JP2010241765A - Method for producing carboxylic acid ester - Google Patents

Method for producing carboxylic acid ester Download PDF

Info

Publication number
JP2010241765A
JP2010241765A JP2009094913A JP2009094913A JP2010241765A JP 2010241765 A JP2010241765 A JP 2010241765A JP 2009094913 A JP2009094913 A JP 2009094913A JP 2009094913 A JP2009094913 A JP 2009094913A JP 2010241765 A JP2010241765 A JP 2010241765A
Authority
JP
Japan
Prior art keywords
carboxylic acid
reaction
aliphatic
distillation column
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009094913A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kono
充宏 河野
Hitoshi Watanabe
仁志 渡邊
Shigeo Takahashi
成夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2009094913A priority Critical patent/JP2010241765A/en
Priority to KR1020100032215A priority patent/KR20100112534A/en
Publication of JP2010241765A publication Critical patent/JP2010241765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially efficiently producing the corresponding carboxylic acid ester from an aliphatic carboxylic acid and an aliphatic alcohol at a low cost. <P>SOLUTION: The method for producing the corresponding carboxylic acid ester by reacting an aliphatic carboxylic acid with an aliphatic alcohol in the presence of a catalyst comprises a step A of reacting the aliphatic carboxylic acid with the aliphatic alcohol in a reaction vessel; a step B of supplying the reaction solution obtained in the step A to a distillation column, distilling off the produced carboxylic acid ester and secondarily produced water from the top of the column, and recovering unreacted aliphatic carboxylic acid from the bottom of the distillation column; and a step C of recirculating the unreacted aliphatic carboxylic acid recovered in the step B to the step A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は脂肪族カルボン酸と脂肪族アルコールとを反応させて対応するカルボン酸エステルを製造する方法に関する。カルボン酸エステルは溶剤、有機合成品の原料などとして有用な化合物である。   The present invention relates to a method for producing a corresponding carboxylic acid ester by reacting an aliphatic carboxylic acid with an aliphatic alcohol. Carboxylic acid esters are useful compounds as solvents and raw materials for organic synthetic products.

カルボン酸エステルの製造方法として、カルボン酸とアルコールとを触媒の存在下で反応させる方法が知られている。例えば、特開2001−302585号公報には、炭素数2〜5の脂肪族カルボン酸と炭素数2〜5の脂肪族アルコールとを、後者が化学量論的反応量より過剰となる条件下で反応帯へ連続的に供給し、エステル化触媒の存在下にこれらを反応させ、得られる反応粗液を水の補給下に蒸留することによりエステル/水/アルコールの3成分組成からなる共沸混合物を留取し、この共沸混合物から相分離操作を経てエステルを得るエステルの連続製造方法が開示されている。   As a method for producing a carboxylic acid ester, a method in which a carboxylic acid and an alcohol are reacted in the presence of a catalyst is known. For example, Japanese Patent Application Laid-Open No. 2001-302585 discloses an aliphatic carboxylic acid having 2 to 5 carbon atoms and an aliphatic alcohol having 2 to 5 carbon atoms under the condition that the latter is in excess of the stoichiometric reaction amount. An azeotrope composed of a three-component composition of ester / water / alcohol by continuously feeding to a reaction zone, reacting them in the presence of an esterification catalyst, and distilling the resulting reaction crude liquid with water replenishment Is continuously produced, and an ester is obtained from this azeotropic mixture through a phase separation operation.

しかし、上記の方法では、アルコールを過剰に反応系に供給するために、得られたエステルを精製する工程で、エステルより沸点の低いアルコールを目的製品であるエステルととともに蒸留塔で蒸留して塔頂より留出させる必要がある。また、得られた留出物からさらにアルコールを蒸留分離する必要があるだけでなく、反応粗液に水を添加して蒸留するため、蒸留に要するエネルギー使用量は極めて多くなる。   However, in the above method, in order to supply alcohol excessively to the reaction system, in the step of purifying the obtained ester, alcohol having a boiling point lower than that of the ester is distilled together with the target product ester in the distillation column. It is necessary to distill from the top. Moreover, not only is it necessary to further distill and separate alcohol from the resulting distillate, but water is added to the reaction crude liquid for distillation, so that the amount of energy required for distillation is extremely large.

特開2001−302585号公報JP 2001-302585 A

従って、本発明の目的は、脂肪族カルボン酸と脂肪族アルコールから、対応するカルボン酸エステルを低コストで工業的に効率よく製造する方法を提供することにある。
本発明の他の目的は、さらに、カルボン酸エステルを少ないエネルギー使用量で製造できる方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for industrially efficiently producing a corresponding carboxylic acid ester from an aliphatic carboxylic acid and an aliphatic alcohol at a low cost.
Another object of the present invention is to provide a method capable of producing a carboxylic acid ester with a small amount of energy consumption.

本発明者らは前記目的を達成するため、鋭意検討を重ねた結果、脂肪族カルボン酸と脂肪族アルコールとの反応液を蒸留塔に供給して、塔頂から生成したカルボン酸エステルと副生した水とを留出させ、塔底から未反応の脂肪族カルボン酸を回収し、この回収した脂肪族カルボン酸を反応器にリサイクルすることにより、工業的に効率よくカルボン酸エステルを製造できることを見出し、本発明を完成した。   As a result of intensive investigations to achieve the above object, the inventors of the present invention supplied a reaction liquid of an aliphatic carboxylic acid and an aliphatic alcohol to a distillation column, and the carboxylic acid ester generated from the top of the column and a byproduct. That the unreacted aliphatic carboxylic acid is recovered from the bottom of the column, and the recovered aliphatic carboxylic acid is recycled to the reactor to efficiently produce a carboxylic acid ester industrially. The headline and the present invention were completed.

すなわち、本発明は、脂肪族カルボン酸と脂肪族アルコールとを触媒の存在下で反応させて対応するカルボン酸エステルを製造する方法であって、前記脂肪族カルボン酸と脂肪族アルコールとを反応器中で反応させる工程A、前記工程Aで得られた反応液を蒸留塔に供給し、塔頂から生成したカルボン酸エステルと副生する水とを留出させ、塔底から未反応の脂肪族カルボン酸を回収する工程B、及び前記工程Bで回収した未反応の脂肪族カルボン酸を前記工程Aにリサイクルする工程Cを含むことを特徴とするカルボン酸エステルの製造方法を提供する。   That is, the present invention is a method for producing a corresponding carboxylic acid ester by reacting an aliphatic carboxylic acid and an aliphatic alcohol in the presence of a catalyst, wherein the aliphatic carboxylic acid and the aliphatic alcohol are reacted in a reactor. The reaction solution obtained in the step A and the reaction solution obtained in the step A is supplied to the distillation column, the carboxylic acid ester generated from the top of the column and the by-product water are distilled off, and unreacted aliphatic from the bottom of the column. Provided is a method for producing a carboxylic acid ester, comprising: a step B for recovering a carboxylic acid; and a step C for recycling the unreacted aliphatic carboxylic acid recovered in the step B to the step A.

この製造方法では、工程Aにおいて、脂肪族カルボン酸と脂肪族アルコールとを前者が過剰となる条件で反応器に供給することが好ましい。   In this production method, in Step A, it is preferable to supply the aliphatic carboxylic acid and the aliphatic alcohol to the reactor under conditions that the former is excessive.

この製造方法は、さらに、工程Bおいて蒸留塔塔頂から留出した流れの少なくとも一部をアルカリ水溶液で処理して微量酸分を中和する工程Dを含んでいてもよい。   This production method may further include a step D in which at least a part of the stream distilled from the top of the distillation column in the step B is treated with an alkaline aqueous solution to neutralize a trace amount of acid.

