WO2015166580A1 - Compressor, refrigeration cycle device, and method for controlling compressor - Google Patents

Compressor, refrigeration cycle device, and method for controlling compressor Download PDF

Info

Publication number
WO2015166580A1
WO2015166580A1 PCT/JP2014/062161 JP2014062161W WO2015166580A1 WO 2015166580 A1 WO2015166580 A1 WO 2015166580A1 JP 2014062161 W JP2014062161 W JP 2014062161W WO 2015166580 A1 WO2015166580 A1 WO 2015166580A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
temperature
motor
electric motor
Prior art date
Application number
PCT/JP2014/062161
Other languages
French (fr)
Japanese (ja)
Inventor
増本 浩二
裕貴 田村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/062161 priority Critical patent/WO2015166580A1/en
Publication of WO2015166580A1 publication Critical patent/WO2015166580A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Definitions

  • the present invention relates to a compressor or the like used in a refrigeration cycle apparatus such as an air conditioner, a refrigeration apparatus, or a refrigeration apparatus.
  • refrigeration cycle devices such as air conditioners have been required to be improved in consideration of environment, resources, and the like.
  • a refrigerant having a low GWP global warming potential
  • rare earth magnets used in permanent magnets of permanent magnet motors for the purpose of high efficiency are required to reduce the amount of heavy rare earth metals (especially dysprosium) used in order to save resources and stabilize procurement. It has been.
  • an R32 refrigerant having a GWP of 650 and having no toxicity, strong flammability, or the like is attracting attention.
  • the magnetic flux density has been increased, and development for realizing a predetermined magnetic flux in a smaller volume has been advanced.
  • coolant and a magnet is made
  • the discharge temperature of the refrigerant that is compressed and discharged by the compressor is about 20 ° C. higher than that of the conventional refrigerant, which may increase the temperature inside the compressor. Therefore, in order to ensure quality, it is necessary to make improvements such as limiting the driving capability of the compressor and reducing performance.
  • the compressor described in Patent Document 1 has a structure in which the electric motor is cooled with the compressed refrigerant, and the magnet of the electric motor is likely to be hot.
  • a magnet having a high coercive force for example, a coercive force of 23 kOe (about 1830 A / m or more)
  • a heavy rare earth metal for example, dispro This leads to the use of a magnet containing a large amount of (sium). As a result, the cost and size of the compressor are increased.
  • a compressor is conventionally provided by attaching a temperature sensor to the outer shell of the compressor (a suction pipe for sucking refrigerant, a discharge pipe for discharging refrigerant, the outside of a closed container close to the temperature of oil, etc.) Estimating the internal temperature has been done. Then, based on the temperature inside the compressor, the drive is limited so that the electric motor, the bearing and the like do not become high temperature.
  • the temperature inside the compressor by the temperature sensor described above is a temperature obtained by indirectly estimating from the outside. It is also predicted that there will be individual differences in temperature sensors due to temperature detection variations and mounting conditions. For this reason, there is a tendency that the timing for applying the drive restriction with an allowance increases, and there is a possibility that an overprotection situation occurs. For example, there is a possibility of stopping or shifting the compressor without driving the compressor necessary for the operation of the refrigeration cycle apparatus, and the efficiency of the entire refrigeration cycle apparatus is reduced.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a compressor or the like that can maintain high performance and high reliability regardless of the compression target.
  • a compressor according to the present invention includes a sealed container that is an outer shell, a compression mechanism that is installed in the sealed container, compresses the fluid that has flowed in, and discharges the fluid to the outside, and supplies power to the compression mechanism. And a control device for controlling the power supplied to the motor by applying a voltage provided with a non-energized section for detecting the induced voltage of the motor to the motor.
  • the induced voltage of the motor can be detected by providing a non-energized section in the voltage applied to the motor, for example, the magnetic flux density of the magnet is calculated from the induced voltage, By estimating the temperature of the magnet from the magnetic flux density, the temperature in the compressor can be estimated with high accuracy.
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the upper side in the figure will be described as “upper side” and the lower side will be described as “lower side”.
  • the size relationship of each component may be different from the actual one.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
  • FIG. 1 is a cross-sectional view of a compressor 101 according to Embodiment 1 of the present invention. Based on FIG. 1, the structure of the compressor 101 in this Embodiment is demonstrated.
  • the compressor 101 of this Embodiment becomes a component of the refrigerating-cycle apparatus used as a refrigerator, a freezer, a vending machine, an air conditioning apparatus, a freezing apparatus, a hot water supply apparatus etc., for example.
  • the shell 1 is a container that accommodates the electric motor 3, the compression mechanism 5 and the like inside.
  • the shell 1 is a sealed container that seals the inside.
  • the suction pipe 2 is installed in the shell 1.
  • the suction pipe 2 is a pipe that guides the refrigerant 10 that is the fluid to be compressed into the suction space in the shell 1 (compressor 101).
  • the electric motor 3 is driven by power supply (voltage application) to rotate the main shaft 4.
  • the electric motor 3 of the present embodiment is configured by a brushless DC motor.
  • the electric motor 3 has a rotor 3a and a stator 3c.
  • a permanent magnet 3b is inserted into the rotor 3a.
  • the rotor 3 a is connected to the main shaft 4.
  • the stator 3 c is fixed to the shell 1.
  • the main shaft 4 rotates with the rotation of the rotor 3 a of the electric motor 3, and transmits the driving torque generated by the rotation to the compression mechanism unit 5.
  • the compression mechanism 5 has a compression chamber formed by combining a fixed scroll and a swing scroll.
  • the orbiting scroll is connected to the main shaft 4 and rotates with the rotation of the main shaft 4.
  • the rocking scroll is swung with respect to the fixed scroll fixed to the shell 1
  • the volume of the compression chamber is gradually reduced, and the refrigerant flowing from the suction space into the compression chamber is compressed.
  • the compression mechanism part 5 is arrange
  • the electric motor 3 is arrange
  • the discharge space 6 is a space that becomes a high-pressure refrigerant atmosphere by the refrigerant flowing out of the compression mechanism unit 5.
  • the discharge space 6 communicates with the discharge pipe 7, and the refrigerant that has flowed into the discharge space 6 is discharged from the compressor 101 through the discharge pipe 7.
  • R32 refrigerant that is HFC refrigerant or R744 refrigerant that is carbon dioxide refrigerant is used as the refrigerant 10 that is the fluid to be compressed by the compressor 101 in this embodiment.
  • the suction temperature thermistor 11 detects the temperature of the suction pipe 2 of the compressor 101 (the temperature of the refrigerant 10 sucked into the compressor 101).
  • the discharge temperature thermistor 12 detects the temperature of the discharge pipe 7 (the temperature of the refrigerant 10 discharged from the compressor 101).
  • the oil temperature thermistor 13 indirectly detects the temperature (oil temperature) of the refrigerating machine oil inside the compressor 101 from the outside of the shell 1.
  • FIG. 2 is a diagram showing an outline of the configuration within the control device 14 according to Embodiment 1 of the present invention.
  • the control device 14 controls the compressor 101.
  • the control device 14 is electrically connected to the electric motor 3 in the compressor 101 via the terminal 8 and supplies electric power to the electric motor 3.
  • Control for adjusting the rotational speed of the electric motor 3 is performed by controlling the electric power supplied by controlling the phase and the like.
  • the control device 14 according to the present embodiment includes a control unit and a drive unit.
  • the control unit includes a microcomputer having a control calculation processing means such as a CPU (Central Processing Unit), a storage means (not shown), etc. ing.
  • the control arithmetic processing means executes processing based on the program data to realize control.
  • the drive unit includes an inverter circuit that generates power to be supplied to the electric motor 3 based on a signal sent from the control unit.
