WO2015166972A1 - Method for manufacturing glass plate, and device for manufacturing glass plate - Google Patents

Method for manufacturing glass plate, and device for manufacturing glass plate Download PDF

Info

Publication number
WO2015166972A1
WO2015166972A1 PCT/JP2015/062918 JP2015062918W WO2015166972A1 WO 2015166972 A1 WO2015166972 A1 WO 2015166972A1 JP 2015062918 W JP2015062918 W JP 2015062918W WO 2015166972 A1 WO2015166972 A1 WO 2015166972A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
amount
heat
slow cooling
temperature
Prior art date
Application number
PCT/JP2015/062918
Other languages
French (fr)
Japanese (ja)
Inventor
諒 鈴木
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201580000130.8A priority Critical patent/CN105705465B/en
Priority to KR1020157016994A priority patent/KR101798305B1/en
Priority to JP2015522814A priority patent/JP5937759B2/en
Publication of WO2015166972A1 publication Critical patent/WO2015166972A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets

Definitions

  • the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus capable of reducing warpage and distortion of the glass plate.
  • a method of manufacturing a glass plate using a downdraw method has been used.
  • molten glass is poured into a molded body, and then the molten glass is allowed to overflow from the top of the molded body.
  • the overflowed molten glass flows down along both side surfaces of the molded body and joins at the lower end of the molded body to form a sheet-like glass plate.
  • the glass plate is pulled downward by a roller and cut into a predetermined length.
  • the glass sheet is thermally contracted until it is pulled downward and cut to a predetermined length, which causes warpage and distortion (residual stress).
  • warpage and distortion cause display defects when the glass plate is used as, for example, a liquid crystal display (LCD) substrate.
  • LCD liquid crystal display
  • Patent Document 1 describes a method for producing a glass plate for making the thickness of the glass plate as uniform as possible and reducing warpage and distortion. Specifically, the first temperature control step in which the end of the glass plate in the width direction is lower than the temperature of the central region sandwiched between the ends, and the temperature of the central region is uniform, In the second temperature control step in which the temperature in the width direction of the glass plate decreases from the center portion toward the end portion, and in the temperature region near the glass strain point, the end portion and the center portion in the width direction of the glass plate A glass plate manufacturing method including a glass plate cooling step, in which a glass strain point temperature control step is performed, including a third temperature control step that eliminates a temperature gradient from the above is described.
  • the curvature and distortion of the glass plate obtained by using the method for producing a glass plate described in Patent Document 1 can be reduced as compared with the conventional method, the distortion of the obtained glass plate may not be formed as desired. . Therefore, as a result of the present inventors diligently examining and advancing research, the reason why the distortion of the glass plate is not formed as desired is that in the slow cooling space where the glass plate having a correlation with the distortion of the glass plate is gradually cooled. And found that the warpage and distortion of the glass plate can be reduced by controlling the amount of heat generated by the heater that controls the temperature of the slow cooling space. It came to do.
  • the present invention includes the following forms.
  • (Form 1) A method for producing a glass plate by a downdraw method, A molding process for molding the molten glass into a sheet-like glass plate; Slow cooling in which the glass plate formed in the forming step is gradually cooled using a plurality of heaters for controlling the temperature in the slow cooling space in the slow cooling space surrounded by the furnace wall while being conveyed vertically downward.
  • a process In the cooling step, the amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and the amount of heat held and the distortion of the glass plate are determined in advance.
  • the strain of the glass plate is obtained, By controlling the amount of heat of the heater, the amount of heat retained by the glass plate is corrected, and distortion of the glass plate is suppressed, The manufacturing method of the glass plate characterized by the above-mentioned.
  • Form 2 Dividing the slow cooling space into a plurality of spaces in the vertical direction, and controlling the temperature in the space using a plurality of heaters in each space; Based on the results of determining the strain of the glass plate in each space, the amount of heat generated by the heater is controlled.
  • the manufacturing method of the glass plate of the form 1 characterized by the above-mentioned.
  • the strain of the glass plate is determined by thermal fluid analysis simulation and viscoelastic model analysis simulation.
  • the manufacturing method of the glass plate of the form 1 or 2 characterized by the above-mentioned.
  • the slow cooling space is divided into a plurality of spaces in the vertical direction,
  • the retained heat amount of the glass plate when entering each of the plurality of spaces is defined as the retained heat amount when entering the glass plate, and the retained heat amount of the glass plate during the approach and the heating value of the heater.
  • requires the calorie
  • Form 6 An apparatus for producing a glass plate by a downdraw method, A molded body for forming molten glass into a sheet-like glass plate; While conveying the glass plate molded with the molded body vertically downward, a slow cooling space surrounded by the furnace wall, A plurality of heaters for controlling the temperature in the slow cooling space and gradually cooling the glass plate,
  • the molding device includes: The amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and based on a predetermined relationship between the amount of heat held and the strain of the glass plate. A first portion for determining the strain of the glass plate; A glass plate manufacturing apparatus comprising: a second portion that corrects the amount of heat retained by the glass plate by controlling the heat amount of the heater and suppresses distortion of the glass plate.
  • the warp and distortion of the glass plate can be reduced by controlling the amount of heat generated from the heater that controls the temperature of the slow cooling space.
  • FIG. 1 is a partial flowchart of the glass plate manufacturing method according to the present embodiment.
  • the manufacturing method of a glass plate is demonstrated using FIG.
  • the glass plate is manufactured through various processes including a melting process ST1, a clarification process ST2, a homogenization process ST3, a molding process ST4, a cooling process ST5, and a cutting process ST6. The Hereinafter, these steps will be described.
  • the glass raw material is heated and melted.
  • Glass raw materials for example, a composition, such as SiO 2, Al 2 O 3.
  • the molten glass raw material becomes molten glass.
  • the clarification step ST2 the molten glass is clarified. Specifically, the gas component contained in the molten glass is released from the molten glass, or the gas component contained in the molten glass is absorbed into the molten glass.
  • the homogenization step ST3 the molten glass is homogenized. In this step, the temperature of the molten glass that has been clarified is adjusted.
  • the molten glass is formed into a sheet-like glass plate by a downdraw method (for example, an overflow downdraw method).
  • the glass plate formed in the forming step ST4 is cooled.
  • the glass plate is cooled to near room temperature.
  • the cutting step ST6 the glass plate cooled to near room temperature is cut into a glass plate every predetermined length.
  • disconnected for every predetermined length is cut
  • FIG. 2 is a schematic diagram mainly showing a melting apparatus 200 included in the glass plate manufacturing apparatus 100.
  • FIG. 3 is a schematic front view of a forming apparatus 300 included in the glass plate manufacturing apparatus 100.
  • FIG. 4 is a schematic side view of the molding apparatus 300.
  • the glass plate manufacturing apparatus 100 will be described.
  • the glass plate manufacturing apparatus 100 mainly includes a melting apparatus 200 (see FIG. 2), a forming apparatus 300 (see FIGS. 3 to 4), and a cutting apparatus 400 (not shown).
  • the dissolution device 200 is a device for performing the dissolution step ST1, the clarification step ST2, and the homogenization step ST3.
  • the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the melting tank 201 is a tank for melting the glass raw material. In the dissolution tank 201, the dissolution step ST1 is performed.
  • the clarification tank 202 is a tank for removing bubbles from the molten glass melted in the melting tank 201.
  • the clarification tank 202 is further heated with the molten glass fed from the melting tank 201, thereby promoting the defoaming of bubbles in the molten glass.
  • a clarification step ST2 is performed in the clarification tank 202.
  • the agitation tank 203 has an agitation device including a container for storing molten glass, a rotation shaft, and an agitation blade attached to the rotation shaft.
  • a container, a rotating shaft, and a stirring blade although the thing made from platinum group elements, such as platinum, or the alloy of a platinum group element, for example can be used, it is not restricted to this.
  • the first pipe 204 and the second pipe 205 are pipes made of, for example, a platinum group element or a platinum group element alloy.
  • the first pipe 204 is a pipe that connects the clarification tank 202 and the stirring tank 203.
  • the second pipe 205 is a pipe that connects the stirring tank 203 and the molding apparatus 300.
  • the molding device 300 is a device for performing the molding step ST4 and the cooling step ST5.
  • the molding apparatus 300 includes a molded body 310, an atmosphere partition member 320, a cooling roller 330, a cooling unit 340, pulling rollers 350a to 350e, and heaters 360a to 360e. .
  • these configurations will be described.
  • the molded body 310 is an apparatus for performing the molding process ST4. As shown in FIG. 3, the molded body 310 is located in the upper part of the molding apparatus 300 and has a function of molding the molten glass flowing from the melting apparatus 200 into a sheet-like glass plate SG by the overflow down draw method. .
  • the cross-sectional shape of the molded body 310 cut in the vertical direction is a wedge shape, and the molded body 3120 is made of, for example, refractory bricks.
  • a supply port 311 is formed in the molded body 310 on the upstream side in the flow channel direction of the molten glass flowing from the melting device 200.
  • the molded body 310 is formed with a groove portion 312 opened upward along the longitudinal direction thereof.
  • the groove 312 is formed so as to gradually become shallower from the upstream side toward the downstream side in the flow channel direction of the molten glass.
  • the molten glass flowing from the melting device 200 toward the molding device 300 flows into the groove portion 312 of the molded body 310 via the supply port 311.
  • the molten glass that has flowed into the groove 312 of the molded body 310 overflows at the top of the groove 312 and flows down along both side surfaces 313 of the molded body 310. And the molten glass which flows down along the both side surfaces 313 of the molded object 310 joins in the lower part 314 of the molded object 310, and becomes the glass plate SG.
  • the atmosphere partition member 320 is a plate-like member disposed in the vicinity of the lower portion 314 of the molded body 310.
  • the atmosphere partition member 320 is disposed to be substantially horizontal on both sides in the thickness direction of the glass plate SG flowing down from the lower portion 314 of the molded body 310.
  • the atmosphere partition member 320 functions as a heat insulating material. In other words, the atmosphere partition member 320 suppresses the movement of heat from the upper side to the lower side of the atmosphere partition member 320 by partitioning the upper and lower air. As shown in FIGS.
  • the molding apparatus 300 includes a molded body accommodation portion 410 that is a space above the atmosphere partition member 320, a molding zone 42a that is a space immediately below the atmosphere partition member 320, and a molding zone 42a. And a slow cooling zone 420 which is a space below the.
  • the slow cooling zone 420 has a plurality of slow cooling spaces 42b, 42c,.
  • the molding zone 42a and the slow cooling spaces 42b to 42f are stacked in this order from the top to the bottom in the vertical direction.
  • a forming zone 42a and a slow cooling zone 420 are formed, and the glass plate SG is formed in the forming zone 42a and the slow cooling zone 420 (slow cooling spaces 42b to 42f).
  • the heat insulating member 41 is a plate-shaped heat insulating material that is disposed below the cooling roller 330 described later and on both sides in the thickness direction of the glass plate SG in the slow cooling zone 420.
  • the heat insulating member 41 forms a molding zone 42a and a slow cooling space 42b.
  • the heat insulation member 41 forms the slow cooling space 42b and the slow cooling space 42c.
  • the slow cooling spaces 42 b to 42 f are formed by being surrounded by the furnace wall and the heat insulating member 41.
  • Each heat insulating member 41 suppresses heat transfer between the upper and lower spaces.
  • the heat insulating member 41 suppresses heat transfer between the molding zone 42a and the slow cooling space 42b
  • the heat insulating member 41 suppresses heat transfer between the slow cooling space 42b and the slow cooling space 42c. .
  • Cooling roller 330 The cooling roller 330 is disposed below the atmosphere partition member 320. Moreover, the cooling roller 330 is arrange
  • the cooling roller 330 is air-cooled by an air-cooling tube passed through the cooling roller 330. Therefore, when the glass plate SG passes through the cooling roller 330, the glass plate SG is in contact with the air-cooled cooling roller 330.
  • Both side portions in the thickness direction of the glass plate SG and both end portions in the width direction (hereinafter, the portions are referred to as glass plates). SG ears R and L) are cooled.
  • the viscosity of the ear portion R, L is a predetermined value (e.g., 10 9.0 poises) is above.
  • the ears R and L are thicker than the thickness of the central region (central part) in the width direction of the glass plate SG sandwiched between the ears R and L, and have a predetermined thickness.
  • the central region (central portion) is a portion having a substantially uniform thickness that can be used as a product (glass substrate).
  • the cooling roller 330 also has a role of pulling the glass plate SG downward by transmitting a driving force by the cooling roller driving motor 390 (see FIG. 5). The glass plate SG is stretched to a predetermined thickness by the cooling roller 330.
  • Cooling unit 340 is, for example, an air-cooling type cooling device, and cools the ambient temperature of the cooling roller 330 and the glass plate SG passing therebelow. Moreover, the cooling unit 340 is arranged in plural (for example, three) in the width direction of the glass plate SG and plural in the flow direction. Specifically, the cooling units 340 are arranged one by one so as to face the surfaces of the ears R and L of the glass plate SG, and one cooling unit 340 is arranged so as to face the surface of the central region. .
  • the pulling rollers 350a to 350e are arranged below the cooling roller 330 with a predetermined interval in the flow direction of the glass plate SG. Further, the pulling rollers 350a to 350e are respectively disposed in the slow cooling spaces 42b to 42f so as to face both sides in the thickness direction of the glass plate SG and to face both end portions in the width direction of the glass plate SG.
  • the pulling rollers 350a to 350e are both side portions in the thickness direction of the glass plate SG in which the viscosities of the ear portions R and L are equal to or higher than a predetermined value in the cooling roller 330, while being in contact with both end portions in the width direction. Pull the glass plate SG downward.
  • the pulling rollers 350a to 350e are driven by the driving force transmitted by the pulling roller driving motor 391 (see FIG. 5).
  • the peripheral speed of the pulling rollers 350 a to 350 e is larger than the peripheral speed of the cooling roller 330.
  • the circumferential speed of the pulling roller increases as it is arranged on the downstream side in the flow direction of the glass plate SG. That is, among the plurality of pulling rollers 350a to 350e, the peripheral speed of the pulling roller 350a is the lowest, and the peripheral speed of the pulling roller 350e is the highest.
  • the heaters (temperature control units) 360a to 360e are disposed in the molding zone 42a and the slow cooling spaces 42b to 42f below the cooling unit 340, respectively, and the molding zone 42a and the slow cooling spaces 42b, 42c, Controls the ambient temperature of ...
  • the heaters 360a to 360e control the ambient temperature in the vicinity of the glass sheet SG pulled downward by the pulling rollers 350a to 350e by controlling the output by the control device 500 described later (specifically, the ambient temperature Functions as a cooling device.
  • Each of the heaters 360a to 360e includes heat generating portions 361a, 362a,...
  • the heat generating parts 361a to 366a are heat generating elements that release heat to the slow cooling space.
  • the heat generating portions 361a to 366a are embedded in the furnace wall, and are configured to generate heat by being supplied with electric power. As shown in FIG. 6, the heat generating portions 361a to 366a are arranged in a line along the width direction of the glass plate SG at positions facing both sides of the glass plate SG. FIG.
  • FIG. 6 shows the heat generating portions 361a to 366a provided in the slow cooling space 42b, but the heaters 360b to 360e having similar heat generating portions have an ambient temperature in the vicinity of the glass plate SG of the width of the glass plate SG.
  • a predetermined temperature distribution (hereinafter referred to as “temperature profile”) is formed in the direction.
  • the heaters 360a to 360e having the heat generating parts control the ambient temperature of the molding zone 42a and the slow cooling spaces 42b to 42f.
  • a plurality of heat generating portions of the heaters 360a to 360e may be arranged not only in the width direction of the glass plate SG but also in the flow direction of the glass plate SG.
  • the atmospheric temperature of the glass plate SG pulled downward by the pulling rollers 350a to 350e is controlled by the heaters 360a to 360e (heat generating portions 361a to 366a) (specifically, the glass plate SG
