WO2015167144A1 - 터치패널 - Google Patents

터치패널 Download PDF

Info

Publication number
WO2015167144A1
WO2015167144A1 PCT/KR2015/003689 KR2015003689W WO2015167144A1 WO 2015167144 A1 WO2015167144 A1 WO 2015167144A1 KR 2015003689 W KR2015003689 W KR 2015003689W WO 2015167144 A1 WO2015167144 A1 WO 2015167144A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
electrodes
drive
electrode
touch panel
Prior art date
Application number
PCT/KR2015/003689
Other languages
English (en)
French (fr)
Inventor
한상현
Original Assignee
주식회사 리딩유아이
한상현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리딩유아이, 한상현 filed Critical 주식회사 리딩유아이
Publication of WO2015167144A1 publication Critical patent/WO2015167144A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a touch panel, and more particularly, to a touch panel having a single layer structure.
  • a touch sensing device that recognizes a user's screen touch or gesture as input information is classified into a resistive type, a capacitive type, an ultrasonic type, and an infrared type according to an operation method.
  • the capacitive method has attracted much attention because of its easy multi-touch input.
  • the touch panel may have a two-layer structure, wherein the touch sensor may include a plurality of drive electrode traces (eg, intersecting a plurality of sensing electrode traces (eg, traces extending in the X-axis direction). And the drive and sensing electrode traces are separated by a dielectric material such as PET, glass, or the like.
  • a touch panel including drive and sensing electrode traces formed on the lower and upper layers of the two-layer structure, respectively, may be expensive to manufacture and may be thick. This is due to the process and structure of joining the electrode layers of the two-layer structure.
  • connection wires connected to the sensing electrodes to an external touch recognition chip increases.
  • the area where the connection wires are formed between the sensing electrodes arranged in the row direction and the driving electrode adjacent to the sensing electrodes increases, thereby increasing the dead zone.
  • the number of pads of the touch recognition chip increases.
  • the technical problem of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a touch panel having a single layer structure.
  • the touch panel includes a plurality of sensing blocks extending in a column direction and arranged in a row direction.
  • Each of the sensing blocks includes a right driving line and a sensing line.
  • the right-drive line includes a plurality of right-drive electrodes arranged in a column direction.
  • the sensing line includes a plurality of sensing electrodes arranged in a column direction and arranged in parallel with the right-drive electrodes.
  • Each of the right-drive electrodes is orthogonal to two or more sensing electrodes, and a region between the right-drive electrodes and the sensing electrodes has a zigzag shape.
  • each of the sensing electrodes orthogonal to the same right-drive electrode may be connected to different sensing pads.
  • each of the sensing electrodes orthogonal to the same right-drive electrode may be electrically separated.
  • each of the right-drive electrodes and the sensing electrodes may have a shark's teeth shape in a triangle, and the right-drive electrodes and the sensing electrodes may be disposed in a meshing form. Can be.
  • each of the sensing electrodes may have a triangular shape
  • each of the right-drive electrodes may have a crown shape to which triangular shapes are connected.
  • the two sensing electrodes may be disposed in the form of a tooth on one right-drive electrode.
  • the right driving electrode disposed on the same row line among the right driving electrodes disposed in the sensing blocks may receive the same driving voltage.
  • the right-drive electrodes and the sensing electrodes may be formed on the same layer.
  • each of the sensing blocks may have a band shape.
  • a touch panel includes a plurality of sensing blocks extending in a column direction and arranged in a row direction.
  • Each of the sensing blocks includes a right driving line, a left driving line, and a sensing line.
  • the right-drive line includes a plurality of right-drive electrodes arranged in a column direction.
  • the left driving line includes a plurality of left driving electrodes arranged in a column direction.
  • the sensing line includes a plurality of sensing electrodes arranged in a column direction and arranged in parallel with the right-drive electrodes.
  • Each of the right-drive electrodes is orthogonal to two or more sensing electrodes, and an area between the right-drive electrodes and the sensing electrodes has a zigzag shape, and between the left-drive electrodes and the sensing electrodes.
  • the region of has a zigzag shape.
  • each of the left-drive electrodes may be orthogonal to two or more sensing electrodes.
  • the right-drive electrode and the left-drive electrode may face each other.
  • a first sensing electrode, a second sensing electrode, and a third sensing electrode are disposed between the right-drive electrode and the left-drive electrode that face each other, and the first sensing electrode and the third sensing electrode are disposed.
  • Each of the second sensing electrodes may have a triangular shape, and the second sensing electrode may have a rhombus shape, and the sum of the size of the first sensing electrode and the size of the third sensing electrode may be the same as the size of the second sensing electrode.
  • each of the sensing electrodes orthogonal to the same right-drive electrode may be connected to different sensing pads, and each of the sensing electrodes orthogonal to the same left-drive electrode may be connected to different sensing pads.
  • each of the right-drive electrodes, each of the left-drive electrodes, and each of the sensing electrodes has a triangular shark tooth shape, and the right-drive electrodes and the sensing electrodes are engaged. It can be arranged as.
  • each of the sensing electrodes may have a triangular shape
  • each of the right-drive electrodes may have a crown shape in which triangular shapes are connected
  • each of the left-drive electrodes may have a crown shape in which triangular shapes are connected. have.
  • the right-drive electrodes, the left-drive electrodes and the sensing electrodes may be formed on the same layer.
  • each of the sensing blocks may have a band shape.
  • the touch panel since two sensing electrodes correspond to one driving electrode, the number of connection wirings required to connect the driving electrodes can be reduced. In addition, since the plurality of sensing electrodes correspond to one driving electrode, the time required to scan the entire touch panel can be reduced.
  • FIG. 1 is a plan view illustrating a touch panel according to an exemplary embodiment of the present invention.
  • FIG. 2 is a waveform diagram illustrating driving of the touch panel shown in FIG. 1.
  • FIG. 3 is a table for explaining mapping of sensing signals detected in the touch panel illustrated in FIG. 1 to a memory.
  • FIG. 4 is a plan view illustrating a touch panel according to another exemplary embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a touch panel according to another exemplary embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a touch panel according to another embodiment of the present invention.
  • FIG. 7 is a table for explaining mapping of sensing signals detected in the touch panel illustrated in FIG. 6 to a memory.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the term “left” or “right” means to look at an observer's view of the drawings.
  • the term column direction means a downward direction
  • the row direction means a right direction.
  • FIG. 1 is a plan view illustrating a touch panel according to an exemplary embodiment of the present invention.
  • the touch panel 100 may include a first sensing block SB1, a second sensing block SB2, a third sensing block SB3, and a fourth sensing block SB4. ).
  • a touch panel in which four sensing blocks are arranged is shown.
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 extends in a column direction (or Y-axis direction). It is arranged in a row direction (or X axis direction).
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 has a band shape.
  • the first sensing block SB1 includes a right-drive line 110, a sensing line 120, a plurality of right-drive connection wires 130, and a plurality of sensing connection wires 140.
  • the right-drive line 110, the sensing line 120, the right-drive connection wires 130 and the sensing connection wires 140 are formed on the same layer.
  • the area between the right-drive line 110 and the sensing line 120 has a zigzag shape.
  • the right-drive line 110 includes a plurality of right-drive electrodes 112 arranged in a column direction and is disposed in a right region of the first sensing block SB1.
  • the number of the right-side driving electrodes 112 is five.
  • the sizes of each of the right-side driving electrodes 112 are the same.
  • Each of the right-side driving electrodes 112 has a W shape corresponding to a region adjacent to the sensing line 120.
  • the sensing line 120 includes a plurality of sensing electrodes arranged in a column direction, and is disposed in a left region of the first sensing block SB1 adjacent to the right-drive line 110.
  • the number of sensing electrodes is ten.
  • odd-numbered sensing electrodes are connected to each other in a cascade manner, and even-numbered sensing electrodes are connected to each other in a cascade manner.
  • the sensing line 120 is adjacent to each other, a plurality of first sensing electrodes 122 for sensing the first sensing signals, a plurality of second sensing electrodes 124 for sensing the second sensing signals.
  • the first connection wires 126 connecting the first sensing electrodes 122 and the second connection wires 128 connecting the second sensing electrodes 124 adjacent to each other are included.
  • each of the first sensing electrodes 122 and the second sensing electrodes 124 has a triangular shape.
  • the first connection line 126 has a shape surrounding two hypotenuses of the second sensing electrode 124, and the second connection line 128 surrounds the bottom side of the first sensing electrode 122. It has a shape.
  • each of the right-side driving electrodes 112 has a triangular tooth shape
  • each of the first and second sensing electrodes 122 and 124 has a triangular tooth shape. Accordingly, the right-drive electrodes 112 and the first and second sensing electrodes 122 and 124 facing each other are disposed in a form of a tooth. That is, each of the right-side driving electrodes 112 and the first and second sensing electrodes 122 and 124 has a triangular shark's teeth shape, and the right-side driving electrodes 112 are formed.
  • the first and second sensing electrodes 122 and 124 may be disposed in a meshing form.
  • each of the first and second sensing electrodes 122 and 124 has a triangular shape
  • each of the right-drive electrodes 112 has a crown shape in which triangular shapes are connected.
  • the right-drive electrode disposed on the same row line among the right-drive electrodes 112 disposed on the sensing blocks receives the same right-drive voltage.
  • two sensing electrodes are disposed adjacent to one driving electrode, but three or more sensing electrodes may be adjacent to one driving electrode.
  • the right-drive connection wires 130 are connected to each of the right-drive electrodes 112.
  • the line width of each of the right-drive connection wires 130 may be the same.
  • the line width of each of the right-drive connection lines 130 may gradually increase downward from the viewpoint of the observer.
  • the line width of each of the right-drive connection lines 130 may increase in a step shape toward the bottom from the observer's point of view.
  • the sensing connection wires 140 include a first sensing connection wire connecting the first sensing electrode and one sensing pad, and a second sensing connection wiring connecting the second sensing electrode and the other sensing pad.
  • the first sensing electrode of the first sensing block SB1 is connected to the second sensing pad RX1 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode is the touch.
  • the first sensing pad RX1 is connected to the first sensing pad RX1 through an external wiring formed in the peripheral area of the panel 200.
  • the first sensing electrode of the second sensing block SB2 is connected to the fourth sensing pad RX4 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode is peripheral to the touch panel 200.
  • the third sensing pad RX3 is connected to the third sensing pad RX3 through an external wiring formed in the region.
  • the first sensing electrode of the third sensing block SB3 is connected to the sixth sensing pad RX6 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode of the touch panel 200 is connected to the sixth sensing pad RX6.
  • the fifth sensing pad RX5 is connected to the fifth sensing pad RX5 through an external wiring formed in the peripheral area.
  • the first sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode of the touch panel 200 is connected to the eighth sensing pad RX8.
  • the seventh sensing pad RX7 is connected to the seventh sensing pad RX7 through an external wiring formed in the peripheral area.
  • each of the sensing blocks extending in the column direction and arranged in the row direction includes a right driving line and a sensing line disposed in parallel with the right driving line.
  • One right-driven electrode orthogonal to the sensing line covers two or more sensing electrodes, and each of the two or more sensing electrodes is electrically separated.
  • the plurality of sensing electrodes correspond to one right-drive electrode, the time required to scan the entire touch panel can be reduced.
  • FIG. 2 is a waveform diagram illustrating driving of the touch panel shown in FIG. 1.
  • FIG. 3 is a table for explaining mapping of sensing signals detected in the touch panel illustrated in FIG. 1 to a memory.
  • driving signals from an external capacitance sensing circuit are provided in each of the driving lines through the first to fifth driving pads TX1, TX2,..., TX5. Sequentially applied to the driving electrodes.
  • the driving signals applied to the driving electrodes are induced and detected in the first sensing electrodes and the second sensing electrodes provided in each of the sensing lines, and the detected signals are defined as the sensing signals and are the first to eighth sensing pads.
  • the capacitive sensing circuit via RX1, RX2, ..., RX7, RX8.
  • the capacitive sensing circuit calculates touch coordinates based on the sensing signals.
  • the sensing signals may be mapped to a memory (not shown) as shown in FIG. 3 and used for touch coordinate recognition.
  • the voltage level of the sensing signal detected by the sensing electrode corresponding to the location may be relatively low. Therefore, the position corresponding to the sensing electrode corresponding to the relatively low voltage level can be recognized as the touch coordinate.
