is not limited in the embodiment of the present invention, and may be two or more.
- each sector site corresponds to one radio frequency device.
- the radio frequency devices performing uplink multi-point cooperative processing may be two or more.
- the second radio frequency device may receive one first baseband data sent by the other one first radio frequency device, combine one first baseband data and the second baseband data output by the second radio frequency device, and may also receive other And transmitting, by the plurality of radio frequency devices, the plurality of baseband data corresponding to the plurality of radio frequency devices, and combining the second baseband data and the plurality of baseband data.
- the embodiment of the present invention will be described by taking multi-point coordinated processing of two radio frequency devices as an example.
- the processing unit 402 may be specifically configured to sequentially perform baseband L1-Low processing, L1-High processing, Layer 2 processing, and Layer 3 processing on the collaborative data to output the first user plane data.
- the processing unit 402 may be specifically configured to sequentially perform baseband L1-High processing, layer 2 processing, and layer 3 processing on the collaborative data to output first user plane data.
- the processing unit 402 may be specifically configured to sequentially perform baseband layer 2 processing and layer 3 processing on the collaborative data to output first user plane data.
- processing The unit 402 may be specifically configured to perform baseband layer 3 processing on the collaborative data to output the first user plane data.
- the radio frequency device 400 may further include a first transmitting unit 403.
- the first transmitting unit 403 is configured to send the output first user plane data to the digital processing device, so that the digital processing device transmits the first user plane data to the core network through a transmission protocol.
- the processing unit 402 may be specifically configured to perform baseband processing on the first baseband data and perform radio frequency processing to output the second data or perform radio frequency processing on the first baseband data to output the second data.
- the radio frequency device 400 may further include a first transmitting unit 403, and the second transmitting unit 403 transmits the second data to the user equipment.
- the first baseband data is output by the first radio frequency device based on the second user plane data received from the digital processing device. That is, downlink CoMP processing is implemented.
- each sector site corresponds to one radio frequency device.
- the radio frequency devices performing downlink multi-point cooperative processing may be two or more.
- the second radio frequency device forwards the received baseband data to the other radio frequency device through the digital processing device.
- FIG. 5 is a schematic block diagram of a radio frequency device in accordance with one embodiment of the present invention.
- the radio frequency device 500 of FIG. 5 is an example of the first radio frequency device in the above base station system, and the radio frequency device 500 includes a processing unit 501 and a transmitting unit 502.
- the processing unit 501 is for outputting the first baseband data.
- the sending unit 502 is configured to send the first baseband data output by the processing unit 501 to the digital processing device, so that the digital processing device sends the first baseband data to the second radio frequency device, where the second radio frequency device implements the base station according to the first baseband data. CoMP processing.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the radio frequency device of the embodiment of the present invention may also be referred to as an enhanced radio frequency unit (eRU) capable of performing radio frequency processing (such as radio frequency processing) and baseband L1/L2/L3 (layer 1 / layer 2 / layer 3 ) Processing functions.
- the digital processing device may also be referred to as a simplified digital processing unit (sDU) for implementing baseband data exchange between radio frequency devices, and may also implement functions such as baseband cooperative scheduling, master transmission, or clock processing.
- the RF transceiver and baseband processing functions in the RF device can be integrated into one physical entity on a single chip, thus reducing system cost. It should be understood that the present invention The embodiment is not limited thereto, and may not be integrated on one physical entity.
- the digital processing device and each of the radio frequency devices can be connected through an ETH interface.
- the first radio frequency device outputs the first baseband data
- the second radio frequency device of the data processing module implements the CoMP processing in the base station. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the radio frequency device 500 can implement the functions involved in the first radio frequency device in the above base station system. To avoid redundancy, the description similar to that in the above base station system will be omitted as appropriate.
- the radio frequency device 500 may further include a first receiving unit 503, where the first receiving unit 503 is configured to receive the first data from the user equipment, and the processing unit 501 may be specifically configured to: receive according to the receiving unit 503.
- the first data outputs the first baseband data.
- the subsequent second radio frequency device may combine the second baseband data and the first baseband data to obtain cooperative data, and perform baseband processing on the cooperative data to output first user plane data, where the first baseband data and the second baseband data are the same baseband data type. . That is, uplink CoMP processing is implemented.
- the radio frequency device for performing uplink multi-point cooperative processing in the embodiment of the present invention may be two or more.
- the first radio frequency device may receive baseband data transmitted by the other processing module forwarded from the digital processing device, combine the same type of baseband data of the first radio frequency device, and perform baseband processing by the first radio frequency device to output the first baseband data.
- the radio frequency device 500 may further include a second receiving unit 504, where the second receiving unit 504 is configured to receive second user plane data from the digital processing device; the processing unit 501 may be specifically configured to use the second The second user plane data received by the receiving unit 504 performs baseband processing to output first baseband data, and the subsequent second radio frequency device continues baseband processing on the first baseband data.
- the second receiving unit 504 is configured to receive second user plane data from the digital processing device; the processing unit 501 may be specifically configured to use the second The second user plane data received by the receiving unit 504 performs baseband processing to output first baseband data, and the subsequent second radio frequency device continues baseband processing on the first baseband data.
- each sector site corresponds to one radio frequency device.
- the radio frequency devices performing downlink multi-point cooperative processing may be two or more.
- the first radio frequency device can receive baseband data of other radio frequency devices forwarded by the digital processing device, and the first radio frequency device outputs the first baseband data to the second radio frequency device via the digital processing device.
- FIG. 6 is a schematic block diagram of a digital processing device in accordance with one embodiment of the present invention.
- the digital processing device 600 of FIG. 6 is an example of a digital processing device in the above-described base station system, and the digital processing device 600 A receiving unit 601 and a transmitting unit 602 are included.
- the receiving unit 601 is configured to receive first baseband data output and transmitted by the first radio frequency device.
- the sending unit 602 is configured to send the first baseband data received by the receiving unit 601 to the second radio frequency radio, so that the second radio frequency device implements CoMP processing in the base station according to the first baseband data.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the radio frequency device of the embodiment of the present invention may also be referred to as an enhanced radio frequency unit (eRU) capable of performing radio frequency processing (such as radio frequency processing) and baseband L1/L2/L3 (layer 1 / layer 2 / layer 3 ) Processing functions.
- the digital processing device may also be referred to as a simplified digital processing unit (sDU) for implementing baseband data exchange between radio frequency devices, and may also implement functions such as baseband cooperative scheduling, master control transmission, or clock processing.
- the RF transceiver and baseband processing functions in the RF unit can be integrated into one physical entity on a single chip, thus reducing system cost. It should be understood that the embodiments of the present invention are not limited thereto, and may not be integrated into one physical entity.
- the digital processing device and each radio device can be connected through an ETH interface.
- the data processing module forwards the first baseband number output by the first radio frequency device to the second radio frequency device to implement CoMP processing in the base station. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the digital processing device 600 can implement the functions involved in the digital processing device in the above-described base station system, and a description similar to that in the above-described base station system will be omitted as appropriate in order to avoid redundancy.
- the digital processing device can be used to implement OM processing of the base station system, for example, to perform operations such as configuring, updating, loading, or maintaining internal data of the base station. Therefore, multiple RF devices can share a digital processing device for transmission, operation, maintenance, and synchronization. There is no need to configure a corresponding digital processing device for each RF device, thereby reducing the cost of the system.
- the receiving unit 601 is further configured to receive first user plane data that is sent by the second radio frequency device, where the first user plane data is that the second radio frequency device receives the first data from the user equipment, according to the first The data outputs second baseband data, combines the second baseband data and the first baseband data to obtain coordinated data, and performs baseband processing output on the coordinated data, wherein the first baseband data and the second baseband data are the same baseband data type. That is, uplink CoMP processing is implemented.
- the sending unit 602 can also be configured to transmit the first user plane data to the core network through a transport protocol.
- the sending unit 602 is further configured to use the second user plane And transmitting to the first radio frequency device, so that the first radio frequency device performs baseband processing on the second user plane data to output the first baseband data.
- the subsequent second RF device continues baseband processing on the first baseband data to output the second data. That is, uplink CoMP processing is implemented.
- the digital processing device 600 may further include a synchronization unit 603 for time synchronization with the first radio frequency device and the second radio frequency device, respectively. Further, it can be used for time synchronization by means of synchronous Ethernet.
- the digital processing apparatus 600 may further include a coordination unit 604, which is used to implement coordinated scheduling between sectors or coordinated scheduling between base stations.
- the coordination unit 604 can be used to collect information of each sector, perform scheduling processing uniformly, and then send a scheduling command to each radio device.
- the scheduling command can instruct the radio device to perform CoMP processing.
- the baseband interface can also be provided externally, and the exchange module can realize the interaction with the baseband data of other base stations, that is, realize coordinated transmission between the base stations.
- Fig. 7 is a schematic structural view of a radio frequency device according to another embodiment of the present invention.
- the radio frequency device 700 of FIG. 7 is an example of a second radio frequency device in the above base station system, and the radio frequency device 700 includes a processor 701, a memory 702, and a transceiver 703.
- the processor 701 controls the operation of the device 700, which may also be referred to as a CPU (Central Processing Unit).
- Memory 702 can include read only memory and random access memory and provides instructions and data to processor 701.
- a portion of memory 702 may also include non-volatile line random access memory (NVRAM).
- NVRAM non-volatile line random access memory
- bus system 710 The processor 701, the memory 702 and the transceiver 703 are coupled together by a bus system 710, wherein the bus system 710 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- bus system 710 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- various buses are labeled as bus system 710 in the figure.
- the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in the form of software.
- the processor 701 described above may be a general-purpose processor, including a CPU, an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the transceiver 703 is configured to receive first baseband data transmitted by the digital processing device, wherein the first baseband data is output by the first radio frequency device.
- the processor 701 is configured to be based on a transceiver
- the first baseband data received by 703 implements CoMP processing within the base station.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the second radio frequency device implements CoMP processing in the base station according to the first baseband data forwarded by the data processing module from the first radio frequency device. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the radio frequency device 700 can implement the functions involved in the second radio frequency device in the foregoing base station system. To avoid redundancy, it will not be described in detail herein.
- the transceiver 703 is further configured to receive the first data from the user equipment, and output the second baseband data according to the first data.
- the processor 701 may be specifically configured to combine the second baseband data and the first baseband data to obtain the coordinated data, and perform baseband processing on the coordinated data to output the first user plane data, where the first baseband data and the second baseband data are the same baseband data type. . That is, the uplink CoMP processing is implemented.
- the processor 701 may be specifically configured to sequentially perform baseband L1-Low processing, L1-High processing, layer 2 processing, and layer 3 processing on the collaborative data to output the first user plane data.
- the processor 701 may be specifically configured to sequentially perform baseband L1-High processing, layer 2 processing, and layer 3 processing on the collaborative data to output first user plane data.
- the processor 701 may be specifically configured to sequentially perform baseband layer 2 processing and layer 3 processing on the collaborative data to output the first user plane data.