  • the glass plate SG is temperature-controlled), so that the glass plate SG is cooled from the viscous region to the elastic region through the viscoelastic region.
  • thermocouple unit 380 (see FIGS. 5 to 7) for detecting the atmospheric temperature of each region of the glass plate SG is disposed in the vicinity of the heat generating portions 361a to 366a.
  • the thermocouple unit 380 measures the ambient temperature of the slowly cooling spaces 42b to 42f that change as the heat generating portions 361a to 366a generate heat.
  • the control device 500 acquires the ambient temperature measured by the thermocouple unit 380, and controls the amount of heat generated from the heat generating units 361a to 366a included in the heaters 360a to 360e based on the acquired ambient temperature.
  • the glass plate SG is cooled by the cooling roller 330, the cooling unit 340, and the heaters 360a to 360e (heating units 361a to 366a) in the molding zone 42a and the slow cooling spaces 42b to 42f, which are regions below the lower portion 314 of the molded body 310.
  • the going process is the cooling process ST5.
  • the cutting device 400 is a device that cuts the glass plate SG flowing down in the forming device 300 from a direction perpendicular to the longitudinal surface thereof. Thereby, the sheet-like glass plate SG becomes a plurality of glass plates SG having a predetermined length.
  • the cutting device 400 is driven by a cutting device drive motor 392 (see FIG. 5).
  • Control device 500 is a control block diagram of the control device 500.
  • the control device 500 includes a CPU, a ROM, a RAM, a hard disk, and the like, and functions as a control unit that controls various devices included in the glass plate manufacturing apparatus 100.
  • the glass plate manufacturing apparatus 100 or the molding apparatus 300 includes a control device 500, and as shown in FIG. 5, the control device 500 includes various sensors (for example, the glass plate manufacturing apparatus 100).
  • Thermocouple unit 380, etc. and switches (for example, main power switch 381 etc.), etc., and input instructions from an operator via an input device (not shown), etc., in response to the cooling unit 340, heaters 360a ⁇ 360e (heat generating units 361a to 366a), a cooling roller driving motor 390 that controls the operation of the cooling roller 330, a pulling roller driving motor 391 that controls the operation of the pulling rollers 350a to 350e, and a cutting device drive that controls the operation of the cutting device 400 Control of the motor 392 and the like is performed.
  • heaters 360a ⁇ 360e heat generating units 361a to 366a
  • a cooling roller driving motor 390 that controls the operation of the cooling roller 330
  • a pulling roller driving motor 391 that controls the operation of the pulling rollers 350a to 350e
  • a cutting device drive that controls the operation of the cutting device 400 Control of the motor 392 and the like is performed.
  • Cooling process ST5 includes that the control apparatus 500 controls the temperature of the glass plate SG by controlling the cooling roller 330.
  • FIG. Furthermore, the cooling step ST5 includes a temperature control step for controlling the temperature of the glass plate SG. Specifically, in the temperature control step, the temperature of the glass plate SG is controlled by controlling the heating unit 361a to 366a of the cooling unit 340 and the heaters 360a to 360e to control the ambient temperature of the glass plate SG. Control.
  • the cooling step ST5 includes a heat amount control step for controlling the heat generation amount of the heat generating portions 361a to 366a so that the temperature of the glass plate SG falls within a predetermined temperature range at a predetermined height position (predetermined slow cooling space).
  • the temperature of the glass plate SG has a predetermined temperature distribution in the width direction. That is, the temperature of the glass plate SG is controlled in the flow direction and the width direction.
  • the above-described heat quantity control step will be described below by taking the operation of the heat generating portions 361a to 366a as an example.
  • the heat amount control step the amount of heat generated by the heat generating portions 361a to 366a is determined.
  • the control unit 500 initially sets the heat generating units 361a to 366a to a predetermined set temperature, and the ambient temperature in the vicinity of the glass plate SG is the width of the glass plate SG in the slow cooling spaces 42b to 42f (slow cooling zone 420).
  • a predetermined temperature profile is formed in the direction.
  • the temperature distribution and strain distribution of the formed glass plate SG are obtained, and the obtained strain is reduced.
  • the amount of heat (set temperature) generated by the heat generating portions 361a to 366a is controlled.
  • a method for obtaining the temperature distribution of the glass plate SG in order to control the amount of heat generated by the heat generating parts 361a to 366a (the set temperature of the heat generating parts 361a to 366a) will be described below.
  • the method uses thermal fluid analysis simulation and viscoelastic analysis simulation.
  • thermal fluid analysis simulation for example, a thermal fluid analysis is performed using a discretized model based on the finite element method.
  • the amount of heater heat generated by the heat generating portions 361a to 366a is given, that is, the set temperature of the heat generating elements 361a to 366a is given, and the temperature distribution of the atmosphere of the slow cooling spaces 42b to 42f and the temperature distribution of the glass plate SG are obtained.
  • a temperature distribution that is the amount of heat retained by the glass plate SG in the entire slow cooling space (slow cooling zone) is obtained.
  • the simulation is performed under the following conditions.
  • the slow cooling space 42b of the slow cooling zone 420 divided into a plurality of stages in the flow direction of the glass plate SG is discretized as a mesh model, and the glass plate in the first slow cooling space 42b is analyzed using thermal fluid analysis. Obtain the temperature distribution of SG. At this time, the temperature distribution of the glass plate SG entering the slow cooling space 42b is determined in advance. Of the temperature distribution of the glass sheet SG in the first-stage slow cooling space 42b, the temperature distribution in the width direction when exiting from the slow cooling space 42b is the temperature of the glass sheet SG entering the second-stage slow cooling space 42c. Defined as distribution.
  • FIG. 9 shows a model of the first-stage slow cooling space 42b as viewed from the flow direction of the glass plate SG.
  • the amount of heat held by the glass plate SG when entering the slow cooling space 42b and the amount of heater heat (set temperature) of the heater 360a (heat generating portions 361a to 366a) are given, along with the ambient temperature in the slow cooling space 42b.
  • the temperature distribution of the glass plate SG in the cold space 42b is obtained.
  • the temperature distribution of the glass sheet SG is obtained in the same manner as in the first stage, and the obtained temperature distributions of the plurality of glass sheets SG are connected, so that the slow cooling spaces 42b ⁇
  • the temperature distribution of the glass plate SG in the entire 42f is obtained.
  • the temperature distribution of the glass plate SG in the first-stage slow cooling space 42b is analyzed. The above (1) to (3) will be described as follows.
  • the retained heat amount (temperature distribution) of the glass plate SG is the position where the glass plate SG enters the slow cooling space 42b (in the slow cooling space 42b). It is measured using a temperature sensor (not shown) provided on the upstream side. Since the amount of molten glass flowing out of the molded body 310 is constant, the flow rate (conveying speed) of the glass plate SG is constant, and the glass plate SG when entering the slow cooling space 42b from the measured temperature (temperature distribution). The amount of heat retained can be obtained. Further, from the flow rate of the glass plate SG and the temperature of the molten glass flowing into the molded body 310, the retained heat amount (temperature distribution) of the glass plate SG when entering the slow cooling space 42b can be obtained.
  • Heat generation amount (set temperature) of the heater 360a (heat generating portions 361a to 366a)
  • the amount of heat generated by each of the heat generating units 361a to 366a varies depending on the set temperature set by the control device 500.
  • the heater heat amount generated by each of the heat generating units 361a to 366a based on the set temperature is obtained from the measurement result of a wattmeter (not shown) of the heat generating units 361a to 366a provided in the power supply apparatus. Therefore, when controlling the heat generation amount of the heat generating units 361a to 366a, the power supplied to each of the heat generating units 361a to 366a is controlled.
  • the preset temperature initially set in the heat generating portions 361a to 366a included in the heater 360a of the slow cooling space 42b is set to 700 ° C., for example.
  • the heat generation amounts of the heat generating elements 361a to 366a may be the same, but the heat generation amount may be distributed.
  • the temperatures of the heat generating portions 361a to 366a can be obtained as calculation results as unknown amounts.
  • the inflow temperature of the glass plate SG is calculated as, for example, 700 ° C., and the inflow temperature of the glass plate SG can be set so that the measured temperature and the temperature of the calculation result coincide with each other.
  • the actual current (A), voltage (V), and power factor of the heat generating parts 361a to 366a whose temperature is set are actually measured, and the heat generation amount (W) is obtained therefrom, and the heat generation density (W / m 3 ) Convert to the calculation conditions. Since the temperature is obtained as a calculation result (solution), the calculation result and the set temperature are compared, and the temperature is obtained by repeating the review of the conditions so that the match is good.
  • Atmospheric temperature in the slow cooling space 42b The atmospheric temperature in the slow cooling space 42b varies depending on the amount of heat held by the glass plate SG and the amount of heater heat in the heat generating portions 361a to 366a. Assuming that the atmosphere of the slow cooling space 42b is an incompressible ideal gas, the natural convection caused by buoyancy and the heat transfer caused thereby are the same as the heat transfer of the glass plate SG. It is included in the thermal fluid analysis model of and coupled to solve.
  • the atmospheric temperature in the slow cooling space 42b is solved as an unknown in the thermofluid analysis, but instead, the thermocouple unit 380 measures the atmospheric temperature in the slow cooling space 42b, The amount of heat held in the slow cooling space 42b (atmosphere temperature in the slow cooling space 42b) is obtained, and this heat amount is given as the ambient temperature in the slow cooling space 42b in the thermal fluid analysis to calculate the temperature distribution of the glass plate SG. May be.
  • the physical property values of the materials constituting the glass plate SG and the slow cooling space 42b are as follows.
  • the temperature conditions of the glass plate SG in the first-stage slow cooling space 42b can be obtained by inputting the above conditions and physical property values into general-purpose thermal fluid analysis software for analysis.
  • the temperature distribution of the glass plate SG in the second and subsequent slow cooling spaces 42c to 42f is obtained.
  • a discrete mesh model is created in the same manner as the slow cooling space 42b.
  • the retained heat amount of the glass plate SG flowing into the slow cooling spaces 42c to 42f is obtained as a result of the thermofluid analysis, and the retained heat amount of the glass plate SG when exiting the preceding slow cooling space.
  • Use calorie (temperature distribution) That is, for example, the retained heat amount of the glass plate SG entering the second-stage slow cooling space 42c is obtained as a temperature (temperature distribution) in the first-stage slow cooling space 42b obtained as a result of the thermal fluid analysis.
  • the amount of heat held by the glass plate SG when the glass plate SG flows out of the first-stage slow cooling space 42b is used. Further, the set temperature of the heat generating portions 361a to 366a provided in the second-stage slow cooling space 42c is set to a temperature lower by 5 ° C. to 30 ° C., preferably 15 ° C. than that of the previous stage, toward the flow direction. Each time the stage is advanced, the set temperature is set to a temperature lowered in the range of 5 ° C. to 30 ° C., preferably a temperature lowered by 15 ° C.
  • the conditions for obtaining the temperature distribution of the entire glass plate SG in the second and subsequent slow cooling spaces 42c to 42f by thermal fluid analysis are the conditions used for the temperature distribution of the glass plate SG in the first cooling space 42b. Since the values are the same as the physical property values, description thereof is omitted.
  • the retained heat amount of the glass plate when entering each of the plurality of slow cooling spaces is defined as the retained heat amount when the glass plate enters, and the retained heat amount of the glass plate and the heat generation of the heater when entering the glass plate. By giving the amount, the retained heat amount of the glass plate in each of the plurality of cooling spaces of the glass plate can be obtained.
  • the thermal fluid analysis simulation is performed in each of the plurality of cooling spaces, and among the plurality of cooling spaces, the cooling spaces in the second and subsequent stages as viewed from the upstream side in the flow direction of the glass plate are adjacent to the upstream side.
  • the temperature distribution at the time when the glass plate comes out of the cooling space can be used as the retained heat amount at the time of entering.
  • the temperature distribution of the glass sheet SG in the annealing space for each stage is obtained by thermofluid analysis, and a plurality of temperature distributions of the glass sheets SG in the annealing space for each stage are connected, whereby a plurality of the annealing spaces 42c of the plurality of stages are obtained.
  • the temperature distribution of the glass plate SG in the entire region ⁇ 42f (slow cooling zone 420) can be obtained.
  • the strain distribution of the glass plate SG is determined by viscoelastic model analysis.
  • the temperature distribution of the glass plate SG in the entire slow cooling spaces 42b to 42f obtained by the thermal fluid analysis, the physical property values of the glass plate SG, the stress relaxation parameters and the structural relaxation parameters of the glass plate SG are as follows: By inputting into known analysis software and performing analysis, viscoelastic model analysis is performed and the strain distribution of the glass plate is obtained. Specifically, the strain distribution is obtained in consideration of the stress relaxation parameter and the structure relaxation parameter.
  • the temperature of the glass plate SG may be cooled in a non-uniform state in the width direction, and thermal stress is constantly generated due to the difference in shrinkage, and the stress is constantly relaxed. For this reason, in order to evaluate the residual stress remaining in the glass plate SG, it is necessary to consider not only thermal stress calculation due to shrinkage but also stress relaxation in which the stress decreases with time. For this reason, stress relaxation is taken into account by using a viscoelastic model of software for structural analysis. Moreover, in order to obtain
  • the volume decreases when the glass plate SG is left at a high temperature for a long time this is used as a structural relaxation parameter.
  • the number of cycles is adjusted so that the structural relaxation parameter matches the shrinkage result of multiple heat treatments.
  • the temperature of the glass plate SG since the temperature distribution of the glass plate and the strain of the glass plate have a correlation, the correlation is obtained in advance, and based on this correlation, the temperature of the glass plate SG ( The strain distribution of the glass plate SG can be obtained from the (temperature distribution).
  • the stress relaxation parameter and the structural relaxation parameter of the glass plate SG are as shown in FIGS.
  • the strain distribution of the glass plate SG can be obtained using the thermal fluid analysis and the viscoelastic model analysis.
  • the strain distribution of the glass plate SG obtained by the above-described method is obtained from the heat generation amount in the initial state where the set temperature of the heat generating portions 361a to 366a is 700 ° C., and the set temperature of the heat generating portions 361a to 366a is changed. Thereby, the strain distribution of the glass plate SG also changes.
  • the relationship between the change in the set temperature of the heat generating portions 361a to 366a and the strain change in the glass plate SG is obtained, so that the strain distribution in the glass plate SG is suppressed.
  • the warp and distortion of the glass plate SG can be reduced.
  • a warp, strain, and temperature distribution of the glass plate SG can be measured by providing a strain measuring device (strain measuring sensor) in the slow cooling spaces 42b to 42f. Strain measurement and temperature measurement (thermocouple) are separate measurements, but both can be measured at the same location.
  • the retained heat amount (temperature distribution) of the glass plate SG may be changed by being sandwiched between the pulling rollers 350a to 350e.
  • the retained heat amount (temperature distribution) included in the pulling rollers 350a to 350e is measured by the thermocouple unit 380 or the heat amount detection sensor included in the pulling rollers 350a to 350e. It is also possible to obtain warpage and distortion of the glass plate SG by performing a simulation using both the amount of heat retained by the pulling rollers 350a to 350e and the amount of heat retained by the glass plate SG.
  • the mesh model of the pulling rollers 350a to 350e is added to the model of each slow cooling space, and the amount of heat held by the mesh model of the pulling rollers 350a to 350e is measured as described above.
  • the temperature distribution of the slow cooling space and the temperature distribution of the glass plate SG may be solved by giving a set temperature to the heat generating portion. Thereby, the temperature distribution of the glass plate SG can be calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

