WO2015167047A1 - 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치 - Google Patents

혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치 Download PDF

Info

Publication number
WO2015167047A1
WO2015167047A1 PCT/KR2014/003872 KR2014003872W WO2015167047A1 WO 2015167047 A1 WO2015167047 A1 WO 2015167047A1 KR 2014003872 W KR2014003872 W KR 2014003872W WO 2015167047 A1 WO2015167047 A1 WO 2015167047A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample chamber
sample
chamber
blood
platelets
Prior art date
Application number
PCT/KR2014/003872
Other languages
English (en)
French (fr)
Inventor
신세현
임채승
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015167047A1 publication Critical patent/WO2015167047A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors

Definitions

  • the present invention relates to a platelet test chip and a platelet test apparatus using the same, and more specifically, to the viscosity of the blood sample (Viscosity) and the number of hematocrit or the function and value of vWF through a microchannel flow path design.
  • the present invention relates to a platelet test chip capable of testing the properties of platelets in a blood sample and a platelet test apparatus using the same.
  • the platelet function test is mainly used as a congenital platelet dysfunction or preoperative screening test, and is an important test for discriminating hemorrhagic disease caused by congenital or acquired platelet dysfunction, especially in a hemorrhagic disease without platelet count abnormalities.
  • Bleeding time (BT) test is a bleeding time test developed about 100 years ago and has been used as a platelet function screening test to date.
  • the platelet function test which is currently used, is difficult to standardize, has a low clinical usefulness, and requires an invasive method. Accordingly, there is a demand for an objective measurement method for measuring platelet function.
  • the Platelet Function Analyzer (e.g. PFA-100), which is designed to solve the above problems and is used as a technique for measuring platelet function, is used for von Willebrand Factor (vWF, von Willbrand factor) activated at high shear rate.
  • vWF von Willebrand Factor
  • platelets are agglomerated in a long capillary tube and the whole blood flows at high shear rate.
  • ADP adenosine diphosphate
  • Epinephrine epinephrine
  • Such platelet function test must be absolutely dependent on the function of the vWF, the test is dependent on the hematocrit (Hct) and has the disadvantage that the anti-spirin (Aspirin) or anti-clopidogrel test is impossible. In addition, there is a disadvantage that the test cost is increased because the test is required in two steps for the function test of platelets.
  • vWF blood samples must be exposed for a certain period of time at high shear rates.
  • the PFA-100 adopts a method of rapidly flowing blood through a very long capillary tube.
  • this method requires not only a large amount of blood, but also vWF near the capillary wall with the highest shear rate can be easily activated, but vWF located at the center of the tube with the lowest shear rate cannot be activated. This has the disadvantage of causing problems in the repeatability of the test results.
  • a blood sample is installed inside a sample storage chamber and a sample storage chamber accommodated therein, which is stirred by an agitator or agitator to cause shear flow in the blood sample.
  • Parallel channel that separates and flows blood in multiple paths
  • a vacuum device that is connected to each end of the parallel channel to maintain a constant pressure and flows the stirred blood along the parallel channel, and is installed at the rear end of the parallel channel
  • a microchip-based platelet complex function test apparatus including a light source for irradiating light with an image sensor and an image sensor for receiving light transmitted through blood in a parallel channel and converting the light into an electrical signal to measure blood flow rate.
  • the microchip-based platelet complex functional test device is based on testing the function of the platelet by measuring the absolute distance of the blood flow by stirring the blood sample in a plurality of sample channels to flow in multiple parallel channels, Regardless of whether platelets are activated or not, the problem that the blood flow distance varies depending on the viscosity of the subject's blood (Viscosity) or the size of the hematocrit is still not solved. In addition, there is still a problem that the absolute dependence on the function of the vWF has not been solved, and the drug response test of the antiplatelet agent cannot be performed.
  • the distance flowed through the parallel channel may be shortened. This phenomenon may cause an error of determining that platelets are activated.
  • the present invention has been made to solve the above problems, and through the design of the micro-channel flow path, the blood sample in the blood sample, regardless of the viscosity (Viscosity) and the value of the hematocrit or the function and value of the vWF It is an object of the present invention to provide a platelet test chip capable of testing platelet characteristics and a platelet test apparatus using the same.
  • the object is in accordance with the present invention a plurality of sample chambers, each of which stores a blood sample; An agitator installed inside the sample chamber to apply shear force to the blood sample; A plurality of closed sample chambers corresponding to each of the plurality of sample chambers;
  • the plurality of sample chambers is divided into a reference sample chamber and at least one control sample chamber; Selecting at least one of a final arrival distance of the blood sample flowing from the reference sample chamber to the corresponding microchannel and the blood sample flowing from the control sample chamber to the corresponding microchannel, a time to reach the final arrival distance, and a flow rate Relative comparisons can determine the properties of platelets.
  • the stirring controller may control the stirrer such that different shearing forces are applied to the blood sample accommodated in the reference sample chamber and the blood sample received in the control sample chamber.
  • the stirring control unit controls the stirrer inside the reference sample chamber so that a shear force of a size where platelets are not activated is applied to a blood sample inside the reference sample chamber, and a shear force of a size where platelets are activated is controlled by the control sample chamber.
  • the stirrer inside the control sample chamber may be controlled to be applied to an internal blood sample.
  • the same reagent may be mixed in the blood sample flowing from the reference sample chamber and the control sample chamber so that the degree of reaction of platelets according to the shear force can be determined.
  • the reagent is agonist such as collagen, adenosine diphosphate (ADP), epinephrine (Epinephrine), arachidonic acid (Arachidonic acid), thromboxane A2, thrombin, iso-thrombin receptor activating peptide (iso-TRAP) It can be any one or combination of (Agonist).
  • the stirring control unit may control the stirrer so that the shear force of the size at which the platelets are not activated is 0.5 Pa or less, and the shear force of the size at which the platelets are activated is 8 Pa or more.
  • the control sample chamber is provided in plurality;
  • the stirring control unit controls the stirrer in the reference sample chamber so that shear force of the size of the platelet is not activated is applied to the blood sample inside the reference sample chamber, and the platelet activation level of the platelet can be determined according to the shear force size. It is possible to control the stirrer inside each control sample chamber such that shear forces of mutually different magnitudes capable of activating are applied to the blood sample inside each control sample chamber.
  • a plurality of the microchannels connecting the reference sample chamber and the waste sample chamber may be connected in parallel, and different reagents may be contained in each of the microchannels;
  • a plurality of the microchannels connecting the control sample chamber and the waste sample chamber may be connected in parallel, and reagents may be accommodated so as to correspond to the reference sample chamber side while they are different from each other inside the microchannels.
  • the stirring control unit applies a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber;
  • the blood sample flowing from the control sample chamber may be mixed with a reagent that activates platelets so that the degree of response of the platelets according to the antagonist drug administration can be determined.
  • the stirring control unit applies a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber;
  • An antagonist reagent is received in the reference sample chamber and the control sample chamber and mixed with the blood sample;
  • Blood samples flowing from the control sample chamber may be mixed with reagents that activate platelets so that the degree of reaction of platelets mixed with the antagonist reagent can be determined.
  • the antagonist reagent may be any one or a combination of antagonists such as aspirin, P2Y1 receptor antagonists and P2Y12 receptor antagonists.
  • the P2Y1 receptor antagonists may be at least one of candidate materials of MRS 2179, MRS 2279, MRS 2500, A2P5P, A3P5P, and A3P5PS.
  • the P2Y12 receptor antagonists include clopidogrel, ticklopidine, prasugrel, AR-C67085MX, cangrelor, C1330-7, MRS 2395, and 2-methylthioadenosine-. At least one of the candidate substances of 5'-monophosphate.
  • the control sample chamber is provided in plural, and different reagents are mixed therein so as to be mixed with the blood sample;
  • the stirring control unit may apply a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber to mix the blood samples and the reagents inside the plurality of control sample chambers.
  • a plurality of the microchannels connecting the control sample chamber and the waste sample chamber may be connected in parallel, and different reagents may be contained in each microchannel;
  • the stirring control unit may apply a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber.
  • the outlet chamber may further include an outlet chamber connected to the plurality of lung sample chambers, respectively, and having a vacuum pressure introduced therein to allow blood samples inside the plurality of sample chambers to flow into the microchannels.
  • each stirrer may be rotatably installed in the sample chamber to rotate under the control of the stirring control unit to apply a shear force to the blood sample.
  • the stirring control unit may control the rotational speed of each of the stirrer to apply a shear force to the blood sample inside each sample chamber.
  • the stirrer may be any one of a straight circular rod, a tapered circular rod thinning in the radial direction from the center, a circular plate, a cone-shaped circular plate thinning in the radial direction from the center.
  • the stirrer is provided with a reagent space in which at least one of both sides and the center is opened to enable the injection of reagents;
  • the open portion of the reagent space can be closed by a seal.
  • the sealant may be made of a water-soluble membrane or a phase change material in which the seal is released when exposed to a specific temperature or more.
  • the first half of each of the microchannels may include a plurality of magnification chambers having a flow area larger than that of the microchannels, and a blockage induction channel connected between adjacent magnification chambers and inducing clogging of blood samples.
  • a plurality of micro pillars or a plurality of micro dictations may be provided in the enlarged chamber to increase a contact area with a blood sample.
  • collagen capable of attaching platelets may be coated on the inner wall surface of at least one of the inlet and the outlet of the enlargement chamber and the clogging induction channel.
  • epinephrine or adenosine diphosphate may be coated on the collagen structure coated on the inner wall surface of at least one of the inlet and the outlet of the enlargement chamber and the clogging induction channel.
  • the microchannel may be formed of any one of linear, curved, zigzag, or a combination thereof.
  • the above object is, according to another embodiment of the present invention, a platelet test chip in which a blood sample flows, a vacuum forming apparatus for applying a vacuum pressure so that the blood sample flows in the platelet test chip, and the platelet A sensing device for sensing the flow of a blood sample within the test chip;
  • the platelet test chip includes a plurality of sample chambers in which blood samples are stored, a stirrer installed inside the sample chamber to apply shear force to the blood samples, and a plurality of lungs formed to correspond to the plurality of sample chambers, respectively.
  • a sample chamber, the corresponding sample chamber and the lung sample chamber are independently connected to each other, and the microchannels through which blood samples in the sample chamber flow toward the lung sample chamber are applied to the blood samples inside the respective sample chambers.
  • An inlet chamber to distribute evenly and the plurality of waste sample chambers, respectively.
  • an outlet chamber into which the vacuum pressure from the vacuum forming apparatus is introduced.
  • the vacuum forming apparatus includes a vacuum pump connected to the outlet chamber to generate a vacuum pressure; A dead volume chamber connected in parallel with the vacuum pump and the outlet chamber to maintain a preset vacuum pressure with respect to the outlet chamber; It may include a valve for regulating the vacuum pressure applied to the outlet chamber.
  • the sensing device may include at least one of an image acquisition device for acquiring an image, and an arrival detection device for detecting a blood sample passing through a specific position in the microchannel.
  • the plurality of sample chambers is divided into a reference sample chamber and at least one control sample chamber; Selecting at least one of a final arrival distance of the blood sample flowing from the reference sample chamber to the corresponding microchannel and the blood sample flowing from the control sample chamber to the corresponding microchannel, a time to reach the final arrival distance, and a flow rate Relative comparisons can determine the properties of platelets.
  • the stirring controller may control the stirrer such that different shearing forces are applied to the blood sample accommodated in the reference sample chamber and the blood sample received in the control sample chamber.
  • the stirring control unit controls the stirrer inside the reference sample chamber so that a shear force of a size where platelets are not activated is applied to a blood sample inside the reference sample chamber, and a shear force of a size where platelets are activated is controlled by the control sample chamber.
  • the stirrer inside the control sample chamber may be controlled to be applied to an internal blood sample.
  • the same reagent may be mixed in the blood sample flowing from the reference sample chamber and the control sample chamber so that the degree of reaction of platelets according to the shear force can be determined.
  • the stirring control unit may control the stirrer so that the shear force of the size at which the platelets are not activated is 0.5 Pa or less, and the shear force of the size at which the platelets are activated is 8 Pa or more.
  • the control sample chamber is provided in plurality;
  • the stirring control unit controls the stirrer in the reference sample chamber so that shear force of the size of the platelet is not activated is applied to the blood sample inside the reference sample chamber, and the platelet activation level of the platelet can be determined according to the shear force size. It is possible to control the stirrer inside each control sample chamber such that shear forces of mutually different magnitudes capable of activating are applied to the blood sample inside each control sample chamber.
  • the plurality of microchannels connecting the reference sample chamber and the waste sample chamber may be connected in parallel, and different reagents may be accommodated in each of the microchannels;
  • a plurality of the microchannels connecting the control sample chamber and the waste sample chamber may be connected in parallel, and reagents may be accommodated so as to correspond to the reference sample chamber side while they are different from each other inside the microchannels.
  • the stirring control unit applies a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber;
  • the blood sample flowing from the control sample chamber may be mixed with a reagent that activates platelets so that the degree of response of the platelets according to the antagonist drug administration can be determined.
  • the stirring control unit applies a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber;
  • An antagonist reagent is received in the reference sample chamber and the control sample chamber and mixed with the blood sample;
  • Blood samples flowing from the control sample chamber may be mixed with reagents that activate platelets so that the degree of reaction of platelets mixed with the antagonist reagent can be determined.
  • the control sample chamber is provided in plural, and different reagents are mixed therein so as to be mixed with the blood sample;
  • the stirring control unit may apply a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber to mix the blood samples and the reagents inside the plurality of control sample chambers.
  • the plurality of microchannels connecting the control sample chamber and the waste sample chamber may be connected in parallel with each other, and different microagents may be accommodated in each microchannel.
  • the stirring control unit may apply a shear force of a size at which platelets are not activated to the blood sample inside the reference sample chamber and the control sample chamber.
  • PA (Lc / Lr) ⁇ 100
  • PA (Vc / Vr) ⁇ 100
  • PA (Tr / Tc) ⁇ 100.
  • PI platelet reverse rate among the characteristics of platelets
  • Lc, Tc, and Vc are the final reach of the blood sample, the arrival time to the final reach, and the flow rate, respectively, from the control sample chamber to the corresponding microchannel
  • Lr, Tr, and Vr may be the final arrival distance, the arrival time to the final arrival distance, and the flow rate of the blood sample flowing from the reference sample chamber to the corresponding microchannel, respectively).
  • the blood samples stirred at mutually different shear rates for the same blood sample flows through the respective microchannels and compares them, thereby the viscosity (Viscosity) of the blood sample of the test subject and This can eliminate measurement errors that can occur due to differences in hematocrit values or vWF functions.
  • various measurements such as the flow distance, flow time, maximum reach, and the like of blood samples, can be combined in one test, providing a refinement that not only reduces test time but also reduces test costs.
  • FIG. 1 is a perspective view of a platelet test chip according to the present invention
  • FIG. 2 is a plan view of a platelet test chip according to the present invention
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1,
  • FIG. 4 is a view for explaining a platelet test chip according to another embodiment of the present invention.
  • FIG. 5 is a view showing an example of a stirrer according to the present invention.
  • FIG. 6 and 7 are enlarged views of region 'A' of FIG. 1, illustrating examples of a structure inside an enlarged chamber.
  • FIG. 8 is a view showing the configuration of a platelet test apparatus according to the present invention.
  • detection device 300 vacuum forming device
  • the platelet test chip comprises a plurality of sample chambers in which blood samples are respectively stored; An agitator installed inside the sample chamber to apply shear force to the blood sample; A plurality of closed sample chambers corresponding to each of the plurality of sample chambers; A microchannel in which blood samples in the sample chamber flow to the lung sample chamber by independently connecting the corresponding sample chamber and the lung sample chamber; And a stirring control unit for individually controlling the agitators installed inside each of the sample chambers so that the magnitude of the shear force applied to the blood sample inside each of the sample chambers is individually controlled.
  • FIG. 1 is a perspective view of a platelet test chip 100 according to the present invention
  • Figure 2 is a plan view of a platelet test chip 100 according to the present invention.
  • the platelet test chip 100 according to the present invention as shown in Figures 1 and 2, a plurality of sample chambers (111, 112), agitators (121, 122), a plurality of The closed sample chambers 141 and 142, the fine channels 131 and 132, and the stirring control unit 160 (see FIG. 3) are included.
  • Blood samples are stored in the sample chambers 111 and 112, respectively.
  • Each of the sample chambers 111 and 112 is provided in an approximately circular shape, as shown in FIGS. 1 and 2, but the shape is not limited thereto.
  • the sizes of the sample chambers 111 and 112 may be manufactured in various sizes according to the purpose of use, and the material may be made of an optically transparent material so that the inside can be easily observed from the outside.
  • FIG. 1 and 2 it is an example that two sample chambers (111, 112) are provided, but the number can be provided in three or more of course.
  • 4 is a view for explaining a platelet test chip according to another embodiment of the present invention, the number of sample chambers 111 and 122 and lung sample chambers 141 and 142 may vary, and one sample chamber 111 and 122 may be used. The number of fine channels 131 and 132 connecting the closed sample chambers 141 and 142 may also vary.
  • the plurality of closed sample chambers 141 and 142 are provided to correspond to the number of sample chambers 111 and 112. That is, when two sample chambers 111 and 112 are formed as in the embodiment shown in FIGS. 1 and 2, two closed sample chambers 141 and 142 are provided correspondingly.
  • the closed sample chambers 141 and 142 may be provided in a substantially circular shape like the sample chambers 111 and 112.
  • Corresponding sample chambers 111 and 112 and closed sample chambers 141 and 142 are independently connected by fine channels 131 and 132, respectively. Accordingly, the blood samples contained in the respective sample chambers 111 and 112 flow independently to the corresponding lung sample chambers 141 and 142 through the respective microchannels 131 and 132.
  • the fine channels 131 and 132 may be provided in a zigzag form, but may be provided in various forms such as a straight line, a curved line, or a combination thereof.
  • stirrers 121 and 122 are installed inside the respective sample chambers 111 and 112.
  • the stirrers 121 and 122 apply shear force to blood samples contained in the sample chambers 111 and 112.