- the processor 701 may be specifically configured to perform baseband layer 3 processing on the collaborative data to output the first user plane data.
- the transceiver 703 is further configured to send the output first user plane data to the digital processing device, so that the digital processing device transmits the first user plane data to the core network through a transmission protocol.
- the processor 701 may be specifically configured to continue baseband processing on the first baseband data and perform radio frequency processing to output the second data or perform radio frequency processing on the first baseband data to output the second data.
- the transceiver 703 can also be configured to transmit the second data to the user equipment.
- the first baseband data is output by the first radio frequency device after baseband processing according to the second user plane data received from the digital processing device. That is, downlink CoMP processing is implemented.
- FIG. 8 is a schematic structural diagram of a radio frequency device according to another embodiment of the present invention.
- the radio frequency device 800 of FIG. 8 is an example of a first radio frequency device in the above-described base station system, and the radio frequency device 800 includes a processor 801, a memory 802, and a transceiver 803.
- the processor 801 controls the operation of the device 800,
- the processor 801 can also be referred to as a CPU.
- Memory 802 can include read only memory and random access memory and provides instructions and data to processor 801.
- a portion of memory 802 may also include non-volatile line random access memory (NVRAM).
- NVRAM non-volatile line random access memory
- bus system 810 The processor 801, the memory 802 and the transceiver 803 are coupled together by a bus system 810, wherein the bus system 810 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- bus system 810 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- various buses are labeled as bus system 810 in the figure.
- the processor 801 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in the form of software.
- the processor 801 described above may be a general-purpose processor, including a CPU, an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the processor 801 is configured to output first baseband data.
- the transceiver 803 is configured to send the first baseband data output by the processor 801 to the digital processing device, so that the digital processing device sends the first baseband data to the second radio frequency device, where the second radio frequency device implements the base station according to the first baseband data.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the first radio frequency device outputs the first baseband data
- the second radio frequency device of the data processing module implements the CoMP processing in the base station. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the radio frequency device 800 can implement the functions involved in the first radio frequency device in the foregoing base station system. To avoid redundancy, it will not be described in detail herein.
- the transceiver 803 is further configured to receive the first data from the user equipment, where the processor 801 is specifically configured to: output the first baseband data according to the first data received by the transceiver 803.
- the subsequent second radio frequency device may combine the second baseband data and the first baseband data to obtain cooperative data, perform baseband processing on the cooperative data, and output first user plane data, where the first baseband data and the second baseband data are the same baseband data type. . That is, uplink CoMP processing is implemented.
- the transceiver 803 is further configured to receive second user plane data from the digital processing device; the processor 801 may be specifically configured to receive the second user received by the transceiver 803.
- the surface data is subjected to baseband processing to output first baseband data, and the second second radio frequency device continues baseband processing on the first baseband data.
- FIG. 9 is a schematic block diagram of a digital processing device in accordance with another embodiment of the present invention.
- the digital processing device 900 of FIG. 9 is an example of a digital processing device in the above-described base station system, and the digital processing device 900 includes a processor 901, a memory 902, and a transceiver 903.
- the processor 901 controls the operation of the device 900, which may also be referred to as a CPU.
- Memory 902 can include read only memory and random access memory and provides instructions and data to processor 901.
- a portion of memory 902 may also include non-volatile line random access memory (NVRAM).
- NVRAM non-volatile line random access memory
- bus system 910 The processor 901, the memory 902 and the transceiver 903 are coupled together by a bus system 910, wherein the bus system 910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- bus system 910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- various buses are labeled as bus system 910 in the figure.
- the processor 901 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 901 or an instruction in the form of software.
- the processor 901 described above may be a general-purpose processor, including a CPU, an NP, etc.; or may be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the transceiver 903 is configured to receive first baseband data output and transmitted by the first radio frequency device. It is further configured to transmit the received first baseband data to the second radio frequency radio according to the transceiver 903, so that the second radio frequency device implements CoMP processing in the base station according to the first baseband data.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the data processing module forwards the first baseband number output by the first radio frequency device to the second radio frequency device to implement CoMP processing in the base station. Based on the above scheme, the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the digital processing device 900 can implement the functions involved in the digital processing device in the above-mentioned base station system. To avoid redundancy, it will not be described in detail herein.
- the processor 901 can be used to implement OM processing of the base station system, for example, performing operations such as configuring, updating, loading, or maintaining internal data of the base station. Therefore, multiple RF devices can share a digital processing device for transmission, operation, maintenance, and synchronization functions, without the need for each RF device. A corresponding digital processing device is placed to reduce the cost of the system.
- the transceiver 903 is further configured to receive first user plane data sent by the second radio frequency device, where the first user plane data is that the second radio frequency device receives the first data from the user equipment, according to the first The data outputs second baseband data, combines the second baseband data and the first baseband data to obtain coordinated data, and performs baseband processing output on the coordinated data, wherein the first baseband data and the second baseband data are the same baseband data type. That is, uplink CoMP processing is implemented. Further, the transceiver 903 can also be configured to transmit the first user plane data to the core network through a transport protocol.
- the transceiver 903 is further configured to send the second user plane data to the first radio frequency device, so that the first radio frequency device performs baseband processing on the second user plane data, and outputs the first baseband data. .
- the subsequent second RF device continues baseband processing on the first baseband data to output the second data. That is, uplink CoMP processing is implemented.
- the processor 901 can be configured to perform time synchronization with the first radio frequency device and the second radio frequency device, respectively. Further, it can be used for time synchronization by means of synchronous Ethernet.
- the processor 901 may be used for cooperative scheduling between sectors or coordinated scheduling between base stations.
- the baseband interface can also be provided externally, and the exchange module can realize the interaction with the baseband data of other base stations, that is, realize coordinated transmission between the base stations.
- FIG. 10 is a schematic flowchart of a multipoint collaborative processing method according to an embodiment of the present invention. This method can be performed by the above base station system.
- the first radio frequency device outputs first baseband data, and sends the first baseband data to the digital processing device.
- the digital processing device receives the first baseband data sent by the first radio frequency device, and sends the first baseband data to the second radio frequency device, where the first radio frequency device and the second radio frequency device respectively correspond to two sector sites in the same base station. .
- the second radio frequency device receives the first baseband data sent by the digital processing device, and implements CoMP processing in the base station according to the first baseband data.
- the type of the first baseband data may include time domain IQ data, frequency domain IQ data, hard bit data, or L2 data.
- the radio frequency device of the embodiment of the present invention may also be referred to as an enhanced radio frequency unit (eRU) capable of performing radio frequency processing (such as radio frequency processing) and baseband L1/L2/L3 (layer 1 / layer 2 / layer 3 ) Processing functions.
- the digital processing device can also be referred to as a simplified digital processing unit sDU) It is used to implement baseband data exchange between radio frequency devices, and can also implement functions such as baseband cooperative scheduling, main control transmission or clock processing.
- the RF transceiver and baseband processing functions in the RF device can be integrated into one physical entity on a single chip, thus reducing system cost. It should be understood that the embodiments of the present invention are not limited thereto, and may not be integrated into one physical entity.
- the digital processing device and each of the radio frequency devices can be connected through an ETH interface.
- the radio frequency devices in the embodiments of the present invention may all be high-power radio frequency devices, or may be low-power radio frequency devices, and some high-frequency radio frequency devices may be used for some radio frequency devices, and low-power radio frequency devices may be used for some radio frequency devices.
- the interface between the digital processing device and the radio frequency processing device may include: user plane data, clock data, control plane data (including management and signaling, etc.) or scheduling data, in addition to the above baseband data.
- the digital processing device sends the first baseband data output by the first radio frequency device to the second radio frequency device, where the type of the first baseband data includes time domain in-phase orthogonal IQ data, frequency domain IQ data, hard bit data or L2 data, the second radio frequency device implements CoMP processing in the base station according to the first baseband data.
- the baseband data is exchanged between the radio frequency devices through the digital processing device, and multi-point coordinated processing between sectors is realized, thereby effectively increasing the gain.
- the method of FIG. 10 can be implemented by the base station system in FIG. 1. To avoid redundancy, it will not be described in detail herein.
- the first radio frequency device may receive the first data from the user equipment, and output the first baseband data according to a data.
- the second radio frequency device may receive the first data from the user equipment, output the second baseband data according to the first data, combine the second baseband data and the first baseband data to obtain the coordinated data, and perform baseband processing output on the coordinated data.
- a user plane data wherein the first baseband data and the second baseband data are of the same baseband data type. That is, uplink CoMP processing is implemented.
- the second radio frequency device may sequentially perform the baseband L1-Low processing, the L1-High processing, the L2 processing, and the L3 processing on the cooperative data to output the first user plane data.
- the second radio frequency device may sequentially perform the baseband L1-High processing, the L2 processing, and the L3 processing on the cooperative data to output the first user plane data. That is, the baseband data type of the first baseband data and the second baseband data combined into the cooperative data is frequency domain IQ data.
- the second radio frequency device may sequentially perform the baseband L2 processing and the L3 processing on the cooperative data to output the first user plane data, that is, the baseband data type of the first baseband data and the second baseband data merged into the cooperative data is hard bit data.
- the second radio frequency device may perform the baseband L3 processing on the coordinated data to output the first user plane data, that is, the merged into the collaborative data.
- the baseband data type of a baseband data and second baseband data is L2 data.
- the second radio frequency device sends the output first user plane data to the digital processing device
- the digital processing device may further receive the first user plane data sent by the second radio frequency device, and send the first user plane data to the transmission protocol. Core Network.
- the digital processing device may further send the second user plane data to the first radio frequency device.
- the first radio frequency device can also receive the second user plane data from the digital processing device.
- the second user plane data is subjected to baseband processing to output the first baseband data.
- the second radio frequency device may continue baseband processing on the first baseband data and perform radio frequency processing to output second data or perform radio frequency processing on the first baseband data to output second data, and send the second data to the user equipment. That is, downlink CoMP processing is implemented.
- the digital processing device may also perform time synchronization with the first radio frequency device and the second radio frequency device, respectively, and further, may be used for time synchronization by using a synchronous Ethernet method.
- the digital processing device may also implement coordinated scheduling between sectors or coordinated scheduling between base stations.