本発明の製造方法によれば、脂肪族カルボン酸と脂肪族アルコールとを触媒の存在下で反応させて得られる反応液を蒸留塔に供給し、塔頂から生成したカルボン酸エステルと副生する水とを留出させ、塔底から未反応の脂肪族カルボン酸を回収して、これを反応工程にリサイクルするので、脂肪族カルボン酸の利用率を高めることができる。また、触媒として通常、強酸触媒を用いるため、この強酸触媒が塔底から未反応の脂肪族カルボン酸とともに回収して反応工程にリサイクルできるので、触媒の有効利用も可能である。また、強酸触媒をプロセスの早い段階で除くことが可能なため、後のプロセスにおいて強酸触媒による平衡状態の移動に基づく目的化合物の分解や、強酸を触媒とする副反応の進行を防止できるととともに、後のプロセスで高い耐久性を持つ高級材質を用いた設備が不要となるので、初期の投資の低減或いは機器更新に伴う追加の投資を回避できる。さらに、脂肪族カルボン酸を脂肪族アルコールに対して過剰量用いることにより、生成するカルボン酸エステルの精製工程において、該カルボン酸エステルとともに多量のアルコールを留出させる必要がなく、また水を添加しながら蒸留する必要もなく、さらに、留出液を分液させることによりカルボン酸エステルと水とを容易に分離できるため、エネルギー使用量を大幅に低減できる。なお、過剰に用いた脂肪族カルボン酸は蒸留塔の塔底から回収されて反応工程にリサイクルされるので、回収に要するエネルギーは極めて少なくてすむ。したがって、本発明によれば、カルボン酸エステルを低コストで工業的に効率よく製造できる。   According to the production method of the present invention, a reaction liquid obtained by reacting an aliphatic carboxylic acid and an aliphatic alcohol in the presence of a catalyst is supplied to a distillation column, and by-produced with a carboxylic acid ester generated from the top of the column. Since water is distilled off, unreacted aliphatic carboxylic acid is recovered from the bottom of the column and recycled to the reaction step, the utilization rate of aliphatic carboxylic acid can be increased. Further, since a strong acid catalyst is usually used as the catalyst, the strong acid catalyst can be recovered from the tower bottom together with the unreacted aliphatic carboxylic acid and recycled to the reaction step, so that the catalyst can be effectively used. In addition, since it is possible to remove the strong acid catalyst at an early stage of the process, it is possible to prevent the decomposition of the target compound based on the shift of the equilibrium state by the strong acid catalyst and the progress of the side reaction using the strong acid as a catalyst in the later process. This eliminates the need for equipment using high-grade materials having high durability in the subsequent process, and thus reduces initial investment or avoids additional investment associated with equipment replacement. Furthermore, by using an excess amount of the aliphatic carboxylic acid relative to the aliphatic alcohol, it is not necessary to distill a large amount of alcohol together with the carboxylic acid ester in the purification step of the produced carboxylic acid ester, and water is added. However, it is not necessary to distill, and furthermore, by separating the distillate, the carboxylic acid ester and water can be easily separated, so that the amount of energy used can be greatly reduced. Since the excessively used aliphatic carboxylic acid is recovered from the bottom of the distillation column and recycled to the reaction process, the energy required for recovery is very small. Therefore, according to the present invention, the carboxylic acid ester can be industrially efficiently produced at a low cost.

本発明のカルボン酸エステルの製造方法の一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the manufacturing method of carboxylic acid ester of this invention.

本発明では、脂肪族カルボン酸と脂肪族アルコールとを触媒の存在下で反応させて対応するカルボン酸エステルを製造する。   In the present invention, an aliphatic carboxylic acid and an aliphatic alcohol are reacted in the presence of a catalyst to produce a corresponding carboxylic acid ester.

原料として用いる脂肪族カルボン酸としては、例えば、酢酸、プロピオン酸、ブタン酸等の炭素数2〜5の飽和脂肪族カルボン酸など;アクリル酸、メタクリル酸などの炭素数2〜5の不飽和脂肪族カルボン酸などが挙げられる。脂肪族カルボン酸は単独で、又は2種以上を組み合わせて使用できる。一方、原料として用いる脂肪族アルコールとしては、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、アミルアルコール等の炭素数2〜5の脂肪族アルコールなどが挙げられる。脂肪族アルコールは単独で、又は2種以上を組み合わせて使用できる。脂肪族カルボン酸と脂肪族アルコールの好ましい組み合わせは、生成するカルボン酸エステルの沸点が原料の脂肪族カルボン酸の沸点よりも低くなる組み合わせである。より具体的には、例えば、酢酸と、エタノール、n−プロピルアルコール又はイソプロピルアルコールとの組み合わせが好ましく、特に、酢酸とエタノールの組み合わせが好ましい。また、本発明は、脂肪族アルコールの沸点が脂肪族カルボン酸の沸点よりも低い場合に大きな効果が得られる。   Examples of the aliphatic carboxylic acid used as a raw material include saturated aliphatic carboxylic acids having 2 to 5 carbon atoms such as acetic acid, propionic acid and butanoic acid; unsaturated fatty acids having 2 to 5 carbon atoms such as acrylic acid and methacrylic acid. Group carboxylic acid. Aliphatic carboxylic acids can be used alone or in combination of two or more. On the other hand, examples of the aliphatic alcohol used as a raw material include C2-C5 aliphatic alcohols such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and amyl alcohol. The aliphatic alcohols can be used alone or in combination of two or more. A preferred combination of the aliphatic carboxylic acid and the aliphatic alcohol is a combination in which the carboxylic acid ester to be produced has a lower boiling point than that of the starting aliphatic carboxylic acid. More specifically, for example, a combination of acetic acid and ethanol, n-propyl alcohol or isopropyl alcohol is preferable, and a combination of acetic acid and ethanol is particularly preferable. In addition, the present invention has a great effect when the boiling point of the aliphatic alcohol is lower than the boiling point of the aliphatic carboxylic acid.

原料として用いる脂肪族カルボン酸及び脂肪族アルコール中に不純物(特に、低沸点成分)が含まれていると、カルボン酸エステルの精製工程において、該不純物又は該不純物に起因する副生成物を分離除去する際、相当量のカルボン酸エステルがロスすることになる。したがって、このような目的物のロスを低減するためには、原料として用いる脂肪族カルボン酸、脂肪族アルコールに不純物が多く含まれている場合には、反応に供する前にあらかじめ蒸留その他の精製手段により精製するのが好ましい。また、原料として用いる脂肪族カルボン酸、脂肪族アルコールとしては、それぞれ、後続の精製工程から回収される脂肪族カルボン酸、脂肪族アルコールを循環使用することもできる。   When impurities (especially low-boiling components) are contained in the aliphatic carboxylic acid and aliphatic alcohol used as raw materials, the impurities or by-products resulting from the impurities are separated and removed in the carboxylic acid ester purification process. In doing so, a considerable amount of the carboxylic acid ester is lost. Therefore, in order to reduce the loss of the target product, if the aliphatic carboxylic acid or aliphatic alcohol used as a raw material contains a large amount of impurities, it must be distilled or other purification means in advance before being subjected to the reaction. It is preferable to purify by. In addition, as the aliphatic carboxylic acid and the aliphatic alcohol used as raw materials, the aliphatic carboxylic acid and the aliphatic alcohol recovered from the subsequent purification step can be respectively recycled.

本発明の工程Aでは、前記脂肪族カルボン酸と脂肪族アルコールとを反応器に供給して反応させる。反応器としては、特に限定されず、撹拌槽型反応器、塔型反応器、充填塔型反応器(例えば、イオン交換樹脂を充填した反応器等)等のいずれであってもよい。脂肪族カルボン酸と脂肪族アルコールとの供給比は特に限定されないが、脂肪族カルボン酸が脂肪族アルコールに対して過剰となる条件で反応器に供給するのが好ましい。このように脂肪族カルボン酸を脂肪族アルコールに対して過剰に使用することにより、後続のカルボン酸エステルの蒸留工程において多量の未反応アルコールを留出させる必要がなく、エネルギー使用量を低減できる。また、過剰の脂肪族カルボン酸は次の蒸留工程において塔底から回収され、さらに反応器にリサイクルされるので、多くのエネルギーを使用する必要がない。工程Aにおいて、脂肪族カルボン酸と脂肪族アルコールとの反応器への供給比(モル比)は、好ましくは前者が過剰(例えば前者が後者の1.2倍モル以上、好ましくは1.8倍モル以上)であり、より好ましくは、前者:後者(モル比)=1.8〜4.0:1、さらに好ましくは、前者:後者(モル比)=2.0〜3.5:1の範囲である。   In step A of the present invention, the aliphatic carboxylic acid and the aliphatic alcohol are supplied to the reactor and reacted. The reactor is not particularly limited, and may be any of a stirred tank reactor, a tower reactor, a packed tower reactor (for example, a reactor filled with an ion exchange resin, etc.) and the like. The supply ratio of the aliphatic carboxylic acid to the aliphatic alcohol is not particularly limited, but it is preferable to supply the aliphatic carboxylic acid to the reactor under the condition that the aliphatic carboxylic acid is excessive with respect to the aliphatic alcohol. By using the aliphatic carboxylic acid excessively with respect to the aliphatic alcohol in this way, it is not necessary to distill a large amount of unreacted alcohol in the subsequent carboxylic acid ester distillation step, and the amount of energy used can be reduced. Moreover, since excess aliphatic carboxylic acid is collect | recovered from the tower bottom in the next distillation process, and is further recycled to a reactor, it is not necessary to use much energy. In step A, the supply ratio (molar ratio) of the aliphatic carboxylic acid and the aliphatic alcohol to the reactor is preferably excessive in the former (for example, the former is 1.2 times or more moles, preferably 1.8 times the latter). More preferably, the former: the latter (molar ratio) = 1.8 to 4.0: 1, and more preferably the former: the latter (molar ratio) = 2.0 to 3.5: 1. It is a range.