  • the stirrers 121 and 122 are rotatably installed in the sample chambers 111 and 112, and are rotated under the control of the stirring controller 160, thereby applying shear force to the blood sample.
  • the stirring control unit 160 controls the operations of the stirrers 121 and 122.
  • the stirring control unit 160 is provided to control each of the stirrers 121 and 122 individually. That is, when the stirrers 121 and 122 are rotatably installed in the sample chambers 111 and 112, the stirring control unit 160 controls the rotation speeds of the stirrers 121 and 122 differently, thereby allowing the blood contained in each of the sample chambers 111 and 112.
  • the magnitude of shear force applied to the sample can be different. Accordingly, the magnitude of the shear force applied to the blood samples in each of the sample chambers 111 and 112 is different from each other so that the activation or degree of activation of platelets in the blood sample can be individually controlled.
  • the stirring controller 160 rotates the stirrers 121 and 122 by a non-contact method such as magnetic force. More specifically, referring to FIG. 3, the magnets M rotatably provided on the lower outer sides of the sample chambers 111 and 112 are disposed, and the stirring control unit 160 controls the rotation of the magnets M so that the samples are disposed. Rotation of the agitators 121 and 122 in the chambers 111 and 112 may be controlled.
  • any one of the sample chambers 111 and 112 will be defined as the reference sample chamber 111 and the other will be described as the control sample chamber 112.
  • the reference sample chamber 111 may be one or more and at least one sample chamber 111 and 112 may function as the control sample chamber 112.
  • the blood sample flowing from the reference sample chamber 111 to the corresponding microchannel 131 and the blood sample flowing from the control sample chamber 112 to the corresponding microchannel 132 are the final reach distance to the final reach distance.
  • the characteristics of platelets are measured by comparing at least one of arrival time and flow rate.
  • the stirring control unit 160 controls the stirrers 121 and 122 so that different shearing forces are applied to the blood sample contained in the reference sample chamber 111 and the blood sample contained in the control sample chamber 112. As an example.
  • the stirring control unit 160 controls the stirrers 121 and 122 inside the reference sample chamber 111 so that shear force of a size at which platelets are not activated is applied to the blood sample inside the reference sample chamber 111
  • the stirrers 121 and 122 inside the control sample chamber 112 may be controlled such that shear force of a size at which platelets are activated is applied to the blood sample inside the control sample chamber 112.
  • the stirring control unit 160 controls the respective stirrers 121 and 122 so that a shearing force of 0.5 Pa or less is applied to the inside of the reference sample chamber 111 and a shearing force of 8 Pa or more is applied to the inside of the control sample chamber 112. can do.
  • the stirring control unit 160 controls the stirrers 121 and 122 to be applied to all the platelets evenly for a sufficient time when applying the shear force of the size to activate the platelets, that is, when applying the shear force to the control sample chamber 112. Can be.
  • the stirring controller 160 rotates the stirrers 121 and 122 in the control sample chamber 112 for one time selected from 10 to 300 seconds.
  • the platelets of the blood samples inside the reference sample chamber 111 flow along the microchannels 131 and 132 without being activated, and the inside of the control sample chamber 112. Platelets of the blood sample flow along the microchannels 131 and 132 in an activated state.
  • a plurality of control sample chambers 112 are provided, and the stirring control unit 160 controls such that shear forces of different sizes capable of activating platelets are applied to blood samples inside each control sample chamber 112.
  • the agitators 121 and 122 inside the sample chamber 112 may be controlled.
  • the stirring control unit 160 controls the stirrers 121 and 122 inside the reference sample chamber 111 so that shear force of a size at which platelets are not activated is applied to the blood sample inside the reference sample chamber 111.
  • the platelet test chip 100 according to the embodiment shown in (c) or (d) of FIG. 4 may be used.
  • a shear force of 0.5 Pa or less is applied to the blood sample in the reference sample chamber 111
  • a shear force of 3 Pa, 5 Pa, and 8 Pa is applied to the three control sample chambers 112, respectively. It is possible to measure the response of the platelets according to this, it is possible to measure the critical shear force of the current blood sample.
  • the same sample may be mixed in the blood sample flowing from the reference sample chamber 111 and the control sample chamber 112 so that the degree of reaction of platelets according to the shear force can be discriminated.
  • the reagent has a specific ability to activate platelets, for example, collagen, adenosine diphosphate (ADP), epinephrine (Apineidrine), arachidonic acid, thromboxane A2, thrombin, iso- It can be any one or combination of agonists such as thrombin receptor activating peptide (iso-TRAP).
  • collagen, adenosine diphosphate (ADP), and epinephrine are respectively received in the microchannel 131 connecting the reference sample chamber 111 and the lung sample chamber 141, the control sample chamber 112 ), Collagen, adenosine diphosphate (ADP), and epinephrine (Epinephrine) may be accommodated in the microchannel 132 connecting the lung sample chamber 142, respectively.
  • the degree of reaction according to each reagent can be measured using one platelet test chip 100.
  • the stirring control unit 160 applies a shear force of a size at which platelets are not activated and a shear force of 0.5 Pa or less to the blood samples inside the reference sample chamber 111 and the control sample chamber 112.
  • blood samples flowing from the control sample chamber 112 may be allowed to flow in a mixed state with the reagents. Through this, it is possible to determine the degree of reaction of platelets according to the type of reagent.
  • the reference sample chamber 111 and the control sample chamber (112) when measuring the degree of response to the drug using a blood sample of a patient taking an antagonist drug such as a platelet-related drug, for example, antiplatelet agent, the reference sample chamber 111 and the control sample chamber (112)
  • the blood sample flowing from the control sample chamber 112 is mixed with a reagent that activates platelets in a state where a shear force of a size at which platelets are not activated or a shear force of 0.5 Pa or less is applied to the blood sample inside.
  • a reagent having a characteristic of activating platelets is contained in the control sample chamber 112 and mixed with the blood sample, or inside the microchannel 132 connected to the control sample chamber 112, for example, the enlargement chambers 151 and 152 to be described later. ) It may be applied or accommodated in the interior or clogging induction channels 153 and 154, which will be described later.
  • an antagonist drug such as an antiplatelet agent that the patient is taking, is acting on the patient, that is, the degree of platelet response to drug administration.
  • the function of platelets is normal or the blood samples of aspirin and clopidogrel takers are antagonist adenosine diphosphate (agonist ADP), prosraglandin E, fibrinogen, arachidonic acid ( When reacted with a reagent such as arachidonic acid), if the function of the platelet of the subject is normal, the flow path inside the microchannels 131 and 132 will be blocked within a short time and the flow may stop or the flow distance may appear short. On the contrary, if there is an abnormality in platelet function, the blockage time is increased or the moving distance is increased compared to normal.
  • agonist ADP antagonist adenosine diphosphate
  • prosraglandin E prosraglandin E
  • fibrinogen fibrinogen
  • arachidonic acid arachidonic acid
  • the test results are compared with the results of the two experiments, for example, the flow distance.
  • the degree of response of platelets to can be discriminated.
  • the degree of response of the drug in the blood sample of the patient before taking the platelet-related drug may be applied to the selection of the drug to be taken. More specifically, the reference sample chamber 111 is applied to the blood sample inside the reference sample chamber 111 and the control sample chamber 112 in a state where a shear force of a size at which platelets are not activated and a shear force of 0.5 Pa or less is applied. And an antagonist reagent such as an antiplatelet agent, etc., to be taken by the patient in the control sample chamber 112 and mixed with the blood sample.
  • an antagonist reagent such as an antiplatelet agent, etc.
  • the blood sample flowing from the control sample chamber 112 is prepared such that reagents having a property of activating platelets are mixed.
  • the reagent for activating platelets may be applied or accommodated in the enlargement chambers 151 and 152 or inside the clogging induction channels 153 and 154, which will be described later.
  • the reagent for activating platelets may be an agonist reagent such as collagen, adenosine diphosphate (ADP), and epinephrine.
  • antagonist reagents such as antiplatelet agents and the like can be antagonists such as aspirin, P2Y1 receptor antagonists and P2Y12 receptor antagonists.
  • the P2Y1 receptor antagonists may include at least one of candidate materials of MRS 2179, MRS 2279, MRS 2500, A2P5P, A3P5P, and A3P5PS.
  • P2Y12 receptor antagonists include clopidogrel, ticklopidine, prasugrel, AR-C67085MX, cangrelor, C1330-7, MRS 2395, and 2-methylthioadenosine-5. It may include at least one of candidate substances of '-monophosphate.
  • a plurality of control sample chamber 112 is provided, and different reagents in the control sample chamber 112, blood samples It can be mixed with.
  • the stirring control unit 160 applies a shear force of a size at which platelets are not activated to the blood samples inside the reference sample chamber 111 and the control sample chamber 112, the platelet is controlled inside the control sample chamber 112. Activation is not done, blood sample and reagent are mixed.
  • reagents may be contained within each microchannel.
  • the reagent may be formed by coating the inside of the microchannel.
  • the platelet test chip 100 may include an inlet chamber 110 and an outlet chamber 140 as shown in FIGS. 1 and 2.
  • the inlet chamber 110 is formed to be connected to the plurality of sample chambers 111 and 112. Referring to FIG. 3, the upper portion of the inlet chamber 110 may be opened to the outside to inject a blood sample. In addition, the lower portion of the inlet chamber 110 is in communication with each of the sample chambers 111 and 112, so that blood samples injected into the inlet chamber 110 are equally distributed to the respective sample chambers 111 and 112.
  • the outlet chamber 140 is connected to the respective closed sample chambers 141 and 142.
  • the vacuum forming apparatus 300 which will be described later, is connected through the outlet chamber 140 to introduce a vacuum pressure into the outlet chamber 140, whereby blood samples inside the plurality of sample chambers 111 and 112 may form the outlet chamber 140.
  • the outlet chamber 140 as shown in Figure 1, the inlet is sealed with a rubber stopper (140a) may enable the inflow of the vacuum pressure into the outlet chamber 140.
  • the end of the vacuum forming apparatus 300 is provided in the form of a syringe needle so that the stopper 140a blocks the outlet chamber 140 and the outlet chamber is injected through the needle. 140 may be connected to the inside.
  • the connection structure between the closed structure of the outlet chamber 140 and the vacuum forming apparatus 300 may be implemented by those skilled in the art in various forms in addition to the above-described examples, of course, the technical spirit of the present invention is not limited thereto.
  • the agitators 121 and 122 may be provided in a straight circular rod shape, a tapered circular rod shape thinning in the radial direction from the center, a circular plate shape, a conical circular plate shape thinning in the radial direction from the center and the like.
  • the stirring control unit 160 applies the shear force of the size activating the platelets, that is, when applying the shear force to the control sample chamber 112
  • the stirring time is at the above-described 10 seconds according to the shape of the stirrer (121, 122) It can vary between 300 seconds.
  • the stirrers 121 and 122 have a round shape
  • platelets may be applied by shearing by rotating about 180 seconds.
  • the stirrers 121 and 122 have a conical circular plate shape, the stirrers 121 and 122 may be rotated about 10 seconds because they are very short.
  • the stirrers 121 and 122 are rotated by the non-contact force as described above, not only stirring but also shear flow occurs in the sample chambers 111 and 112 according to the rotation speed of the stirrers 121 and 122.
  • This type of shear flow may be an intermittent shear flow in the case of a straight circular rod shape, and a continuous shear flow in the case of a circular plate shape.
  • the agitators 121 and 122 may be made of a metal material which may be magnetized by magnetic force and may be affected by magnetic force without mechanical connection as described above.
  • the diameters or thicknesses of the agitators 121 and 122 preferably have a cut size of the depths of the sample chambers 111 and 112, and the lengths or diameters of the agitators 121 and 122 are about 80 to 90% of the diameters of the sample chambers 111 and 112. It would be appropriate to have a size.
  • FIG. 5 is a view showing an example of the agitator (121,122) according to the present invention, it has an example having a straight circular rod shape.
  • the agitators 121 and 122 according to the present invention may store the above-described reagents in a liquid or solid state therein.
  • the stirrers 121 and 122 may be provided with a reagent space 111b in which at least one of both sides and the center of the stirrer 121 and 122 is opened.
  • the open portion of the reagent space 111b may be closed by the sealing material 111a.
  • a phase change material such as paraffin wax or a water-soluble membrane such as starch may be used.
  • the phase change material such as paraffin wax
  • the solid is changed into a liquid and the sealing of the agitators 121 and 122 is released.
  • the reagents inside the agitators 121 and 122 are separated from each other by the centrifugal force in the sample chambers 111 and 112. Is released.
  • starch may be easily melted and released when exposed to blood, and reagents may be released into the sample chambers 111 and 112.
  • the sealing material 111a of the phase change material when used, the sealing may be released by irradiating a seal material 111a with a laser or electromagnetic wave to heat the phase change material to melt.
  • the sealing material 111a when used as the water-soluble membrane, when the agitators 121 and 122 are rotated to dissolve quickly in the blood sample, the sealing may be released and the reagents inside the agitators 121 and 122 may be released.
  • the principle that the reagent is released is the centrifugal force of the rotation of the stirrer (121, 122) is the main driving force.
  • the reagents filled in the stirrers 121 and 122 may be respectively filled in the form of a liquid phase and a liquid phase, a liquid phase and a solid phase in the stirrers 121 and 122, and may be stored separately in different spaces. Moreover, when the reagents are only filled in solid phase, they may be stored mixed with each other as fine particles.
  • a plurality of enlargement chambers 151 and 152 may be formed in the first half of each of the microchannels 131 and 132 of the platelet test chip 100 according to the present invention.
  • two enlargement chambers 151 and 152 are formed in one microchannel 131 and 132, but the number is not limited thereto.
  • the enlarged chambers 151 and 152 adjacent to each other are connected by the blockage induction channels 153 and 154, and the blockage of the blood sample is induced by the blockage induction channels 153 and 154.
  • the blood sample flowing through the microchannels 131 and 132 flows into the first enlargement chambers 151 and 152 to reduce the flow rate, and flows through the blocked induction channels 153 and 154 inside the enlargement chambers 151 and 152.
  • platelet aggregation and adhesion increases.
  • the blood sample When the enlarged channel is properly disposed in the microchannels 131 and 132, the blood sample may have a characteristic of moving while experiencing a pulsating pressure or a shear force, and thus may simulate the flow in the living body.
  • the blockage induction channels 153 and 154 connecting the enlargement chambers 151 and 152 describe the constriction existing inside the blood vessel.
  • a structure may be formed inside the enlarged chambers 151 and 152 to increase the contact area with the blood sample.
  • 6 and 7 are enlarged views of region 'A' of FIG. 1 and show examples of structures inside the enlarged chambers 151 and 152.
  • 6 illustrates an example in which a plurality of fine beads 155 are disposed in the enlargement chambers 151 and 152 to increase the contact area with the blood samples
  • FIG. 7 the contact with the blood samples in the enlargement chambers 151 and 152.
  • a plurality of fine pillars 156 are provided to increase an area.
  • the contact area with the blood sample is increased, the flow rate of the blood sample decreases, and as the flow rate decreases, platelet adhesion or aggregation may be more actively performed.
  • collagen which is capable of attaching platelets
  • collagen may be coated on the inner wall surfaces of the inlet, the outlet, or the clogging induction channels 153 and 154 of the enlarged chambers 151 and 152 to increase the adhesion of the platelets.
  • epinephrine or adenosine diphosphate (ADP) may be coated on the coated collagen structure.
  • the platelet test apparatus includes a platelet test chip 100, a vacuum forming apparatus 300, and a sensing device 200.
  • the platelet test chip 100 is a place where the flow of the blood sample occurs, the configuration is as described above, the description thereof will be omitted.
  • the vacuum forming apparatus 300 applies a working pressure so that the blood sample can flow in the platelet test chip 100.
  • the vacuum forming apparatus 300 may include a vacuum pump 310, a dead volume chamber 320, a pressure measuring sensor 330, and a valve 340.
  • the vacuum pump 310 is connected with the outlet chamber 140 to generate a vacuum pressure.
  • the end of the vacuum pump 310 that is, the part connected to the outlet chamber 140 is provided in the form of a syringe needle to provide rubber. It may be inserted into the stopper 140a and connected to the inside of the outlet chamber 140.
  • the vacuum pump 310 is provided in the form of a syringe pump.
  • the dead volume chamber 320 is connected in parallel to the vacuum pump 310 and the outlet chamber 140 to maintain a predetermined vacuum pressure for the outlet chamber 140.
  • the valve 340 is installed between the vacuum pump 310 and the outlet chamber 140 to regulate the vacuum pressure applied to the outlet chamber 140.
  • the solenoid valve is applied to the valve 340 as an example.
  • the pressure measuring sensor 330 measures the vacuum pressure applied to the outlet chamber 140.
  • the sensing device 200 detects a flow of a blood sample in the platelet test chip 100.
  • the sensing device 200 is provided as an image acquisition device for acquiring an image, such as a CCD or CMOS, or the arrival detection device 200 for detecting a blood sample passing through a specific position inside the microchannels 131 and 132. Yes.
  • the measurement of the captured image enables measurement of the final reach distance, the arrival time to the final reach distance, the flow rate, and the like of the blood sample.
  • the arrival detecting apparatus 200 it may be applied to detect whether the blood sample reaches a specific position of the distal ends of the microchannels 131 and 132, and measure the arrival time.
  • the arrival of a blood sample may be detected using an LED or a photodiode sensor.
  • the main controller 400 controls the overall function of the platelet test apparatus according to the present invention.
  • a signal such as an image transmitted from the sensing device 200 may be processed to calculate a reach distance, a arrival time, a flow speed, and the like, and to control a vacuum forming apparatus 300 such as a syringe pump.
  • the stirring control unit 160 by giving the command required to the stirring control unit 160 so that the rotational speed of the stirrer (121, 122) is different, the stirring control unit 160 to individually control the stirrer (121, 122) inside each sample chamber (111, 112) To control.
  • Blood samples injected into the inlet chamber 110 are evenly distributed to the respective sample chambers 111 and 112, ie, the reference sample chamber 111 and the control sample chamber 112.
  • the stirring control unit 160 rotates each of the stirrers 121 and 122.
  • the stirrers 121 and 122 in the reference sample chamber 111 control the rotation speed such that shear force of a size at which platelets are not activated is applied, and the stirrers 121 and 122 in the control sample chamber 112 are controlled.
  • the rotational speed is controlled to apply a shear force of a size at which platelets are activated.
  • the valve 340 of the vacuum forming apparatus 300 is opened, and the vacuum pressure is applied to the entrance chamber side by the vacuum pump 310. At this time, the magnitude of the vacuum pressure applied to the outlet chamber 140 may be kept constant by the dead volume chamber 320.
  • the main controller 400 determines the final reach and final distance of the blood sample.
  • the time to reach the distance, the flow rate, etc. are calculated, and the results of the reference sample chamber 111 and the control sample chamber 112 are compared with each other, so that the degree of shear induced activation of the blood sample and the degree of aggregation or adhesion of the platelets It becomes measurable.
  • Lc, Tc, and Vc are the final reach distance of the blood sample flowing from the control sample chamber 112 to the corresponding microchannel 132, the arrival time to the final reach distance, and the flow rate, respectively.
  • the present invention is applicable to the property test of platelets in blood samples, for example, property test such as platelet aggregation rate, platelet inhibition rate, drug response and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ecology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치에 관한 것이다. 본 발명에 따른 혈소판 검사용 칩은 혈액 샘플이 각각 저장되는 복수의 샘플 챔버와; 상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와; 상기 복수의 샘플 챔버 각각에 대응하도록 마련되는 복수의 폐샘플 챔버와; 상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과; 각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부를 포함하는 것을 특징으로 한다. 이에 따라, 검사 대상자의 혈액 샘플의 점도(Viscosity) 및 헤마토크릿의 수치나 vWF의 기능과 수치와 무관하게 혈액 샘플 내의 혈소판의 특성 검사가가 가능하게 된다.