- the baseband interface can also be provided externally, and the exchange module can realize the interaction with the baseband data of other base stations, that is, realize coordinated transmission between the base stations.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
- the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种基站系统、设备和多点协同处理方法,该系统包括:第一射频装置、第二射频装置和数字处理装置,所述第一射频装置,用于输出第一基带数据,将所述第一基带数据发送给所述数字处理装置,所述第一基带数据的类型包括时域IQ数据、频域IQ数据、硬比特数据或L2数据;所述数字处理装置,用于接收所述第一射频装置发送的所述第一基带数据,将所述第一基带数据发送给所述第二射频装置;所述第二射频装置,用于接收所述数字处理装置发送的所述第一基带数据,根据所述第一基带数据实现基站内的多点协同CoMP处理。基于上述方案,射频装置之间通过数字处理装置进行基带数据的交换,实现扇区间多点协同处理,从而有效地提高增益。
Description
基站系统、 设备和多点协同处理方法 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及基站系统、 设备 和多点协同处理方法。 背景技术
基站是无线接入网中的重要设备, 与用户设备创建连接, 用于传输无线 信号,基站主要包括 RU ( Radio Unit, 射频单元)和 BBU ( Base Band Unite, 基带处理单元;), 其中 RU用于上行接收和下行发射, 可以包括 RRU ( Radio Remote Unite, 射频拉远单元)或 RFU ( Radio Frequency Unit, 射频单元), BBU用于对传输的数据进行基带处理, 实现主控传输和时钟同步。
在集中式基站 ( All in one )架构中, RXU和 BBU集成在一起, 对外提 供 S1和 X2接口。 对于多扇区站点, 每个扇区的站点均包括集成的 RRU和 BBU, 各个扇区的站点都独立地进行数据传输和处理, 因此, 无法实现扇区 间的多点协同 ( coordinated multiple point, CoMP )处理。 发明内容
本发明实施例提供一种基站系统、 设备和多点协同处理方法, 能够实现 多点协同处理, 提高增益。
第一方面, 提供了一种基站系统, 该系统包括: 第一射频装置、 第二射 频装置和数字处理装置, 所述第一射频装置和第二射频装置分别对应同一个 基站内的两个扇区站点, 所述第一射频装置, 用于输出第一基带数据, 将所 述第一基带数据发送给所述数字处理装置, 所述第一基带数据的类型包括时 域同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据; 所述数字处理 装置, 用于接收所述第一射频装置发送的所述第一基带数据, 将所述第一基 带数据发送给所述第二射频装置; 所述第二射频装置, 用于接收所述数字处 理装置发送的所述第一基带数据,根据所述第一基带数据实现基站内的多点 协同 CoMP处理。
结合第一方面, 在第一方面的另一种实现方式中, 所述第一射频装置, 进一步用于从用户设备接收第一数据,根据所述第一数据输出所述第一基带
数据; 所述第二射频装置, 进一步用于从所述用户设备接收第一数据, 根据 所述第一数据输出第二基带数据,合并所述第二基带数据和所述第一基带数 据获得协同数据, 对所述协同数据进行基带处理输出第一用户面数据, 其中 所述第一基带数据和所述第二基带数据为相同的基带数据类型。
结合第一方面及其上述实现方式中的任一种实现方式,在第一方面的另 一种实现方式中, 所述第二射频装置, 具体用于对所述协同数据依次进行基 带层 1低 Ll-Low处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出 所述第一用户面数据; 或者所述第二射频装置, 具体用于对所述协同数据依 次进行基带层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户 面数据; 或者所述第二射频装置, 具体用于对所述协同数据依次进行基带层 2处理和层 3处理输出所述第一用户面数据; 或者所述第二射频装置, 具体 用于对所述协同数据进行基带层 3处理输出所述第一用户面数据。
结合第一方面及其上述实现方式中的任一种实现方式,在第一方面的另 一种实现方式中, 所述第二射频装置, 还用于将输出的所述第一用户面数据 发送给所述数字处理装置; 所述数字处理装置, 还用于接收所述第二射频装 置发送的所述第一用户面数据,通过传输协议将所述第一用户面数据传输至 核心网。
结合第一方面及其上述实现方式中的任一种实现方式,在第一方面的另 一种实现方式中, 所述数字处理装置, 还用于将第二用户面数据发送给所述 第一射频装置; 所述第一射频装置, 进一步用于从所述数字处理装置接收所 述第二用户面数据,对所述第二用户面数据进行基带处理后输出所述第一基 带数据; 所述第二射频装置, 进一步用于对所述第一基带数据继续进行基带 处理并进行射频处理输出第二数据或者对所述第一基带数据进行射频处理 输出第二数据, 将所述第二数据发送给用户设备。
结合第一方面及其上述实现方式中的任一种实现方式,在第一方面的另 一种实现方式中, 所述数字处理装置, 还用于分别与所述第一射频装置和所 述第二射频装置进行时间同步。
结合第一方面及其上述实现方式中的任一种实现方式,在第一方面的另 一种实现方式中, 所述数字处理装置, 还用于实现扇区间的协同调度或基站 间的协同调度。
第二方面, 提供了一种射频装置, 该射频装置包括: 接收单元, 用于接
收数字处理装置发送的第一基带数据, 其中所述第一基带数据是由第一射频 装置输出的, 所述第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ 数据、 硬比特数据或 L2数据; 处理单元, 用于根据所述接收单元接收的所 述第一基带数据实现基站内的多点协同 CoMP处理。
结合第二方面, 在第二方面的另一种实现方式中, 所述接收单元, 还用 于从所述用户设备接收第一数据, 根据所述第一数据输出第二基带数据; 所 述处理单元具体用于: 合并所述第二基带数据和所述第一基带数据获得协同 数据, 对所述协同数据进行基带处理输出第一用户面数据, 其中所述第一基 带数据和所述第二基带数据为相同的基带数据类型。
结合第二方面及其上述实现方式中的任一种实现方式,在第二方面的另 一种实现方式中, 所述处理单元具体用于: 对所述协同数据依次进行基带层 1低 Ll-Low处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述 第一用户面数据; 或者所述处理单元具体用于: 对所述协同数据依次进行基 带层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或者所述处理单元具体用于: 对所述协同数据依次进行基带层 2处理和层 3 处理输出所述第一用户面数据; 或者所述处理单元具体用于: 对所述协同数 据进行基带层 3处理输出所述第一用户面数据。
结合第二方面及其上述实现方式中的任一种实现方式,在第二方面的另 一种实现方式中, 所述射频装置还包括第一发送单元, 所述第一发送单元, 用于将输出的所述第一用户面数据发送给所述数字处理装置, 以便所述数字 处理装置通过传输协议将所述第一用户面数据传输至核心网。
结合第二方面及其上述实现方式中的任一种实现方式,在第二方面的另 一种实现方式中, 所述射频装置还包括第二发送模块, 所述处理单元具体用 于: 对所述第一基带数据继续进行基带处理并进行射频处理输出第二数据或 者对所述第一基带数据进行射频处理输出第二数据; 所述第二发送模块, 用 于将所述第二数据发送给用户设备; 其中, 所述第一基带数据是所述第一射 频装置根据从所述数字处理装置接收的第二用户面数据进行基带处理后输 出的。
第三方面, 提供了一种射频装置, 处理单元, 用于输出第一基带数据, 所述第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、硬比特 数据或 L2数据; 发送单元, 用于将所述处理单元输出的所述第一基带数据
发送给数字处理装置, 以便所述数字处理装置将所述第一基带数据发送给所 述第二射频装置, 所述第二射频装置根据所述第一基带数据实现基站内的多 点协同 CoMP处理。
结合第三方面, 在第三方面的另一种实现方式中, 所述射频装置还包括 第一接收单元, 所述第一接收单元, 用于从用户设备接收第一数据; 所述处 理单元具体用于: 根据所述接收单元接收的所述第一数据输出所述第一基带 数据。
结合第三方面及其上述实现方式中的任一种实现方式,在第三方面的另 一种实现方式中, 所述射频装置还包括第二接收单元, 所述第二接收单元, 用于从所述数字处理装置接收第二用户面数据; 所述处理单元具体用于: 对 所述第二接收单元接收的所述第二用户面数据进行基带处理后输出所述第 一基带数据。
第四方面, 提供了一种数字处理装置, 该数字处理装置包括接收单元, 用于接收第一射频装置输出并发送的第一基带数据, 所述第一基带数据的类 型包括时域同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据; 发送 单元, 用于将所述接收单元接收的所述第一基带数据发送给第二射频射备, 以便所述第二射频装置根据所述第一基带数据实现基站内的多点协同 CoMP 处理。
结合第四方面, 在第五方面的另一种实现方式中, 所述接收单元, 还用 于接收所述第二射频装置发送的第一用户面数据, 所述第一用户面数据是所 述第二射频装置从用户设备接收第一数据,根据所述第一数据输出第二基带 数据, 合并所述第二基带数据和所述第一基带数据获得协同数据, 对所述协 同数据进行基带处理输出的, 其中所述第一基带数据和所述第二基带数据为 相同的基带数据类型。 所述发送单元, 还用于通过传输协议将所述第一用户 面数据传输至核心网。
结合第四方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述发送单元, 还用于将第二用户面数据发送给所述第一 射频装置, 以便所述第一射频装置对所述第二用户面数据进行基带处理后输 出所述第一基带数据。
结合第四方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述数字处理装置还包括同步单元, 所述同步单元, 用于
分别与所述第一射频装置和所述第二射频装置进行时间同步。
结合第四方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述数字处理装置还包括协同单元, 所述协同单元, 用于 实现扇区间的协同调度或基站间的协同调度。
第五方面, 提供了一种多点协同处理方法, 该方法包括第一射频装置输 出第一基带数据, 将所述第一基带数据发送给数字处理装置, 所述第一基带 数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数 据; 所述数字处理装置接收所述第一射频装置发送的所述第一基带数据, 将 所述第一基带数据发送给第二射频装置, 所述第一射频装置和第二射频装置 分别对应同一个基站内的两个扇区站点; 所述第二射频装置接收所述数字处 理装置发送的所述第一基带数据,根据所述第一基带数据实现基站内的多点 协同 CoMP处理。
结合第五方面, 在第五方面的另一种实现方式中, 所述第一射频装置输 出第一基带数据, 包括: 所述第一射频装置从用户设备接收第一数据, 根据 所述第一数据输出所述第一基带数据; 所述第二射频装置根据所述第一基带 数据实现基站内的多点协同 CoMP处理, 包括: 所述第二射频装置从所述用 户设备接收第一数据, 根据所述第一数据输出第二基带数据, 合并所述第二 基带数据和所述第一基带数据获得协同数据,对所述协同数据进行基带处理 输出第一用户面数据, 其中所述第一基带数据和所述第二基带数据为相同的 基带数据类型。