  • the control device 14 of the present embodiment has a detection circuit for detecting a voltage related to the electric motor 3. For example, when the electric motor 3 of the present embodiment is a brushless DC motor, the potential difference (UN, VN) between the U phase, the V phase, and the W phase and the neutral point potential N (N potential of the bus voltage). , W ⁇ N), the voltage divided by the detection circuit is applied to the control unit, so that the control unit can detect the voltage generated in the electric motor 3.
  • the control device 14 of the present embodiment is described as a device constituting the compressor 101, for example, the control device 14 may be configured as a part of a device different from the compressor 101.
  • the refrigerant 10 flows into the compressor 101 from the suction pipe 2 in a low pressure and low temperature state (for example, about 10 to 20 ° C.).
  • the refrigerant that has flowed in cools the motor 3, the bearing portion 9, and the lubricating oil 15, and is taken into the compression mechanism portion 5.
  • the refrigerant is compressed into a high-temperature and high-pressure refrigerant.
  • the temperature of the refrigerant after compression is about 20 ° C. higher than that of the conventional R22 refrigerant.
  • FIGS. 3 to 5 are diagrams that temporally represent the voltage waveforms according to the first embodiment of the present invention.
  • 3 is a waveform of a voltage (applied voltage) applied to the compressor 101 by the control device 14.
  • the B wave shown in FIG. 4 is a waveform of an induced voltage generated by the electric motor 3 of the compressor 101 which is a permanent magnet type electric motor.
  • the induced voltage (B wave) is hidden behind the applied voltage (A wave) and cannot be detected. Therefore, as shown in FIG. 5, it is possible to detect the induced voltage by providing a non-energized section in which the application of the voltage from the control device 14 is stopped.
  • the magnitude of the induced voltage changes according to the rotation speed (drive frequency) of the compressor 101, the magnetic flux density of the permanent magnet 3b, and the number of turns of the coil of the stator 3c.
  • the control device 14 can grasp the rotation speed of the compressor 101.
  • the number of turns of the stator 3c is determined in advance. For this reason, the control apparatus 14 can obtain
  • the magnetic flux density of the permanent magnet 3b has a temperature gradient. Therefore, the control device 14 obtains a relationship between the magnetic flux density of the permanent magnet 3b and the temperature in advance, and has data indicating the relationship. It becomes possible to estimate the temperature of the permanent magnet 3b (the temperature of the electric motor 3, the temperature in the shell 1) from the magnetic flux density.
  • the rotor 3 a rotates inside the stator 3 c of the electric motor 3 inside the shell 1 (compressor 101) and is in close contact with the main shaft 4. For this reason, in order to estimate the temperature of the motor 3, the temperature of the lubricating oil 15 in the shell 1 (compressor 101), etc., the suction temperature thermistor 11, the discharge temperature thermistor 12, the oil temperature attached to the outside of the compressor 101 Compared to the case where the temperature in the shell (compressor 101) is estimated from the temperature related to the detection of the thermistor 13, it can be estimated with high accuracy.
  • the non-energized section is provided so as to perform control to stop the voltage application.
  • the induced voltage generated by the electric motor 3 can be detected.
  • Driving can be continued.
  • it is not necessary to select an alloy containing lead or the like as the material of the bearing portion 9 in order to improve the slidability the environmental load can be reduced.
  • FIG. FIG. 6 is a cross-sectional view of the compressor 101 according to Embodiment 2 of the present invention.
  • the suction pipe 2 is in direct communication with the compression mechanism unit 5.
  • the refrigerant compressed by the compression mechanism unit 5 is discharged from the discharge pipe 7 after being opened to the discharge space 6 where the electric motor 3, the bearing unit 9, and the lubricating oil 15 are located below the compression mechanism unit 5.
  • the compressor 101 having a different component arrangement from the compressor 101 described in the first embodiment also exists depending on the application.
  • the electric motor 3 when the R32 refrigerant and the R744 refrigerant are used as the gas to be compressed, the electric motor 3, the bearing portion 9, the lubricating oil 15 and the like located in the discharge space 6 become high temperature. It is difficult to estimate the temperature of each part in the compressor 101 using only the suction temperature thermistor 11, the discharge temperature thermistor 12, and the oil temperature thermistor 13.
  • a voltage provided with a non-energized section is applied, and an induced voltage is detected in the non-energized section.
  • the compressor 101 can be effectively protected by estimating the temperature of the electric motor 3 with high accuracy based on the induced voltage.
  • the material of the permanent magnet 3b is a rare earth magnet containing neodymium (neodymium).
  • a rare earth magnet containing neodymium has a high magnetic flux density and a large magnetic force.
  • the magnitude of the induced voltage varies depending on the magnetic flux density of the permanent magnet 3b and the number of turns of the stator 3c.
  • the contribution of the magnetic flux density of the permanent magnet 3b to the induced voltage is increased by employing a rare earth magnet containing neodymium having a magnetic flux density exceeding 1T in the permanent magnet 3b of the electric motor 3. Since the magnetic flux density of the permanent magnet 3b has temperature characteristics, the contribution of the magnetic flux density of the permanent magnet 3b to the induced voltage increases, so that the temperature of the permanent magnet 3b is easily reflected in the magnitude of the induced voltage. Therefore, the sensitivity of the temperature of the electric motor 3 based on the induced voltage is improved, and the temperature estimation accuracy of the electric motor 3 can be further increased.
  • Embodiment 4 FIG.
  • the compressor 101 is shown as an example of a scroll compressor.
  • the present invention is not limited to this, and the present invention is not limited to this, and may be applied to other types of compressors and the like. Can be applied.
  • FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • FIG. 7 shows an air conditioner as the refrigeration cycle apparatus.
  • the air conditioner of FIG. 7 connects an outdoor unit (outdoor unit) 100 and an indoor unit (indoor unit) 200 through a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
  • the outdoor unit 100 includes the compressor 101, the four-way valve 102, the outdoor heat exchanger 103, the expansion valve 104, and the outdoor blower 105 described in the first to fourth embodiments.
  • the indoor unit 200 has an indoor heat exchanger 201.
  • Compressor 101 compresses and discharges the sucked refrigerant.
  • the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) is changed by arbitrarily changing the operating frequency of the compressor 101 using, for example, an inverter circuit. You may be able to.
  • the four-way valve 102 is, for example, a valve for switching the refrigerant flow between the cooling operation and the heating operation.
  • the outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, evaporating and evaporating the refrigerant. Moreover, it functions as a condenser during the cooling operation, and condenses and liquefies the refrigerant.
  • An expansion valve 104 such as a throttle device (flow rate control means) expands the refrigerant by decompressing it.
  • the opening degree is adjusted based on an instruction from a control means (not shown) or the like.
  • the indoor heat exchanger 201 performs heat exchange between air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. Moreover, it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant.
  • the entire apparatus can be operated efficiently. it can.
  • Embodiment 4 described above the refrigeration cycle apparatus taking the air conditioner as an example has been described, but it can also be used for a refrigeration apparatus, a hot water supply apparatus, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor according to the present invention is provided with a shell (1), a compression mechanism unit (5) that is disposed in the shell (1) and compresses and discharges an inflowing refrigerant to outside, a motor (3) that has a permanent magnet (3b) and supplies power to the compression mechanism unit (5), and a control device (14) that applies a voltage having a non-conduction interval for detecting an induced voltage of the motor (3) to the motor (3) to control power supplied to the motor (3). The temperature of the magnet is estimated on the basis of the induced voltage detected in the non-conduction interval, whereby the temperature in the compressor can be estimated with high accuracy and high performance and high reliability can be maintained.

