JP6347721B2 - Arc welding control method - Google Patents
Arc welding control method Download PDFInfo
- Publication number
- JP6347721B2 JP6347721B2 JP2014221017A JP2014221017A JP6347721B2 JP 6347721 B2 JP6347721 B2 JP 6347721B2 JP 2014221017 A JP2014221017 A JP 2014221017A JP 2014221017 A JP2014221017 A JP 2014221017A JP 6347721 B2 JP6347721 B2 JP 6347721B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- short circuit
- period
- feed
- time rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Arc Welding Control (AREA)
Description
本発明は、送給速度を正送と逆送とに周期的に変化させて短絡期間とアーク期間とを発生させるアーク溶接制御方法に関するものである。 The present invention relates to an arc welding control method for generating a short circuit period and an arc period by periodically changing a feeding speed between forward feeding and reverse feeding.
一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In general consumable electrode arc welding, a welding wire that is a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and a base material to perform welding. In the consumable electrode type arc welding, the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている。例えば、特許文献1の発明では、溶接電流設定値に応じた送給速度の平均値とし、溶接ワイヤの正送と逆送との周波数及び振幅を溶接電流設定値に応じた値としている。溶接ワイヤの正送と逆送とを繰り返す溶接方法では、定速送給の従来技術では不可能であった短絡とアークとの繰り返しの周期を所望値に設定することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。
In order to further improve the welding quality, a method has been proposed in which welding is performed by periodically repeating forward and reverse feeding of the welding wire. For example, in the invention of
また、特許文献2の発明では、溶接ワイヤを定速送給し、アーク状態を示す指標として短絡時間率を使用し、平均送給速度に応じて目標値となる短絡時間率設定値を設定し、溶接中の短絡時間率を検出し、この短絡時間率検出値が短絡時間率設定値と等しくなるように溶接電源の出力制御を行っている。ここで、短絡時間率Rs(%)は、単位時間に占めるアーク期間の合算時間をΣTa(秒)、短絡期間の合算時間をΣTs(秒)とすると、下式で算出することができる。
Rs=(ΣTs/(ΣTa+ΣTs))×100 …(1)式
単位時間は、例えば0.1秒、1秒等である。
Further, in the invention of
Rs = (ΣTs / (ΣTa + ΣTs)) × 100 (1) Expression The unit time is, for example, 0.1 second, 1 second, or the like.
短絡時間率による出力制御を行って溶接するアーク溶接制御方法において、平均送給速度が同一値であっても、継手形状、溶接速度、溶接姿勢等の溶接条件が異なると適正な短絡時間率が異なる。このために、溶接条件に応じて短絡時間率設定値を適正値に変化させる必要がある。しかし、送給速度の正送と逆送とを周期的に繰り返す溶接において、短絡時間率設定値を変化させると溶滴移行状態が変化するために、送給速度の正送と逆送との周期と短絡期間とアーク期間との周期とに同期ズレの状態が生じる。この結果、溶接状態が不安定になるという問題があった。 In the arc welding control method of performing welding by performing output control based on the short circuit time rate, even if the average feed speed is the same value, if the welding conditions such as the joint shape, welding speed, welding posture, etc. are different, an appropriate short circuit time rate is obtained. Different. For this reason, it is necessary to change a short circuit time rate setting value to an appropriate value according to welding conditions. However, in welding that repeats forward and reverse feeding speeds periodically, changing the short-circuiting time rate setting value changes the droplet transfer state. A state of synchronization deviation occurs in the cycle, the short-circuit period, and the arc period. As a result, there is a problem that the welding state becomes unstable.
そこで、本発明では、送給速度の正送と逆送とを周期的に繰り返す溶接において、短絡時間率設定値が変化しても、溶接状態を安定に保つことができるアーク溶接制御方法を提供することを目的とする。 Therefore, the present invention provides an arc welding control method capable of keeping the welding state stable even in the case where the set value of the short-circuiting time rate is changed in welding in which the feed rate is periodically forwarded and reversely fed. The purpose is to do.