结合第五方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述第二射频装置对所述协同数据进行基带处理输出第一 用户面数据, 包括: 所述第二射频装置对所述协同数据依次进行基带层 1低 Ll-Low处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一 用户面数据; 或者所述第二射频装置对所述协同数据依次进行基带层 1 高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或者所述 第二射频装置对所述协同数据依次进行基带层 2处理和层 3处理输出所述第 一用户面数据; 或者所述第二射频装置对所述协同数据进行基带层 3处理输 出所述第一用户面数据。
结合第五方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述方法还包括: 所述第二射频装置将输出的所述第一用
户面数据发送给所述数字处理装置; 所述数字处理装置接收所述第二射频装 置发送的所述第一用户面数据,通过传输协议将所述第一用户面数据传输至 核心网。
结合第五方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述方法还包括: 所述数字处理装置将第二用户面数据发 送给所述第一射频装置; 所述第一射频装置输出第一基带数据, 包括: 所述 第一射频装置从所述数字处理装置接收所述第二用户面数据,对所述第二用 户面数据进行基带处理后输出所述第一基带数据; 所述第二射频装置根据所 述第一基带数据实现基站内的多点协同 CoMP处理, 包括: 所述第二射频装 置对所述第一基带数据继续进行基带处理并进行射频处理输出第二数据或 者对所述第一基带数据进行射频处理输出第二数据,将所述第二数据发送给 用户设备。
结合第五方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述方法还包括: 所述数字处理装置分别与所述第一射频 装置和所述第二射频装置进行时间同步。
结合第五方面及其上述实现方式中的任一种实现方式,在第五方面的另 一种实现方式中, 所述方法还包括: 所述数字处理装置实现扇区间的协同调 度或基站间的协同调度。
本发明实施例的基站系统包括第一射频装置、第二射频装置和数字处理 装置, 第一射频装置和第二射频装置分别对应同一个基站内的两个扇区站 点, 数字处理装置将第一射频装置输出的第一基带数据发送给第二射频装 置, 其中第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、 硬 比特数据或 L2数据, 第二射频装置根据第一基带数据实现基站内的 CoMP 处理。基于上述方案,射频装置之间通过数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地提高增益。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的基站系统的示意性框图;
图 2是本发明另一个实施例的基站系统的示意性框图;
图 3是本发明再一个实施例的基站系统的示意性框图;
图 4是本发明一个实施例的射频装置的示意性框图;
图 5是本发明一个实施例的射频装置的示意性框图;
图 6是本发明一个实施例的数字处理装置的示意性框图;
图 7是本发明另一个实施例的射频装置的示意性框图;
图 8是本发明另一个实施例的射频装置的示意性框图;
图 9是本发明另一个实施例的数字处理装置的示意性框图;
图 10是本发明一个实施例的多点协同处理方法的示意性流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如: GSM ( Global System for Mobile Communications , 全球移动通信 ) 系统、 CDMA ( Code Division Multiple Access,码分多址)系统、 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址)系统、 GPRS ( General Packet Radio Service, 通用分组无线业务)、 LTE 系统、 LTE FDD ( Frequency Division Duplex, 频分双工) 系统、 LTE TDD ( Time Division Duplex, 时分双工)、 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统 ) 等。 应理解, 本发明对此并不限定。
在本发明实施例中, UE可称之为终端( Terminal )、 MS ( Mobile Station, 移动台)、 移动终端 ( Mobile Terminal )等, 该用户设备可以经 RAN ( Radio Access Network, 无线接入网)与一个或多个核心网进行通信, 例如, 用户 设备可以是移动电话(或称为 "蜂窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载 的移动装置, 它们与无线接入网交换语音和 /或数据。
在本发明实施例中, 一个部件与另一部件之间的连接, 可包括有线和 /
导电线缆或半导体线路等; 或者包括其他形式, 如内部总线、 电路、 背板等。 无线方式是能够实现无线通信的连接方式, 包括但不限于射频、 红外线、 蓝 牙等。 两个部件之间可存在内部或外部的接口, 所述接口可以是物理接口或 逻辑接口。
图 1是本发明一个实施例的基站系统的示意性框图。图 1的基站系统 100 包括数字处理装置 103、 第一射频装置 101和第二射频装置 102, 数字处理 装置 103分别与第一射频装置 101和第二射频装置 102相连接。
第一射频装置 101, 用于输出第一基带数据, 将第一基带数据发送给数 字处理装置 103。
数字处理装置 103, 用于接收第一射频装置 101发送的第一基带数据, 将第一基带数据发送给第二射频装置 102。
第二射频装置 102, 用于接收数字处理装置 103发送的第一基带数据, 根据第一基带数据实现基站内的 CoMP处理。
第一基带数据的类型可以包括时域 IQ ( In-phase Quadrature, 同相正交) 数据、 频域 IQ数据、 硬比特数据或 L2 (层 2 )数据。
需要指出的是, 本发明实施例的射频装置也可以称为增强型射频单元 ( eRU ) 能够实现射频处理(如中射频处理) 功能和基带 L1/L2/L3 (层 1/ 层 2/层 3 )处理功能。 数字处理装置也可以称为简化的数字处理单元( sDU ) 用于实现射频装置之间的基带数据交换, 还可以实现基带协同调度功能、 主 控传输或时钟处理等功能。射频装置中的射频收发和基带处理功能可以通过 单芯片集成在一个物理实体上, 这样, 能够降低系统成本。 应理解, 本发明 实施例对此并不限定, 也可以不集成在一个物理实体上。 另外, 本发明实施 例的射频装置可以都是大功率射频装置, 也可以都是小功率射频装置, 还可 以部分射频装置釆用大功率射频装置, 部分射频装置釆用小功率射频装置。
数字处理装置和射频处理装置之间的接口除了包括上述基带数据,还可 以包括: 用户面数据、 时钟数据、 控制面数据(包括管理和信令等)或调度 数据等。
本发明实施例的基站系统包括第一射频装置、第二射频装置和数字处理 装置, 第一射频装置和第二射频装置分别对应同一个基站内的两个扇区站 点, 数字处理装置将第一射频装置输出的第一基带数据发送给第二射频装
置, 其中第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、 硬 比特数据或 L2数据, 第二射频装置根据第一基带数据实现基站内的 CoMP 处理。基于上述方案,射频装置之间通过数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地提高增益。
作为本发明的另一个实施例, 基站系统 100还可以进一步扩展其功能。 示例性的,第一射频装置 101可以进一步用于从用户设备接收第一数据, 根据第一数据输出第一基带数据。第二射频装置 102可以进一步用于从用户 设备接收第一数据, 根据第一数据输出第二基带数据, 合并第二基带数据和 第一基带数据获得协同数据, 对协同数据进行基带处理输出第一用户面数 据, 其中第一基带数据和第二基带数据为相同的基带数据类型。 即实现上行 CoMP处理。
应理解, 本发明实施例对射频装置的数目不作限定, 可以是两个或两个 以上, 在多扇区站点场景下, 每个扇区站点对应一个射频装置。 还应理解, 进行上行多点协同处理的射频装置可以是两个或两个以上。 例如, 第二射频 装置可以接收其它 1个第一射频装置发送的 1个第一基带数据,将 1个第一 基带数据和该第二射频装置输出的第二基带数据进行合并,也可以接收其它 任意多个射频装置发送的与该多个射频装置分别对应的多个基带数据,将第 二基带数据和该多个基带数据进行合并。 另外, 第一射频装置输出的第一基 带数据也可以是多点协同处理后的数据, 或者第二射频装置将协同数据进行 基带处理后, 经数字处理装置发送给除第一射频装置之外的其它射频装置, 由其它射频装置继续进行多点协同处理。 本发明实施例对此并不限定。
为了方便理解,本发明实施例将以两个射频装置的多点协同处理为例进 行说明。
下面结合图 2的示意性架构进行详细说明。扇区 1对应的第一射频装置 可以实现部分数据接口, 即对数据只进行射频处理或进行部分基带处理。
具体而言, 第二射频装置可以具体用于对协同数据依次进行基带层 1低 ( Ll-Low ) 处理、 层 1高 (Ll-High ) 处理、 层 2 ( L2 ) 处理以及层 3 ( L3 ) 处理输出第一用户面数据。 例如, 用户设备发送的第一数据扇区 1对应的第 一射频装置和扇区 2对应的第二射频装置均能接收到, 第一射频装置 201可 以用于对从用户设备接收的第一数据进行射频处理并输出第一基带数据, 即 为时域 IQ数据, 通过数字处理装置 203将第一基带数据发送给第二射频装
置 202。 第二射频装置 202也可以用于对从用户设备接收的第一数据进行射 频处理并输出第二基带数据,还接收数字处理装置 203发送的第一基带数据, 合并第一基带数据和第二基带数据后进行后续的基带 L1 (包括 Ll-Low和 Ll-High )、 L2和 L3处理, 输出第一用户面数据, 通过数字处理装置 203传 输至核心网。
或者, 第二射频装置可以具体用于对协同数据依次进行基带层 1 高 Ll-High处理、 层 2处理以及层 3处理输出第一用户面数据。 即合并成协同 数据的第一基带数据和第二基带数据的基带数据类型为频域 IQ数据。例如, 用户设备发送的第一数据扇区 1对应的第一射频装置和扇区 2对应的第二射 频装置均能接收到, 第一射频装置 201可以用于对从用户设备接收的第一数 据进行射频和 Ll-Low处理并输出第一基带数据, 即为频域 IQ数据, 通过 数字处理装置 203将第一基带数据发送给第二射频装置 202。 第二射频装置 202也可以用于对从用户设备接收的第一数据进行射频和 Ll-Low处理并输 出第二基带数据, 还接收数字处理装置 203发送的第一基带数据, 合并第一 基带数据和第二基带数据后进行后续的基带 Ll-High、 L2和 L3处理输出第 一用户面数据, 通过数字处理装置 203传输至核心网。
或者, 第二射频装置可以具体用于对协同数据依次进行基带层 2处理和 层 3处理输出第一用户面数据, 即合并成协同数据的第一基带数据和第二基 带数据的基带数据类型为硬比特数据。 类似的例子可以参考上述, 此处不再 赘述。
或者, 第二射频装置可以具体用于对协同数据进行基带层 3处理输出第 一用户面数据, 即合并成协同数据的第一基带数据和第二基带数据的基带数 据类型为 L2数据。 类似的例子可以参考上述, 此处不再赘述。
进一步地,数字处理装置 203还可以用于接收第二射频装置 202发送的 第一用户面数据, 通过传输协议将第一用户面数据发送给核心网。
示例性的,数字处理装置 103还可以用于将第二用户面数据发送给第一 射频装置 101。 第一射频装置 101可以进一步用于从数字处理装置 103接收 第二用户面数据, 对第二用户面数据进行基带处理后输出第一基带数据。 第 二射频装置 102可以进一步用于对第一基带数据继续进行基带处理并进行射 频处理输出第二数据或者对第一基带数据进行射频处理输出第二数据,将第 二数据发送给用户设备。 即实现下行 CoMP处理。