Description

혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치
본 발명은 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치에 관한 것으로서, 보다 상세하게는 미세 채널의 유로 설계를 통해 검사 대상자의 혈액 샘플의 점도(Viscosity) 및 헤마토크릿의 수치나 vWF의 기능과 수치와 무관하게 혈액 샘플 내의 혈소판의 특성 검사가 가능한 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치에 관한 것이다.
혈소판 기능 검사는 주로 선천성 혈소판 기능 이상이나 수술 전 선별검사로 많이 사용되고 특히, 혈소판의 수적 이상이 없는 출혈성 질환에서 선천성 혹은 후천성 혈소판 기능 이상에 의한 출혈성 질환을 감별하는 데 중요한 검사이다.
최근에는 이러한 혈소판 기능 검사가 심혈관 질환의 치료 및 예방에 사용되는 항혈소판 약제로 인한 출혈성 경향의 증가나 약제의 내성에 대한 검사를 위해서도 많이 이용되고 있는 실정이다.
출혈시간(Bleeding time, BT) 검사는 약 100년 전에 개발된 출혈시간 측정검사로서 현재까지로 혈소판 기능 선별검사로 사용되고 있다. 그러나, 현재 사용되고 있는 혈소판 기능 검사는 표준화가 어렵고 임상적 유용성이 적으며 침습적 방법을 사용해야 하는 문제가 있고, 이에 따라 혈소판 기능을 측정할 수 있는 객관화된 측정법이 요구되고 있다.
위와 같은 문제점을 해결하기 위해 고안되어 혈소판의 기능을 측정하는 기술로 사용되고 있는 Platelet Function Analyzer(예: PFA-100)의 경우에는, 고전단율에서 활성화된 von Willebrand Factor (vWF, 폰 윌브란트 팩터)에 의하여 혈소판이 응집되는 특성이 있는데, 이를 측정하기 위하여 긴 모세관에 고전단율로 전혈을 유동시킨 후 콜라젠(Collagen)과 함께 아데노신2인산(ADP) 혹은 에피네프린(Epinephrine)이 코팅된 오리피스(Orifice)에 혈소판이 응집되어 오리피스 구멍이 막히는 막힘 시간을 압력 또는 유량 등으로 측정하는 방법이 시행되고 있다.
이와 같은 혈소판 기능 검사를 위해서는 vWF의 기능에 절대적으로 의존하여야 하고 헤마토크릿(Hct)에 의존적인 검사가 이루어지며 항아스피린(Aspirin) 또는 항클로피도그렐(Clopidogrel) 검사가 불가한 단점이 있다. 또한, 혈소판의 기능 검사를 위하여 두 단계에 걸쳐 검사가 필요하여 검사 비용이 높아지는 단점을 가지고 있다.
특히, vWF를 활성화하기 위하여 혈액 샘플이 높은 전단율로 일정시간 이상에 노출되어야 하는데, 이를 위해 PFA-100에서는 상당히 긴 모세관에 빠른 속도로 혈액을 유동시키는 방법을 채택하였다. 그러나, 이러한 방법은 다량의 혈액이 요구될 뿐 아니라, 전단율이 최대가 되는 모세관 벽 근처의 vWF는 쉽게 활성화될 수 있지만 전단율이 최소가 되는 관 중심부에 위치한 vWF는 활성화되지 못하는 문제점을 갖고 있으며 이로 인해 검사결과의 반복성에 문제를 초래할 수 있는 단점을 지니고 있다.
상기와 같은 문제점을 해소하기 위해, 한국등록특허 제10-1193566호에서는 혈액 샘플이 내부에 수용되는 샘플 저장실, 샘플 저장실의 내부에 설치되어 혈액 샘플 내에 전단유동을 유발시키는 교반기, 교반기에 의해 교반된 혈액을 다수개의 경로로 분리시켜 유동시키는 병렬채널, 병렬채널의 단부에 각각 연결되어 일정한 압력을 유지하며 교반된 혈액을 병렬채널을 따라 유동시키는 진공장치, 및 병렬채널의 후단 측에 설치되어 병렬채널로 광을 조사하는 광원, 병렬채널 내의 혈액을 투과한 광을 수신하여 전기적 신호로 바꾸어 혈액 유량을 측정하는 이미지 센서를 포함하는 마이크로칩 기반 혈소판 복합기능 검사 장치를 제안하고 있다. 이를 통해, 한 번의 검사로 다수의 혈소판 기능에 대한 검사가 가능하고, 검사 시간이 감소하며 검사 비용도 절감되는 효과를 제공하고 있다.
그런데, 마이크로칩 기반 혈소판 복합기능 검사 장치는 하나의 샘플 저장실 내에서 혈액 샘플을 교반하여 다수의 병렬채널로 유동시켜 혈액이 유동한 절대 거리를 측정하여 혈소판의 기능을 검사하는 것을 기본으로 하고 있어, 혈소판의 활성화 여부와 무관하게 검사 대상자의 혈액의 점도(Viscosity) 또는 헤마토크릿의 크기에 따라 혈액의 유동 거리가 달라진다는 문제점은 여전히 해결하지 못하고 있다. 또한, vWF의 기능에 여전히 절대적으로 의존하여야 하는 문제도 해결되지 못하고 있으며 항혈소판제의 약물 반응 검사를 수행할 수 없는 단점이 있다.
예를 들어, 검사 대상자의 혈액의 점도가 높은 경우 병렬채널을 유동한 거리는 짧아질 수 있는데, 자칫 이와 같은 현상을 혈소판이 활성화된 것으로 판단하는 오류를 범할 수 있다.
따라서, 전단력에 의하여 혈소판의 활성화 정도 또는 항혈소판 제제에 따라서 혈소판의 반응 정도를 혈액의 이동거리로 판정하려는 기술에 있어서 불필요하게 영향을 미칠 수 있는 혈액의 점도(Viscosity), 헤마토크릿, vWF 등의 영향을 검사에서 배제시킬 수 있는 새로운 검사 칩이나 검사 장치 그리고 검사방법의 개발이 요구되고 있다.
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 미세 채널의 유로 설계를 통해 검사 대상자의 혈액 샘플의 점도(Viscosity) 및 헤마토크릿의 수치나 vWF의 기능과 수치와 무관하게 혈액 샘플 내의 혈소판의 특성 검사가 가능한 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치를 제공하는데 그 목적이 있다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적은 본 발명에 따라, 혈액 샘플이 각각 저장되는 복수의 샘플 챔버와; 상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와; 상기 복수의 샘플 챔버 각각에 대응하도록 마련되는 복수의 폐샘플 챔버와;
상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과; 각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부를 포함하는 것을 특징으로 하는 혈소판 검사용 칩에 의해서 달성된다.
여기서, 상기 복수의 샘플 챔버는 기준 샘플 챔버와 적어도 하나의 제어 샘플 챔버로 구분되며; 상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플과 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 상기 최종 도달 거리까지의 도달 시간, 유동 속도 중 적어도 어느 하나를 선택하여 상대적 비교를 통해 혈소판의 특성이 측정될 수 있다.
또한, 상기 교반 제어부는 상기 기준 샘플 챔버에 수용된 혈액 샘플과 상기 제어 샘플 챔버에 수용된 혈액 샘플에 상호 상이한 전단력이 인가되도록 상기 교반기를 제어할 수 있다.
그리고, 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고, 혈소판이 활성화되는 크기의 전단력이 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 제어 샘플 챔버 내부의 상기 교반기를 제어할 수 있다.
그리고, 상기 기준 샘플 챔버와 제어 샘플 챔버로부터 유동하는 혈액 샘플에는 전단력에 따른 혈소판의 반응 정도가 판별 가능하도록 동일한 시약이 혼합될 수 있다.
그리고, 상기 시약은 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine), 아라키돈산(Arachidonic acid), 트롬복산 A2, 트롬빈(thrombin), 이소-트롬빈 수용체 활성화 펩티드 (iso-TRAP)과 같은 아고니스트(Agonist) 중 어느 하나 또는 조합일 수 있다.
그리고, 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 0.5 Pa 이하가 되고, 혈소판이 활성화되는 크기의 전단력이 8 Pa 이상이 되도록 해당 교반기를 제어할 수 있다.
그리고, 상기 제어 샘플 챔버는 복수개로 마련되고; 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고, 전단력의 크기에 따른 혈소판의 활성화 정도가 판별 가능하게 혈소판의 활성화가 가능한 상호 상이한 크기의 전단력이 각각의 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 각각의 상기 제어 샘플 챔버 내부의 상기 교반기를 제어할 수 있다.
또한, 상기 기준 샘플 챔버와 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이한 시약이 수용되고; 상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이하되 상기 기준 샘플 챔버 측에 대응하도록 시약이 수용될 수 있다.
그리고, 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며; 상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 안타고니스트(antagonist) 약물 복용에 따른 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약과 혼합될 수 있다.
그리고, 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며; 상기 기준 샘플 챔버와 상기 제어 샘플 챔버에는 안타고니스트(antagonist) 시약이 수용되어 혈액 샘플과 혼합되며; 상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 상기 안타고니스트(antagonist) 시약과 혼합된 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약이 혼합될 수 있다.
또한, 상기 안타고니스트(antagonist) 시약은 아스피린, P2Y1 리셉터 안타고니스트(Receptor antagonists) 및 P2Y12 리셉터 안타고니스트(Receptor antagonists)와 같은 안타고니스트(Antagonists) 중 어느 하나 또는 조합일 수 있다.
그리고, 상기 P2Y1 리셉터 안타고니스트(Receptor antagonists)는 MRS 2179, MRS 2279, MRS 2500, A2P5P, A3P5P, 및 A3P5PS의 후보 물질 중 적어도 어느 하나일 수 있다.
그리고, 상기 P2Y12 리셉터 안타고니스트(Receptor antagonists)로는 클로피도그렐(clopidogrel), 티클로피딘(ticlopidine), 프라수그렐(prasugrel), AR-C67085MX, 칸그렐러(cangrelor), C1330-7, MRS 2395, 및 2-methylthioadenosine-5'-monophosphate의 후보 물질 중 적어도 어느 하나일 수 있다.
그리고, 상기 제어 샘플 챔버는 복수개로 마련되고, 내부에 상호 상이한 시약이 혈액 샘플과 혼합 가능하게 수용되며; 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하여 상기 복수의 제어 샘플 챔버 내부의 혈액 샘플과 상기 시약을 혼합할 수 있다.
또한, 상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되되, 각각의 미세 채널 내부에는 상호 상이한 시약이 수용되며; 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가할 수 있다.
그리고, 상기 복수의 샘플 챔버와 연결되도록 형성되어, 주입되는 혈액 샘플을 각각의 상기 샘플 챔버에 균등하게 분배하는 입구 챔버와; 상기 복수의 폐샘플 챔버와 각각 연결되고, 상기 복수의 샘플 챔버 내부의 혈액 샘플이 상기 미세 채널로 유동 가능하게 하는 진공 압력이 유입되는 출구 챔버를 더 포함할 수 있다.
또한, 각각의 상기 교반기는 상기 샘플 챔버 내부에 회전 가능하게 설치되어 상기 교반 제어부의 제어에 따라 회전하여 혈액 샘플에 전단력을 인가할 수 있다.
그리고, 상기 교반 제어부는 각각의 상기 교반기의 회전 속도를 개별적으로 제어하여 각각의 상기 샘플 챔버 내부의 혈액 샘플에 전단력을 인가할 수 있다.
또한, 상기 교반기는 일자형 원형봉, 중심으로부터 반경 방향으로 얇아지는 테이퍼진 원형봉, 원형판, 중심으로부터 반경 방향으로 얇아지는 원추형 원형판 형상 중 어느 하나할 수 있다.
그리고, 상기 교반기에는 시약의 주입이 가능하게 양측 및 중앙 중 적어도 한 곳이 개방된 시약 공간이 형성되며; 상기 시약 공간의 개방된 부분은 밀봉재에 의해 폐쇄될 수 있다.
그리고, 상기 밀봉재는 수용성 맴브레인 또는 특정 온도 이상에 노출되는 경우 밀봉이 해제되는 상변화 물질로 마련될 수 있다.
그리고, 각각의 상기 미세 채널의 전반부에는 유동 면적이 상기 미세 채널보다 넓은 복수의 확대 챔버와, 인접한 확대 챔버 간은 연결하되 혈액 샘플의 막힘을 유도하는 막힘 유도 채널을 포함할 수 있다.
그리고, 상기 확대 챔버의 내부에는 혈액 샘플과의 접촉 면적이 증가하도록 복수의 미세 기둥 또는 복수의 미세 구술이 마련될 수 있다.
그리고, 상기 확대 챔버의 입구 및 출구, 상기 막힘 유도 채널 중 적어도 하나의 내벽면에는 혈소판의 부착이 가능한 콜라젠이 코팅될 수 있다.
