WO2015166793A1 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
WO2015166793A1
WO2015166793A1 PCT/JP2015/061367 JP2015061367W WO2015166793A1 WO 2015166793 A1 WO2015166793 A1 WO 2015166793A1 JP 2015061367 W JP2015061367 W JP 2015061367W WO 2015166793 A1 WO2015166793 A1 WO 2015166793A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
welding
arc
output voltage
value
Prior art date
Application number
PCT/JP2015/061367
Other languages
French (fr)
Japanese (ja)
Inventor
章博 井手
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to CN201580006777.1A priority Critical patent/CN105939811B/en
Priority to JP2016515924A priority patent/JPWO2015166793A1/en
Publication of WO2015166793A1 publication Critical patent/WO2015166793A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Definitions

  • the present invention generates a short-circuit period and an arc period by periodically repeating a forward feed period and a reverse feed period of the feed speed, and performs an arc control that performs constant voltage control so that the output of the welding power source becomes equal to the voltage target value.
  • the present invention relates to a welding control method.
  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
  • FIG. 4 is a waveform diagram in a welding method in which a forward feed period and a reverse feed period of a feeding speed are periodically repeated.
  • A shows the waveform of the feeding speed Fw
  • B shows the waveform of the welding current Iw
  • C shows the waveform of the welding voltage Vw
  • D shows a constant waveform.
  • the waveform of the output voltage setting signal Er which is a voltage target value of voltage control is shown.
  • the feed speed Fw is a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the period from time t5 to t6 again becomes the normal feed acceleration period
  • the period from time t6 to t7 again becomes the normal feed deceleration period. Therefore, the period from time t1 to t3 is a normal transmission period, and the period from time t3 to t5 is a reverse transmission period.
  • the feeding speed Fw is repeated with time t1 to t5 as one cycle.
  • a constant voltage control welding power source is used for consumable electrode arc welding. This constant voltage control is performed by feedback control so that the output voltage of the welding power source becomes equal to a predetermined output voltage setting signal Er. As shown in FIG. 4D, since the output voltage setting signal Er is a constant value during welding, a constant output voltage is output by constant voltage control.
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4.
  • the case occurs at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
  • the welding voltage Vw When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased.
  • the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
  • the next short circuit occurs at time t61 during the forward deceleration period from time t6 to t7.
  • the period from time t31 to t61 is the arc period.
  • the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened.
  • the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
  • the average arc length differs when welding conditions such as joint shape, welding speed, and feed speed average value are different.
  • the average arc length is set to an appropriate value by adjusting the value of the output voltage setting signal Er, which is the voltage target value, and changing the average value of the welding voltage Vw.
  • the feeding speed Fw is a constant value
  • the welding wire is normally fed at a constant speed during the arc period, so that the arc length is continuously reduced. For this reason, even if the value of the output voltage setting signal Er is changed during the entire arc period, the welding state does not become unstable.
  • the arc period reverse feed period Tar in which the arc length is gradually increased and the arc period forward feed period Tas in which the arc length is gradually reduced There are two different states. At this time, if the output voltage setting signal Er is changed in order to adjust the average arc length to an appropriate value, the voltage target value in the arc period reverse feed period Tar and the voltage target value in the arc period forward feed period Tas are the same value. It will change as it is. Although the change state of the arc length is the opposite state, the voltage target value changes with the same value, so that there is a problem that the welding state becomes unstable.
  • An object of the present invention is to provide an arc welding control method in which the state does not become unstable.
  • the present invention provides: Arc welding control method for performing constant voltage control so that the output of the welding power source becomes equal to the output voltage setting value by periodically repeating the forward feed period and the reverse feed period of the feeding speed to generate a short circuit period and an arc period.
  • the output voltage set value is set to a first output voltage set value during the reverse feed period during the arc period, and is different from the first output voltage set value during the forward feed period during the arc period. 2 Set to the output voltage setting value.
  • the first output voltage setting value is automatically set according to an average value of the feeding speed. It is characterized by that.
  • the second output voltage setting value is set to an arbitrary value by a welding operator. It is characterized by that.
  • the present invention further includes an average welding voltage setting value for setting an average value of the welding voltage, detects the average value of the welding voltage, and the detected welding voltage average value is equal to the average welding voltage setting value. Feedback control of the second output voltage set value so that It is characterized by that.
  • the output voltage setting value suitable for each state of the state in which the arc length during the arc period reverse feed period gradually increases and the state in which the arc length during the arc period normal feed period gradually decreases ( Voltage target value).
  • the voltage target value may be changed to set the average arc length suitable for the welding conditions. The welding state does not become unstable.
  • FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
  • the power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to an error amplification signal Ea described later, and outputs an output voltage E.
  • This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down to an appropriate voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a modulation circuit that performs pulse width modulation control using the error amplification signal Ea as an input, and a pulse width modulation control signal are input.
  • a commercial power supply not shown
  • a smoothing capacitor that smoothes the rectified direct current
  • an inverter circuit that converts the smoothed direct current to high frequency alternating current
  • the reactor WL smoothes the output voltage E described above.
  • the inductance value of the reactor WL is, for example, 200 ⁇ H.
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • a feed control signal Fc which will be described later
  • Fc feed control signal
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1.
  • a welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
  • the welding voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal vd.
  • the short-circuit determination circuit SD receives the welding voltage detection signal vd as an input, determines that it is a short-circuit period when this value is less than a predetermined short-circuit determination value, and is at a high level.
  • a short circuit determination signal Sd that is determined to be low level is output. This short circuit discrimination value is set to about 15V.
  • the feed speed setting circuit FR outputs a feed speed setting signal Fr having a predetermined pattern in which the forward feed and the reverse feed are periodically repeated as will be described in detail with reference to FIG.
  • the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
  • the feed control circuit FC receives the feed speed setting signal Fr and inputs a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the set value to the feed motor WM. Output to.
  • the feed speed average value calculation circuit FAV receives the feed speed setting signal Fr, calculates an average value of the feed speed setting signal Fr, and outputs it as a feed speed average value signal Fav.
  • the first output voltage setting circuit ER1 receives the feed speed average value signal Fav as an input, and calculates and outputs the first output voltage signal Er1 by a predetermined function.
  • This function is a function representing the relationship between the value of the feed speed average value signal Fav and the value of the first output voltage setting signal Er1, and is calculated by experiment.
  • the second output voltage setting circuit ER2 is set to an arbitrary value by a welding operator, a robot control device (not shown) or the like, and outputs it as a second output voltage setting signal Er2.
  • the second output voltage setting signal Er2 is set so as to have an average arc length suitable for welding conditions.
  • the output voltage control setting circuit ECR receives the first output voltage setting signal Er1, the second output voltage setting signal Er2, the short circuit determination signal Sd, and the feed speed setting signal Fr as follows.
  • the output voltage control setting signal Ecr is a voltage target value for constant voltage control. 1) When the short circuit determination signal Sd is at a high level (short circuit period), the second output voltage setting signal Er2 is output as the output voltage control setting signal Ecr. 2) When the short circuit determination signal Sd is at the Low level (arc period) and the feed speed setting signal Fr is less than 0 (reverse feed period), it is determined that the arc period is in the reverse feed period Tar, The first output voltage setting signal Er1 is output as the output voltage control setting signal Ecr.
  • the output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
  • the error amplifying circuit EA receives the output voltage control setting signal Ecr and the output voltage detection signal Ed, and amplifies an error between the output voltage control setting signal Ecr (+) and the output voltage detection signal Ed ( ⁇ ).
  • the error amplification signal Ea is output. By this circuit, the welding power source is controlled at a constant voltage.
  • FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 for explaining the arc welding control method according to the first embodiment of the present invention.
  • FIG. 4A shows the time change of the feeding speed Fw
  • FIG. 4B shows the time change of the welding current Iw
  • FIG. 4C shows the time change of the welding voltage Vw
  • FIG. ) Shows a time change of the output voltage control setting signal Ecr which is a voltage target value of the constant voltage control.
  • This figure corresponds to FIG. 4 described above, and the description of the same operation will not be repeated. This figure is different only in the operation of the output voltage control setting signal Ecr.
  • a description will be given with reference to FIG.
  • the feed speed Fw is a forward feed period above 0 and a reverse feed period below.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the change pattern of the feeding speed Fw may be triangular or trapezoidal.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the period from time t5 to t6 again becomes the normal feed acceleration period
  • the period from time t6 to t7 again becomes the normal feed deceleration period.
  • the repetition cycle of the forward feed and the reverse feed is set to a predetermined value.
  • the forward feed acceleration period from time t1 to t2 is 2.7 ms
  • the forward feed deceleration period from time t2 to t3 is 2.7 ms
  • the reverse feed acceleration period from time t3 to t4 is 2.3 ms.
  • the reverse feed deceleration period from time t4 to t5 is 2.3 ms
  • the maximum value of forward feed is 50 m / min
  • the maximum value of reverse feed is ⁇ 50 m / min.
  • the repetition cycle of forward feeding and reverse feeding is 10 ms
  • the average value of the feeding speed Fw is about 4 m / min (the average welding current is about 150 A).
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4.
  • the case occurs at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
  • the output voltage control setting signal Ecr Er1 (first output voltage setting signal) as shown in FIG. 4D, and the welding voltage Vw is set as shown in FIG. Increases rapidly to an arc voltage value of several tens of volts. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the next short circuit occurs at time t61 during the forward deceleration period from time t6 to t7.
  • the period from time t31 to t61 is the arc period.
  • the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened.
  • the output voltage control setting signal Ecr Er2 (second output voltage setting signal).
  • the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
  • Ecr Er2
  • the second output voltage setting signal Er2 is set by the welding operator, robot control device, or the like so as to have an average arc length suitable for welding conditions.
  • the output voltage set value (Ecr) is set to the first output voltage set value (Er1) during the reverse feed period during the arc period, and during the forward feed period during the arc period.
  • a second output voltage setting value (Er2) different from the first output voltage setting value is set.
  • the first output voltage set value is automatically set according to the average value of the feeding speed.
  • the second output voltage set value is set to an arbitrary value by the welding operator.
  • Embodiment 2 The invention of Embodiment 2 further includes an average welding voltage setting value for setting an average value of the welding voltage, detects the average value of the welding voltage, and the detected welding voltage average value is the average welding voltage setting value.
  • the second output voltage set value is feedback controlled so as to be equal to.
  • FIG. 3 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 2 of the present invention.
  • This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and description thereof will not be repeated.
  • an average welding voltage setting circuit VAR, an average welding voltage detection circuit VAV, and an average voltage error amplification circuit EVA are added to FIG. 1, and the second output voltage setting circuit ER2 of FIG. It is a substitute for FER2.
  • VAR average welding voltage setting circuit
  • VAV average welding voltage detection circuit
  • EVA average voltage error amplification circuit
  • the average welding voltage setting circuit VAR outputs a predetermined average welding voltage setting signal Var.
  • the average welding voltage detection circuit VAV receives the welding voltage detection signal Vd, detects the average value of this signal, and outputs the average welding voltage detection signal Vav.
  • the average voltage error amplifying circuit EVA receives the average welding voltage setting signal Var and the average welding voltage detection signal Vav, and inputs the average welding voltage setting signal Var (+) and the average welding voltage detection signal Vav ( ⁇ ). The error is amplified and an average voltage error amplification signal Eva is output.
  • E0 is a predetermined initial value.
  • the value of the second output voltage setting signal Er2 is feedback-controlled by the above circuit so that the value of the average welding voltage detection signal Vav becomes equal to the value of the average welding voltage setting signal Var.
  • the timing chart of each signal in the welding power source of FIG. 3 for explaining the arc welding control method according to the second embodiment of the present invention is the same as FIG. 2 described above, description thereof will not be repeated.
  • the value of the second output voltage setting signal Er2 which is the value during the arc period normal feed period Tas of the output voltage control setting signal Ecr shown in FIG. 4D, is the average welding voltage detection value Vav.
  • the difference is that feedback control is performed so as to be equal to the value of the setting signal Var.
  • the pattern (waveform, amplitude, period, etc.) of the feed rate setting signal Fr may be changed in order to improve the welding quality while maintaining the same welding conditions such as the joint shape, welding speed, and feed rate average value. is there.
  • the pattern of the feed speed setting signal Fr changes, in the first embodiment, it is necessary to readjust the second output voltage setting signal Er2 in order to set the average arc length to an appropriate value.
  • the second output voltage setting signal Er2 is set so that the average welding voltage detection signal Vav becomes equal to the average welding voltage setting signal Var. Since the average arc length is maintained at an appropriate value because the feedback control is performed, readjustment of the average welding voltage setting signal Var is not necessary.
  • an average welding voltage set value for setting an average value of the welding voltage is further provided, the average value of the welding voltage is detected, and the detected welding voltage average value is the average welding voltage.
  • the second output voltage set value is feedback controlled so as to be equal to the set value.
  • the output voltage setting value suitable for each state of the state in which the arc length during the arc period reverse feed period gradually increases and the state in which the arc length during the arc period normal feed period gradually decreases ( Voltage target value).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