应理解, 本发明实施例对射频装置的数目不作限定, 可以是两个或两个 以上, 在多扇区站点场景下, 每个扇区站点对应一个射频装置。 还应理解, 进行下行多点协同处理的射频装置可以是两个或两个以上。 例如, 第一射频 装置可以接收由数字处理装置转发的其它射频装置的基带数据, 第一射频装 置输出第一基带数据经数字处理装置转发给第二射频装置。或者第二射频装 置将接收的第一基带数据经基带处理后输出第二基带数据,通过数字处理装 置转发给其它射频装置。
具体而言, 第二射频装置可以具体用于对接收的已经过第一射频装置进 行 L3处理的第一基带数据依次进行基带层 2处理、 层 1高 Ll-High处理、 层 1低 Ll-Low处理、 以及射频处理输出第二数据。 即第一基带数据的基带 数据类型为 L2数据。
或者, 第二射频装置可以具体用于对接收的已经过第一射频装置进行 L3和 L2处理的第一基带数据依次进行基带 Ll-High处理、 Ll-Low处理以 及射频处理输出第二数据。 即合并成协同数据的第一基带数据和第二基带数 据的基带数据类型为硬比特数据。
或者, 第二射频装置可以具体用于对接收的已经过第一射频装置进行 L3、 L2处理和 Ll-High处理的第一基带数据依次进行基带 Ll-Low处理和射 频处理输出第二数据。 即第一基带数据的基带数据类型为频域 IQ数据。
或者, 第二射频装置可以具体用于对接收的已经过第一射频装置进行 L3、 L2处理和 Ll-High和 Ll-Low处理的第一基带数据进行射频处理输出第 二数据。 即第一基带数据的基带数据类型为时域 IQ数据。
示例性的, 数字处理装置 103 与各个射频装置之间可以通过 ETH ( Ethernet, 以太网)接口相连接。
示例性的,数字处理装置 103还可以用于分别与第一射频装置和第二射 频装置进行时间同步, 进一步地, 可以用于通过同步以太网方式进行时间同 步。
另外,数字处理装置 103还可以用于实现扇区间的协同调度或基站间的 协同调度。 协调调度功能的实现, 例如, 可以收集各个扇区的信息, 统一进 行调度处理, 然后下发调度命令到各个射频装置, 具体地, 调度命令可以指 示射频装置进行 CoMP处理。
示例性的,数字处理装置 103还可以用于实现基站系统的 OM( Operation
Management, 操作和维护)处理, 例如, 对基站内部数据进行配置、 更新、 加载或维护等操作。
因此, 多个射频装置可以共用一个数字处理装置进行传输、 操作维护和 同步等功能, 无需每个射频装置都配置一个相应的数字处理装置, 从而降 氐系统的成本。
示例性的, 数字处理装置 103还可以用于通过传输协议, 如包括 IPSEC 等安全协议与核心网进行用户面或控制面的数据交互。 具体地, 可以通过 S1接口或 X2接口进行交互。
示例性的, 基站系统 100还可以对外提供基带接口, 可以部署在数字处 理装置 103中, 示意性地如图 3所示, 基站 1包括 3个扇区, 每个扇区对应 一个射频装置, 3个射频装置共用一个数字处理装置,数字处理装置控制 SW ( Switch, 交换)单元实现射频装置之间的数据交互, 可以进行传输协议处 理、实现与核心网之间的交互或进行时间同步等,还可以对外提供基带接口, 基站 1中的基带数据, 包括但不限于时域 IQ数据、 频域 IQ数据或 L2数据 等, 可以通过该基带接口输出, 经交换模块实现与其它基站的基带数据的交 互, 如基站 2的交互, 即实现基站间的协同传输。
图 4是本发明一个实施例的射频装置的示意性框图。图 4的射频装置 400 是上述基站系统中第二射频装置的一个例子, 射频装置 400 包括接收单元 401和处理单元 402。
接收单元 401用于接收数字处理装置发送的第一基带数据, 其中第一基 带数据是由第一射频装置输出的。
处理单元 402用于根据接收单元 401接收的第一基带数据实现基站内的 CoMP处理。
第一基带数据的类型可以包括时域 IQ数据、 频域 IQ数据、硬比特数据 或 L2数据。
需要指出的是, 本发明实施例的射频装置也可以称为增强型射频单元 ( eRU ) 能够实现射频处理(如中射频处理) 功能和基带 L1/L2/L3 (层 1/ 层 2/层 3 )处理功能。 数字处理装置也可以称为简化的数字处理单元( sDU ) 用于实现射频装置之间的基带数据交换, 还可以实现基带协同调度功能、 主 控传输或时钟处理等功能。射频装置中的射频收发和基带处理功能可以通过 单芯片集成在一个物理实体上, 这样, 能够降低系统成本。 应理解, 本发明
实施例对此并不限定, 也可以不集成在一个物理实体上。 数字处理装置与各 个射频装置之间可以通过 ETH接口相连接。 另外, 本发明实施例的射频装 置可以都是大功率射频装置, 也可以都是小功率射频装置, 还可以部分射频 装置釆用大功率射频装置, 部分射频装置釆用小功率射频装置。
数字处理装置和射频处理装置之间的接口除了包括上述基带数据,还可 以包括: 用户面数据、 时钟数据、 控制面数据(包括管理和信令等)或调度 数据等。
本发明实施例第二射频装置根据数据处理模块从第一射频装置转发的 第一基带数据实现基站内的 CoMP处理。基于上述方案, 射频装置之间通过 数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地 提高增益。
该射频装置 400能够实现上述基站系统中第二射频装置涉及的功能, 为 避免赘述, 将适当省略与上述基站系统中相类似的描述。
可选地, 作为一个实施例, 接收单元 401还可以用于从用户设备接收第 一数据, 根据第一数据输出第二基带数据。 处理单元 402可以具体用于合并 第二基带数据和第一基带数据获得协同数据,对协同数据进行基带处理输出 第一用户面数据, 其中第一基带数据和第二基带数据为相同的基带数据类 型。 即实现上行 CoMP处理。
应理解, 本发明实施例对射频装置的数目不作限定, 可以是两个或两个 以上, 在多扇区站点场景下, 每个扇区站点对应一个射频装置。 还应理解, 进行上行多点协同处理的射频装置可以是两个或两个以上。 例如, 第二射频 装置可以接收其它 1个第一射频装置发送的 1个第一基带数据,将 1个第一 基带数据和该第二射频装置输出的第二基带数据进行合并,也可以接收其它 任意多个射频装置发送的与该多个射频装置分别对应的多个基带数据,将第 二基带数据和该多个基带数据进行合并。 为了方便理解, 本发明实施例将以 两个射频装置的多点协同处理为例进行说明。
可选地, 处理单元 402可以具体用于对协同数据依次进行基带 Ll-Low 处理、 Ll-High处理、 层 2处理以及层 3处理输出第一用户面数据。 或者处 理单元 402可以具体用于对协同数据依次进行基带 Ll-High处理、 层 2处理 以及层 3处理输出第一用户面数据。 或者, 处理单元 402可以具体用于对协 同数据依次进行基带层 2处理和层 3处理输出第一用户面数据。 或者, 处理
单元 402可以具体用于对协同数据进行基带层 3处理输出第一用户面数据。 具体的例子可以参考上述, 此处不再赘述。
进一步地, 射频装置 400还可以包括第一发送单元 403。 第一发送单元 403用于将输出的第一用户面数据发送给数字处理装置, 以便数字处理装置 通过传输协议将第一用户面数据传输至核心网。
可选地, 作为另一个实施例, 处理单元 402可以具体用于对第一基带数 据继续进行基带处理并进行射频处理输出第二数据或者对第一基带数据进 行射频处理输出第二数据。 射频装置 400还可以包括第一发送单元 403, 第 二发送单元 403将第二数据发送给用户设备。 其中, 第一基带数据是第一射 频装置根据从数字处理装置接收的第二用户面数据进行基带处理后输出的。 即实现下行 CoMP处理。
应理解, 本发明实施例对射频装置的数目不作限定, 可以是两个或两个 以上, 在多扇区站点场景下, 每个扇区站点对应一个射频装置。 还应理解, 进行下行多点协同处理的射频装置可以是两个或两个以上。 例如, 第二射频 装置将接收的第一基带数据经基带处理后输出的基带数据,通过数字处理装 置转发给其它射频装置。 具体的例子可以参考上述, 此处不再赘述。
图 5是本发明一个实施例的射频装置的示意性框图。图 5的射频装置 500 是上述基站系统中第一射频装置的一个例子, 射频装置 500 包括处理单元 501和发送单元 502。
处理单元 501用于输出第一基带数据。
发送单元 502, 用于将处理单元 501输出的第一基带数据发送给数字处 理装置, 以便数字处理装置将第一基带数据发送给第二射频装置, 第二射频 装置根据第一基带数据实现基站内的 CoMP处理。
第一基带数据的类型可以包括时域 IQ数据、 频域 IQ数据、硬比特数据 或 L2数据。
需要指出的是, 本发明实施例的射频装置也可以称为增强型射频单元 ( eRU ) 能够实现射频处理(如中射频处理) 功能和基带 L1/L2/L3 (层 1/ 层 2/层 3 )处理功能。 数字处理装置也可以称为简化的数字处理单元( sDU ) 用于实现射频装置之间的基带数据交换, 还可以实现基带协同调度功能、 主 控传输或时钟处理等功能。射频装置中的射频收发和基带处理功能可以通过 单芯片集成在一个物理实体上, 这样, 能够降低系统成本。 应理解, 本发明
实施例对此并不限定, 也可以不集成在一个物理实体上。 数字处理装置与各 个射频装置之间可以通过 ETH接口相连接。
本发明实施例第一射频装置输出第一基带数据,通过数据处理模块该第 二射频装置来实现基站内的 CoMP处理。基于上述方案, 射频装置之间通过 数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地 提高增益。
该射频装置 500能够实现上述基站系统中第一射频装置涉及的功能, 为 避免赘述, 将适当省略与上述基站系统中相类似的描述。
可选地,作为一个实施例,射频装置 500还可以包括第一接收单元 503, 第一接收单元 503用于从用户设备接收第一数据, 处理单元 501可以具体用 于: 根据接收单元 503接收的第一数据输出第一基带数据。 后续第二射频装 置可以合并第二基带数据和该第一基带数据获得协同数据,对协同数据进行 基带处理输出第一用户面数据, 其中第一基带数据和第二基带数据为相同的 基带数据类型。 即实现上行 CoMP处理。
应理解, 本发明实施例进行上行多点协同处理的射频装置可以是两个或 两个以上。 例如, 第一射频装置可以接收从数字处理装置转发的由其它处理 模块发送的基带数据, 合并第一射频装置的同类型的基带数据, 再由第一射 频装置进行基带处理输出第一基带数据。
可选地, 作为另一个实施例, 射频装置 500还可以包括第二接收单元 504, 第二接收单元 504用于从数字处理装置接收第二用户面数据; 处理单 元 501可以具体用于对第二接收单元 504接收的第二用户面数据进行基带处 理后输出第一基带数据,后续第二射频装置对第一基带数据继续进行基带处 理。 实现下行 CoMP处理。
应理解, 本发明实施例对射频装置的数目不作限定, 可以是两个或两个 以上, 在多扇区站点场景下, 每个扇区站点对应一个射频装置。 还应理解, 进行下行多点协同处理的射频装置可以是两个或两个以上。 例如, 第一射频 装置可以接收由数字处理装置转发的其它射频装置的基带数据, 第一射频装 置输出第一基带数据经数字处理装置转发给第二射频装置。具体的例子可以 参考上述, 此处不再赘述。
图 6是本发明一个实施例的数字处理装置的示意性框图。 图 6的数字处 理装置 600是上述基站系统中数字处理装置的一个例子, 数字处理装置 600
包括接收单元 601和发送单元 602。
接收单元 601用于接收第一射频装置输出并发送的第一基带数据。
发送单元 602用于将接收单元 601接收的第一基带数据发送给第二射频 射备, 以便第二射频装置根据第一基带数据实现基站内的 CoMP处理。
第一基带数据的类型可以包括时域 IQ数据、 频域 IQ数据、硬比特数据 或 L2数据。
需要指出的是, 本发明实施例的射频装置也可以称为增强型射频单元 ( eRU ) 能够实现射频处理(如中射频处理) 功能和基带 L1/L2/L3 (层 1/ 层 2/层 3 )处理功能。 数字处理装置也可以称为简化的数字处理单元( sDU ) 用于实现射频装置之间的基带数据交换, 还可以实现基带协同调度功能、 主 控传输或时钟处理等功能。射频装置中的射频收发和基带处理功能可以通过 单芯片集成在一个物理实体上, 这样, 能够降低系统成本。 应理解, 本发明 实施例对此并不限定, 也可以不集成在一个物理实体上。 数字处理装置与各 个射频装置之间可以通过 ETH接口相连接。