Description

圧縮機及び冷凍サイクル装置並びに圧縮機の制御方法Compressor, refrigeration cycle apparatus and compressor control method
 本発明は、空気調和装置、冷凍装置、冷蔵装置等の冷凍サイクル装置に用いる圧縮機等に関するものである。 The present invention relates to a compressor or the like used in a refrigeration cycle apparatus such as an air conditioner, a refrigeration apparatus, or a refrigeration apparatus.
 従来から空気調和装置等の冷凍サイクル装置においては、環境、資源等を考慮した改善が求められている。例えば、地球温暖化防止のため、冷媒としてGWP(地球温暖化係数)が低い冷媒が求められている。また、高効率を目的として永久磁石式電動機の永久磁石に用いられる希土類磁石は、省資源化及び調達の安定化のため、重希土類金属(特にディスプロシウム)の使用量を削減することが求められている。さらに、環境負荷を低減するため、鉛等を含む合金等の使用量を削減することが求められている。 Conventionally, refrigeration cycle devices such as air conditioners have been required to be improved in consideration of environment, resources, and the like. For example, in order to prevent global warming, a refrigerant having a low GWP (global warming potential) is required. In addition, rare earth magnets used in permanent magnets of permanent magnet motors for the purpose of high efficiency are required to reduce the amount of heavy rare earth metals (especially dysprosium) used in order to save resources and stabilize procurement. It has been. Furthermore, in order to reduce environmental load, it is calculated | required to reduce the usage-amounts, such as an alloy containing lead.
 ただ、ディスプロシウムを含まない磁石を採用すると、一般的に、高温時の磁石の保磁力が悪化する。さらに、圧縮機の軸受けに用いられる摺動性の良い合金の多くは鉛等の環境負荷の高い金属が含まれている。このように、ディスプロシウム、鉛等を削減することは一般に圧縮機の信頼性を低下させることにつながる。 However, if a magnet that does not contain dysprosium is used, the coercivity of the magnet at high temperatures generally deteriorates. In addition, many of the slidable alloys used for compressor bearings contain metals with high environmental impact such as lead. Thus, reducing dysprosium, lead, etc. generally leads to a decrease in the reliability of the compressor.
 ここで、例えば、冷媒として、GWPが650であって、毒性、強燃性等がないR32冷媒が注目されている。また、磁石は、高磁束密度化が進んでおり所定の磁束をより小さな体積で実現する開発が進んでいる。このような冷媒及び磁石を採用する電動機を搭載した圧縮機の提案がなされている(例えば、特許文献1参照)。 Here, for example, as a refrigerant, an R32 refrigerant having a GWP of 650 and having no toxicity, strong flammability, or the like is attracting attention. In addition, the magnetic flux density has been increased, and development for realizing a predetermined magnetic flux in a smaller volume has been advanced. The proposal of the compressor carrying the electric motor which employ | adopts such a refrigerant | coolant and a magnet is made | formed (for example, refer patent document 1).
 例えば、R32冷媒では、圧縮機が圧縮して吐出する冷媒の吐出温度が、従来の冷媒に対して約20℃高くなり、圧縮機内部の温度上昇を招くことがある。そこで、品質を確保するために、圧縮機の駆動能力に制限を加えて性能を落とす等の改良を加える等する必要がある。 For example, in the case of R32 refrigerant, the discharge temperature of the refrigerant that is compressed and discharged by the compressor is about 20 ° C. higher than that of the conventional refrigerant, which may increase the temperature inside the compressor. Therefore, in order to ensure quality, it is necessary to make improvements such as limiting the driving capability of the compressor and reducing performance.
 例えば、特許文献1に記載されている圧縮機は、圧縮した後の冷媒で電動機を冷却する構造であり、電動機が有する磁石が高温になりやすい。このため、電動機の磁石の厚さを厚くする、保磁力の高い磁石(例えば、保磁力23kOe(約1830A/m)以上)を採用する等しなければならず、重希土類金属(例えば、ディスプロシウム)を多く含有する磁石を用いることにつながる。そのため、圧縮機のコストアップ、サイズアップ等につながっている。 For example, the compressor described in Patent Document 1 has a structure in which the electric motor is cooled with the compressed refrigerant, and the magnet of the electric motor is likely to be hot. For this reason, a magnet having a high coercive force (for example, a coercive force of 23 kOe (about 1830 A / m or more)) must be employed to increase the thickness of the magnet of the motor, and a heavy rare earth metal (for example, dispro This leads to the use of a magnet containing a large amount of (sium). As a result, the cost and size of the compressor are increased.
 また、電動機が高温にさらされるため、巻線の温度が上がることによる抵抗値の増大でジュール損が増加し、電動機の損失が増加する。この損失による発熱が、もとより高いR32冷媒の吐出温度上昇に拍車をかけてしまい、冷凍サイクルの効率低下を招くこととなる。 Also, since the motor is exposed to a high temperature, Joule loss increases due to an increase in resistance value due to an increase in the temperature of the winding, and the loss of the motor increases. The heat generated by this loss spurs an increase in the discharge temperature of the R32 refrigerant, which is higher than the original, leading to a reduction in efficiency of the refrigeration cycle.
 さらに、例えば、圧縮機内が高温雰囲気になると、軸受けに関しても高温になりやすい。このため、摺動性を考慮すると高価な合金を採用した軸受けを採用しなければならず、コストアップとなる。また、場合によっては環境負荷の高い材質を選定することになる。 Furthermore, for example, when the inside of the compressor is in a high temperature atmosphere, the bearings are likely to become high temperature. For this reason, in consideration of slidability, a bearing using an expensive alloy must be employed, which increases costs. In some cases, a material having a high environmental load is selected.
特開2001-115963号公報JP 2001-115963 A
 上記のような問題を解決するため、従来から、圧縮機の外殻(冷媒を吸入する吸入管、吐出する吐出管、油の温度に近い密閉容器の外側等)に温度センサを取り付けて圧縮機内部の温度を推定することが行われている。そして、圧縮機内部の温度に基づいて、電動機、軸受け等が高温にならないように駆動制限をかける。 In order to solve the above problems, a compressor is conventionally provided by attaching a temperature sensor to the outer shell of the compressor (a suction pipe for sucking refrigerant, a discharge pipe for discharging refrigerant, the outside of a closed container close to the temperature of oil, etc.) Estimating the internal temperature has been done. Then, based on the temperature inside the compressor, the drive is limited so that the electric motor, the bearing and the like do not become high temperature.
 ここで、上述の温度センサによる圧縮機内部の温度は、外部から間接的に推定して得られる温度である。また、温度の検出ばらつき、取り付け状態による温度センサの個体差があることも予測される。このため、余裕を見て駆動制限をかけるタイミングを早くする傾向にあり、過保護となる状況が発生する可能性がある。例えば、冷凍サイクル装置の運転に必要な圧縮機の駆動を行うことなく、圧縮機の停止、変速等をする可能性があり、冷凍サイクル装置全体として効率を落としてしまう。 Here, the temperature inside the compressor by the temperature sensor described above is a temperature obtained by indirectly estimating from the outside. It is also predicted that there will be individual differences in temperature sensors due to temperature detection variations and mounting conditions. For this reason, there is a tendency that the timing for applying the drive restriction with an allowance increases, and there is a possibility that an overprotection situation occurs. For example, there is a possibility of stopping or shifting the compressor without driving the compressor necessary for the operation of the refrigeration cycle apparatus, and the efficiency of the entire refrigeration cycle apparatus is reduced.
 本発明は、以上のような課題を解決するためになされたもので、圧縮対象にかかわらず、高性能、高信頼性を保つことができる圧縮機等を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a compressor or the like that can maintain high performance and high reliability regardless of the compression target.
 本発明に係る圧縮機は、外殻となる密閉容器と、密閉容器内に設置され、流入した流体を圧縮して外部に吐出する圧縮機構部と、磁石を有し、圧縮機構部に動力供給を行う電動機と、電動機の誘起電圧を検出する無通電区間を設けた電圧を電動機に印加して電動機に供給する電力を制御する制御装置とを備えるものである。 A compressor according to the present invention includes a sealed container that is an outer shell, a compression mechanism that is installed in the sealed container, compresses the fluid that has flowed in, and discharges the fluid to the outside, and supplies power to the compression mechanism. And a control device for controlling the power supplied to the motor by applying a voltage provided with a non-energized section for detecting the induced voltage of the motor to the motor.
 本発明に係る圧縮機によれば、電動機に印加する電圧に無通電区間を設けることで、電動機の誘起電圧を検出できるようにしたので、例えば誘起電圧から磁石の磁束密度を算出し、磁石の磁束密度から磁石の温度を推定することで、圧縮機内の温度を高い精度で推定することができる。 According to the compressor according to the present invention, since the induced voltage of the motor can be detected by providing a non-energized section in the voltage applied to the motor, for example, the magnetic flux density of the magnet is calculated from the induced voltage, By estimating the temperature of the magnet from the magnetic flux density, the temperature in the compressor can be estimated with high accuracy.