 A method for manufacturing a glass plate by a downflow method, the method provided with a forming step for forming molten glass into a sheet-shaped glass plate, and an annealing step for annealing the glass sheet formed in the forming step using a plurality of heaters in an annealing space surrounded by furnace walls, the heaters for controlling the temperature in the annealing space, while conveying the glass sheet vertically downward. In the annealing step, the amount of retained head retained by the glass plate is determined together with the amount of heat in the annealing space using the amount of heat generated by the heaters, the distortion of the glass plate is determined on the basis of a pre-established relationship between the amount of retained heat and the distortion of the glass plate, and the amount of heat from the heaters is controlled, and the amount of retained heat in the glass plate is thereby corrected, and distortion of the glass plate is suppressed.

Description

ガラス板の製造方法、及び、ガラス板の製造装置Glass plate manufacturing method and glass plate manufacturing apparatus
 本発明は、ガラス板の反り及び歪が低減され得るガラス板の製造方法、及び、ガラス板の製造装置に関する。 The present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus capable of reducing warpage and distortion of the glass plate.
 従来より、ダウンドロー法を用いてガラス板を製造する方法が用いられている。ダウンドロー法では、成形体に熔融ガラスを流し込んだ後、当該熔融ガラスを成形体の頂部からオーバーフローさせる。オーバーフローされた熔融ガラスは、成形体の両側面に沿って流下し、成形体の下端部で合流することにより、シート状のガラス板となる。ガラス板は、その後、ローラによって下方に引っ張られ、所定の長さに切断される。
 しかし、下方に引っ張られ、所定の長さに切断されるまでの間に、ガラス板は熱収縮し、これにより反り及び歪(残留応力)が生じる。このような反り及び歪は、ガラス板を、例えば液晶ディスプレイ(LCD)基板として用いた際に、表示欠陥の原因となる。
Conventionally, a method of manufacturing a glass plate using a downdraw method has been used. In the downdraw method, molten glass is poured into a molded body, and then the molten glass is allowed to overflow from the top of the molded body. The overflowed molten glass flows down along both side surfaces of the molded body and joins at the lower end of the molded body to form a sheet-like glass plate. Thereafter, the glass plate is pulled downward by a roller and cut into a predetermined length.
However, the glass sheet is thermally contracted until it is pulled downward and cut to a predetermined length, which causes warpage and distortion (residual stress). Such warpage and distortion cause display defects when the glass plate is used as, for example, a liquid crystal display (LCD) substrate.
 特許文献1には、ガラス板の板厚を極力均一にし、反り及び歪を低減するためのガラス板の製造方法が記載されている。具体的には、ガラス板の幅方向の端部が前記端部に挟まれた中央領域の温度より低く、且つ、前記中央領域の温度が均一になるようにする第1温度制御工程と、前記ガラス板の幅方向の温度が中央部から端部に向かって低くなるようにする第2温度制御工程と、ガラス歪点の近傍の温度領域において、前記ガラス板の幅方向の端部と中央部との温度勾配がなくなるようにする第3温度制御工程とを含む、ガラス歪点上温度制御工程、が行われる、ガラス板の冷却工程を含むガラス板の製造方法が記載されている。 Patent Document 1 describes a method for producing a glass plate for making the thickness of the glass plate as uniform as possible and reducing warpage and distortion. Specifically, the first temperature control step in which the end of the glass plate in the width direction is lower than the temperature of the central region sandwiched between the ends, and the temperature of the central region is uniform, In the second temperature control step in which the temperature in the width direction of the glass plate decreases from the center portion toward the end portion, and in the temperature region near the glass strain point, the end portion and the center portion in the width direction of the glass plate A glass plate manufacturing method including a glass plate cooling step, in which a glass strain point temperature control step is performed, including a third temperature control step that eliminates a temperature gradient from the above is described.
国際公開第2012/133843号International Publication No. 2012/133384
 特許文献1に記載のガラス板の製造方法を用いて得られたガラス板の反り及び歪は、従来の方法より低減できるものの、得られるガラス板の歪は所望のとおりに形成されないことがあった。そこで、本発明者が鋭意検討し、研究を進めた結果、ガラス板の歪が所望のとおりに形成されない原因が、ガラス板の歪と相関関係にあるガラス板を徐冷する徐冷空間内での温度の制御の精度が十分でないことにあることを見出し、徐冷空間の温度を制御するヒータにより発生させる熱量を制御することによりガラス板の反り及び歪を低減できることを見出し、本発明を完成するに至った。 Although the curvature and distortion of the glass plate obtained by using the method for producing a glass plate described in Patent Document 1 can be reduced as compared with the conventional method, the distortion of the obtained glass plate may not be formed as desired. . Therefore, as a result of the present inventors diligently examining and advancing research, the reason why the distortion of the glass plate is not formed as desired is that in the slow cooling space where the glass plate having a correlation with the distortion of the glass plate is gradually cooled. And found that the warpage and distortion of the glass plate can be reduced by controlling the amount of heat generated by the heater that controls the temperature of the slow cooling space. It came to do.
 本発明は、以下の形態を含む。
(形態1)
 ダウンドロー法によるガラス板の製造方法であって、
 熔融ガラスをシート状のガラス板に成形する成形工程と、
 前記成形工程で成形したガラス板を、鉛直方向下方に搬送しながら、炉壁により囲まれた徐冷空間において、前記徐冷空間内の温度を制御する複数のヒータを用いて徐冷する徐冷工程と、を備え、
 前記冷却工程では、前記ガラス板が保有する保有熱量を、前記ヒータが発する発熱量を用いて、前記徐冷空間内の空間熱量とともに求め、前記保有熱量と前記ガラス板の歪との予め定められた関係に基づいて、前記ガラス板の歪を求め、
 前記ヒータ熱量を制御することにより、前記ガラス板の保有熱量を補正して、前記ガラス板の歪を抑制する、
 ことを特徴とするガラス板の製造方法。
The present invention includes the following forms.
(Form 1)
A method for producing a glass plate by a downdraw method,
A molding process for molding the molten glass into a sheet-like glass plate;
Slow cooling in which the glass plate formed in the forming step is gradually cooled using a plurality of heaters for controlling the temperature in the slow cooling space in the slow cooling space surrounded by the furnace wall while being conveyed vertically downward. A process,
In the cooling step, the amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and the amount of heat held and the distortion of the glass plate are determined in advance. Based on the relationship, the strain of the glass plate is obtained,
By controlling the amount of heat of the heater, the amount of heat retained by the glass plate is corrected, and distortion of the glass plate is suppressed,
The manufacturing method of the glass plate characterized by the above-mentioned.
(形態2)
 前記徐冷空間を前記鉛直方向に複数の空間に分け、各空間において複数のヒータを用いて空間内の温度を制御し、
 前記各空間において前記ガラス板の歪をそれぞれ求めた結果に基づいて、前記ヒータが発するヒータ熱量を制御する、
 ことを特徴とする形態1に記載のガラス板の製造方法。
(Form 2)
Dividing the slow cooling space into a plurality of spaces in the vertical direction, and controlling the temperature in the space using a plurality of heaters in each space;
Based on the results of determining the strain of the glass plate in each space, the amount of heat generated by the heater is controlled.
The manufacturing method of the glass plate of the form 1 characterized by the above-mentioned.
(形態3)
 前記ガラス板の歪は、熱流体解析シミュレーション及び粘弾性モデル解析シミュレーションにより求める、
 ことを特徴とする形態1又は2に記載のガラス板の製造方法。
(Form 3)
The strain of the glass plate is determined by thermal fluid analysis simulation and viscoelastic model analysis simulation.
The manufacturing method of the glass plate of the form 1 or 2 characterized by the above-mentioned.
(形態4)
 前記徐冷空間は前記鉛直方向に複数の空間に分けられており、
 前記熱流体解析シミュレーションでは、前記複数の空間のそれぞれに進入するときのガラス板の保有熱量をガラス板の進入時の保有熱量とし、前記進入時のガラス板の保有熱量と前記ヒータの前記発熱量を与えることにより、前記ガラス板の前記複数の空間それぞれにおける前記ガラス板の保有熱量を求める、形態3に記載のガラス板の製造方法。
(Form 4)
The slow cooling space is divided into a plurality of spaces in the vertical direction,
In the thermal fluid analysis simulation, the retained heat amount of the glass plate when entering each of the plurality of spaces is defined as the retained heat amount when entering the glass plate, and the retained heat amount of the glass plate during the approach and the heating value of the heater. The manufacturing method of the glass plate of the form 3 which calculates | requires the calorie | heat amount of the said glass plate in each of these space of the said glass plate by giving.
(形態5)
 前記複数の空間を前記ガラス板が流れるとき、前記熱流体解析シミュレーションは、前記複数の空間のそれぞれにおいて行なわれ、前記複数の空間のうち、前記ガラス板の流れ方向の上流側からみて2段目以降の空間では、上流側に隣接する空間において前記ガラス板が出るときの温度分布を、前記進入時の保有熱量として用いる、請求項4に記載のガラス板の製造方法。
(Form 5)
When the glass plate flows through the plurality of spaces, the thermal fluid analysis simulation is performed in each of the plurality of spaces, and the second stage of the plurality of spaces when viewed from the upstream side in the flow direction of the glass plate. 5. The method for manufacturing a glass plate according to claim 4, wherein, in a subsequent space, a temperature distribution when the glass plate comes out in a space adjacent to the upstream side is used as a retained heat amount at the time of entering.
(形態6)
 ダウンドロー法によるガラス板の製造装置であって、
 熔融ガラスをシート状のガラス板に成形する成形体と、
 前記成形体で成形したガラス板を、鉛直方向下方に搬送しながら、炉壁により囲まれた徐冷空間と、
 前記徐冷空間内の温度を制御し、前記ガラス板を徐冷する複数のヒータと、を備えた成形装置を含み、
 前記成形装置は、
 前記ガラス板が保有する保有熱量を、前記ヒータが発した発熱量を用いて、前記徐冷空間内の空間熱量とともに求め、前記保有熱量と前記ガラス板の歪との予め定められた関係に基づいて、前記ガラス板の歪を求める第1の部分と、
 前記ヒータ熱量を制御することにより、前記ガラス板の保有熱量を補正して、前記ガラス板の歪を抑制する第2の部分と、を有する
 ことを特徴とするガラス板の製造装置。
(Form 6)
An apparatus for producing a glass plate by a downdraw method,
A molded body for forming molten glass into a sheet-like glass plate;
While conveying the glass plate molded with the molded body vertically downward, a slow cooling space surrounded by the furnace wall,
A plurality of heaters for controlling the temperature in the slow cooling space and gradually cooling the glass plate,
The molding device includes:
The amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and based on a predetermined relationship between the amount of heat held and the strain of the glass plate. A first portion for determining the strain of the glass plate;
A glass plate manufacturing apparatus comprising: a second portion that corrects the amount of heat retained by the glass plate by controlling the heat amount of the heater and suppresses distortion of the glass plate.
 本発明によれば、徐冷空間の温度を制御するヒータから発生させる熱量を制御することにより、ガラス板の反り及び歪を低減することができる。 According to the present invention, the warp and distortion of the glass plate can be reduced by controlling the amount of heat generated from the heater that controls the temperature of the slow cooling space.
本実施形態に係るガラス板の製造方法の一部のフローチャートである。It is a partial flowchart of the manufacturing method of the glass plate which concerns on this embodiment. 本実施形態に係るガラス板の製造方法に用いる、ガラス板の製造装置に含まれる熔解装置を主として示す図である。It is a figure which mainly shows the melting apparatus contained in the manufacturing apparatus of the glass plate used for the manufacturing method of the glass plate which concerns on this embodiment. 成形装置の概略の正面図である。It is a schematic front view of a shaping | molding apparatus. 成形装置の概略の側面図である。It is a schematic side view of a shaping | molding apparatus. 制御装置の制御ブロック図である。It is a control block diagram of a control apparatus. 成形装置の概略の正面図の一部拡大図である。It is a partial enlarged view of the schematic front view of a shaping | molding apparatus. 成形装置の概略の横断面図である。It is a schematic cross-sectional view of a shaping | molding apparatus. 図7のA線における断面図である。It is sectional drawing in the A line of FIG. 本実施形態における、徐冷空間の一段モデルを示す図である。It is a figure which shows the one-stage model of slow cooling space in this embodiment. 一般的なガラスの温度と比熱の関係を示す図である。It is a figure which shows the relationship between the temperature of a general glass, and a specific heat. ガラス板の応力緩和パラメータを示す図である。It is a figure which shows the stress relaxation parameter of a glass plate. ガラス板の構造緩和パラメータを示す図である。It is a figure which shows the structural relaxation parameter of a glass plate.
 以下、図面を参照しながら、ガラス板の製造装置を用いてガラス板を製造する、本実施形態のガラス板の製造方法について説明する。 Hereinafter, a method for manufacturing a glass plate according to this embodiment, in which a glass plate is manufactured using a glass plate manufacturing apparatus, will be described with reference to the drawings.
(1)ガラス板の製造方法の概要
 図1は、本実施形態に係るガラス板の製造方法の一部のフローチャートである。
 以下、図1を用いてガラス板の製造方法について説明する。
 ガラス板は、図1に示すように、溶解工程ST1と、清澄工程ST2と、均質化工程ST3と、成形工程ST4と、冷却工程ST5と、切断工程ST6とを含む種々の工程を経て製造される。以下、これらの工程について説明する。
(1) Outline of Glass Plate Manufacturing Method FIG. 1 is a partial flowchart of the glass plate manufacturing method according to the present embodiment.
Hereinafter, the manufacturing method of a glass plate is demonstrated using FIG.
As shown in FIG. 1, the glass plate is manufactured through various processes including a melting process ST1, a clarification process ST2, a homogenization process ST3, a molding process ST4, a cooling process ST5, and a cutting process ST6. The Hereinafter, these steps will be described.
 溶解工程ST1では、ガラス原料を加熱して溶解する。ガラス原料は、例えば、SiO、Al等の組成からなる。溶解したガラス原料は、熔融ガラスとなる。
 清澄工程ST2では、熔融ガラスを清澄する。具体的には、熔融ガラス中に含まれるガス成分を熔融ガラスから放出する、或いは、熔融ガラス中に含まれるガス成分を熔融ガラス中に吸収する。
 均質化工程ST3では、熔融ガラスを均質化する。なお、この工程では、清澄が済んだ熔融ガラスの温度調整を行う。
 成形工程ST4では、ダウンドロー法(例えば、オーバーフローダウンドロー法)により熔融ガラスをシート状のガラス板に成形する。
In the melting step ST1, the glass raw material is heated and melted. Glass raw materials, for example, a composition, such as SiO 2, Al 2 O 3. The molten glass raw material becomes molten glass.
In the clarification step ST2, the molten glass is clarified. Specifically, the gas component contained in the molten glass is released from the molten glass, or the gas component contained in the molten glass is absorbed into the molten glass.
In the homogenization step ST3, the molten glass is homogenized. In this step, the temperature of the molten glass that has been clarified is adjusted.
In the forming step ST4, the molten glass is formed into a sheet-like glass plate by a downdraw method (for example, an overflow downdraw method).
 冷却工程ST5では、成形工程ST4で成形されたガラス板の冷却を行う。当該冷却工程ST5において、ガラス板は、室温近くまで冷却される。
 切断工程ST6では、室温近くまで冷却されたガラス板を、所定の長さ毎に切断してガラス板とする。
 なお、所定の長さ毎に切断されたガラス板は、その後、さらに切断されて、研削・研磨、洗浄、検査が行われてガラス板となり、液晶ディスプレイ等のフラットパネルディスプレイに使用される。
In the cooling step ST5, the glass plate formed in the forming step ST4 is cooled. In the cooling step ST5, the glass plate is cooled to near room temperature.
In the cutting step ST6, the glass plate cooled to near room temperature is cut into a glass plate every predetermined length.
In addition, the glass plate cut | disconnected for every predetermined length is cut | disconnected further after that, grinding | polishing, grinding | polishing, washing | cleaning, and an inspection are performed, it becomes a glass plate, and is used for flat panel displays, such as a liquid crystal display.
(2)ガラス板の製造装置100の概要
 図2は、ガラス板の製造装置100に含まれる溶解装置200を主として示す模式図である。図3は、ガラス板の製造装置100に含まれる成形装置300の概略の正面図である。図4は、成形装置300の概略の側面図である。以下、ガラス板の製造装置100について説明する。
(2) Outline of Glass Plate Manufacturing Apparatus 100 FIG. 2 is a schematic diagram mainly showing a melting apparatus 200 included in the glass plate manufacturing apparatus 100. FIG. 3 is a schematic front view of a forming apparatus 300 included in the glass plate manufacturing apparatus 100. FIG. 4 is a schematic side view of the molding apparatus 300. Hereinafter, the glass plate manufacturing apparatus 100 will be described.
 ガラス板の製造装置100は、主として、溶解装置200(図2を参照)と、成形装置300(図3~図4を参照)と、切断装置400(図示せず)とを有する。 The glass plate manufacturing apparatus 100 mainly includes a melting apparatus 200 (see FIG. 2), a forming apparatus 300 (see FIGS. 3 to 4), and a cutting apparatus 400 (not shown).
(2-1)溶解装置200の構成
 溶解装置200は、溶解工程ST1、清澄工程ST2、及び、均質化工程ST3を行うための装置である。
 溶解装置200は、図2に示すように、溶解槽201、清澄槽202、攪拌槽203、第1配管204、及び、第2配管205を有する。
 溶解槽201は、ガラス原料を溶解するための槽である。溶解槽201では、溶解工程ST1を行う。
(2-1) Configuration of Dissolution Device 200 The dissolution device 200 is a device for performing the dissolution step ST1, the clarification step ST2, and the homogenization step ST3.
As shown in FIG. 2, the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
The melting tank 201 is a tank for melting the glass raw material. In the dissolution tank 201, the dissolution step ST1 is performed.
 清澄槽202は、溶解槽201で溶解された熔融ガラスから泡を除去するための槽である。溶解槽201より送り込まれた熔融ガラスを、清澄槽202はさらに加熱することで、熔融ガラス中の気泡の脱泡が促進される。清澄槽202では、清澄工程ST2を行う。
 攪拌槽203は、熔融ガラスを収容する容器と、回転軸と、当該回転軸に取り付けられた攪拌翼とを含む攪拌装置を有している。容器、回転軸、及び、攪拌翼としては、例えば、白金等の白金族元素又は白金族元素の合金製のものを用いることができるが、これに限られない。モータ等の駆動部(図示せず)の駆動によって回転軸が回転することによって、回転軸に取り付けられた攪拌翼が、熔融ガラスを攪拌する。攪拌槽203では、均質化工程ST3を行う。
 第1配管204及び第2配管205は、例えば、白金族元素又は白金族元素の合金からなる配管である。第1配管204は、清澄槽202と攪拌槽203とを接続する配管である。第2配管205は、攪拌槽203と成形装置300とを接続する配管である。
The clarification tank 202 is a tank for removing bubbles from the molten glass melted in the melting tank 201. The clarification tank 202 is further heated with the molten glass fed from the melting tank 201, thereby promoting the defoaming of bubbles in the molten glass. In the clarification tank 202, a clarification step ST2 is performed.
The agitation tank 203 has an agitation device including a container for storing molten glass, a rotation shaft, and an agitation blade attached to the rotation shaft. As a container, a rotating shaft, and a stirring blade, although the thing made from platinum group elements, such as platinum, or the alloy of a platinum group element, for example can be used, it is not restricted to this. When the rotating shaft is rotated by driving a drive unit (not shown) such as a motor, the stirring blade attached to the rotating shaft stirs the molten glass. In the stirring tank 203, the homogenization step ST3 is performed.
The first pipe 204 and the second pipe 205 are pipes made of, for example, a platinum group element or a platinum group element alloy. The first pipe 204 is a pipe that connects the clarification tank 202 and the stirring tank 203. The second pipe 205 is a pipe that connects the stirring tank 203 and the molding apparatus 300.
(2-2)成形装置300の構成
 成形装置300は、成形工程ST4、及び、冷却工程ST5を行うための装置である。
 成形装置300は、図3及び図4に示すように、成形体310と、雰囲気仕切り部材320と、冷却ローラ330と、冷却ユニット340と、引っ張りローラ350a~350eと、ヒータ360a~360eとを有する。以下、これらの構成について説明する。
(2-2) Configuration of Molding Device 300 The molding device 300 is a device for performing the molding step ST4 and the cooling step ST5.
As shown in FIGS. 3 and 4, the molding apparatus 300 includes a molded body 310, an atmosphere partition member 320, a cooling roller 330, a cooling unit 340, pulling rollers 350a to 350e, and heaters 360a to 360e. . Hereinafter, these configurations will be described.
(2-2-1)成形体310
 成形体310は、成形工程ST4を行うための装置である。
 成形体310は、図3に示すように、成形装置300の上方部分に位置し、溶解装置200から流れてくる熔融ガラスを、オーバーフローダウンドロー法によりシート状のガラス板SGに成形する機能を有する。成形体310の、垂直方向に切断した断面形状は、楔形形状であり、成形体3120は、例えば、耐火レンガにより構成されている。
(2-2-1) Molded body 310
The molded body 310 is an apparatus for performing the molding process ST4.
As shown in FIG. 3, the molded body 310 is located in the upper part of the molding apparatus 300 and has a function of molding the molten glass flowing from the melting apparatus 200 into a sheet-like glass plate SG by the overflow down draw method. . The cross-sectional shape of the molded body 310 cut in the vertical direction is a wedge shape, and the molded body 3120 is made of, for example, refractory bricks.
 成形体310には、図4に示すように、溶解装置200から流れてくる熔融ガラスの流路方向の上流側に、供給口311が形成されている。また、成形体310には、図4に示すように、その長手方向に沿って、上方に開放された溝部312が形成されている。溝部312は、熔融ガラスの流路方向の上流側から下流側に向かうにつれ、徐々に浅くなるように形成されている。
 溶解装置200から成形装置300に向かって流れてくる熔融ガラスは、供給口311を介して成形体310の溝部312に流れるようになっている。
 成形体310の溝部312に流れた熔融ガラスは、当該溝部312の頂部においてオーバーフローし、成形体310の両側面313に沿って流下する。そして、成形体310の両側面313に沿って流下する熔融ガラスは、成形体310の下部314で合流してガラス板SGとなる。
As shown in FIG. 4, a supply port 311 is formed in the molded body 310 on the upstream side in the flow channel direction of the molten glass flowing from the melting device 200. Further, as shown in FIG. 4, the molded body 310 is formed with a groove portion 312 opened upward along the longitudinal direction thereof. The groove 312 is formed so as to gradually become shallower from the upstream side toward the downstream side in the flow channel direction of the molten glass.
The molten glass flowing from the melting device 200 toward the molding device 300 flows into the groove portion 312 of the molded body 310 via the supply port 311.
The molten glass that has flowed into the groove 312 of the molded body 310 overflows at the top of the groove 312 and flows down along both side surfaces 313 of the molded body 310. And the molten glass which flows down along the both side surfaces 313 of the molded object 310 joins in the lower part 314 of the molded object 310, and becomes the glass plate SG.
(2-2-2)雰囲気仕切り部材320、断熱部材41
 図3及び図4に示すように、雰囲気仕切り部材320は、成形体310の下部314の近傍に配置される板状の部材である。
 雰囲気仕切り部材320は、成形体310の下部314から流下していくガラス板SGの厚み方向の両側に、略水平となるように配置されている。雰囲気仕切り部材320は、断熱材として機能する。すなわち、雰囲気仕切り部材320は、その上下の空気を仕切ることにより、雰囲気仕切り部材320の上側から下側への熱の移動を抑制している。成形装置300は、図3及び図4に示されるように、雰囲気仕切り部材320より上方の空間である成形体収容部410と、雰囲気仕切り部材320直下の空間である成形ゾーン42aと、成形ゾーン42aの下方の空間である徐冷ゾーン420とを有する。徐冷ゾーン420は、複数の徐冷空間42b,42c,・・・42fを有する。成形ゾーン42a、徐冷空間42b~42fは、この順番で鉛直方向上方から下方に向かって積層している。炉壁により囲まれることにより、成形ゾーン42a、徐冷ゾーン420(徐冷空間42b~42f)が形成され、この成形ゾーン42a及び徐冷ゾーン420(徐冷空間42b~42f)をガラス板SGが移動する。
(2-2-2) Atmosphere partition member 320, heat insulating member 41
As shown in FIGS. 3 and 4, the atmosphere partition member 320 is a plate-like member disposed in the vicinity of the lower portion 314 of the molded body 310.
The atmosphere partition member 320 is disposed to be substantially horizontal on both sides in the thickness direction of the glass plate SG flowing down from the lower portion 314 of the molded body 310. The atmosphere partition member 320 functions as a heat insulating material. In other words, the atmosphere partition member 320 suppresses the movement of heat from the upper side to the lower side of the atmosphere partition member 320 by partitioning the upper and lower air. As shown in FIGS. 3 and 4, the molding apparatus 300 includes a molded body accommodation portion 410 that is a space above the atmosphere partition member 320, a molding zone 42a that is a space immediately below the atmosphere partition member 320, and a molding zone 42a. And a slow cooling zone 420 which is a space below the. The slow cooling zone 420 has a plurality of slow cooling spaces 42b, 42c,. The molding zone 42a and the slow cooling spaces 42b to 42f are stacked in this order from the top to the bottom in the vertical direction. By being surrounded by the furnace wall, a forming zone 42a and a slow cooling zone 420 (slow cooling spaces 42b to 42f) are formed, and the glass plate SG is formed in the forming zone 42a and the slow cooling zone 420 (slow cooling spaces 42b to 42f). Moving.
 断熱部材41は、徐冷ゾーン420において、後述する冷却ローラ330の下方、かつ、ガラス板SGの厚み方向両側に配置される板状の断熱材である。断熱部材41、雰囲気仕切り部材320より下方の空間を仕切ることによって、成形ゾーン42aおよび徐冷空間42b~42fを形成する。例えば、図4に示されるように、断熱部材41は、成形ゾーン42aと徐冷空間42bとを形成する。また、断熱部材41は、徐冷空間42bと徐冷空間42cとを形成する。このように、徐冷空間42b~42fは、炉壁及び断熱部材41により囲まれることにより形成される。各断熱部材41は、上下の空間の間における熱移動を抑制する。例えば、断熱部材41は、成形ゾーン42aと徐冷空間42bとの間の熱移動を抑制し、また、断熱部材41は、徐冷空間42bと徐冷空間42cとの間の熱移動を抑制する。 The heat insulating member 41 is a plate-shaped heat insulating material that is disposed below the cooling roller 330 described later and on both sides in the thickness direction of the glass plate SG in the slow cooling zone 420. By partitioning the space below the heat insulating member 41 and the atmosphere partition member 320, the forming zone 42a and the slow cooling spaces 42b to 42f are formed. For example, as shown in FIG. 4, the heat insulating member 41 forms a molding zone 42a and a slow cooling space 42b. Moreover, the heat insulation member 41 forms the slow cooling space 42b and the slow cooling space 42c. As described above, the slow cooling spaces 42 b to 42 f are formed by being surrounded by the furnace wall and the heat insulating member 41. Each heat insulating member 41 suppresses heat transfer between the upper and lower spaces. For example, the heat insulating member 41 suppresses heat transfer between the molding zone 42a and the slow cooling space 42b, and the heat insulating member 41 suppresses heat transfer between the slow cooling space 42b and the slow cooling space 42c. .
(2-2-3)冷却ローラ330
 冷却ローラ330は、雰囲気仕切り部材320の下方に配置されている。また、冷却ローラ330は、ガラス板SGの厚み方向の両側に、且つ、その幅方向の両端部分に対向するように配置されている。冷却ローラ330は、内部に通された空冷管により空冷されている。よって、ガラス板SGは、冷却ローラ330を通る際に、空冷された冷却ローラ330に接触する、ガラス板SGの厚み方向の両側部分且つその幅方向の両端部分(以下では、当該部分をガラス板SGの耳部R,Lという)が冷却される。これにより、当該耳部R,Lの粘度は、所定値(例えば、109.0ポワズ)以上にされる。ここで、耳部R,Lは、耳部R,Lに挟まれたガラス板SGの幅方向の中央領域(中央部)の板厚に対して厚く、所定の厚みを有する部分をいい、上記中央領域(中央部)が、製品(ガラス基板)として利用できる厚さがほぼ均一な部分である。冷却ローラ330は、冷却ローラ駆動モータ390(図5を参照)による駆動力が伝達されることにより、ガラス板SGを下方に引っ張る役割も有する。冷却ローラ330により、ガラス板SGは、所定の厚さに引き伸ばされる。
(2-2-3) Cooling roller 330
The cooling roller 330 is disposed below the atmosphere partition member 320. Moreover, the cooling roller 330 is arrange | positioned so as to oppose the both ends of the thickness direction of the glass plate SG, and the both ends part of the width direction. The cooling roller 330 is air-cooled by an air-cooling tube passed through the cooling roller 330. Therefore, when the glass plate SG passes through the cooling roller 330, the glass plate SG is in contact with the air-cooled cooling roller 330. Both side portions in the thickness direction of the glass plate SG and both end portions in the width direction (hereinafter, the portions are referred to as glass plates). SG ears R and L) are cooled. Accordingly, the viscosity of the ear portion R, L is a predetermined value (e.g., 10 9.0 poises) is above. Here, the ears R and L are thicker than the thickness of the central region (central part) in the width direction of the glass plate SG sandwiched between the ears R and L, and have a predetermined thickness. The central region (central portion) is a portion having a substantially uniform thickness that can be used as a product (glass substrate). The cooling roller 330 also has a role of pulling the glass plate SG downward by transmitting a driving force by the cooling roller driving motor 390 (see FIG. 5). The glass plate SG is stretched to a predetermined thickness by the cooling roller 330.
(2-2-4)冷却ユニット340
 冷却ユニット340は、例えば、空冷式の冷却装置であり、冷却ローラ330及びその下方を通るガラス板SGの雰囲気温度を冷却する。また、冷却ユニット340は、ガラス板SGの幅方向に複数(例えば、3つ)及びその流れ方向に複数配置される。具体的には、冷却ユニット340は、ガラス板SGの耳部R,Lの表面に対向するように、1つずつ配置され、且つ、中央領域の表面に対向するように1つ配置されている。
(2-2-4) Cooling unit 340
The cooling unit 340 is, for example, an air-cooling type cooling device, and cools the ambient temperature of the cooling roller 330 and the glass plate SG passing therebelow. Moreover, the cooling unit 340 is arranged in plural (for example, three) in the width direction of the glass plate SG and plural in the flow direction. Specifically, the cooling units 340 are arranged one by one so as to face the surfaces of the ears R and L of the glass plate SG, and one cooling unit 340 is arranged so as to face the surface of the central region. .
(2-2-5)引っ張りローラ350a~350e
 引っ張りローラ350a~350eは、冷却ローラ330の下方に、ガラス板SGの流れ方向に所定の間隔をもって配置される。また、引っ張りローラ350a~350eは、それぞれ、ガラス板SGの厚み方向の両側に、且つ、ガラス板SGの幅方向の両端部分に対向するように、徐冷空間42b~42f内に配置される。そして、引っ張りローラ350a~350eは、冷却ローラ330において耳部R,Lの粘度が所定値以上になったガラス板SGの厚み方向の両側部分であってその幅方向の両端部分に接触しながら当該ガラス板SGを下方に引っ張る。なお、引っ張りローラ350a~350eは、引っ張りローラ駆動モータ391(図5を参照)による駆動力が伝達されることにより駆動される。引っ張りローラ350a~350eの周速度は、冷却ローラ330の周速度よりも大きい。引っ張りローラの周速度は、ガラス板SGの流れ方向の下流側に配置されるにつれて大きくなる。すなわち、複数の引っ張りローラ350a~350eにおいては、引っ張りローラ350aの周速度が最も小さく、引っ張りローラ350eの周速度が最も大きい。
(2-2-5) Pulling rollers 350a to 350e
The pulling rollers 350a to 350e are arranged below the cooling roller 330 with a predetermined interval in the flow direction of the glass plate SG. Further, the pulling rollers 350a to 350e are respectively disposed in the slow cooling spaces 42b to 42f so as to face both sides in the thickness direction of the glass plate SG and to face both end portions in the width direction of the glass plate SG. The pulling rollers 350a to 350e are both side portions in the thickness direction of the glass plate SG in which the viscosities of the ear portions R and L are equal to or higher than a predetermined value in the cooling roller 330, while being in contact with both end portions in the width direction. Pull the glass plate SG downward. The pulling rollers 350a to 350e are driven by the driving force transmitted by the pulling roller driving motor 391 (see FIG. 5). The peripheral speed of the pulling rollers 350 a to 350 e is larger than the peripheral speed of the cooling roller 330. The circumferential speed of the pulling roller increases as it is arranged on the downstream side in the flow direction of the glass plate SG. That is, among the plurality of pulling rollers 350a to 350e, the peripheral speed of the pulling roller 350a is the lowest, and the peripheral speed of the pulling roller 350e is the highest.
(2-2-6)ヒータ(温度制御ユニット)
 図3に示すように、ヒータ(温度制御ユニット)360a~360eは、冷却ユニット340の下方の成形ゾーン42aおよび徐冷空間42b~42fにそれぞれ配置され、成形ゾーン42aおよび徐冷空間42b,42c,・・・の雰囲気温度を制御する。ヒータ360a~360eは、後述する制御装置500によって出力を制御されることで、引っ張りローラ350a~350eによって下方に牽引されるガラス板SGの近傍の雰囲気温度を制御する(具体的には、雰囲気温度を昇温する)冷却装置として機能する。また、各ヒータ360a~360eは、図6及び図7に示すように、幅方向に複数(例えば、3つ、6つ等)に配置された発熱部361a、362a、・・・366aを有する。発熱部361a~366aは、熱を徐冷空間に放出する発熱体である。発熱部361a~366aは炉壁に埋め込まれ、それぞれ電力を与えられて発熱するように構成されている。発熱部361a~366aは、図6に示されるように、ガラス板SGの幅方向に沿って、ガラス板SGの両側の面に対向する位置に一列に配列されている。図6には、徐冷空間42bに設けられた発熱部361a~366aが示されているが、同様の発熱部を有するヒータ360b~360eが、ガラス板SG近傍の雰囲気温度がガラス板SGの幅方向に所定の温度分布(以下、「温度プロファイル」という)を形成するように設けられている。このようにして、発熱部を有する各ヒータ360a~360eは、成形ゾーン42aおよび徐冷空間42b~42fの雰囲気温度を制御する。なお、各ヒータ360a~360eの発熱部は、ガラス板SGの幅方向のみならず、ガラス板SGの流れ方向に対し、夫々複数配置された構成としてもよい。
(2-2-6) Heater (temperature control unit)
As shown in FIG. 3, the heaters (temperature control units) 360a to 360e are disposed in the molding zone 42a and the slow cooling spaces 42b to 42f below the cooling unit 340, respectively, and the molding zone 42a and the slow cooling spaces 42b, 42c, Controls the ambient temperature of ... The heaters 360a to 360e control the ambient temperature in the vicinity of the glass sheet SG pulled downward by the pulling rollers 350a to 350e by controlling the output by the control device 500 described later (specifically, the ambient temperature Functions as a cooling device. Each of the heaters 360a to 360e includes heat generating portions 361a, 362a,... 366a arranged in a plurality (for example, three, six, etc.) in the width direction as shown in FIGS. The heat generating parts 361a to 366a are heat generating elements that release heat to the slow cooling space. The heat generating portions 361a to 366a are embedded in the furnace wall, and are configured to generate heat by being supplied with electric power. As shown in FIG. 6, the heat generating portions 361a to 366a are arranged in a line along the width direction of the glass plate SG at positions facing both sides of the glass plate SG. FIG. 6 shows the heat generating portions 361a to 366a provided in the slow cooling space 42b, but the heaters 360b to 360e having similar heat generating portions have an ambient temperature in the vicinity of the glass plate SG of the width of the glass plate SG. A predetermined temperature distribution (hereinafter referred to as “temperature profile”) is formed in the direction. In this way, the heaters 360a to 360e having the heat generating parts control the ambient temperature of the molding zone 42a and the slow cooling spaces 42b to 42f. Note that a plurality of heat generating portions of the heaters 360a to 360e may be arranged not only in the width direction of the glass plate SG but also in the flow direction of the glass plate SG.
 ここでは、引っ張りローラ350a~350eによって下方に牽引されるガラス板SGの雰囲気温度が、ヒータ360a~360e(発熱部361a~366a)によって温度制御されることによって(具体的には、ガラス板SGの雰囲気温度が制御されることにより、ガラス板SGが温度制御されることによって)、ガラス板SGが粘性域から粘弾性域を経て弾性域へと推移する冷却が行われる。 Here, the atmospheric temperature of the glass plate SG pulled downward by the pulling rollers 350a to 350e is controlled by the heaters 360a to 360e (heat generating portions 361a to 366a) (specifically, the glass plate SG When the atmospheric temperature is controlled, the glass plate SG is temperature-controlled), so that the glass plate SG is cooled from the viscous region to the elastic region through the viscoelastic region.