本发明实施例数据处理模块将第一射频装置输出的第一基带数转发给 第二射频装置来实现基站内的 CoMP处理。基于上述方案, 射频装置之间通 过数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效 地提高增益。
数字处理装置 600能够实现上述基站系统中数字处理装置涉及的功能, 为避免赘述, 将适当省略与上述基站系统中相类似的描述。
数字处理装置可以用于实现基站系统的 OM处理, 例如, 对基站内部数 据进行配置、 更新、 加载或维护等操作。 因此, 多个射频装置可以共用一 个数字处理装置进行传输、 操作维护和同步等功能, 无需每个射频装置都 配置一个相应的数字处理装置, 从而降低系统的成本。
可选地, 作为一个实施例, 接收单元 601还可以用于接收第二射频装置 发送的第一用户面数据, 第一用户面数据是第二射频装置从用户设备接收第 一数据, 根据第一数据输出第二基带数据, 合并第二基带数据和第一基带数 据获得协同数据, 对协同数据进行基带处理输出的, 其中第一基带数据和第 二基带数据为相同的基带数据类型。 即实现上行 CoMP处理。 进一步地, 发 送单元 602还可以用于通过传输协议将第一用户面数据传输至核心网。
可选地, 作为另一个实施例, 发送单元 602还可以用于将第二用户面数
据发送给第一射频装置, 以便第一射频装置对第二用户面数据进行基带处理 后输出第一基带数据。后续第二射频装置对第一基带数据继续进行基带处理 输出第二数据。 即实现上行 CoMP处理。
具体的实施例可以参考上述, 此处不再赘述。
可选地, 作为另一个实施例, 数字处理装置 600 还可以包括同步单元 603, 同步单元 603用于分别与第一射频装置和第二射频装置进行时间同步。 进一步地, 可以用于通过同步以太网方式进行时间同步。
可选地, 作为另一个实施例, 数字处理装置 600 还可以包括协同单元 604, 协同单元 604用于实现扇区间的协同调度或基站间的协同调度。 协调 调度功能的实现, 例如, 协同单元 604可以用于收集各个扇区的信息, 统一 进行调度处理, 然后下发调度命令到各个射频装置, 具体地, 调度命令可以 指示射频装置进行 CoMP处理。还可以对外提供基带接口, 经交换模块实现 与其它基站的基带数据的交互, 即实现基站间的协同传输。
图 7是本发明另一个实施例的射频装置的示意性结构图。 图 7的射频装 置 700是上述基站系统中第二射频装置的一个例子,该射频装置 700包括处 理器 701, 存储器 702和收发器 703。 处理器 701控制设备 700的操作, 处 理器 701还可以称为 CPU ( Central Processing Unit, 中央处理单元)。存储器 702可以包括只读存储器和随机存取存储器, 并向处理器 701提供指令和数 据。 存储器 702的一部分还可以包括非易失行随机存取存储器(NVRAM )。 处理器 701, 存储器 702和收发器 703通过总线系统 710耦合在一起, 其中 总线系统 710除包括数据总线之外, 还包括电源总线、 控制总线和状态信号 总线。 但是为了清楚说明起见, 在图中将各种总线都标为总线系统 710。
其中, 处理器 701可能是一种集成电路芯片, 具有信号的处理能力。 在 实现过程中, 上述方法的各步骤可以通过处理器 701中的硬件的集成逻辑电 路或者软件形式的指令完成。 上述的处理器 701 可以是通用处理器, 包括 CPU, NP等; 还可以是 DSP、 ASIC, FPGA或者其他可编程逻辑器件、 分 立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例 中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处 理器也可以是任何常规的处理器等。
在该实施例中,收发器 703用于接收数字处理装置发送的第一基带数据, 其中第一基带数据是由第一射频装置输出的。 处理器 701 用于根据收发器
703接收的第一基带数据实现基站内的 CoMP处理。 其中第一基带数据的类 型可以包括时域 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据。
本发明实施例第二射频装置根据数据处理模块从第一射频装置转发的 第一基带数据实现基站内的 CoMP处理。基于上述方案, 射频装置之间通过 数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地 提高增益。
该射频装置 700能够实现上述基站系统中第二射频装置涉及的功能, 为 避免赘述, 此处不再详细描述。
可选地, 作为一个实施例, 收发器 703还可以用于从用户设备接收第一 数据, 根据第一数据输出第二基带数据。 处理器 701可以具体用于合并第二 基带数据和第一基带数据获得协同数据,对协同数据进行基带处理输出第一 用户面数据, 其中第一基带数据和第二基带数据为相同的基带数据类型。 即 实现上行 CoMP处理。
可选地, 处理器 701可以具体用于对协同数据依次进行基带 Ll-Low处 理、 Ll-High处理、 层 2处理以及层 3处理输出第一用户面数据。 或者处理 器 701可以具体用于对协同数据依次进行基带 Ll-High处理、 层 2处理以及 层 3处理输出第一用户面数据。 或者, 处理器 701可以具体用于对协同数据 依次进行基带层 2处理和层 3处理输出第一用户面数据。 或者, 处理器 701 可以具体用于对协同数据进行基带层 3处理输出第一用户面数据。具体的例 子可以参考上述, 此处不再赘述。
进一步地, 收发器 703还可以用于将输出的第一用户面数据发送给数字 处理装置, 以便数字处理装置通过传输协议将第一用户面数据传输至核心 网。
可选地, 作为另一个实施例, 处理器 701可以具体用于对第一基带数据 继续进行基带处理并进行射频处理输出第二数据或者对第一基带数据进行 射频处理输出第二数据。收发器 703还可以用于将第二数据发送给用户设备。 其中, 第一基带数据是第一射频装置根据从数字处理装置接收的第二用户面 数据进行基带处理后输出的。 即实现下行 CoMP处理。
图 8是本发明另一个实施例的射频装置的示意性结构图。 图 8的射频装 置 800是上述基站系统中第一射频装置的一个例子,该射频装置 800包括处 理器 801, 存储器 802和收发器 803。 处理器 801控制设备 800的操作, 处
理器 801还可以称为 CPU。存储器 802可以包括只读存储器和随机存取存储 器, 并向处理器 801提供指令和数据。 存储器 802的一部分还可以包括非易 失行随机存取存储器( NVRAM )。 处理器 801, 存储器 802和收发器 803通 过总线系统 810耦合在一起, 其中总线系统 810除包括数据总线之外, 还包 括电源总线、 控制总线和状态信号总线。 但是为了清楚说明起见, 在图中将 各种总线都标为总线系统 810。
其中, 处理器 801可能是一种集成电路芯片, 具有信号的处理能力。 在 实现过程中, 上述方法的各步骤可以通过处理器 801中的硬件的集成逻辑电 路或者软件形式的指令完成。 上述的处理器 801 可以是通用处理器, 包括 CPU, NP等; 还可以是 DSP、 ASIC, FPGA或者其他可编程逻辑器件、 分 立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例 中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处 理器也可以是任何常规的处理器等。
在该实施例中, 处理器 801用于输出第一基带数据。 收发器 803用于将 处理器 801输出的第一基带数据发送给数字处理装置, 以便数字处理装置将 第一基带数据发送给第二射频装置, 第二射频装置根据第一基带数据实现基 站内的 CoMP处理。第一基带数据的类型可以包括时域 IQ数据、频域 IQ数 据、 硬比特数据或 L2数据。
本发明实施例第一射频装置输出第一基带数据,通过数据处理模块该第 二射频装置来实现基站内的 CoMP处理。基于上述方案, 射频装置之间通过 数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效地 提高增益。
该射频装置 800能够实现上述基站系统中第一射频装置涉及的功能, 为 避免赘述, 此处不再详细描述。
可选地, 作为一个实施例, 收发器 803还可以用于从用户设备接收第一 数据, 处理器 801可以具体用于: 根据收发器 803接收的第一数据输出第一 基带数据。后续第二射频装置可以合并第二基带数据和该第一基带数据获得 协同数据, 对协同数据进行基带处理输出第一用户面数据, 其中第一基带数 据和第二基带数据为相同的基带数据类型。 即实现上行 CoMP处理。
可选地, 作为另一个实施例, 收发器 803还可以用于从数字处理装置接 收第二用户面数据; 处理器 801可以具体用于对收发器 803接收的第二用户
面数据进行基带处理后输出第一基带数据,后续第二射频装置对第一基带数 据继续进行基带处理。 实现下行 CoMP处理。
图 9是本发明另一个实施例的数字处理装置的示意性结构图。 图 9的数 字处理装置 900是上述基站系统中数字处理装置的一个例子,该数字处理装 置 900包括处理器 901,存储器 902和收发器 903。处理器 901控制设备 900 的操作, 处理器 901还可以称为 CPU。存储器 902可以包括只读存储器和随 机存取存储器, 并向处理器 901提供指令和数据。 存储器 902的一部分还可 以包括非易失行随机存取存储器( NVRAM )。 处理器 901, 存储器 902和收 发器 903通过总线系统 910耦合在一起,其中总线系统 910除包括数据总线 之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见, 在图中将各种总线都标为总线系统 910。
其中, 处理器 901可能是一种集成电路芯片, 具有信号的处理能力。 在 实现过程中, 上述方法的各步骤可以通过处理器 901中的硬件的集成逻辑电 路或者软件形式的指令完成。 上述的处理器 901 可以是通用处理器, 包括 CPU, NP等; 还可以是 DSP、 ASIC, FPGA或者其他可编程逻辑器件、 分 立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例 中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处 理器也可以是任何常规的处理器等。
在该实施例中, 收发器 903用于接收第一射频装置输出并发送的第一基 带数据。还用于根据收发器 903将接收的第一基带数据发送给第二射频射备, 以便第二射频装置根据第一基带数据实现基站内的 CoMP处理。其中第一基 带数据的类型可以包括时域 IQ数据、频域 IQ数据、硬比特数据或 L2数据。
本发明实施例数据处理模块将第一射频装置输出的第一基带数转发给 第二射频装置来实现基站内的 CoMP处理。基于上述方案, 射频装置之间通 过数字处理装置进行基带数据的交换, 实现扇区间多点协同处理, 从而有效 地提高增益。
数字处理装置 900能够实现上述基站系统中数字处理装置涉及的功能, 为避免赘述, 此处不再详细描述。
处理器 901可以用于实现基站系统的 OM处理, 例如, 对基站内部数据 进行配置、 更新、 加载或维护等操作。 因此, 多个射频装置可以共用一个 数字处理装置进行传输、 操作维护和同步等功能, 无需每个射频装置都配
置一个相应的数字处理装置, 从而降低系统的成本。
可选地, 作为一个实施例, 收发器 903还可以用于接收第二射频装置发 送的第一用户面数据, 第一用户面数据是第二射频装置从用户设备接收第一 数据, 根据第一数据输出第二基带数据, 合并第二基带数据和第一基带数据 获得协同数据, 对协同数据进行基带处理输出的, 其中第一基带数据和第二 基带数据为相同的基带数据类型。 即实现上行 CoMP处理。 进一步地, 收发 器 903还可以用于通过传输协议将第一用户面数据传输至核心网。
可选地, 作为另一个实施例, 收发器 903还可以用于将第二用户面数据 发送给第一射频装置, 以便第一射频装置对第二用户面数据进行基带处理后 输出第一基带数据。后续第二射频装置对第一基带数据继续进行基带处理输 出第二数据。 即实现上行 CoMP处理。
可选地, 作为另一个实施例, 处理器 901可以用于分别与第一射频装置 和第二射频装置进行时间同步。 进一步地, 可以用于通过同步以太网方式进 行时间同步。
可选地, 作为另一个实施例, 处理器 901可以用于扇区间的协同调度或 基站间的协同调度。 还可以对外提供基带接口, 经交换模块实现与其它基站 的基带数据的交互, 即实现基站间的协同传输。
图 10是本发明一个实施例的多点协同处理方法的示意性流程图。 该方 法可以由上述基站系统执行。
1001 , 第一射频装置输出第一基带数据, 将第一基带数据发送给数字处 理装置。
1002, 数字处理装置接收第一射频装置发送的第一基带数据, 将第一基 带数据发送给第二射频装置, 第一射频装置和第二射频装置分别对应同一个 基站内的两个扇区站点。
1003 , 第二射频装置接收数字处理装置发送的第一基带数据, 根据第一 基带数据实现基站内的 CoMP处理。
第一基带数据的类型可以包括时域 IQ数据、 频域 IQ数据、硬比特数据 或 L2数据。
需要指出的是, 本发明实施例的射频装置也可以称为增强型射频单元 ( eRU ) 能够实现射频处理(如中射频处理) 功能和基带 L1/L2/L3 (层 1/ 层 2/层 3 )处理功能。 数字处理装置也可以称为简化的数字处理单元 sDU )
用于实现射频装置之间的基带数据交换, 还可以实现基带协同调度功能、 主 控传输或时钟处理等功能。射频装置中的射频收发和基带处理功能可以通过 单芯片集成在一个物理实体上, 这样, 能够降低系统成本。 应理解, 本发明 实施例对此并不限定, 也可以不集成在一个物理实体上。 数字处理装置与各 个射频装置之间可以通过 ETH接口相连接。 另外, 本发明实施例的射频装 置可以都是大功率射频装置, 也可以都是小功率射频装置, 还可以部分射频 装置釆用大功率射频装置, 部分射频装置釆用小功率射频装置。
数字处理装置和射频处理装置之间的接口除了包括上述基带数据,还可 以包括: 用户面数据、 时钟数据、 控制面数据(包括管理和信令等)或调度 数据等。
本发明实施例数字处理装置将第一射频装置输出的第一基带数据发送 给第二射频装置, 其中第一基带数据的类型包括时域同相正交 IQ数据、 频 域 IQ数据、硬比特数据或 L2数据, 第二射频装置根据第一基带数据实现基 站内的 CoMP处理。基于上述方案, 射频装置之间通过数字处理装置进行基 带数据的交换, 实现扇区间多点协同处理, 从而有效地提高增益。
图 10的方法可以由图 1中的基站系统实现, 为避免赘述, 此处不再详 细描述。
可选地, 作为一个实施例, 在步骤 1001 中, 第一射频装置可以从用户 设备接收第一数据, 根据一数据输出所述第一基带数据。 在步骤 1003 中, 第二射频装置可以从用户设备接收第一数据,根据第一数据输出第二基带数 据, 合并第二基带数据和第一基带数据获得协同数据, 对协同数据进行基带 处理输出第一用户面数据,其中第一基带数据和第二基带数据为相同的基带 数据类型。 即实现上行 CoMP处理。
具体而言, 第二射频装置可以对协同数据依次进行基带 Ll-Low处理、 Ll-High处理、 L2处理以及 L3处理输出第一用户面数据。 或者, 第二射频 装置可以对协同数据依次进行基带 Ll-High处理、 L2处理以及 L3处理输出 第一用户面数据。 即合并成协同数据的第一基带数据和第二基带数据的基带 数据类型为频域 IQ数据。 或者, 第二射频装置可以对协同数据依次进行基 带 L2处理和 L3处理输出第一用户面数据,即合并成协同数据的第一基带数 据和第二基带数据的基带数据类型为硬比特数据。 或者, 第二射频装置可以 对协同数据进行基带 L3处理输出第一用户面数据, 即合并成协同数据的第
一基带数据和第二基带数据的基带数据类型为 L2数据。
进一步地, 第二射频装置将输出的第一用户面数据发送给数字处理装 置, 数字处理装置还可以接收第二射频装置发送的第一用户面数据, 通过传 输协议将第一用户面数据发送给核心网。
可选地, 作为另一个实施例, 数字处理装置还可以将第二用户面数据发 送给第一射频装置。 第一射频装置还可以从数字处理装置接收第二用户面数 据, 在步骤 1001中, 对第二用户面数据进行基带处理后输出第一基带数据。 在步骤 1003 中, 第二射频装置可以对第一基带数据继续进行基带处理并进 行射频处理输出第二数据或者对第一基带数据进行射频处理输出第二数据, 将第二数据发送给用户设备。 即实现下行 CoMP处理。
可选地, 作为另一个实施例, 数字处理装置还可以分别与第一射频装置 和第二射频装置进行时间同步, 进一步地, 可以用于通过同步以太网方式进 行时间同步。
可选地, 作为另一个实施例, 数字处理装置还可以实现扇区间的协同调 度或基站间的协同调度。 还可以对外提供基带接口, 经交换模块实现与其它 基站的基带数据的交互, 即实现基站间的协同传输。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。
Claims
1、 一种基站系统, 其特征在于, 包括第一射频装置、 第二射频装置和 数字处理装置, 所述第一射频装置和第二射频装置分别对应同一个基站内的 两个扇区站点,
所述第一射频装置, 用于输出第一基带数据, 将所述第一基带数据发送 给所述数字处理装置,所述第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据;
所述数字处理装置, 用于接收所述第一射频装置发送的所述第一基带数 据, 将所述第一基带数据发送给所述第二射频装置;
所述第二射频装置, 用于接收所述数字处理装置发送的所述第一基带数 据, 根据所述第一基带数据实现基站内的多点协同 CoMP处理。
2、 如权利要求 1所述的系统, 其特征在于,
所述第一射频装置, 进一步用于从用户设备接收第一数据, 根据所述第 一数据输出所述第一基带数据;
所述第二射频装置, 进一步用于从所述用户设备接收第一数据, 根据所 述第一数据输出第二基带数据,合并所述第二基带数据和所述第一基带数据 获得协同数据, 对所述协同数据进行基带处理输出第一用户面数据, 其中所 述第一基带数据和所述第二基带数据为相同的基带数据类型。
3、 如权利要求 2所述的系统, 其特征在于,
所述第二射频装置, 具体用于对所述协同数据依次进行基带层 1 低 Ll-Low处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一 用户面数据; 或者
所述第二射频装置, 具体用于对所述协同数据依次进行基带层 1 高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或者
所述第二射频装置, 具体用于对所述协同数据依次进行基带层 2处理和 层 3处理输出所述第一用户面数据; 或者
所述第二射频装置, 具体用于对所述协同数据进行基带层 3处理输出所 述第一用户面数据。
4、 如权利要求 2或 3所述的系统, 其特征在于,
所述第二射频装置,还用于将输出的所述第一用户面数据发送给所述数
字处理装置;
所述数字处理装置,还用于接收所述第二射频装置发送的所述第一用户 面数据, 通过传输协议将所述第一用户面数据传输至核心网。
5、 如权利要求 1所述的系统, 其特征在于,
所述数字处理装置, 还用于将第二用户面数据发送给所述第一射频装 置;
所述第一射频装置, 进一步用于从所述数字处理装置接收所述第二用户 面数据, 对所述第二用户面数据进行基带处理后输出所述第一基带数据; 所述第二射频装置, 进一步用于对所述第一基带数据继续进行基带处理 并进行射频处理输出第二数据或者对所述第一基带数据进行射频处理输出 第二数据, 将所述第二数据发送给用户设备。
6、 如权利要求 1-5任一项所述的系统, 其特征在于,
所述数字处理装置,还用于分别与所述第一射频装置和所述第二射频装 置进行时间同步。
7、 如权利要求 1-6任一项所述的系统, 其特征在于,
所述数字处理装置, 还用于实现扇区间的协同调度或基站间的协同调 度。
8、 一种射频装置, 其特征在于, 包括:
接收单元, 用于接收数字处理装置发送的第一基带数据, 其中所述第一 基带数据是由第一射频装置输出的, 所述第一基带数据的类型包括时域同相 正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据;
处理单元,用于根据所述接收单元接收的所述第一基带数据实现基站内 的多点协同 CoMP处理。
9、 如权利要求 8所述的射频装置, 其特征在于,
所述接收单元, 还用于从所述用户设备接收第一数据, 根据所述第一数 据输出第二基带数据;
所述处理单元具体用于: 合并所述第二基带数据和所述第一基带数据获 得协同数据, 对所述协同数据进行基带处理输出第一用户面数据, 其中所述 第一基带数据和所述第二基带数据为相同的基带数据类型。
10、 如权利要求 9所述的射频装置, 其特征在于,
所述处理单元具体用于: 对所述协同数据依次进行基带层 1低 Ll-Low
处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数 据; 或者
所述处理单元具体用于: 对所述协同数据依次进行基带层 1高 Ll-High 处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或者
所述处理单元具体用于: 对所述协同数据依次进行基带层 2处理和层 3 处理输出所述第一用户面数据; 或者
所述处理单元具体用于: 对所述协同数据进行基带层 3处理输出所述第 一用户面数据。
11、 如权利要求 9或 10所述的射频装置, 其特征在于, 所述射频装置 还包括第一发送单元,
所述第一发送单元, 用于将输出的所述第一用户面数据发送给所述数字 处理装置, 以便所述数字处理装置通过传输协议将所述第一用户面数据传输 至核心网。
12、 如权利要求 8所述的射频装置, 其特征在于, 所述射频装置还包括 第二发送模块,
所述处理单元具体用于: 对所述第一基带数据继续进行基带处理并进行 射频处理输出第二数据或者对所述第一基带数据进行射频处理输出第二数 据;
所述第二发送模块, 用于将所述第二数据发送给用户设备;
其中, 所述第一基带数据是所述第一射频装置根据从所述数字处理装置 接收的第二用户面数据进行基带处理后输出的。
13、 一种射频装置, 其特征在于, 包括:
处理单元, 用于输出第一基带数据, 所述第一基带数据的类型包括时域 同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据;
发送单元,用于将所述处理单元输出的所述第一基带数据发送给数字处 理装置, 以便所述数字处理装置将所述第一基带数据发送给所述第二射频装 置, 所述第二射频装置根据所述第一基带数据实现基站内的多点协同 CoMP 处理。
14、 如权利要求 13所述的射频装置, 其特征在于, 所述射频装置还包 括第一接收单元,
所述第一接收单元, 用于从用户设备接收第一数据;
所述处理单元具体用于: 根据所述接收单元接收的所述第一数据输出所 述第一基带数据。
15、 如权利要求 13所述的射频装置, 其特征在于, 所述射频装置还包 括第二接收单元,
所述第二接收单元, 用于从所述数字处理装置接收第二用户面数据; 所述处理单元具体用于: 对所述第二接收单元接收的所述第二用户面数 据进行基带处理后输出所述第一基带数据。
16、 一种数字处理装置, 其特征在于, 包括:
接收单元, 用于接收第一射频装置输出并发送的第一基带数据, 所述第 一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、硬比特数据或 L2数据;
发送单元,用于将所述接收单元接收的所述第一基带数据发送给第二射 频射备, 以便所述第二射频装置根据所述第一基带数据实现基站内的多点协 同 CoMP处理。
17、 如权利要求 16所述的数字处理装置, 其特征在于,
所述接收单元, 还用于接收所述第二射频装置发送的第一用户面数据, 所述第一用户面数据是所述第二射频装置从用户设备接收第一数据,根据所 述第一数据输出第二基带数据,合并所述第二基带数据和所述第一基带数据 获得协同数据, 对所述协同数据进行基带处理输出的, 其中所述第一基带数 据和所述第二基带数据为相同的基带数据类型。
所述发送单元,还用于通过传输协议将所述第一用户面数据传输至核心 网。