本発明の実施の形態1に係る圧縮機101の断面図である。It is sectional drawing of the compressor 101 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置14内の構成の概略を示す図である。It is a figure which shows the outline of a structure in the control apparatus 14 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電圧波形を時間的に表わした図(その1)である。It is the figure (the 1) showing the voltage waveform which concerns on Embodiment 1 of this invention in time. 本発明の実施の形態1に係る電圧波形を時間的に表わした図(その2)である。It is the figure (the 2) showing the voltage waveform which concerns on Embodiment 1 of this invention in time. 本発明の実施の形態1に係る電圧波形を時間的に表わした図(その3)である。It is the figure (the 3) which represented the voltage waveform which concerns on Embodiment 1 of this invention in time. 本発明の実施の形態2に係る圧縮機101の断面図である。It is sectional drawing of the compressor 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態5に係る冷凍サイクル装置の構成例を表す図である。It is a figure showing the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 5 of this invention.
 以下、発明の実施の形態に係る圧縮機等について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、図における上方を「上側」とし、下方を「下側」として説明する。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Hereinafter, a compressor and the like according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. In addition, the upper side in the figure will be described as “upper side” and the lower side will be described as “lower side”. In the drawings, the size relationship of each component may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
実施の形態1.
 図1は本発明の実施の形態1に係る圧縮機101の断面図である。図1に基づいて、本実施の形態における圧縮機101の構成について説明する。本実施の形態の圧縮機101は、例えば、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯装置等となる冷凍サイクル装置の構成要素となる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a compressor 101 according to Embodiment 1 of the present invention. Based on FIG. 1, the structure of the compressor 101 in this Embodiment is demonstrated. The compressor 101 of this Embodiment becomes a component of the refrigerating-cycle apparatus used as a refrigerator, a freezer, a vending machine, an air conditioning apparatus, a freezing apparatus, a hot water supply apparatus etc., for example.
 圧縮機101において、シェル1は、電動機3、圧縮機構部5等を内部に収容する容器である。シェル1は内部を密閉する密閉容器となる。吸入管2は、シェル1に設置される。吸入管2は、シェル1(圧縮機101)内の吸入空間に、圧縮対象の流体となる冷媒10を導く管である。電動機3は、電力供給(電圧印加)により駆動し、主軸4を回転させる。本実施の形態の電動機3は、ブラシレスDCモータで構成する。電動機3は回転子3a及び固定子3cを有する。回転子3aには永久磁石3bが挿入されている。回転子3aは主軸4と連結している。また、固定子3cはシェル1に固定している。主軸4は電動機3の回転子3aの回転とともに回転し、回転により発生した駆動トルクを圧縮機構部5に伝える。 In the compressor 101, the shell 1 is a container that accommodates the electric motor 3, the compression mechanism 5 and the like inside. The shell 1 is a sealed container that seals the inside. The suction pipe 2 is installed in the shell 1. The suction pipe 2 is a pipe that guides the refrigerant 10 that is the fluid to be compressed into the suction space in the shell 1 (compressor 101). The electric motor 3 is driven by power supply (voltage application) to rotate the main shaft 4. The electric motor 3 of the present embodiment is configured by a brushless DC motor. The electric motor 3 has a rotor 3a and a stator 3c. A permanent magnet 3b is inserted into the rotor 3a. The rotor 3 a is connected to the main shaft 4. Further, the stator 3 c is fixed to the shell 1. The main shaft 4 rotates with the rotation of the rotor 3 a of the electric motor 3, and transmits the driving torque generated by the rotation to the compression mechanism unit 5.
 圧縮機構部5は、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室を有している。揺動スクロールは、主軸4と連結しており、主軸4の回転とともに回転する。シェル1と固定した固定スクロールに対して揺動スクロールを揺動すると、圧縮室の容積が徐々に減じ、吸入空間から圧縮室に流入した冷媒を圧縮する。図1に示すように、シェル1内において、圧縮機構部5が上側に配置され、電動機3が下側に配置されている。吐出空間6は圧縮機構部5から流出した冷媒によって高圧の冷媒雰囲気となる空間である。吐出空間6は吐出管7と連通しており、吐出空間6に流出した冷媒が吐出管7を介して圧縮機101から吐出される。ここで、本実施の形態では、圧縮機101が圧縮対象とする流体となる冷媒10として、本実施の形態では、HFC冷媒であるR32冷媒又は炭酸ガス冷媒であるR744冷媒を採用する。 The compression mechanism 5 has a compression chamber formed by combining a fixed scroll and a swing scroll. The orbiting scroll is connected to the main shaft 4 and rotates with the rotation of the main shaft 4. When the rocking scroll is swung with respect to the fixed scroll fixed to the shell 1, the volume of the compression chamber is gradually reduced, and the refrigerant flowing from the suction space into the compression chamber is compressed. As shown in FIG. 1, in the shell 1, the compression mechanism part 5 is arrange | positioned at the upper side, and the electric motor 3 is arrange | positioned at the lower side. The discharge space 6 is a space that becomes a high-pressure refrigerant atmosphere by the refrigerant flowing out of the compression mechanism unit 5. The discharge space 6 communicates with the discharge pipe 7, and the refrigerant that has flowed into the discharge space 6 is discharged from the compressor 101 through the discharge pipe 7. Here, in this embodiment, R32 refrigerant that is HFC refrigerant or R744 refrigerant that is carbon dioxide refrigerant is used as the refrigerant 10 that is the fluid to be compressed by the compressor 101 in this embodiment.
 吸入温度サーミスタ11は圧縮機101の吸入管2の温度(圧縮機101に吸入される冷媒10の温度)を検出する。また、吐出温度サーミスタ12は吐出管7の温度(圧縮機101から吐出される冷媒10の温度)を検出する。さらに、油温度サーミスタ13は、圧縮機101内部の冷凍機油の温度(油温度)を、シェル1外側から間接的に検出する。 The suction temperature thermistor 11 detects the temperature of the suction pipe 2 of the compressor 101 (the temperature of the refrigerant 10 sucked into the compressor 101). The discharge temperature thermistor 12 detects the temperature of the discharge pipe 7 (the temperature of the refrigerant 10 discharged from the compressor 101). Further, the oil temperature thermistor 13 indirectly detects the temperature (oil temperature) of the refrigerating machine oil inside the compressor 101 from the outside of the shell 1.
 図2は本発明の実施の形態1に係る制御装置14内の構成の概略を示す図である。本実施の形態の制御装置14は圧縮機101を制御する。制御装置14は、圧縮機101内部にある電動機3と端子8を介して電気的に接続し、電動機3に電力供給を行う。位相等を制御して供給する電力を制御することで、電動機3の回転数を調整する制御を行う。ここで、本実施の形態の制御装置14には、制御部と駆動部とを含むものとする。制御部は、例えばCPU(Central Processing Unit )等の制御演算処理手段を有するマイクロコンピュータ、記憶手段(図示せず)等を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、各種センサの検出に係る物理量に基づいて、制御演算処理手段がプログラムのデータに基づく処理を実行して制御を実現する。また、駆動部は、制御部から送られる信号に基づいて、電動機3に供給する電力を生成するインバータ回路等を有する。また、本実施の形態の制御装置14は、電動機3に係る電圧の検出を行うための検出回路を有している。例えば、本実施の形態の電動機3がブラシレスDCモータである場合、U相、V相及びW相と、中性点電位N(母線電圧のN電位)との電位差(U-N、V-N、W-N)に基づき、検出回路により分圧された電圧が制御部に印加されることで、制御部が電動機3に発生する電圧を検出することができる。ここで、本実施の形態の制御装置14は圧縮機101を構成する装置として記載するが、例えば、制御装置14を圧縮機101とは別の装置の一部として構成してもよい。 FIG. 2 is a diagram showing an outline of the configuration within the control device 14 according to Embodiment 1 of the present invention. The control device 14 according to the present embodiment controls the compressor 101. The control device 14 is electrically connected to the electric motor 3 in the compressor 101 via the terminal 8 and supplies electric power to the electric motor 3. Control for adjusting the rotational speed of the electric motor 3 is performed by controlling the electric power supplied by controlling the phase and the like. Here, the control device 14 according to the present embodiment includes a control unit and a drive unit. The control unit includes a microcomputer having a control calculation processing means such as a CPU (Central Processing Unit), a storage means (not shown), etc. ing. Then, based on the physical quantities related to the detection of various sensors, the control arithmetic processing means executes processing based on the program data to realize control. Further, the drive unit includes an inverter circuit that generates power to be supplied to the electric motor 3 based on a signal sent from the control unit. Further, the control device 14 of the present embodiment has a detection circuit for detecting a voltage related to the electric motor 3. For example, when the electric motor 3 of the present embodiment is a brushless DC motor, the potential difference (UN, VN) between the U phase, the V phase, and the W phase and the neutral point potential N (N potential of the bus voltage). , W−N), the voltage divided by the detection circuit is applied to the control unit, so that the control unit can detect the voltage generated in the electric motor 3. Here, although the control device 14 of the present embodiment is described as a device constituting the compressor 101, for example, the control device 14 may be configured as a part of a device different from the compressor 101.
 次に本実施の形態に係る圧縮機101の駆動動作について説明する。圧縮機101外より、電動機3の固定子3cに制御装置14から電気的入力が与えられると、回転子3aには回転トルクが発生する。回転子3aが回転すると、回転子3aと固着した主軸4が回転する。主軸4の回転による回転トルクは圧縮機構部5に伝わり、圧縮機構部5が駆動する。圧縮機構部5が駆動すると、吸入空間の冷媒が圧縮機構部5の圧縮室に流入する。圧縮室では圧縮室の容積が連続的に減じることにより冷媒が圧縮される。そして、高温高圧の冷媒になって圧縮室から流出する。高温高圧の冷媒は吐出空間6を経て、吐出管7より、圧縮機101の外に吐出する。 Next, the driving operation of the compressor 101 according to the present embodiment will be described. When electrical input is given from the outside of the compressor 101 to the stator 3c of the electric motor 3 from the control device 14, rotational torque is generated in the rotor 3a. When the rotor 3a rotates, the main shaft 4 fixed to the rotor 3a rotates. The rotational torque generated by the rotation of the main shaft 4 is transmitted to the compression mechanism unit 5 and the compression mechanism unit 5 is driven. When the compression mechanism unit 5 is driven, the refrigerant in the suction space flows into the compression chamber of the compression mechanism unit 5. In the compression chamber, the refrigerant is compressed by continuously reducing the volume of the compression chamber. Then, it becomes a high-temperature and high-pressure refrigerant and flows out of the compression chamber. The high-temperature and high-pressure refrigerant is discharged out of the compressor 101 from the discharge pipe 7 through the discharge space 6.
 次に圧縮機101が駆動したときの冷媒10の状態について説明する。冷媒10は低圧低温状態(例えば10~20℃程度)で吸入管2から圧縮機101内に流入する。流入した冷媒は電動機3、軸受部9、潤滑油15を冷却し、圧縮機構部5に取りこまれる。その後、圧縮され高温高圧冷媒になるが、従来のR22冷媒に対し、例えばR32冷媒では圧縮後の冷媒の温度は約20℃高くなってしまう。 Next, the state of the refrigerant 10 when the compressor 101 is driven will be described. The refrigerant 10 flows into the compressor 101 from the suction pipe 2 in a low pressure and low temperature state (for example, about 10 to 20 ° C.). The refrigerant that has flowed in cools the motor 3, the bearing portion 9, and the lubricating oil 15, and is taken into the compression mechanism portion 5. Thereafter, the refrigerant is compressed into a high-temperature and high-pressure refrigerant. However, the temperature of the refrigerant after compression is about 20 ° C. higher than that of the conventional R22 refrigerant.
 図3~図5は本発明の実施の形態1に係る電圧波形を時間的に表わした図である。図3に示す矩形波であるA波は制御装置14が圧縮機101に印加する電圧(印加電圧)の波形である。一方、図4に示すB波は、永久磁石式電動機である圧縮機101の電動機3が発生する誘起電圧の波形である。通常の制御状態において、誘起電圧(B波)は印加電圧(A波)に隠れて、検出することはできない。そこで、図5に示すように、制御装置14からの電圧の印加を停止する無通電区間を設けることで、誘起電圧を検出することが可能となる。 FIGS. 3 to 5 are diagrams that temporally represent the voltage waveforms according to the first embodiment of the present invention. 3 is a waveform of a voltage (applied voltage) applied to the compressor 101 by the control device 14. On the other hand, the B wave shown in FIG. 4 is a waveform of an induced voltage generated by the electric motor 3 of the compressor 101 which is a permanent magnet type electric motor. In a normal control state, the induced voltage (B wave) is hidden behind the applied voltage (A wave) and cannot be detected. Therefore, as shown in FIG. 5, it is possible to detect the induced voltage by providing a non-energized section in which the application of the voltage from the control device 14 is stopped.
 誘起電圧は、圧縮機101の回転数(駆動周波数)、永久磁石3bの磁束密度及び固定子3cのコイルの巻数に応じて大きさが変化する。ここで、制御装置14は、圧縮機101の回転数は把握できている。また、固定子3cの巻数はあらかじめ決まっている。このため、制御装置14は、電動機3(圧縮機101)の回転数と誘起電圧の大きさとに基づいて、永久磁石3bの磁束密度を求めることができる。ここで永久磁石3bの磁束密度は温度勾配をもっている。そこで、制御装置14は、永久磁石3bの磁束密度と温度との関係をあらかじめ求めておき、関係を示すデータを有しておくようにする。磁束密度から永久磁石3bの温度(電動機3の温度、シェル1内の温度)を推定することが可能となる。 The magnitude of the induced voltage changes according to the rotation speed (drive frequency) of the compressor 101, the magnetic flux density of the permanent magnet 3b, and the number of turns of the coil of the stator 3c. Here, the control device 14 can grasp the rotation speed of the compressor 101. The number of turns of the stator 3c is determined in advance. For this reason, the control apparatus 14 can obtain | require the magnetic flux density of the permanent magnet 3b based on the rotation speed of the electric motor 3 (compressor 101), and the magnitude | size of an induced voltage. Here, the magnetic flux density of the permanent magnet 3b has a temperature gradient. Therefore, the control device 14 obtains a relationship between the magnetic flux density of the permanent magnet 3b and the temperature in advance, and has data indicating the relationship. It becomes possible to estimate the temperature of the permanent magnet 3b (the temperature of the electric motor 3, the temperature in the shell 1) from the magnetic flux density.
 図1に示すように、回転子3aはシェル1(圧縮機101)の内部の電動機3の固定子3cの内側で回転しており、主軸4と密着している。このため、電動機3の温度、シェル1(圧縮機101)内の潤滑油15の温度等を推定するのに、圧縮機101の外側に取り付けられた吸入温度サーミスタ11、吐出温度サーミスタ12、油温度サーミスタ13の検出に係る温度から、シェル(圧縮機101)内の温度を推定する場合と比べると、高精度で推定することが可能となる。 As shown in FIG. 1, the rotor 3 a rotates inside the stator 3 c of the electric motor 3 inside the shell 1 (compressor 101) and is in close contact with the main shaft 4. For this reason, in order to estimate the temperature of the motor 3, the temperature of the lubricating oil 15 in the shell 1 (compressor 101), etc., the suction temperature thermistor 11, the discharge temperature thermistor 12, the oil temperature attached to the outside of the compressor 101 Compared to the case where the temperature in the shell (compressor 101) is estimated from the temperature related to the detection of the thermistor 13, it can be estimated with high accuracy.
 以上のように、実施の形態1の圧縮機101によれば、制御装置14が圧縮機101本体への電力供給を行う際、無通電区間を設け、電圧の印加を停止する制御を行うようにしたので、電動機3が発生する誘起電圧を検出することができる。このため、シェル1内の電動機3、軸受部9等の温度を高精度で推定することができ、推定誤差を低く見積もることができるので、例えば、駆動に問題ない状態でも停止させてしまうことなく駆動を継続することができる。また、例えば、圧縮機101の性能を高めるのに、永久磁石3bの材料に入手性が困難なディスプロシウム等の重希土類金属が多く入った合金を選定しなくてもすむため、コスト低減をはかることができる。また、軸受部9の材料として、摺動性をよくするのに鉛等の入った合金を選定しなくてもすむため、環境負荷低減をはかることができる。 As described above, according to the compressor 101 of the first embodiment, when the control device 14 supplies power to the compressor 101 main body, the non-energized section is provided so as to perform control to stop the voltage application. Thus, the induced voltage generated by the electric motor 3 can be detected. For this reason, it is possible to estimate the temperature of the electric motor 3 and the bearing portion 9 in the shell 1 with high accuracy and to estimate the estimation error at a low level. Driving can be continued. Further, for example, in order to improve the performance of the compressor 101, it is not necessary to select an alloy containing a large amount of heavy rare earth metal such as dysprosium, which is difficult to obtain in the material of the permanent magnet 3b. Can measure. Moreover, since it is not necessary to select an alloy containing lead or the like as the material of the bearing portion 9 in order to improve the slidability, the environmental load can be reduced.
実施の形態2.