上述した課題を解決するために、請求項1の発明は、
送給速度を正送と逆送とに周期的に変化させて短絡期間とアーク期間とを発生させ、溶接中の短絡時間率を検出し、この短絡時間率検出値が短絡時間率設定値と等しくなるように溶接電源の出力を制御して溶接するアーク溶接制御方法において、
前記短絡時間率設定値に基づいて前記送給速度の周期を変化させる、
ことを特徴とするアーク溶接制御方法である。
In order to solve the above-described problems, the invention of
The feed rate is periodically changed between forward feed and reverse feed to generate a short circuit period and an arc period to detect the short circuit time rate during welding, and this short circuit time rate detection value is the short circuit time rate set value. In the arc welding control method of welding by controlling the output of the welding power source to be equal,
Changing the cycle of the feeding speed based on the short circuit time rate setting value;
An arc welding control method characterized by the above.
本発明によれば、短絡時間率設定値に基づいて送給速度の周期を変化させている。これにより、短絡時間率設定値の変化に伴う溶滴移行状態の変化に対応して、送給速度の周期が適正化されるので、送給速度の正送と逆送との周期と短絡期間とアーク期間との周期との同期ズレの発生を抑制することができる。この結果、本発明では、送給速度の正送と逆送とを周期的に繰り返す溶接において、短絡時間率設定値が変化しても、溶接状態を安定に保つことができる。 According to the present invention, the cycle of the feeding speed is changed based on the short circuit time rate setting value. As a result, the cycle of the feeding speed is optimized in response to the change of the droplet transfer state accompanying the change of the short circuit time rate setting value, so the cycle of the feeding speed forward and reverse feeding and the short circuit period The occurrence of a synchronization deviation between the period of the arc and the arc period can be suppressed. As a result, in the present invention, the welding state can be kept stable even in the case where the short-circuit time rate set value changes in welding in which the feeding speed is periodically forwarded and reversed.
以下、図面を参照して本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
[実施の形態1]
実施の形態1の発明は、短絡時間率設定値に基づいて送給速度の周期を変化させるものである。
[Embodiment 1]
The invention of the first embodiment changes the cycle of the feeding speed based on the short circuit time rate set value.
図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to
電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する駆動信号Dvに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の駆動信号Dvによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。 The power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to a drive signal Dv described later, and outputs an output voltage E. Although not shown, the power supply main circuit PM is driven by a primary rectifier that rectifies the commercial power supply, a smoothing capacitor that smoothes the rectified direct current, and the drive signal Dv that converts the smoothed direct current to high-frequency alternating current. An inverter circuit, a high-frequency transformer that steps down the high-frequency alternating current to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current.
リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。 The reactor WL smoothes the output voltage E. The inductance value of the reactor WL is, for example, 200 μH.
送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。
The feed motor WM receives a feed control signal Fc described later, and feeds the
溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。
The
電圧検出回路VDは、上記の溶接電圧Vwを検出して電圧検出信号Vdを出力する。短絡判別回路SDは、この電圧検出信号Vdを入力として、この値が短絡判別値(10V程度)未満のときは短絡期間にあると判別してHighレベルとなり、以上のときはアーク期間にあると判別してLowレベルとなる短絡判別信号Sdを出力する。 The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The short circuit determination circuit SD receives the voltage detection signal Vd as an input, determines that it is in the short circuit period when this value is less than the short circuit determination value (about 10 V), and is at the high level, and if it is above, it is in the arc period. A short circuit determination signal Sd that is determined to be low level is output.
短絡時間率検出回路RSDは、上記の短絡判別信号Sdを入力として、単位時間ごとに短絡判別信号SdがHighレベル(短絡)である期間及びLowレベル(アーク)である期間をそれぞれ合算し、上記(1)式によって短絡時間率を算出して、短絡時間率検出信号Rsdを出力する。 The short-circuit time rate detection circuit RSD receives the short-circuit determination signal Sd as an input, and sums a period in which the short-circuit determination signal Sd is at a high level (short circuit) and a period in which it is at a low level (arc) for each unit time. The short circuit time rate is calculated by the equation (1), and the short circuit time rate detection signal Rsd is output.