触媒としては、公知のエステル化触媒を使用できる。エステル化触媒として、例えば、硫酸等の鉱酸;ベンゼンスルホン酸、p−トルエンスルホン酸(PTS)、p−オクチルベンゼンスルホン酸(OBSA)、ドデシルベンゼンスルホン酸(DBSA)、ナフタレンスルホン酸、メタンスルホン酸(MSA)、エタンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸類;これらの酸と有機塩基との塩(例えば、ピリジニウムp−トルエンスルホン酸(PPTS)など);強酸性イオン交換樹脂;塩化マグネシウム、塩化アルミニウム、四塩化チタン;固体酸触媒などが挙げられる。これらのなかでも、p−トルエンスルホン酸(PTS)、硫酸、強酸性イオン交換樹脂が好ましく、特に、p−トルエンスルホン酸(PTS)、強酸性イオン交換樹脂が好ましい。   A known esterification catalyst can be used as the catalyst. Examples of esterification catalysts include mineral acids such as sulfuric acid; benzenesulfonic acid, p-toluenesulfonic acid (PTS), p-octylbenzenesulfonic acid (OBSA), dodecylbenzenesulfonic acid (DBSA), naphthalenesulfonic acid, methanesulfone. Sulfonic acids such as acids (MSA), ethanesulfonic acid, trifluoromethanesulfonic acid; salts of these acids with organic bases (for example, pyridinium p-toluenesulfonic acid (PPTS)); strongly acidic ion exchange resins; magnesium chloride , Aluminum chloride, titanium tetrachloride; solid acid catalyst and the like. Among these, p-toluenesulfonic acid (PTS), sulfuric acid, and strong acidic ion exchange resin are preferable, and p-toluenesulfonic acid (PTS) and strong acidic ion exchange resin are particularly preferable.

触媒の使用量は、その種類によっても異なるが、反応器に供給する脂肪族カルボン酸と脂肪族アルコールの総量に対して、例えば0.01〜5重量%、好ましくは0.05〜2重量%程度である。   The amount of catalyst used varies depending on the type, but is 0.01 to 5% by weight, preferably 0.05 to 2% by weight, for example, based on the total amount of aliphatic carboxylic acid and aliphatic alcohol fed to the reactor. Degree.

工程Aでの前記供給比以外の反応条件は、エステル化反応における通常一般的な条件を採用できる。例えば、反応温度は、原料によっても異なるが、一般に60〜140℃、好ましくは70〜100℃、さらに好ましくは65〜95℃である。反応は、減圧下、常圧下、加圧下のいずれであってもよいが、操作性等の観点から常圧が好ましい。反応時間(反応器での滞留時間)は、通常3〜120分(例えば、3〜30分)程度である。   As the reaction conditions other than the supply ratio in step A, generally usual conditions in the esterification reaction can be adopted. For example, although reaction temperature changes with raw materials, it is 60-140 degreeC generally, Preferably it is 70-100 degreeC, More preferably, it is 65-95 degreeC. The reaction may be performed under reduced pressure, normal pressure, or increased pressure, but normal pressure is preferred from the viewpoint of operability and the like. The reaction time (residence time in the reactor) is usually about 3 to 120 minutes (for example, 3 to 30 minutes).

本発明では、工程Aで大半の反応を行い、残りの反応は工程Bにおいて行う。工程Aで完全に反応を終了させてもよい。工程Aでの脂肪族アルコールの転化率は、通常70〜100%であり、好ましくは80〜100%(例えば、80〜90%)程度である。   In the present invention, most of the reaction is performed in step A, and the remaining reaction is performed in step B. In step A, the reaction may be completed completely. The conversion rate of the aliphatic alcohol in the step A is usually 70 to 100%, preferably about 80 to 100% (for example, 80 to 90%).

本発明の工程Bでは、工程Aで得られた反応液を蒸留塔に供給し、塔頂から生成したカルボン酸エステルと副生する水とを留出させ、塔底から未反応の脂肪族カルボン酸を回収する。触媒が反応液に溶解又は分散している場合には、触媒も蒸留塔に供給されるので、蒸留塔内でさらに反応が進行する。触媒がイオン交換樹脂や固体酸触媒の場合であって反応器に充填された形態で使用される場合には、蒸留塔には触媒は供給されないが、触媒から一部遊離した酸が蒸留塔に供給されることもある。このように、蒸留塔内でも反応を行う場合には、反応で副生する水を留去しつつ反応を行うので、反応の平衡が生成物側に傾き、効率よく反応が進行するとともに、酸価の低い粗カルボン酸エステルが得られる。また、脂肪族カルボン酸を過剰量用いる場合は、未反応脂肪族アルコールの量が少ないため、該アルコールを留出させるために消費されるエネルギーを大幅に低減できるとともに、従来技術のように水を添加する必要もないので、その分のエネルギーも低減できる。   In the step B of the present invention, the reaction liquid obtained in the step A is supplied to a distillation column, and a carboxylic acid ester generated from the top of the column and water produced as a by-product are distilled off, and an unreacted aliphatic carboxylic acid is discharged from the column bottom. The acid is recovered. When the catalyst is dissolved or dispersed in the reaction solution, the catalyst is also supplied to the distillation column, so that the reaction further proceeds in the distillation column. When the catalyst is an ion exchange resin or a solid acid catalyst and is used in a form packed in a reactor, the catalyst is not supplied to the distillation column, but the acid partially liberated from the catalyst is transferred to the distillation column. Sometimes supplied. Thus, when the reaction is also performed in the distillation column, the reaction is performed while distilling off the water produced as a by-product in the reaction, so that the equilibrium of the reaction is inclined toward the product side, the reaction proceeds efficiently, and the acid proceeds. A crude carboxylic acid ester having a low value is obtained. In addition, when an excessive amount of aliphatic carboxylic acid is used, the amount of unreacted aliphatic alcohol is small, so that the energy consumed for distilling off the alcohol can be greatly reduced, and water can be used as in the prior art. Since it is not necessary to add, the energy can be reduced accordingly.