그리고, 상기 확대 챔버의 입구 및 출구, 상기 막힘 유도 채널 중 적어도 하나의 내벽면에 코팅된 상기 콜라젠 구조체 상에는 에피네프린 또는 아데노신2인산(ADP)이 코팅될 수 있다.
그리고, 상기 미세 채널은 직선형, 곡선형, 지그재그형 중 어느 하나 또는 이들의 조합으로 이루어질 수 있다.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 혈액 샘플이 유동하는 혈소판 검사용 칩과, 상기 혈소판 검사용 칩 내에서 혈액 샘플이 유동 가능하게 진공 압력을 인가하는 진공 형성 장치와, 상기 혈소판 검사용 칩 내에서의 혈액 샘플의 유동을 감지하는 감지 장치를 포함하며; 상기 혈소판 검사용 칩은 혈액 샘플이 각각 저장되는 복수의 샘플 챔버와, 상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와, 상기 복수의 샘플 챔버 각각에 대응하도록 형성되는 복수의 폐샘플 챔버와, 상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과, 각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부와, 상기 복수의 샘플 챔버와 연결되도록 형성되어, 주입되는 혈액 샘플을 각각의 상기 샘플 챔버에 균등하게 분배하는 입구 챔버와, 상기 복수의 폐샘플 챔버와 각각 연결되고, 상기 진공 형성 장치로부터의 진공 압력이 유입되는 출구 챔버를 포함하는 것을 특징으로 하는 혈소판 검사 장치에 의해서 달성될 수 있다.
그리고, 상기 진공 형성 장치는 상기 출구 챔버와 연결되어 진공 압력을 생성하는 진공 펌프와; 상기 진공 펌프 및 상기 출구 챔버에 대해 병렬로 연결되어 상기 출구 챔버에 대해 기 설정된 진공 압력을 유지시키는 데드볼륨 챔버와; 상기 출구 챔버로 인가되는 진공 압력을 단속하는 밸브를 포함할 수 있다.
그리고, 상기 감지 장치는 영상을 획득하는 영상 획득 장치와, 상기 미세 채널 내부의 특정 위치를 통과하는 혈액 샘플을 감지하기 위한 도달 감지 장치 중 적어도 하나를 포함할 수 있다.
여기서, 상기 복수의 샘플 챔버는 기준 샘플 챔버와 적어도 하나의 제어 샘플 챔버로 구분되며; 상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플과 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 상기 최종 도달 거리까지의 도달 시간, 유동 속도 중 적어도 어느 하나를 선택하여 상대적 비교를 통해 혈소판의 특성이 측정될 수 있다.
그리고, 상기 교반 제어부는 상기 기준 샘플 챔버에 수용된 혈액 샘플과 상기 제어 샘플 챔버에 수용된 혈액 샘플에 상호 상이한 전단력이 인가되도록 상기 교반기를 제어할 수 있다.
그리고, 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고, 혈소판이 활성화되는 크기의 전단력이 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 제어 샘플 챔버 내부의 상기 교반기를 제어할 수 있다.
그리고, 상기 기준 샘플 챔버와 제어 샘플 챔버로부터 유동하는 혈액 샘플에는 전단력에 따른 혈소판의 반응 정도가 판별 가능하도록 동일한 시약이 혼합될 수 있다.
그리고, 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 0.5 Pa 이하가 되고, 혈소판이 활성화되는 크기의 전단력이 8 Pa 이상이 되도록 해당 교반기를 제어할 수 있다.
상기 제어 샘플 챔버는 복수개로 마련되고; 상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고, 전단력의 크기에 따른 혈소판의 활성화 정도가 판별 가능하게 혈소판의 활성화가 가능한 상호 상이한 크기의 전단력이 각각의 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 각각의 상기 제어 샘플 챔버 내부의 상기 교반기를 제어할 수 있다.
그리고, 상기 기준 샘플 챔버와 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이한 시약이 수용되고; 상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이하되 상기 기준 샘플 챔버 측에 대응하도록 시약이 수용될 수 있다.
그리고, 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며; 상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 안타고니스트(antagonist) 약물 복용에 따른 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약과 혼합될 수 있다.
그리고, 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며; 상기 기준 샘플 챔버와 상기 제어 샘플 챔버에는 안타고니스트(antagonist) 시약이 수용되어 혈액 샘플과 혼합되며; 상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 상기 안타고니스트(antagonist) 시약과 혼합된 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약이 혼합될 수 있다.
그리고, 상기 제어 샘플 챔버는 복수개로 마련되고, 내부에 상호 상이한 시약이 혈액 샘플과 혼합 가능하게 수용되며; 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하여 상기 복수의 제어 샘플 챔버 내부의 혈액 샘플과 상기 시약을 혼합할 수 있다.
그리고, 상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되되, 각각의 미세 채널 내부에는 상호 상이한 시약이 수용되며; 상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가할 수 있다.
그리고, 혈소판의 특성 중 혈소판 응집률(PA)은 수학식 PA = (Lc/Lr)×100, PA = (Vc/Vr)×100, PA = (Tr/Tc)×100 중 어느 하나에 의해 산출되며; 혈소판의 특성 중 혈소판 역제율(PI)은 수학식 PI=(1-(Lc/Lr))×100, PI = (1-(Vc/Vr))×100, PI = (1-(Tr/Tc))×100 중 어느 하나에 의해 산출(여기서, Lc, Tc, Vc는 각각 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이고, Lr, Tr, Vr는 각각 상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이다)될 수 있다.
상기와 같은 구성에 따라, 본 발명에 의하면, 동일한 혈액 샘플에 대해 상호 상이한 전단율로 교반된 혈액 샘플이 각각의 미세 채널을 통해 유동하여 이들을 비교함으로써, 검사 대상자의 혈액 샘플의 점도(Viscosity) 및 헤마토크릿의 수치나 vWF의 기능의 차이에 따라 발생할 수 있는 측정 오류를 제거할 수 있게 된다.
또한, 혈액 샘플의 유동 거리, 유동 시간, 최대 도달 거리 등과 같은 다양한 측정이 한 번의 검사로 복합적으로 검사 가능하게 되어, 검사 시간이 감소할 뿐만 아니라 검사 비용도 절감하는 교화를 제공하게 된다.
도 1은 본 발명에 따른 혈소판 검사용 칩의 사시도이고,
도 2는 본 발명에 따른 혈소판 검사용 칩의 평면도이고,
도 3은 도 1의 Ⅲ-Ⅲ 선에 따른 단면도이고,
도 4는 본 발명의 다른 실시예에 따른 혈소판 검사용 칩을 설명하기 위한 도면이고,
도 5는 본 발명에 따른 교반기의 일 예를 나타낸 도면이고,
도 6 및 도 7은 도 1의 'A'영역을 확대한 도면으로, 확대 챔버 내부의 구조의 예들을 도시한 도면이고,
도 8은 본 발명에 따른 혈소판 검사 장치의 구성을 나타낸 도면이다.
[부호의 설명]
100 : 혈소판 검사용 칩 110 : 입구 챔버
111,112 : 기준 샘플 챔버 121,122 : 교반기
131,132 : 미세 채널 140 : 출구 챔버
141,142 : 폐샘플 챔버 151,152 : 확대 챔버
153,154 : 막힘 유도 채널 160 : 교반 제어부
200 : 감지 장치 300 : 진공 형성 장치
310 : 진공 펌프 320 : 데드볼륨 챔버
330 : 압력 측정 센서 340 : 밸브
400 : 메인 제어부
본 발명에 따른 혈소판 검사용 칩은 혈액 샘플이 각각 저장되는 복수의 샘플 챔버와; 상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와; 상기 복수의 샘플 챔버 각각에 대응하도록 마련되는 복수의 폐샘플 챔버와; 상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과; 각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부를 포함한다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예에 대해 상세히 설명한다.
도 1은 본 발명에 따른 혈소판 검사용 칩(100)의 사시도이고, 도 2는 본 발명에 따른 혈소판 검사용 칩(100)의 평면도이다. 도 1 및 도 2를 참조하여 설명하면, 본 발명에 따른 혈소판 검사용 칩(100)은, 도 1 및 도 2에 도시된 바와 같이, 복수의 샘플 챔버(111,112), 교반기(121,122), 복수의 폐샘플 챔버(141,142), 미세 채널(131,132) 및 교반 제어부(160)(도 3 참조)를 포함한다.
복수의 샘플 챔버(111,112)에는 혈액 샘플이 각각 저장된다. 각각의 샘플 챔버(111,112)는, 도 1 및 도 2에 도시된 바와 같이, 대략 원형의 형태로 마련되는 것을 예로 하고 있으나, 그 형상이 이에 국한되지 않음은 물론이다. 여기서, 샘플 챔버(111,112)의 크기는 사용 목적에 따라 다양한 크기로 제작될 수 있고, 그 재질은 외부에서 내부를 쉽게 관찰 가능하도록 광학적으로 투명한 재질로 마련될 수 있다.
본 발명에서는, 도 1 및 도 2에 도시된 바와 같이, 샘플 챔버(111,112)가 2개가 마련되는 것을 예로 하고 있으나, 그 개수가 3개 이상으로 마련될 수 있음은 물론이다. 도 4는 본 발명의 다른 실시예에 따른 혈소판 검사용 칩을 설명하기 위한 도면으로, 샘플 챔버(111,122) 및 폐샘플 챔버(141,142)의 개수가 다양해질 수 있고, 하나의 샘플 챔버(111,122)와 폐샘플 챔버(141,142)를 연결하는 미세 채널(131,132)의 개수도 다양하질 수 있을 나타내고 있다.
복수의 폐샘플 챔버(141,142)는 샘플 챔버(111,112)의 개수에 대응하도록 마련된다. 즉, 도 1 및 도 2에 도시된 실시예에서와 같이 2개의 샘플 챔버(111,112)가 형성되는 경우, 이에 대응하여 2개의 폐샘플 챔버(141,142)가 마련된다. 여기서, 폐샘플 챔버(141,142)도 샘플 챔버(111,112)와 마찬가지로 대략 원형의 형태로 마련되는 것을 예로 한다.
상호 대응하는 샘플 챔버(111,112)와 폐샘플 챔버(141,142)는 미세 채널(131,132)에 의해 각각 독립적으로 연결된다. 이에 따라, 각각의 샘플 챔버(111,112)에 수용된 혈액 샘플은 각각의 미세 채널(131,132)을 통해 대응하는 폐샘플 챔버(141,142) 측으로 각각 독립적으로 유동하게 된다.
여기서, 미세 채널(131,132)은, 도 1 및 도 2에 도시된 바와 같이, 지그재그 형태로 마련되는 것을 예로 하였으나, 직선형, 곡선형, 또는 이들의 조합 등 다양한 형태로 마련될 수 있다.
한편, 각각의 샘플 챔버(111,112) 내부에는 교반기(121,122)가 설치된다. 여기서, 교반기(121,122)는 샘플 챔버(111,112) 내부에 수용된 혈액 샘플에 전단력을 인가한다. 본 발명에서는 교반기(121,122)가 샘플 챔버(111,112) 내부에 회전 가능하게 설치되어, 교반 제어부(160)의 제어에 따라 회전함으로써, 혈액 샘플에 전단력을 인가하는 것을 예로 한다.
교반 제어부(160)는 교반기(121,122)의 동작을 제어하는데, 본 발명에서는 교반 제어부(160)가 각각의 교반기(121,122)를 개별적으로 제어 가능하게 마련된다. 즉, 교반기(121,122)가 샘플 챔버(111,112) 내부에 회전 가능하게 설치되는 경우, 교반 제어부(160)는 교반기(121,122)의 회전 속도를 서로 다르게 제어함으로써, 각각의 샘플 챔버(111,112)에 수용된 혈액 샘플에 인가되는 전단력의 크기를 서로 다르게 할 수 있다. 이에 따라, 각각의 샘플 챔버(111,112) 내부의 혈액 샘플이 인가되는 전단력의 크기가 서로 달라져 혈액 샘플 내의 혈소판의 활성화 여부나 활성화 정도가 개별적으로 제어 가능하게 된다.
본 발명에서는 교반 제어부(160)가 자력과 같은 비접촉 방식에 의해 교반기(121,122)를 회전시키는 것을 예로 한다. 도 3을 참조하여 보다 구체적으로 설명하면, 샘플 챔버(111,112)의 하부 외측에 회전 가능하게 마련되는 자석(M)이 배치되도록 하고, 교반 제어부(160)가 자석(M)의 회전을 제어하여 샘플 챔버(111,112) 내부의 교반기(121,122)의 회전을 제어할 수 있다.
이하에서는 샘플 챔버(111,112) 중 어느 하나를 기준 샘플 챔버(111)로 정의하고, 나머지 하나를 제어 샘플 챔버(112)로 정의하여 설명하기로 한다. 도 1 및 도 2에 도시된 실시예에서는 두 개의 샘플 챔버(111,112)가 마련되어, 어느 하나가 기준 샘플 챔버(111)로 기능하고 나머지 하나가 제어 샘플 챔버(112)로 기능하는 것을 예로 하고 있으나, 샘플 챔버(111,112)가 3개 이상으로 구비되는 경우, 기준 샘플 챔버(111)이 하나 또는 그 이상이 되고 적어도 하나의 샘플 챔버(111,112)가 제어 샘플 챔버(112)로 기능할 수 있다.