 図6は本発明の実施の形態2に係る圧縮機101の断面図である。図6において、図1と同じ符号を付している部分等については、実施の形態1で説明したことと同様の動作等を行う。図6に示すように、本実施の形態の圧縮機101は、吸入管2が直接圧縮機構部5と連通している。また、圧縮機構部5が圧縮した冷媒は、圧縮機構部5より下部に位置する電動機3、軸受部9、潤滑油15が存在する吐出空間6に開放されたのち、吐出管7から吐出する。このように、実施の形態1で説明した圧縮機101と異なる部品配置の圧縮機101も用途によって、従来より存在する。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view of the compressor 101 according to Embodiment 2 of the present invention. In FIG. 6, the same reference numerals as those in FIG. As shown in FIG. 6, in the compressor 101 of the present embodiment, the suction pipe 2 is in direct communication with the compression mechanism unit 5. The refrigerant compressed by the compression mechanism unit 5 is discharged from the discharge pipe 7 after being opened to the discharge space 6 where the electric motor 3, the bearing unit 9, and the lubricating oil 15 are located below the compression mechanism unit 5. As described above, the compressor 101 having a different component arrangement from the compressor 101 described in the first embodiment also exists depending on the application.
 上記のような構成の圧縮機101において、圧縮対象の気体としてR32冷媒、R744冷媒を使用した場合、吐出空間6に位置する電動機3、軸受部9、潤滑油15等が高温になる。吸入温度サーミスタ11、吐出温度サーミスタ12及び油温度サーミスタ13だけでは圧縮機101内の各部の温度を推定することは困難となる。 In the compressor 101 configured as described above, when the R32 refrigerant and the R744 refrigerant are used as the gas to be compressed, the electric motor 3, the bearing portion 9, the lubricating oil 15 and the like located in the discharge space 6 become high temperature. It is difficult to estimate the temperature of each part in the compressor 101 using only the suction temperature thermistor 11, the discharge temperature thermistor 12, and the oil temperature thermistor 13.
 そこで、本実施の形態のような構造の圧縮機101においても、実施の形態1で説明したように、無通電区間を設けた電圧を印加し、無通電区間において誘起電圧を検出する。誘起電圧に基づいて、電動機3の温度を高精度に推定することで、圧縮機101の保護を有効に行う等することができる。 Therefore, also in the compressor 101 having the structure as in the present embodiment, as described in the first embodiment, a voltage provided with a non-energized section is applied, and an induced voltage is detected in the non-energized section. The compressor 101 can be effectively protected by estimating the temperature of the electric motor 3 with high accuracy based on the induced voltage.
実施の形態3.
 上述の実施の形態1及び実施の形態2では特に規定しなかったが、永久磁石3bの素材を、ネオジウム(ネオジム)を含む希土類磁石にする。ネオジウムを含む希土類磁石は磁束密度が高く、磁力が大きい。
Embodiment 3 FIG.
Although not specified in the first and second embodiments, the material of the permanent magnet 3b is a rare earth magnet containing neodymium (neodymium). A rare earth magnet containing neodymium has a high magnetic flux density and a large magnetic force.
 実施の形態1で説明したように、誘起電圧は、永久磁石3bの磁束密度と固定子3cのコイルの巻数によって大きさが変わる。例えば、磁束密度が1Tを超えるネオジウムを含む希土類磁石を電動機3の永久磁石3bに採用することにより、誘起電圧における永久磁石3bの磁束密度の寄与度が上がる。永久磁石3bの磁束密度は温度特性を有するため、誘起電圧における永久磁石3bの磁束密度の寄与度が上がることで、永久磁石3bの温度が誘起電圧の大きさに反映されやすくなる。したがって、誘起電圧に基づく電動機3の温度の感度向上につながり、電動機3の温度推定の精度をさらに高めることができる。 As described in the first embodiment, the magnitude of the induced voltage varies depending on the magnetic flux density of the permanent magnet 3b and the number of turns of the stator 3c. For example, the contribution of the magnetic flux density of the permanent magnet 3b to the induced voltage is increased by employing a rare earth magnet containing neodymium having a magnetic flux density exceeding 1T in the permanent magnet 3b of the electric motor 3. Since the magnetic flux density of the permanent magnet 3b has temperature characteristics, the contribution of the magnetic flux density of the permanent magnet 3b to the induced voltage increases, so that the temperature of the permanent magnet 3b is easily reflected in the magnitude of the induced voltage. Therefore, the sensitivity of the temperature of the electric motor 3 based on the induced voltage is improved, and the temperature estimation accuracy of the electric motor 3 can be further increased.
実施の形態4.
 上述した実施の形態1~実施の形態3においては、圧縮機101はスクロール圧縮機を例として示したが、本発明はこの限りではなく、ロータリ圧縮機等、他の種類の圧縮機等にも適用することができる。
Embodiment 4 FIG.
In the first to third embodiments described above, the compressor 101 is shown as an example of a scroll compressor. However, the present invention is not limited to this, and the present invention is not limited to this, and may be applied to other types of compressors and the like. Can be applied.
実施の形態5.
 図7は本発明の実施の形態5に係る冷凍サイクル装置の構成例を表す図である。ここで、図7では冷凍サイクル装置として空気調和装置を示している。図7の空気調和装置は、室外機(室外ユニット)100と室内機(室内ユニット)200とをガス冷媒配管300、液冷媒配管400により配管接続する。室外機100は、実施の形態1~実施の形態4において説明した圧縮機101、四方弁102、室外熱交換器103、膨張弁104及び室外送風機105を有している。また、室内機200は室内熱交換器201を有している。
Embodiment 5 FIG.
FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 5 of the present invention. Here, FIG. 7 shows an air conditioner as the refrigeration cycle apparatus. The air conditioner of FIG. 7 connects an outdoor unit (outdoor unit) 100 and an indoor unit (indoor unit) 200 through a gas refrigerant pipe 300 and a liquid refrigerant pipe 400. The outdoor unit 100 includes the compressor 101, the four-way valve 102, the outdoor heat exchanger 103, the expansion valve 104, and the outdoor blower 105 described in the first to fourth embodiments. The indoor unit 200 has an indoor heat exchanger 201.
 圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、圧縮機101を例えばインバータ回路等により、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を変化させることができるようにしてもよい。四方弁102は、例えば冷房運転時と暖房運転時とによって冷媒の流れを切り換えるための弁である。 Compressor 101 compresses and discharges the sucked refrigerant. Here, although not particularly limited, the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) is changed by arbitrarily changing the operating frequency of the compressor 101 using, for example, an inverter circuit. You may be able to. The four-way valve 102 is, for example, a valve for switching the refrigerant flow between the cooling operation and the heating operation.
 室外熱交換器103は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, evaporating and evaporating the refrigerant. Moreover, it functions as a condenser during the cooling operation, and condenses and liquefies the refrigerant.
 絞り装置(流量制御手段)等の膨張弁104は冷媒を減圧して膨張させるものである。例えば電子式膨張弁等で構成した場合には、制御手段(図示せず)等の指示に基づいて開度調整を行う。室内熱交換器201は、例えば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。 An expansion valve 104 such as a throttle device (flow rate control means) expands the refrigerant by decompressing it. For example, in the case of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control means (not shown) or the like. The indoor heat exchanger 201 performs heat exchange between air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. Moreover, it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant.
 以上のように実施の形態5の冷凍サイクル装置によれば、実施の形態1~実施の形態4で説明した圧縮機101を構成要素として用いることで、装置全体として効率のよい運転を行うことができる。 As described above, according to the refrigeration cycle apparatus of the fifth embodiment, by using the compressor 101 described in the first to fourth embodiments as a constituent element, the entire apparatus can be operated efficiently. it can.
 上述の実施の形態4では空気調和装置を例にした冷凍サイクル装置について説明したが、例えば、冷凍装置、給湯装置等にも用いることができる。 In Embodiment 4 described above, the refrigeration cycle apparatus taking the air conditioner as an example has been described, but it can also be used for a refrigeration apparatus, a hot water supply apparatus, and the like.
 1 シェル、2 吸入管、3 電動機、3a 回転子、3b 永久磁石、3c 固定子、4 主軸、5 圧縮機構部、6 吐出空間、7 吐出管、8 端子、9 軸受部、10 冷媒、11 吸入温度サーミスタ、12 吐出温度サーミスタ、13 油温度サーミスタ、14 制御装置、15 潤滑油、100 室外機、101 圧縮機、102 四方弁、103 室外熱交換器、104 膨張弁、105 室外送風機、200 室内機、201 室内熱交換器、300 ガス冷媒配管、400 液冷媒配管。 1 shell, 2 suction pipe, 3 motor, 3a rotor, 3b permanent magnet, 3c stator, 4 main shaft, 5 compression mechanism part, 6 discharge space, 7 discharge pipe, 8 terminal, 9 bearing part, 10 refrigerant, 11 suction Temperature thermistor, 12 Discharge temperature thermistor, 13 Oil temperature thermistor, 14 Control device, 15 Lubricating oil, 100 Outdoor unit, 101 Compressor, 102 Four-way valve, 103 Outdoor heat exchanger, 104 Expansion valve, 105 Outdoor blower, 200 Indoor unit 201, indoor heat exchanger, 300 gas refrigerant piping, 400 liquid refrigerant piping.