工程Bにおける蒸留塔での反応(触媒が蒸留塔へ供給される場合)は、工程Aで得られた反応液の供給位置より下部の触媒が存在する領域(反応ゾーン)で行われる。原料の脂肪族カルボン酸(循環使用する脂肪族カルボン酸であってもよい)、脂肪族アルコール(循環使用する脂肪族アルコールであってもよい)は、それぞれ、この反応ゾーンにも供給することができる。特に、脂肪族アルコールをこの蒸留塔の反応ゾーンに供給すると、反応効率が向上する。この場合の脂肪族アルコールの蒸留塔の反応ゾーンへの供給量は、該蒸留塔への反応液供給量100重量部に対して、10〜30重量部程度である。なお、蒸留塔に蒸発缶を設け、工程Aで得られた反応液をこの蒸発缶に供給し、得られたベーパーを蒸留塔に仕込んでもよい。この場合、蒸発缶が蒸留塔の塔底として機能し且つ反応ゾーン(触媒を蒸留塔に供給する場合)となる。蒸留塔の最下段の液は前記蒸発缶に戻され、蒸発缶から未反応の脂肪族カルボン酸(触媒が蒸留塔に供給される場合は、通常、触媒を含む)が回収される。   The reaction in the distillation tower in the step B (when the catalyst is supplied to the distillation tower) is performed in a region (reaction zone) where the catalyst below the reaction liquid supply position obtained in the step A exists. The raw material aliphatic carboxylic acid (which may be recycled aliphatic carboxylic acid) and aliphatic alcohol (which may be recycled aliphatic alcohol) may also be supplied to this reaction zone, respectively. it can. In particular, when the aliphatic alcohol is supplied to the reaction zone of the distillation column, the reaction efficiency is improved. In this case, the supply amount of the aliphatic alcohol to the reaction zone of the distillation column is about 10 to 30 parts by weight with respect to 100 parts by weight of the reaction solution supply amount to the distillation column. In addition, an evaporator may be provided in the distillation tower, the reaction liquid obtained in the step A may be supplied to the evaporator, and the obtained vapor may be charged into the distillation tower. In this case, the evaporator functions as the bottom of the distillation column and becomes a reaction zone (when the catalyst is supplied to the distillation column). The liquid at the bottom of the distillation column is returned to the evaporator, and unreacted aliphatic carboxylic acid (usually including the catalyst when the catalyst is supplied to the distillation column) is recovered from the evaporator.

工程Aと工程Bを通しての脂肪族アルコールの転化率は、通常75〜100%、好ましくは80〜100%である。未反応の脂肪族カルボン酸は蒸留塔の塔底から抜き取られる。本発明では、この回収脂肪族カルボン酸は反応器にリサイクルされるが、回収脂肪族カルボン酸の一部を、そのまま、又は適宜精製して工程Bにおける蒸留塔の反応ゾーンにリサイクルする工程を設けてもよい。   The conversion rate of the aliphatic alcohol through the process A and the process B is usually 75 to 100%, preferably 80 to 100%. Unreacted aliphatic carboxylic acid is withdrawn from the bottom of the distillation column. In the present invention, the recovered aliphatic carboxylic acid is recycled to the reactor, and a step is provided in which a part of the recovered aliphatic carboxylic acid is recycled as it is or as appropriate to the reaction zone of the distillation column in Step B. May be.

工程Bにおける蒸留塔の種類は特に限定されず、充填塔、棚段塔、泡鐘塔などの何れであってもよい。蒸留塔の段数は、例えば理論段数10〜100段、好ましくは理論段数20〜60段であり、蒸留時の圧力は、通常常圧であるが、減圧又は加圧下で蒸留してもよい。還流比は、分離効率(主としてカルボン酸エステルと未反応脂肪族カルボン酸との分離効率)、留出液の分液性、エネルギーコスト等を考慮して適宜選択できる。   The type of distillation column in step B is not particularly limited, and may be any of a packed column, a plate column, a bubble bell column, and the like. The number of stages of the distillation column is, for example, 10 to 100 theoretical plates, preferably 20 to 60 theoretical plates, and the pressure during distillation is usually normal pressure, but may be distilled under reduced pressure or increased pressure. The reflux ratio can be appropriately selected in consideration of the separation efficiency (mainly the separation efficiency between the carboxylic acid ester and the unreacted aliphatic carboxylic acid), the liquid separation property of the distillate, the energy cost, and the like.

本発明の工程Cでは、前記工程Bで回収した未反応の脂肪族カルボン酸を前記工程Aにリサイクルする。回収された未反応の脂肪族カルボン酸中には、通常、触媒が含まれている(なお、触媒がイオン交換樹脂や固体酸触媒の場合であって反応器に充填された形態で使用される場合は、通常、触媒は含まれていない)。回収された未反応の脂肪族カルボン酸は、通常、触媒とともに、工程Aにリサイクルしてもよく、適宜精製して工程Aにリサイクルしてもよい。   In Step C of the present invention, the unreacted aliphatic carboxylic acid recovered in Step B is recycled to Step A. The recovered unreacted aliphatic carboxylic acid usually contains a catalyst (note that the catalyst is an ion exchange resin or a solid acid catalyst and is used in a form packed in a reactor. In some cases, the catalyst is usually not included). The recovered unreacted aliphatic carboxylic acid may be recycled to the process A together with the catalyst, or may be appropriately purified and recycled to the process A.

工程Bにおいて蒸留塔塔頂から留出した流れ(留出液)は、条件によっては単一の層であることもあるが、2層に分液する場合が多い。特に、反応の際に脂肪族カルボン酸を過剰に用いる場合には、蒸留において、水に溶解しやすい未反応脂肪族アルコールの留出量が極めて少ないので、通常、蒸留塔の留出液は生成したカルボン酸エステルを主成分とする有機層と副生した水を主成分とする水層とに容易に分液する。従って、この有機層より、カルボン酸エステルを効率よく回収することが可能となる。   The stream (distillate) distilled from the top of the distillation column in step B may be a single layer depending on the conditions, but is often separated into two layers. In particular, when an excessive amount of aliphatic carboxylic acid is used in the reaction, since the amount of unreacted aliphatic alcohol that is easily dissolved in water during distillation is extremely small, a distillate in a distillation column is usually generated. It is easily separated into an organic layer mainly composed of the carboxylic acid ester and an aqueous layer mainly composed of by-produced water. Therefore, it is possible to efficiently recover the carboxylic acid ester from this organic layer.

前記工程Bにおいて蒸留塔塔頂から留出した流れ(留出液)の中には、微量の酸分が含まれている場合がある。このため、蒸留塔塔頂から留出した流れの少なくとも一部、好ましくは留出した流れを分液させて得られる有機層(カルボン酸エステル層)を、アルカリ水溶液で処理して該微量の酸分を中和する工程Dを設けてもよい。この工程Dを設けることにより、後のプロセスにおいて強酸触媒による平衡状態の移動に基づく目的化合物の分解や、強酸を触媒とする副反応の進行をより確実に防止できるととともに、後のプロセスで高い耐久性を持つ高級材質を用いた設備が全く不要となるので、設備費用を大幅に低減できる。   The flow (distillate) distilled from the top of the distillation column in the step B may contain a small amount of acid. For this reason, at least a part of the stream distilled from the top of the distillation column, preferably an organic layer (carboxylic acid ester layer) obtained by separating the distilled stream is treated with an alkaline aqueous solution to produce the trace amount of acid. You may provide the process D which neutralizes a part. By providing this step D, it is possible to more reliably prevent the decomposition of the target compound based on the shift of the equilibrium state by the strong acid catalyst and the progress of the side reaction using the strong acid as a catalyst in the later process, and it is high in the later process. Equipment that uses high-quality materials with durability is completely unnecessary, and equipment costs can be greatly reduced.

前記中和に用いるアルカリ水溶液としては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ金属水酸化物の水溶液;炭酸ナトリウム水溶液などのアルカリ金属炭酸塩の水溶液;炭酸水素ナトリウム水溶液などのアルカリ金属炭酸水素塩の水溶液;水酸化マグネシウム水溶液などのアルカリ土類金属水酸化物の水溶液などが挙げられる。これらの中でも、水酸化ナトリウム水溶液などのアルカリ金属水酸化物の水溶液が好ましい。   Examples of the alkali aqueous solution used for the neutralization include an aqueous solution of an alkali metal hydroxide such as an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution; an aqueous solution of an alkali metal carbonate such as an aqueous sodium carbonate solution; an alkali such as an aqueous sodium hydrogen carbonate solution. An aqueous solution of a metal hydrogen carbonate; an aqueous solution of an alkaline earth metal hydroxide such as an aqueous magnesium hydroxide solution. Among these, an aqueous solution of an alkali metal hydroxide such as an aqueous sodium hydroxide solution is preferable.

アルカリ水溶液中のアルカリ濃度は、例えば、1〜40重量%、好ましくは2〜30重量%、さらに好ましくは5〜20重量%程度である。   The alkali concentration in the aqueous alkali solution is, for example, about 1 to 40% by weight, preferably 2 to 30% by weight, and more preferably about 5 to 20% by weight.

アルカリ水溶液による処理は複数回行ってもよい。処理後の水層のpHが7以上となるまで繰り返すのが好ましい。また、アルカリ水溶液による処理は、処理後の有機層(カルボン酸エステル層)中の酸分(酢酸換算)が、例えば0.01重量%以下、特に0.001重量%以下になるまで行うのが望ましい。   You may perform the process by aqueous alkali solution in multiple times. It is preferable to repeat the treatment until the pH of the aqueous layer becomes 7 or more. Further, the treatment with the aqueous alkali solution is carried out until the acid content (in terms of acetic acid) in the treated organic layer (carboxylic acid ester layer) is, for example, 0.01% by weight or less, particularly 0.001% by weight or less. desirable.

アルカリ水溶液による処理後、必要に応じて、水洗を行ってもよい。   After the treatment with the alkaline aqueous solution, it may be washed with water as necessary.

こうして得られる粗カルボン酸エステルは、さらに慣用の精製手段に付され、製品化される。該精製手段としては、例えば、蒸留塔(精留塔)による精製等が挙げられる。蒸留塔としては、特に限定されず、充填塔、棚段塔、泡鐘塔などの何れであってもよい。蒸留塔の段数は、例えば理論段数5〜100段、好ましくは理論段数10〜80段であり、蒸留時の圧力は、通常常圧であるが、減圧又は加圧下で蒸留してもよい。この精製工程は、低沸点成分を分離除去する脱低沸工程と高沸点成分を分離除去する脱高沸工程とで構成してもよく、また1本の蒸留塔で低沸点成分と高沸点成分とを同時に分離する一工程で構成してもよい。   The crude carboxylic acid ester thus obtained is further subjected to conventional purification means to produce a product. Examples of the purification means include purification using a distillation column (rectification column). The distillation tower is not particularly limited, and may be any of a packed tower, a plate tower, a bubble bell tower, and the like. The number of stages of the distillation column is, for example, 5 to 100 theoretical plates, preferably 10 to 80 theoretical plates, and the pressure during the distillation is usually normal pressure, but may be distilled under reduced pressure or increased pressure. This purification step may be composed of a low boiling point step for separating and removing low boiling point components and a high boiling point step for separating and removing high boiling point components, and a low boiling point component and a high boiling point component in one distillation column. And may be configured in one step of separating them simultaneously.

図1は、本発明のカルボン酸エステルの製造方法の一例を示す概略フロー図である。この例では酢酸とエタノールから酢酸エチルを製造する。酢酸エチル以外のカルボン酸エステルも基本的にはこの例に準じて製造できるが、原料及び生成物の物性(沸点、水に対する溶解性等)に応じて適宜変更を加えてもよい。以下、図1のフローについて説明する。   FIG. 1 is a schematic flow diagram showing an example of a method for producing a carboxylic acid ester of the present invention. In this example, ethyl acetate is produced from acetic acid and ethanol. Carboxylic acid esters other than ethyl acetate can be basically produced according to this example, but may be appropriately changed depending on the physical properties (boiling point, solubility in water, etc.) of the raw materials and products. Hereinafter, the flow of FIG. 1 will be described.

反応器4に、原料酢酸をライン2から、原料エタノールをライン1から、触媒溶液(補充用;必要に応じて)をライン3から、それぞれ連続的に供給して反応させる。なお、触媒溶液(補充用)は蒸留塔缶出液ライン8に供給してもよい。反応液はライン5を通じて、連続的に蒸留塔6に供給し、触媒が蒸留塔に供給される場合は蒸留塔6内で反応をさらに進行させつつ、塔頂からライン7を通じて、反応で生成した酢酸エチルと反応で副生した水とを留出させる。留出液は、デカンター9で分液させ、上層(有機層;酢酸エチルが主成分)の一部は蒸留塔6に還流し、残りはライン11を通じて中和槽14に供給する。中和槽14にはライン13を通じてアルカリ水溶液を供給し、上記デカンター9の上層(有機層)と撹拌、混合して、前記上層中に含まれている微量酸分を水層に移行させる。混合液はライン15を通じてデカンター16に供給し、静置により上層(酢酸エチルが主成分)と下層(水が主成分で少量のエタノールを含む)とに分液させる。デカンター16の上層(有機層)はライン18を通じて反応粗液タンク19に供給し、さらに精製工程に供され、酢酸エチルの製品を得る。   A raw material acetic acid is continuously supplied to the reactor 4 from the line 2, a raw material ethanol is supplied from the line 1, and a catalyst solution (for replenishment; if necessary) is continuously supplied from the line 3 to react. The catalyst solution (for replenishment) may be supplied to the distillation column bottoms line 8. The reaction solution was continuously supplied to the distillation column 6 through the line 5, and when the catalyst was supplied to the distillation column, the reaction was further progressed in the distillation column 6, and the reaction was generated from the top of the column through the line 7. Distill off ethyl acetate and water by-produced in the reaction. The distillate is separated by a decanter 9, and a part of the upper layer (organic layer; ethyl acetate is the main component) is refluxed to the distillation column 6, and the rest is supplied to the neutralization tank 14 through the line 11. An aqueous alkali solution is supplied to the neutralization tank 14 through a line 13 and stirred and mixed with the upper layer (organic layer) of the decanter 9 to transfer a trace amount of acid contained in the upper layer to the aqueous layer. The mixed solution is supplied to the decanter 16 through the line 15 and is allowed to stand to separate into an upper layer (ethyl acetate is the main component) and a lower layer (water is the main component and contains a small amount of ethanol). The upper layer (organic layer) of the decanter 16 is supplied to a reaction crude liquid tank 19 through a line 18 and further subjected to a purification process to obtain a product of ethyl acetate.

蒸留塔6の缶出液[未反応酢酸及び触媒(含まれている場合)]はライン8を通じて反応器4にリサイクルする。一方、デカンター9の下層(水層)、デカンター16の下層(水層)は、それぞれ、ライン12、ライン17及びライン20を通じてアルコール回収系に供給し、エタノールを回収する。回収されたエタノールの一部又は全部はライン21を通じて反応器4にリサイクルする。   The bottoms of the distillation column 6 [unreacted acetic acid and catalyst (if included)] are recycled to the reactor 4 via line 8. On the other hand, the lower layer (aqueous layer) of the decanter 9 and the lower layer (aqueous layer) of the decanter 16 are supplied to the alcohol recovery system through the line 12, the line 17 and the line 20, respectively, and recover ethanol. Part or all of the recovered ethanol is recycled to the reactor 4 through the line 21.

以下、実施例により本発明を具体的に説明するが、本発明はこれによって限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