  • FIG. 4 is a plan view illustrating a touch panel according to another exemplary embodiment of the present invention.
  • the touch panel 200 may include a first sensing block SB1, a second sensing block SB2, a third sensing block SB3, and a fourth sensing block SB4. ).
  • a touch panel in which four sensing blocks are arranged is shown.
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 extends in a column direction (or Y-axis direction), and has a low direction ( Or X-axis direction).
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 has a band shape.
  • the first sensing block SB1 includes a right-drive line 210, a left-drive line 220, a sensing line 230, a plurality of right-drive connection wires 240, and a plurality of left-drive connection wires. Fields 250 and a plurality of sensing connection wires 260.
  • the wirings 260 are formed in the same layer.
  • the area between the right-drive line 210 and the sensing line 230 has a zigzag shape.
  • the area between the left-drive line 220 and the sensing line 230 has a zigzag shape.
  • the right-drive line 210 includes a plurality of right-drive electrodes 212 arranged in a column direction and is disposed in a right region of the first sensing block SB1.
  • the number of the right-side driving electrodes 212 is five.
  • each of the right-side driving electrodes 212 has the same size.
  • Each of the right-drive electrodes 212 has a W shape corresponding to a region adjacent to the sensing line 230. That is, when observed by rotating 90 degrees clockwise in FIG. 4, each of the right-side driving electrodes 212 has a crown shape.
  • the left-drive line 220 includes a plurality of left-drive electrodes 222 arranged in a column direction and is disposed in a left region of the first sensing block SB1.
  • the number of the left-drive electrodes 222 is five.
  • the sizes of each of the left-drive electrodes 222 are the same.
  • Each of the left-drive electrodes 222 has a W shape corresponding to a region adjacent to the sensing line 230. That is, when viewed by rotating FIG. 4 counterclockwise by 90 degrees, each of the left-drive electrodes 222 has a crown shape.
  • the sensing line 230 includes a plurality of sensing electrodes arranged in a column direction, and is disposed between the right-drive line 210 and the left-drive line 220.
  • the sensing line 230 includes a plurality of first sensing electrodes 232 for sensing first sensing signals, a plurality of second sensing electrodes 234 for sensing second sensing signals, and the second sensing signals.
  • one first sensing electrode 232, one second sensing electrode 234, and one third sensing electrode 236 correspond to one right-drive electrode.
  • the sensing line 230 may include first connection wires 237 for connecting the first sensing electrodes 232 in a cascade manner, and a second connection for connecting the second sensing electrodes 234 in a cascade manner.
  • the apparatus may further include third connection wires 239 connecting the connection wires 238 and the third sensing electrodes 236 in a cascade manner.
  • each of the first sensing electrodes 232 and the third sensing electrodes 236 has a triangular shape, and each of the second sensing electrodes 234 has a rhombus shape.
  • the first connection line 237 has a shape surrounding two sides of the second sensing electrode 234, and the second connection line 228 is a bottom side or the first side of the first sensing electrode 232.
  • 2 sensing electrode 234 has a shape surrounding the bottom side. Accordingly, the first sensing electrodes 232 and the third sensing electrodes 236 are symmetrical with respect to the third connection wires 239.
  • the right-drive electrodes of the right-drive line and the left-drive lines of the left-drive line are symmetrical with respect to the third connection wires 239.
  • each of the right-side driving electrodes 212 has a triangular tooth shape
  • the first sensing electrode 232 has a triangular tooth shape
  • the second sensing electrode 234 has a rhombus shape.
  • the right-drive electrodes 212 and the first and second sensing electrodes 232 and 234 facing each other are disposed in a form of engagement. That is, each of the right-side driving electrodes 212 and the first and second sensing electrodes 232 and 234 has a triangular shark's teeth shape, and the right-side driving electrodes 212 are formed.
  • the first and second sensing electrodes 232 and 234 may be disposed in a meshing form.
  • each of the left-drive electrodes 222 has a triangular tooth shape
  • the second sensing electrode 234 has a rhombus shape
  • the third sensing electrode 236 has a triangular tooth shape.
  • the left-drive electrodes 222 and the second and third sensing electrodes 234 and 236 which face each other are disposed in the form of teeth. That is, each of the left-drive electrodes 222 and each of the second and third sensing electrodes 234 and 236 has a triangular shark's teeth shape and the left-drive electrodes 222.
  • the second and third sensing electrodes 234 and 236 may be disposed in a meshing form.
  • the driving electrodes disposed on the same row line among the driving electrodes 212 disposed in the first to fourth sensing blocks SB1, SB2, SB3, and SB4 receive the same driving voltage.
  • the right-drive connection wires 240 are connected to each of the right-drive electrodes 212.
  • the line width of each of the right-drive connection lines 240 may be the same.
  • the line width of each of the right-drive connection lines 240 may gradually increase downward from the viewpoint of the observer.
  • the line width of each of the right-drive connection lines 240 may increase in a step shape toward the bottom from the observer's point of view.
  • the left-drive connection wires 250 are connected to each of the left-drive electrodes 222.
  • the line width of each of the left-drive connecting wires 250 may be equal to each other.
  • the line width of each of the left-drive connecting wires 250 may gradually increase downward from the viewpoint of the observer.
  • the line width of each of the left-drive connecting lines 250 may increase in a step shape toward the bottom from the observer's point of view.
  • the sensing connection wires 260 include a first sensing connection wire connecting the first sensing electrode and one sensing pad, and a second sensing connection wiring connecting the second sensing electrode and the other sensing pad.
  • the first sensing electrode of the first sensing block SB1 is connected to the second sensing pad RX1 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode is the touch.
  • the first sensing pad RX1 is connected to the first sensing pad RX1 through an external wiring formed in the peripheral area of the panel 200.
  • the first sensing electrode of the second sensing block SB2 is connected to the fourth sensing pad RX4 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode is peripheral to the touch panel 200.
  • the third sensing pad RX3 is connected to the third sensing pad RX3 through an external wiring formed in the region.
  • the first sensing electrode of the third sensing block SB3 is connected to the sixth sensing pad RX6 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode of the touch panel 200 is connected to the sixth sensing pad RX6.
  • the fifth sensing pad RX5 is connected to the fifth sensing pad RX5 through an external wiring formed in the peripheral area.
  • the first sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8 through an external wiring formed in the peripheral area of the touch panel 200, and the second sensing electrode of the touch panel 200 is connected to the eighth sensing pad RX8.
  • the seventh sensing pad RX7 is connected to the seventh sensing pad RX7 through an external wiring formed in the peripheral area.
  • each of the sensing blocks extending in the column direction and arranged in the row direction includes a right-drive line, a left-drive line and between the right-drive line and the left-drive line.
  • the sensing line may be configured to include a sensing line, wherein one driving electrode orthogonal to the sensing line covers two sensing electrodes, and the two sensing electrodes are electrically separated from each other.
  • the plurality of sensing electrodes correspond to one driving electrode, the time required to scan the entire touch panel can be reduced.
  • the boundary condition of the touch panel may be maintained uniformly compared to the touch panel in which the driving line is disposed only on one side of the sensing line. Therefore, the sensing efficiency of the touch panel may also be improved.
  • two or more left-sensing electrodes electrically separated between the left-drive electrode of the left-drive line and the right-drive electrode of the right-drive line are disposed so that one sensing electrode corresponds to one drive electrode.
  • the connection boat can be reduced. Accordingly, as the number of wirings increases, the dead zone operating as the touch non-sensitized area can be reduced, thereby increasing the effective touch area. In addition, as the dead zone is reduced, linearity and accuracy in touch can be increased. In addition, since the number of connection wirings is reduced, the number of pads of the touch recognition chip can be reduced.
  • FIG. 5 is a plan view illustrating a touch panel according to another exemplary embodiment of the present invention.
  • the touch panel 300 may include a first sensing block SB1, a second sensing block SB2, a third sensing block SB3, and a fourth sensing block. SB4).
  • a touch panel in which four sensing blocks are arranged is shown.
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 extends in a column direction (or Y-axis direction), and has a low direction ( Or X-axis direction).
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 has a band shape.
  • the first sensing block SB1 includes a right-drive line 310, a left-drive line 320, a sensing line 330, a plurality of right-drive connection wires 340, and a plurality of left-drive connection wires. Fields 350 and a plurality of sensing connection wires 360.
  • the wirings 360 are formed on the same layer.
  • the area between the right-drive line 310 and the sensing line 330 has a zigzag shape.
  • the area between the left-drive line 320 and the sensing line 330 has a zigzag shape.
  • the right-drive line 310 includes a plurality of right-drive electrodes 312 arranged in a column direction and is disposed in a right region of the first sensing block SB1.
  • the number of the right-side driving electrodes 312 is five.
  • the sizes of each of the right-side driving electrodes 312 are the same.
  • Each of the right driving electrodes 312 has a W shape corresponding to an area adjacent to the sensing line 330.
  • the left-drive line 320 includes a plurality of left-drive electrodes 322 arranged in a column direction and is disposed in a left region of the first sensing block SB1.
  • the number of the left-drive electrodes 322 is five.
  • each of the left driving electrodes 322 has the same size.
  • Each of the left-drive electrodes 322 has a W shape corresponding to a region adjacent to the sensing line 330.
  • the sensing line 330 includes a plurality of sensing electrodes arranged in a column direction and is disposed between the right-drive line 310 and the left-drive line 320.
  • the sensing line 330 includes a plurality of first sensing electrodes 332 for sensing first sensing signals, a plurality of second sensing electrodes 334 for sensing second sensing signals, and the second sensing electrodes 334. And a plurality of third sensing electrodes 336 that sense one sensing signal.
  • one first sensing electrode 332, one second sensing electrode 334, and one third sensing electrode 336 correspond to one right-drive electrode.
  • the sensing line 330 may include first connection wires 337 connecting the first sensing electrodes 332 in a cascade manner, and a second connection cascade between the second sensing electrodes 334.
  • the display device further includes third connection wires 339 connecting the connection wires 338 and the third sensing electrodes 336 in a cascade manner.
  • each of the first sensing electrodes 332 has a rhombus shape
  • each of the second sensing electrodes 334 and each of the third sensing electrodes 336 has a triangular shape.
  • the first connection wiring 337 has an I-shape to connect the first sensing electrodes 332 in a cascade manner
  • the second connection wiring 338 has two shapes of the first sensing electrodes 332.
  • the third connection wiring 339 has a V shape surrounding the sides, and the third connection wiring 339 has a V shape surrounding two sides of the first sensing electrode 332. Accordingly, the second sensing electrodes 334 and the third sensing electrodes 336 are symmetrical with respect to the first connection wires 337.
  • the right-drive electrodes 312 of the right-drive line 310 and the left-drive electrodes 312 of the left-drive line 320 are based on the first connection wires 337. It is symmetrical.
  • each of the right-side driving electrodes 312 has a triangular tooth shape
  • each of the first and second sensing electrodes 332 and 334 has a triangular tooth shape. Accordingly, the right-side driving electrodes 312 and the first and second sensing electrodes 332 and 334 are disposed in the form of engagement.
  • each of the left-drive electrodes 322 has a triangular tooth shape
  • each of the second and third sensing electrodes 334 and 336 has a triangular tooth shape. Accordingly, the left-drive electrodes 322 and the second and third sensing electrodes 334 and 336 are disposed in the form of engagement.
  • the driving electrodes disposed on the same row line among the driving electrodes 312 disposed in the first to fourth sensing blocks SB1, SB2, SB3, and SB4 receive the same driving voltage.
  • the right-drive connection wires 340 are connected to each of the right-drive electrodes 312.
  • the line width of each of the right-drive connection lines 340 may be the same.
  • the line width of each of the right-drive connection lines 340 may gradually increase downward from an observer's point of view.
  • the line width of each of the right-drive connection lines 340 may increase in a step shape toward the bottom from the observer's point of view.
  • the left-drive connection wires 350 are connected to each of the left-drive electrodes 322.
  • the line width of each of the left-drive connecting wires 350 may be the same.
  • the line width of each of the left-drive connecting wires 350 may gradually increase downward from the viewpoint of the observer.
  • the line width of each of the left-drive connecting wires 350 may increase in a step shape toward the bottom from the observer's point of view.
  • the sensing connection wires 360 may include a first sensing connection wire connecting the first sensing electrode and one sensing pad, and a second sensing connection wiring connecting the second sensing electrode and the other sensing pad.
  • the first sensing electrode of the first sensing block SB1 is connected to the second sensing pad RX1 through an external wiring formed in the peripheral area of the touch panel 300, and the second sensing electrode is the touch.
  • the first sensing pad RX1 is connected to the first sensing pad RX1 through an external wiring formed in the peripheral area of the panel 300.
  • the first sensing electrode of the second sensing block SB2 is connected to the fourth sensing pad RX4 through an external wiring formed in the peripheral area of the touch panel 300, and the second sensing electrode is surrounded by the touch panel 300.
  • the third sensing pad RX3 is connected to the third sensing pad RX3 through an external wiring formed in the region.
  • the first sensing electrode of the third sensing block SB3 is connected to the sixth sensing pad RX6 through an external wiring formed in the peripheral area of the touch panel 300, and the second sensing electrode of the touch panel 300 is provided.
  • the fifth sensing pad RX5 is connected to the fifth sensing pad RX5 through an external wiring formed in the peripheral area.
  • the first sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8 through an external wiring formed in the peripheral area of the touch panel 300, and the second sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8.
  • the seventh sensing pad RX7 is connected to the seventh sensing pad RX7 through an external wiring formed in the peripheral area.
  • each of the sensing blocks extending in the column direction and arranged in the row direction includes a right-drive line, a left-drive line and between the right-drive line and the left-drive line.
  • the sensing line may be configured to include a sensing line, wherein one driving electrode orthogonal to the sensing line covers two sensing electrodes, and the two sensing electrodes are electrically separated from each other.
  • the plurality of sensing electrodes correspond to one driving electrode, the time required to scan the entire touch panel can be reduced.
  • the boundary condition of the touch panel may be maintained uniformly compared to the touch panel in which the driving line is disposed only on one side of the sensing line. Therefore, the sensing efficiency of the touch panel may also be improved.
  • two or more left-sensing electrodes electrically separated between the left-drive electrode of the left-drive line and the right-drive electrode of the right-drive line are disposed so that one sensing electrode corresponds to one drive electrode.
  • the connection boat can be reduced. Accordingly, as the number of wirings increases, the dead zone operating as the touch non-sensitized area can be reduced, thereby increasing the effective touch area. In addition, as the dead zone is reduced, linearity and accuracy in touch can be increased. In addition, since the number of connection wirings is reduced, the number of pads of the touch recognition chip can be reduced.
  • FIG. 6 is a plan view illustrating a touch panel according to another embodiment of the present invention.
  • FIG. 7 is a table for explaining mapping of sensing signals detected in the touch panel illustrated in FIG. 6 to a memory.
  • the touch panel 400 may include a first sensing block SB1, a second sensing block SB2, a third sensing block SB3, and a fourth sensing block SB3.
  • the sensing block SB4 is included.
  • a touch panel in which four sensing blocks are arranged is shown.
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 extends in a column direction (or Y-axis direction). It is arranged in a row direction (or X axis direction).
  • Each of the first sensing block SB1, the second sensing block SB2, the third sensing block SB3, and the fourth sensing block SB4 has a band shape.
  • the first sensing block SB1 includes a right-drive line 410, a sensing line 420, a plurality of right-drive connection wires 430, and a plurality of sensing connection wires 440.
  • the right-drive line 410, the sensing line 420, the right-drive connection wires 430, and the sensing connection wires 440 are formed on the same layer.
  • the area between the right-drive line 410 and the sensing line 420 has a zigzag shape.
  • the right driving line 410 includes a plurality of right driving electrodes 412 arranged in a column direction and is disposed in a right region of the first sensing block SB1.
  • the number of the right-side driving electrodes 412 is five.
  • each of the right-side driving electrodes 412 has the same size.
  • Each of the right-side driving electrodes 412 has a W shape corresponding to an area adjacent to the sensing line 420.
  • the sensing line 420 includes a plurality of sensing electrodes arranged in a column direction and is disposed in a left region of the first sensing block SB1 adjacent to the right-drive line 410.
  • the number of sensing electrodes is ten.
  • the sensing line 420 is adjacent to each other, a plurality of first sensing electrodes 422 for sensing first sensing signals, and a plurality of second sensing electrodes 424 for sensing second sensing signals.
  • the first connection wires 426 connecting the first sensing electrodes 422 and the second connection wires 428 connecting the second sensing electrodes 424 adjacent to each other are included.
  • each of the first sensing electrodes 422 and the second sensing electrodes 424 has a triangular shape.
  • the first connection line 426 has a shape surrounding two hypotenuses of the second sensing electrode 424, and the second connection line 428 surrounds the bottom side of the first sensing electrode 422. It has a shape.
  • the first sensing electrode 422 is disposed adjacent to the upper region of the odd-numbered right-drive electrode 412, and the second sensing electrode is adjacent to the lower region of the odd-numbered right-drive electrode 412.
  • 424 is disposed.
  • the second sensing electrode 424 is disposed adjacent to the upper region of the even-numbered right-drive electrode 412, and the first sensing electrode 422 is disposed adjacent to the lower region of the even-numbered right-drive electrode 412. do. Accordingly, two sensing electrodes connected to the same sensing pads are disposed corresponding to the right-drive electrodes 412 adjacent to each other.
  • each of the right-side driving electrodes 412 is formed in a triangular shape.
  • each of the first and second sensing electrodes 422 and 424 is formed in a triangular shape. do. Accordingly, the right-side driving electrodes 412 and the first and second sensing electrodes 422 and 424 are disposed in a triangular engagement form.
  • the right-drive electrodes disposed on the same row line among the right-drive electrodes 412 disposed on the first to fourth sensing blocks SB1, SB2, SB3, and SB4 are the same right-drive. Receive the voltage.
  • two sensing electrodes are disposed adjacent to one driving electrode, but three or more sensing electrodes may be adjacent to one driving electrode.
  • the right-drive connection wires 430 are connected to each of the right-drive electrodes 412.
  • the line width of each of the right-drive connection lines 430 may be the same.
  • the line width of each of the right-drive connection lines 430 may gradually increase downward from an observer's point of view.
  • the line width of each of the right-drive connection lines 430 may increase in a step shape toward the bottom from the observer's point of view.
  • the sensing connection wires 440 include a first sensing connection wire connecting the first sensing electrode and one sensing pad, and a second sensing connection wiring connecting the second sensing electrode and the other sensing pad.
  • the first sensing electrode of the first sensing block SB1 is connected to the second sensing pad RX1 through an external wiring formed in the peripheral area of the touch panel 400, and the second sensing electrode is the touch.
  • the first sensing pad RX1 is connected to the first sensing pad RX1 through an external wiring formed in the peripheral area of the panel 400.
  • the first sensing electrode of the second sensing block SB2 is connected to the fourth sensing pad RX4 through an external wire formed in the peripheral area of the touch panel 400, and the second sensing electrode is surrounded by the touch panel 400.
  • the third sensing pad RX3 is connected to the third sensing pad RX3 through an external wiring formed in the region.
  • the first sensing electrode of the third sensing block SB3 is connected to the sixth sensing pad RX6 through an external wiring formed in the peripheral area of the touch panel 400, and the second sensing electrode of the touch panel 400 is connected to the sixth sensing pad RX6.
  • the fifth sensing pad RX5 is connected to the fifth sensing pad RX5 through an external wiring formed in the peripheral area.
  • the first sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8 through an external wiring formed in the peripheral area of the touch panel 400, and the second sensing electrode of the fourth sensing block SB4 is connected to the eighth sensing pad RX8.
  • the seventh sensing pad RX7 is connected to the seventh sensing pad RX7 through an external wiring formed in the peripheral area.
  • FIG. 7 is a table for explaining mapping of sensing signals detected in the touch panel illustrated in FIG. 6 to a memory.
  • the voltage detected by the first sensing electrode 422 is stored in the memory through the second sensing pad RX2. Stored.
  • the second sensing electrode 424 is included in the first sensing block SB1, the voltage detected by the second sensing electrode 424 is stored in the memory through the first sensing pad RX1.
  • the voltage detected by the first sensing electrode 422 is stored in the memory through the fourth sensing pad RX4.
  • the voltage detected by the second sensing electrode 424 is stored in the memory through the third sensing pad RX3.
  • the voltage detected by the first sensing electrode 422 is stored in the memory through the sixth sensing pad RX6.
  • the voltage detected by the second sensing electrode 424 is stored in the memory through the fifth sensing pad RX5.
  • the voltage detected by the first sensing electrode 422 is stored in the memory through the eighth sensing pad RX8.
  • the second sensing electrode 424 is included in the fourth sensing block SB41, the voltage detected by the second sensing electrode 424 is stored in the memory through the seventh sensing pad RX7.
  • the first right driving is applied to the second driving signal.
  • Each of the first sensing electrode 422 and the second sensing electrode 424 adjacent to the electrode detects the induced voltage and stores it in the memory through the sensing pads.
  • a series of operations in which a voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is stored in the memory corresponding to the second right-drive electrode is performed in response to the first right-drive electrode. Since the voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is similar to a series of operations stored in a memory, a detailed description thereof will be omitted.
  • the first right driving is applied to the second driving signal.
  • Each of the first sensing electrode 422 and the second sensing electrode 424 adjacent to the electrode detects the induced voltage and stores it in the memory through the sensing pads.
  • a series of operations in which a voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is stored in the memory corresponding to the third right-drive electrode is performed in response to the first right-drive electrode. Since the voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is similar to a series of operations stored in a memory, a detailed description thereof will be omitted.
  • the first right driving is applied to the second driving signal.
  • Each of the first sensing electrode 422 and the second sensing electrode 424 adjacent to the electrode detects the induced voltage and stores it in the memory through the sensing pads.
  • a series of operations in which a voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is stored in the memory corresponding to the fourth right-drive electrode is performed in response to the first right-drive electrode. Since the voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is similar to a series of operations stored in a memory, a detailed description thereof will be omitted.
  • the first right-side to which the second driving signal is applied is applied.
  • Each of the first sensing electrode 422 and the second sensing electrode 424 adjacent to the driving electrode detects the induced voltage and stores it in the memory through the sensing pads.
  • a series of operations in which a voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is stored in a memory corresponding to the fifth right-drive electrode is performed in response to the first right-drive electrode. Since a voltage induced in each of the first sensing electrode 422 and the second sensing electrode 424 is similar to a series of operations stored in a memory, a detailed description thereof will be omitted.
  • the detected voltage is stored in the memory according to the above-described method, it is possible to check which position the voltage is low based on the stored voltages, and recognize the corresponding position as the touch coordinate.
  • each of the sensing blocks extending in the column direction and arranged in the row direction includes a right driving line and a sensing line disposed in parallel with the right driving line.
  • One right-drive electrode that is orthogonal to the sensing line covers two sensing electrodes, and each of the two sensing electrodes is electrically separated.
  • the plurality of sensing electrodes correspond to one right-drive electrode, the time required to scan the entire touch panel can be reduced.
  • the present invention since two sensing electrodes correspond to one driving electrode in the structure in which the driving line is disposed on one side of the sensing line, the number of connection wirings required to connect the driving electrodes can be reduced. In addition, since the plurality of sensing electrodes correspond to one driving electrode, the time required to scan the entire touch panel can be reduced.
  • two or more left-sensing electrodes electrically separated between the left-drive electrode of the left-drive line and the right-drive electrode of the right-drive line in the structure in which the drive lines are arranged on both sides of the sensing line are provided. Since it is disposed, the connection times can be reduced compared to the touch panel in which one sensing electrode is disposed corresponding to one driving electrode. Accordingly, as the number of wirings increases, the dead zone operating as the touch non-sensitized area can be reduced, thereby increasing the effective touch area. In addition, since the number of connection wirings is reduced, the number of pads of the touch recognition chip can be reduced.
  • touch panel SB1 first sensing block
  • SB2 second sensing block SB3: third sensing block
  • SB4 fourth sensing block 120, 230, 330, 420: sensing line
  • first sensing electrodes 124 second sensing electrodes
  • first connection wirings 128 second connection wirings
  • TX1, TX2, ..., TX5 Drive Pads