 また、発熱部361a~366aの近傍には、ガラス板SGの各領域の雰囲気温度を検出する熱電対ユニット380(図5~図7参照)が、配置されている。熱電対ユニット380は、発熱部361a~366aが発熱することにより、変化する徐冷空間42b~42fの雰囲気温度を測定する。制御装置500は、熱電対ユニット380が測定した雰囲気温度を取得し、取得した雰囲気温度に基づいて、ヒータ360a~360eが備える発熱部361a~366aからの発熱量を制御する。成形体310の下部314以下の領域である成形ゾーン42aおよび徐冷空間42b~42fにおいて、冷却ローラ330、冷却ユニット340、ヒータ360a~360e(発熱部361a~366a)によってガラス板SGが冷却されていく工程が冷却工程ST5である。 Further, a thermocouple unit 380 (see FIGS. 5 to 7) for detecting the atmospheric temperature of each region of the glass plate SG is disposed in the vicinity of the heat generating portions 361a to 366a. The thermocouple unit 380 measures the ambient temperature of the slowly cooling spaces 42b to 42f that change as the heat generating portions 361a to 366a generate heat. The control device 500 acquires the ambient temperature measured by the thermocouple unit 380, and controls the amount of heat generated from the heat generating units 361a to 366a included in the heaters 360a to 360e based on the acquired ambient temperature. The glass plate SG is cooled by the cooling roller 330, the cooling unit 340, and the heaters 360a to 360e (heating units 361a to 366a) in the molding zone 42a and the slow cooling spaces 42b to 42f, which are regions below the lower portion 314 of the molded body 310. The going process is the cooling process ST5.
(2-3)切断装置400
 切断装置400では、切断工程ST6を行う。切断装置400は、成形装置300において流下するガラス板SGを、その長手面に対して垂直な方向から切断する装置である。これにより、シート状のガラス板SGは、所定の長さを有する複数のガラス板SGとなる。切断装置400は、切断装置駆動モータ392(図5を参照)によって駆動される。
(2-3) Cutting device 400
In the cutting device 400, the cutting step ST6 is performed. The cutting device 400 is a device that cuts the glass plate SG flowing down in the forming device 300 from a direction perpendicular to the longitudinal surface thereof. Thereby, the sheet-like glass plate SG becomes a plurality of glass plates SG having a predetermined length. The cutting device 400 is driven by a cutting device drive motor 392 (see FIG. 5).
(3)制御装置500
 図5は、制御装置500の制御ブロック図である。
 制御装置500は、CPU、ROM、RAM、ハードディスク等から構成され、ガラス板の製造装置100に含まれる種々の機器の制御を行う制御部として機能する。
 具体的には、ガラス板の製造装置100又は成形装置300は、制御装置500を備え、この制御装置500は、図5に示すように、ガラス板の製造装置100に含まれる各種のセンサ(例えば、熱電対ユニット380等)やスイッチ(例えば、主電源スイッチ381等)等による信号、入力装置(図示せず)等を介した作業者からの入力指示を受けて、冷却ユニット340、ヒータ360a~360e(発熱部361a~366a)、冷却ローラ330の動作を制御する冷却ローラ駆動モータ390、引っ張りローラ350a~350eの動作を制御する引っ張りローラ駆動モータ391、切断装置400の動作を制御する切断装置駆動モータ392等の制御を行う。
(3) Control device 500
FIG. 5 is a control block diagram of the control device 500.
The control device 500 includes a CPU, a ROM, a RAM, a hard disk, and the like, and functions as a control unit that controls various devices included in the glass plate manufacturing apparatus 100.
Specifically, the glass plate manufacturing apparatus 100 or the molding apparatus 300 includes a control device 500, and as shown in FIG. 5, the control device 500 includes various sensors (for example, the glass plate manufacturing apparatus 100). , Thermocouple unit 380, etc.) and switches (for example, main power switch 381 etc.), etc., and input instructions from an operator via an input device (not shown), etc., in response to the cooling unit 340, heaters 360a˜ 360e (heat generating units 361a to 366a), a cooling roller driving motor 390 that controls the operation of the cooling roller 330, a pulling roller driving motor 391 that controls the operation of the pulling rollers 350a to 350e, and a cutting device drive that controls the operation of the cutting device 400 Control of the motor 392 and the like is performed.
(4)冷却工程ST5における温度制御
 冷却工程ST5は、制御装置500が、冷却ローラ330を制御することにより、ガラス板SGの温度を制御することを含む。さらに、冷却工程ST5は、ガラス板SGを温度制御する温度制御工程を含む。具体的には、温度制御工程では、冷却ユニット340、及び、ヒータ360a~360eが有する発熱部361a~366aを制御してガラス板SGの雰囲気温度の制御を行うことによって、ガラス板SGの温度を制御する。
(4) Temperature control in cooling process ST5 Cooling process ST5 includes that the control apparatus 500 controls the temperature of the glass plate SG by controlling the cooling roller 330. FIG. Furthermore, the cooling step ST5 includes a temperature control step for controlling the temperature of the glass plate SG. Specifically, in the temperature control step, the temperature of the glass plate SG is controlled by controlling the heating unit 361a to 366a of the cooling unit 340 and the heaters 360a to 360e to control the ambient temperature of the glass plate SG. Control.
 また、冷却工程ST5は、発熱部361a~366aの発熱量を制御する熱量制御工程を含み、ガラス板SGの温度が所定の高さ位置(所定の徐冷空間)において所定の温度範囲に入るように、且つ、ガラス板SGの温度がその幅方向に所定の温度分布を有するようにしている。すなわち、ガラス板SGの温度は、その流れ方向及び幅方向において制御されている。 Further, the cooling step ST5 includes a heat amount control step for controlling the heat generation amount of the heat generating portions 361a to 366a so that the temperature of the glass plate SG falls within a predetermined temperature range at a predetermined height position (predetermined slow cooling space). In addition, the temperature of the glass plate SG has a predetermined temperature distribution in the width direction. That is, the temperature of the glass plate SG is controlled in the flow direction and the width direction.
 上述の熱量制御工程について、発熱部361a~~366aの動作を例にとり以下に説明する。熱量制御工程では、発熱部361a~366aにより発生させる熱量を決定する。 The above-described heat quantity control step will be described below by taking the operation of the heat generating portions 361a to 366a as an example. In the heat amount control step, the amount of heat generated by the heat generating portions 361a to 366a is determined.
 発熱部361a~366aにより発生させる熱量を決定する手順を、以下に説明する。i)制御部500は、発熱部361a~366aを所定の設定温度に初期設定し、徐冷空間42b~42f(徐冷ゾーン420)内において、ガラス板SG近傍の雰囲気温度がガラス板SGの幅方向に所定の温度プロファイルを形成するようにする。
ii)ガラス板SGが保有する保有熱量(ガラス板SGの温度)、徐冷空間42b~42f(徐冷ゾーン420)内の雰囲気温度を求める。
iii)上記ii)で求められたガラス板SGの温度、徐冷空間42b~42f内の雰囲気温度に基づいて、形成されるガラス板SGの温度分布、歪分布を求め、求めた歪が低減するように、発熱部361a~366aにより発生させる熱量(設定温度)を制御する。
A procedure for determining the amount of heat generated by the heat generating units 361a to 366a will be described below. i) The control unit 500 initially sets the heat generating units 361a to 366a to a predetermined set temperature, and the ambient temperature in the vicinity of the glass plate SG is the width of the glass plate SG in the slow cooling spaces 42b to 42f (slow cooling zone 420). A predetermined temperature profile is formed in the direction.
ii) The amount of heat held by the glass plate SG (temperature of the glass plate SG) and the ambient temperature in the slow cooling spaces 42b to 42f (slow cooling zone 420) are obtained.
iii) Based on the temperature of the glass plate SG obtained in the above ii) and the atmospheric temperature in the slow cooling spaces 42b to 42f, the temperature distribution and strain distribution of the formed glass plate SG are obtained, and the obtained strain is reduced. As described above, the amount of heat (set temperature) generated by the heat generating portions 361a to 366a is controlled.
 発熱部361a~366aにより発生させる熱量(発熱部361a~366aの設定温度)を制御するために、ガラス板SGの温度分布を求める方法を以下に説明する。当該方法は、熱流体解析シミュレーション及び粘弾性解析シミュレーションを用いる。 A method for obtaining the temperature distribution of the glass plate SG in order to control the amount of heat generated by the heat generating parts 361a to 366a (the set temperature of the heat generating parts 361a to 366a) will be described below. The method uses thermal fluid analysis simulation and viscoelastic analysis simulation.
<熱流体解析シミュレーション>
 熱流体解析シミュレーションでは、例えば有限要素法に基づく離散化モデルを用いて熱流体解析を行なう。熱流体解析では、発熱部361a~366aが発するヒータ熱量を与えて、すなわち発熱体361a~366aの設定温度を与えて、徐冷空間42b~42fの雰囲気の温度分布とガラス板SGの温度分布を未知数として、徐冷空間全域(徐冷ゾーン)におけるガラス板SGの保有熱量である温度分布を求める。シミュレーションは以下の条件で実施する。
<Thermal fluid analysis simulation>
In the thermal fluid analysis simulation, for example, a thermal fluid analysis is performed using a discretized model based on the finite element method. In the thermal fluid analysis, the amount of heater heat generated by the heat generating portions 361a to 366a is given, that is, the set temperature of the heat generating elements 361a to 366a is given, and the temperature distribution of the atmosphere of the slow cooling spaces 42b to 42f and the temperature distribution of the glass plate SG are obtained. As an unknown, a temperature distribution that is the amount of heat retained by the glass plate SG in the entire slow cooling space (slow cooling zone) is obtained. The simulation is performed under the following conditions.
1.モデル
 徐冷ゾーン420をガラス板SGの流れ方向に複数段に区切ったうちの一段の徐冷空間42bをメッシュモデルとして離散化し、熱流体解析を用いて、一段目の徐冷空間42bにおけるガラス板SGの温度分布を求める。このとき、徐冷空間42bに進入するガラス板SGの温度分布は予め定められる。そして、一段目の徐冷空間42bにおけるガラス板SGの温度分布のうち、徐冷空間42bから出るときの幅方向の温度分布が、2段目の徐冷空間42cに進入するガラス板SGの温度分布として定められる。このように、各段の徐冷空間に進入する時のガラス板SGの温度分布を用いて、各徐冷空間におけるガラス板の温度分布を求める。こうして、徐冷空間全域におけるガラス板SGの温度分布をシミュレーションする。
 図9は、ガラス板SGの流れ方向からみて1段目の徐冷空間42bのモデルを示す。徐冷空間42bに進入する時のガラス板SGの保有熱量、ヒータ360a(発熱部361a~366a)のヒータ熱量(設定温度)を与えて、徐冷空間42b内の雰囲気温度とともに1段目の徐冷空間42bにおけるガラス板SGの温度分布を求める。そして、1段目より下流側の2段目以降において、1段目と同様にガラス板SGの温度分布を求め、求めた複数のガラス板SGの温度分布をつなげることにより、徐冷空間42b~42f全体(徐冷ゾーン420)におけるガラス板SGの温度分布を求める。
 (1)徐冷空間42bに進入する時のガラス板SGの保有熱量、(2)ヒータ360a(発熱部361a~366a)のヒータ熱量(設定温度)、(3)徐冷空間42b内の雰囲気温度、の影響を考慮して、1段目の徐冷空間42bにおけるガラス板SGの温度分布の解析を行う。上記(1)~(3)について、以下のとおり説明する。
1. Model The slow cooling space 42b of the slow cooling zone 420 divided into a plurality of stages in the flow direction of the glass plate SG is discretized as a mesh model, and the glass plate in the first slow cooling space 42b is analyzed using thermal fluid analysis. Obtain the temperature distribution of SG. At this time, the temperature distribution of the glass plate SG entering the slow cooling space 42b is determined in advance. Of the temperature distribution of the glass sheet SG in the first-stage slow cooling space 42b, the temperature distribution in the width direction when exiting from the slow cooling space 42b is the temperature of the glass sheet SG entering the second-stage slow cooling space 42c. Defined as distribution. Thus, the temperature distribution of the glass plate in each slow cooling space is calculated | required using the temperature distribution of the glass plate SG when approaching into the slow cooling space of each step | level. In this way, the temperature distribution of the glass plate SG in the entire slow cooling space is simulated.
FIG. 9 shows a model of the first-stage slow cooling space 42b as viewed from the flow direction of the glass plate SG. The amount of heat held by the glass plate SG when entering the slow cooling space 42b and the amount of heater heat (set temperature) of the heater 360a (heat generating portions 361a to 366a) are given, along with the ambient temperature in the slow cooling space 42b. The temperature distribution of the glass plate SG in the cold space 42b is obtained. Then, in the second and subsequent stages downstream from the first stage, the temperature distribution of the glass sheet SG is obtained in the same manner as in the first stage, and the obtained temperature distributions of the plurality of glass sheets SG are connected, so that the slow cooling spaces 42b˜ The temperature distribution of the glass plate SG in the entire 42f (slow cooling zone 420) is obtained.
(1) Amount of heat held by the glass plate SG when entering the slow cooling space 42b, (2) Amount of heater heat (set temperature) of the heater 360a (heat generating portions 361a to 366a), (3) Ambient temperature in the slow cooling space 42b The temperature distribution of the glass plate SG in the first-stage slow cooling space 42b is analyzed. The above (1) to (3) will be described as follows.
(1)徐冷空間42bに進入する時のガラス板SGの保有熱量
 ガラス板SGの保有熱量(温度分布)は、徐冷空間42bにガラス板SGが進入してくる位置(徐冷空間42bの上流側)に設けられた温度センサー(図示せず)を用いて、測定される。成形体310から流れ出る熔融ガラスの量は一定であるため、ガラス板SGの流量(搬送速度)は一定となり、測定した温度(温度分布)から、徐冷空間42bに進入するときのガラス板SGの保有熱量が求まる。また、ガラス板SGの流量、成形体310に流入する熔融ガラスの温度から、徐冷空間42bに進入する時のガラス板SGの保有熱量(温度分布)を求めることもできる。
(1) Retained heat amount of the glass plate SG when entering the slow cooling space 42b The retained heat amount (temperature distribution) of the glass plate SG is the position where the glass plate SG enters the slow cooling space 42b (in the slow cooling space 42b). It is measured using a temperature sensor (not shown) provided on the upstream side. Since the amount of molten glass flowing out of the molded body 310 is constant, the flow rate (conveying speed) of the glass plate SG is constant, and the glass plate SG when entering the slow cooling space 42b from the measured temperature (temperature distribution). The amount of heat retained can be obtained. Further, from the flow rate of the glass plate SG and the temperature of the molten glass flowing into the molded body 310, the retained heat amount (temperature distribution) of the glass plate SG when entering the slow cooling space 42b can be obtained.
(2)ヒータ360a(発熱部361a~366a)の発熱量(設定温度)
 各発熱部361a~366aの発熱量は、制御装置500が設定した設定温度によって変化する。設定温度に基づく各発熱部361a~366aの発するヒータ熱量は、電源装置に併設された発熱部361a~366aの電力計(図示せず)の測定結果から求められる。したがって、発熱部361a~366aの発熱量を制御する場合、各発熱部361a~366aに与える電力を制御することになる。ここでは、徐冷空間42bのヒータ360aが有する発熱部361a~366aに初期設定される設定温度を例えば700℃とする。発熱体361a~366aの発熱量は、いずれも同じにしてもよいが、発熱量に分布を与えてもよい。また、初期設定される温度700℃は例示であるため、発熱部361a~366aの温度は、未知量として計算の結果として取得することもできる。ガラス板SGの流入温度を、例えば700℃として計算し、実測温度と計算結果の温度の一致が良くなるようにガラス板SGの流入温度を設定することもできる。温度設定されている発熱部361a~366aの平均的な電流(A)・電圧(V)・力率を実際に測定し、そこから発熱量(W)を求め、発熱密度(W/m)に換算して計算条件とする。温度は、計算の結果(解)として得られるので、計算結果と設定温度を比較し、一致が良くなるように条件の見直しを繰り返すことにより求められる。
(2) Heat generation amount (set temperature) of the heater 360a (heat generating portions 361a to 366a)
The amount of heat generated by each of the heat generating units 361a to 366a varies depending on the set temperature set by the control device 500. The heater heat amount generated by each of the heat generating units 361a to 366a based on the set temperature is obtained from the measurement result of a wattmeter (not shown) of the heat generating units 361a to 366a provided in the power supply apparatus. Therefore, when controlling the heat generation amount of the heat generating units 361a to 366a, the power supplied to each of the heat generating units 361a to 366a is controlled. Here, the preset temperature initially set in the heat generating portions 361a to 366a included in the heater 360a of the slow cooling space 42b is set to 700 ° C., for example. The heat generation amounts of the heat generating elements 361a to 366a may be the same, but the heat generation amount may be distributed. In addition, since the temperature of 700 ° C. that is initially set is an example, the temperatures of the heat generating portions 361a to 366a can be obtained as calculation results as unknown amounts. The inflow temperature of the glass plate SG is calculated as, for example, 700 ° C., and the inflow temperature of the glass plate SG can be set so that the measured temperature and the temperature of the calculation result coincide with each other. The actual current (A), voltage (V), and power factor of the heat generating parts 361a to 366a whose temperature is set are actually measured, and the heat generation amount (W) is obtained therefrom, and the heat generation density (W / m 3 ) Convert to the calculation conditions. Since the temperature is obtained as a calculation result (solution), the calculation result and the set temperature are compared, and the temperature is obtained by repeating the review of the conditions so that the match is good.
(3)徐冷空間42b内の雰囲気温度