実施例1
図1に示されるフローに従って酢酸エチルを製造した。
出発原料中の供給量比(モル比)を、エタノール:酢酸=1.0:2.2、エステル化触媒(硫酸)の出発原料中の濃度:0.7〜1.7重量%、反応器4での反応温度:70〜80℃、反応圧力:常圧、反応時間:約5分の条件で反応器4での予備反応を行った。得られた反応液を蒸留塔6(段数:60段)に仕込み、生成した酢酸エチルと副生した水とを共沸させ、凝縮した留出液をデカンター9で分液させ、下層液は全てアルコール回収系へ供給し、上層液は一部蒸留塔6に還流し、残りは中和槽14に供給した。蒸留塔6の缶温度は120℃、蒸留塔6の塔頂圧力は常圧、蒸留塔6での液滞留時間は約1時間であった。
デカンター9の上層液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0.12:0.005:0.28:0.6であった。また、蒸留塔6の缶出液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0:0.998:0.002:0であった。デカンター9の下層液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0.06:0.001:0.92:0.02であった。また、中和槽14に供給したデカンター9の上層液と、蒸留塔6の缶出液と、デカンター9の下層液の重量比は、この順で、3:3:1であった。触媒である硫酸については、投入した全量が蒸留塔6の缶出液中に残存していた。これは未反応酢酸とともに反応器4にリサイクルした。なお、デカンター9の上層液の酸分(酢酸換算)は約0.47重量%であった。
前記デカンター9の上層液が供給される中和槽14には、10重量%濃度の水酸化ナトリウム水溶液をpHが7となるように投入し、酸分の中和除去を行った。デカンター16での分液操作で得られた上層液に対し、さらにpHが10〜11となるように同様の操作を実施した。その後、水のみでの洗浄、分液操作を実施した。得られたプロセス液[デカンター16の上層液(水洗後)]を反応粗液タンク19に送液した。
この結果、上記プロセス液中の酸分(酢酸換算)は0.0001重量%となり、これは以降の工程では酸分について特別な考慮を必要としない低い数値であるため、機器材質は通常のSUS材を用いたもので十分であった。このプロセス液は、次いで、精留塔で精留され、製品としての酢酸エチルが得られた。反応工程からの一貫収率は98%であった。
Example 1
Ethyl acetate was produced according to the flow shown in FIG.
Feed rate ratio (molar ratio) in the starting material was ethanol: acetic acid = 1.0: 2.2, concentration of esterification catalyst (sulfuric acid) in starting material: 0.7 to 1.7% by weight, reactor Reaction temperature at 4: 70-80 ° C., reaction pressure: normal pressure, reaction time: pre-reaction in the reactor 4 was carried out for about 5 minutes. The obtained reaction liquid is charged into a distillation column 6 (number of stages: 60 stages), the produced ethyl acetate and by-produced water are azeotroped, and the condensed distillate is separated in a decanter 9, and all the lower layer liquids are separated. It was supplied to the alcohol recovery system, and the upper layer liquid was partially refluxed to the distillation column 6 and the rest was supplied to the neutralization tank 14. The can temperature of the distillation column 6 was 120 ° C., the top pressure of the distillation column 6 was normal pressure, and the liquid residence time in the distillation column 6 was about 1 hour.
The composition (component ratio; molar ratio) of the decanter 9 was ethanol: acetic acid: water: ethyl acetate = 0.12: 0.005: 0.28: 0.6. Moreover, the composition (component ratio; molar ratio) of the bottoms of the distillation column 6 was ethanol: acetic acid: water: ethyl acetate = 0: 0.998: 0.002: 0. The composition (component ratio; molar ratio) of the lower liquid of the decanter 9 was ethanol: acetic acid: water: ethyl acetate = 0.06: 0.001: 0.92: 0.02. Moreover, the weight ratio of the upper layer liquid of the decanter 9 supplied to the neutralization tank 14, the bottom liquid of the distillation column 6, and the lower layer liquid of the decanter 9 was 3: 3: 1 in this order. About the sulfuric acid which is a catalyst, the whole amount charged remained in the bottoms of the distillation column 6. This was recycled to reactor 4 along with unreacted acetic acid. The acid content (in terms of acetic acid) of the upper layer liquid of the decanter 9 was about 0.47% by weight.
The neutralization tank 14 to which the upper layer solution of the decanter 9 is supplied was charged with a 10% by weight aqueous sodium hydroxide solution so as to have a pH of 7, and neutralized and removed from the acid content. The same operation was performed on the upper layer liquid obtained by the liquid separation operation using the decanter 16 so that the pH would be 10 to 11. Thereafter, washing with water alone and a liquid separation operation were performed. The obtained process liquid [upper layer liquid of decanter 16 (after washing with water)] was sent to reaction crude liquid tank 19.
As a result, the acid content (in terms of acetic acid) in the process liquid is 0.0001% by weight, and this is a low value that does not require special consideration for the acid content in the subsequent steps. A material was sufficient. This process liquid was then rectified in a rectification column to obtain ethyl acetate as a product. The consistent yield from the reaction process was 98%.

実施例2
図1に示されるフローに従って酢酸エチルを製造した。反応器4として、塔型反応器を用いた。
出発原料中の供給量比(モル比)を、エタノール:酢酸=1.0:3.3、エステル化触媒(パラトルエンスルホン酸:PTS)の出発原料中の濃度:0.7〜1.7重量%、反応器4での反応温度:70〜80℃、反応圧力:常圧、反応時間:約10分の条件で反応器4での予備反応を行った。その結果、得られた反応液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0.33:2.8:2.4:1.0であった。
得られた反応液を蒸発缶を備えた蒸留塔6(段数:60段)の前記蒸発缶に仕込み、ベーパーを蒸留塔6に供給し、生成した酢酸エチルと副生した水とを共沸させ、凝縮した留出液をデカンター9で分液させ、下層液は全てアルコール回収系へ供給し、上層液は一部蒸留塔6に還流し、残りは、アルカリ水溶液による処理を行うことなく、反応粗液タンク19に送液した。蒸留塔6の最下段の液は蒸発缶に戻した。前記蒸発缶の缶温度は85℃、蒸留塔6の塔頂圧力は常圧、蒸留缶での液滞留時間は約1時間であった。なお、触媒であるPTSについては、蒸発缶の缶出液を経由して投入した全量が反応液中に残存していた。蒸発缶の缶出液は反応器4にリサイクルした。
この結果、得られたプロセス液[デカンター9の上層液;反応粗液タンク19の液]中の酸分(酢酸換算)は0.0003重量%となり、これは以降の工程では酸分について特別な考慮を必要としない低い数値であるため、機器材質は通常のSUS材を用いたもので十分であった。このプロセス液は、次いで、精留塔で精留され、製品としての酢酸エチルが得られた。反応工程からの一貫収率は99.5%であった。
Example 2
Ethyl acetate was produced according to the flow shown in FIG. A tower reactor was used as the reactor 4.
The supply ratio (molar ratio) in the starting material was ethanol: acetic acid = 1.0: 3.3, and the concentration of the esterification catalyst (paratoluenesulfonic acid: PTS) in the starting material: 0.7 to 1.7. Preliminary reaction in the reactor 4 was carried out under the conditions of% by weight, reaction temperature in the reactor 4: 70 to 80 ° C., reaction pressure: normal pressure, reaction time: about 10 minutes. As a result, the composition (component ratio; molar ratio) of the obtained reaction solution was ethanol: acetic acid: water: ethyl acetate = 0.33: 2.8: 2.4: 1.0.
The obtained reaction solution was charged into the evaporator of the distillation column 6 (stage number: 60 plates) equipped with an evaporator, and vapor was supplied to the distillation column 6 to azeotrope the produced ethyl acetate and by-product water. The condensed distillate is separated with a decanter 9, all the lower layer liquid is supplied to the alcohol recovery system, the upper layer liquid is partially refluxed to the distillation column 6, and the rest is reacted without treatment with an aqueous alkali solution. The solution was sent to the crude liquid tank 19. The lowermost liquid in the distillation column 6 was returned to the evaporator. The can temperature of the evaporator was 85 ° C., the top pressure of the distillation column 6 was normal pressure, and the liquid residence time in the distillation can was about 1 hour. In addition, about the PTS which is a catalyst, the whole quantity injected | thrown-in via the bottoms of the evaporator remained in the reaction liquid. The bottoms of the evaporator were recycled to the reactor 4.
As a result, the acid content (acetic acid equivalent) in the obtained process liquid [upper liquid of the decanter 9; the liquid in the reaction crude liquid tank 19] was 0.0003 wt%. Since it is a low numerical value that does not require consideration, it is sufficient to use a normal SUS material as the equipment material. This process liquid was then rectified in a rectification column to obtain ethyl acetate as a product. The consistent yield from the reaction process was 99.5%.