The objective of the present invention is to improve stability during arc welding in which forward feeding and reverse feeding of a welding wire are cyclically repeated. In this arc welding control method, the forward feed period and the reverse feed period at a feeding speed (Fw) are cyclically repeated, thereby generating a short-circuit period and an arc period, and the output of a welding power source is controlled at a constant voltage so as to be equal to an output voltage set value (Ecr). The output voltage set value (Ecr) is set to a first output voltage set value (Er1) during the reverse feed period (Tar) in the arc period, and is set to a second output voltage set value (Er2) different than the first output voltage set value (Er1) during the forward feed period (Tas) in the arc period. Thus, it is possible to perform constant-voltage control suited to individual states, that is, a state in which the arc length gradually increases during the reverse feed period (Tar) in the arc period, and a state in which the arc length gradually decreases during the forward feed period (Tas) in the arc period, thereby improving welding stability.

Description

アーク溶接制御方法Arc welding control method
 本発明は、送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、溶接電源の出力が電圧目標値と等しくなるように定電圧制御するアーク溶接制御方法に関するものである。 The present invention generates a short-circuit period and an arc period by periodically repeating a forward feed period and a reverse feed period of the feed speed, and performs an arc control that performs constant voltage control so that the output of the welding power source becomes equal to the voltage target value. The present invention relates to a welding control method.
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In general consumable electrode type arc welding, a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding. In the consumable electrode type arc welding, the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
 溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1参照)。以下、この溶接方法について説明する。 In order to further improve the welding quality, a method has been proposed in which welding is performed by periodically repeating forward feeding and reverse feeding of a welding wire (for example, see Patent Document 1). Hereinafter, this welding method will be described.
 図4は、送給速度の正送期間と逆送期間とを周期的に繰り返す溶接方法における波形図である。同図(A)は送給速度Fwの波形を示し、同図(B)は溶接電流Iwの波形を示し、同図(C)は溶接電圧Vwの波形を示し、同図(D)は定電圧制御の電圧目標値である出力電圧設定信号Erの波形を示す。以下、同図を参照して説明する。 FIG. 4 is a waveform diagram in a welding method in which a forward feed period and a reverse feed period of a feeding speed are periodically repeated. (A) shows the waveform of the feeding speed Fw, (B) shows the waveform of the welding current Iw, (C) shows the waveform of the welding voltage Vw, and (D) shows a constant waveform. The waveform of the output voltage setting signal Er which is a voltage target value of voltage control is shown. Hereinafter, a description will be given with reference to FIG.
 同図(A)に示すように、送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。 As shown in FIG. 5A, the feed speed Fw is a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material. The feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。したがって、時刻t1~t3の期間が正送期間となり、時刻t3~t5の期間が逆送期間となる。送給速度Fwは、時刻t1~t5を1周期として繰り返している。 As shown in FIG. 5A, the feeding speed Fw is 0 at time t1, the period from time t1 to t2 is the forward acceleration period, the maximum value of forward feeding at time t2, and the time t2 to The period of t3 is the forward deceleration period, becomes 0 at time t3, the period of time t3 to t4 is the reverse acceleration period, becomes the maximum value of reverse transmission at time t4, and the period of time t4 to t5 is the reverse deceleration period It becomes. The period from time t5 to t6 again becomes the normal feed acceleration period, and the period from time t6 to t7 again becomes the normal feed deceleration period. Therefore, the period from time t1 to t3 is a normal transmission period, and the period from time t3 to t5 is a reverse transmission period. The feeding speed Fw is repeated with time t1 to t5 as one cycle.
 消耗電極式アーク溶接には定電圧制御の溶接電源が使用される。この定電圧制御は、溶接電源の出力電圧が予め定めた出力電圧設定信号Erと等しくなるようにフィードバック制御されることによって行なわれる。同図(D)に示すように、出力電圧設定信号Erは溶接中は一定値であるので、定電圧制御によって一定の出力電圧が出力される。 A constant voltage control welding power source is used for consumable electrode arc welding. This constant voltage control is performed by feedback control so that the output voltage of the welding power source becomes equal to a predetermined output voltage setting signal Er. As shown in FIG. 4D, since the output voltage setting signal Er is a constant value during welding, a constant output voltage is output by constant voltage control.
 溶接ワイヤと母材との短絡は、時刻t2の正送最大値の前後で発生することが多い。同図では、正送の最大値の後の正送減速期間中の時刻t21で発生した場合である。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。 短 絡 Short-circuiting between the welding wire and the base material often occurs before and after the maximum feed value at time t2. In the figure, the case occurs at time t21 during the forward feed deceleration period after the maximum value of forward feed. When a short circuit occurs at time t21, the welding voltage Vw rapidly decreases to a short circuit voltage value of several V as shown in FIG. 10C, and the welding current Iw gradually increases as shown in FIG.
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送の最大値の前後で発生することが多い。同図では、逆送の最大値の前の逆送加速期間中の時刻t31で発生した場合である。したがって、時刻t21~t31の期間が短絡期間となる。 As shown in FIG. 4A, the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward. The short circuit is released by this reverse feed, and the arc is regenerated at time t31. The reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4. In the figure, the case occurs at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
 時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。 When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
 時刻t31~t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31~t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。 During the period from time t31 to t5, as shown in FIG. 5A, the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased. As the arc length increases, the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
 そして、同図では、次の短絡が、時刻t6~t7の正送減速期間中の時刻t61に発生した場合である。時刻t31~t61の期間がアーク期間となる。時刻t5~t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。アーク長が短くなると、溶接電圧Vwは小さくなり、定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t5~t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。 In the same figure, the next short circuit occurs at time t61 during the forward deceleration period from time t6 to t7. The period from time t31 to t61 is the arc period. During the period from time t5 to time t61, as shown in FIG. 5A, the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened. When the arc length is shortened, the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
 上述したように、溶接ワイヤの正送と逆送とを繰り返す溶接方法では、定速送給の従来技術では不可能であった短絡とアークとの繰り返しの周期を所望値に設定することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。 As described above, in the welding method that repeats forward and reverse feeding of the welding wire, it is possible to set the cycle of repetition of short circuit and arc, which is impossible with the conventional technique of constant speed feeding, to a desired value. Therefore, it is possible to improve the welding quality, such as reducing the amount of spatter generated and improving the bead appearance.