Claims (9)

  1.  外殻となる密閉容器と、
     該密閉容器内に設置され、流入した流体を圧縮して外部に吐出する圧縮機構部と、
     磁石を有し、前記圧縮機構部に動力供給を行う電動機と、
     該電動機の誘起電圧を検出する無通電区間を設けた電圧を前記電動機に印加して前記電動機に供給する電力を制御する制御装置と
    を備える圧縮機。
    A sealed container as an outer shell,
    A compression mechanism that is installed in the sealed container and compresses the fluid that flows in and discharges the fluid to the outside;
    An electric motor having a magnet and supplying power to the compression mechanism;
    A compressor comprising: a control device that controls a power supplied to the motor by applying a voltage provided with a non-energized section for detecting an induced voltage of the motor to the motor.
  2.  前記電動機は、永久磁石式のブラシレスDCモータである請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the electric motor is a permanent magnet type brushless DC motor.
  3.  前記電動機は、前記密閉容器内において、前記圧縮機構部から流出した気体の雰囲気となる高圧側空間内に設置される請求項1又は請求項2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the electric motor is installed in a high-pressure side space serving as an atmosphere of gas flowing out from the compression mechanism section in the sealed container.
  4.  前記電動機が有する前記磁石は、ネオジウムを含む希土類磁石である請求項1~請求項3のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the magnet of the electric motor is a rare earth magnet containing neodymium.
  5.  前記流体はR32冷媒又はR744冷媒である請求項1~請求項4のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the fluid is an R32 refrigerant or an R744 refrigerant.
  6.  前記制御装置は、前記無通電区間に検出した前記誘起電圧に基づいて、前記圧縮機内の温度を推定する処理を行う請求項1~請求項5のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein the control device performs a process of estimating a temperature in the compressor based on the induced voltage detected in the non-energized section.
  7.  請求項1~請求項6のいずれか一項に記載の圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で接続して冷媒回路を構成する冷凍サイクル装置。 7. A refrigeration cycle apparatus in which the compressor, the condenser, the expansion device, and the evaporator according to any one of claims 1 to 6 are connected by a refrigerant pipe to constitute a refrigerant circuit.
  8.  外殻となる密閉容器、該密閉容器内に設置され、流入した冷媒を圧縮して外部に吐出する圧縮機構部及び、磁石を有し、前記圧縮機構部に動力供給を行う電動機を備える圧縮機の制御方法であって、
     無通電区間を設けた電圧を前記電動機に印加する工程と、
     前記無通電区間において検出された前記電動機の誘起電圧に基づいて、前記圧縮機内の温度を推定する工程と
    を有する圧縮機の制御方法。
    A compressor provided with a hermetic container serving as an outer shell, a compression mechanism part that is installed in the hermetic container, compresses the refrigerant that has flowed in, and is discharged to the outside, and a motor that has a magnet and supplies power to the compression mechanism part Control method,
    Applying a voltage with a non-energized section to the motor;
    And a step of estimating a temperature in the compressor based on an induced voltage of the electric motor detected in the non-energized section.
  9.  前記電動機の回転数と誘起電圧の大きさとに基づいて前記磁石の磁束密度を求め、前記磁石の磁束密度と温度との関係に基づいて前記圧縮機内の温度を推定する請求項8に記載の圧縮機の制御方法。 The compression according to claim 8, wherein the magnetic flux density of the magnet is obtained based on the rotation speed of the electric motor and the magnitude of the induced voltage, and the temperature in the compressor is estimated based on the relationship between the magnetic flux density of the magnet and the temperature. How to control the machine.
PCT/JP2014/062161 2014-05-02 2014-05-02 Compressor, refrigeration cycle device, and method for controlling compressor WO2015166580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062161 WO2015166580A1 (en) 2014-05-02 2014-05-02 Compressor, refrigeration cycle device, and method for controlling compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062161 WO2015166580A1 (en) 2014-05-02 2014-05-02 Compressor, refrigeration cycle device, and method for controlling compressor