18、 如权利要求 16任一项所述的数字处理装置, 其特征在于, 所述发送单元, 还用于将第二用户面数据发送给所述第一射频装置, 以 便所述第一射频装置对所述第二用户面数据进行基带处理后输出所述第一 基带数据。
19、 如权利要求 16-18任一项所述的数字处理装置, 其特征在于, 所述 数字处理装置还包括同步单元,
所述同步单元, 用于分别与所述第一射频装置和所述第二射频装置进行 时间同步。
20、 如权利要求 16-19任一项所述的数字处理装置, 其特征在于, 所述
数字处理装置还包括协同单元,
所述协同单元, 用于实现扇区间的协同调度或基站间的协同调度。
21、 一种多点协同处理方法, 其特征在于, 包括:
第一射频装置输出第一基带数据,将所述第一基带数据发送给数字处理 装置, 所述第一基带数据的类型包括时域同相正交 IQ数据、 频域 IQ数据、 硬比特数据或 L2数据;
所述数字处理装置接收所述第一射频装置发送的所述第一基带数据,将 所述第一基带数据发送给第二射频装置, 所述第一射频装置和第二射频装置 分别对应同一个基站内的两个扇区站点;
所述第二射频装置接收所述数字处理装置发送的所述第一基带数据,根 据所述第一基带数据实现基站内的多点协同 CoMP处理。
22、 如权利要求 21 所述的方法, 其特征在于, 所述第一射频装置输出 第一基带数据, 包括:
所述第一射频装置从用户设备接收第一数据,根据所述第一数据输出所 述第一基带数据;
所述第二射频装置根据所述第一基带数据实现基站内的多点协同 CoMP 处理, 包括:
所述第二射频装置从所述用户设备接收第一数据,根据所述第一数据输 出第二基带数据, 合并所述第二基带数据和所述第一基带数据获得协同数 据, 对所述协同数据进行基带处理输出第一用户面数据, 其中所述第一基带 数据和所述第二基带数据为相同的基带数据类型。
23、 如权利要求 22所述的方法, 其特征在于, 所述第二射频装置对所 述协同数据进行基带处理输出第一用户面数据, 包括:
所述第二射频装置对所述协同数据依次进行基带层 1低 Ll-Low处理、 层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或 者
所述第二射频装置对所述协同数据依次进行基带层 1高 Ll-High处理、 层 2处理以及层 3处理输出所述第一用户面数据; 或者
所述第二射频装置对所述协同数据依次进行基带层 2处理和层 3处理输 出所述第一用户面数据; 或者
所述第二射频装置对所述协同数据进行基带层 3处理输出所述第一用户
面数据。
24、 如权利要求 22或 23所述的方法, 其特征在于, 所述方法还包括: 所述第二射频装置将输出的所述第一用户面数据发送给所述数字处理 装置;
所述数字处理装置接收所述第二射频装置发送的所述第一用户面数据, 通过传输协议将所述第一用户面数据传输至核心网。
25、 如权利要求 21所述的方法, 其特征在于, 所述方法还包括: 所述数字处理装置将第二用户面数据发送给所述第一射频装置; 所述第一射频装置输出第一基带数据, 包括:
所述第一射频装置从所述数字处理装置接收所述第二用户面数据,对所 述第二用户面数据进行基带处理后输出所述第一基带数据;
所述第二射频装置根据所述第一基带数据实现基站内的多点协同 CoMP 处理, 包括:
所述第二射频装置对所述第一基带数据继续进行基带处理并进行射频 处理输出第二数据或者对所述第一基带数据进行射频处理输出第二数据,将 所述第二数据发送给用户设备。
26、 如权利要求 21-25任一项所述的方法, 其特征在于, 所述方法还包 括:
所述数字处理装置分别与所述第一射频装置和所述第二射频装置进行 时间同步。
27、 如权利要求 21-26任一项所述的方法, 其特征在于, 所述方法还包 括:
所述数字处理装置实现扇区间的协同调度或基站间的协同调度。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/076780 WO2015168839A1 (zh) | 2014-05-05 | 2014-05-05 | 基站系统、设备和多点协同处理方法 |
CN201480033578.5A CN105393592B (zh) | 2014-05-05 | 2014-05-05 | 基站系统、设备和多点协同处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/076780 WO2015168839A1 (zh) | 2014-05-05 | 2014-05-05 | 基站系统、设备和多点协同处理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015168839A1 true WO2015168839A1 (zh) | 2015-11-12 |
Family
ID=54391937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/076780 WO2015168839A1 (zh) | 2014-05-05 | 2014-05-05 | 基站系统、设备和多点协同处理方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105393592B (zh) |
WO (1) | WO2015168839A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895994A (zh) * | 2010-07-21 | 2010-11-24 | 华为技术有限公司 | 多点协作集更新方法及装置、基站 |
CN102026259A (zh) * | 2010-12-06 | 2011-04-20 | 西安交通大学 | 一种LTE-A系统中针对CoMP技术的系统级仿真方法 |
CN102487532A (zh) * | 2010-12-02 | 2012-06-06 | 中国移动通信集团公司 | 一种协作多点传输系统的信号发送方法及其装置 |
CN103229552A (zh) * | 2011-11-24 | 2013-07-31 | 华为技术有限公司 | 信号发送方法和基站设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8837396B2 (en) * | 2009-02-10 | 2014-09-16 | Telefonaktiebolaget L M Ericsson (Publ) | Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication sytem |
US8923844B2 (en) * | 2009-08-14 | 2014-12-30 | Futurewei Technologies, Inc. | Coordinated beam forming and multi-user MIMO |
-
2014
- 2014-05-05 WO PCT/CN2014/076780 patent/WO2015168839A1/zh active Application Filing
- 2014-05-05 CN CN201480033578.5A patent/CN105393592B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895994A (zh) * | 2010-07-21 | 2010-11-24 | 华为技术有限公司 | 多点协作集更新方法及装置、基站 |
CN102487532A (zh) * | 2010-12-02 | 2012-06-06 | 中国移动通信集团公司 | 一种协作多点传输系统的信号发送方法及其装置 |
CN102026259A (zh) * | 2010-12-06 | 2011-04-20 | 西安交通大学 | 一种LTE-A系统中针对CoMP技术的系统级仿真方法 |
CN103229552A (zh) * | 2011-11-24 | 2013-07-31 | 华为技术有限公司 | 信号发送方法和基站设备 |
Also Published As
Publication number | Publication date |
---|---|
CN105393592B (zh) | 2019-08-16 |
CN105393592A (zh) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230009565A1 (en) | Communication method and apparatus applied to multi-link device in wireless local area network | |
JP6363722B2 (ja) | マルチモードワイヤレス端末 | |
CN117545105A (zh) | 一种失败处理方法、切换方法及终端设备、网络设备 | |
JP2020528692A (ja) | 命令受信方法、装置及び通信システム | |
WO2019137145A1 (zh) | 一种终端设备 | |
US10230482B2 (en) | Radio transceiver | |
TWI746800B (zh) | 無線通信方法和設備 | |
US10601460B2 (en) | D2D signal frequency hopping method and base station | |
EP4124107A1 (en) | Communication method, access network device, terminal device and core network device | |
US20210144801A1 (en) | Wireless communication method, communication device, chip, and communication system | |
WO2020015715A1 (zh) | 一种数据发送的方法和装置 | |
US20120108277A1 (en) | Design and Method to Enable Single Radio Handover | |
EP3618522B1 (en) | Method for device-to-device communication, terminal device, and network device | |
US9924374B2 (en) | Method and apparatus for transmitting data | |
US11438105B2 (en) | Information transmission on a control channel | |
KR102375440B1 (ko) | 무선 통신 방법 및 단말기 디바이스 | |
EP3849149B1 (en) | Method and apparatus for distinguishing between data formats, and communication device | |
WO2015168839A1 (zh) | 基站系统、设备和多点协同处理方法 | |
WO2019153350A1 (zh) | 一种通信方法、通信设备及计算机程序存储介质 | |
TW201824928A (zh) | 傳輸信號的方法、終端設備和網絡設備 | |
WO2020124540A1 (zh) | 一种数据包重排序方法、电子设备及存储介质 | |
WO2019047163A1 (zh) | 配置分组数据汇聚协议pdcp的方法、终端设备和网络设备 | |
JP2024535616A (ja) | 情報処理方法、装置及び可読記憶媒体 | |
TW201519678A (zh) | 實現手機與其他電子裝置相互收發訊息之系統及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480033578.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14891253 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14891253 Country of ref document: EP Kind code of ref document: A1 |