実施例3
図1に示されるフローに従って酢酸エチルを製造した。なお、この例はエタノール過剰の系である。
出発原料中の供給量比(モル比)を、エタノール:酢酸=2.2:1.0、エステル化触媒(硫酸)の出発原料中の濃度:0.7〜1.7重量%、反応器4での反応温度:70〜80℃、反応圧力:常圧、反応時間:約10分の条件で反応器4での予備反応を行った。得られた反応液を蒸留塔6(段数:60段)に仕込み、生成した酢酸エチルと副生した水とを共沸させ、凝縮した留出液をデカンター9に導いた。留出液はエタノールを多く含むのでデカンター9で分液しなかった。留出液の一部を蒸留塔6に還流し、残りを中和槽14に供給した。蒸留塔6の缶温度は120℃、蒸留塔6の塔頂圧力は常圧、蒸留塔6での液滞留時間は約1時間であった。
この結果、デカンター9の液組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0.56:0.01:0.07:0.36であった。また、蒸留塔6の缶出液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0:0.97:0.03:0であった。また、中和槽14に供給したデカンター9の液(蒸留塔留出液)と蒸留塔6の缶出液の重量比は、この順で、4:1であった。蒸留塔6の缶出液は反応器4にリサイクルした。
前記デカンター9の液(蒸留塔留出液)が供給される中和槽14には、10重量%濃度の水酸化ナトリウム水溶液をpHが7となるように投入し、酸分の中和除去を行った。デカンター16での分液操作で得られた上層液に対し、さらにpHが10〜11となるように同様の操作を実施した。その後、水のみでの洗浄、分液操作を実施した。得られたプロセス液[デカンター16の上層液(水洗後)]を反応粗液タンク19に送液した。
この結果、上記プロセス液中の酸分(酢酸換算)は0.0001重量%となり、これは以降の工程では酸分について特別な考慮を必要としない低い数値であるため、機器材質は通常のSUS材を用いたもので十分であった。このプロセス液は、次いで、精留塔で精留され、製品としての酢酸エチルが得られた。反応工程からの一貫収率は96%であった。
なお、実施例1との比較において、実施例3では、実施例1と等量の目的化合物を含む反応粗液中での未反応エタノールの量は9倍となっており、このエタノールの精製回収に要するエネルギーは大きい。
以上より、実施例1は、実施例3と比べ、酸分が逆反応の触媒として作用することもなく、目的化合物の収率低下を防止できることが分かる。また、未反応原料の回収に要するエネルギー量も少なくてすむ。
Example 3
Ethyl acetate was produced according to the flow shown in FIG. This example is an ethanol-excess system.
The feed ratio (molar ratio) in the starting material was ethanol: acetic acid = 2.2: 1.0, the concentration of the esterification catalyst (sulfuric acid) in the starting material: 0.7 to 1.7% by weight, reactor Reaction temperature at 4: 70 to 80 ° C., reaction pressure: normal pressure, reaction time: pre-reaction in the reactor 4 was carried out for about 10 minutes. The obtained reaction liquid was charged into a distillation column 6 (stage number: 60 stages), the produced ethyl acetate and by-produced water were azeotroped, and the condensed distillate was led to a decanter 9. Since the distillate contained a large amount of ethanol, it was not separated by the decanter 9. A part of the distillate was refluxed to the distillation column 6 and the remainder was supplied to the neutralization tank 14. The can temperature of the distillation column 6 was 120 ° C., the top pressure of the distillation column 6 was normal pressure, and the liquid residence time in the distillation column 6 was about 1 hour.
As a result, the liquid composition (component ratio; molar ratio) of the decanter 9 was ethanol: acetic acid: water: ethyl acetate = 0.56: 0.01: 0.07: 0.36. Moreover, the composition (component ratio; molar ratio) of the bottoms of the distillation column 6 was ethanol: acetic acid: water: ethyl acetate = 0: 0.97: 0.03: 0. The weight ratio of the decanter 9 liquid (distillation tower distillate) supplied to the neutralization tank 14 and the bottom liquid of the distillation tower 6 was 4: 1 in this order. The bottoms of the distillation column 6 was recycled to the reactor 4.
A neutralization tank 14 to which the decanter 9 liquid (distillation column distillate) is supplied is charged with a 10 wt% sodium hydroxide aqueous solution so that the pH becomes 7, and neutralization and removal of the acid content are performed. went. The same operation was performed on the upper layer liquid obtained by the liquid separation operation using the decanter 16 so that the pH would be 10 to 11. Thereafter, washing with water alone and a liquid separation operation were performed. The obtained process liquid [upper layer liquid of decanter 16 (after washing with water)] was sent to reaction crude liquid tank 19.
As a result, the acid content (in terms of acetic acid) in the process liquid is 0.0001% by weight, and this is a low value that does not require special consideration for the acid content in the subsequent steps. A material was sufficient. This process liquid was then rectified in a rectification column to obtain ethyl acetate as a product. The consistent yield from the reaction process was 96%.
In comparison with Example 1, in Example 3, the amount of unreacted ethanol in the reaction crude liquid containing the same amount of the target compound as Example 1 was 9 times, and this ethanol was purified and recovered. It takes a lot of energy.
From the above, it can be seen that Example 1 can prevent a decrease in the yield of the target compound without causing the acid content to act as a reverse reaction catalyst as compared with Example 3. Further, the amount of energy required for recovering unreacted raw materials can be reduced.

実施例4
図1に示されるフローに従って酢酸エチルを製造した。反応器4として、強酸性イオン交換樹脂を充填した充填塔(樹脂塔)型反応器を用いた。
出発原料中の供給量比(モル比)を、エタノール:酢酸:水:酢酸エチル=1.0:3.6:1.8:0.32、エステル化触媒(強酸性イオン交換樹脂:IER)を充填した樹脂塔内のプロセスの滞留時間:約10分、反応温度:60℃、反応圧力:常圧の条件で反応器4での反応を行った。その結果、得られた反応液の組成(成分比;モル比)は、エタノール:酢酸:水:酢酸エチル=0.047:0.44:0.36:0.15であった。
得られた反応液を蒸留塔6(段数:60段)に仕込み、生成した酢酸エチルと副生した水とを共沸させ、凝縮液をデカンター9で分液させ、下層液は全てアルコール回収系へ供給し、上層液は一部蒸留塔6に還流し、残りは、アルカリ水溶液による処理を行うことなく、反応粗液タンク19に送液した。蒸留塔6の缶出液は冷却して反応器4に戻した。
この結果、得られたプロセス液[デカンター9の上層液;反応粗液タンク19の液]中の酸分(酢酸換算)は0.0003重量%となり、これは以降の工程では酸分について特別な考慮を必要としない低い数値であるため、機器材質は通常のSUS材を用いたもので十分であった。このプロセス液は、次いで、精留塔で精留され、製品としての酢酸エチルが得られた。反応工程からの一貫収率は99%であった。
Example 4
Ethyl acetate was produced according to the flow shown in FIG. As the reactor 4, a packed tower (resin tower) type reactor filled with a strongly acidic ion exchange resin was used.
The feed ratio (molar ratio) in the starting material was ethanol: acetic acid: water: ethyl acetate = 1.0: 3.6: 1.8: 0.32, esterification catalyst (strongly acidic ion exchange resin: IER). The reaction in the reactor 4 was carried out under the conditions of the residence time of the process in the resin tower packed with: about 10 minutes, the reaction temperature: 60 ° C., and the reaction pressure: normal pressure. As a result, the composition (component ratio; molar ratio) of the obtained reaction solution was ethanol: acetic acid: water: ethyl acetate = 0.047: 0.44: 0.36: 0.15.
The obtained reaction liquid is charged into the distillation column 6 (stage number: 60 stages), the produced ethyl acetate and by-produced water are azeotroped, the condensate is separated in the decanter 9, and all the lower layer liquid is an alcohol recovery system. The upper liquid was partly refluxed to the distillation column 6 and the rest was sent to the reaction crude liquid tank 19 without being treated with an aqueous alkali solution. The bottoms of the distillation column 6 was cooled and returned to the reactor 4.
As a result, the acid content (acetic acid equivalent) in the obtained process liquid [upper liquid of the decanter 9; the liquid in the reaction crude liquid tank 19] was 0.0003 wt%. Since it is a low numerical value that does not require consideration, it is sufficient to use a normal SUS material as the equipment material. This process liquid was then rectified in a rectification column to obtain ethyl acetate as a product. The consistent yield from the reaction process was 99%.

1 原料アルコール供給ライン
2 原料カルボン酸供給ライン
3 触媒溶液供給(補充)ライン
4 反応器
5 反応液ライン
6 蒸留塔
7 蒸留塔留出ライン
8 蒸留塔缶出液ライン
9 デカンター
10 デカンター上層液還流ライン
11 デカンター上層液ライン
12 デカンター下層液ライン
13 アルカリ水溶液供給ライン
14 中和槽
15 混合液ライン
16 デカンター
17 デカンター下層液ライン
18 デカンター上層液ライン
19 反応粗液タンク
20 回収系供給ライン
21 回収アルコールライン
DESCRIPTION OF SYMBOLS 1 Raw material alcohol supply line 2 Raw material carboxylic acid supply line 3 Catalyst solution supply (replenishment) line 4 Reactor 5 Reaction liquid line 6 Distillation tower 7 Distillation tower distilling line 8 Distillation tower can bottom liquid line 9 Decanter
10 Decanter upper liquid return line
11 Decanter upper liquid line
12 Decanter lower liquid line
13 Alkaline aqueous solution supply line
14 Neutralization tank
15 Mixed liquid line
16 Decanter
17 Decanter lower liquid line
18 Decanter upper liquid line
19 Reaction crude liquid tank
20 Recovery system supply line
21 Recovered alcohol line

Claims (3)

脂肪族カルボン酸と脂肪族アルコールとを触媒の存在下で反応させて対応するカルボン酸エステルを製造する方法であって、前記脂肪族カルボン酸と脂肪族アルコールとを反応器中で反応させる工程A、前記工程Aで得られた反応液を蒸留塔に供給し、塔頂から生成したカルボン酸エステルと副生する水とを留出させ、塔底から未反応の脂肪族カルボン酸を回収する工程B、及び前記工程Bで回収した未反応の脂肪族カルボン酸を前記工程Aにリサイクルする工程Cを含むことを特徴とするカルボン酸エステルの製造方法。   A process for producing a corresponding carboxylic acid ester by reacting an aliphatic carboxylic acid and an aliphatic alcohol in the presence of a catalyst, wherein the aliphatic carboxylic acid and the aliphatic alcohol are reacted in a reactor. The step of supplying the reaction liquid obtained in the step A to the distillation column, distilling the carboxylic acid ester generated from the top of the column and the by-product water, and recovering the unreacted aliphatic carboxylic acid from the bottom of the column B and the process C which recycles the unreacted aliphatic carboxylic acid collect | recovered at the said process B to the said process A, The manufacturing method of the carboxylic acid ester characterized by the above-mentioned. 工程Aにおいて、脂肪族カルボン酸と脂肪族アルコールとを前者が過剰となる条件で反応器に供給する請求項1記載のカルボン酸エステルの製造方法。   The process for producing a carboxylic acid ester according to claim 1, wherein in step A, the aliphatic carboxylic acid and the aliphatic alcohol are supplied to the reactor under the condition that the former is excessive. さらに、工程Bおいて蒸留塔塔頂から留出した流れの少なくとも一部をアルカリ水溶液で処理して微量酸分を中和する工程Dを含む請求項1又は2記載のカルボン酸エステルの製造方法。   Furthermore, the manufacturing method of the carboxylic acid ester of Claim 1 or 2 including the process D which processes the at least one part of the stream distilled from the distillation tower top in process B with alkaline aqueous solution, and neutralizes a trace amount acid content. .
JP2009094913A 2009-04-09 2009-04-09 Method for producing carboxylic acid ester Pending JP2010241765A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009094913A JP2010241765A (en) 2009-04-09 2009-04-09 Method for producing carboxylic acid ester
KR1020100032215A KR20100112534A (en) 2009-04-09 2010-04-08 Process for production of carboxylic esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094913A JP2010241765A (en) 2009-04-09 2009-04-09 Method for producing carboxylic acid ester

Publications (1)

Publication Number Publication Date
JP2010241765A true JP2010241765A (en) 2010-10-28

Family

ID=43095204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094913A Pending JP2010241765A (en) 2009-04-09 2009-04-09 Method for producing carboxylic acid ester

Country Status (2)

Country Link
JP (1) JP2010241765A (en)
KR (1) KR20100112534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303796A1 (en) * 2012-05-09 2013-11-14 China Petrochemical Development Corporation, Taipei (Taiwan) Method for continuously preparing carboxylic acid ester
WO2015166706A1 (en) * 2014-04-28 2015-11-05 株式会社ダイセル Method for producing acetic acid and acetaldehyde

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718756B2 (en) 2013-07-23 2017-08-01 Lg Chem, Ltd. Method for continuously recovering (meth)acrylic acid and apparatus for the method
KR102669652B1 (en) 2019-09-19 2024-05-28 주식회사 엘지화학 The Apparatus For Neutralizing/Water Separating Esterification Products And The Method For Thereof
KR102528326B1 (en) * 2020-02-14 2023-05-02 한화솔루션 주식회사 Preparation method of ester compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377841A (en) * 1986-09-22 1988-04-08 Mitsubishi Rayon Co Ltd Production of acrylic acid or methacrylic acid phenyl esters
JPH01139547A (en) * 1987-04-16 1989-06-01 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid ester
JPH11152250A (en) * 1997-09-01 1999-06-08 Huels Ag Production of cyclopropanecarboxylic acid ester of lower alcohol
JP2001181233A (en) * 1999-10-12 2001-07-03 Nippon Shokubai Co Ltd Method for producing (meth)acrylic ester
JP2002079088A (en) * 2000-09-07 2002-03-19 Showa Denko Kk Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by the catalyst
JP2003535814A (en) * 1999-10-14 2003-12-02 ズルツァー ヒェムテヒ リミテッド Method for producing ethyl acetate and apparatus for performing the method
JP2006131506A (en) * 2004-11-02 2006-05-25 Hitachi Chem Co Ltd Method for producing (meth)acrylic acid ester

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377841A (en) * 1986-09-22 1988-04-08 Mitsubishi Rayon Co Ltd Production of acrylic acid or methacrylic acid phenyl esters
JPH01139547A (en) * 1987-04-16 1989-06-01 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid ester
JPH11152250A (en) * 1997-09-01 1999-06-08 Huels Ag Production of cyclopropanecarboxylic acid ester of lower alcohol
JP2001181233A (en) * 1999-10-12 2001-07-03 Nippon Shokubai Co Ltd Method for producing (meth)acrylic ester
JP2003535814A (en) * 1999-10-14 2003-12-02 ズルツァー ヒェムテヒ リミテッド Method for producing ethyl acetate and apparatus for performing the method
JP2002079088A (en) * 2000-09-07 2002-03-19 Showa Denko Kk Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by the catalyst
JP2006131506A (en) * 2004-11-02 2006-05-25 Hitachi Chem Co Ltd Method for producing (meth)acrylic acid ester

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303796A1 (en) * 2012-05-09 2013-11-14 China Petrochemical Development Corporation, Taipei (Taiwan) Method for continuously preparing carboxylic acid ester
US9012679B2 (en) * 2012-05-09 2015-04-21 China Petrochemical Development Corporation Method for continuously preparing carboxylic acid ester
WO2015166706A1 (en) * 2014-04-28 2015-11-05 株式会社ダイセル Method for producing acetic acid and acetaldehyde
JPWO2015166706A1 (en) * 2014-04-28 2017-04-20 株式会社ダイセル Method for producing acetic acid and acetaldehyde

Also Published As

Publication number Publication date
KR20100112534A (en) 2010-10-19

Similar Documents

Publication Publication Date Title
KR100760100B1 (en) Process for the simultaneous coproduction and purification of ethyl acetate and isopropyl acetate
US7468456B2 (en) Azeotropic distillation process for separating acetic acid, methylacetate and water in the production of an aromatic carboxylic acid
EP0984918B1 (en) Processes for refining butylacrylate
JP2001199913A (en) Method for producing both ethylene glycol and carbonic ester
RU2009132005A (en) METHOD FOR PRODUCING ACRYLIC ACID
CN104024210B (en) The method of vinylformic acid 2-monooctyl ester is manufactured by direct esterification
TW201722900A (en) Extractive workup of a sodium-salt-containing MMA-methanol mixture
CS216849B2 (en) Method of making the tereftalon acid from dimethyltereftalate
US8772534B2 (en) Method of recovering (meth) acrylic acid ester
JP2010241765A (en) Method for producing carboxylic acid ester
TW201507997A (en) Method for preparing glycol ester using reactive distillation
WO2009013623A2 (en) Azeotropic distillation with entrainer regeneration
KR100888065B1 (en) Improvedprocess for methyl acetate hydrolysis
JP5559205B2 (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
EP1192120B1 (en) Processes for conducting equilibrium-limited reactions
JP2002511081A (en) Method for producing dimethyl ester of unsaturated dicarboxylic anhydride
JP6036400B2 (en) Method for producing (meth) acrylic acid ester
JPH0239496B2 (en)
WO2000078702A1 (en) Processes for conducting equilibrium-limited reactions
US7569721B2 (en) Process for conducting equilibrium-limited reactions
JP5748482B2 (en) Method for producing carboxylic acid ester
JP7449877B2 (en) Method for purifying light acrylates
US20080183005A1 (en) Method For Making Alkyl (Meth) Acrylates by Direct Esterification
JP2007063153A (en) Method for recovering acetic acid in process for producing aromatic carboxylic acid
CN109942357A (en) A kind of low-boiling point alcohol continuous esterification rectification process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128