 ガラス板SGが保有する保有熱量、及び、発熱部361a~366aのヒータ熱量により、徐冷空間42b内の雰囲気温度が変化する。徐冷空間42b内の雰囲気温度は、徐冷空間42bの雰囲気を非圧縮性の理想気体と仮定することにより、浮力に起因する自然対流とそれによる熱伝達を、ガラス板SGの熱伝達と同一の熱流体解析モデルに含めて連成して解く。なお、本実施形態では、徐冷空間42b内の雰囲気温度を熱流体解析における未知数として解くが、これに代えて、熱電対ユニット380が、徐冷空間42b内の雰囲気温度を測定することにより、徐冷空間42b内で保持されている熱量(徐冷空間42b内の雰囲気温度)を求め、この熱量を熱流体解析における徐冷空間42b内の雰囲気温度として与えてガラス板SGの温度分布を算出してもよい。
(3) Atmospheric temperature in the slow cooling space 42b The atmospheric temperature in the slow cooling space 42b varies depending on the amount of heat held by the glass plate SG and the amount of heater heat in the heat generating portions 361a to 366a. Assuming that the atmosphere of the slow cooling space 42b is an incompressible ideal gas, the natural convection caused by buoyancy and the heat transfer caused thereby are the same as the heat transfer of the glass plate SG. It is included in the thermal fluid analysis model of and coupled to solve. In the present embodiment, the atmospheric temperature in the slow cooling space 42b is solved as an unknown in the thermofluid analysis, but instead, the thermocouple unit 380 measures the atmospheric temperature in the slow cooling space 42b, The amount of heat held in the slow cooling space 42b (atmosphere temperature in the slow cooling space 42b) is obtained, and this heat amount is given as the ambient temperature in the slow cooling space 42b in the thermal fluid analysis to calculate the temperature distribution of the glass plate SG. May be.
2.物性値
 ガラス板SG及び徐冷空間42bを構成する材料についての物性値は、以下のとおりである。
 A.ガラス板SG
  i)密度:2500[kg/m]。
  ii)熱伝導率:1.1278[W/mK]。
  iii)比熱:図10に示すとおりである。
 B.引っ張りローラ350a~350e(ステンレス鋼SUS304)
  ii)熱伝導率:16.0[W/mK](27℃)、25.7[W/mK](727℃)。
 C.雰囲気仕切り部材320、断熱部材41、炉壁(断熱材)
  i)熱伝導率:0.04~0.3[W/mK]。
2. Physical property values The physical property values of the materials constituting the glass plate SG and the slow cooling space 42b are as follows.
A. Glass plate SG
i) Density: 2500 [kg / m 3 ].
ii) Thermal conductivity: 1.1278 [W / mK].
iii) Specific heat: as shown in FIG.
B. Pulling rollers 350a-350e (stainless steel SUS304)
ii) Thermal conductivity: 16.0 [W / mK] (27 ° C.), 25.7 [W / mK] (727 ° C.).
C. Atmosphere partition member 320, heat insulating member 41, furnace wall (heat insulating material)
i) Thermal conductivity: 0.04 to 0.3 [W / mK].
3.計算条件
 定常計算(時間変化しない系の計算)であるため、熱流体解析のアルゴリズムを用いる。流れは定常とし、SIMPLEアルゴリズムを用い、流体の流れ、対流熱伝達、輻射伝熱の3つを連成し、単一のソルバを用いて解く。ソルバには、市販のソフトウェアを用いることが可能であり、公知の汎用熱流体解析ソフトウェアを用いることができる。ここで,熱流体解析では、ガラス板SGを計算上、流体として扱うが、ガラス板SGの移動速度は搬送速度に一致し、既知であるため、ガラス板SG領域全体の流速を固定し計算を行う。また、空気は非圧縮性の理想気体と仮定し、自然対流による熱伝達を計算に含める。
3. Calculation conditions Since this is a steady-state calculation (a system that does not change over time), an algorithm for thermal fluid analysis is used. The flow is steady and the SIMPLE algorithm is used to couple the fluid flow, convection heat transfer, and radiant heat transfer, and solve using a single solver. As the solver, commercially available software can be used, and known general-purpose thermal fluid analysis software can be used. Here, in the thermal fluid analysis, the glass plate SG is treated as a fluid for calculation, but since the moving speed of the glass plate SG coincides with the conveying speed and is known, the flow velocity of the entire glass plate SG region is fixed and the calculation is performed. Do. Air is assumed to be an incompressible ideal gas, and heat transfer by natural convection is included in the calculation.
 以上の条件及び物性値を、汎用熱流体解析ソフトウェアに入力して解析を行うことにより、1段目の徐冷空間42bにおけるガラス板SGの温度分布を求めることができる。 The temperature conditions of the glass plate SG in the first-stage slow cooling space 42b can be obtained by inputting the above conditions and physical property values into general-purpose thermal fluid analysis software for analysis.
 次に、2段目以降の徐冷空間42c~42fにおけるガラス板SGの温度分布を求める。2段目以降の徐冷空間42c~42fについても、徐冷空間42bと同様に離散化したメッシュモデルを作成する。具体的には、メッシュモデルにおいて、徐冷空間42c~42fへ流入するガラス板SGの保有熱量は、熱流体解析の結果として求められた、前段の徐冷空間から出る時のガラス板SGの保有熱量(温度分布)を用いる。すなわち、例えば、2段目の徐冷空間42cへ進入するガラス板SGの保有熱量には、熱流体解析の結果として求められた、1段目の徐冷空間42bにおいて温度(温度分布)を求めたガラス板SGが、1段目の徐冷空間42bから流出するときのガラス板SGの保有熱量を用いる。
 また、2段目の徐冷空間42cに設けられた発熱部361a~366aの設定温度を、前段より5℃~30℃低下した温度、好ましくは、15℃低下した温度とし、流れ方向に向かって、段が進むごとに、設定温度を5℃~30℃の範囲で低下させた温度、好ましくは15℃ずつ低下させた温度とする。
 熱流体解析により、2段目以降の徐冷空間42c~42fにおけるガラス板SG全域の温度分布を求めるための条件は、1段目の徐冷空間42bにおけるガラス板SGの温度分布に用いた条件及び物性値と同一であるので、説明を省略する。
 このように、熱流体解析シミュレーションでは、複数の徐冷空間のそれぞれに進入するときのガラス板の保有熱量をガラス板の進入時の保有熱量とし、進入時のガラス板の保有熱量とヒータの発熱量を与えることにより、ガラス板の複数の冷却空間それぞれにおけるガラス板の保有熱量を求めることができる。このとき、熱流体解析シミュレーションは、複数の冷却空間のそれぞれにおいて行なわれ、複数の冷却空間のうち、ガラス板の流れ方向の上流側からみて2段目以降の冷却空間では、上流側に隣接する冷却空間からガラス板が出るときの温度分布を、進入時の保有熱量として用いることができる。
 こうして、熱流体解析により、一段毎の徐冷空間におけるガラス板SGの温度分布を得て、一段毎の徐冷空間におけるガラス板SGの温度分布を複数つなげることにより、複数段の徐冷空間42c~42f全域(徐冷ゾーン420)におけるガラス板SGの温度分布を得ることができる。
Next, the temperature distribution of the glass plate SG in the second and subsequent slow cooling spaces 42c to 42f is obtained. For the second and subsequent slow cooling spaces 42c to 42f, a discrete mesh model is created in the same manner as the slow cooling space 42b. Specifically, in the mesh model, the retained heat amount of the glass plate SG flowing into the slow cooling spaces 42c to 42f is obtained as a result of the thermofluid analysis, and the retained heat amount of the glass plate SG when exiting the preceding slow cooling space. Use calorie (temperature distribution). That is, for example, the retained heat amount of the glass plate SG entering the second-stage slow cooling space 42c is obtained as a temperature (temperature distribution) in the first-stage slow cooling space 42b obtained as a result of the thermal fluid analysis. The amount of heat held by the glass plate SG when the glass plate SG flows out of the first-stage slow cooling space 42b is used.
Further, the set temperature of the heat generating portions 361a to 366a provided in the second-stage slow cooling space 42c is set to a temperature lower by 5 ° C. to 30 ° C., preferably 15 ° C. than that of the previous stage, toward the flow direction. Each time the stage is advanced, the set temperature is set to a temperature lowered in the range of 5 ° C. to 30 ° C., preferably a temperature lowered by 15 ° C.
The conditions for obtaining the temperature distribution of the entire glass plate SG in the second and subsequent slow cooling spaces 42c to 42f by thermal fluid analysis are the conditions used for the temperature distribution of the glass plate SG in the first cooling space 42b. Since the values are the same as the physical property values, description thereof is omitted.
As described above, in the thermal fluid analysis simulation, the retained heat amount of the glass plate when entering each of the plurality of slow cooling spaces is defined as the retained heat amount when the glass plate enters, and the retained heat amount of the glass plate and the heat generation of the heater when entering the glass plate. By giving the amount, the retained heat amount of the glass plate in each of the plurality of cooling spaces of the glass plate can be obtained. At this time, the thermal fluid analysis simulation is performed in each of the plurality of cooling spaces, and among the plurality of cooling spaces, the cooling spaces in the second and subsequent stages as viewed from the upstream side in the flow direction of the glass plate are adjacent to the upstream side. The temperature distribution at the time when the glass plate comes out of the cooling space can be used as the retained heat amount at the time of entering.
Thus, the temperature distribution of the glass sheet SG in the annealing space for each stage is obtained by thermofluid analysis, and a plurality of temperature distributions of the glass sheets SG in the annealing space for each stage are connected, whereby a plurality of the annealing spaces 42c of the plurality of stages are obtained. The temperature distribution of the glass plate SG in the entire region ~ 42f (slow cooling zone 420) can be obtained.
<粘弾性解析シミュレーション>
 上記の熱流体解析により得られた徐冷空間42b~42f全域(徐冷ゾーン420)におけるガラス板SGの保有熱量(温度分布)を使用して、粘弾性モデル解析によりガラス板SGの歪分布を求める。
 具体的には、上記の熱流体解析により得られた徐冷空間42b~42f全域におけるガラス板SGの温度分布、上記ガラス板SGの物性値並びにガラス板SGの応力緩和パラメータ及び構造緩和パラメータを、公知の解析ソフトウェアに入力して解析を行うことにより、粘弾性モデル解析を行い、ガラス板の歪分布を求める。具体的には、応力緩和パラメータ、構造緩和パラメータを考慮して歪分布を求める。徐冷空間42b~42f中では,ガラス板SGの温度が幅方向で不均一な状態で冷却される場合があり、収縮差により絶えず熱応力が発生し、また応力が絶えず緩和している。このため、ガラス板SGに残る残留応力を評価するためには、収縮による熱応力計算だけでなく、時間とともに応力が小さくなる応力緩和を考慮する必要がある。このため、構造解析のソフトウェアの粘弾性モデルを用いることにより、応力緩和を考慮する。また、構造緩和パラメータを求めるために、構造緩和に起因する収縮を考慮することもできる。ガラス板SGの収縮には、熱膨張に起因して、温度低下とともに体積が小さくなる収縮(thermal expansion)、構造緩和に起因する収縮である熱収縮(compaction)がある。ガラス板SGを高温で長時間おいておくと体積が小さくなるため、これを構造緩和パラメータとする。構造緩和パラメータを推定するためのオフライン実験により、サイクル回数は、複数回の熱処理の収縮結果に合うように構造緩和パラメータを合わせる。
 粘弾性解析の結果によれば、ガラス板の温度分布とガラス板の歪とは、相関関係があるため、この相関関係を予め求めておき、この相関関係に基づいて、ガラス板SGの温度(温度分布)からガラス板SGの歪分布を求めることができる。ガラス板SGの上記応力緩和パラメータ及び上記構造緩和パラメータは、実験における測定により図11及び図12にそれぞれ示すとおりである。
<Viscoelastic analysis simulation>
Using the amount of heat (temperature distribution) retained by the glass plate SG in the entire slow cooling spaces 42b to 42f (slow cooling zone 420) obtained by the above thermal fluid analysis, the strain distribution of the glass plate SG is determined by viscoelastic model analysis. Ask.
Specifically, the temperature distribution of the glass plate SG in the entire slow cooling spaces 42b to 42f obtained by the thermal fluid analysis, the physical property values of the glass plate SG, the stress relaxation parameters and the structural relaxation parameters of the glass plate SG are as follows: By inputting into known analysis software and performing analysis, viscoelastic model analysis is performed and the strain distribution of the glass plate is obtained. Specifically, the strain distribution is obtained in consideration of the stress relaxation parameter and the structure relaxation parameter. In the slow cooling spaces 42b to 42f, the temperature of the glass plate SG may be cooled in a non-uniform state in the width direction, and thermal stress is constantly generated due to the difference in shrinkage, and the stress is constantly relaxed. For this reason, in order to evaluate the residual stress remaining in the glass plate SG, it is necessary to consider not only thermal stress calculation due to shrinkage but also stress relaxation in which the stress decreases with time. For this reason, stress relaxation is taken into account by using a viscoelastic model of software for structural analysis. Moreover, in order to obtain | require a structure relaxation parameter, the shrinkage | contraction resulting from structure relaxation can also be considered. Shrinkage of the glass plate SG includes thermal expansion due to thermal expansion and thermal contraction that is contraction due to structural relaxation. Since the volume decreases when the glass plate SG is left at a high temperature for a long time, this is used as a structural relaxation parameter. Through the off-line experiment for estimating the structural relaxation parameter, the number of cycles is adjusted so that the structural relaxation parameter matches the shrinkage result of multiple heat treatments.
According to the result of the viscoelastic analysis, since the temperature distribution of the glass plate and the strain of the glass plate have a correlation, the correlation is obtained in advance, and based on this correlation, the temperature of the glass plate SG ( The strain distribution of the glass plate SG can be obtained from the (temperature distribution). The stress relaxation parameter and the structural relaxation parameter of the glass plate SG are as shown in FIGS.
 以上により、熱流体解析及び粘弾性モデル解析を用いて、ガラス板SGの歪分布を求めることができる。 As described above, the strain distribution of the glass plate SG can be obtained using the thermal fluid analysis and the viscoelastic model analysis.
 上述の方法により求めたガラス板SGの歪分布は、発熱部361a~366aの設定温度を700℃とした初期状態の発熱量から求めたものであり、発熱部361a~366aの設定温度を変化させることにより、ガラス板SGの歪分布も変化する。熱流体解析及び粘弾性モデル解析を用いることにより、発熱部361a~366aの設定温度の変化と、ガラス板SGの歪変化との関係が求まるため、ガラス板SGの歪分布を抑制するように、発熱部361a~366aの設定温度を制御することにより、ガラス板SGの反り及び歪を低減できる。 The strain distribution of the glass plate SG obtained by the above-described method is obtained from the heat generation amount in the initial state where the set temperature of the heat generating portions 361a to 366a is 700 ° C., and the set temperature of the heat generating portions 361a to 366a is changed. Thereby, the strain distribution of the glass plate SG also changes. By using the thermal fluid analysis and the viscoelastic model analysis, the relationship between the change in the set temperature of the heat generating portions 361a to 366a and the strain change in the glass plate SG is obtained, so that the strain distribution in the glass plate SG is suppressed. By controlling the set temperature of the heat generating portions 361a to 366a, the warp and distortion of the glass plate SG can be reduced.
 なお、歪測定装置(歪測定センサー)を、徐冷空間42b~42fに設けて、ガラス板SGの反り及び歪、温度分布を測定することもできる。歪測定と温度測定(熱電対)は別測定であるが、同じ場所において両方を測定することもできる。 Note that a warp, strain, and temperature distribution of the glass plate SG can be measured by providing a strain measuring device (strain measuring sensor) in the slow cooling spaces 42b to 42f. Strain measurement and temperature measurement (thermocouple) are separate measurements, but both can be measured at the same location.
 また、ガラス板SGの保有熱量(温度分布)が、引っ張りローラ350a~350eにより挟み込まれることにより変化してもよい。この場合、熱電対ユニット380により、又は、引っ張りローラ350a~350eが備える熱量検知センサーにより、引っ張りローラ350a~350eが備える保有熱量(温度分布)を測定する。引っ張りローラ350a~350eの保有熱量とガラス板SGの保有熱量との両方を用いてシミュレーションすることにより、ガラス板SGの反り及び歪を得ることもできる。 Further, the retained heat amount (temperature distribution) of the glass plate SG may be changed by being sandwiched between the pulling rollers 350a to 350e. In this case, the retained heat amount (temperature distribution) included in the pulling rollers 350a to 350e is measured by the thermocouple unit 380 or the heat amount detection sensor included in the pulling rollers 350a to 350e. It is also possible to obtain warpage and distortion of the glass plate SG by performing a simulation using both the amount of heat retained by the pulling rollers 350a to 350e and the amount of heat retained by the glass plate SG.
 具体的には、上述した熱流体解析シミュレーションを行うとき、各徐冷空間のモデルに、引っ張りローラ350a~350eのメッシュモデルを加え、引っ張りローラ350a~350eのメッシュモデルの保有熱量を上述の測定結果から定め、発熱部に設定温度を与えることで徐冷空間の雰囲気温度とガラス板SGの温度分布を解いてもよい。これにより、より正確にガラス板SGの温度分布を求めることができる。 Specifically, when performing the above-described thermal fluid analysis simulation, the mesh model of the pulling rollers 350a to 350e is added to the model of each slow cooling space, and the amount of heat held by the mesh model of the pulling rollers 350a to 350e is measured as described above. The temperature distribution of the slow cooling space and the temperature distribution of the glass plate SG may be solved by giving a set temperature to the heat generating portion. Thereby, the temperature distribution of the glass plate SG can be calculated | required more correctly.
 以上、本発明のガラス板の製造方法及びガラス板の製造装置について詳細に説明したが、本発明は、上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいことはもちろんである。 As mentioned above, although the manufacturing method of the glass plate of this invention and the manufacturing apparatus of the glass plate were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, various improvement or change Of course, you may do it.
100 ガラス板の製造装置
310 成形体
313 成形体の下部
330 冷却ローラ(ローラ)
350a~350e 引っ張りローラ(ローラ)
360a~360e ヒータ
361a~366a 発熱部
420 徐冷ゾーン
42a 成形ゾーン
42b~42f 徐冷空間
SG ガラス板
DESCRIPTION OF SYMBOLS 100 Glass plate manufacturing apparatus 310 Molded body 313 Lower part of molded body 330 Cooling roller (roller)
350a-350e Pulling roller (roller)
360a to 360e Heater 361a to 366a Heat generating part 420 Slow cooling zone 42a Molding zone 42b to 42f Slow cooling space SG Glass plate

Claims (6)

  1.  ダウンドロー法によるガラス板の製造方法であって、
     熔融ガラスをシート状のガラス板に成形する成形工程と、
     前記成形工程で成形したガラス板を、鉛直方向下方に搬送しながら、炉壁により囲まれた徐冷空間において、前記徐冷空間内の温度を制御する複数のヒータを用いて徐冷する徐冷工程と、を備え、
     前記冷却工程では、前記ガラス板が保有する保有熱量を、前記ヒータが発する発熱量を用いて、前記徐冷空間内の空間熱量とともに求め、前記保有熱量と前記ガラス板の歪との予め定められた関係に基づいて、前記ガラス板の歪を求め、
     前記ヒータ熱量を制御することにより、前記ガラス板の保有熱量を補正して、前記ガラス板の歪を抑制する、
     ことを特徴とするガラス板の製造方法。
    A method for producing a glass plate by a downdraw method,
    A molding process for molding the molten glass into a sheet-like glass plate;
    Slow cooling in which the glass plate formed in the forming step is gradually cooled using a plurality of heaters for controlling the temperature in the slow cooling space in the slow cooling space surrounded by the furnace wall while being conveyed vertically downward. A process,
    In the cooling step, the amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and the amount of heat held and the distortion of the glass plate are determined in advance. Based on the relationship, the strain of the glass plate is obtained,
    By controlling the amount of heat of the heater, the amount of heat retained by the glass plate is corrected, and distortion of the glass plate is suppressed,
    The manufacturing method of the glass plate characterized by the above-mentioned.
  2.  前記徐冷空間を前記鉛直方向に複数の空間に分け、各空間において複数のヒータを用いて空間内の温度を制御し、
     前記各空間において前記ガラス板の歪をそれぞれ求めた結果に基づいて、前記ヒータが発するヒータ熱量を制御する、
     ことを特徴とする請求項1に記載のガラス板の製造方法。
    Dividing the slow cooling space into a plurality of spaces in the vertical direction, and controlling the temperature in the space using a plurality of heaters in each space;
    Based on the results of determining the strain of the glass plate in each space, the amount of heat generated by the heater is controlled.
    The manufacturing method of the glass plate of Claim 1 characterized by the above-mentioned.
  3.  前記ガラス板の歪は、熱流体解析シミュレーション及び粘弾性モデル解析シミュレーションにより求める、
     ことを特徴とする請求項1又は2に記載のガラス板の製造方法。
    The strain of the glass plate is determined by thermal fluid analysis simulation and viscoelastic model analysis simulation.
    The manufacturing method of the glass plate of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記徐冷空間は前記鉛直方向に複数の空間に分けられており、
     前記熱流体解析シミュレーションでは、前記複数の空間のそれぞれに進入するときのガラス板の保有熱量をガラス板の進入時の保有熱量とし、前記進入時のガラス板の保有熱量と前記ヒータの前記発熱量を与えることにより、前記ガラス板の前記複数の空間それぞれにおける前記ガラス板の保有熱量を求める、請求項3に記載のガラス板の製造方法。
    The slow cooling space is divided into a plurality of spaces in the vertical direction,
    In the thermal fluid analysis simulation, the retained heat amount of the glass plate when entering each of the plurality of spaces is defined as the retained heat amount when entering the glass plate, and the retained heat amount of the glass plate during the approach and the heating value of the heater. The manufacturing method of the glass plate of Claim 3 which calculates | requires the retained heat amount of the said glass plate in each of these space of the said glass plate by giving.
  5.  前記複数の空間を前記ガラス板が流れるとき、前記熱流体解析シミュレーションは、前記複数の空間のそれぞれにおいて行なわれ、前記複数の空間のうち、前記ガラス板の流れ方向の上流側からみて2段目以降の空間では、上流側に隣接する空間において前記ガラス板が出るときの温度分布を、前記進入時の保有熱量として用いる、請求項4に記載のガラス板の製造方法。 When the glass plate flows through the plurality of spaces, the thermal fluid analysis simulation is performed in each of the plurality of spaces, and the second stage of the plurality of spaces when viewed from the upstream side in the flow direction of the glass plate. 5. The method for manufacturing a glass plate according to claim 4, wherein, in a subsequent space, a temperature distribution when the glass plate comes out in a space adjacent to the upstream side is used as a retained heat amount at the time of entering.
  6.  ダウンドロー法によるガラス板の製造装置であって、
     熔融ガラスをシート状のガラス板に成形する成形体と、
     前記成形体で成形したガラス板を、鉛直方向下方に搬送しながら、炉壁により囲まれた徐冷空間と、
     前記徐冷空間内の温度を制御し、前記ガラス板を徐冷する複数のヒータと、を備えた成形装置を含み、
     前記成形装置は、
     前記ガラス板が保有する保有熱量を、前記ヒータが発した発熱量を用いて、前記徐冷空間内の空間熱量とともに求め、前記保有熱量と前記ガラス板の歪との予め定められた関係に基づいて、前記ガラス板の歪を求める第1の部分と、
     前記ヒータ熱量を制御することにより、前記ガラス板の保有熱量を補正して、前記ガラス板の歪を抑制する第2の部分と、を有する
     ことを特徴とするガラス板の製造装置。
    An apparatus for producing a glass plate by a downdraw method,
    A molded body for forming molten glass into a sheet-like glass plate;
    While conveying the glass plate molded with the molded body vertically downward, a slow cooling space surrounded by the furnace wall,
    A plurality of heaters for controlling the temperature in the slow cooling space and gradually cooling the glass plate,
    The molding device includes:
    The amount of heat held by the glass plate is obtained together with the amount of heat in the slow cooling space using the amount of heat generated by the heater, and based on a predetermined relationship between the amount of heat held and the strain of the glass plate. A first portion for determining the strain of the glass plate;
    A glass plate manufacturing apparatus comprising: a second portion that corrects the amount of heat retained by the glass plate by controlling the heat amount of the heater and suppresses distortion of the glass plate.
PCT/JP2015/062918 2014-04-30 2015-04-30 Method for manufacturing glass plate, and device for manufacturing glass plate WO2015166972A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000130.8A CN105705465B (en) 2014-04-30 2015-04-30 The manufacturing method of glass plate and the manufacturing device of glass plate
KR1020157016994A KR101798305B1 (en) 2014-04-30 2015-04-30 Method and apparatus for making glass sheet
JP2015522814A JP5937759B2 (en) 2014-04-30 2015-04-30 Glass plate manufacturing method and glass plate manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-093275 2014-04-30
JP2014093275 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015166972A1 true WO2015166972A1 (en) 2015-11-05

Family

ID=54358697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062918 WO2015166972A1 (en) 2014-04-30 2015-04-30 Method for manufacturing glass plate, and device for manufacturing glass plate

Country Status (5)

Country Link
JP (1) JP5937759B2 (en)
KR (1) KR101798305B1 (en)
CN (1) CN105705465B (en)
TW (1) TWI592373B (en)
WO (1) WO2015166972A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011225A (en) * 2017-06-30 2019-01-24 AvanStrate株式会社 Method for manufacturing glass sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2013126946A (en) * 2011-06-30 2013-06-27 Avanstrate Inc Method and apparatus for manufacturing glass plate
JP2013253017A (en) * 2006-09-20 2013-12-19 Corning Inc Temperature compensation for shape-induced in-plane stresses in glass substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648164B (en) * 2009-10-14 2014-07-23 康宁股份有限公司 Method and apparatus for controlling sheet thickness
KR101196574B1 (en) * 2010-09-30 2012-11-01 아반스트레이트 가부시키가이샤 Glass sheet manufacturing method
KR101253016B1 (en) 2011-03-31 2013-04-15 아반스트레이트 가부시키가이샤 Glass plate production method
JP5574454B2 (en) * 2012-04-06 2014-08-20 AvanStrate株式会社 Manufacturing method of glass substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2013253017A (en) * 2006-09-20 2013-12-19 Corning Inc Temperature compensation for shape-induced in-plane stresses in glass substrate
JP2013126946A (en) * 2011-06-30 2013-06-27 Avanstrate Inc Method and apparatus for manufacturing glass plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011225A (en) * 2017-06-30 2019-01-24 AvanStrate株式会社 Method for manufacturing glass sheet

Also Published As

Publication number Publication date
JPWO2015166972A1 (en) 2017-04-20
CN105705465A (en) 2016-06-22
TWI592373B (en) 2017-07-21
KR101798305B1 (en) 2017-11-15
CN105705465B (en) 2018-09-11
KR20150140627A (en) 2015-12-16
TW201545998A (en) 2015-12-16
JP5937759B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
KR101927543B1 (en) Glass plate production method
JP6995066B2 (en) Control device for forming and / or processing resin foil and resin foil molding control method
JP5758612B2 (en) Method and apparatus for thermal conditioning of molten glass
JP5848673B2 (en) Manufacturing method of glass plate
JP5419715B2 (en) Isopipe maintenance method at the time of joining
TW201107254A (en) Glass plate manufacturing method and manufacturing device
JP6445141B2 (en) Manufacturing method of glass substrate
JP5937759B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
CN206418007U (en) A kind of ultrathin flexible glass edge-pulling structure
CN108052701B (en) Method for controlling stress and warpage of substrate glass
JP6940991B2 (en) Glass sheet manufacturing method
CN102822104B (en) The manufacture method of sheet glass
RU2591995C1 (en) Method and device for glass melting furnace cooling
KR20120021275A (en) Method for controlling stress in a heated refractory ceramic body
CN116693173A (en) Microcrystalline glass forming equipment
JP2019064903A (en) Method for manufacturing glass plate
JP2017048102A (en) Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015522814

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016994

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786549

Country of ref document: EP

Kind code of ref document: A1