Publications (1)

Publication Number Publication Date
WO2015166580A1 true WO2015166580A1 (en) 2015-11-05

Family

ID=54358331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062161 WO2015166580A1 (en) 2014-05-02 2014-05-02 Compressor, refrigeration cycle device, and method for controlling compressor

Country Status (1)

Country Link
WO (1) WO2015166580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017092524A1 (en) * 2015-11-30 2017-06-08 珠海格力电器股份有限公司 Compressor exhaust bearing holder connection structure and screw compressor
JP2019146453A (en) * 2018-02-23 2019-08-29 三菱重工業株式会社 Controller for synchronous motor and controller for synchronous power generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152989A (en) * 1987-10-27 1989-06-15 Heidelberger Druckmas Ag Method and apparatus for obtaining temperature of brushless dc motor
JPH08317684A (en) * 1995-05-22 1996-11-29 Toshiba Corp Control device of permanent magnet type motor and washing machine with it
JP2001115963A (en) * 1999-10-13 2001-04-27 Daikin Ind Ltd Compressor
JP3327671B2 (en) * 1994-03-30 2002-09-24 東芝キヤリア株式会社 Fluid compressors and air conditioners
JP2003083258A (en) * 2001-09-05 2003-03-19 Mitsubishi Electric Corp Hermetic type compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152989A (en) * 1987-10-27 1989-06-15 Heidelberger Druckmas Ag Method and apparatus for obtaining temperature of brushless dc motor
JP3327671B2 (en) * 1994-03-30 2002-09-24 東芝キヤリア株式会社 Fluid compressors and air conditioners
JPH08317684A (en) * 1995-05-22 1996-11-29 Toshiba Corp Control device of permanent magnet type motor and washing machine with it
JP2001115963A (en) * 1999-10-13 2001-04-27 Daikin Ind Ltd Compressor
JP2003083258A (en) * 2001-09-05 2003-03-19 Mitsubishi Electric Corp Hermetic type compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017092524A1 (en) * 2015-11-30 2017-06-08 珠海格力电器股份有限公司 Compressor exhaust bearing holder connection structure and screw compressor
US10519955B2 (en) 2015-11-30 2019-12-31 Gree Electric Appliances, Inc. Of Zhuhai Connection structure of exhaust bearing seat for compressor and screw compressor
JP2019146453A (en) * 2018-02-23 2019-08-29 三菱重工業株式会社 Controller for synchronous motor and controller for synchronous power generator
WO2019163464A1 (en) * 2018-02-23 2019-08-29 三菱重工業株式会社 Synchronous electric motor control device, and synchronous electricity generator control device
JP7051487B2 (en) 2018-02-23 2022-04-11 三菱重工マリンマシナリ株式会社 Synchronous motor control device and synchronous generator control device

Similar Documents

Publication Publication Date Title
JP6625762B2 (en) Driving device, air conditioner and method of driving electric motor
JP6636170B2 (en) Driving device, air conditioner, and driving method of electric motor
US8904814B2 (en) System and method for detecting a fault condition in a compressor
JP5316683B2 (en) Transportation refrigeration equipment
CN109863691A (en) The control method of air conditioner and air conditioner
JP7166358B2 (en) Drives, compressors, and air conditioners
CN109863688A (en) The control method of driving device, air conditioner and compressor
CN103868303A (en) Refrigerator having a dew prevention and/or control device and method for preventing formation of dew therein and/or thereon
JPWO2019021374A1 (en) Driving device, air conditioner, and driving method
JP2001174075A (en) Refrigerating device
JP2005090925A (en) Refrigerant leakage detecting device and refrigerator using the same
JP6001410B2 (en) Hermetic electric compressor and refrigeration air conditioner using the same
JP6710325B2 (en) Air conditioner and operation control method for air conditioner
JP6800301B2 (en) How to drive drive devices, air conditioners and electric motors
JP5826439B1 (en) Refrigeration cycle apparatus and air conditioner
WO2015166580A1 (en) Compressor, refrigeration cycle device, and method for controlling compressor
JP5693704B2 (en) Air conditioner
CN111406190A (en) Refrigerator and control method thereof
JP5836844B2 (en) Refrigeration equipment
JP6906138B2 (en) Refrigeration cycle equipment
JP5535359B2 (en) Air conditioner
JP6091077B2 (en) Refrigeration equipment
JP6872686B2 (en) Refrigeration cycle equipment
JPH02136324A (en) Air-conditioning device
JP2016142423A (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP