WO2015166706A1 - Method for producing acetic acid and acetaldehyde - Google Patents

Method for producing acetic acid and acetaldehyde Download PDF

Info

Publication number
WO2015166706A1
WO2015166706A1 PCT/JP2015/056507 JP2015056507W WO2015166706A1 WO 2015166706 A1 WO2015166706 A1 WO 2015166706A1 JP 2015056507 W JP2015056507 W JP 2015056507W WO 2015166706 A1 WO2015166706 A1 WO 2015166706A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetic acid
acetaldehyde
ethyl acetate
producing
liquid
Prior art date
Application number
PCT/JP2015/056507
Other languages
French (fr)
Japanese (ja)
Inventor
河辺正人
三浦裕幸
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2016515884A priority Critical patent/JP6723151B2/en
Publication of WO2015166706A1 publication Critical patent/WO2015166706A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/06Acetaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/14Acetic acid esters of monohydroxylic compounds

Definitions

  • the present invention relates to a method for producing acetic acid and acetaldehyde from methanol.
  • This application claims the priority of Japanese Patent Application No. 2014-092590 for which it applied to Japan on April 28, 2014, and uses the content here.
  • Acetic acid and acetaldehyde are industrially important intermediates.
  • Acetic acid is used as a raw material for acetates such as vinyl acetate, acetic anhydride, and ethyl acetate, and as a solvent for producing terephthalic acid and the like.
  • Acetaldehyde is used in large quantities as a raw material for ethyl acetate, peracetic acid, pyridine derivatives, pentaerythritol, crotonaldehyde, paraaldehyde, and the like.
  • Acetic acid is produced by oxidation of acetaldehyde, oxidation of alkane, oxidation of ethylene, etc., but for economic reasons, a method of carbonylating methanol with carbon monoxide has become the mainstream at present.
  • Acetaldehyde is mainly produced by Wacker oxidation of ethylene.
  • acetic acid can be produced at a lower cost than methanol and carbon monoxide, and due to the rise in ethylene prices, the production of acetaldehyde by hydrogenation of acetic acid is becoming an option, realizing this process. What can be done depends on how the economy can be improved.
  • Patent Document 1 As a method for producing acetaldehyde by hydrogenation of acetic acid, a method for producing acetaldehyde by hydrogenating acetic acid in the presence of conical hydrogen on an iron oxide catalyst containing 2.5 to 90% by weight of palladium is disclosed. (Patent Document 1). Also disclosed is a method for producing acetaldehyde by reacting acetic acid and hydrogen on a hydrogenation catalyst supported on a catalyst carrier (Patent Document 2).
  • acetic acid is produced by carbonylation of methanol with carbon monoxide separated from synthesis gas as shown in FIG.
  • Syngas is produced by steam reforming or partial oxidation of hydrocarbons such as methane, natural gas, and petroleum, and gasification of coal with steam. Therefore, only carbon monoxide is necessary for the production of acetic acid among the synthesis gas, and hydrogen is to be disposed of by combustion or used for other purposes.
  • acetaldehyde has been studied to be produced by hydrogenating acetic acid with hydrogen separated from synthesis gas.
  • synthesis gas only hydrogen is required for the production of acetaldehyde, and carbon monoxide is either combusted or used for other purposes.
  • the present inventors have found a new method for producing acetic acid and aldehyde that can efficiently use raw materials such as hydrogen and carbon monoxide by integrating the production process of acetic acid and the production process of acetaldehyde.
  • the present invention has been completed.
  • the present invention is a method for producing acetic acid and acetaldehyde from methanol and synthesis gas, step 1 for producing synthesis gas, removing impurities such as carbon dioxide from synthesis gas, and separating them into carbon monoxide and hydrogen. Characterized in that it comprises step 2, step 3 for producing acetic acid from the carbon monoxide obtained in step 2 and methanol, step 4 for producing acetaldehyde from hydrogen obtained in step 2 and acetic acid obtained in step 3.
  • a method for producing acetic acid and acetaldehyde is provided.
  • the present invention also provides the above-mentioned method for producing acetic acid and acetaldehyde, which comprises step 5 of producing ethyl acetate from acetic acid produced in step 3 and ethanol produced as a by-product in step 4.
  • a method for producing acetic acid and acetaldehyde from methanol and synthesis gas which comprises the following steps 1 to 4.
  • Process 1 Process for producing synthesis gas
  • Process 2 Process for removing impurities such as carbon dioxide from the synthesis gas obtained in Process 1 and separating into carbon monoxide and hydrogen
  • Process 3 Process of monoxide obtained in Process 2 Step 4 for producing acetic acid from carbon and methanol
  • Step 4 Step for producing acetaldehyde from hydrogen obtained in Step 2 and acetic acid obtained in Step 3
  • Process 5 Process for producing ethyl acetate from acetic acid produced in process 3 and ethanol by-produced in process 4
  • acetaldehyde when acetaldehyde is produced by hydrogenating acetic acid, acetaldehyde can be produced at low cost because hydrogen and carbon monoxide in the synthesis gas are efficiently used without waste.
  • acetic acid and acetaldehyde can be produced industrially efficiently and at low cost from synthesis gas and methanol.
  • FIG. 5 is a schematic flow diagram showing an example of a method for producing acetaldehyde and ethyl acetate of the present invention [Purification system and reaction system-2 (reaction of ethanol and acetic acid); continuation of FIG. 4].
  • FIG. 6 is a schematic flow diagram [Purification system and reaction system-2 (reaction of ethanol and acetic acid); continuation of FIG. 4] showing another example of the method for producing acetaldehyde and ethyl acetate of the present invention.
  • the method for producing acetic acid and acetaldehyde according to the present invention is a method for producing acetic acid and acetaldehyde from methanol and synthesis gas.
  • step 2 for separating acetic acid and hydrogen step 3 for producing acetic acid from carbon monoxide and methanol obtained in step 2
  • step 4 for producing acetaldehyde from hydrogen obtained in step 2 and acetic acid obtained in step 3 It is characterized by including.
  • the method for producing acetic acid and acetaldehyde of the present invention is characterized by comprising Step 5 of producing ethyl acetate from acetic acid produced in Step 3 and ethanol by-produced in Step 4.
  • Step 5 is an optional step provided as necessary.
  • FIG. 3 shows an integrated process of acetic acid and acetaldehyde.
  • ethanol is also produced as a by-product
  • FIG. 3 a process for producing ethyl acetate by esterifying this ethanol with acetic acid is also added.
  • the integrated process is a process for producing acetic acid and acetaldehyde from methanol and synthesis gas.
  • the production of the synthesis gas as step 1 is not particularly limited, but is performed by a known and conventional method such as steam reforming or partial oxidation of hydrocarbons such as methane, natural gas, and petroleum, and gasification of coal with steam. Thereby, a synthesis gas containing carbon monoxide and hydrogen gas used in the production of acetic acid and acetaldehyde is obtained.
  • step 2 impurities such as carbon dioxide are removed from the synthesis gas obtained in step 1 and separated into carbon monoxide and hydrogen gas, respectively.
  • the separation is not particularly limited, but is performed by a known and common method such as a cryogenic separation method, a pressure swing adsorption method, or a membrane separation method.
  • the separated carbon monoxide is used in the next step 3, and hydrogen gas is used in the production of acetaldehyde in step 4.
  • step 3 acetic acid is produced by the carbonylation reaction of carbon monoxide obtained in step 2 and methanol. Production of acetic acid is carried out by a known and commonly used method such as Monsanto method or Katiba method. Part or all of the acetic acid obtained in step 3 is supplied to step 4. The remaining acetic acid other than that supplied to step 4 can be distributed to the market as a product.
  • Step 4 acetaldehyde is produced by performing a hydrogenation reaction of acetic acid from the hydrogen obtained in Step 2 and the acetic acid obtained in Step 3. In this hydrogenation reaction, ethanol is obtained as a by-product and used as a raw material for the next step 5, which is an optional step.
  • the hydrogenation reaction of acetic acid can be performed using, for example, a known catalyst.
  • the produced acetaldehyde can be purified and separated by distillation through, for example, absorption and release processes. In the distillation, acetaldehyde is allowed to flow out from the top of the column, and unreacted acetic acid, by-product water, ethanol, and the like are recovered from the bottom of the column. Unreacted acetic acid can be recycled to the reaction system.
  • By-produced ethanol can be converted into ethyl acetate by reacting with acetic acid, for example. This ethyl acetate can be used as an azeotropic solvent for separating acetic acid and water from a mixture of unreacted acetic acid and water.
  • reaction system-1 reaction between acetic acid and hydrogen
  • FIG. 4 A reaction system for producing acetaldehyde by the hydrogenation reaction of acetic acid is shown in FIG.
  • hydrogen gas is supplied from P (hydrogen storage equipment obtained in step 2) through line 1, pressurized by compressor I-1, and then passed through buffer tank J-1 to the circulating gas in line 2.
  • evaporator A acetic acid evaporator
  • the evaporator A is supplied with acetic acid from the line 4 using the pump N-1 from K-1 (the acetic acid storage tank obtained in step 3), and the evaporated acetic acid together with hydrogen gas is a heat exchanger (heater).
  • reactor B Heated at L-1 and L-2 and charged into reactor B filled with catalyst from line 5.
  • the evaporator A is provided with a circulation pump N-2.
  • acetic acid is hydrogenated to produce ethanol, non-condensable methane, ethane, ethylene, carbon dioxide, condensable acetone, ethyl acetate, diethyl acetal and the like in addition to aldehydes as main products.
  • the catalyst used in the hydrogenation reaction of acetic acid is not particularly limited as long as it produces acetaldehyde by hydrogenating acetic acid.
  • metal oxides such as iron oxide, germanium oxide, tin oxide, vanadium oxide, and zinc oxide Etc. can be used.
  • noble metals such as palladium and platinum
  • the amount of the precious metal added is, for example, about 0.5 to 90% by weight with respect to the whole catalyst.
  • a preferable catalyst is iron oxide to which a noble metal such as palladium or platinum is added.
  • the catalyst Before the catalyst is used for hydrogenation of acetic acid, the catalyst may be subjected to a reduction treatment by, for example, contacting with hydrogen in advance.
  • the reduction treatment is performed under conditions of, for example, 50 to 500 ° C. and 0.1 to 5 MPa.
  • the reaction temperature of hydrogenation is not particularly limited, but is preferably 200 to 350 ° C, more preferably 260 to 330 ° C.
  • by-products such as alcohols, ketones and hydrocarbons can be suppressed while maintaining the reaction rate at a certain level or higher.
  • the bottoms of the absorption tower C is divided into a line 14 supplied to the purification process and a line 8 charged into the stripping tower D.
  • the bottoms of the line 14 are stored as a reaction crude liquid in the reaction crude liquid tank K-2 and used for a purification process.
  • the line 8 is depressurized by the diffusion tower D, and hydrogen, methane, ethane, ethylene and carbon dioxide, which are non-condensable gases dissolved in the absorption liquid, are diffused from the line 10, and the liquid after the non-condensable gas is diffused is from the line 9.
  • Q-2 is a vent.
  • the entire amount of the effluent of the absorption tower C can be charged into the diffusion tower D, a part of the liquid after the non-condensable gas emission can be recycled to the absorption tower, and the remainder can be used as a crude reaction liquid used for the purification process. Good.
  • the pressure of the bottoms of the absorption tower is reduced to dissipate the non-condensable gas dissolved in the absorption liquid.
  • Gas can be separated efficiently. This is due to the difference in solubility between hydrogen and other non-condensable gases. For example, at 30 ° C., the solubility of hydrogen and methane in ethyl acetate when the partial pressure is 1 atm is 0.01 NL / L and 0.48 NL / L, respectively. Is 48 times easier to dissolve than hydrogen.
  • the liquid after the non-condensable gas is diffused is recycled to the absorption tower, so that the non-condensable gas other than hydrogen gas is efficiently absorbed and dissolved, and as a result, the purge loss of hydrogen gas is greatly reduced. it can.
  • the non-condensable gas that has not been absorbed and dissolved in the absorption liquid in the absorption tower C is pressurized by the compressor I-2 through the buffer tank J-3 from the top of the absorption tower C through the line 12, and is then supplied to the buffer tank J-2. Then, the hydrogen gas in the line 1 is merged by the line 2 and supplied to the evaporator A from the line 3. The non-condensable gas is purged from the line 13 as necessary.
  • Q-1 is a vent.
  • This distillate upper phase liquid contains a large amount of ethyl acetate.
  • the distillate lower phase liquid of the acetic acid recovery tower F contains a large amount of water and forms an aqueous phase.
  • the absorption liquid charged into the absorption tower C may be only the bottom liquid (circulating liquid) of the absorption tower C, but the bottom liquid of the absorption tower C contains a lot of acetaldehyde having a low boiling point of 21 ° C.
  • an absorption liquid not containing acetaldehyde is preferable.
  • an ethyl acetate-containing liquid distilled liquid from the acetic acid recovery tower F is used as a decanter for separation of unreacted acetic acid and by-product water by azeotropic distillation as in the above example.
  • an acetic acid aqueous solution (a mixed liquid containing acetic acid and water; for example, an acetaldehyde product described later) such as a liquid after separation of acetaldehyde from the bottoms of the absorption tower C
  • a liquid containing 10% by weight or more preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 75% by weight or more
  • ethyl acetate is preferable.
  • the acetic acid content in the aqueous acetic acid solution is, for example, 10 to 95% by weight, preferably 50 to 90% by weight, and more preferably 60 to 80% by weight.
  • methane which is the main component of the non-condensable gas, dissolves better in ethyl acetate having a lower polarity than a highly polar acetic acid aqueous solution, ethyl acetate is suitable as an absorbing solution.
  • the number of plates (theoretical plate number) of the absorption tower C is, for example, 1 to 20, preferably 3 to 10.
  • the temperature in the absorption tower C is, for example, 0 to 70 ° C.
  • the pressure in the absorption tower C is, for example, 0.1 to 5 MPa (absolute pressure).
  • the temperature in the diffusion tower D is, for example, 0 to 70 ° C.
  • the pressure in the stripping tower D may be lower than the pressure in the absorption tower C, for example, 0.05 to 4.9 MPa (absolute pressure).
  • the difference between the pressure in the absorption tower C and the pressure in the diffusion tower D (the former-the latter) can be appropriately selected from the viewpoint of the emission efficiency of the non-condensable gas and the suppression of the loss of acetaldehyde, and is, for example, 0.05 to 4.9 MPa.
  • the pressure is preferably 0.5 to 2 MPa.
  • the reaction crude liquid obtained in the reaction system is supplied to a purification step (purification system), and acetaldehyde is obtained as a product. Further, unreacted acetic acid and by-product components can be collected and recycled to the reactor as necessary.
  • the purification system includes a step of separating acetaldehyde from the reaction crude liquid obtained by hydrogenating acetic acid in the first distillation column (hereinafter sometimes referred to as “acetaldehyde purification step”), a liquid after separation of acetaldehyde. It is preferable to include a step of separating unreacted acetic acid in the second distillation column (hereinafter sometimes referred to as “acetic acid recovery step”).
  • the reaction crude liquid is charged into a first distillation column (acetaldehyde product column), and acetaldehyde is separated and recovered from the top of the column. From the bottom of the column, an acetic acid aqueous solution containing unreacted acetic acid and by-produced water (usually further containing other products such as ethanol and ethyl acetate) is discharged.
  • a first distillation column acetaldehyde product column
  • the number of plates (theoretical plate number) of the acetaldehyde product column is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the bottom liquid (bottom liquid) in the acetaldehyde product tower is charged into the second distillation tower (acetic acid recovery tower), and a liquid containing ethyl acetate is introduced from the top of the tower.
  • the column top distillate is introduced into a decanter (in this case, ethyl acetate may be replenished) and separated into an upper phase (ethyl acetate phase) and a lower phase (aqueous phase).
  • a part of the distillate upper phase liquid is refluxed into the distillation tower, but as described above, a part of the upper liquid may be used as the absorbing liquid in the absorption tower.
  • the remainder of the distillate upper phase liquid and the distillate lower phase liquid are supplied to, for example, a delow boiling tower described later.
  • Acetic acid is recovered from the bottom of the acetic acid recovery tower. This acetic acid can be recycled to the reaction system.
  • the number of plates (theoretical plate number) of the acetic acid recovery tower is, for example, 10 to 50, preferably 10 to 30. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the liquid after separation of acetaldehyde and unreacted acetic acid from the reaction crude liquid contains (a) low-boiling components having a lower boiling point than ethyl acetate such as acetone, (b) ethanol and ethyl acetate, and (c) water. ing.
  • a method for separating these components for example, there are the following two methods.
  • a low-boiling component having a boiling point lower than that of ethyl acetate is separated (a) in the third distillation column from the unreacted acetic acid-separated liquid, and then the low-boiling component is removed.
  • B) A mixture of ethanol and ethyl acetate and (c) water are separated from the liquid after the boiling point component separation in the fourth distillation column (ethanol / ethyl acetate recovery step).
  • the de-low boiling step a part (if necessary) of the distillate upper phase liquid of the acetic acid recovery tower and the distillate lower phase liquid are charged into the third distillation column (delow boiling tower), The boiling component is recovered, and a liquid containing ethanol, ethyl acetate, and water is discharged from the bottom of the tower.
  • the column bottom liquid is supplied to a fourth distillation column (ethanol / ethyl acetate recovery column) described later.
  • the number of plates (theoretical plate number) of the third distillation column (delow boiling column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the bottom liquid of the third distillation tower (delow boiling tower) is charged into the fourth distillation tower (ethanol / ethyl acetate recovery tower), and ethanol and ethyl acetate are mixed from the top of the tower.
  • the liquid is recovered and water is discharged from the bottom of the tower.
  • the number of plates (theoretical plate number) of the fourth distillation column is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • a part (if necessary) of the distillate upper phase liquid of the second distillation column (acetic acid recovery column) and the distillate lower phase solution are charged into a third distillation column (water separation column), A low-boiling component having a boiling point lower than that of ethyl acetate, ethanol and ethyl acetate are distilled from the top of the column, and water is discharged from the bottom of the column.
  • the column top liquid is supplied to a fourth distillation column (low boiling point component recovery column) described later.
  • the number of plates (theoretical plate number) of the third distillation column (water separation column) is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the top liquid of the third distillation column (water separation column) is charged into the fourth distillation column (low boiling point component recovery column), and the boiling point is higher than ethyl acetate such as acetone from the top of the column.
  • Low low boiling point components are recovered, and a mixture of ethanol and ethyl acetate is recovered from the bottom of the column.
  • the number of plates (theoretical plate number) of the fourth distillation column (low boiling point component recovery column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • Step 5 ethyl acetate is produced from the acetic acid produced in step 3 and the ethanol produced as a by-product in step 4.
  • Step 5 an example of the reaction system in Step 5 which is an optional step will be described in detail.
  • reaction system-2 reaction of ethanol and acetic acid
  • ethanol and ethyl acetate azeotrope in order to separate ethanol and ethyl acetate from a by-product mixture of ethanol and ethyl acetate, a complicated process is required, and ethanol obtained as a valuable resource is obtained. And the cost of ethyl acetate increases.
  • acetic acid is added to a part or all of a mixed solution of ethanol and ethyl acetate after separation of acetaldehyde, unreacted acetic acid and water from the reaction crude liquid by distillation, and the presence of an acidic catalyst.
  • the ethanol is preferably converted to ethyl acetate.
  • Examples of the mixed solution of ethanol and ethyl acetate include a mixed solution of ethanol and ethyl acetate obtained from the top of the fourth distillation column in the first method, and the bottom of the fourth distillation column in the second method. And a mixed solution of ethanol and ethyl acetate containing a low-boiling component obtained from the top of the third distillation column.
  • the acidic catalyst may be a homogeneous catalyst or a solid catalyst as long as it is an acidic catalyst capable of esterifying ethanol and acetic acid.
  • a mineral acid such as sulfuric acid or phosphoric acid, or an organic acid such as p-toluenesulfonic acid or methanesulfonic acid is selected.
  • an ion exchange resin or zeolite is selected.
  • the reactor may be a complete mixing tank, a plug flow, or a combination of these. Furthermore, in order to further promote the reaction, part or all of the product water and ethyl acetate may be separated on the way. Further, the reactor may be a fixed bed filled with a solid catalyst, or the catalyst may be present in the distillation column, and the esterification reaction and the product may be separated at the same time. When the esterification reaction solution contains an acidic catalyst, the acidic catalyst can be separated by a conventional method.
  • the reaction temperature in the esterification reaction is, for example, 30 to 150 ° C., preferably 40 to 100 ° C.
  • the reaction may be carried out under any conditions of reduced pressure, normal pressure and increased pressure.
  • the product ethyl acetate can be obtained by recovering and recycling the unreacted raw material by using a normal separation and purification method of the ethyl acetate reaction solution.
  • FIG. 5 is a schematic flow diagram illustrating a purification system (including the reaction system-2) including the first method
  • FIG. 6 illustrates a purification system (including the reaction system-2) including the second method.
  • the reaction crude liquid is charged from the reaction crude liquid tank K-2 to the first distillation column (acetaldehyde product column) E through the line 16 using the pump N-4.
  • the first distillation column (acetaldehyde product column) E the non-condensable gas is purged from the line 17 from the top of the column, and the product acetaldehyde is distilled from the line 18.
  • the bottoms of the first distillation column (acetaldehyde product column) E is supplied to the second distillation column (acetic acid recovery column) F through the line 19.
  • M-5 and M-6 are coolers
  • R-1 is a receiver
  • N-5 and N-6 are pumps
  • Q-3 is a vent
  • O-1 is a reboiler
  • K-3 is a product acetaldehyde tank.
  • acetic acid recovery column F an ethyl acetate-containing liquid is charged to the top of the column from the line 23, and unreacted acetic acid is recovered from the bottoms of the line 24, and the recovered acetic acid tank K-4 is recovered. Stored and recycled to the reaction system. Acetone, ethanol, ethyl acetate, and water are distilled off at the top of the second distillation column (acetic acid recovery column) F, separated by a decanter S, and a part of the upper phase liquid of the line 20 (if necessary). The lower phase water of the line 21 is charged into the third distillation column (delow boiling column) G.
  • the decanter S is supplied with the ethyl acetate in the ethyl acetate tank K-5 from the line 25.
  • a part of the upper phase liquid of the decanter S is stored in the absorption liquid tank K-6 from the line 22, and is also charged into the absorption tower C from the line 15 and the line 11 as described above to absorb acetaldehyde.
  • a part of the upper phase liquid of the decanter S is refluxed into the distillation column by the line 23.
  • M-7 is a cooler
  • N-7, N-8, N-9, N-10, N-11 are pumps
  • O-2 is a reboiler.
  • Low boiling components such as acetone are distilled from the top of the third distillation column (delow boiling column) G from the line 26, and the bottoms of the line 28 are charged into the fourth distillation column (ethanol / ethyl acetate recovery column) H. It is. A part of the column top distillate is refluxed into the distillation column via line 27.
  • M-8 is a cooler
  • R-2 is a receiver
  • N-12 and N-13 are pumps
  • O-3 is a reboiler
  • K-7 is a low boiling point component tank.
  • a mixed liquid of ethanol and ethyl acetate is recovered from the line 29, and the bottom liquid (water) is drained from the line 31.
  • a part of the column top distillate is refluxed into the distillation column via line 30.
  • M-9 and M-10 are coolers
  • R-3 is a receiver
  • N-14 and N-15 are pumps
  • O-4 is a reboiler
  • K-8 is a recovered ethanol / ethyl acetate tank.
  • Part or all of the ethanol / ethyl acetate mixture in the line 35 is added with acetic acid from the line 36, heated to the esterification reaction temperature by the heater O-5, and the esterification reactor in which an acidic catalyst is present from the line 37.
  • the reaction crude liquid is charged from the reaction crude liquid tank K-2 to the first distillation column (acetaldehyde product column) E through the line 16 using the pump N-4.
  • the first distillation column (acetaldehyde product column) E the non-condensable gas is purged from the line 17 from the top of the column, and the product acetaldehyde is distilled from the line 18.
  • the bottoms of the first distillation column (acetaldehyde product column) E is supplied to the second distillation column (acetic acid recovery column) F through the line 19.
  • M-5 and M-6 are coolers
  • R-1 is a receiver
  • N-5 and N-6 are pumps
  • Q-3 is a vent
  • O-1 is a reboiler
  • K-3 is a product acetaldehyde tank.
  • acetic acid recovery column F an ethyl acetate-containing liquid is charged to the top of the column from the line 23, and unreacted acetic acid is recovered from the bottoms of the line 24, and the recovered acetic acid tank K-4 is recovered. Stored and recycled to the reaction system. Acetone, ethanol, ethyl acetate, and water are distilled off at the top of the second distillation column (acetic acid recovery column) F, separated by a decanter S, and a part of the upper phase liquid of the line 20 (if necessary). The lower phase water of the line 21 is charged into a third distillation column (in this case, functioning as a water separation column) G.
  • a third distillation column in this case, functioning as a water separation column
  • the decanter S is supplied with the ethyl acetate in the ethyl acetate tank K-5 from the line 25.
  • a part of the upper phase liquid of the decanter S is stored in the absorption liquid tank K-6 from the line 22, and is also charged into the absorption tower C from the line 15 and the line 11 as described above to absorb acetaldehyde.
  • a part of the upper phase liquid of the decanter S is refluxed into the distillation column by the line 23.
  • M-7 is a cooler
  • N-7, N-8, N-9, N-10, N-11 are pumps
  • O-2 is a reboiler.
  • a low boiling point component such as acetone is recovered from the line 29 from the top of the fourth distillation column (low boiling point recovery column) H, and a mixed solution of ethanol and ethyl acetate is recovered from the line 28 from the line bottom.
  • a part of the column top distillate is refluxed into the distillation column via line 30.
  • M-9 is a cooler
  • R-3 is a receiver
  • N-12 and N-15 are pumps
  • O-4 is a reboiler
  • K-7 is a low boiling point component tank
  • K-8 is a recovered ethanol / ethyl acetate tank. is there.
  • acetic acid and acetaldehyde which are industrially important intermediates from the synthesis gas and methanol, are industrially efficient and low cost. Can be manufactured.
  • a Evaporator B Reactor C Absorption tower C-1 Scrubber D Stripping tower E First distillation tower (acetaldehyde product tower) F Second distillation column (acetic acid recovery column) G Third distillation column H Fourth distillation column I-1 to I-2 Compressor J-1 to J-3 Buffer tank K-1 Acetic acid tank (Acetic acid storage tank obtained in step 3) K-2 Reaction crude liquid tank K-3 Acetaldehyde product tank K-4 Recovery acetic acid tank K-5 Ethyl acetate tank K-6 Absorption liquid tank K-7 Low boiling point tank K-8 Recovery ethanol / ethyl acetate tank K-9 Absorption liquid tank L-1 to L-2 Heater M-1 to M-12 Cooler (cooler) N-1 to N-18 pump (liquid feed pump) O-1 to O-4 Reboiler O-5 Heater P Hydrogen equipment (Hydrogen storage equipment obtained in Step 2) Q-1 to Q-3 Vent R-1 to R-3 Receiver (tank) S Decanter T Drainage equipment U Gas-liquid separator V Esterification

Abstract

The present invention addresses the problem of providing a method for producing acetaldehyde by hydrogenating acetic acid, whereby it becomes possible to utilize a raw material efficiently without wasting the raw material and produce acetaldehyde at low cost. The present invention also addresses the problem of providing a method for producing acetic acid and acetaldehyde from methanol on an industrial scale, with high efficiency and at low cost. The method for producing acetic acid and acetaldehyde according to the present invention is a method for producing acetic acid and acetaldehyde from methanol and a synthetic gas, said method being characterized by comprising step (1) of producing the synthetic gas, a step (2) of removing impurities including carbon dioxide from the synthetic gas and separating the synthetic gas into carbon monoxide and hydrogen, step (3) of producing acetic acid from carbon monoxide produced in step (2) and methanol, and step (4) of producing acetaldehyde from hydrogen produced in step (2) and acetic acid produced in step (3).

Description

酢酸及びアセトアルデヒドの製造方法Method for producing acetic acid and acetaldehyde
 本発明は、メタノールから酢酸及びアセトアルデヒドを製造する方法に関する。本願は、2014年4月28日に日本に出願した、特願2014-092590号の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing acetic acid and acetaldehyde from methanol. This application claims the priority of Japanese Patent Application No. 2014-092590 for which it applied to Japan on April 28, 2014, and uses the content here.
 酢酸及びアセトアルデヒドは、工業的に重要な中間体である。酢酸は、酢酸ビニル、無水酢酸、酢酸エチル等の酢酸エステル類の原料として、また、テレフタル酸などを製造する際の溶媒として使用されている。また、アセトアルデヒドは、酢酸エチル、過酢酸、ピリジン誘導体、ペンタエリスリトール、クロトンアルデヒド、パラアルデヒドなどの原料として大量に使用されている。 Acetic acid and acetaldehyde are industrially important intermediates. Acetic acid is used as a raw material for acetates such as vinyl acetate, acetic anhydride, and ethyl acetate, and as a solvent for producing terephthalic acid and the like. Acetaldehyde is used in large quantities as a raw material for ethyl acetate, peracetic acid, pyridine derivatives, pentaerythritol, crotonaldehyde, paraaldehyde, and the like.
 酢酸は、アセトアルデヒドの酸化、アルカンの酸化、エチレンの酸化等で製造されるが、現在では経済的な理由により、メタノールを一酸化炭素でカルボニル化する方法が主流となっている。また、アセトアルデヒドは、主にエチレンのWacker酸化により製造されている。しかし、近年、酢酸がメタノールと一酸化炭素より安価に製造できるようになったことや、エチレン価格の上昇により、酢酸の水素化によるアセトアルデヒドの製造も1つの選択肢になりつつあり、本プロセスが実現できるかは、いかにその経済性を高めることができるかにかかっている。 Acetic acid is produced by oxidation of acetaldehyde, oxidation of alkane, oxidation of ethylene, etc., but for economic reasons, a method of carbonylating methanol with carbon monoxide has become the mainstream at present. Acetaldehyde is mainly produced by Wacker oxidation of ethylene. However, in recent years, acetic acid can be produced at a lower cost than methanol and carbon monoxide, and due to the rise in ethylene prices, the production of acetaldehyde by hydrogenation of acetic acid is becoming an option, realizing this process. What can be done depends on how the economy can be improved.
 酢酸の水素化によりアセトアルデヒドを製造する方法としては、2.5ないし90重量%のパラジウムを含む酸化鉄触媒上で、酢酸を顆状の水素の存在下で水素化し、アセトアルデヒドを製造する方法が開示されている(特許文献1)。また、触媒担体上に担持された水素化触媒上で、酢酸と水素を反応させてアセトアルデヒドを生成する方法が開示されている(特許文献2)。 As a method for producing acetaldehyde by hydrogenation of acetic acid, a method for producing acetaldehyde by hydrogenating acetic acid in the presence of conical hydrogen on an iron oxide catalyst containing 2.5 to 90% by weight of palladium is disclosed. (Patent Document 1). Also disclosed is a method for producing acetaldehyde by reacting acetic acid and hydrogen on a hydrogenation catalyst supported on a catalyst carrier (Patent Document 2).
特開平11-322658号公報Japanese Patent Laid-Open No. 11-322658 特開2012-153698号公報JP 2012-153698 A
 現在、酢酸は、図1に示すように合成ガスから分離された一酸化炭素により、メタノールをカルボニル化して製造されている。合成ガスは、メタンや天然ガスや石油類などの炭化水素の水蒸気改質又は部分酸化、石炭の水蒸気によるガス化などにより製造されている。よって、合成ガスの内、酢酸の製造に必要なものは一酸化炭素のみであり、水素は燃焼処分するか、または、他の用途に使用することとなっている。 Currently, acetic acid is produced by carbonylation of methanol with carbon monoxide separated from synthesis gas as shown in FIG. Syngas is produced by steam reforming or partial oxidation of hydrocarbons such as methane, natural gas, and petroleum, and gasification of coal with steam. Therefore, only carbon monoxide is necessary for the production of acetic acid among the synthesis gas, and hydrogen is to be disposed of by combustion or used for other purposes.
 一方、アセトアルデヒドは、図2に示す通り、合成ガスから分離された水素により、酢酸を水素化して製造することが検討されている。合成ガスの内、アセトアルデヒドの製造に必要なものは水素のみであり、一酸化炭素は燃焼処分するか、または、他の用途に使用する。 On the other hand, as shown in FIG. 2, acetaldehyde has been studied to be produced by hydrogenating acetic acid with hydrogen separated from synthesis gas. Of the synthesis gas, only hydrogen is required for the production of acetaldehyde, and carbon monoxide is either combusted or used for other purposes.
 したがって、上述の酢酸やアセトアルデヒドの製造方法では、合成ガス内の水素及び一酸化炭素を効率的に利用できず、原料である合成ガスの無駄を生じていることが問題である。 Therefore, in the above-described method for producing acetic acid and acetaldehyde, hydrogen and carbon monoxide in the synthesis gas cannot be used efficiently, and there is a problem that the raw material synthesis gas is wasted.
 したがって、本発明の目的は、酢酸を水素化してアセトアルデヒドを製造する際に、原料を無駄なく効率的に利用し、低コストでアセトアルデヒドを製造する方法を提供することにある。また、本発明の他の目的は、メタノールから酢酸及びアセトアルデヒドを工業的に効率よく低コストで製造する方法を提供することにある。 Therefore, it is an object of the present invention to provide a method for producing acetaldehyde at low cost by efficiently using raw materials without waste when hydrogenating acetic acid to produce acetaldehyde. Another object of the present invention is to provide a method for industrially efficiently producing acetic acid and acetaldehyde from methanol at low cost.
 本発明者らは、鋭意検討した結果、酢酸の製造プロセスとアセトアルデヒドの製造プロセスを統合することにより、水素、一酸化炭素などの原料を効率的に利用できる新たな酢酸とアルデヒドの製造方法を見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found a new method for producing acetic acid and aldehyde that can efficiently use raw materials such as hydrogen and carbon monoxide by integrating the production process of acetic acid and the production process of acetaldehyde. The present invention has been completed.
 すなわち、本発明は、メタノールと合成ガスから酢酸とアセトアルデヒドを製造する方法であって、合成ガスを製造する工程1、合成ガスから二酸化炭素などの不純物を除去し、一酸化炭素と水素に分離する工程2、工程2で得られた一酸化炭素とメタノールから酢酸を製造する工程3、工程2で得られた水素と工程3で得られた酢酸からアセトアルデヒドを製造する工程4を含むことを特徴とする酢酸とアセトアルデヒドの製造方法を提供する。 That is, the present invention is a method for producing acetic acid and acetaldehyde from methanol and synthesis gas, step 1 for producing synthesis gas, removing impurities such as carbon dioxide from synthesis gas, and separating them into carbon monoxide and hydrogen. Characterized in that it comprises step 2, step 3 for producing acetic acid from the carbon monoxide obtained in step 2 and methanol, step 4 for producing acetaldehyde from hydrogen obtained in step 2 and acetic acid obtained in step 3. A method for producing acetic acid and acetaldehyde is provided.
 また、本発明は、工程3で製造する酢酸と工程4で副生するエタノールから酢酸エチルを製造する工程5を含むことを特徴とする前記の酢酸とアセトアルデヒドの製造方法を提供する。 The present invention also provides the above-mentioned method for producing acetic acid and acetaldehyde, which comprises step 5 of producing ethyl acetate from acetic acid produced in step 3 and ethanol produced as a by-product in step 4.
 すなわち、本発明は、以下に関する。
[1]メタノールと合成ガスから酢酸とアセトアルデヒドを製造する方法であって、下記の工程1~4を含むことを特徴とする酢酸とアセトアルデヒドの製造方法。
工程1:合成ガスを製造する工程
工程2:工程1で得られた合成ガスから二酸化炭素などの不純物を除去し、一酸化炭素と水素に分離する工程
工程3:工程2で得られた一酸化炭素とメタノールから酢酸を製造する工程
工程4:工程2で得られた水素と工程3で得られた酢酸からアセトアルデヒドを製造する工程
[2]さらに下記の工程5を含む[1]記載の酢酸とアセトアルデヒドの製造方法。
工程5:工程3で製造した酢酸と工程4で副生したエタノールから酢酸エチルを製造する工程
That is, the present invention relates to the following.
[1] A method for producing acetic acid and acetaldehyde from methanol and synthesis gas, which comprises the following steps 1 to 4.
Process 1: Process for producing synthesis gas Process 2: Process for removing impurities such as carbon dioxide from the synthesis gas obtained in Process 1 and separating into carbon monoxide and hydrogen Process 3: Process of monoxide obtained in Process 2 Step 4 for producing acetic acid from carbon and methanol Step 4: Step for producing acetaldehyde from hydrogen obtained in Step 2 and acetic acid obtained in Step 3 [2] Acetic acid according to [1] further comprising Step 5 below A method for producing acetaldehyde.
Process 5: Process for producing ethyl acetate from acetic acid produced in process 3 and ethanol by-produced in process 4
 本発明によれば、酢酸を水素化してアセトアルデヒドを製造する際に、合成ガス内の水素及び一酸化炭素を無駄なく効率よく使用するため、低コストでアセトアルデヒドを製造できる。また、合成ガスとメタノールから、工業的に効率よく低コストで酢酸及びアセトアルデヒドを製造することができる。 According to the present invention, when acetaldehyde is produced by hydrogenating acetic acid, acetaldehyde can be produced at low cost because hydrogen and carbon monoxide in the synthesis gas are efficiently used without waste. In addition, acetic acid and acetaldehyde can be produced industrially efficiently and at low cost from synthesis gas and methanol.
現在の酢酸の製造工程を説明するフロー図である。It is a flowchart explaining the manufacturing process of the present acetic acid. アセトアルデヒドの製造工程を説明するフロー図である。It is a flowchart explaining the manufacturing process of acetaldehyde. 本発明の製造方法である酢酸とアセトアルデヒドの製造工程(統合プロセス)を説明するフロー図である。It is a flowchart explaining the manufacturing process (integrated process) of acetic acid and acetaldehyde which are the manufacturing methods of this invention. 本発明のアセトアルデヒド及び酢酸エチルの製造方法の一例を示す概略フロー図[反応系-1(酢酸と水素の反応)]である。It is a schematic flow diagram [reaction system-1 (reaction of acetic acid and hydrogen)] which shows an example of a manufacturing method of acetaldehyde and ethyl acetate of the present invention. 本発明のアセトアルデヒド及び酢酸エチルの製造方法の一例を示す概略フロー図[精製系及び反応系-2(エタノールと酢酸の反応);図4の続き]である。FIG. 5 is a schematic flow diagram showing an example of a method for producing acetaldehyde and ethyl acetate of the present invention [Purification system and reaction system-2 (reaction of ethanol and acetic acid); continuation of FIG. 4]. 本発明のアセトアルデヒド及び酢酸エチルの製造方法の他の例を示す概略フロー図[精製系及び反応系-2(エタノールと酢酸の反応);図4の続き]である。FIG. 6 is a schematic flow diagram [Purification system and reaction system-2 (reaction of ethanol and acetic acid); continuation of FIG. 4] showing another example of the method for producing acetaldehyde and ethyl acetate of the present invention.
[酢酸とアセトアルデヒドの製造方法]
 本発明の酢酸とアセトアルデヒドの製造方法は、メタノールと合成ガスから酢酸とアセトアルデヒドを製造する方法であって、合成ガスを製造する工程1、合成ガスから二酸化炭素などの不純物を除去し、一酸化炭素と水素に分離する工程2、工程2で得られた一酸化炭素とメタノールから酢酸を製造する工程3、工程2で得られた水素と工程3で得られた酢酸からアセトアルデヒドを製造する工程4を含むことを特徴とする。
[Method for producing acetic acid and acetaldehyde]
The method for producing acetic acid and acetaldehyde according to the present invention is a method for producing acetic acid and acetaldehyde from methanol and synthesis gas. Step 1 for producing synthesis gas, removing impurities such as carbon dioxide from the synthesis gas, and carbon monoxide And step 2 for separating acetic acid and hydrogen, step 3 for producing acetic acid from carbon monoxide and methanol obtained in step 2, step 4 for producing acetaldehyde from hydrogen obtained in step 2 and acetic acid obtained in step 3 It is characterized by including.
 また、本発明の酢酸とアセトアルデヒドの製造方法は、工程3で製造する酢酸と工程4で副生するエタノールから酢酸エチルを製造する工程5を含むことを特徴とする。なお、工程5は、必要に応じて設ける任意の工程である。 Further, the method for producing acetic acid and acetaldehyde of the present invention is characterized by comprising Step 5 of producing ethyl acetate from acetic acid produced in Step 3 and ethanol by-produced in Step 4. Step 5 is an optional step provided as necessary.
 図3は、酢酸の製造プロセスとアセトアルデヒドの製造プロセスを統合したプロセスを示す。アセトアルデヒドの製造プロセスでは、エタノールも副生するため、図3では、このエタノールを酢酸でエステル化して酢酸エチルを製造するプロセスも付加している。言い換えると、上記統合プロセスは、メタノールと合成ガスからの酢酸とアセトアルデヒドを製造するプロセスである。以下、各工程に沿って、必要に応じて図面を参照しつつ詳細に説明する。 FIG. 3 shows an integrated process of acetic acid and acetaldehyde. In the production process of acetaldehyde, ethanol is also produced as a by-product, and in FIG. 3, a process for producing ethyl acetate by esterifying this ethanol with acetic acid is also added. In other words, the integrated process is a process for producing acetic acid and acetaldehyde from methanol and synthesis gas. Hereinafter, it demonstrates in detail, referring drawings as needed, along each process.
(工程1)
 工程1である合成ガスの製造は、特に制限されないが、メタンや天然ガスや石油類などの炭化水素の水蒸気改質又は部分酸化、石炭の水蒸気によるガス化など公知慣用の方法で行われる。これにより、酢酸とアセトアルデヒドの製造で用いる一酸化炭素及び水素ガスなどを含む合成ガスが得られる。
(Process 1)
The production of the synthesis gas as step 1 is not particularly limited, but is performed by a known and conventional method such as steam reforming or partial oxidation of hydrocarbons such as methane, natural gas, and petroleum, and gasification of coal with steam. Thereby, a synthesis gas containing carbon monoxide and hydrogen gas used in the production of acetic acid and acetaldehyde is obtained.
(工程2)
 工程2では、工程1で得られた合成ガスから二酸化炭素などの不純物を除去し、一酸化炭素と水素ガスにそれぞれ分離する。上記分離は、特に制限されないが、深冷分離法、圧力スイング吸着法、膜分離法など公知慣用の方法で行われる。分離された一酸化炭素は、次の工程3で使用され、水素ガスは、工程4のアセトアルデヒドの製造で使用される。
(Process 2)
In step 2, impurities such as carbon dioxide are removed from the synthesis gas obtained in step 1 and separated into carbon monoxide and hydrogen gas, respectively. The separation is not particularly limited, but is performed by a known and common method such as a cryogenic separation method, a pressure swing adsorption method, or a membrane separation method. The separated carbon monoxide is used in the next step 3, and hydrogen gas is used in the production of acetaldehyde in step 4.
(工程3)
 工程3では、工程2で得られた一酸化炭素とメタノールのカルボニル化反応により、酢酸を製造する。酢酸の製造は、モンサント法、カティバ法など公知慣用の方法で行われる。工程3で得られた酢酸の一部又は全部が工程4に供給される。工程4に供給する以外の残りの酢酸は、製品として市場に流通させることができる。
(Process 3)
In step 3, acetic acid is produced by the carbonylation reaction of carbon monoxide obtained in step 2 and methanol. Production of acetic acid is carried out by a known and commonly used method such as Monsanto method or Katiba method. Part or all of the acetic acid obtained in step 3 is supplied to step 4. The remaining acetic acid other than that supplied to step 4 can be distributed to the market as a product.
(工程4)
 工程4では、工程2で得られた水素と工程3で得られた酢酸から、酢酸の水素化反応を行うことにより、アセトアルデヒドを製造する。この水素化反応では、副生成物としてエタノールが得られ、任意の工程である次の工程5の原料となる。
(Process 4)
In Step 4, acetaldehyde is produced by performing a hydrogenation reaction of acetic acid from the hydrogen obtained in Step 2 and the acetic acid obtained in Step 3. In this hydrogenation reaction, ethanol is obtained as a by-product and used as a raw material for the next step 5, which is an optional step.
 酢酸の水素化反応は、例えば公知の触媒を用いて行うことができる。生成したアセトアルデヒドは、例えば吸収、放散工程などを経て、蒸留することにより精製分離できる。前記蒸留では、塔頂からアセトアルデヒドを流出させ、塔底から未反応酢酸、副生した水やエタノールなどを回収する。未反応の酢酸は、反応系にリサイクルできる。副生したエタノールは、例えば、酢酸と反応させることにより酢酸エチルに変換できる。この酢酸エチルは、未反応酢酸と水の混合液から酢酸と水とを分離する際の共沸溶媒として使用できる。 The hydrogenation reaction of acetic acid can be performed using, for example, a known catalyst. The produced acetaldehyde can be purified and separated by distillation through, for example, absorption and release processes. In the distillation, acetaldehyde is allowed to flow out from the top of the column, and unreacted acetic acid, by-product water, ethanol, and the like are recovered from the bottom of the column. Unreacted acetic acid can be recycled to the reaction system. By-produced ethanol can be converted into ethyl acetate by reacting with acetic acid, for example. This ethyl acetate can be used as an azeotropic solvent for separating acetic acid and water from a mixture of unreacted acetic acid and water.
 以下、この工程4の1例について、詳細に説明する。 Hereinafter, one example of the step 4 will be described in detail.
[反応系-1(酢酸と水素の反応)]
 酢酸の水素化反応によるアセトアルデヒドの製造の反応系を図4に示す。図4では、P(工程2で得られた水素の貯蔵設備)から水素ガスがライン1により供給され、コンプレッサーI-1で加圧され、バッファータンクJ-1を経て、ライン2の循環ガスと合流して、ライン3により蒸発器A(酢酸蒸発器)に仕込まれる。蒸発器Aには、K-1(工程3で得られた酢酸の貯蔵タンク)からポンプN-1を用いてライン4より酢酸が供給され、気化した酢酸が水素ガスと共に熱交換器(加熱器)L-1、L-2で加熱され、ライン5より触媒を充填した反応器Bに仕込まれる。蒸発器Aには循環ポンプN-2が備えられている。反応器Bで酢酸は水素化され、主生成物のアルデヒド類のほか、エタノール、非凝縮性のメタン、エタン、エチレン、二酸化炭素、凝縮性のアセトン、酢酸エチル、ジエチルアセタールなどが生成する。
[Reaction system-1 (reaction between acetic acid and hydrogen)]
A reaction system for producing acetaldehyde by the hydrogenation reaction of acetic acid is shown in FIG. In FIG. 4, hydrogen gas is supplied from P (hydrogen storage equipment obtained in step 2) through line 1, pressurized by compressor I-1, and then passed through buffer tank J-1 to the circulating gas in line 2. Combined and charged to evaporator A (acetic acid evaporator) via line 3. The evaporator A is supplied with acetic acid from the line 4 using the pump N-1 from K-1 (the acetic acid storage tank obtained in step 3), and the evaporated acetic acid together with hydrogen gas is a heat exchanger (heater). ) Heated at L-1 and L-2 and charged into reactor B filled with catalyst from line 5. The evaporator A is provided with a circulation pump N-2. In the reactor B, acetic acid is hydrogenated to produce ethanol, non-condensable methane, ethane, ethylene, carbon dioxide, condensable acetone, ethyl acetate, diethyl acetal and the like in addition to aldehydes as main products.
 酢酸の水素化反応に用いられる触媒としては、酢酸の水素化によりアセトアルデヒドを生成させるものであれば特に限定されず、例えば酸化鉄、酸化ゲルマニウム、酸化スズ、酸化バナジウム、酸化亜鉛等の金属酸化物などを用いることができる。また、これらの金属酸化物に、パラジウム、白金等の貴金属を添加したものを触媒として用いてもよい。この場合の貴金属の添加量は、触媒全体に対して、例えば0.5~90重量%程度である。中でも、好ましい触媒は、パラジウム、白金等の貴金属を添加した酸化鉄である。触媒は、酢酸の水素化に用いる前に、予め、例えば水素と接触させることにより還元処理を施してもよい。還元処理は、例えば50~500℃、0.1~5MPaの条件で行われる。 The catalyst used in the hydrogenation reaction of acetic acid is not particularly limited as long as it produces acetaldehyde by hydrogenating acetic acid. For example, metal oxides such as iron oxide, germanium oxide, tin oxide, vanadium oxide, and zinc oxide Etc. can be used. Moreover, you may use what added noble metals, such as palladium and platinum, to these metal oxides as a catalyst. In this case, the amount of the precious metal added is, for example, about 0.5 to 90% by weight with respect to the whole catalyst. Among these, a preferable catalyst is iron oxide to which a noble metal such as palladium or platinum is added. Before the catalyst is used for hydrogenation of acetic acid, the catalyst may be subjected to a reduction treatment by, for example, contacting with hydrogen in advance. The reduction treatment is performed under conditions of, for example, 50 to 500 ° C. and 0.1 to 5 MPa.
 水素化の反応温度は、特に制限されないが、200~350℃が好ましく、260~330℃がより好ましい。温度が上記範囲であると、反応速度を一定以上に保ちつつ、アルコール、ケトン、炭化水素類などの副生を抑えることができる。 The reaction temperature of hydrogenation is not particularly limited, but is preferably 200 to 350 ° C, more preferably 260 to 330 ° C. When the temperature is in the above range, by-products such as alcohols, ketones and hydrocarbons can be suppressed while maintaining the reaction rate at a certain level or higher.
 吸収塔Cの缶出液は、精製工程に供給されるライン14と放散塔Dに仕込まれるライン8に分かれる。ライン14の缶出液は反応粗液として反応粗液タンクK-2に貯留され、精製工程に供される。ライン8は放散塔Dで減圧され、ライン10より吸収液に溶解した非凝縮性ガスである水素、メタン、エタン、エチレン、二酸化炭素が放散され、該非凝縮性ガス放散後の液はライン9より吸収塔Cにリサイクルされる。Q-2はベントである。なお、吸収塔Cの缶出液の例えば全量を放散塔Dに仕込み、非凝縮性ガス放散後の液の一部を吸収塔にリサイクルし、残りを精製工程に供される反応粗液としてもよい。 The bottoms of the absorption tower C is divided into a line 14 supplied to the purification process and a line 8 charged into the stripping tower D. The bottoms of the line 14 are stored as a reaction crude liquid in the reaction crude liquid tank K-2 and used for a purification process. The line 8 is depressurized by the diffusion tower D, and hydrogen, methane, ethane, ethylene and carbon dioxide, which are non-condensable gases dissolved in the absorption liquid, are diffused from the line 10, and the liquid after the non-condensable gas is diffused is from the line 9. Recycled to absorption tower C. Q-2 is a vent. In addition, for example, the entire amount of the effluent of the absorption tower C can be charged into the diffusion tower D, a part of the liquid after the non-condensable gas emission can be recycled to the absorption tower, and the remainder can be used as a crude reaction liquid used for the purification process. Good.
 上記方法では、非凝縮性ガスを吸収液に溶解させた後、吸収塔の缶出液の圧力を減じて、吸収液に溶解した非凝縮性ガスを放散させるので、水素と他の非凝縮性ガスとを効率よく分離できる。これは、水素と他の非凝縮性ガスの溶解度の違いによる。例えば、30℃において、分圧が1atmである時の水素およびメタンの酢酸エチルに対する溶解度は、それぞれ、0.01NL/Lおよび0.48NL/Lであり、これは、酢酸エチルに対して、メタンが水素よりも48倍溶解しやすいことを示す。そして、上記方法では、さらに、非凝縮性ガス放散後の液を吸収塔にリサイクルするので、水素ガス以外の非凝縮性ガスが効率よく吸収、溶解され、その結果、水素ガスのパージロスを大きく低減できる。 In the above method, after the non-condensable gas is dissolved in the absorption liquid, the pressure of the bottoms of the absorption tower is reduced to dissipate the non-condensable gas dissolved in the absorption liquid. Gas can be separated efficiently. This is due to the difference in solubility between hydrogen and other non-condensable gases. For example, at 30 ° C., the solubility of hydrogen and methane in ethyl acetate when the partial pressure is 1 atm is 0.01 NL / L and 0.48 NL / L, respectively. Is 48 times easier to dissolve than hydrogen. In the above method, the liquid after the non-condensable gas is diffused is recycled to the absorption tower, so that the non-condensable gas other than hydrogen gas is efficiently absorbed and dissolved, and as a result, the purge loss of hydrogen gas is greatly reduced. it can.
 吸収塔Cで吸収液に吸収、溶解しなかった非凝縮性ガスは、吸収塔Cの塔頂からライン12によりバッファータンクJ-3を経てコンプレッサーI-2で加圧され、バッファータンクJ-2を経て、ライン2により前記ライン1の水素ガスと合流してライン3より蒸発器Aに供給される。なお、上記非凝縮性ガスは必要に応じてライン13よりパージされる。Q-1はベントである。 The non-condensable gas that has not been absorbed and dissolved in the absorption liquid in the absorption tower C is pressurized by the compressor I-2 through the buffer tank J-3 from the top of the absorption tower C through the line 12, and is then supplied to the buffer tank J-2. Then, the hydrogen gas in the line 1 is merged by the line 2 and supplied to the evaporator A from the line 3. The non-condensable gas is purged from the line 13 as necessary. Q-1 is a vent.
 上記の例では、吸収塔Cで用いる吸収液として、吸収塔Cの缶出液からアセトアルデヒドを分離した後の酢酸と水を含む混合液(酢酸水溶液)から酢酸を回収する工程(未反応の酢酸と副生した水とを共沸蒸留により分離する工程)における酢酸回収塔Fの留出上相液を用いている。この留出上相液は酢酸エチルを多く含む。なお、酢酸回収塔Fの留出下相液は水を多く含み、水相を形成している。 In the above example, as the absorption liquid used in the absorption tower C, a step of recovering acetic acid from a mixed liquid (acetic acid aqueous solution) containing acetic acid and water after separating acetaldehyde from the bottoms of the absorption tower C (unreacted acetic acid) And a distillate upper phase liquid of acetic acid recovery tower F in the step of separating by-product water by azeotropic distillation. This distillate upper phase liquid contains a large amount of ethyl acetate. Note that the distillate lower phase liquid of the acetic acid recovery tower F contains a large amount of water and forms an aqueous phase.
 吸収塔Cに仕込まれる吸収液としては、吸収塔Cの缶出液(循環液)のみでもよいが、吸収塔Cの缶出液には沸点が21℃と低いアセトアルデヒドが多く含まれているので、アセトアルデヒドの回収率を向上させるため、アセトアルデヒドを含まない吸収液が好ましい。例えば、吸収液としては、上記の例のような、未反応の酢酸と副生した水とを共沸蒸留により分離する際に使用する酢酸エチル含有液(酢酸回収塔Fの留出液をデカンターで分離した、酢酸エチルを多く含む上相液)のほか、吸収塔Cの缶出液からアセトアルデヒドを分離した後の液等の酢酸水溶液(酢酸と水を含む混合液;例えば、後述するアセトアルデヒド製品塔Eの缶出液)が好ましい。また、吸収液としては、酢酸エチルを10重量%以上(好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは75重量%以上)含む液が好ましい。 The absorption liquid charged into the absorption tower C may be only the bottom liquid (circulating liquid) of the absorption tower C, but the bottom liquid of the absorption tower C contains a lot of acetaldehyde having a low boiling point of 21 ° C. In order to improve the recovery rate of acetaldehyde, an absorption liquid not containing acetaldehyde is preferable. For example, as the absorption liquid, an ethyl acetate-containing liquid (distilled liquid from the acetic acid recovery tower F is used as a decanter for separation of unreacted acetic acid and by-product water by azeotropic distillation as in the above example. In addition to the ethyl acetate-rich upper phase liquid separated in step 1), an acetic acid aqueous solution (a mixed liquid containing acetic acid and water; for example, an acetaldehyde product described later) such as a liquid after separation of acetaldehyde from the bottoms of the absorption tower C The bottom E) is preferred. Further, as the absorbing liquid, a liquid containing 10% by weight or more (preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 75% by weight or more) of ethyl acetate is preferable.
 吸収液として前記酢酸水溶液を用いる場合、酢酸水溶液中の酢酸の含有量は、例えば、10~95重量%、好ましくは50~90重量%、さらに好ましくは60~80重量%である。 When the aqueous acetic acid solution is used as the absorbing solution, the acetic acid content in the aqueous acetic acid solution is, for example, 10 to 95% by weight, preferably 50 to 90% by weight, and more preferably 60 to 80% by weight.
 非凝縮性ガスの主成分であるメタンは、極性の高い酢酸水溶液よりも極性の低い酢酸エチルによく溶解するため、吸収液として酢酸エチルが適している。 Since methane, which is the main component of the non-condensable gas, dissolves better in ethyl acetate having a lower polarity than a highly polar acetic acid aqueous solution, ethyl acetate is suitable as an absorbing solution.
 吸収塔Cに供給される前記吸収塔補給液(ライン11)の供給量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.1~10であり、好ましくは前者/後者=0.3~2である。また、吸収塔Cに供給される前記循環液(ライン9)の量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.05~20であり、好ましくは前者/後者=0.1~10である。 The ratio (weight ratio) between the supply amount of the absorption tower replenisher (line 11) supplied to the absorption tower C and the supply amount of the reaction fluid (line 7) is, for example, the former / the latter = 0.1-10. Yes, preferably the former / the latter = 0.3-2. Further, the ratio (weight ratio) between the amount of the circulating fluid (line 9) supplied to the absorption tower C and the supply amount of the reaction fluid (line 7) is, for example, the former / the latter = 0.05-20. The former / the latter is preferably 0.1 to 10.
 吸収塔Cの段数(理論段数)は、例えば、1~20、好ましくは3~10である。また、吸収塔Cにおける温度は、例えば、0~70℃であり、吸収塔Cにおける圧力は、例えば、0.1~5MPa(絶対圧)である。 The number of plates (theoretical plate number) of the absorption tower C is, for example, 1 to 20, preferably 3 to 10. The temperature in the absorption tower C is, for example, 0 to 70 ° C., and the pressure in the absorption tower C is, for example, 0.1 to 5 MPa (absolute pressure).
 放散塔Dにおける温度は、例えば、0~70℃である。放散塔Dにおける圧力は、吸収塔Cの圧力より低ければよく、例えば、0.05~4.9MPa(絶対圧)である。吸収塔Cの圧力と放散塔Dの圧力との差(前者-後者)は、非凝縮性ガスの放散効率やアセトアルデヒドのロス抑制の観点から適宜選択できるが、例えば、0.05~4.9MPa、好ましくは0.5~2MPaである。 The temperature in the diffusion tower D is, for example, 0 to 70 ° C. The pressure in the stripping tower D may be lower than the pressure in the absorption tower C, for example, 0.05 to 4.9 MPa (absolute pressure). The difference between the pressure in the absorption tower C and the pressure in the diffusion tower D (the former-the latter) can be appropriately selected from the viewpoint of the emission efficiency of the non-condensable gas and the suppression of the loss of acetaldehyde, and is, for example, 0.05 to 4.9 MPa. The pressure is preferably 0.5 to 2 MPa.
 反応系で得られた反応粗液は精製工程(精製系)に供給され、アセトアルデヒドが製品として得られる。また、未反応の酢酸や、副生した各成分を回収し、必要に応じて反応器にリサイクルすることができる。 The reaction crude liquid obtained in the reaction system is supplied to a purification step (purification system), and acetaldehyde is obtained as a product. Further, unreacted acetic acid and by-product components can be collected and recycled to the reactor as necessary.
 本発明において、精製系は、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程(以下、「アセトアルデヒド精製工程」と称する場合がある)、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程(以下、「酢酸回収工程」と称する場合がある)を含むのが好ましい。 In the present invention, the purification system includes a step of separating acetaldehyde from the reaction crude liquid obtained by hydrogenating acetic acid in the first distillation column (hereinafter sometimes referred to as “acetaldehyde purification step”), a liquid after separation of acetaldehyde. It is preferable to include a step of separating unreacted acetic acid in the second distillation column (hereinafter sometimes referred to as “acetic acid recovery step”).
 前記アセトアルデヒド精製工程では、例えば、前記反応粗液を第1蒸留塔(アセトアルデヒド製品塔)に仕込み、塔頂からアセトアルデヒドを分離、回収する。塔底からは、未反応の酢酸と副生した水(通常、さらにエタノール、酢酸エチル等のその他の生成物を含む)を含む酢酸水溶液が排出される。 In the acetaldehyde purification step, for example, the reaction crude liquid is charged into a first distillation column (acetaldehyde product column), and acetaldehyde is separated and recovered from the top of the column. From the bottom of the column, an acetic acid aqueous solution containing unreacted acetic acid and by-produced water (usually further containing other products such as ethanol and ethyl acetate) is discharged.
 アセトアルデヒド製品塔の段数(理論段数)は、例えば10~50、好ましくは20~40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the acetaldehyde product column is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
 前記酢酸回収工程では、前記アセトアルデヒド製品塔における塔底液(缶出液)を第2蒸留塔(酢酸回収塔)に仕込むとともに、塔頂部から酢酸エチルを含む液を流入する。塔頂留出液をデカンターに導き(この際、酢酸エチルを補充してもよい)、上相(酢酸エチル相)と下相(水相)に分液させる。留出上相液の一部は、蒸留塔内に還流させるが、前述したように、その一部を前記吸収塔における吸収液として利用してもよい。留出上相液の残りと留出下相液は、例えば、後述する脱低沸塔に供給される。 In the acetic acid recovery step, the bottom liquid (bottom liquid) in the acetaldehyde product tower is charged into the second distillation tower (acetic acid recovery tower), and a liquid containing ethyl acetate is introduced from the top of the tower. The column top distillate is introduced into a decanter (in this case, ethyl acetate may be replenished) and separated into an upper phase (ethyl acetate phase) and a lower phase (aqueous phase). A part of the distillate upper phase liquid is refluxed into the distillation tower, but as described above, a part of the upper liquid may be used as the absorbing liquid in the absorption tower. The remainder of the distillate upper phase liquid and the distillate lower phase liquid are supplied to, for example, a delow boiling tower described later.
 酢酸回収塔の塔底から、酢酸が回収される。この酢酸は反応系にリサイクルすることができる。 Acetic acid is recovered from the bottom of the acetic acid recovery tower. This acetic acid can be recycled to the reaction system.
 酢酸回収塔の段数(理論段数)は、例えば、10~50、好ましくは10~30である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the acetic acid recovery tower is, for example, 10 to 50, preferably 10 to 30. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
 反応粗液からアセトアルデヒドと未反応酢酸を分離した後の液には、(a)アセトン等の酢酸エチルよりも沸点の低い低沸点成分、(b)エタノール及び酢酸エチル、(c)水が含まれている。これらの成分を分離する方法として、例えば、以下の2つの方法がある。 The liquid after separation of acetaldehyde and unreacted acetic acid from the reaction crude liquid contains (a) low-boiling components having a lower boiling point than ethyl acetate such as acetone, (b) ethanol and ethyl acetate, and (c) water. ing. As a method for separating these components, for example, there are the following two methods.
 第1の方法では、前記未反応酢酸分離後の液から、まず、第3蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分を分離し(脱低沸工程)、次いで、該低沸点成分分離後の液から第4蒸留塔で(b)エタノール及び酢酸エチルの混合液と(c)水とを分離する(エタノール・酢酸エチル回収工程)。 In the first method, first, a low-boiling component having a boiling point lower than that of ethyl acetate is separated (a) in the third distillation column from the unreacted acetic acid-separated liquid, and then the low-boiling component is removed. (B) A mixture of ethanol and ethyl acetate and (c) water are separated from the liquid after the boiling point component separation in the fourth distillation column (ethanol / ethyl acetate recovery step).
 前記脱低沸工程では、前記酢酸回収塔の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(脱低沸塔)に仕込み、塔頂から低沸点成分を回収し、塔底からエタノールと酢酸エチルと水を含む液を排出させる。塔底液は、後述する第4蒸留塔(エタノール・酢酸エチル回収塔)に供給される。 In the de-low boiling step, a part (if necessary) of the distillate upper phase liquid of the acetic acid recovery tower and the distillate lower phase liquid are charged into the third distillation column (delow boiling tower), The boiling component is recovered, and a liquid containing ethanol, ethyl acetate, and water is discharged from the bottom of the tower. The column bottom liquid is supplied to a fourth distillation column (ethanol / ethyl acetate recovery column) described later.
 第3蒸留塔(脱低沸塔)の段数(理論段数)は、例えば、10~50、好ましくは20~40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the third distillation column (delow boiling column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
 前記エタノール・酢酸エチル回収工程では、前記第3蒸留塔(脱低沸塔)の塔底液を第4蒸留塔(エタノール・酢酸エチル回収塔)に仕込み、塔頂から、エタノール及び酢酸エチルの混合液を回収し、塔底から水を排出する。 In the ethanol / ethyl acetate recovery step, the bottom liquid of the third distillation tower (delow boiling tower) is charged into the fourth distillation tower (ethanol / ethyl acetate recovery tower), and ethanol and ethyl acetate are mixed from the top of the tower. The liquid is recovered and water is discharged from the bottom of the tower.
 第4蒸留塔(エタノール・酢酸エチル回収塔)の段数(理論段数)は、例えば、5~50、好ましくは10~20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the fourth distillation column (ethanol / ethyl acetate recovery column) is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
 第2の方法では、前記未反応酢酸分離後の液から、まず、第3蒸留塔で(c)水を分離し(水分離工程)、水分離後の液から第4蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分と(b)エタノール及び酢酸エチルの混合液とを分離する(低沸点成分回収工程)。 In the second method, from the liquid after separation of the unreacted acetic acid, first, (c) water is separated in a third distillation column (water separation step), and from the liquid after water separation in the fourth distillation column (a). A low-boiling component having a boiling point lower than that of ethyl acetate and (b) a mixture of ethanol and ethyl acetate are separated (low-boiling component recovery step).
 前記水分離工程では、前記第2蒸留塔(酢酸回収塔)の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(水分離塔)に仕込み、塔頂から酢酸エチルよりも沸点の低い低沸点成分とエタノールと酢酸エチルとを留出させ、塔底から水を排出させる。塔頂液は、後述する第4蒸留塔(低沸点成分回収塔)に供給される。 In the water separation step, a part (if necessary) of the distillate upper phase liquid of the second distillation column (acetic acid recovery column) and the distillate lower phase solution are charged into a third distillation column (water separation column), A low-boiling component having a boiling point lower than that of ethyl acetate, ethanol and ethyl acetate are distilled from the top of the column, and water is discharged from the bottom of the column. The column top liquid is supplied to a fourth distillation column (low boiling point component recovery column) described later.
 第3蒸留塔(水分離塔)の段数(理論段数)は、例えば、5~50、好ましくは10~20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the third distillation column (water separation column) is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
 前記低沸点成分回収工程では、前記第3蒸留塔(水分離塔)の塔頂液を第4蒸留塔(低沸点成分回収塔)に仕込み、塔頂から、アセトン等の酢酸エチルよりも沸点の低い低沸点成分を回収し、塔底からエタノールと酢酸エチルの混合液を回収する。 In the low boiling point component recovery step, the top liquid of the third distillation column (water separation column) is charged into the fourth distillation column (low boiling point component recovery column), and the boiling point is higher than ethyl acetate such as acetone from the top of the column. Low low boiling point components are recovered, and a mixture of ethanol and ethyl acetate is recovered from the bottom of the column.
 第4蒸留塔(低沸点成分回収塔)の段数(理論段数)は、例えば、10~50、好ましくは20~40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。 The number of plates (theoretical plate number) of the fourth distillation column (low boiling point component recovery column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
(工程5)
 工程5では、工程3で製造する酢酸と工程4で副生するエタノールから酢酸エチルを製造する。以下、任意の工程である工程5の反応系の1例について、詳細に説明する。
(Process 5)
In step 5, ethyl acetate is produced from the acetic acid produced in step 3 and the ethanol produced as a by-product in step 4. Hereinafter, an example of the reaction system in Step 5 which is an optional step will be described in detail.
[反応系-2(エタノールと酢酸の反応)]
 前述したように、エタノールと酢酸エチルが共沸するため、副生するエタノール及び酢酸エチルの混合液からエタノールと酢酸エチルを分離するためには、煩雑なプロセスが必要となり、有価物として得られるエタノールおよび酢酸エチルのコストが高くなる。
[Reaction system-2 (reaction of ethanol and acetic acid)]
As described above, since ethanol and ethyl acetate azeotrope, in order to separate ethanol and ethyl acetate from a by-product mixture of ethanol and ethyl acetate, a complicated process is required, and ethanol obtained as a valuable resource is obtained. And the cost of ethyl acetate increases.
 これらの問題を解決するため、反応粗液から、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノール及び酢酸エチルの混合液の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールを酢酸エチルに変換することが好ましい。エタノールを酢酸エチルに変換する方法は、英国特許 第710,803号、旧ソ連邦特許 第857,109等に例示されている。 In order to solve these problems, acetic acid is added to a part or all of a mixed solution of ethanol and ethyl acetate after separation of acetaldehyde, unreacted acetic acid and water from the reaction crude liquid by distillation, and the presence of an acidic catalyst. Under preference, the ethanol is preferably converted to ethyl acetate. Methods for converting ethanol to ethyl acetate are exemplified in British Patent No. 710,803, Old Soviet Patent No. 857,109 and the like.
 前記エタノール及び酢酸エチルの混合液としては、例えば、前記第1の方法における第4蒸留塔の塔頂から得られるエタノール及び酢酸エチルの混合液、前記第2の方法における第4蒸留塔の塔底から得られるエタノールと酢酸エチルの混合液、第3蒸留塔の塔頂から得られる低沸点成分を含んだエタノール及び酢酸エチルの混合液などが挙げられる。 Examples of the mixed solution of ethanol and ethyl acetate include a mixed solution of ethanol and ethyl acetate obtained from the top of the fourth distillation column in the first method, and the bottom of the fourth distillation column in the second method. And a mixed solution of ethanol and ethyl acetate containing a low-boiling component obtained from the top of the third distillation column.
 酸性触媒は、エタノールと酢酸をエステル化する能力のある酸性触媒であれば、均一触媒でも固体触媒でもよい。均一触媒の場合、硫酸やリン酸などの鉱酸やパラトルエンスルホン酸やメタンスルホン酸などの有機酸が選ばれ、固体触媒の場合、イオン交換樹脂やゼオライトなどが選ばれる。 The acidic catalyst may be a homogeneous catalyst or a solid catalyst as long as it is an acidic catalyst capable of esterifying ethanol and acetic acid. In the case of a homogeneous catalyst, a mineral acid such as sulfuric acid or phosphoric acid, or an organic acid such as p-toluenesulfonic acid or methanesulfonic acid is selected. In the case of a solid catalyst, an ion exchange resin or zeolite is selected.
 反応器は、完全混合槽でもプラグフローでも、これらを組み合わせたものでもよく、さらに、より反応を進めるため、途中で生成物である水や酢酸エチルの一部または全部を分離してもよい。また、反応器は、固体触媒を充填した固定床でもよく、蒸留塔内に触媒を存在させ、エステル化反応と生成物の分離を同時に行ってもよい。エステル化反応液に酸性触媒を含んでいる場合には、酸性触媒を常法により分離できる。 The reactor may be a complete mixing tank, a plug flow, or a combination of these. Furthermore, in order to further promote the reaction, part or all of the product water and ethyl acetate may be separated on the way. Further, the reactor may be a fixed bed filled with a solid catalyst, or the catalyst may be present in the distillation column, and the esterification reaction and the product may be separated at the same time. When the esterification reaction solution contains an acidic catalyst, the acidic catalyst can be separated by a conventional method.
 エステル化反応における反応温度は、例えば、30~150℃、好ましくは40~100℃である。反応は減圧下、常圧下、加圧下のいずれの条件で行ってもよい。 The reaction temperature in the esterification reaction is, for example, 30 to 150 ° C., preferably 40 to 100 ° C. The reaction may be carried out under any conditions of reduced pressure, normal pressure and increased pressure.
 エステル化反応後の反応液からは、通常の酢酸エチル反応液の分離・精製方法を使用して、未反応原料を回収・リサイクルし、製品酢酸エチルを得ることができる。 From the reaction solution after the esterification reaction, the product ethyl acetate can be obtained by recovering and recycling the unreacted raw material by using a normal separation and purification method of the ethyl acetate reaction solution.
 図5は、前記第1の方法を含む精製系(前記反応系-2を含む)を示す概略フロー図であり、図6は、前記第2の方法を含む精製系(前記反応系-2を含む)を示す概略フロー図である。 FIG. 5 is a schematic flow diagram illustrating a purification system (including the reaction system-2) including the first method, and FIG. 6 illustrates a purification system (including the reaction system-2) including the second method. FIG.
 図5に示す例では、反応粗液は、反応粗液タンクK-2からポンプN-4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M-5及びM-6は冷却器、R-1は受器、N-5、N-6はポンプ、Q-3はベント、O-1はリボイラー、K-3は製品アセトアルデヒドタンクである。 In the example shown in FIG. 5, the reaction crude liquid is charged from the reaction crude liquid tank K-2 to the first distillation column (acetaldehyde product column) E through the line 16 using the pump N-4. In the first distillation column (acetaldehyde product column) E, the non-condensable gas is purged from the line 17 from the top of the column, and the product acetaldehyde is distilled from the line 18. The bottoms of the first distillation column (acetaldehyde product column) E is supplied to the second distillation column (acetic acid recovery column) F through the line 19. M-5 and M-6 are coolers, R-1 is a receiver, N-5 and N-6 are pumps, Q-3 is a vent, O-1 is a reboiler, and K-3 is a product acetaldehyde tank.
 第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK-4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(脱低沸塔)Gに仕込まれる。デカンターSには、酢酸エチルタンクK-5中の酢酸エチルがライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK-6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M-7は冷却器、N-7、N-8、N-9、N-10、N-11はポンプ、O-2はリボイラーである。 In the second distillation column (acetic acid recovery column) F, an ethyl acetate-containing liquid is charged to the top of the column from the line 23, and unreacted acetic acid is recovered from the bottoms of the line 24, and the recovered acetic acid tank K-4 is recovered. Stored and recycled to the reaction system. Acetone, ethanol, ethyl acetate, and water are distilled off at the top of the second distillation column (acetic acid recovery column) F, separated by a decanter S, and a part of the upper phase liquid of the line 20 (if necessary). The lower phase water of the line 21 is charged into the third distillation column (delow boiling column) G. The decanter S is supplied with the ethyl acetate in the ethyl acetate tank K-5 from the line 25. A part of the upper phase liquid of the decanter S is stored in the absorption liquid tank K-6 from the line 22, and is also charged into the absorption tower C from the line 15 and the line 11 as described above to absorb acetaldehyde. A part of the upper phase liquid of the decanter S is refluxed into the distillation column by the line 23. M-7 is a cooler, N-7, N-8, N-9, N-10, N-11 are pumps, and O-2 is a reboiler.
 第3蒸留塔(脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール・酢酸エチル回収塔)Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M-8は冷却器、R-2は受器、N-12、N-13はポンプ、O-3はリボイラー、K-7は低沸点成分タンクである。 Low boiling components such as acetone are distilled from the top of the third distillation column (delow boiling column) G from the line 26, and the bottoms of the line 28 are charged into the fourth distillation column (ethanol / ethyl acetate recovery column) H. It is. A part of the column top distillate is refluxed into the distillation column via line 27. M-8 is a cooler, R-2 is a receiver, N-12 and N-13 are pumps, O-3 is a reboiler, and K-7 is a low boiling point component tank.
 第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂からライン29よりエタノール及び酢酸エチルの混合液を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M-9、M-10は冷却器、R-3は受器、N-14、N-15はポンプ、O-4はリボイラー、K-8は回収エタノール/酢酸エチルタンクである。 From the top of the fourth distillation tower (ethanol / ethyl acetate recovery tower) H, a mixed liquid of ethanol and ethyl acetate is recovered from the line 29, and the bottom liquid (water) is drained from the line 31. A part of the column top distillate is refluxed into the distillation column via line 30. M-9 and M-10 are coolers, R-3 is a receiver, N-14 and N-15 are pumps, O-4 is a reboiler, and K-8 is a recovered ethanol / ethyl acetate tank.
 ライン35のエタノール/酢酸エチル混合物の一部または全部は、ライン36より酢酸を加え、加熱器O-5によりエステル化反応温度に昇温して、ライン37から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン38により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収し、製品酢酸エチルを得ることができる。 Part or all of the ethanol / ethyl acetate mixture in the line 35 is added with acetic acid from the line 36, heated to the esterification reaction temperature by the heater O-5, and the esterification reactor in which an acidic catalyst is present from the line 37. After being supplied to V and esterifying ethanol, it is supplied to the ethyl acetate purification step X through the line 38, and unreacted raw materials are recovered by using a normal ethyl acetate reaction liquid separation and purification method to obtain a product ethyl acetate. be able to.
 図6に示す例では、反応粗液は、反応粗液タンクK-2からポンプN-4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M-5及びM-6は冷却器、R-1は受器、N-5、N-6はポンプ、Q-3はベント、O-1はリボイラー、K-3は製品アセトアルデヒドタンクである。 In the example shown in FIG. 6, the reaction crude liquid is charged from the reaction crude liquid tank K-2 to the first distillation column (acetaldehyde product column) E through the line 16 using the pump N-4. In the first distillation column (acetaldehyde product column) E, the non-condensable gas is purged from the line 17 from the top of the column, and the product acetaldehyde is distilled from the line 18. The bottoms of the first distillation column (acetaldehyde product column) E is supplied to the second distillation column (acetic acid recovery column) F through the line 19. M-5 and M-6 are coolers, R-1 is a receiver, N-5 and N-6 are pumps, Q-3 is a vent, O-1 is a reboiler, and K-3 is a product acetaldehyde tank.
 第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK-4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(この場合は、水分離塔として機能する)Gに仕込まれる。デカンターSには、酢酸エチルタンクK-5中の酢酸エチルがライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK-6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M-7は冷却器、N-7、N-8、N-9、N-10、N-11はポンプ、O-2はリボイラーである。 In the second distillation column (acetic acid recovery column) F, an ethyl acetate-containing liquid is charged to the top of the column from the line 23, and unreacted acetic acid is recovered from the bottoms of the line 24, and the recovered acetic acid tank K-4 is recovered. Stored and recycled to the reaction system. Acetone, ethanol, ethyl acetate, and water are distilled off at the top of the second distillation column (acetic acid recovery column) F, separated by a decanter S, and a part of the upper phase liquid of the line 20 (if necessary). The lower phase water of the line 21 is charged into a third distillation column (in this case, functioning as a water separation column) G. The decanter S is supplied with the ethyl acetate in the ethyl acetate tank K-5 from the line 25. A part of the upper phase liquid of the decanter S is stored in the absorption liquid tank K-6 from the line 22, and is also charged into the absorption tower C from the line 15 and the line 11 as described above to absorb acetaldehyde. A part of the upper phase liquid of the decanter S is refluxed into the distillation column by the line 23. M-7 is a cooler, N-7, N-8, N-9, N-10, N-11 are pumps, and O-2 is a reboiler.
 第3蒸留塔(水分離塔)Gの塔頂からライン26よりアセトン等の低沸点成分、エタノール、酢酸エチルが留出し、第4蒸留塔(この場合は、低沸点成分回収塔として機能する)Hに仕込まれる。塔底液(水)はライン31より排水される。塔頂留出液の一部はライン27により蒸留塔内に還流される。M-8、M-10は冷却器、R-2は受器、N-13、N-14はポンプ、O-3はリボイラーである。 From the top of the third distillation column (water separation column) G, low-boiling components such as acetone, ethanol, and ethyl acetate are distilled from line 26, and the fourth distillation column (in this case, functions as a low-boiling component recovery column). H is charged. The tower bottom liquid (water) is drained from the line 31. A part of the column top distillate is refluxed into the distillation column via line 27. M-8 and M-10 are coolers, R-2 is a receiver, N-13 and N-14 are pumps, and O-3 is a reboiler.
 第4蒸留塔(低沸点成分回収塔)Hの塔頂からライン29よりアセトン等の低沸点成分を回収し、塔底からライン28よりエタノール及び酢酸エチルの混合液が回収される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M-9は冷却器、R-3は受器、N-12、N-15はポンプ、O-4はリボイラー、K-7は低沸点成分タンク、K-8は回収エタノール/酢酸エチルタンクである。 A low boiling point component such as acetone is recovered from the line 29 from the top of the fourth distillation column (low boiling point recovery column) H, and a mixed solution of ethanol and ethyl acetate is recovered from the line 28 from the line bottom. A part of the column top distillate is refluxed into the distillation column via line 30. M-9 is a cooler, R-3 is a receiver, N-12 and N-15 are pumps, O-4 is a reboiler, K-7 is a low boiling point component tank, and K-8 is a recovered ethanol / ethyl acetate tank. is there.
 ライン39のエタノール/酢酸エチル混合物の一部または全部は、ライン40より酢酸を加え、加熱器O-5によりエステル化反応温度に昇温して、ライン41から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン42により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収・リサイクルし、製品酢酸エチルが得られる。 Part or all of the ethanol / ethyl acetate mixture in line 39 is added with acetic acid from line 40, heated to esterification reaction temperature by heater O-5, and esterification reactor in which an acidic catalyst is present from line 41 After supplying ethanol to esterify ethanol, it is supplied to the ethyl acetate purification step X through the line 42, and unreacted raw materials are recovered and recycled using the usual separation and purification method of ethyl acetate reaction solution, and the product ethyl acetate Is obtained.
 本発明によれば、合成ガス内の水素及び一酸化炭素を無駄なく効率よく使用するため、合成ガスとメタノールから、工業的に効率よく低コストで工業的に重要な中間体である酢酸及びアセトアルデヒドを製造できる。 According to the present invention, in order to efficiently use hydrogen and carbon monoxide in the synthesis gas without waste, acetic acid and acetaldehyde, which are industrially important intermediates from the synthesis gas and methanol, are industrially efficient and low cost. Can be manufactured.
 A  蒸発器
 B  反応器
 C  吸収塔
 C-1  スクラバー
 D  放散塔
 E  第1蒸留塔(アセトアルデヒド製品塔)
 F  第2蒸留塔(酢酸回収塔)
 G  第3蒸留塔
 H  第4蒸留塔
 I-1~I-2  コンプレッサー
 J-1~J-3  バッファータンク
 K-1  酢酸タンク(工程3で得られた酢酸の貯蔵タンク)
 K-2  反応粗液タンク
 K-3  アセトアルデヒド製品タンク
 K-4  回収酢酸タンク
 K-5  酢酸エチルタンク
 K-6  吸収液タンク
 K-7  低沸点成分タンク
 K-8  回収エタノール/酢酸エチルタンク
 K-9  吸収液タンク
 L-1~L-2  加熱器
 M-1~M-12  冷却器(クーラー)
 N-1~N-18  ポンプ(送液ポンプ)
 O-1~O-4  リボイラー
 O-5  加熱器
 P  水素設備(工程2で得られた水素の貯蔵設備)
 Q-1~Q-3  ベント
 R-1~R-3  受器(タンク)
 S  デカンター
 T  排水設備
 U  気液分離器
 V  エステル化反応器
 W  酢酸
 X  酢酸エチル精製工程
 1~42 ライン
A Evaporator B Reactor C Absorption tower C-1 Scrubber D Stripping tower E First distillation tower (acetaldehyde product tower)
F Second distillation column (acetic acid recovery column)
G Third distillation column H Fourth distillation column I-1 to I-2 Compressor J-1 to J-3 Buffer tank K-1 Acetic acid tank (Acetic acid storage tank obtained in step 3)
K-2 Reaction crude liquid tank K-3 Acetaldehyde product tank K-4 Recovery acetic acid tank K-5 Ethyl acetate tank K-6 Absorption liquid tank K-7 Low boiling point tank K-8 Recovery ethanol / ethyl acetate tank K-9 Absorption liquid tank L-1 to L-2 Heater M-1 to M-12 Cooler (cooler)
N-1 to N-18 pump (liquid feed pump)
O-1 to O-4 Reboiler O-5 Heater P Hydrogen equipment (Hydrogen storage equipment obtained in Step 2)
Q-1 to Q-3 Vent R-1 to R-3 Receiver (tank)
S Decanter T Drainage equipment U Gas-liquid separator V Esterification reactor W Acetic acid X Ethyl acetate purification process 1-42 line

Claims (2)

  1.  メタノールと合成ガスから酢酸とアセトアルデヒドを製造する方法であって、合成ガスを製造する工程1、合成ガスから二酸化炭素などの不純物を除去し、一酸化炭素と水素に分離する工程2、工程2で得られた一酸化炭素とメタノールから酢酸を製造する工程3、工程2で得られた水素と工程3で得られた酢酸からアセトアルデヒドを製造する工程4を含むことを特徴とする酢酸とアセトアルデヒドの製造方法。 A method for producing acetic acid and acetaldehyde from methanol and synthesis gas, in step 1 for producing synthesis gas, in step 2 and step 2 for removing impurities such as carbon dioxide from synthesis gas and separating them into carbon monoxide and hydrogen Production of acetic acid and acetaldehyde, comprising step 3 for producing acetic acid from the obtained carbon monoxide and methanol, step 4 for producing acetaldehyde from hydrogen obtained in step 2 and acetic acid obtained in step 3 Method.
  2.  工程3で製造する酢酸と工程4で副生するエタノールから酢酸エチルを製造する工程5を含むことを特徴とする請求項1記載の酢酸とアセトアルデヒドの製造方法。 The method for producing acetic acid and acetaldehyde according to claim 1, comprising a step 5 for producing ethyl acetate from acetic acid produced in the step 3 and ethanol by-produced in the step 4.
PCT/JP2015/056507 2014-04-28 2015-03-05 Method for producing acetic acid and acetaldehyde WO2015166706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515884A JP6723151B2 (en) 2014-04-28 2015-03-05 Process for producing acetic acid, acetaldehyde and ethyl acetate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014092590 2014-04-28
JP2014-092590 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166706A1 true WO2015166706A1 (en) 2015-11-05

Family

ID=54358447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056507 WO2015166706A1 (en) 2014-04-28 2015-03-05 Method for producing acetic acid and acetaldehyde

Country Status (2)

Country Link
JP (1) JP6723151B2 (en)
WO (1) WO2015166706A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071016A1 (en) * 2008-12-19 2010-06-24 ダイセル化学工業株式会社 Method for manufacturing acetic acid and ammonia
JP2010241765A (en) * 2009-04-09 2010-10-28 Daicel Chem Ind Ltd Method for producing carboxylic acid ester
JP2011529494A (en) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション Direct and selective production of acetaldehyde from acetic acid using supported metal catalysts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121498A (en) * 1998-04-30 2000-09-19 Eastman Chemical Company Method for producing acetaldehyde from acetic acid
BR112012019360A2 (en) * 2010-02-02 2018-05-08 Celanese Int Corp processes for the production of denatured ethanol.
US9150474B2 (en) * 2010-07-09 2015-10-06 Celanese International Corporation Reduction of acid within column through esterification during the production of alcohols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529494A (en) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション Direct and selective production of acetaldehyde from acetic acid using supported metal catalysts
WO2010071016A1 (en) * 2008-12-19 2010-06-24 ダイセル化学工業株式会社 Method for manufacturing acetic acid and ammonia
JP2010241765A (en) * 2009-04-09 2010-10-28 Daicel Chem Ind Ltd Method for producing carboxylic acid ester

Also Published As

Publication number Publication date
JP6723151B2 (en) 2020-07-15
JPWO2015166706A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US8524954B2 (en) Hydrogenation of ethanoic acid to produce ethanol
EA017325B1 (en) Process for the production of alcohol from a carbonaceous feedstock
ES2624629T3 (en) Procedure to recover permanganate reducing compounds from an acetic acid production process
JP6700327B2 (en) Method for producing acetaldehyde
KR20130115274A (en) Acetic acid production method
JP2011516552A (en) Method and apparatus for efficient recovery of dichlorohydrins
JP2007529517A (en) Utilization of acetic acid reaction heat in other process plants.
JP2010523703A (en) Method and apparatus for azeotropic recovery of dichlorohydrin
KR102355059B1 (en) Method and apparatus for treating offgases in a acetic acid production unit
JP2010523704A (en) Method and apparatus for vapor phase purification during hydrochlorination of polyhydroxy aliphatic hydrocarbon compounds
CN104661991A (en) Improving catalyst stability in carbonylation processes
BR112021011508A2 (en) BUTADIENE PRODUCTION PROCESS FROM ETHANOL WITH IN SITU REGENERATION OF THE CATALYST OF THE SECOND REACTION STAGE
JP6502951B2 (en) Method for producing acetaldehyde
US20170137395A1 (en) Process for the production of furan and its derivatives
US20120130123A1 (en) Production of acetic acid with an increased production rate
WO2015166706A1 (en) Method for producing acetic acid and acetaldehyde
JP6405367B2 (en) Method for producing acetaldehyde
CS198231B2 (en) Method of the partial separation of water from gas mixture arising in vinyl acetate preparation
JP2011506419A (en) Method for producing 1,2-propanediol
US10508062B2 (en) Conversion of butanediol into butadiene, with scrubbing using diesters
KR102039403B1 (en) Method and apparatus for separating acetic acid from by-product discharged from reactor in purified terephthalic acid manufacturing
US20210363091A1 (en) Electric heating of boiler feedwater in the manufacture of purified aromatic carboxylic acids
WO2018069441A1 (en) Method for producing and purifying 1,3-butadiene
JP2021151976A (en) Production method of acetic acid, and production apparatus of acetic acid
JP2023542375A (en) Method for dehydrogenating ethanol in a shell-and-tube reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785513

Country of ref document: EP

Kind code of ref document: A1