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

싱글 레이어 구조의 터치패널이 개시된다. 터치패널은 컬럼 방향으로 연장되고 로우 방향으로 배열된 복수의 센싱블럭들을 포함한다. 센싱블럭들 각각은 우-구동라인 및 센싱라인을 포함한다. 우-구동라인은 컬럼 방향으로 배열된 복수의 우-구동전극들을 포함한다. 센싱라인은 컬럼 방향으로 배열되고 우-구동전극들과 평행하게 배치된 복수의 센싱전극들을 포함한다. 여기서, 우-구동전극들 각각은 2개 이상의 센싱전극들에 정사영(orthogonal projection)된다. 이에 따라, 구동전극 하나에 2개의 센싱전극들이 대응되므로 구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있다. 또한, 복수의 센싱전극들이 하나의 구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.

Description

터치패널
본 발명은 터치패널에 관한 것으로, 보다 상세하게는 싱글 레이어 구조의 터치패널에 관한 것이다.
일상생활에서 접하게 되는 전자기기의 종류가 점차 다양해지고, 각 전자기기의 기능이 고도화, 복잡화함에 따라, 사용자가 쉽게 익힐 수 있고 직관적인 조작이 가능한 사용자 인터페이스의 필요성이 제기되고 있다. 이러한 필요를 충족시킬 수 있는 입력 장치로서 터치센싱장치가 주목받고 있으며, 이미 여러 전자기기에 널리 적용되고 있다.
사용자의 화면 터치나 제스쳐(gesture)를 입력정보로 인식하는 터치센싱장치는 터치센싱장치의 터치패널은 동작 방식에 따라 저항막 방식, 정전 용량 방식, 초음파 방식, 적외선 방식 등으로 분류되는데, 이중 정전 용량 방식은 멀티 터치 입력이 용이하여 많은 주목을 받고 있다.
이와 같은 정전 용량 방식의 터치패널에서는 정전 용량의 변화를 보다 정확히 감지하기 위한 터치패널의 구조가 중요하다. 터치패널은 2층 구조로 이루어 질 수 있으며, 이때 터치 센서는 다수의 센싱전극 트레이스들(예를 들면, X축 방향으로 연장된 트레이스들) 위에 교차하는 다수의 드라이브 전극 트레이스들 (예를 들면, Y축 방향으로 연장된 트레이스들)에 의해 형성된 픽셀들의 어레이로서 구현될 수 있고, 드라이브 및 센싱전극 트레이스들은 PET, 글라스(Glass) 등의 유전체 재료에 의해 분리된다.
그러나, 2층 구조의 하부 및 상부 층들에 각각 형성된 드라이브 및 센싱전극 트레이스들을 포함하는 터치패널은 제조하는 데 비용이 많이 들 수 있고 두께가 두꺼워 질 수 있다는 단점이 있다. 이는 2층 구조의 전극 층들을 접합하는 공정 및 구조에 기인한다.
따라서, 터치패널의 기판의 단일 층의 단일 측면 상에 제조된 동일 평면상의 단일 층 터치 센서들을 갖는 터치패널이 제안되고 있다.
한편, 단일 층 터치 센서에서 배선들이 많으면 터치 무감 영역으로 동작하는 데드존(dead zone)이 증가하여 터치시 선형성 및 정확성을 찾기 어렵다. 단일 층 터치패널의 경우, 컬럼 방향으로 배열된 구동전극들과 상기 구동전극들에 인접하게 센싱전극들이 배열된다.
센싱전극들의 수가 증가하면 센싱전극들에 연결되어 외부의 터치인식칩에 연결하는 연결배선의 수 역시 증가한다. 이러한 연결배선의 수가 증가하면 로우 방향으로 배열된 센싱전극들과 상기 센싱전극에 인접하는 구동전극 사이에 연결배선들이 형성되는 영역이 증가하여 데드존이 증가하는 문제점이 있다. 또한, 연결배선의 수가 증가하면 터치인식칩의 패드 수 역시 증가하는 문제점이 있다.
* 선행기술문헌
* 특허문헌
한국등록특허 제10-0885730호 (등록일자: 2009년 2월 19일)
한국공개특허 제2010-0083012호 (공개일: 2010년 7월 21일)
한국등록특허 제10-1169250호 (등록일자: 2012년 7월 23일)
한국공개특허 제2012-0094982호 (공개일: 2012년 8월 28일)
한국공개특허 제2013-0035833호 (공개일: 2013년 4월 9일)
한국등록특허 제10-1293165호 (등록일자: 2013년 8월 6일)
이에 본 발명의 기술적 과제는 이러한 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 싱글 레이어 구조의 터치패널을 제공하는 것이다.
상기한 본 발명의 목적을 실현하기 위하여 일실시예에 따른 터치패널은 컬럼 방향으로 연장되고 로우 방향으로 배열된 복수의 센싱블럭들을 포함한다. 상기 센싱블럭들 각각은, 우-구동라인 및 센싱라인을 포함한다. 상기 우-구동라인은 컬럼 방향으로 배열된 복수의 우-구동전극들을 포함한다. 상기 센싱라인은 컬럼 방향으로 배열되고 상기 우-구동전극들과 평행하게 배치된 복수의 센싱전극들을 포함한다. 상기 우-구동전극들 각각은 2개 이상의 센싱전극들에 정사영(orthogonal projection)되고, 상기 우-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖는다.
일실시예에서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결될 수 있다.
일실시예에서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 전기적으로 분리될 수 있다.
일실시예에서, 상기 우-구동전극들 각각과 상기 센싱전극들 각각은 삼각형상의 상어이빨(shark's teeth) 형상을 갖고, 상기 우-구동전극들과 상기 센싱전극들은 치합(meshing) 형태로 배치될 수 있다.
일실시예에서, 상기 센싱전극들 각각은 삼각형상을 갖고, 상기 우-구동전극들 각각은 삼각형상들이 연결된 왕관형상(crown shape)을 가질 수 있다.
일실시예에서, 두개의 센싱전극들은 하나의 우-구동전극에 치합 형태로 배치될 수 있다.
일실시예에서, 상기 센싱블럭들에 배치된 우-구동전극들 중 동일한 로우 라인에 배치된 우-구동전극은 동일한 구동전압을 수신할 수 있다.
일실시예에서, 상기 우-구동전극들 및 상기 센싱전극들은 동일한 층에 형성될 수 있다.
일실시예에서, 상기 센싱블럭들 각각은 띠 형상을 가질 수 있다.
상기한 본 발명의 목적을 실현하기 위하여 다른 실시예에 따른 터치패널은 컬럼 방향으로 연장되고 로우 방향으로 배열된 복수의 센싱블럭들을 포함한다. 상기 센싱블럭들 각각은, 우-구동라인, 좌-구동라인 및 센싱라인을 포함한다. 상기 우-구동라인은 컬럼 방향으로 배열된 복수의 우-구동전극들을 포함한다. 상기 좌-구동라인은 컬럼 방향으로 배열된 복수의 좌-구동전극들을 포함한다. 상기 센싱라인은 컬럼 방향으로 배열되고 상기 우-구동전극들과 평행하게 배치된 복수의 센싱전극들을 포함한다. 상기 우-구동전극들 각각은 2개 이상의 센싱전극들에 정사영되고, 상기 우-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖고, 상기 좌-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖는다.
일실시예에서, 상기 좌-구동전극들 각각은 2개 이상의 센싱전극들에 정사영될 수 있다.
일실시예에서, 상기 우-구동전극과 상기 좌-구동전극은 서로 마주할 수 있다.
일실시예에서, 서로 마주하는 상기 우-구동전극과 상기 좌-구동전극 사이에 제1 센싱전극, 제2 센싱전극 및 제3 센싱전극이 배치되고, 상기 제1 센싱전극 및 상기 제3 센싱전극 각각은 삼각형상을 갖고, 상기 제2 센싱전극은 마름모 형상을 갖되, 상기 제1 센싱전극의 크기와 상기 제3 센싱전극의 크기의 합은 상기 제2 센싱전극의 크기와 동일할 수 있다.
일실시예에서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결되고, 동일한 좌-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결될 수 있다.
일실시예에서, 상기 우-구동전극들 각각과, 상기 좌-구동전극들 각각과, 상기 센싱전극들 각각은 삼각형상의 상어이빨 형상을 갖고, 상기 우-구동전극들과 상기 센싱전극들은 치합 형태로 배치될 수 있다.
일실시예에서, 상기 센싱전극들 각각은 삼각형상을 갖고, 상기 우-구동전극들 각각은 삼각형상들이 연결된 왕관형상을 갖고, 상기 좌-구동전극들 각각은 삼각형상들이 연결된 왕관형상을 가질 수 있다.
일실시예에서, 상기 우-구동전극들, 상기 좌-구동전극들 및 상기 센싱전극들은 동일한 층에 형성될 수 있다.
일실시예에서, 상기 센싱블럭들 각각은 띠 형상을 가질 수 있다.
이러한 터치패널에 의하면, 구동전극 하나에 2개의 센싱전극들이 대응되므로 구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있다. 또한, 복수의 센싱전극들이 하나의 구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
도 1은 본 발명의 일실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 2는 도 1에 도시된 터치패널의 구동을 설명하기 위한 파형도이다.
도 3은 도 1에 도시된 터치패널에서 검출되는 센싱신호들이 메모리에 매핑되는 것을 설명하기 위한 테이블이다.
도 4는 본 발명의 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 6은 본 발명의 더욱 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 7은 도 6에 도시된 터치패널에서 검출되는 센싱신호들이 메모리에 매핑되는 것을 설명하기 위한 테이블이다.
이하, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서, 좌측이라는 용어나 우측이라는 용어는 도면을 관찰하는 관찰자 시점에서 보는 것을 의미한다. 또한, 컬럼 방향이라는 용어는 아래쪽 방향을 의미하고, 로우 방향이라는 용어는 오른쪽 방향을 의미한다.
도 1은 본 발명의 일실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 터치패널(100)은 제1 센싱블럭(SB1), 제2 센싱블럭(SB2), 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4)을 포함한다. 본 실시예에서 설명의 편의를 위해 4개의 센싱블럭들이 배치된 터치패널이 도시된다.
상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 컬럼(column) 방향(또는 Y축 방향)으로 연장되고 로우(row) 방향(또는 X축 방향)으로 배열된다. 상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 띠 형상을 갖는다.
상기 제1 센싱블럭(SB1)은 우-구동라인(110), 센싱라인(120), 복수의 우-구동 연결배선들(130) 및 복수의 센싱 연결배선들(140)을 포함한다. 상기 우-구동라인(110), 상기 센싱라인(120), 상기 우-구동 연결배선들(130) 및 상기 센싱 연결배선들(140)은 동일한 층에 형성된다. 상기 우-구동라인(110)과 상기 센싱라인(120) 사이의 영역은 지그재그 형상을 갖는다.
상기 우-구동라인(110)은 컬럼 방향으로 배열된 복수의 우-구동전극들(112)을 포함하고, 상기 제1 센싱블럭(SB1)의 우측 영역에 배치된다. 본 실시예에서, 상기 우-구동전극들(112)의 수는 5개이다. 본 실시예에서, 상기 우-구동전극들(112) 각각의 크기는 서로 동일하다. 상기 우-구동전극들(112) 각각은 상기 센싱라인(120)에 인접하는 영역에 대응하여 W자 형상을 갖는다.
상기 센싱라인(120)은 컬럼 방향으로 배열된 복수의 센싱전극들을 포함하고, 상기 우-구동라인(110)에 인접하게 상기 제1 센싱블럭(SB1)의 좌측 영역에 배치된다. 본 실시예에서, 상기 센싱전극들의 수는 10개이다. 본 실시예에서, 홀수번째 센싱전극들은 캐스케이드 방식으로 서로 연결되고, 짝수번째 센싱전극들은 캐스케이드 방식으로 서로 연결된다.
본 실시예에서, 상기 센싱라인(120)은 제1 센싱신호들을 센싱하는 복수의 제1 센싱전극들(122), 제2 센싱신호들을 센싱하는 복수의 제2 센싱전극들(124), 서로 인접하는 제1 센싱전극들(122)을 연결하는 제1 연결배선들(126) 및 서로 인접하는 제2 센싱전극들(124)을 연결하는 제2 연결배선들(128)을 포함한다. 평면상에서 관찰할 때, 상기 제1 센싱전극들(122) 각각과 상기 제2 센싱전극들(124) 각각은 삼각형상을 갖는다. 상기 제1 연결배선(126)은 상기 제2 센싱전극(124)의 2개의 빗변들을 둘러싸는 형상을 갖고, 상기 제2 연결배선(128)은 상기 제1 센싱전극(122)의 밑변을 둘러싸는 형상을 갖는다.