 継手形状、溶接速度、送給速度の平均値等の溶接条件が異なると適正な平均アーク長が異なる。このために、電圧目標値である出力電圧設定信号Erの値を調整して溶接電圧Vwの平均値を変化させることによって、平均アーク長を適正値に設定する。送給速度Fwが一定値である溶接方法の場合には、アーク期間中に溶接ワイヤは一定の速度で正送されるので、アーク長は継続して短くなる状態となる。このために、アーク期間の全期間の出力電圧設定信号Erの値を変化させても、溶接状態は不安定になることはない。 適 正 Proper average arc length differs when welding conditions such as joint shape, welding speed, and feed speed average value are different. For this purpose, the average arc length is set to an appropriate value by adjusting the value of the output voltage setting signal Er, which is the voltage target value, and changing the average value of the welding voltage Vw. In the case of a welding method in which the feeding speed Fw is a constant value, the welding wire is normally fed at a constant speed during the arc period, so that the arc length is continuously reduced. For this reason, even if the value of the output voltage setting signal Er is changed during the entire arc period, the welding state does not become unstable.
 しかし、送給速度の正送と逆送とを周期的に繰り返す溶接方法の場合には、アーク長が次第に長くなるアーク期間逆送期間Tarと、アーク長が次第に短くなるアーク期間正送期間Tasと、の異なる2つの状態が存在する。このときに、平均アーク長を適正値に調整するために、出力電圧設定信号Erを変化させると、アーク期間逆送期間Tarの電圧目標値もアーク期間正送期間Tasの電圧目標値も同一値のままで変化することになる。アーク長の変化状態が逆の状態であるにも関わらず電圧目標値が同一値で変化するので、溶接状態が不安定になるという問題があった。 However, in the case of a welding method in which the feed rate is periodically forwarded and reversely fed periodically, the arc period reverse feed period Tar in which the arc length is gradually increased and the arc period forward feed period Tas in which the arc length is gradually reduced. There are two different states. At this time, if the output voltage setting signal Er is changed in order to adjust the average arc length to an appropriate value, the voltage target value in the arc period reverse feed period Tar and the voltage target value in the arc period forward feed period Tas are the same value. It will change as it is. Although the change state of the arc length is the opposite state, the voltage target value changes with the same value, so that there is a problem that the welding state becomes unstable.
日本国特許第5201266号公報Japanese Patent No. 52012266
 そこで、本発明では、送給速度の正送期間と逆送期間とを周期的に繰り返す溶接方法において、溶接条件に適した平均アーク長に設定するために電圧目標値を変化させても、溶接状態が不安定になることがないアーク溶接制御方法を提供することを目的とする。 Therefore, in the present invention, in the welding method in which the forward feed period and the reverse feed period of the feed speed are periodically repeated, even if the voltage target value is changed in order to set the average arc length suitable for the welding conditions, the welding is performed. An object of the present invention is to provide an arc welding control method in which the state does not become unstable.
 上述した課題を解決するために、本発明は、
送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、溶接電源の出力が出力電圧設定値と等しくなるように定電圧制御するアーク溶接制御方法において、
 前記出力電圧設定値を、前記アーク期間中の前記逆送期間中は第1出力電圧設定値に設定し、前記アーク期間中の前記正送期間中は前記第1出力電圧設定値とは異なる第2出力電圧設定値に設定する、
ことを特徴とするアーク溶接制御方法である。
In order to solve the problems described above, the present invention provides:
Arc welding control method for performing constant voltage control so that the output of the welding power source becomes equal to the output voltage setting value by periodically repeating the forward feed period and the reverse feed period of the feeding speed to generate a short circuit period and an arc period. In
The output voltage set value is set to a first output voltage set value during the reverse feed period during the arc period, and is different from the first output voltage set value during the forward feed period during the arc period. 2 Set to the output voltage setting value.
An arc welding control method characterized by the above.
 本発明は、前記第1出力電圧設定値は前記送給速度の平均値に応じて自動的に設定される、
ことを特徴とする。
In the present invention, the first output voltage setting value is automatically set according to an average value of the feeding speed.
It is characterized by that.
 本発明は、前記第2出力電圧設定値は溶接作業者によって任意の値に設定される、
ことを特徴とする。
In the present invention, the second output voltage setting value is set to an arbitrary value by a welding operator.
It is characterized by that.
 本発明は、溶接電圧の平均値を設定するための平均溶接電圧設定値をさらに備え、前記溶接電圧の平均値を検出し、この検出された溶接電圧平均値が前記平均溶接電圧設定値と等しくなるように前記第2出力電圧設定値をフィードバック制御する、
ことを特徴とする。
The present invention further includes an average welding voltage setting value for setting an average value of the welding voltage, detects the average value of the welding voltage, and the detected welding voltage average value is equal to the average welding voltage setting value. Feedback control of the second output voltage set value so that
It is characterized by that.
 本発明によれば、アーク期間逆送期間中のアーク長が次第に長くなる状態と、アーク期間正送期間中のアーク長が次第に短くなる状態との、それぞれの状態に適した出力電圧設定値(電圧目標値)に設定することができる。このために、本発明では、送給速度の正送期間と逆送期間とを周期的に繰り返す溶接方法において、溶接条件に適した平均アーク長に設定するために電圧目標値を変化させても、溶接状態が不安定になることはない。 According to the present invention, the output voltage setting value suitable for each state of the state in which the arc length during the arc period reverse feed period gradually increases and the state in which the arc length during the arc period normal feed period gradually decreases ( Voltage target value). For this reason, in the present invention, in the welding method that periodically repeats the forward feed period and the reverse feed period of the feed speed, the voltage target value may be changed to set the average arc length suitable for the welding conditions. The welding state does not become unstable.
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 1 for demonstrating the arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 2 of this invention. 従来技術において、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。In a prior art, it is a wave form diagram in the welding method which repeats forward feeding and reverse feeding of feed speed periodically.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施の形態1]
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換するインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器、上記の誤差増幅信号Eaを入力としてパルス幅変調制御を行う変調回路、パルス幅変調制御信号を入力としてインバータ回路のスイッチング素子を駆動するインバータ駆動回路を備えている。 The power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to an error amplification signal Ea described later, and outputs an output voltage E. This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down to an appropriate voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a modulation circuit that performs pulse width modulation control using the error amplification signal Ea as an input, and a pulse width modulation control signal are input. As an inverter driving circuit for driving a switching element of the inverter circuit.
 リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。 The reactor WL smoothes the output voltage E described above. The inductance value of the reactor WL is, for example, 200 μH.
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。この送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。 The feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed. As this feed motor WM, a motor having a fast transient response is used. In order to increase the rate of change of the feeding speed Fw of the welding wire 1 and the reversal of the feeding direction, the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。 The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1. A welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
 溶接電圧検出回路VDは、上記の溶接電圧Vwを検出して、溶接電圧検出信号vdを出力する。短絡判別回路SDは、この溶接電圧検出信号vdを入力として、この値が予め定めた短絡判別値未満のときは短絡期間であると判別してHighレベルとなり、以上のときはアーク期間であると判別してLowレベルとなる短絡判別信号Sdを出力する。この短絡判別値は、15V程度に設定される。 The welding voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal vd. The short-circuit determination circuit SD receives the welding voltage detection signal vd as an input, determines that it is a short-circuit period when this value is less than a predetermined short-circuit determination value, and is at a high level. A short circuit determination signal Sd that is determined to be low level is output. This short circuit discrimination value is set to about 15V.
 送給速度設定回路FRは、図2(A)で詳述するように、正送と逆送とが周期的に繰り返される予め定めたパターンの送給速度設定信号Frを出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。 The feed speed setting circuit FR outputs a feed speed setting signal Fr having a predetermined pattern in which the forward feed and the reverse feed are periodically repeated as will be described in detail with reference to FIG. When the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
 送給制御回路FCは、この送給速度設定信号Frを入力として、この設定値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。 The feed control circuit FC receives the feed speed setting signal Fr and inputs a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the set value to the feed motor WM. Output to.
 送給速度平均値算出回路FAVは、上記の送給速度設定信号Frを入力として、送給速度設定信号Frの平均値を算出して、送給速度平均値信号Favとして出力する。 The feed speed average value calculation circuit FAV receives the feed speed setting signal Fr, calculates an average value of the feed speed setting signal Fr, and outputs it as a feed speed average value signal Fav.
 第1出力電圧設定回路ER1は、上記の送給速度平均値信号Favを入力として、予め定めた関数によって第1出力電圧信号Er1を算出して出力する。この関数は、送給速度平均値信号Favの値と第1出力電圧設定信号Er1の値との関係を表す関数であり、実験によって算出される。 The first output voltage setting circuit ER1 receives the feed speed average value signal Fav as an input, and calculates and outputs the first output voltage signal Er1 by a predetermined function. This function is a function representing the relationship between the value of the feed speed average value signal Fav and the value of the first output voltage setting signal Er1, and is calculated by experiment.
 第2出力電圧設定回路ER2は、溶接作業者、ロボット制御装置(図示は省略)等によって任意の値に設定されて、第2出力電圧設定信号Er2として出力する。この第2出力電圧設定信号Er2は、溶接条件に適した平均アーク長になるように設定される。 The second output voltage setting circuit ER2 is set to an arbitrary value by a welding operator, a robot control device (not shown) or the like, and outputs it as a second output voltage setting signal Er2. The second output voltage setting signal Er2 is set so as to have an average arc length suitable for welding conditions.
 出力電圧制御設定回路ECRは、上記の第1出力電圧設定信号Er1、上記の第2出力電圧設定信号Er2、上記の短絡判別信号Sd及び上記の送給速度設定信号Frを入力として、以下の処理を行ない、出力電圧制御設定信号Ecrを出力する。本実施の形態では、この出力電圧制御設定信号Ecrが、定電圧制御の電圧目標値となる。
1)短絡判別信号SdがHighレベル(短絡期間)のときは、第2出力電圧設定信号Er2を出力電圧制御設定信号Ecrとして出力する。
2)短絡判別信号SdがLowレベル(アーク期間)であり、かつ、送給速度設定信号Frが0未満(逆送期間)であるときは、アーク期間逆送期間Tarにあると判別して、第1出力電圧設定信号Er1を出力電圧制御設定信号Ecrとして出力する。
3)短絡判別信号SdがLowレベル(アーク期間)であり、かつ、送給速度設定信号Frが0以上(正送期間)であるときは、アーク期間正送期間Tasにあると判別して、第2出力電圧設定信号Er2を出力電圧制御設定信号Ecrとして出力する。
The output voltage control setting circuit ECR receives the first output voltage setting signal Er1, the second output voltage setting signal Er2, the short circuit determination signal Sd, and the feed speed setting signal Fr as follows. To output an output voltage control setting signal Ecr. In the present embodiment, the output voltage control setting signal Ecr is a voltage target value for constant voltage control.
1) When the short circuit determination signal Sd is at a high level (short circuit period), the second output voltage setting signal Er2 is output as the output voltage control setting signal Ecr.
2) When the short circuit determination signal Sd is at the Low level (arc period) and the feed speed setting signal Fr is less than 0 (reverse feed period), it is determined that the arc period is in the reverse feed period Tar, The first output voltage setting signal Er1 is output as the output voltage control setting signal Ecr.
3) When the short circuit determination signal Sd is at the low level (arc period) and the feed speed setting signal Fr is 0 or more (normal feed period), it is determined that the arc period is in the normal feed period Tas, The second output voltage setting signal Er2 is output as the output voltage control setting signal Ecr.
 出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。誤差増幅回路EAは、上記の出力電圧制御設定信号Ecr及び上記の出力電圧検出信号Edを入力として、出力電圧制御設定信号Ecr(+)と出力電圧検出信号Ed(-)との誤差を増幅して、誤差増幅信号Eaを出力する。この回路によって、溶接電源は定電圧制御される。 The output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed. The error amplifying circuit EA receives the output voltage control setting signal Ecr and the output voltage detection signal Ed, and amplifies an error between the output voltage control setting signal Ecr (+) and the output voltage detection signal Ed (−). The error amplification signal Ea is output. By this circuit, the welding power source is controlled at a constant voltage.
 図2は、本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は定電圧制御の電圧目標値である出力電圧制御設定信号Ecrの時間変化を示す。同図は上述した図4と対応しており、同一の動作についての説明は繰り返さない。同図は、出力電圧制御設定信号Ecrの動作のみが異なっている。以下、同図を参照して説明する。 FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 for explaining the arc welding control method according to the first embodiment of the present invention. FIG. 4A shows the time change of the feeding speed Fw, FIG. 4B shows the time change of the welding current Iw, FIG. 4C shows the time change of the welding voltage Vw, and FIG. ) Shows a time change of the output voltage control setting signal Ecr which is a voltage target value of the constant voltage control. This figure corresponds to FIG. 4 described above, and the description of the same operation will not be repeated. This figure is different only in the operation of the output voltage control setting signal Ecr. Hereinafter, a description will be given with reference to FIG.
 同図(A)に示すように、送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。送給速度Fwの変化パターンは、三角波状又は台形波状でも良い。 As shown in FIG. 5A, the feed speed Fw is a forward feed period above 0 and a reverse feed period below. The feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average. The change pattern of the feeding speed Fw may be triangular or trapezoidal.
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。この正送と逆送との繰り返し周期は、所定値に設定されている。例えば、時刻t1~t2の正送加速期間は2.7msであり、時刻t2~t3の正送減速期間は2.7msであり、時刻t3~t4の逆送加速期間は2.3msであり、時刻t4~t5の逆送減速期間は2.3msであり、正送の最大値は50m/minであり、逆送の最大値は-50m/minである。この場合は、正送と逆送との繰り返し周期は10msとなり、送給速度Fwの平均値は約4m/min(平均溶接電流は約150A)となる。 As shown in FIG. 5A, the feeding speed Fw is 0 at time t1, the period from time t1 to t2 is the forward acceleration period, the maximum value of forward feeding at time t2, and the time t2 to The period of t3 is the forward deceleration period, becomes 0 at time t3, the period of time t3 to t4 is the reverse acceleration period, becomes the maximum value of reverse transmission at time t4, and the period of time t4 to t5 is the reverse deceleration period It becomes. The period from time t5 to t6 again becomes the normal feed acceleration period, and the period from time t6 to t7 again becomes the normal feed deceleration period. The repetition cycle of the forward feed and the reverse feed is set to a predetermined value. For example, the forward feed acceleration period from time t1 to t2 is 2.7 ms, the forward feed deceleration period from time t2 to t3 is 2.7 ms, and the reverse feed acceleration period from time t3 to t4 is 2.3 ms. The reverse feed deceleration period from time t4 to t5 is 2.3 ms, the maximum value of forward feed is 50 m / min, and the maximum value of reverse feed is −50 m / min. In this case, the repetition cycle of forward feeding and reverse feeding is 10 ms, and the average value of the feeding speed Fw is about 4 m / min (the average welding current is about 150 A).