본 발명에서는 기준 샘플 챔버(111)로부터 해당 미세 채널(131)로 유동하는 혈액 샘플과 제어 샘플 챔버(112)로부터 해당 미세 채널(132)로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도 중 적어도 어느 하나의 비교를 통해 혈소판의 특성을 측정하게 된다.
본 발명의 일 실시예에서는 교반 제어부(160)가 기준 샘플 챔버(111)에 수용된 혈액 샘플과 제어 샘플 챔버(112)에 수용된 혈액 샘플에 상호 상이한 전단력이 인가되도록 해당 교반기(121,122)를 제어하는 것을 일 예로 한다.
보다 구체적으로 설명하면, 교반 제어부(160)는 혈소판이 활성화되지 않는 크기의 전단력이 기준 샘플 챔버(111) 내부의 혈액 샘플에 인가되도록 기준 샘플 챔버(111) 내부의 교반기(121,122)를 제어하고, 혈소판이 활성화되는 크기의 전단력이 제어 샘플 챔버(112) 내부의 혈액 샘플에 인가되도록 제어 샘플 챔버(112) 내부의 교반기(121,122)를 제어할 수 있다. 예를 들어, 교반 제어부(160)는 기준 샘플 챔버(111) 내부에 0.5 Pa 이하의 전단력이 인가되고, 제어 샘플 챔버(112) 내부에 8 Pa 이상의 전단력이 인가되도록 각각의 교반기(121,122)를 제어할 수 있다.
여기서, 교반 제어부(160)는 혈소판을 활성화시키는 크기의 전단력을 인가할 때, 즉 제어 샘플 챔버(112)에 전단력을 인가할 때, 모든 혈소판에 골고루 충분한 시간 동안 인가되도록 교반기(121,122)를 제어할 수 있다. 본 발명에서는 교반 제어부(160)가 10초에서 300초 사이에서 선택된 어느 한 시간 동안 제어 샘플 챔버(112) 내의 교반기(121,122)를 회전시키는 것을 예로 한다.
상기와 같은 교반기(121,122)의 개별적인 제어에 따라, 기준 샘플 챔버(111) 내부의 혈액 샘플의 혈소판은 활성화되지 않은 상태로 미세 채널(131,132)을 따라 유동하게 되고, 제어 샘플 챔버(112) 내부의 혈액 샘플의 혈소판은 활성화된 상태로 미세 채널(131,132)을 따라 유동하게 된다.
따라서, 제어 샘플 챔버(112)로부터 해당 미세 채널(131,132)로 유동하는 혈액 샘플의 경우 활성화된 혈소판의 부착이나 응집에 따라, 기준 샘플 챔버(111)로부터 해당 미세 채널(131,132)로 유동하는 혈액 샘플과 비교할 때, 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도 등에서 차이가 나며, 이를 비교함으로써, 혈액 샘플의 전단 유도 활성화 정도, 혈소판의 응집 또는 부착 정도의 측정이 가능하게 된다.
상기와 같은 구성에 따라, 동일한 혈액 샘플에 대해 인가되는 전단력을 달리하여 동일한 혈액 샘플에 대해 다른 전단율이 적용되어 이를 비교하여 혈소판의 특성을 검사함으로써, 혈액 샘플 자체의 이동 거리나 이동 속도의 절대값이 검사 대상 혈액의 점도(Viscosity)에 따라 달라져서 발생하는 측정의 오류를 제거할 수 있게 된다.
본 발명의 다른 예로 제어 샘플 챔버(112)가 복수개로 마련하고, 교반 제어부(160)가 혈소판의 활성화가 가능한 상호 상이한 크기의 전단력이 각각의 제어 샘플 챔버(112) 내부의 혈액 샘플에 인가되도록 제어 샘플 챔버(112) 내부의 교반기(121,122)를 제어할 수 있다. 이 때, 교반 제어부(160)는 혈소판이 활성화되지 않는 크기의 전단력이 기준 샘플 챔버(111) 내부의 혈액 샘플에 인가되도록 기준 샘플 챔버(111) 내부의 상기 교반기(121,122)를 제어하게 된다.
이와 같은 실시예의 경우, 도 4의 (c)나 (d)에 도시된 실시예에 따른 혈소판 검사용 칩(100)이 사용 가능할 것이다. 일 예로, 기준 샘플 챔버(111) 내의 혈액 샘플에는 0.5 Pa 이하의 전단력을 인가하고, 3개의 제어 샘플 챔버(112)에는 각각 3 Pa, 5 Pa, 8 Pa의 전단력을 인가하여, 전단력의 크기에 따른 혈소판의 반응 정도를 측정할 수 있게 되는데, 이를 통해 현재의 혈액 샘플의 임계 전단력의 측정이 가능하게 된다.
여기서, 기준 샘플 챔버(111)와 제어 샘플 챔버(112)로부터 유동하는 혈액 샘플에는 전단력에 따른 혈소판의 반응 정도가 판별 가능하게 동일한 시약이 혼합될 수 있다. 여기서, 시약은 혈소판을 활성화시킬 수 있는 특정을 가지며, 예를 들어, 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine), 아라키돈산(Arachidonic acid), 트롬복산 A2, 트롬빈(thrombin), 이소-트롬빈 수용체 활성화 펩티드 (iso-TRAP)과 같은 아고니스트(Agonist) 중 어느 하나 또는 조합일 수 있다.
또한, 도 4의 (c)에 도시된 혈소판 검사용 칩(100)의 경우, 즉 기준 샘플 챔버(111)와 폐샘플 챔버(141)를 연결하는 미세 채널(131)이 복수개가 병렬로 연결되고, 마찬가지로 제어 샘플 챔버(112)와 폐샘플 챔버(142)를 연결하는 미세 채널(132)이 복수개가 병렬로 연결되는 경우, 각각의 미세 채널(131,132) 내부에는 상호 상이한 시약이 수용될 수 있는데, 이 때 기준 샘플 챔버(111) 측과 제어 샘플 챔버(112) 측의 상호 대응하는 미세 채널(131,132)에는 동일한 시약이 수용될 수 있다.
예를 들어, 기준 샘플 챔버(111)와 폐샘플 챔버(141)를 연결하는 미세 채널(131)에 각각 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine)이 수용되는 경우, 제어 샘플 챔버(112)와 폐샘플 챔버(142)를 연결하는 미세 채널(132)에도 각각 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine)이 수용될 수 있다.
이를 통해 각 시약에 따른 반응 정도를 하나의 혈소판 검사용 칩(100)을 이용하여 측정이 가능하게 된다.
한편, 본 발명이 다른 실시예에서는 교반 제어부(160)는 기준 샘플 챔버(111)와 제어 샘플 챔버(112) 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력, 0.5 Pa 이하의 전단력을 인가한 상태에서, 제어 샘플 챔버(112)로부터 유동하는 혈액 샘플이 시약과 혼합된 상태로 유동하도록 할 수 있다. 이를 통해 시약의 종류에 따른 혈소판의 반응 정도가 판별 가능하게 된다.
일 예로, 혈소판 관련 약물, 예를 들어 항혈소판제 등과 같은 안타고니스트(antagonist) 약물을 복용하고 있는 환자의 혈액 샘플을 이용하여 약물에 대한 반응 정도를 측정할 때, 기준 샘플 챔버(111)와 제어 샘플 챔버(112) 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력, 0.5 Pa 이하의 전단력을 인가한 상태에서, 제어 샘플 챔버(112)로부터 유동하는 혈액 샘플이 혈소판을 활성화시키는 특성의 시약과 혼합되도록 마련될 수 있다.
여기서, 혈소판을 활성화시키는 특성의 시약은 제어 샘플 챔버(112)에 수용되어 혈액 샘플과 혼합되거나, 제어 샘플 챔버(112)와 연결된 미세 채널(132) 내부, 예를 들어, 후술할 확대 챔버(151,152) 내부나 막힘 유도 채널(153,154) 내부에 도포되거나 수용될 수 있으며, 이에 대한 설명은 후술한다.
이와 같은 구성을 통해, 환자가 복용하고 있는 항혈소판제 등과 같은 안타고니스트(antagonist) 약물이 환자에게 어떻게 작용하고 있는지, 즉 약물 복용에 대한 혈소판의 반응 정도가 판별 가능하게 된다.
보다 구체적으로 설명하면, 혈소판의 기능은 정상인 혹은 아스피린 및 클로피도그렐(clopidogrel) 복용자의 혈액 샘플이 안타고니스트 아데노신2인산(agonist ADP), 프로스라글랜딘 E(ProsraglandinE), 피브리노겐(Fibrinogen), 아라키도닉산(Arachidonic acid) 등의 시약과 반응하게 되면, 대상자의 혈소판의 기능이 정상이라면 짧은 시간 내에 미세 채널(131,132) 내부의 유로가 막혀 유동이 정지하거나 유동 거리가 짧게 나타날 것이다. 반대로 혈소판의 기능에 이상이 있는 경우 정상에 비해 막힘 시간이 늘어나게 되거나 이동거리가 증가하게 된다. 따라서, 상술한 바와 같이, 기준 샘플 챔버(111)에는 시약을 주입하지 않고 제어 샘플 챔버(112)에는 시약을 주입하여 실험하게 되면, 두 실험 결과, 예를 들어 유동 거리의 비교를 통해 약물 복용에 대한 혈소판의 반응 정도가 판별 가능하게 된다.
한편, 다른 예로서, 혈소판 관련 약물의 복용 전에 환자의 혈액 샘플의 약물의 반응 정도를 확인하여 복용할 약물의 선택에도 적용될 수 있다. 보다 구체적으로 설명하면, 기준 샘플 챔버(111)와 제어 샘플 챔버(112) 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력, 0.5 Pa 이하의 전단력을 인가한 상태에서, 기준 샘플 챔버(111)와 제어 샘플 챔버(112) 내부에 환자에게 복용 대상이 되는 약물, 예를 들어 항혈소판제 등과 같은 안타고니스트(antagonist) 시약을 수용하여 혈액 샘플과 혼합시킨다.
그리고, 제어 샘플 챔버(112)로부터 유동하는 혈액 샘플은 혈소판을 활성화시키는 특성의 시약이 혼합되도록 마련한다. 이 때, 혈소판을 활성화시키는 시약은 확대 챔버(151,152) 내부나 막힘 유도 채널(153,154) 내부에 도포되거나 수용될 수 있으며, 이에 대한 설명은 후술한다.
이와 같은 측정을 통해, 환자가 항혈소판제 등과 같은 안타고니스트(antagonist) 시약 중 어느 시약에 잘 반응하는지 여부가 확인 가능하게 되어, 환자가 복용할 약물의 선택이 가능하게 된다. 여기서, 다수의 시약을 동시에 실험하기 위해, 도 4의 (b)나 (d)에 도시된 혈소판 검사용 칩(100)이 사용되면 동시 실험이 가능할 것이다.
여기서, 혈소판을 활성화시키는 시약은 상술한 바와 같이, 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine)과 같은 아고니스트(Agonist) 시약일 수 있다. 그리고, 항혈소판제 등과 같은 안타고니스트(antagonist) 시약은 아스피린, P2Y1 리셉터 안타고니스트(Receptor antagonists) 및 P2Y12 리셉터 안타고니스트(Receptor antagonists)와 같은 안타고니스트(Antagonists)일 수 있다. 여기서, P2Y1 리셉터 안타고니스트(Receptor antagonists)로는 MRS 2179, MRS 2279, MRS 2500, A2P5P, A3P5P, 및 A3P5PS의 후보 물질 중 적어도 어느 하나를 포함할 수 있다.
또한, P2Y12 리셉터 안타고니스트(Receptor antagonists)로는 클로피도그렐(clopidogrel), 티클로피딘(ticlopidine), 프라수그렐(prasugrel), AR-C67085MX, 칸그렐러(cangrelor), C1330-7, MRS 2395, 및 2-methylthioadenosine-5'-monophosphate의 후보 물질 중 적어도 어느 하나를 포함할 수 있다.
한편, 도 4의 (c)에 도시된 형태의 혈소판 검사용 칩(100)을 이용하여, 제어 샘플 챔버(112)를 복수개로 마련하고, 제어 샘플 챔버(112) 내부에 상호 상이한 시약을 혈액 샘플과 혼합 가능하게 수용한다.
이 때, 교반 제어부(160)은 기준 샘플 챔버(111)와 제어 샘플 챔버(112) 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하는 상태이므로, 제어 샘플 챔버(112) 내부에서는 혈소판의 활성화는 이루어지지 않고, 혈액 샘플과 시약이 혼합된다.
또 다른 예로, 도 4의 (b)나 (c)에 도시된 바와 같이, 미세 채널이 복수개가 병렬로 연결되는 경우, 각각의 미세 채널 내부에 상호 상이한 시약을 수용시킬 수 있다. 이 때 시약은 미세 채널 내부에 코팅되어 형성될 수 있다.
한편, 본 발명에 따른 혈소판 검사용 칩(100)은, 도 1 및 도 2에 도시된 바와 같이, 입구 챔버(110)와 출구 챔버(140)를 포함할 수 있다.
입구 챔버(110)는 복수의 샘플 챔버(111,112)와 연결되도록 형성된다. 도 3을 참조하여 설명하면, 입구 챔버(110)의 상부는 외부로 개방되어 혈액 샘플이 주입될 수 있다. 그리고, 입구 챔버(110)의 하부는 각각의 샘플 챔버(111,112)와 연통되어 있어, 입구 챔버(110)로 주입된 혈액 샘플은 각각의 샘플 챔버(111,112)에 균등하게 분배된다.
출구 챔버(140)는 각각의 폐샘플 챔버(141,142)와 연결된다. 그리고, 출구 챔버(140)를 통해 후술할 진공 형성 장치(300)가 연결되어 출구 챔버(140)로 진공 압력을 유입함으로써, 복수의 샘플 챔버(111,112) 내부의 혈액 샘플이 출구 챔버(140)를 통해 유입되는 진공 압력에 의해 각각의 미세 채널(131,132)로 유동할 수 있게 된다. 여기서, 출구 챔버(140)는, 도 1에 도시된 바와 같이, 고무 재질의 마개(140a)로 그 입구가 밀폐되어 출구 챔버(140)로의 진공 압력의 유입이 가능하게 할 수 있다. 이 때, 마개(140a)가 고무 재질로 마련되는 경우, 진공 형성 장치(300)의 끝단이 주사기 바늘 형태로 마련되어 마개(140a)가 출구 챔버(140)를 막은 상태에서 바늘의 주입을 통해 출구 챔버(140) 내부로 연결이 가능할 수 있다. 이외에도, 출구 챔버(140)의 밀폐 구조와 진공 형성 장치(300)와의 연결 구조는 당업자라면 상술한 예 외에 다양한 형태로 구현할 수 있을 것이며, 본 발명의 기술적 사상이 이에 국한되지 않음은 물론이다.
한편, 본 발명에 따른 교반기(121,122)는 일자형 원형봉 형상, 중심으로부터 반경 방향으로 얇아지는 테이퍼진 원형봉 형상, 원형판 형상, 중심으로부터 반경 방향으로 얇아지는 원추형 원형판 형상 등으로 마련될 수 있다. 여기서, 교반 제어부(160)가 혈소판을 활성화시키는 크기의 전단력을 인가할 때, 즉 제어 샘플 챔버(112)에 전단력을 인가할 때, 교반 시간은 교반기(121,122)의 형상에 따라 상술한 10초에서 300초 사이에서 달라질 수 있다. 일례로, 교반기(121,122)가 원봉형 형상인 경우 180초 정도로 회전시켜 전단력을 혈소판이 인가할 수 있다. 반면, 교반기(121,122)가 원추형 원형판 형상일 경우, 매우 짧아서 10초 정도로 회전시킬 수도 있다.
여기서, 교반기(121,122)가 상술한 바와 같이 비접촉 방식의 힘을 받아 회전하게 되면, 샘플 챔버(111,112) 내부에는 교반 뿐만 아니라 교반기(121,122)의 회전수에 따른 전단 유동이 발생하게 된다. 이러한 전단 유동의 형태는 일자형 원형봉 형상일 경우 간헐적인 전단 유동이, 원형판 형상일 경우 연속적인 전단 유동이 발생할 수 있다. 이 때, 교반기(121,122)는 상술한 바와 같이 자력에 의해 자화되어 기계적인 연결없이 자력의 영향을 받을 수 있는 금속 재질로 제작될 수 있다.
그리고, 교반기(121,122)의 직경 또는 두께는 샘플 챔버(111,112)의 깊이의 절단 크기 내외를 갖는 것이 바람직하며, 교반기(121,122)의 길이 또는 지름은 샘플 챔버(111,112) 직경의 80 내지 90% 수준의 크기를 갖는 것이 적절할 것이다.
도 5는 본 발명에 따른 교반기(121,122)의 일 예를 나타낸 도면으로, 일자형 원형 봉 형상을 갖는 것을 예로 하고 있다. 도 5를 참조하여 설명하면, 본 발명에 따른 교반기(121,122)는 그 내부에 상술한 시약이 액체 또는 고체의 상태로 저장될 수 있다.
보다 구체적으로 설명하면, 교반기(121,122)에는 시약의 주입이 가능하게 양측 및 중앙 중 적어도 한 곳이 개방된 시약 공간(111b)이 형성될 수 있다. 그리고, 시약 공간(111b)의 개방된 부분은 밀봉재(111a)에 의해 폐쇄될 수 있다.
밀봉재(111a)로는 파라핀 왁스와 같은 상변화 물질이거나 녹말 등과 같은 수용성 멤브레인이 사용되는 것이 바람직하다. 파라핀 왁스와 같은 상변화 물질은 일정 온도 이상에 노출되면 고체가 액체로 변화되면서 교반기(121,122)의 밀봉이 해제되며, 이 때 교반기(121,122) 내부의 시약은 원심력에 의하여 샘플 챔버(111,112)의 내부로 방출된다. 또한, 녹말은 혈액에 노출되면 쉽게 녹아 밀봉이 해제되며, 시약이 샘플 챔버(111,112)의 내부로 방출될 수 있다.
여기서, 상변화 물질의 밀봉재(111a)가 사용된 경우, 레이저 또는 전자기파 등을 밀봉재(111a)에 조사하여 상변화 물질이 녹아 내리도록 가열하여 밀봉을 해제시킬 수 있다. 그리고, 수용성 멤브레인으로 밀봉재(111a)가 사용된 경우, 혈액 샘플에 빨리 녹도록 교반기(121,122)를 회전시키면 밀봉이 해제되어 교반기(121,122) 내부의 시약이 방출될 수 있다. 이와 같은 시약이 방출되는 원리는 교반기(121,122)의 회전에 따른 원심력이 주요 구동력이 된다.
그리고, 교반기(121,122)에 충진되는 시약은 교반기(121,122)의 내부에 액상과 액상, 액상과 고상의 형태로 각각 충진될 수 있으며 서로 다른 공간에 분리되어 저장될 수도 있다. 더욱이, 시약이 고상으로만 충진될 때에는 미세 입자로 서로 혼합되어 저장될 수도 있다.
한편, 본 발명에 따른 혈소판 검사용 칩(100)의 각각의 미세 채널(131,132)의 전반부에는 복수의 확대 챔버(151,152)가 형성될 수 있다. 도 1 및 도 2에서는 하나의 미세 채널(131,132)에 2개의 확대 챔버(151,152)가 형성되는 것을 예로 하고 있으나, 그 개수가 이에 국한되지 않음은 물론이다. 그리고, 서로 인접한 확대 챔버(151,152)들은 막힘 유도 채널(153,154)에 의해 연결되는데, 막힘 유도 채널(153,154)에 의해 혈액 샘플의 막힘이 유도된다.
상기와 같은 구성에 따라, 미세 채널(131,132)을 유동하던 혈액 샘플은 첫 번째 확대 챔버(151,152)에 유입되면서 유속이 감소되고, 확대 챔버(151,152) 내부에서 막힘 유도 채널(153,154)을 통해 유동할 때 혈소판의 응집과 부착이 증가하게 된다.
이와 같은 확대 채널을 미세 채널(131,132)에 적절히 배치하게 되면, 혈액 샘플은 마치 맥동형 압력이나 전단력을 경험하며 이동하는 특성을 갖게 되어 생체 내부의 유동을 모사할 수 있게 된다. 그리고, 확대 챔버(151,152)들 간을 연결하는 막힘 유도 채널(153,154)은 혈관 내부에 존재하는 협착부를 묘사하게 된다.
여기서, 확대 챔버(151,152)의 내부에는 혈액 샘플과의 접촉 면적을 증가시킬 수 있는 구조가 형성될 수 있다. 도 6 및 도 7은 도 1의 'A'영역을 확대한 도면으로, 확대 챔버(151,152) 내부의 구조의 예들을 도시한 도면이다. 도 6에는 확대 챔버(151,152) 내부에 혈액 샘플과의 접촉 면적을 증가시키기 위해 복수의 미세 구슬(155)이 배치되는 것을 예로 하고 있으며, 도 7에서는 확대 챔버(151,152) 내부에 혈액 샘플과의 접촉 면적을 증가시키기 위해 복수의 미세 기둥(156)이 마련되는 것을 예로 하고 있다.
이와 같이, 혈액 샘플과의 접촉 면적이 증가됨에 따라 혈액 샘플의 유동 속도는 감소하게 되는데, 유동 속도의 감소에 따라 혈소판의 부착이나 응집이 더욱 활발하게 이루어질 수 있다.
여기서, 확대 챔버(151,152)의 입구, 출구, 또는 막힘 유도 채널(153,154)의 내벽면에는 혈소판의 부착이 가능한 콜라젠이 코팅되어, 혈소판의 부착이 증가하도록 마련될 수 있다. 또한, 코팅된 콜라젠 구조체 상에는 에피네프린 또는 아데노신2인산(ADP)이 코팅될 수 있다.
이하에서는, 도 8을 참조하여 상기와 같은 혈소판 검사용 칩(100)을 이용한 혈소판 검사 장치의 구성에 대해 상세히 설명한다.
본 발명에 따른 혈소판 검사 장치는 혈소판 검사용 칩(100), 진공 형성 장치(300) 및 감지 장치(200)를 포함한다. 여기서, 혈소판 검사용 칩(100)은 혈액 샘플의 유동이 발생하는 곳으로, 그 구성은 상술한 바와 같은 바, 그 설명은 생략한다.
진공 형성 장치(300)는 혈소판 검사용 칩(100) 내에서 혈액 샘플이 유동 가능하게 진업 압력을 인가한다. 본 발명에 따른 진공 형성 장치(300)는, 도 8에 도시된 바와 같이, 진공 펌프(310), 데드볼륨 챔버(320), 압력 측정 센서(330) 및 밸브(340)를 포함할 수 있다.
진공 펌프(310)는 출구 챔버(140)와 연결되어 진공 압력을 생성한다. 상술한 바와 같이, 출구 챔버(140)가 고무 마개(140a)로 폐쇄 상태를 유지하는 경우, 진공 펌프(310) 측의 말단, 즉 출구 챔버(140)와 연결되는 부분은 주사기 바늘 형태로 마련되어 고무 마개(140a)에 삽입되어 출구 챔버(140) 내부와 연결될 수 있다. 본 발명에서는 진공 펌프(310)가 시린지 펌프 형태로 마련되는 것을 예로 한다.
데드볼륨 챔버(320)는 진공 펌프(310) 및 출구 챔버(140)에 대해 병렬로 연결되어 출구 챔버(140)에 대해 기 설정된 진공 압력을 유지시킨다. 그리고, 밸브(340)는 진공 펌프(310)와 출구 챔버(140) 사이에 설치되어 출구 챔버(140)로 인가되는 진공 압력을 단속하게 된다. 본 발명에서는 밸브(340)로 솔레노이드 밸브가 적용되는 것을 예로 한다. 그리고, 압력 측정 센서(330)는 출구 챔버(140)에 인가되는 진공 압력을 측정하게 된다.
감지 장치(200)는 혈소판 검사용 칩(100) 내에서의 혈액 샘플의 유동을 감지한다. 본 발명에서는 감지 장치(200)가 CCD나 CMOS와 같이 영상을 획득하는 영상 획득 장치나, 미세 채널(131,132) 내부의 특정 위치를 통과하는 혈액 샘플을 감지하는 도달 감지 장치(200)로 마련되는 것을 예로 한다.
영상 획득 장치의 경우 촬영된 영상의 처리를 통해, 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도 등의 측정이 가능하게 된다. 도달 감지 장치(200)의 경우, 미세 채널(131,132)의 말단부의 특정 위치에 혈액 샘플이 도달하는지 여부를 감지하여, 도달 시간 등을 측정하는데 적용될 수 있다. 일 예로, LED나 포토 다이오드 센서 등을 이용하여 혈액 샘플의 도달 여부를 감지할 수 있다.
메인 제어부(400)는 본 발명에 따른 혈소판 검사 장치의 전체 기능을 제어한다. 예를 들어, 감지 장치(200)로부터 전달되는 영상 등의 신호를 처리하여 도달 거리, 도달 시간, 유동 속도 등을 산출하고, 시린지 펌프 등의 진공 형성 장치(300)를 제어하게 된다.
그리고, 실험 조건에 따라, 교반기(121,122)의 회전 속도가 달라지도록 교반 제어부(160)에 필요한 명령을 하달함으로써, 교반 제어부(160)가 각각의 샘플 챔버(111,112) 내부의 교반기(121,122)를 개별적으로 제어하게 된다.
상기와 같은 구성에 따라, 본 발명에 따른 혈소판 검사 장치를 이용하여 혈액 내의 혈소판의 기능을 검사하는 과정의 예를 전단력을 달리하는 실험의 예로 설명한다.
먼저, 검사 대상자의 혈액을 채취하여 입구 챔버(110)로 혈액 샘플을 주입한다. 이 때, 출구 챔버(140)는 폐쇄된 상태이고 진공 형성 장치(300)가 동작하지 않는 상태가 유지된다.
입구 챔버(110)로 주입된 혈액 샘플은 각각의 샘플 챔버(111,112), 즉 기준 샘플 챔버(111)과 제어 샘플 챔버(112)로 균등하게 분배된다. 그리고, 기준 샘플 챔버(111)과 제어 샘플 챔버(112)로의 혈액 샘플의 분배가 완료되면, 교반 제어부(160)가 각각의 교반기(121,122)를 회전시키게 된다. 일 예로, 상술한 바와 같이, 기준 샘플 챔버(111) 내의 교반기(121,122)는 혈소판이 활성화되지 않는 크기의 전단력이 인가되도록 그 회전 속도를 제어하고, 제어 샘플 챔버(112) 내의 교반기(121,122)는 혈소판이 활성화되는 크기의 전단력이 인가되도록 회전 속도를 제어하게 된다.
교반기(121,122)의 교반에 의해 혈액 샘플의 교반이 완료되면, 진공 형성 장치(300)의 밸브(340)가 개방되고, 진공 펌프(310)에 의해 출입 챔버 측으로 진공 압력이 인가된다. 이 때 출구 챔버(140)로 인가되는 진공 압력의 크기는 데드볼륨 챔버(320)에 의해 일정하게 유지될 수 있다.
출구 챔버(140)를 통해 진공 압력이 인가되면, 기준 샘플 챔버(111)과 제어 샘플 챔버(112)에 수용된 혈액 샘플들은 각각 연결된 미세 채널(131,132)을 따라 유동하게 된다. 이 경우, 혈소판이 활성화된 제어 샘플 챔버(112)의 혈액 샘플은 유동 과정에서 혈소판의 부착이나 응집이 상대적으로 기준 샘플 챔버(111)의 혈액 샘플보다 많이 나타나게 되며, 특히, 확대 챔버(151,152)와 막힘 유도 채널(153,154)을 통과할 때 부착이나 응집 현상이 현저하기 나타나게 된다.
상기의 과정을 통해 혈액 샘플의 유동이 종료되면, 감지 장치(200), 예컨대 영상 획득 장치에 의해 획득된 유동 과정에서의 영상에 기초하여, 메인 제어부(400)가 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도 등을 산출하게 되며, 기준 샘플 챔버(111)과 제어 샘플 챔버(112)의 결과를 상호 비교하여, 혈액 샘플의 전단 유도 활성화 정도, 혈소판의 응집 또는 부착 정도가 측정 가능하게 된다.
일 예로, 혈소판의 특성 중 혈소판 응집률(PA)은 수학식 PA = (Lc/Lr)×100, PA = (Vc/Vr)×100, PA = (Tr/Tc)×100 중 어느 하나에 의해 산출될 수 있다. 여기서, Lc, Tc, Vc는 각각 제어 샘플 챔버(112)로부터 해당 미세 채널(132)로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이고, Lr, Tr, Vr는 각각 기준 샘플 챔버(111)로부터 해당 미세 채널(131)로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이다.
그리고, 혈소판의 특성 중 혈소판 역제율(PI)은 수학식 PI=(1-(Lc/Lr))×100, PI = (1-(Vc/Vr))×100, PI = (1-(Tr/Tc))×100 중 어느 하나에 의해 산출될 수 있다. 즉, 혈소판 역제율(PI)=1-혈소판 응집률(PA)의 식을 통해 산출 가능하다.
본 실시예는 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타낸 것에 불과하며, 본 발명의 명세서에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 기술적 사상에 포함되는 것은 자명하다.
본 발명은 혈액 샘플 내의 혈소판의 특성 검사, 예를 들어, 혈소판 응집률, 혈소판 억제율, 약물 반응 등의 특성 검사에 적용 가능하다.

Claims (42)

  1. 혈액 샘플이 각각 저장되는 복수의 샘플 챔버와;
    상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와;
    상기 복수의 샘플 챔버 각각에 대응하도록 마련되는 복수의 폐샘플 챔버와;
    상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과;
    각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부를 포함하는 것을 특징으로 하는 혈소판 검사용 칩.
  2. 제1항에 있어서,
    상기 복수의 샘플 챔버는 기준 샘플 챔버와 적어도 하나의 제어 샘플 챔버로 구분되며;
    상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플과 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 상기 최종 도달 거리까지의 도달 시간, 유동 속도 중 적어도 어느 하나를 선택하여 상대적 비교를 통해 혈소판의 특성이 측정되는 것을 특징으로 하는 혈소판 검사용 칩.
  3. 제2항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버에 수용된 혈액 샘플과 상기 제어 샘플 챔버에 수용된 혈액 샘플에 상호 상이한 전단력이 인가되도록 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사용 칩.
  4. 제3항에 있어서,
    상기 교반 제어부는
    혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고,
    혈소판이 활성화되는 크기의 전단력이 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 제어 샘플 챔버 내부의 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사용 칩.
  5. 제4항에 있어서,
    상기 기준 샘플 챔버와 제어 샘플 챔버로부터 유동하는 혈액 샘플에는 전단력에 따른 혈소판의 반응 정도가 판별 가능하도록 동일한 시약이 혼합되는 것을 특징으로 하는 혈소판 검사용 칩.
  6. 제4항에 있어서,
    상기 시약은 콜라젠, 아데노신2인산(ADP), 에피네프린(Epinephrine), 아라키돈산(Arachidonic acid), 트롬복산 A2, 트롬빈(thrombin), 이소-트롬빈 수용체 활성화 펩티드 (iso-TRAP)과 같은 아고니스트(Agonist) 중 어느 하나 또는 조합인 것을 특징으로 하는 혈소판 검사용 칩.
  7. 제3항에 있어서,
    상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 0.5 Pa 이하가 되고, 혈소판이 활성화되는 크기의 전단력이 8 Pa 이상이 되도록 해당 교반기를 제어하는 것을 특징으로 하는 혈소판 검사용 칩.
  8. 제3항에 있어서,
    상기 제어 샘플 챔버는 복수개로 마련되고;
    상기 교반 제어부는
    혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고,
    전단력의 크기에 따른 혈소판의 활성화 정도가 판별 가능하게 혈소판의 활성화가 가능한 상호 상이한 크기의 전단력이 각각의 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 각각의 상기 제어 샘플 챔버 내부의 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사용 칩.
  9. 제4항에 있어서,
    상기 기준 샘플 챔버와 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이한 시약이 수용되고;
    상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이하되 상기 기준 샘플 챔버 측에 대응하도록 시약이 수용되는 것을 특징으로 하는 혈소판 검사용 칩.
  10. 제2항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며;
    상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 안타고니스트(antagonist) 약물 복용에 따른 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약과 혼합되는 것을 특징으로 하는 혈소판 검사용 칩.
  11. 제2항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며;
    상기 기준 샘플 챔버와 상기 제어 샘플 챔버에는 안타고니스트(antagonist) 시약이 수용되어 혈액 샘플과 혼합되며;
    상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 상기 안타고니스트(antagonist) 시약과 혼합된 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약이 혼합되는 것을 특징으로 하는 혈소판 검사용 칩.
  12. 제11항에 있어서,
    상기 안타고니스트(antagonist) 시약은 아스피린, P2Y1 리셉터 안타고니스트(Receptor antagonists) 및 P2Y12 리셉터 안타고니스트(Receptor antagonists)와 같은 안타고니스트(Antagonists) 중 어느 하나 또는 조합인 것을 특징으로 하는 혈소판 검사용 칩.
  13. 제12항에 있어서,
    상기 P2Y1 리셉터 안타고니스트(Receptor antagonists)는 MRS 2179, MRS 2279, MRS 2500, A2P5P, A3P5P, 및 A3P5PS의 후보 물질 중 적어도 어느 하나인 것을 특징으로 하는 혈소판 검사용 칩.
  14. 제12항에 있어서,
    상기 P2Y12 리셉터 안타고니스트(Receptor antagonists)로는 클로피도그렐(clopidogrel), 티클로피딘(ticlopidine), 프라수그렐(prasugrel), AR-C67085MX, 칸그렐러(cangrelor), C1330-7, MRS 2395, 및 2-methylthioadenosine-5'-monophosphate의 후보 물질 중 적어도 어느 하나인 것을 특징으로 하는 혈소판 검사용 칩.
  15. 제11항에 있어서,
    상기 제어 샘플 챔버는 복수개로 마련되고, 내부에 상호 상이한 시약이 혈액 샘플과 혼합 가능하게 수용되며;
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하여 상기 복수의 제어 샘플 챔버 내부의 혈액 샘플과 상기 시약을 혼합하는 것을 특징으로 하는 혈소판 검사용 칩.
  16. 제11항에 있어서,
    상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되되, 각각의 미세 채널 내부에는 상호 상이한 시약이 수용되며;
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하는 것을 특징으로 하는 혈소판 검사용 칩.
  17. 제2항에 있어서,
    상기 복수의 샘플 챔버와 연결되도록 형성되어, 주입되는 혈액 샘플을 각각의 상기 샘플 챔버에 균등하게 분배하는 입구 챔버와;
    상기 복수의 폐샘플 챔버와 각각 연결되고, 상기 복수의 샘플 챔버 내부의 혈액 샘플이 상기 미세 채널로 유동 가능하게 하는 진공 압력이 유입되는 출구 챔버를 더 포함하는 것을 특징으로 하는 혈소판 검사용 칩.
  18. 제2항에 있어서,
    각각의 상기 교반기는 상기 샘플 챔버 내부에 회전 가능하게 설치되어 상기 교반 제어부의 제어에 따라 회전하여 혈액 샘플에 전단력을 인가하는 것을 특징으로 하는 혈소판 검사용 칩.
  19. 제18항에 있어서,
    상기 교반 제어부는 각각의 상기 교반기의 회전 속도를 개별적으로 제어하여 각각의 상기 샘플 챔버 내부의 혈액 샘플에 전단력을 인가하는 것을 특징으로 하는 혈소판 검사용 칩.
  20. 제18항에 있어서,
    상기 교반기는 일자형 원형봉, 중심으로부터 반경 방향으로 얇아지는 테이퍼진 원형봉, 원형판, 중심으로부터 반경 방향으로 얇아지는 원추형 원형판 형상 중 어느 하나인 것을 특징으로 하는 혈소판 검사용 칩.
  21. 제5항에 있어서
    상기 교반기에는 시약의 주입이 가능하게 양측 및 중앙 중 적어도 한 곳이 개방된 시약 공간이 형성되며;
    상기 시약 공간의 개방된 부분은 밀봉재에 의해 폐쇄되는 것을 특징으로 하는 혈소판 검사용 칩.
  22. 제21항에 있어서,
    상기 밀봉재는
    수용성 맴브레인 또는 특정 온도 이상에 노출되는 경우 밀봉이 해제되는 상변화 물질로 마련되는 것을 특징으로 하는 혈소판 검사용 칩.
  23. 제2항에 있어서,
    각각의 상기 미세 채널의 전반부에는
    유동 면적이 상기 미세 채널보다 넓은 복수의 확대 챔버와,
    인접한 확대 챔버 간은 연결하되 혈액 샘플의 막힘을 유도하는 막힘 유도 채널을 포함하는 것을 특징으로 하는 혈소판 검사용 칩.
  24. 제23항에 있어서,
    상기 확대 챔버의 내부에는 혈액 샘플과의 접촉 면적이 증가하도록 복수의 미세 기둥 또는 복수의 미세 구술이 마련되는 것을 특징으로 하는 혈소판 검사용 칩.
  25. 제23항에 있어서,
    상기 확대 챔버의 입구 및 출구, 상기 막힘 유도 채널 중 적어도 하나의 내벽면에는 혈소판의 부착이 가능한 콜라젠이 코팅되는 것을 특징으로 하는 혈소판 검사용 칩.
  26. 제25항에 있어서,
    상기 확대 챔버의 입구 및 출구, 상기 막힘 유도 채널 중 적어도 하나의 내벽면에 코팅된 상기 콜라젠 구조체 상에는 에피네프린 또는 아데노신2인산(ADP)이 코팅되는 것을 특징으로 하는 혈소판 검사용 칩.
  27. 제2항에 있어서,
    상기 미세 채널은 직선형, 곡선형, 지그재그형 중 어느 하나 또는 이들의 조합으로 이루어지는 것을 특징으로 하는 혈소판 검사용 칩.
  28. 혈액 샘플이 유동하는 혈소판 검사용 칩과,
    상기 혈소판 검사용 칩 내에서 혈액 샘플이 유동 가능하게 진공 압력을 인가하는 진공 형성 장치와,
    상기 혈소판 검사용 칩 내에서의 혈액 샘플의 유동을 감지하는 감지 장치를 포함하며;
    상기 혈소판 검사용 칩은
    혈액 샘플이 각각 저장되는 복수의 샘플 챔버와,
    상기 샘플 챔버 내부에 각각 설치되어 혈액 샘플에 전단력을 인가하는 교반기와,
    상기 복수의 샘플 챔버 각각에 대응하도록 형성되는 복수의 폐샘플 챔버와,
    상호 대응하는 상기 샘플 챔버와 상기 폐샘플 챔버를 각각 독립적으로 연결하여 상기 샘플 챔버 내의 혈액 샘플이 상기 폐샘플 챔버 측으로 유동하는 미세 채널과,
    각각의 상기 샘플 챔버 내부의 혈액 샘플에 인가되는 전단력의 크기가 개별적으로 제어되도록 각각의 상기 샘플 챔버 내부에 설치된 상기 교반기들을 개별적으로 제어하는 교반 제어부와,
    상기 복수의 샘플 챔버와 연결되도록 형성되어, 주입되는 혈액 샘플을 각각의 상기 샘플 챔버에 균등하게 분배하는 입구 챔버와,
    상기 복수의 폐샘플 챔버와 각각 연결되고, 상기 진공 형성 장치로부터의 진공 압력이 유입되는 출구 챔버를 포함하는 것을 특징으로 하는 혈소판 검사 장치.
  29. 제28항에 있어서,
    상기 진공 형성 장치는
    상기 출구 챔버와 연결되어 진공 압력을 생성하는 진공 펌프와;
    상기 진공 펌프 및 상기 출구 챔버에 대해 병렬로 연결되어 상기 출구 챔버에 대해 기 설정된 진공 압력을 유지시키는 데드볼륨 챔버와;
    상기 출구 챔버로 인가되는 진공 압력을 단속하는 밸브를 포함하는 것을 특징으로 하는 혈소판 검사 장치.
  30. 제28항에 있어서,
    상기 감지 장치는
    영상을 획득하는 영상 획득 장치와,
    상기 미세 채널 내부의 특정 위치를 통과하는 혈액 샘플을 감지하기 위한 도달 감지 장치 중 적어도 하나를 포함하는 것을 특징으로 하는 혈소판 검사 장치.
  31. 제28항에 있어서,
    상기 복수의 샘플 챔버는 기준 샘플 챔버와 적어도 하나의 제어 샘플 챔버로 구분되며;
    상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플과 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 상기 최종 도달 거리까지의 도달 시간, 유동 속도 중 적어도 어느 하나를 선택하여 상대적 비교를 통해 혈소판의 특성이 측정되는 것을 특징으로 하는 혈소판 검사 장치.
  32. 제31항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버에 수용된 혈액 샘플과 상기 제어 샘플 챔버에 수용된 혈액 샘플에 상호 상이한 전단력이 인가되도록 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사 장치.
  33. 제32항에 있어서,
    상기 교반 제어부는
    혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고,
    혈소판이 활성화되는 크기의 전단력이 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 제어 샘플 챔버 내부의 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사 장치.
  34. 제33항에 있어서,
    상기 기준 샘플 챔버와 제어 샘플 챔버로부터 유동하는 혈액 샘플에는 전단력에 따른 혈소판의 반응 정도가 판별 가능하도록 동일한 시약이 혼합되는 것을 특징으로 하는 혈소판 검사 장치.
  35. 제33항에 있어서,
    상기 교반 제어부는 혈소판이 활성화되지 않는 크기의 전단력이 0.5 Pa 이하가 되고, 혈소판이 활성화되는 크기의 전단력이 8 Pa 이상이 되도록 해당 교반기를 제어하는 것을 특징으로 하는 혈소판 검사 장치.
  36. 제33항에 있어서,
    상기 제어 샘플 챔버는 복수개로 마련되고;
    상기 교반 제어부는
    혈소판이 활성화되지 않는 크기의 전단력이 상기 기준 샘플 챔버 내부의 혈액 샘플에 인가되도록 상기 기준 샘플 챔버 내부의 상기 교반기를 제어하고,
    전단력의 크기에 따른 혈소판의 활성화 정도가 판별 가능하게 혈소판의 활성화가 가능한 상호 상이한 크기의 전단력이 각각의 상기 제어 샘플 챔버 내부의 혈액 샘플에 인가되도록 각각의 상기 제어 샘플 챔버 내부의 상기 교반기를 제어하는 것을 특징으로 하는 혈소판 검사 장치.
  37. 제33항에 있어서,
    상기 기준 샘플 챔버와 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이한 시약이 수용되고;
    상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되고, 각각의 상기 미세 채널 내부에는 상호 상이하되 상기 기준 샘플 챔버 측에 대응하도록 시약이 수용되는 것을 특징으로 하는 혈소판 검사 장치.
  38. 제31항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며;
    상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 안타고니스트(antagonist) 약물 복용에 따른 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약과 혼합되는 것을 특징으로 하는 혈소판 검사 장치.
  39. 제31항에 있어서,
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하며;
    상기 기준 샘플 챔버와 상기 제어 샘플 챔버에는 안타고니스트(antagonist) 시약이 수용되어 혈액 샘플과 혼합되며;
    상기 제어 샘플 챔버로부터 유동하는 혈액 샘플은 상기 안타고니스트(antagonist) 시약과 혼합된 혈소판의 반응 정도가 판별 가능하도록 혈소판을 활성화시키는 특성의 시약이 혼합되는 것을 특징으로 하는 혈소판 검사 장치.
  40. 제39항에 있어서,
    상기 제어 샘플 챔버는 복수개로 마련되고, 내부에 상호 상이한 시약이 혈액 샘플과 혼합 가능하게 수용되며;
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하여 상기 복수의 제어 샘플 챔버 내부의 혈액 샘플과 상기 시약을 혼합하는 것을 특징으로 하는 혈소판 검사 장치.
  41. 제39항에 있어서,
    상기 제어 샘플 챔버과 상기 폐샘플 챔버를 연결하는 상기 미세 채널은 복수개가 병렬로 연결되되, 각각의 미세 채널 내부에는 상호 상이한 시약이 수용되며;
    상기 교반 제어부는 상기 기준 샘플 챔버와 상기 제어 샘플 챔버 내부의 혈액 샘플에 혈소판이 활성화되지 않는 크기의 전단력을 인가하는 것을 특징으로 하는 혈소판 검사 장치.
  42. 제31항에 있어서,
    혈소판의 특성 중 혈소판 응집률(PA)은 수학식 PA = (Lc/Lr)×100, PA = (Vc/Vr)×100, PA = (Tr/Tc)×100 중 어느 하나에 의해 산출되며;
    혈소판의 특성 중 혈소판 역제율(PI)은 수학식 PI=(1-(Lc/Lr))×100, PI = (1-(Vc/Vr))×100, PI = (1-(Tr/Tc))××0 중 어느 하나에 의해 산출(여기서, Lc, Tc, Vc는 각각 상기 제어 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이고, Lr, Tr, Vr는 각각 상기 기준 샘플 챔버로부터 해당 미세 채널로 유동하는 혈액 샘플의 최종 도달 거리, 최종 도달 거리까지의 도달 시간, 유동 속도이다)되는 것을 특징으로 하는 혈소판 검사 장치.
PCT/KR2014/003872 2014-04-29 2014-04-30 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치 WO2015167047A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140051386 2014-04-29
KR10-2014-0051386 2014-04-29