본 실시예에서, 상기 우-구동전극들(112) 각각은 삼각형상의 치아 형상을 갖고, 상기 제1 및 제2 센싱전극들(122, 124) 각각은 삼각형상의 치아 형상을 갖는다. 이에 따라, 서로 마주하는 상기 우-구동전극들(112)과 상기 제1 및 제2 센싱전극들(122, 124)은 치합 형태로 배치된다. 즉, 상기 우-구동전극들(112) 각각과 상기 제1 및 제2 센싱전극들(122, 124) 각각은 삼각형상의 상어이빨(shark's teeth) 형상을 갖고, 상기 우-구동전극들(112)과 상기 제1 및 제2 센싱전극들(122, 124)은 치합(meshing) 형태로 배치될 수 있다.
본 실시예에서, 상기 제1 및 제2 센싱전극들(122, 124) 각각은 삼각형상을 갖고, 상기 우-구동전극들(112) 각각은 삼각형상들이 연결된 왕관형상을 갖는다.
본 실시예에서, 상기 센싱블럭들에 배치된 우-구동전극들(112) 중 동일한 로우 라인에 배치된 우-구동전극은 동일한 우-구동전압을 수신한다.
본 실시예에서, 하나의 구동전극에 2개의 센싱전극들이 인접하게 배치된 것을 도시하였으나, 하나의 구동전극에 3개 이상의 센싱전극들이 인접하게 배치될 수도 있다.
상기 우-구동 연결배선들(130)은 상기 우-구동전극들(112) 각각에 연결된다. 일례에서, 상기 우-구동 연결배선들(130) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 우-구동 연결배선들(130) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 우-구동 연결배선들(130) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 센싱 연결배선들(140)은 첫번째 센싱전극과 하나의 센싱패드를 연결하는 제1 센싱 연결배선과, 두번째 센싱전극과 다른 하나의 센싱패드를 연결하는 제2 센싱 연결배선을 포함한다. 본 실시예에서, 상기 제1 센싱블럭(SB1)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제2 센싱패드(RX1)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제1 센싱패드(RX1)에 연결된다. 상기 제2 센싱블럭(SB2)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제4 센싱패드(RX4)에 연결되고 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제3 센싱패드(RX3)에 연결된다. 상기 제3 센싱블럭(SB3)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제6 센싱패드(RX6)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제5 센싱패드(RX5)에 연결된다. 상기 제4 센싱블럭(SB4)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제8 센싱패드(RX8)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제7 센싱패드(RX7)에 연결된다.
이상에서 설명된 바와 같이, 본 실시예에 따르면, 컬럼 방향으로 연장되고 로우 방향으로 배열된 센싱블럭들 각각이 우-구동라인, 상기 우-구동라인에 평행하게 배치된 센싱라인을 포함하도록 구성하되, 상기 센싱라인에 정사영되는 하나의 우-구동전극이 2개 이상의 센싱전극들을 커버하고, 상기 2개 이상의 센싱전극들 각각은 전기적으로 분리된다.
따라서, 하나의 우-구동전극에 2개의 센싱전극들이 대응되므로 우-구동전극과 구동패드를 서로 연결하는데 필요한 연결배선의 수를 줄일 수 있고 구동패드의 수를 줄일 수 있다.
또한, 복수의 센싱전극들이 하나의 우-구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
도 2는 도 1에 도시된 터치패널의 구동을 설명하기 위한 파형도이다. 도 3은 도 1에 도시된 터치패널에서 검출되는 센싱신호들이 메모리에 매핑되는 것을 설명하기 위한 테이블이다.
도 1 내지 도 3을 참조하면, 외부의 정전용량 감지회로(미도시)로부터 구동신호들은 제1 내지 제5 구동패드들(TX1, TX2, ..., TX5)을 통해 구동라인들 각각에 구비되는 구동전극들에 순차적으로 인가된다.
센싱라인들 각각에 구비되는 제1 센싱전극들 및 제2 센싱전극들에는 구동전극들에 인가되는 구동신호가 유기되어 검출되고, 검출된 신호들은 센싱신호들로 정의되어 제1 내지 제8 센싱패드들(RX1, RX2, ..., RX7, RX8)을 통해 상기 정전용량 감지회로에 인가된다.
상기 정전용량 감지회로는 상기 센싱신호들을 근거로 터치좌표를 연산한다. 예를들어, 상기 센싱신호들은 도 3에 도시된 바와 같이 메모리(미도시)에 매핑되어 터치좌표 인식을 위해 사용될 수 있다.
특정 위치에 터치가 발생되면 해당 위치에 대응하는 센싱전극에서 검출되는 센싱신호의 전압 레벨은 상대적으로 낮을 수 있다. 따라서, 상대적으로 낮은 전압 레벨에 대응하는 센싱전극에 대응하는 위치를 터치좌표로 인식할 수 있다.
도 4는 본 발명의 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 터치패널(200)은 제1 센싱블럭(SB1), 제2 센싱블럭(SB2), 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4)을 포함한다. 본 실시예에서 설명의 편의를 위해 4개의 센싱블럭들이 배치된 터치패널이 도시된다.
상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 컬럼 방향(또는 Y축 방향)으로 연장되고 로우 방향(또는 X축 방향)으로 배열된다. 상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 띠 형상을 갖는다.
상기 제1 센싱블럭(SB1)은 우-구동라인(210), 좌-구동라인(220), 센싱라인(230), 복수의 우-구동 연결배선들(240), 복수의 좌-구동 연결배선들(250) 및 복수의 센싱 연결배선들(260)을 포함한다. 상기 우-구동라인(210), 상기 좌-구동라인(220), 상기 센싱라인(230), 상기 우-구동 연결배선들(240), 상기 좌-구동 연결배선들(250) 및 상기 센싱 연결배선들(260)은 동일한 층에 형성된다. 상기 우-구동라인(210)과 상기 센싱라인(230) 사이의 영역은 지그재그 형상을 갖는다. 상기 좌-구동라인(220)과 상기 센싱라인(230) 사이의 영역은 지그재그 형상을 갖는다.
상기 우-구동라인(210)은 컬럼 방향으로 배열된 복수의 우-구동전극들(212)을 포함하고, 상기 제1 센싱블럭(SB1)의 우측 영역에 배치된다. 본 실시예에서, 상기 우-구동전극들(212)의 수는 5개이다. 본 실시예에서, 상기 우-구동전극들(212) 각각의 크기는 서로 동일하다. 상기 우-구동전극들(212) 각각은 상기 센싱라인(230)에 인접하는 영역에 대응하여 W자 형상을 갖는다. 즉, 도 4를 시계방향으로 90도 회전시켜 관찰할 때, 상기 우-구동전극들(212) 각각은 왕관형상을 갖는다.
상기 좌-구동라인(220)은 컬럼 방향으로 배열된 복수의 좌-구동전극들(222)을 포함하고, 상기 제1 센싱블럭(SB1)의 좌측 영역에 배치된다. 본 실시예에서, 상기 좌-구동전극들(222)의 수는 5개이다. 본 실시예에서, 상기 좌-구동전극들(222) 각각의 크기는 서로 동일하다. 상기 좌-구동전극들(222) 각각은 상기 센싱라인(230)에 인접하는 영역에 대응하여 W자 형상을 갖는다. 즉, 도 4를 반시계방향으로 90도 회전시켜 관찰할 때, 상기 좌-구동전극들(222) 각각은 왕관형상을 갖는다.
상기 센싱라인(230)은 컬럼 방향으로 배열된 복수의 센싱전극들을 포함하고, 상기 우-구동라인(210) 및 상기 좌-구동라인(220) 사이에 배치된다.
본 실시예에서, 상기 센싱라인(230)은 제1 센싱신호들을 센싱하는 복수의 제1 센싱전극들(232), 제2 센싱신호들을 센싱하는 복수의 제2 센싱전극들(234) 및 상기 제1 센싱신호들을 센싱하는 복수의 제3 센싱전극들(236)을 포함한다. 여기서, 하나의 제1 센싱전극(232), 하나의 제2 센싱전극(234) 및 하나의 제3 센싱전극(236)은 하나의 우-구동전극에 대응한다. 또한, 상기 센싱라인(230)은 상기 제1 센싱전극들(232)을 캐스케이드 방식으로 연결하는 제1 연결배선들(237), 상기 제2 센싱전극들(234)을 캐스케이드 방식으로 연결하는 제2 연결배선들(238) 및 상기 제3 센싱전극들(236)을 캐스케이드 방식으로 연결하는 제3 연결배선들(239)을 더 포함한다.
평면상에서 관찰할 때, 상기 제1 센싱전극들(232) 각각과 상기 제3 센싱전극들(236) 각각은 삼각형상을 갖고, 상기 제2 센싱전극들(234) 각각은 마름모 형상을 갖는다. 상기 제1 연결배선(237)은 상기 제2 센싱전극(234)의 2개의 변들을 둘러싸는 형상을 갖고, 상기 제2 연결배선(228)은 상기 제1 센싱전극(232)의 밑변 또는 상기 제2 센싱전극(234)의 밑변을 둘러싸는 형상을 갖는다. 이에 따라, 상기 제3 연결배선들(239)을 기준으로 상기 제1 센싱전극들(232)과 상기 제3 센싱전극들(236)은 좌우 대칭된다. 또한, 상기 제3 연결배선들(239)을 기준으로 상기 우-구동라인의 우-구동전극들과 상기 좌-구동라인의 좌-구동라인들은 좌우 대칭된다.
본 실시예에서, 상기 우-구동전극들(212) 각각은 삼각형의 치아 형상을 갖고, 상기 제1 센싱전극(232)은 삼각형상의 치아 형상을 가지며, 상기 제2 센싱전극(234)는 마름모 형상을 갖는다. 이에 따라, 서로 마주하는 상기 우-구동전극들(212)과 상기 제1 및 제2 센싱전극들(232, 234)은 치합 형태로 배치된다. 즉, 상기 우-구동전극들(212) 각각과 상기 제1 및 제2 센싱전극들(232, 234) 각각은 삼각형상의 상어이빨(shark's teeth) 형상을 갖고, 상기 우-구동전극들(212)과 상기 제1 및 제2 센싱전극들(232, 234)은 치합(meshing) 형태로 배치될 수 있다.
본 실시예에서, 상기 좌-구동전극들(222) 각각은 삼각형의 치아 형상을 갖고, 상기 제2 센싱전극(234)는 마름모 형상을 갖고, 상기 제3 센싱전극(236)은 삼각형상의 치아 형상을 갖는다. 이에 따라, 서로 마주하는 상기 좌-구동전극들(222)과 상기 제2 및 제3 센싱전극들(234, 236)은 치합 형태로 배치된다. 즉, 상기 좌-구동전극들(222) 각각과 상기 제2 및 제3 센싱전극들(234, 236) 각각은 삼각형상의 상어이빨(shark's teeth) 형상을 갖고, 상기 좌-구동전극들(222)과 상기 제2 및 제3 센싱전극들(234, 236)은 치합(meshing) 형태로 배치될 수 있다.
본 실시예에서, 상기 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4)에 배치된 구동전극들(212) 중 동일한 로우 라인에 배치된 구동전극은 동일한 구동전압을 수신한다.
상기 우-구동 연결배선들(240)은 상기 우-구동전극들(212) 각각에 연결된다. 일례에서, 상기 우-구동 연결배선들(240) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 우-구동 연결배선들(240) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 우-구동 연결배선들(240) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 좌-구동 연결배선들(250)은 상기 좌-구동전극들(222) 각각에 연결된다. 일례에서, 상기 좌-구동 연결배선들(250) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 좌-구동 연결배선들(250) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 좌-구동 연결배선들(250) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 센싱 연결배선들(260)은 첫번째 센싱전극과 하나의 센싱패드를 연결하는 제1 센싱 연결배선과, 두번째 센싱전극과 다른 하나의 센싱패드를 연결하는 제2 센싱 연결배선을 포함한다.
본 실시예에서, 상기 제1 센싱블럭(SB1)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제2 센싱패드(RX1)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제1 센싱패드(RX1)에 연결된다. 상기 제2 센싱블럭(SB2)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제4 센싱패드(RX4)에 연결되고 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제3 센싱패드(RX3)에 연결된다. 상기 제3 센싱블럭(SB3)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제6 센싱패드(RX6)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제5 센싱패드(RX5)에 연결된다. 상기 제4 센싱블럭(SB4)의 첫번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제8 센싱패드(RX8)에 연결되고, 두번째 센싱전극은 상기 터치패널(200)의 주변 영역에 형성된 외부 배선을 통해 제7 센싱패드(RX7)에 연결된다.
이상에서 설명된 바와 같이, 본 실시예에 따르면, 컬럼 방향으로 연장되고 로우 방향으로 배열된 센싱블럭들 각각이 우-구동라인, 좌-구동라인 및 상기 우-구동라인 및 상기 좌-구동라인 사이에 배치된 센싱라인을 포함하도록 구성하되, 상기 센싱라인에 정사영되는 하나의 구동전극이 2개의 센싱전극들을 커버하고, 상기 2개의 센싱전극들 각각은 전기적으로 분리된다.
따라서, 하나의 구동전극에 2개의 센싱전극들이 대응되므로 구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있고 구동패드의 수를 줄일 수 있다.
또한, 복수의 센싱전극들이 하나의 구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
또한, 센싱라인의 양쪽에 구동라인들이 배치되므로, 센싱라인의 일측에만 구동라인이 배치된 터치패널에 비해 터치패널의 경계조건을 균일하게 유지할 수 있다. 따라서, 터치패널의 센싱 효율 역시 향상시킬 수 있다.
또한, 서로 인접하는 좌-구동라인의 좌-구동전극과 우-구동라인의 우-구동전극 사이에 전기적으로 분리된 2개 이상의 좌-센싱전극들이 배치되므로 하나의 구동전극에 대응하여 하나의 센싱전극이 배치된 터치패널에 비해 연결배선수를 줄일 수 있다. 이에 따라, 배선들의 수의 증가에 따라 터치 무감 영역으로 동작하는 데드존을 감소시킬 수 있어 유효 터치 영역을 증가시킬 수 있다. 또한, 데드존이 감소함에 따라, 터치시 선형성 및 정확성을 증가시킬 수 있다. 또한, 연결배선의 수가 감소하므로 터치인식칩의 패드수를 줄일 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다.
도 5를 참조하면, 본 발명의 또 다른 실시예에 따른 터치패널(300)은 제1 센싱블럭(SB1), 제2 센싱블럭(SB2), 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4)을 포함한다. 본 실시예에서 설명의 편의를 위해 4개의 센싱블럭들이 배치된 터치패널이 도시된다.
상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 컬럼 방향(또는 Y축 방향)으로 연장되고 로우 방향(또는 X축 방향)으로 배열된다. 상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 띠 형상을 갖는다.
상기 제1 센싱블럭(SB1)은 우-구동라인(310), 좌-구동라인(320), 센싱라인(330), 복수의 우-구동 연결배선들(340), 복수의 좌-구동 연결배선들(350) 및 복수의 센싱 연결배선들(360)을 포함한다. 상기 우-구동라인(310), 상기 좌-구동라인(320), 상기 센싱라인(330), 상기 우-구동 연결배선들(340), 상기 좌-구동 연결배선들(350) 및 상기 센싱 연결배선들(360)은 동일한 층에 형성된다. 상기 우-구동라인(310)과 상기 센싱라인(330) 사이의 영역은 지그재그 형상을 갖는다. 상기 좌-구동라인(320)과 상기 센싱라인(330) 사이의 영역은 지그재그 형상을 갖는다.
상기 우-구동라인(310)은 컬럼 방향으로 배열된 복수의 우-구동전극들(312)을 포함하고, 상기 제1 센싱블럭(SB1)의 우측 영역에 배치된다. 본 실시예에서, 상기 우-구동전극들(312)의 수는 5개이다. 본 실시예에서, 상기 우-구동전극들(312) 각각의 크기는 서로 동일하다. 상기 우-구동전극들(312) 각각은 상기 센싱라인(330)에 인접하는 영역에 대응하여 W자 형상을 갖는다.
상기 좌-구동라인(320)은 컬럼 방향으로 배열된 복수의 좌-구동전극들(322)을 포함하고, 상기 제1 센싱블럭(SB1)의 좌측 영역에 배치된다. 본 실시예에서, 상기 좌-구동전극들(322)의 수는 5개이다. 본 실시예에서, 상기 좌-구동전극들(322) 각각의 크기는 서로 동일하다. 상기 좌-구동전극들(322) 각각은 상기 센싱라인(330)에 인접하는 영역에 대응하여 W자 형상을 갖는다.
상기 센싱라인(330)은 컬럼 방향으로 배열된 복수의 센싱전극들을 포함하고, 상기 우-구동라인(310) 및 상기 좌-구동라인(320) 사이에 배치된다.
본 실시예에서, 상기 센싱라인(330)은 제1 센싱신호들을 센싱하는 복수의 제1 센싱전극들(332), 제2 센싱신호들을 센싱하는 복수의 제2 센싱전극들(334) 및 상기 제1 센싱신호들을 센싱하는 복수의 제3 센싱전극들(336)을 포함한다. 여기서, 하나의 제1 센싱전극(332), 하나의 제2 센싱전극(334) 및 하나의 제3 센싱전극(336)은 하나의 우-구동전극에 대응한다. 또한, 상기 센싱라인(330)은 상기 제1 센싱전극들(332)을 캐스케이드 방식으로 연결하는 제1 연결배선들(337), 상기 제2 센싱전극들(334)을 캐스케이드 방식으로 연결하는 제2 연결배선들(338) 및 상기 제3 센싱전극들(336)을 캐스케이드 방식으로 연결하는 제3 연결배선들(339)을 더 포함한다.
평면상에서 관찰할 때, 상기 제1 센싱전극들(332) 각각은 마름모 형상을 갖고, 상기 제2 센싱전극들(334) 각각과 상기 제3 센싱전극들(336) 각각은 삼각형상을 갖는다. 상기 제1 연결배선(337)은 상기 제1 센싱전극들(332)을 캐스케이드 방식으로 연결하도록 I자 형상을 갖고, 상기 제2 연결배선(338)은 상기 제1 센싱전극(332)의 2개의 변들을 둘러싸는 V자 형상을 갖고, 상기 제3 연결배선(339)은 상기 제1 센싱전극(332)의 2개의 변들을 둘러싸는 V자 형상을 갖는다. 이에 따라, 상기 제1 연결배선들(337)을 기준으로 상기 제2 센싱전극들(334)과 상기 제3 센싱전극들(336)은 좌우 대칭된다. 또한, 상기 제1 연결배선들(337)을 기준으로 상기 우-구동라인(310)의 우-구동전극들(312)과 상기 좌-구동라인(320)의 좌-구동전극들(312)은 좌우 대칭된다.
본 실시예에서, 상기 우-구동전극들(312) 각각은 삼각형의 치아 형상을 갖고, 상기 제1 및 제2 센싱전극들(332, 334) 각각은 삼각형의 치아 형상을 갖는다. 이에 따라, 상기 우-구동전극들(312)과 상기 제1 및 제2 센싱전극들(332, 334)은 치합 형태로 배치된다.
본 실시예에서, 상기 좌-구동전극들(322) 각각은 삼각형의 치아 형상을 갖고, 상기 제2 및 제3 센싱전극들(334, 336) 각각은 삼각형상의 치아 형상을 갖는다. 이에 따라, 상기 좌-구동전극들(322)과 상기 제2 및 제3 센싱전극들(334, 336)은 치합 형태로 배치된다.
본 실시예에서, 상기 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4)에 배치된 구동전극들(312) 중 동일한 로우 라인에 배치된 구동전극은 동일한 구동전압을 수신한다.
상기 우-구동 연결배선들(340)은 상기 우-구동전극들(312) 각각에 연결된다. 일례에서, 상기 우-구동 연결배선들(340) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 우-구동 연결배선들(340) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 우-구동 연결배선들(340) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 좌-구동 연결배선들(350)은 상기 좌-구동전극들(322) 각각에 연결된다. 일례에서, 상기 좌-구동 연결배선들(350) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 좌-구동 연결배선들(350) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 좌-구동 연결배선들(350) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 센싱 연결배선들(360)은 첫번째 센싱전극과 하나의 센싱패드를 연결하는 제1 센싱 연결배선과, 두번째 센싱전극과 다른 하나의 센싱패드를 연결하는 제2 센싱 연결배선을 포함한다.
본 실시예에서, 상기 제1 센싱블럭(SB1)의 첫번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제2 센싱패드(RX1)에 연결되고, 두번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제1 센싱패드(RX1)에 연결된다. 상기 제2 센싱블럭(SB2)의 첫번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제4 센싱패드(RX4)에 연결되고 두번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제3 센싱패드(RX3)에 연결된다. 상기 제3 센싱블럭(SB3)의 첫번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제6 센싱패드(RX6)에 연결되고, 두번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제5 센싱패드(RX5)에 연결된다. 상기 제4 센싱블럭(SB4)의 첫번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제8 센싱패드(RX8)에 연결되고, 두번째 센싱전극은 상기 터치패널(300)의 주변 영역에 형성된 외부 배선을 통해 제7 센싱패드(RX7)에 연결된다.
이상에서 설명된 바와 같이, 본 실시예에 따르면, 컬럼 방향으로 연장되고 로우 방향으로 배열된 센싱블럭들 각각이 우-구동라인, 좌-구동라인 및 상기 우-구동라인 및 상기 좌-구동라인 사이에 배치된 센싱라인을 포함하도록 구성하되, 상기 센싱라인에 정사영되는 하나의 구동전극이 2개의 센싱전극들을 커버하고, 상기 2개의 센싱전극들 각각은 전기적으로 분리된다.
따라서, 하나의 구동전극에 2개의 센싱전극들이 대응되므로 구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있고 구동패드의 수를 줄일 수 있다.
또한, 복수의 센싱전극들이 하나의 구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
또한, 센싱라인의 양쪽에 구동라인들이 배치되므로, 센싱라인의 일측에만 구동라인이 배치된 터치패널에 비해 터치패널의 경계조건을 균일하게 유지할 수 있다. 따라서, 터치패널의 센싱 효율 역시 향상시킬 수 있다.
또한, 서로 인접하는 좌-구동라인의 좌-구동전극과 우-구동라인의 우-구동전극 사이에 전기적으로 분리된 2개 이상의 좌-센싱전극들이 배치되므로 하나의 구동전극에 대응하여 하나의 센싱전극이 배치된 터치패널에 비해 연결배선수를 줄일 수 있다. 이에 따라, 배선들의 수의 증가에 따라 터치 무감 영역으로 동작하는 데드존을 감소시킬 수 있어 유효 터치 영역을 증가시킬 수 있다. 또한, 데드존이 감소함에 따라, 터치시 선형성 및 정확성을 증가시킬 수 있다. 또한, 연결배선의 수가 감소하므로 터치인식칩의 패드수를 줄일 수 있다.
도 6은 본 발명의 더욱 다른 실시예에 따른 터치패널을 설명하기 위한 평면도이다. 도 7은 도 6에 도시된 터치패널에서 검출되는 센싱신호들이 메모리에 매핑되는 것을 설명하기 위한 테이블이다.
도 6 및 도 7을 참조하면, 본 발명의 더욱 다른 실시예에 따른 터치패널(400)은 제1 센싱블럭(SB1), 제2 센싱블럭(SB2), 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4)을 포함한다. 본 실시예에서 설명의 편의를 위해 4개의 센싱블럭들이 배치된 터치패널이 도시된다.
상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 컬럼(column) 방향(또는 Y축 방향)으로 연장되고 로우(row) 방향(또는 X축 방향)으로 배열된다. 상기 제1 센싱블럭(SB1), 상기 제2 센싱블럭(SB2), 상기 제3 센싱블럭(SB3) 및 제4 센싱블럭(SB4) 각각은 띠 형상을 갖는다.
상기 제1 센싱블럭(SB1)은 우-구동라인(410), 센싱라인(420), 복수의 우-구동 연결배선들(430) 및 복수의 센싱 연결배선들(440)을 포함한다. 상기 우-구동라인(410), 상기 센싱라인(420), 상기 우-구동 연결배선들(430) 및 상기 센싱 연결배선들(440)은 동일한 층에 형성된다. 상기 우-구동라인(410)과 상기 센싱라인(420) 사이의 영역은 지그재그 형상을 갖는다.
상기 우-구동라인(410)은 컬럼 방향으로 배열된 복수의 우-구동전극들(412)을 포함하고, 상기 제1 센싱블럭(SB1)의 우측 영역에 배치된다. 본 실시예에서, 상기 우-구동전극들(412)의 수는 5개이다. 본 실시예에서, 상기 우-구동전극들(412) 각각의 크기는 서로 동일하다. 상기 우-구동전극들(412) 각각은 상기 센싱라인(420)에 인접하는 영역에 대응하여 W자 형상을 갖는다.
상기 센싱라인(420)은 컬럼 방향으로 배열된 복수의 센싱전극들을 포함하고, 상기 우-구동라인(410)에 인접하게 상기 제1 센싱블럭(SB1)의 좌측 영역에 배치된다. 본 실시예에서, 상기 센싱전극들의 수는 10개이다.
본 실시예에서, 상기 센싱라인(420)은 제1 센싱신호들을 센싱하는 복수의 제1 센싱전극들(422), 제2 센싱신호들을 센싱하는 복수의 제2 센싱전극들(424), 서로 인접하는 제1 센싱전극들(422)을 연결하는 제1 연결배선들(426) 및 서로 인접하는 제2 센싱전극들(424)을 연결하는 제2 연결배선들(428)을 포함한다. 평면상에서 관찰할 때, 상기 제1 센싱전극들(422) 각각과 상기 제2 센싱전극들(424) 각각은 삼각형상을 갖는다. 상기 제1 연결배선(426)은 상기 제2 센싱전극(424)의 2개의 빗변들을 둘러싸는 형상을 갖고, 상기 제2 연결배선(428)은 상기 제1 센싱전극(422)의 밑변을 둘러싸는 형상을 갖는다. 본 실시예에서, 홀수번째 우-구동전극(412)의 상부 영역에 인접하게 제1 센싱전극(422)이 배치되고, 홀수번째 우-구동전극(412)의 하부 영역에 인접하게 제2 센싱전극(424)이 배치된다. 짝수번째 우-구동전극(412)의 상부 영역에 인접하게 제2 센싱전극(424)이 배치되고, 짝수번째 우-구동전극(412)의 하부 영역에 인접하게 제1 센싱전극(422)이 배치된다. 이에 따라, 서로 인접하는 우-구동전극들(412)에 대응하여 동일한 센싱패드에 연결되는 2개의 센싱전극들이 배치된다.
본 실시예에서, 상기 우-구동전극들(412) 각각의 좌측변에는 2개의 V자 형상의 홈들이 형성되고, 상기 제1 및 제2 센싱전극들(422, 424) 각각은 삼각형상으로 형성된다. 이에 따라, 상기 우-구동전극들(412)과 상기 제1 및 제2 센싱전극들(422, 424)은 삼각형상의 치합 형태로 배치된다.
본 실시예에서, 상기 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4)에 배치된 우-구동전극들(412) 중 동일한 로우 라인에 배치된 우-구동전극은 동일한 우-구동전압을 수신한다.
본 실시예에서, 하나의 구동전극에 2개의 센싱전극들이 인접하게 배치된 것을 도시하였으나, 하나의 구동전극에 3개 이상의 센싱전극들이 인접하게 배치될 수도 있다.
상기 우-구동 연결배선들(430)은 상기 우-구동전극들(412) 각각에 연결된다. 일례에서, 상기 우-구동 연결배선들(430) 각각의 선폭은 서로 동일할 수 있다. 다른 예에서, 상기 우-구동 연결배선들(430) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 점차적으로 증가할 수도 있다. 또 다른 예에서, 상기 우-구동 연결배선들(430) 각각의 선폭은 관찰자 관점에서 하부로 갈수록 계단 형상으로 증가할 수도 있다.
상기 센싱 연결배선들(440)은 첫번째 센싱전극과 하나의 센싱패드를 연결하는 제1 센싱 연결배선과, 두번째 센싱전극과 다른 하나의 센싱패드를 연결하는 제2 센싱 연결배선을 포함한다. 본 실시예에서, 상기 제1 센싱블럭(SB1)의 첫번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제2 센싱패드(RX1)에 연결되고, 두번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제1 센싱패드(RX1)에 연결된다. 상기 제2 센싱블럭(SB2)의 첫번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제4 센싱패드(RX4)에 연결되고 두번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제3 센싱패드(RX3)에 연결된다. 상기 제3 센싱블럭(SB3)의 첫번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제6 센싱패드(RX6)에 연결되고, 두번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제5 센싱패드(RX5)에 연결된다. 상기 제4 센싱블럭(SB4)의 첫번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제8 센싱패드(RX8)에 연결되고, 두번째 센싱전극은 상기 터치패널(400)의 주변 영역에 형성된 외부 배선을 통해 제7 센싱패드(RX7)에 연결된다.
도 7은 도 6에 도시된 터치패널에서 검출되는 센싱신호들이 메모리에 매핑되는 것을 설명하기 위한 테이블이다.
도 6 및 도 7을 참조하면, 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4) 각각에 구비되는 첫번째 우-구동전극에 제1 구동신호가 동시에 인가되면, 상기 제1 구동신호가 인가되는 첫번째 우-구동전극에 인접하는 제1 센싱전극(422) 및 제2 센싱전극(424) 각각은 유기된 전압을 검출하여 센싱패드들을 통해 메모리에 저장한다.
예를들어, 상기 제1 센싱전극(422)이 제1 센싱블럭(SB1)에 포함되는 경우, 해당 제1 센싱전극(422)에서 검출된 전압은 제2 센싱패드(RX2)를 통해 상기 메모리에 저장된다. 상기 제2 센싱전극(424)이 제1 센싱블럭(SB1)에 포함되는 경우, 해당 제2 센싱전극(424)에서 검출된 전압은 제1 센싱패드(RX1)를 통해 상기 메모리에 저장된다.
상기 제1 센싱전극(422)이 제2 센싱블럭(SB2)에 포함되는 경우, 해당 제1 센싱전극(422)에서 검출된 전압은 제4 센싱패드(RX4)를 통해 상기 메모리에 저장된다. 상기 제2 센싱전극(424)이 제2 센싱블럭(SB2)에 포함되는 경우, 해당 제2 센싱전극(424)에서 검출된 전압은 제3 센싱패드(RX3)를 통해 상기 메모리에 저장된다.
상기 제1 센싱전극(422)이 제3 센싱블럭(SB3)에 포함되는 경우, 해당 제1 센싱전극(422)에서 검출된 전압은 제6 센싱패드(RX6)를 통해 상기 메모리에 저장된다. 상기 제2 센싱전극(424)이 제3 센싱블럭(SB3)에 포함되는 경우, 해당 제2 센싱전극(424)에서 검출된 전압은 제5 센싱패드(RX5)를 통해 상기 메모리에 저장된다.
상기 제1 센싱전극(422)이 제4 센싱블럭(SB4)에 포함되는 경우, 해당 제1 센싱전극(422)에서 검출된 전압은 제8 센싱패드(RX8)를 통해 상기 메모리에 저장된다. 상기 제2 센싱전극(424)이 제4 센싱블럭(SB41)에 포함되는 경우, 해당 제2 센싱전극(424)에서 검출된 전압은 제7 센싱패드(RX7)를 통해 상기 메모리에 저장된다.
이어, 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4) 각각에 구비되는 두번째 우-구동전극에 제2 구동신호가 동시에 인가되면, 상기 제2 구동신호가 인가되는 첫번째 우-구동전극에 인접하는 제1 센싱전극(422) 및 제2 센싱전극(424) 각각은 유기된 전압을 검출하여 센싱패드들을 통해 메모리에 저장한다. 상기한 두번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작은 상기한 첫번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작과 유사하므로 그 상세한 설명은 생략한다.
이어, 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4) 각각에 구비되는 세번째 우-구동전극에 제2 구동신호가 동시에 인가되면, 상기 제2 구동신호가 인가되는 첫번째 우-구동전극에 인접하는 제1 센싱전극(422) 및 제2 센싱전극(424) 각각은 유기된 전압을 검출하여 센싱패드들을 통해 메모리에 저장한다. 상기한 세번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작은 상기한 첫번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작과 유사하므로 그 상세한 설명은 생략한다.
이어, 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4) 각각에 구비되는 네번째 우-구동전극에 제2 구동신호가 동시에 인가되면, 상기 제2 구동신호가 인가되는 첫번째 우-구동전극에 인접하는 제1 센싱전극(422) 및 제2 센싱전극(424) 각각은 유기된 전압을 검출하여 센싱패드들을 통해 메모리에 저장한다. 상기한 네번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작은 상기한 첫번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작과 유사하므로 그 상세한 설명은 생략한다.
이어, 제1 내지 제4 센싱블럭들(SB1, SB2, SB3, SB4) 각각에 구비되는 다섯번째 우-구동전극에 제2 구동신호가 동시에 인가되면, 상기 제2 구동신호가 인가되는 첫번째 우-구동전극에 인접하는 제1 센싱전극(422) 및 제2 센싱전극(424) 각각은 유기된 전압을 검출하여 센싱패드들을 통해 메모리에 저장한다. 상기한 다섯번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작은 상기한 첫번째 우-구동전극에 대응하여 제1 센싱전극(422) 및 제2 센싱전극(424) 각각에 유기된 전압이 메모리에 저장되는 일련의 동작과 유사하므로 그 상세한 설명은 생략한다.
상술된 방식에 따라 검출된 전압이 메모리에 저장되면 저장된 전압들을 근거로 어느 위치의 전압이 낮은지를 확인할 수 있고, 해당 위치가 터치좌표로 인식할 수 있다.
이상에서 설명된 바와 같이, 본 실시예에 따르면, 컬럼 방향으로 연장되고 로우 방향으로 배열된 센싱블럭들 각각이 우-구동라인, 상기 우-구동라인에 평행하게 배치된 센싱라인을 포함하도록 구성하되, 상기 센싱라인에 정사영되는 하나의 우-구동전극이 2개의 센싱전극들을 커버하고, 상기 2개의 센싱전극들 각각은 전기적으로 분리된다.
따라서, 하나의 우-구동전극에 2개의 센싱전극들이 대응되므로 우-구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있고 구동패드의 수를 줄일 수 있다.
또한, 복수의 센싱전극들이 하나의 우-구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
이상에서는 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
이상에서 설명한 바와 같이, 본 발명에 따르면, 센싱라인의 일측에 구동라인이 배치된 구조에서 구동전극 하나에 2개의 센싱전극들이 대응되므로 구동전극을 연결하는데 필요한 연결배선의 수를 줄일 수 있다. 또한, 복수의 센싱전극들이 하나의 구동전극에 대응하므로 터치패널 전체를 스캔하는데 소요되는 시간을 줄일 수 있다.
또한, 센싱라인의 양측에 구동라인들이 배치된 구조에서 서로 인접하는 좌-구동라인의 좌-구동전극과 우-구동라인의 우-구동전극 사이에 전기적으로 분리된 2개 이상의 좌-센싱전극들이 배치되므로 하나의 구동전극에 대응하여 하나의 센싱전극이 배치된 터치패널에 비해 연결배선수를 줄일 수 있다. 이에 따라, 배선들의 수의 증가에 따라 터치 무감 영역으로 동작하는 데드존을 감소시킬 수 있어 유효 터치 영역을 증가시킬 수 있다. 또한, 연결배선의 수가 감소하므로 터치인식칩의 패드수를 줄일 수 있다.
* 부호의 설명
100, 200, 300, 400 : 터치패널 SB1 : 제1 센싱블럭
SB2 : 제2 센싱블럭 SB3 : 제3 센싱블럭
SB4 : 제4 센싱블럭 120, 230, 330, 420 : 센싱라인
130, 240 : 우-구동 연결배선들 140, 260 : 센싱 연결배선들
122 : 제1 센싱전극들 124 : 제2 센싱전극들
126 : 제1 연결배선들 128 : 제2 연결배선들
220, 320, 420 : 좌-구동라인 250, 350 : 좌-구동 연결배선들
110, 210, 312, 412 : 우-구동라인
112, 212, 312, 412 : 우-구동전극들
TX1, TX2, ..., TX5 : 구동패드들
RX1, RX2, ..., RX7, RX8 : 센싱패드들

Claims (14)

  1. 컬럼 방향으로 연장되고 로우 방향으로 배열된 복수의 센싱블럭들을 포함하고, 상기 센싱블럭들 각각은,
    컬럼 방향으로 배열된 복수의 우-구동전극들을 포함하는 우-구동라인; 및
    컬럼 방향으로 배열되고 상기 우-구동전극들과 평행하게 배치된 복수의 센싱전극들을 포함하는 센싱라인을 포함하되,
    상기 우-구동전극들 각각은 2개 이상의 센싱전극들에 정사영(orthogonal projection)되고,
    상기 우-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖는 것을 특징으로 하는 터치패널.
  2. 제1항에 있어서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결된 것을 특징으로 하는 터치패널.
  3. 제1항에 있어서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 전기적으로 분리된 것을 특징으로 하는 터치패널.
  4. 제1항에 있어서, 상기 우-구동전극들 각각과 상기 센싱전극들 각각은 삼각형상의 상어이빨(shark's teeth) 형상을 갖고, 상기 우-구동전극들과 상기 센싱전극들은 치합(meshing) 형태로 배치된 것을 특징으로 하는 터치패널.
  5. 제1항에 있어서, 상기 센싱전극들 각각은 삼각형상을 갖고, 상기 우-구동전극들 각각은 삼각형상들이 연결된 왕관형상(crown shape)을 갖는 것을 특징으로 하는 터치패널.
  6. 제5항에 있어서, 두개의 센싱전극들은 하나의 우-구동전극에 치합 형태로 배치된 것을 특징으로 하는 터치패널.
  7. 제1항에 있어서, 상기 센싱블럭들에 배치된 우-구동전극들 중 동일한 로우 라인에 배치된 우-구동전극은 동일한 구동전압을 수신하는 것을 특징으로 하는 터치패널.
  8. 컬럼 방향으로 연장되고 로우 방향으로 배열된 복수의 센싱블럭들을 포함하고, 상기 센싱블럭들 각각은,
    컬럼 방향으로 배열된 복수의 우-구동전극들을 포함하는 우-구동라인;
    컬럼 방향으로 배열된 복수의 좌-구동전극들을 포함하는 좌-구동라인; 및
    컬럼 방향으로 배열되고 상기 우-구동전극들과 평행하게 배치된 복수의 센싱전극들을 포함하는 센싱라인을 포함하되,
    상기 우-구동전극들 각각은 2개 이상의 센싱전극들에 정사영되고,
    상기 우-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖고,
    상기 좌-구동전극들과 상기 센싱전극들 사이의 영역은 지그재그 형상을 갖는 것을 특징으로 하는 터치패널.
  9. 제8항에 있어서, 상기 좌-구동전극들 각각은 2개 이상의 센싱전극들에 정사영되는 것을 특징으로 하는 터치패널.
  10. 제8항에 있어서, 상기 우-구동전극과 상기 좌-구동전극은 서로 마주하는 것을 특징으로 하는 터치패널.
  11. 제10항에 있어서, 서로 마주하는 상기 우-구동전극과 상기 좌-구동전극 사이에 제1 센싱전극, 제2 센싱전극 및 제3 센싱전극이 배치되고,
    상기 제1 센싱전극 및 상기 제3 센싱전극 각각은 삼각형상을 갖고, 상기 제2 센싱전극은 마름모 형상을 갖되,
    상기 제1 센싱전극의 크기와 상기 제3 센싱전극의 크기의합은 상기 제2 센싱전극의 크기와 동일한 것을 특징으로 하는 터치패널.
  12. 제8항에 있어서, 동일한 우-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결되고, 동일한 좌-구동전극에 정사영되는 센싱전극들 각각은 서로 다른 센싱패드에 연결된 것을 특징으로 하는 터치패널.
  13. 제8항에 있어서, 상기 우-구동전극들 각각과, 상기 좌-구동전극들 각각과, 상기 센싱전극들 각각은 삼각형상의 상어이빨 형상을 갖고, 상기 우-구동전극들과 상기 센싱전극들은 치합 형태로 배치된 것을 특징으로 하는 터치패널.
  14. 제8항에 있어서, 상기 센싱전극들 각각은 삼각형상을 갖고, 상기 우-구동전극들 각각은 삼각형상들이 연결된 왕관형상을 갖고, 상기 좌-구동전극들 각각은 삼각형상들이 연결된 왕관형상을 갖는 것을 특징으로 하는 터치패널.
PCT/KR2015/003689 2014-04-30 2015-04-14 터치패널 WO2015167144A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0052555 2014-04-30
KR1020140052555A KR101569696B1 (ko) 2014-04-30 2014-04-30 터치패널

Publications (1)

Publication Number Publication Date
WO2015167144A1 true WO2015167144A1 (ko) 2015-11-05

Family

ID=54358828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003689 WO2015167144A1 (ko) 2014-04-30 2015-04-14 터치패널

Country Status (2)

Country Link
KR (1) KR101569696B1 (ko)
WO (1) WO2015167144A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036457A1 (ko) * 2018-08-16 2020-02-20 주식회사 하이딥 터치센서패널의 구동방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102369337B1 (ko) * 2017-07-11 2022-03-04 삼성디스플레이 주식회사 입력 감지 유닛 및 이를 구비한 표시 장치
KR20240048693A (ko) * 2022-10-07 2024-04-16 주식회사 지2터치 시인성이 개선된 센싱 전극을 갖는 터치 패널

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101202552B1 (ko) * 2012-03-11 2012-11-19 (주)이미지스테크놀로지 단일 적층 구조를 갖는 개량된 접촉 위치 감지 패널
KR20130109919A (ko) * 2012-03-27 2013-10-08 주식회사 지니틱스 균일한 터치입력 감도를 갖는 터치패널
US8629853B2 (en) * 2010-09-15 2014-01-14 Wintek Corporation Touch panel and the touch display device using the same
KR20140012806A (ko) * 2012-07-23 2014-02-04 삼성디스플레이 주식회사 터치스크린 패널, 이를 갖는 터치 센싱 장치 및 이의 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629853B2 (en) * 2010-09-15 2014-01-14 Wintek Corporation Touch panel and the touch display device using the same
KR101202552B1 (ko) * 2012-03-11 2012-11-19 (주)이미지스테크놀로지 단일 적층 구조를 갖는 개량된 접촉 위치 감지 패널
KR20130109919A (ko) * 2012-03-27 2013-10-08 주식회사 지니틱스 균일한 터치입력 감도를 갖는 터치패널
KR20140012806A (ko) * 2012-07-23 2014-02-04 삼성디스플레이 주식회사 터치스크린 패널, 이를 갖는 터치 센싱 장치 및 이의 구동 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036457A1 (ko) * 2018-08-16 2020-02-20 주식회사 하이딥 터치센서패널의 구동방법

Also Published As

Publication number Publication date
KR20150125344A (ko) 2015-11-09
KR101569696B1 (ko) 2015-11-17

Similar Documents

Publication Publication Date Title
WO2016129827A1 (ko) 터치 입력 장치 및 전극 시트
WO2010085070A2 (ko) 입력장치
WO2016089149A1 (ko) 디스플레이 패널, 터치입력장치, 디스플레이 패널로부터 터치위치와 터치압력을 검출하는 검출장치, 및 검출방법
WO2011007995A2 (ko) 터치입력수단이 내장된 표시장치
WO2016093526A1 (ko) 터치 스크린 패널
WO2017078379A1 (ko) 터치구동장치
WO2015037853A1 (ko) 터치패널
WO2018151481A1 (ko) 터치 입력 장치
WO2011126214A2 (en) Touch sensing panel and device for detecting multi-touch signal
WO2016093524A1 (ko) 정전식 터치 스크린 패널의 터치검출 센서 구조
WO2012134026A1 (ko) 접촉 감지 장치 및 방법
WO2018097460A1 (ko) 사용자 인터페이스 제공을 위한 터치 입력 방법 및 장치
WO2012005429A1 (en) Touch sensing panel and touch sensing device for detecting multi-touch signal
WO2016195308A1 (ko) 터치 압력을 감지하는 터치 입력 장치의 감도 보정 방법 및 컴퓨터 판독 가능한 기록 매체
WO2015167144A1 (ko) 터치패널
WO2019160348A1 (ko) 수중 상태에서 압력 센서를 이용하여 사용자 입력을 획득하는 전자 장치 및 상기 전자 장치를 제어하는 방법
WO2014208898A1 (ko) 터치 검출 장치
EP3732555A1 (en) Touch display device and method for manufacturing touch display device
WO2018034415A1 (ko) 터치 입력 장치
WO2016028039A1 (ko) 클러스터 단위로 터치 검출을 수행하는 터치 검출 방법 및 장치
WO2017135707A9 (ko) 터치 압력 감도 보정 방법 및 컴퓨터 판독 가능한 기록 매체
WO2015030360A1 (ko) 터치 검출 및 시인성 개선을 위한 터치 검출 장치 및 이를 포함하는 전자 기기
WO2013183926A1 (ko) 기생 정전용량 제어 기능을 갖는 터치 검출 장치 및 방법
WO2021015549A1 (ko) 메탈 메쉬 터치 전극을 포함하는 전자 장치
WO2018151414A1 (ko) 정전용량식 지문인식유닛, 지문센서의 정전용량 측정회로 및 이를 갖는 지문인식장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785322

Country of ref document: EP

Kind code of ref document: A1