 溶接ワイヤと母材との短絡は、時刻t2の正送の最大値の前後で発生することが多い。同図では、正送の最大値の後の正送減速期間中の時刻t21で発生した場合である。時刻t21において短絡が発生すると、同図(D)に示すように、出力電圧制御設定信号Ecr=Er2(第2出力電圧設定信号)となる。時刻t21~t31の短絡期間中の溶接電圧Vw及び溶接電流Iwの動作は、図4と同様であり、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。 短 絡 Short-circuiting between the welding wire and the base material often occurs around the maximum value of the forward feed at time t2. In the figure, the case occurs at time t21 during the forward feed deceleration period after the maximum value of forward feed. When a short circuit occurs at time t21, the output voltage control setting signal Ecr = Er2 (second output voltage setting signal) is obtained as shown in FIG. The operation of the welding voltage Vw and the welding current Iw during the short-circuit period from the time t21 to t31 is the same as that in FIG. 4, and the welding voltage Vw rapidly decreases to a short-circuit voltage value of several V as shown in FIG. As shown in FIG. 5B, the welding current Iw gradually increases.
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送の最大値の前後で発生することが多い。同図では、逆送の最大値の前の逆送加速期間中の時刻t31で発生した場合である。したがって、時刻t21~t31の期間が短絡期間となる。 As shown in FIG. 4A, the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward. The short circuit is released by this reverse feed, and the arc is regenerated at time t31. The reoccurrence of the arc often occurs before and after the maximum reverse feed at time t4. In the figure, the case occurs at time t31 during the reverse acceleration period before the maximum value of reverse feed. Therefore, the period from time t21 to t31 is a short circuit period.
 時刻t31においてアークが再発生すると、同図(D)に示すように、出力電圧制御設定信号Ecr=Er1(第1出力電圧設定信号)となり、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。 When the arc is regenerated at time t31, the output voltage control setting signal Ecr = Er1 (first output voltage setting signal) as shown in FIG. 4D, and the welding voltage Vw is set as shown in FIG. Increases rapidly to an arc voltage value of several tens of volts. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
 時刻t31~t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31~t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。このアーク期間逆送期間Tar中は、同図(D)に示すように、Ecr=Er1であり、アーク長が次第に長くなる状態に適した定電圧制御の電圧目標値となっている。このために、アーク期間逆送期間Tar中の溶接状態は安定している。第1出力電圧設定信号Er1を送給速度Fwの平均値に応じて自動設定すれば、設定の手間を省略することができる。 During the period from time t31 to t5, as shown in FIG. 5A, the feeding speed Fw is in the reverse feeding state, so that the welding wire is pulled up and the arc length is gradually increased. As the arc length increases, the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become. During this arc period reverse feed period Tar, as shown in FIG. 4D, Ecr = Er1, which is a voltage target value for constant voltage control suitable for a state in which the arc length is gradually increased. For this reason, the welding state during the arc period reverse feed period Tar is stable. If the first output voltage setting signal Er1 is automatically set according to the average value of the feeding speed Fw, the setting effort can be omitted.
 そして、同図では、次の短絡が、時刻t6~t7の正送減速期間中の時刻t61に発生した場合である。時刻t31~t61の期間がアーク期間となる。時刻t5~t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。このアーク期間正送期間Tas中は、同図(D)に示すように、出力電圧制御設定信号Ecr=Er2(第2出力電圧設定信号)となる。アーク長が短くなると、溶接電圧Vwは小さくなり、定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t5~t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。このアーク期間正送期間Tas中は、同図(D)に示すように、Ecr=Er2であり、アーク長が次第に短くなる状態に適した定電圧制御の電圧目標値となっている。このために、アーク期間正送期間Tas中の溶接状態は安定している。第2出力電圧設定信号Er2は、溶接作業者、ロボット制御装置等によって、溶接条件に適した平均アーク長になるように設定される。 In the same figure, the next short circuit occurs at time t61 during the forward deceleration period from time t6 to t7. The period from time t31 to t61 is the arc period. During the period from time t5 to time t61, as shown in FIG. 5A, the feed speed Fw is in the forward feed state, so the welding wire is fed forward and the arc length is gradually shortened. During the arc period forward feed period Tas, as shown in FIG. 4D, the output voltage control setting signal Ecr = Er2 (second output voltage setting signal). When the arc length is shortened, the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become. During the arc period forward feed period Tas, as shown in FIG. 4D, Ecr = Er2, which is a voltage target value for constant voltage control suitable for a state in which the arc length is gradually shortened. For this reason, the welding state during the arc period normal feed period Tas is stable. The second output voltage setting signal Er2 is set by the welding operator, robot control device, or the like so as to have an average arc length suitable for welding conditions.
 上述した実施の形態1によれば、出力電圧設定値(Ecr)を、アーク期間中の逆送期間中は第1出力電圧設定値(Er1)に設定し、アーク期間中の正送期間中は第1出力電圧設定値とは異なる第2出力電圧設定値(Er2)に設定する。また、第1出力電圧設定値は、送給速度の平均値に応じて自動的に設定される。また、第2出力電圧設定値は、溶接作業者によって任意の値に設定される。これにより、本実施の形態では、アーク期間逆送期間中のアーク長が次第に長くなる状態と、アーク期間正送期間中のアーク長が次第に短くなる状態との、それぞれの状態に適した出力電圧設定値(電圧目標値)に設定することができる。このために、本実施の形態では、送給速度の正送期間と逆送期間とを周期的に繰り返す溶接方法において、溶接条件に適した平均アーク長に設定するために電圧目標値を変化させても、溶接状態が不安定になることはない。 According to the first embodiment described above, the output voltage set value (Ecr) is set to the first output voltage set value (Er1) during the reverse feed period during the arc period, and during the forward feed period during the arc period. A second output voltage setting value (Er2) different from the first output voltage setting value is set. The first output voltage set value is automatically set according to the average value of the feeding speed. The second output voltage set value is set to an arbitrary value by the welding operator. Thereby, in this embodiment, the output voltage suitable for each state of the state in which the arc length during the arc period reverse feed period gradually increases and the state in which the arc length during the arc period forward feed period gradually decreases. It can be set to a set value (voltage target value). For this reason, in this embodiment, in the welding method in which the forward feed period and the reverse feed period of the feed speed are periodically repeated, the voltage target value is changed in order to set the average arc length suitable for the welding conditions. However, the welding state does not become unstable.
[実施の形態2]
 実施の形態2の発明は、溶接電圧の平均値を設定するための平均溶接電圧設定値をさらに備え、溶接電圧の平均値を検出し、この検出された溶接電圧平均値が平均溶接電圧設定値と等しくなるように第2出力電圧設定値をフィードバック制御するものである。
[Embodiment 2]
The invention of Embodiment 2 further includes an average welding voltage setting value for setting an average value of the welding voltage, detects the average value of the welding voltage, and the detected welding voltage average value is the average welding voltage setting value. The second output voltage set value is feedback controlled so as to be equal to.
 図3は、本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は上述した図1と対応しており、同一のブロックには同一符号を付して、それらの説明は繰り返さない。同図は、図1に平均溶接電圧設定回路VAR、平均溶接電圧検出回路VAV及び平均電圧誤差増幅回路EVAを追加し、図1の第2出力電圧設定回路ER2をフィードバック制御第2出力電圧設定回路FER2に置換したものである。以下、同図を参照してこれらのブロックについて説明する。 FIG. 3 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 2 of the present invention. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and description thereof will not be repeated. In FIG. 1, an average welding voltage setting circuit VAR, an average welding voltage detection circuit VAV, and an average voltage error amplification circuit EVA are added to FIG. 1, and the second output voltage setting circuit ER2 of FIG. It is a substitute for FER2. Hereinafter, these blocks will be described with reference to FIG.
 平均溶接電圧設定回路VARは、予め定めた平均溶接電圧設定信号Varを出力する。平均溶接電圧検出回路VAVは、溶接電圧検出信号Vdを入力として、この信号の平均値を検出して、平均溶接電圧検出信号Vavを出力する。 The average welding voltage setting circuit VAR outputs a predetermined average welding voltage setting signal Var. The average welding voltage detection circuit VAV receives the welding voltage detection signal Vd, detects the average value of this signal, and outputs the average welding voltage detection signal Vav.
 平均電圧誤差増幅回路EVAは、上記の平均溶接電圧設定信号Var及び上記の平均溶接電圧検出信号Vavを入力として、平均溶接電圧設定信号Var(+)と平均溶接電圧検出信号Vav(-)との誤差を増幅して、平均電圧誤差増幅信号Evaを出力する。 The average voltage error amplifying circuit EVA receives the average welding voltage setting signal Var and the average welding voltage detection signal Vav, and inputs the average welding voltage setting signal Var (+) and the average welding voltage detection signal Vav (−). The error is amplified and an average voltage error amplification signal Eva is output.
 フィードバック制御第2出力電圧設定回路FER2は、この平均電圧誤差増幅信号Evaを入力として、Er2=E0+∫Eva・dtの積分を溶接中行い、第2出力電圧設定信号Er2を出力する。E0は、予め定めた初期値である。 The feedback control second output voltage setting circuit FER2 receives the average voltage error amplification signal Eva, performs integration of Er2 = E0 + ∫Eva · dt during welding, and outputs a second output voltage setting signal Er2. E0 is a predetermined initial value.
 上記の回路によって、平均溶接電圧検出信号Vavの値が平均溶接電圧設定信号Varの値と等しくなるように第2出力電圧設定信号Er2の値がフィードバック制御される。 The value of the second output voltage setting signal Er2 is feedback-controlled by the above circuit so that the value of the average welding voltage detection signal Vav becomes equal to the value of the average welding voltage setting signal Var.
 本発明の実施の形態2に係るアーク溶接制御方法を説明するための図3の溶接電源における各信号のタイミングチャートは、上述した図2と同一であるので、説明は繰り返さない。但し、同図(D)に示す出力電圧制御設定信号Ecrのアーク期間正送期間Tas中の値である第2出力電圧設定信号Er2の値が、平均溶接電圧検出信号Vavの値が平均溶接電圧設定信号Varの値と等しくなるようにフィードバック制御される点が異なっている。 Since the timing chart of each signal in the welding power source of FIG. 3 for explaining the arc welding control method according to the second embodiment of the present invention is the same as FIG. 2 described above, description thereof will not be repeated. However, the value of the second output voltage setting signal Er2, which is the value during the arc period normal feed period Tas of the output voltage control setting signal Ecr shown in FIG. 4D, is the average welding voltage detection value Vav. The difference is that feedback control is performed so as to be equal to the value of the setting signal Var.
 継手形状、溶接速度、送給速度の平均値等の溶接条件が同一のままで、溶接品質を向上させるために送給速度設定信号Frのパターン(波形、振幅、周期等)を変化させる場合がある。送給速度設定信号Frのパターンが変化すると、実施の形態1では平均アーク長を適正値にするために第2出力電圧設定信号Er2の再調整が必要であった。これに対して、実施の形態2では、送給速度設定信号Frのパターンが変化しても、平均溶接電圧検出信号Vavが平均溶接電圧設定信号Varと等しくなるように第2出力電圧設定信号Er2がフィードバック制御されるために、平均アーク長は適正値を維持するので、平均溶接電圧設定信号Varの再調整は不要である。 The pattern (waveform, amplitude, period, etc.) of the feed rate setting signal Fr may be changed in order to improve the welding quality while maintaining the same welding conditions such as the joint shape, welding speed, and feed rate average value. is there. When the pattern of the feed speed setting signal Fr changes, in the first embodiment, it is necessary to readjust the second output voltage setting signal Er2 in order to set the average arc length to an appropriate value. On the other hand, in the second embodiment, even if the pattern of the feed speed setting signal Fr changes, the second output voltage setting signal Er2 is set so that the average welding voltage detection signal Vav becomes equal to the average welding voltage setting signal Var. Since the average arc length is maintained at an appropriate value because the feedback control is performed, readjustment of the average welding voltage setting signal Var is not necessary.
 上述した実施の形態2によれば、溶接電圧の平均値を設定するための平均溶接電圧設定値をさらに備え、溶接電圧の平均値を検出し、この検出された溶接電圧平均値が平均溶接電圧設定値と等しくなるように第2出力電圧設定値をフィードバック制御する。これにより、本実施の形態では、実施の形態1の効果に加えて、送給速度のパターンが変化しても、平均アーク長を適正値に設定するための電圧目標値の再調整が不要となるので、操作性に優れている。 According to the second embodiment described above, an average welding voltage set value for setting an average value of the welding voltage is further provided, the average value of the welding voltage is detected, and the detected welding voltage average value is the average welding voltage. The second output voltage set value is feedback controlled so as to be equal to the set value. As a result, in this embodiment, in addition to the effects of the first embodiment, it is not necessary to readjust the voltage target value for setting the average arc length to an appropriate value even if the feed speed pattern changes. Therefore, it is excellent in operability.
 本発明によれば、アーク期間逆送期間中のアーク長が次第に長くなる状態と、アーク期間正送期間中のアーク長が次第に短くなる状態との、それぞれの状態に適した出力電圧設定値(電圧目標値)に設定することができる。 According to the present invention, the output voltage setting value suitable for each state of the state in which the arc length during the arc period reverse feed period gradually increases and the state in which the arc length during the arc period normal feed period gradually decreases ( Voltage target value).
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2014年4月28日出願の日本特許出願(特願2014-092237)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on April 28, 2014 (Japanese Patent Application No. 2014-092237), the contents of which are incorporated herein.
1     溶接ワイヤ
2     母材
3     アーク
4     溶接トーチ
5     送給ロール
E     出力電圧
EA   誤差増幅回路
Ea   誤差増幅信号
ECR 出力電圧制御設定回路
Ecr 出力電圧制御設定信号
ED   出力電圧検出回路
Ed   出力電圧検出信号
Er   出力電圧設定信号
ER1 第1出力電圧設定回路
Er1 第1出力電圧設定信号
ER2 第2出力電圧設定回路
Er2 第2出力電圧設定信号
EVA 平均電圧誤差増幅回路
Eva 平均電圧誤差増幅信号
FAV 送給速度平均値算出回路
Fav 送給速度平均値信号
FC   送給制御回路
Fc   送給制御信号
FER2  フィードバック制御第2出力電圧設定回路
FR   送給速度設定回路
Fr   送給速度設定信号
Fw   送給速度
Iw   溶接電流
PM   電源主回路
SD   短絡判別回路
Sd   短絡判別信号
Tar アーク期間逆送期間
Tas アーク期間正送期間
VAR 平均溶接電圧設定回路
Var 平均溶接電圧設定信号
VAV 平均溶接電圧検出回路
Vav 平均溶接電圧検出信号
VD   溶接電圧検出回路
vd   溶接電圧検出信号
Vw   溶接電圧
WL   リアクトル
WM   送給モータ
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll E Output voltage EA Error amplification circuit Ea Error amplification signal ECR Output voltage control setting circuit Ecr Output voltage control setting signal ED Output voltage detection circuit Ed Output voltage detection signal Er Output Voltage setting signal ER1 First output voltage setting circuit Er1 First output voltage setting signal ER2 Second output voltage setting circuit Er2 Second output voltage setting signal EVA Average voltage error amplification circuit Eva Average voltage error amplification signal FAV Feed rate average value calculation Circuit Fav Feeding speed average signal FC Feeding control circuit Fc Feeding control signal FER2 Feedback control second output voltage setting circuit FR Feeding speed setting circuit Fr Feeding speed setting signal Fw Feeding speed Iw Welding current PM Power supply main circuit SD short-circuit discrimination circuit Sd short-circuit discrimination signal Tar Reverse welding period Ta arc normal feed period VAR average welding voltage setting circuit Var average welding voltage setting signal VAV average welding voltage detection circuit Vav average welding voltage detection signal VD welding voltage detection circuit vd welding voltage detection signal Vw welding voltage WL reactor WM feed motor

Claims (4)

  1.  送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、溶接電源の出力が出力電圧設定値と等しくなるように定電圧制御するアーク溶接制御方法において、
     前記出力電圧設定値を、前記アーク期間中の前記逆送期間中は第1出力電圧設定値に設定し、前記アーク期間中の前記正送期間中は前記第1出力電圧設定値とは異なる第2出力電圧設定値に設定する、
    ことを特徴とするアーク溶接制御方法。
    Arc welding control method for performing constant voltage control so that the output of the welding power source becomes equal to the output voltage setting value by periodically repeating the forward feed period and the reverse feed period of the feeding speed to generate a short circuit period and an arc period. In
    The output voltage set value is set to a first output voltage set value during the reverse feed period during the arc period, and is different from the first output voltage set value during the forward feed period during the arc period. 2 Set to the output voltage setting value.
    An arc welding control method characterized by the above.
  2.  前記第1出力電圧設定値は前記送給速度の平均値に応じて自動的に設定される、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
    The first output voltage setting value is automatically set according to the average value of the feeding speeds.
    The arc welding control method according to claim 1.
  3.  前記第2出力電圧設定値は溶接作業者によって任意の値に設定される、
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
    The second output voltage set value is set to an arbitrary value by a welding operator.
    The arc welding control method according to claim 1 or 2, wherein
  4.  溶接電圧の平均値を設定するための平均溶接電圧設定値をさらに備え、前記溶接電圧の平均値を検出し、この検出された溶接電圧平均値が前記平均溶接電圧設定値と等しくなるように前記第2出力電圧設定値をフィードバック制御する、
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
    An average welding voltage setting value for setting an average value of the welding voltage is further provided, the average value of the welding voltage is detected, and the detected welding voltage average value is equal to the average welding voltage setting value. Feedback control of the second output voltage set value;
    The arc welding control method according to claim 1 or 2, wherein
PCT/JP2015/061367 2014-04-28 2015-04-13 Arc welding control method WO2015166793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006777.1A CN105939811B (en) 2014-04-28 2015-04-13 Arc welding control method
JP2016515924A JPWO2015166793A1 (en) 2014-04-28 2015-04-13 Arc welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-092237 2014-04-28
JP2014092237 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166793A1 true WO2015166793A1 (en) 2015-11-05

Family

ID=54358528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061367 WO2015166793A1 (en) 2014-04-28 2015-04-13 Arc welding control method

Country Status (3)

Country Link
JP (1) JPWO2015166793A1 (en)
CN (1) CN105939811B (en)
WO (1) WO2015166793A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425026B (en) * 2016-11-30 2018-02-27 唐山松下产业机器有限公司 Arc-welding equipment, arc welding control method and device
JP7222810B2 (en) * 2019-05-29 2023-02-15 株式会社ダイヘン Arc welding device and arc welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192784A (en) * 1984-10-12 1986-05-10 Hitachi Seiko Ltd Arc welding power source
WO2009051107A1 (en) * 2007-10-16 2009-04-23 Daihen Corporation Arc start control method
US20130180971A1 (en) * 2012-01-17 2013-07-18 Lincoln Global, Inc. Systems and methods to feed wire within a welder
JP2013146763A (en) * 2012-01-20 2013-08-01 Daihen Corp Arc welding system
JP2013169555A (en) * 2012-02-20 2013-09-02 Panasonic Corp Arc welding control method and arc welding equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072826A (en) * 2007-08-27 2009-04-09 Daihen Corp Control method for pulse arc welding
JP5201266B2 (en) * 2009-07-29 2013-06-05 パナソニック株式会社 Arc welding method and arc welding apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192784A (en) * 1984-10-12 1986-05-10 Hitachi Seiko Ltd Arc welding power source
WO2009051107A1 (en) * 2007-10-16 2009-04-23 Daihen Corporation Arc start control method
US20130180971A1 (en) * 2012-01-17 2013-07-18 Lincoln Global, Inc. Systems and methods to feed wire within a welder
JP2013146763A (en) * 2012-01-20 2013-08-01 Daihen Corp Arc welding system
JP2013169555A (en) * 2012-02-20 2013-09-02 Panasonic Corp Arc welding control method and arc welding equipment

Also Published As

Publication number Publication date
JPWO2015166793A1 (en) 2017-04-20
CN105939811A (en) 2016-09-14
CN105939811B (en) 2019-09-06

Similar Documents

Publication Publication Date Title
JP6555818B2 (en) Arc welding control method
JP6537137B2 (en) Reverse feed arc welding method
US10493553B2 (en) Arc welding control method
US10695855B2 (en) Arc welding control method
US10220464B2 (en) Arc welding control method
WO2015178170A1 (en) Arc welding control method
WO2015166793A1 (en) Arc welding control method
JP6396162B2 (en) Arc welding control method
JP6347721B2 (en) Arc welding control method
JP6261614B2 (en) Arc welding control method
JP2016087610A (en) Condition state monitoring method for arc-welding
KR102233253B1 (en) Arc welding control method
JP6516291B2 (en) Reverse feed arc welding method
JP6198327B2 (en) Arc welding control method
JP6516290B2 (en) Copy control method of forward and reverse feed arc welding
JP6516289B2 (en) Copy control method of forward and reverse feed arc welding
JP2015231632A (en) Arc-welding control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785497

Country of ref document: EP

Kind code of ref document: A1