短絡時間率設定回路RSRは、予め定めた短絡時間率設定信号Rsrを出力する。時間率誤差増幅回路EAは、上記の短絡時間率設定信号Rsr及び上記の短絡時間率検出信号Rsdを入力として、短絡時間率設定信号Rsr(+)と短絡時間率検出信号Rsd(−)との誤差を増幅して、時間率誤差増幅信号Eaを出力する。この回路によって、溶接電源は短絡時間率検出信号Rsdが短絡時間率設定信号Rsrと等しくなるようにフィードバック制御(出力制御)される。 The short circuit time rate setting circuit RSR outputs a predetermined short circuit time rate setting signal Rsr. The time rate error amplifying circuit EA receives the short circuit time rate setting signal Rsr and the short circuit time rate detection signal Rsd as inputs, and outputs a short circuit time rate setting signal Rsr (+) and a short circuit time rate detection signal Rsd (−). The error is amplified and a time rate error amplification signal Ea is output. By this circuit, the welding power source is subjected to feedback control (output control) so that the short circuit time rate detection signal Rsd becomes equal to the short circuit time rate setting signal Rsr.
出力電圧設定回路ERは、上記の時間率誤差増幅信号Eaを入力として、Er=Er0+∫Ea・dtの積分を溶接中行い、出力電圧設定信号Erとして出力する。Er0は予め定めた初期値である。 The output voltage setting circuit ER receives the above time rate error amplification signal Ea, performs integration of Er = Er0 + ∫Ea · dt during welding, and outputs it as an output voltage setting signal Er. Er0 is a predetermined initial value.
出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して出力電圧検出信号Edを出力する。 The output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
電圧誤差増幅回路EVは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(−)との誤差を増幅して、電圧誤差増幅信号Evを出力する。この回路によって溶接電源は定電圧制御される。 The voltage error amplification circuit EV receives the output voltage setting signal Er and the output voltage detection signal Ed, and amplifies an error between the output voltage setting signal Er (+) and the output voltage detection signal Ed (−). The voltage error amplification signal Ev is output. By this circuit, the welding power source is controlled at a constant voltage.
駆動回路DVは、上記の電圧誤差増幅信号Evを入力として、電圧誤差増幅信号Evに基づいてPWM変調制御を行い、上記の電源主回路PM内のインバータ回路を駆動するための駆動信号Dvを出力する。 The drive circuit DV receives the voltage error amplification signal Ev, performs PWM modulation control based on the voltage error amplification signal Ev, and outputs a drive signal Dv for driving the inverter circuit in the power supply main circuit PM. To do.
周期設定回路TFRは、上記の短絡時間率設定信号Rsrを入力とする予め定めた周期設定関数によって周期を算出して、周期設定信号Tfrとして出力する。この周期設定関数は、短絡時間率設定信号Rsrが大きくなるほど、周期設定信号Tfrの値が小さくなる関数である。周期設定関数は、実験によって予め設定されている。 The cycle setting circuit TFR calculates a cycle by a predetermined cycle setting function that receives the short-circuit time rate setting signal Rsr and outputs it as the cycle setting signal Tfr. This period setting function is a function in which the value of the period setting signal Tfr decreases as the short-circuiting time ratio setting signal Rsr increases. The period setting function is preset by experiment.
振幅設定回路WFRは、予め定めた振幅設定信号Wfrを出力する。正送側シフト量設定回路SFRは、予め定めた正送側シフト量設定信号Sfrを出力する。 The amplitude setting circuit WFR outputs a predetermined amplitude setting signal Wfr. The forward feed shift amount setting circuit SFR outputs a predetermined forward feed shift amount setting signal Sfr.
送給速度設定回路FRは、上記の周期設定信号Tfr、上記の振幅設定信号Wfr及び上記の正送側シフト量設定信号Sfrを入力として、周期設定信号Tfrによって定まる周期及び振幅設定信号Wfrによって定まる振幅から形成される正弦波を、正送側シフト量設定信号Sfrによって定まる正送側シフト量だけシフトした送給速度パターンを送給速度設定信号Frとして出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。 The feed speed setting circuit FR receives the period setting signal Tfr, the amplitude setting signal Wfr, and the normal transmission side shift amount setting signal Sfr as input, and is determined by the period and amplitude setting signal Wfr determined by the period setting signal Tfr. A feed speed pattern obtained by shifting the sine wave formed from the amplitude by the forward feed side shift amount determined by the forward feed side shift amount setting signal Sfr is output as the feed speed setting signal Fr. When the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
送給制御回路FCは、上記の送給速度設定信号Frを入力として、送給速度設定信号Frの値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。
The feed control circuit FC receives the feed speed setting signal Fr and receives a feed control signal Fc for feeding the
図2は、本発明の実施の形態1に係るアーク溶接制御方法を示す図1の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は短絡判別信号Sdの時間変化を示す。以下、同図を参照して説明する。 FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 showing the arc welding control method according to the first embodiment of the present invention. FIG. 4A shows the time change of the feeding speed Fw, FIG. 4B shows the time change of the welding current Iw, FIG. 4C shows the time change of the welding voltage Vw, and FIG. ) Shows a time change of the short-circuit determination signal Sd. Hereinafter, a description will be given with reference to FIG.
同図(A)に示すように、送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。送給速度Fwの送給速度パターンは、三角波、台形波等であっても良い。 As shown in FIG. 5A, the feed speed Fw is a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material. The feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average. The feeding speed pattern of the feeding speed Fw may be a triangular wave, a trapezoidal wave, or the like.
同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1〜t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2〜t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3〜t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4〜t5の期間は逆送減速期間となる。そして、時刻t5〜t6の期間は再び正送加速期間となり、時刻t6〜t7の期間は再び正送減速期間となる。したがって、送給速度Fwは、時刻t1〜t5の周期Tf(ms)、時刻t2の正送の最大値と時刻t4の逆送の最大値との差である振幅Wf(m/min)及び平均送給速度となる正送側シフト量Sf(m/min)の送給速度パターンで繰り返すことになる。 As shown in FIG. 6A, the feeding speed Fw is 0 at time t1, the period from time t1 to t2 is a normal feeding acceleration period, the maximum value of normal feeding at time t2, and the time t2 The period of t3 is a forward feed deceleration period, becomes 0 at time t3, the period of time t3 to t4 is a reverse feed acceleration period, becomes the maximum value of reverse feed at time t4, and the period of time t4 to t5 is a reverse feed deceleration period. It becomes. The period from time t5 to t6 again becomes the normal feed acceleration period, and the period from time t6 to t7 again becomes the normal feed deceleration period. Therefore, the feed speed Fw is the period Tf (ms) from time t1 to t5, the amplitude Wf (m / min) that is the difference between the maximum value of forward feed at time t2 and the maximum value of reverse feed at time t4, and the average. It repeats with the feed speed pattern of the forward feed side shift amount Sf (m / min) that becomes the feed speed.
同図(D)に示すように、短絡判別信号Sdは、後述するように、時刻t21以前はLowレベル(アーク)となり、時刻t21〜t31の期間中はHighレベル(短絡)となり、時刻t31〜t61の期間中はLowレベル(アーク)となり、時刻t61以後はHighレベル(短絡)となる。この短絡判別信号Sdが図1の短絡時間率検出回路RSDに入力されて、短絡時間率検出信号Rsdが出力される。短絡時間率を検出する単位時間が0.1秒であるときは、送給速度Fwの5〜10周期ごとに短絡時間率が検出されることになる。そして、図1の出力電圧設定回路ERによって、この短絡時間率検出信号Rsdと予め定めた短絡時間率設定信号Rsrとが等しくなるように出力電圧設定信号Erが修正される。この結果、図1の電圧誤差増幅回路EVによって、出力電圧検出信号Edがこの出力電圧設定信号Erと等しくなるように溶接電源は出力制御(定電圧制御)される。すなわち、溶接電源は、短絡時間率検出信号Rsdと短絡時間率設定信号Rsrとが等しくなるように出力制御されることになる。 As shown in FIG. 4D, the short circuit determination signal Sd is at a low level (arc) before time t21, and is at a high level (short circuit) during a period from time t21 to t31, as described later. During the period of t61, it becomes the Low level (arc), and after the time t61, it becomes the High level (short circuit). The short circuit determination signal Sd is input to the short circuit time rate detection circuit RSD of FIG. 1, and the short circuit time rate detection signal Rsd is output. When the unit time for detecting the short circuit time rate is 0.1 second, the short circuit time rate is detected every 5 to 10 cycles of the feeding speed Fw. Then, the output voltage setting circuit Er of FIG. 1 corrects the output voltage setting signal Er so that the short circuit time rate detection signal Rsd becomes equal to the predetermined short circuit time rate setting signal Rsr. As a result, the welding power source is output-controlled (constant voltage control) so that the output voltage detection signal Ed becomes equal to the output voltage setting signal Er by the voltage error amplification circuit EV of FIG. That is, the output of the welding power source is controlled so that the short circuit time rate detection signal Rsd and the short circuit time rate setting signal Rsr are equal.
周期Tfは、図1の周期設定回路TFRによって設定され、短絡時間率設定信号Rsrの値に連動して変化する。振幅Wfは、図1の振幅設定回路WFRによって所定値に設定される。正送側シフト量Sfは、図1の正送側シフト量設定回路SFRによって所定値に設定される。周期Tfは8〜20ms程度の範囲で短絡時間率設定信号Rsrに連動して変化する。振幅Wfは30〜100m/min程度に設定され、正送側シフト量Sfは3〜20m/min程度に設定される。 The period Tf is set by the period setting circuit TFR in FIG. 1 and changes in conjunction with the value of the short circuit time rate setting signal Rsr. The amplitude Wf is set to a predetermined value by the amplitude setting circuit WFR in FIG. The forward feed shift amount Sf is set to a predetermined value by the forward feed shift amount setting circuit SFR in FIG. The cycle Tf changes in association with the short circuit time rate setting signal Rsr in the range of about 8 to 20 ms. The amplitude Wf is set to about 30 to 100 m / min, and the forward feed side shift amount Sf is set to about 3 to 20 m / min.
溶接ワイヤと母材との短絡は、時刻t2の正送最大値の前後で発生することが多い。同図では、正送最大値の後の正送減速期間中の時刻t21で発生した場合である。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、これに応動して、同図(D)に示すように、短絡判別信号SdはHighレベル(短絡)に変化する。同時に、同図(B)に示すように、溶接電流Iwは短絡期間中次第に増加する。 Short-circuiting between the welding wire and the base material often occurs before and after the maximum normal feed value at time t2. In the figure, the case occurs at time t21 during the forward feed deceleration period after the forward feed maximum value. When a short circuit occurs at time t21, the welding voltage Vw rapidly decreases to a short circuit voltage value of several V as shown in FIG. 10C, and in response to this, as shown in FIG. The signal Sd changes to a high level (short circuit). At the same time, as shown in FIG. 5B, the welding current Iw gradually increases during the short circuit period.
同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送及び溶接電流Iwの通電によるピンチ力によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送最大値の前後で発生することが多い。同図では、逆送ピーク値の前の逆送加速期間中の時刻t31で発生した場合である。したがって、時刻t21〜t31の期間が短絡期間となり、この期間中は同図(D)に示すように、短絡判別信号SdはHighレベルとなる。る。 As shown in FIG. 5A, the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward. The short circuit is released by the pinch force generated by the reverse feeding and the welding current Iw, and the arc is regenerated at time t31. The reoccurrence of the arc often occurs before and after the maximum reverse feed value at time t4. In the figure, the case occurs at time t31 during the reverse acceleration period before the reverse peak value. Accordingly, the period from time t21 to t31 is a short circuit period, and during this period, as shown in FIG. 4D, the short circuit determination signal Sd is at a high level. The
時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増し、これに応動して、同図(D)に示すように、短絡判別信号SdはLowレベル(アーク)に変化する。同時に、同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。 When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. 10C, and in response to this, as shown in FIG. The short circuit determination signal Sd changes to the low level (arc). At the same time, as shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
時刻t31〜t5の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、図1の電圧誤差増幅回路EVによって定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t31〜t5のアーク期間逆送期間Tar中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。 During the period from time t31 to t5, as shown in FIG. 5A, since the feed speed Fw is in the reverse feed state, the welding wire is pulled up and the arc length is gradually increased. As the arc length increases, the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed by the voltage error amplification circuit EV of FIG. Therefore, during the arc period reverse feed period Tar from time t31 to t5, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually decreases as shown in FIG. Become.