Publications (1)

Publication Number Publication Date
WO2015167047A1 true WO2015167047A1 (ko) 2015-11-05

Family

ID=54358764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003872 WO2015167047A1 (ko) 2014-04-29 2014-04-30 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치

Country Status (2)

Country Link
KR (1) KR101667146B1 (ko)
WO (1) WO2015167047A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717263A (zh) * 2016-03-04 2016-06-29 北京乐普医疗科技有限责任公司 一种检测噻吩并吡啶类抗血小板药物疗效的试剂卡及其使用方法和应用
CN113546701A (zh) * 2021-07-26 2021-10-26 绿叶诊断产品技术(广东)有限公司 一种检测装置及检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888239B1 (ko) * 2016-05-06 2018-09-06 고려대학교 산학협력단 막힘 현상을 이용한 혈소판 검사 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070001856A (ko) * 2006-12-12 2007-01-04 (주) 세원메디텍 교반을 이용한 혈구 응집률 계측 장치 및 방법
KR20070003993A (ko) * 2004-03-30 2007-01-05 인스파이어 파마슈티컬스 인코퍼레이티드 혈소판 응집 억제 조성물 및 방법
KR101193566B1 (ko) * 2011-08-10 2012-10-22 고려대학교 산학협력단 마이크로칩 기반 혈소판 복합기능 검사 장치
JP5421918B2 (ja) * 2008-08-11 2014-02-19 藤森工業株式会社 血小板検査方法及び血小板検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520896B1 (ko) * 2002-05-30 2005-10-12 주식회사 디지탈바이오테크놀러지 혈액형 검사방법 및 검사장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003993A (ko) * 2004-03-30 2007-01-05 인스파이어 파마슈티컬스 인코퍼레이티드 혈소판 응집 억제 조성물 및 방법
KR20070001856A (ko) * 2006-12-12 2007-01-04 (주) 세원메디텍 교반을 이용한 혈구 응집률 계측 장치 및 방법
JP5421918B2 (ja) * 2008-08-11 2014-02-19 藤森工業株式会社 血小板検査方法及び血小板検査装置
KR101193566B1 (ko) * 2011-08-10 2012-10-22 고려대학교 산학협력단 마이크로칩 기반 혈소판 복합기능 검사 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN, HUI JAE ET AL.: "Platelet Function Analyzer Through Measurement of Blood Flow, KSME", JOURNAL OF 2013 SPRING CONFERENCE OF BIO-ENGINEERING, vol. 2013, no. 5, 2013, pages 31 *
SONG, SUK - HEUNG ET AL.: "Migration distance-based platelet function analysis in a microfluidic system", BIOMICROFLUIDICS, vol. 7, no. 6, 2013, pages 064101 *
SONG, SUK - HEUNG ET AL.: "Scalable evaluation of platelet aggregation by the degree of blood migration", APPL. PHYS. LETT., vol. 103, 2013, pages 243702, XP012179329 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717263A (zh) * 2016-03-04 2016-06-29 北京乐普医疗科技有限责任公司 一种检测噻吩并吡啶类抗血小板药物疗效的试剂卡及其使用方法和应用
CN113546701A (zh) * 2021-07-26 2021-10-26 绿叶诊断产品技术(广东)有限公司 一种检测装置及检测方法
CN113546701B (zh) * 2021-07-26 2022-06-24 绿叶诊断产品技术(广东)有限公司 一种检测装置及检测方法

Also Published As

Publication number Publication date
KR101667146B1 (ko) 2016-10-17
KR20150124895A (ko) 2015-11-06

Similar Documents

Publication Publication Date Title
WO2013022284A2 (ko) 마이크로칩 기반 혈소판 복합기능 검사 장치
WO2014104807A1 (ko) 원심력 미세유동 기반 혈소판 복합기능 및 약물반응 검사 장치 및 방법
WO2016137188A1 (ko) 혈소판 검사용 칩
US11852639B2 (en) Microfluidic chip-based, universal coagulation assay
WO2015167047A1 (ko) 혈소판 검사용 칩 및 이를 이용한 혈소판 검사 장치
EP2352025B1 (en) Blood-platelet test method
US20030180824A1 (en) System for performing blood coagulation assays and measuring blood clotting times
CN102016584A (zh) 生物传感器
JP6875387B2 (ja) 細胞を検出するための試薬カートリッジ
WO2006090144A1 (en) Fluidic gating device
Lee et al. Recent advances in microfluidic platelet function assays: Moving microfluidics into clinical applications
WO2017191890A1 (ko) 막힘 현상을 이용한 혈소판 검사 장치
CN101133324A (zh) 流体门控装置
KR101865088B1 (ko) 혈소판 기능 및 점도 검사 장치
KR101575593B1 (ko) 섬유 네트워크 기반 미세유체소자 및 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890583

Country of ref document: EP

Kind code of ref document: A1