そして、次の短絡が、時刻t6〜t7の正送減速期間中の時刻t61に発生する。但し、時刻t61に発生した短絡は、時刻t21に発生した短絡よりも正送最大値からの時間(位相)が遅くなっている。このように短絡が発生するタイミングは、ある程度のばらつきを有している。時刻t31〜t61の期間がアーク期間となり、この期間中は、同図(D)に示すように、短絡判別信号SdはLowレベルとなる。時刻t5〜t61の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。アーク長が短くなると、溶接電圧Vwは小さくなり、図1の電圧誤差増幅回路EVによって定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t5〜t61のアーク期間正送期間Tas中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。 Then, the next short circuit occurs at time t61 during the forward feed deceleration period from time t6 to t7. However, the short circuit that occurred at time t61 is delayed in the time (phase) from the maximum value of the forward feed than the short circuit that occurred at time t21. Thus, the timing at which a short circuit occurs has some variation. The period from time t31 to t61 is an arc period, and during this period, as shown in FIG. 4D, the short circuit determination signal Sd is at a low level. During the period from time t5 to t61, as shown in FIG. 6A, the feed speed Fw is in the normal feed state, so the welding wire is fed forward and the arc length is gradually shortened. When the arc length becomes shorter, the welding voltage Vw becomes smaller, and the welding current Iw becomes larger because the constant voltage control is performed by the voltage error amplification circuit EV of FIG. Therefore, during the arc period normal feed period Tas from time t5 to t61, the welding voltage Vw gradually decreases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Become.
上述したように、平均送給速度が同一値であっても、継手形状、溶接速度、溶接姿勢等の溶接条件が異なると適正な短絡時間率が異なる。このために、溶接条件に応じて短絡時間率設定値を適正値に変化させる必要がある。しかし、送給速度の正送と逆送とを周期的に繰り返す溶接において、短絡時間率設定値を変化させると溶接電源の出力が変化するために、溶滴移行状態が変化して、送給速度の正送と逆送との周期と短絡期間とアーク期間との周期とに、同期ズレの状態が生じる。 As described above, even if the average feeding speed is the same value, the appropriate short-circuiting time ratio differs if the welding conditions such as the joint shape, welding speed, and welding posture are different. For this reason, it is necessary to change a short circuit time rate setting value to an appropriate value according to welding conditions. However, in welding that periodically repeats forward and reverse feeding speeds, changing the short-circuit time rate setting value changes the output of the welding power source, so the droplet transfer state changes and A state of synchronization deviation occurs in the cycle of forward and reverse speeds, the cycle of the short circuit period, and the cycle of the arc period.
実施の形態1の発明によれば、短絡時間率設定値(短絡時間率設定信号Rsr)が変化すると、連動して送給速度の周期を変化させている。これにより、短絡時間率設定値の変化に伴う溶滴移行状態の変化に対応して、送給速度の周期が適正化されるので、送給速度の正送と逆送との周期と短絡期間とアーク期間との周期との同期ズレの発生を抑制することができる。この結果、本実施の形態では、送給速度の正送と逆送とを周期的に繰り返す溶接において、短絡時間率設定値が変化しても、溶接状態を安定に保つことができる。 According to the invention of the first embodiment, when the short circuit time rate setting value (short circuit time rate setting signal Rsr) changes, the cycle of the feeding speed is changed in conjunction with the change. As a result, the cycle of the feeding speed is optimized in response to the change of the droplet transfer state accompanying the change of the short circuit time rate setting value, so the cycle of the feeding speed forward and reverse feeding and the short circuit period The occurrence of a synchronization deviation between the period of the arc and the arc period can be suppressed. As a result, in the present embodiment, the welding state can be kept stable even in the case where the short-circuit time rate setting value changes in welding in which the feeding speed is periodically forwarded and reversely fed.
[実施の形態2]
実施の形態2の発明は、短絡時間率検出値と短絡時間率設定値とが等しくなるように送給速度の周期をフィードバック制御するものである。
[Embodiment 2]
The invention of the second embodiment feedback-controls the cycle of the feeding speed so that the short circuit time rate detection value and the short circuit time rate set value are equal.
図3は、本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は上述した図1と対応しており、同一ブロックには同一符号を付して、それらの説明は繰り返さない。同図は、図1に送給誤差増幅回路EFを追加し、図1の周期設定回路TFRを第2周期設定回路TFR2に置換したものである。以下、同図を参照して、これらのブロックについて説明する。 FIG. 3 is a block diagram of a welding power source for carrying out the arc welding control method according to the second embodiment of the present invention. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and the description thereof will not be repeated. This figure is obtained by adding a feed error amplifier circuit EF to FIG. 1 and replacing the cycle setting circuit TFR of FIG. 1 with a second cycle setting circuit TFR2. Hereinafter, these blocks will be described with reference to FIG.
送給誤差増幅回路EFは、短絡時間率設定信号Rsr(+)と短絡時間率検出信号Rsd(−)との誤差を増幅して、送給誤差増幅信号Efを出力する。この回路と上記の時間率誤差増幅回路EAとは増幅率が異なっている。 The feed error amplification circuit EF amplifies an error between the short circuit time rate setting signal Rsr (+) and the short circuit time rate detection signal Rsd (−) and outputs a feed error amplification signal Ef. This circuit and the above time rate error amplifier circuit EA have different amplification factors.
第2周期設定回路TFR2は、上記の送給誤差増幅信号Efを入力として、送給誤差増幅信号Efを溶接中積分して、周期設定信号Tfrを出力する。積分は、Tfr=Tf0+∫Ef・dtとして表すことができる。ここで、Tf0は予め定めた初期値である。この回路によって、短絡時間率検出信号Rsdが短絡時間率設定信号Rsrと等しくなるように周期設定信号Tfrがフィードバック制御されて、溶接中刻々と変化する。 The second cycle setting circuit TFR2 receives the feed error amplification signal Ef, integrates the feed error amplification signal Ef during welding, and outputs a cycle setting signal Tfr. The integral can be expressed as Tfr = Tf0 + ∫Ef · dt. Here, Tf0 is a predetermined initial value. By this circuit, the cycle setting signal Tfr is feedback-controlled so that the short circuit time rate detection signal Rsd becomes equal to the short circuit time rate setting signal Rsr, and changes every moment during welding.
本発明の実施の形態2に係るアーク溶接制御方法を示す図3の溶接電源における各信号のタイミングチャートは、上述した図2と同一であるので、説明は繰り返さない。但し、図2に示す周期Tfは、図3の送給誤差増幅回路EF及び第2周期設定回路TFR2によって、短絡時間率検出信号Rsdが短絡時間率設定信号Rsrと等しくなるようにフィードバック制御される点は異なる。 Since the timing chart of each signal in the welding power source of FIG. 3 showing the arc welding control method according to the second embodiment of the present invention is the same as FIG. 2 described above, description thereof will not be repeated. However, the cycle Tf shown in FIG. 2 is feedback-controlled by the feed error amplifier circuit EF and the second cycle setting circuit TFR2 in FIG. 3 so that the short circuit time rate detection signal Rsd becomes equal to the short circuit time rate setting signal Rsr. The point is different.
実施の形態2の発明によれば、短絡時間率検出値と短絡時間率設定値とが等しくなるように送給速度の周期をフィードバック制御している。これにより、短絡時間率設定値の変化に伴う溶滴移行状態の変化に対応して、短絡時間率検出値が短絡時間率設定値と等しくなるように送給速度の周期がフィードバック制御される。短絡時間率検出値が短絡時間率設定値と等しくなる状態とは、送給速度の正送と逆送との周期と短絡期間とアーク期間との周期との同期ズレが発生しておらず、溶接状態が安定している状態である。実施の形態2の発明では、実施の形態1の発明のように周期設定関数を実験によって求めておく必要がないために、生産準備を効率化することができる。さらに、種々な溶接条件において、短絡時間率設定値が変化しても、フィードバック制御によって送給速度の周期が最適化されるので、常に安定した溶接状態を得ることができる。 According to the second embodiment, the feed rate cycle is feedback-controlled so that the short circuit time rate detection value and the short circuit time rate set value are equal. As a result, the feed rate cycle is feedback-controlled so that the short circuit time rate detection value becomes equal to the short circuit time rate setting value in response to the change of the droplet transfer state accompanying the change of the short circuit time rate setting value. The state in which the short-circuit time rate detection value is equal to the short-circuit time rate setting value means that there is no synchronization shift between the cycle of the feed speed forward and reverse feeds and the cycle of the short-circuit period and the arc period. The welding state is stable. In the invention of the second embodiment, unlike the invention of the first embodiment, it is not necessary to obtain the period setting function by experiment, so that production preparation can be made efficient. Furthermore, even if the short-circuiting time rate setting value changes under various welding conditions, the feed rate cycle is optimized by feedback control, so that a stable welding state can always be obtained.
1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
DV 駆動回路
Dv 駆動信号
E 出力電圧
EA 時間率誤差増幅回路
Ea 時間率誤差増幅信号
ED 出力電圧検出回路
Ed 出力電圧検出信号
EF 送給誤差増幅回路
Ef 送給誤差増幅信号
ER 出力電圧設定回路
Er 出力電圧設定信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
FC 送給制御回路
Fc 送給制御信号
FR 送給速度設定回路
Fr 送給速度設定信号
Fw 送給速度
Iw 溶接電流
PM 電源主回路
Rs 短絡時間率
RSD 短絡時間率検出回路
Rsd 短絡時間率検出信号
RSR 短絡時間率設定回路
Rsr 短絡時間率設定信号
SD 短絡判別回路
Sd 短絡判別信号
Sf 正送側シフト量
SFR 正送側シフト量設定回路
Sfr 正送側シフト量設定信号
Tar アーク期間逆送期間
Tas アーク期間正送期間
Tf 送給速度の周期
TFR 周期設定回路
Tfr 周期設定信号
TFR2 第2周期設定回路
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
Wf 振幅
WFR 振幅設定回路
Wfr 振幅設定信号
WL リアクトル
WM 送給モータ
DESCRIPTION OF
Claims (1)
前記短絡時間率設定値に基づいて前記送給速度の周期を変化させる、
ことを特徴とするアーク溶接制御方法。 The feed rate is periodically changed between forward feed and reverse feed to generate a short circuit period and an arc period to detect the short circuit time rate during welding, and this short circuit time rate detection value is the short circuit time rate set value. In the arc welding control method of welding by controlling the output of the welding power source to be equal,
Changing the cycle of the feeding speed based on the short circuit time rate setting value;
An arc welding control method characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014221017A JP6347721B2 (en) | 2014-10-30 | 2014-10-30 | Arc welding control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014221017A JP6347721B2 (en) | 2014-10-30 | 2014-10-30 | Arc welding control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016087609A JP2016087609A (en) | 2016-05-23 |
JP6347721B2 true JP6347721B2 (en) | 2018-06-27 |
Family
ID=56015860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014221017A Active JP6347721B2 (en) | 2014-10-30 | 2014-10-30 | Arc welding control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6347721B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023169062A (en) * | 2022-05-16 | 2023-11-29 | 株式会社神戸製鋼所 | Control method for gas metal arc welding, setting method for welding condition, welding control device, welding power supply, welding system, program, gas metal arc welding method, and addition manufacturing method |
JP2024079426A (en) * | 2022-11-30 | 2024-06-11 | 株式会社神戸製鋼所 | Welding system, feeding control method and communication connection method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5018866B1 (en) * | 1970-01-26 | 1975-07-02 | ||
JPS501051A (en) * | 1973-05-09 | 1975-01-08 | ||
JP2705553B2 (en) * | 1993-12-28 | 1998-01-28 | 日本鋼管株式会社 | Automatic setting method of arc voltage |
JP2001340965A (en) * | 2000-06-02 | 2001-12-11 | Daihen Corp | Output voltage controlling method and electrical source apparatus for welding |
EP2402104B1 (en) * | 2009-07-29 | 2018-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Arc welding method and arc welding apparatus |
US20120294729A1 (en) * | 2011-05-16 | 2012-11-22 | General Electric Company | Cold metal transfer hardfacing of buckets |
JP6145698B2 (en) * | 2013-03-08 | 2017-06-14 | パナソニックIpマネジメント株式会社 | Arc welding control method and arc welding apparatus |
JP6299521B2 (en) * | 2014-08-19 | 2018-03-28 | 株式会社安川電機 | Arc welding apparatus, arc welding system, arc welding method, and method of manufacturing workpiece |
-
2014
- 2014-10-30 JP JP2014221017A patent/JP6347721B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016087609A (en) | 2016-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11724329B2 (en) | Arc welding control method | |
JP6537137B2 (en) | Reverse feed arc welding method | |
US10493553B2 (en) | Arc welding control method | |
JP6544865B2 (en) | Arc welding control method | |
JP6532137B2 (en) | Arc welding control method | |
JP6347721B2 (en) | Arc welding control method | |
JP6396162B2 (en) | Arc welding control method | |
WO2015166793A1 (en) | Arc welding control method | |
JP6261614B2 (en) | Arc welding control method | |
JP6532138B2 (en) | Arc welding control method | |
JP6460821B2 (en) | Arc welding control method | |
JP6516291B2 (en) | Reverse feed arc welding method | |
JP6516289B2 (en) | Copy control method of forward and reverse feed arc welding | |
JP6516290B2 (en) | Copy control method of forward and reverse feed arc welding | |
JP6198327B2 (en) | Arc welding control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6347721 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |