WO2015166562A1 - Organic electroluminescent element and method for manufacturing same - Google Patents

Organic electroluminescent element and method for manufacturing same Download PDF

Info

Publication number
WO2015166562A1
WO2015166562A1 PCT/JP2014/062008 JP2014062008W WO2015166562A1 WO 2015166562 A1 WO2015166562 A1 WO 2015166562A1 JP 2014062008 W JP2014062008 W JP 2014062008W WO 2015166562 A1 WO2015166562 A1 WO 2015166562A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescence
light emitting
electroluminescence device
organic
Prior art date
Application number
PCT/JP2014/062008
Other languages
French (fr)
Japanese (ja)
Inventor
勇進 夫
貴之 千葉
城戸 淳二
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to PCT/JP2014/062008 priority Critical patent/WO2015166562A1/en
Priority to JP2016515805A priority patent/JP6579471B2/en
Publication of WO2015166562A1 publication Critical patent/WO2015166562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a multi-photon emission organic electroluminescence element (hereinafter abbreviated as an organic EL element) that can be produced by a coating method and a method for producing the same.
  • an organic EL element multi-photon emission organic electroluminescence element
  • a multiphoton emission organic EL device in which a plurality of light emitting units are connected in series via a charge generation layer (intermediate layer) reduces the amount of current per unit when compared with a normal organic EL device with the same luminance.
  • the durability of the element can be improved.
  • each unit when the current value is constant, each unit can obtain the respective luminance, so that it is an effective means in terms of efficiency.
  • Patent Document 1 includes a charge generation layer (V 2 O 5 ) and an electron injection layer (Li). It is described that the intermediate layer is formed by vacuum deposition, and each light emitting unit is formed by a coating method.
  • Patent Document 2 describes that dipentaerythritol hexaacrylate is used as a thermal crosslinking material, and the light emitting layer, the charge generation layer, and the electron injection layer are insolubilized by heating and baking at 200 ° C. .
  • Patent Document 3 a photocrosslinkable group is introduced into a charge generation material or an electron injection layer, and is heated and fired at 120 ° C. under irradiation of a low-pressure mercury lamp (15 mW / cm 2 ) to form a multi-layered structure by a coating method. It is described to do.
  • Patent Document 1 needs to repeat a plurality of different film forming processes, so that it is difficult to produce a continuous element, which causes an increase in cost.
  • the coating film is formed on the electron-injecting metal material that is unstable with respect to moisture and oxygen, there is a concern about deterioration of element characteristics.
  • the present invention has been made to solve the above technical problem, and in a multi-photon emission organic EL element, by simplifying the coating lamination of the intermediate layer including the charge generation layer, all the constituent layers can be made efficient.
  • Another object of the present invention is to provide an organic EL element that can be easily formed by a coating method at low cost and without deteriorating element characteristics, and a method for producing the same.
  • the organic EL device is a multi-photon emission organic EL device in which a plurality of light emitting units each having at least one light emitting layer are stacked via an intermediate layer between a pair of electrodes, and the intermediate layer includes: It consists of a coating layer of a charge generation layer on the cathode side and an electron injection layer on the anode side, and has an inverted structure.
  • the inverted structure has a structure in which a cathode, a plurality of light emitting units stacked via an intermediate layer, and an anode are stacked in this order on a substrate.
  • the charge generation layer preferably contains one or more conductive polymers. According to such a charge generation layer, coating can be formed, and the film can be formed without requiring high-temperature heating at the time of film formation.
  • the conductive polymer is any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is preferably a doped n-type or p-type semiconductor. According to such a conductive polymer, a charge generation layer having excellent hole injection characteristics can be formed by coating film formation.
  • the electron injection layer preferably contains one or more metal oxide fine particles or polar polymers. According to such an electron injection layer, the intermediate layer has an effect of improving the film forming property of the adjacent upper layer and preventing penetration of the solvent into the adjacent lower layer.
  • metal oxide fine particles it is composed of any one of zinc oxide, titanium oxide, zirconium oxide and oxide, and in the case of a polar polymer, it is preferably a polyethyleneimine derivative.
  • the light emitting unit may be any one that emits fluorescence or phosphorescence. Since the electron injection layer exhibits good electron injection characteristics from the charge generation layer, any light emitting material can be suitably applied.
  • At least one of the cathode and the anode is transparent as a light extraction surface.
  • the cathode and the anode are preferably made of any one of metal, metal oxide, and conductive polymer.
  • metal it is one of aluminum, silver, and gold.
  • metal oxide indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide, aluminum addition One of zinc oxide (AZO) and gallium-doped zinc oxide (GZO), and in the case of a conductive polymer, one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative;
  • the n-type or p-type semiconductor is used.
  • the method for producing an organic EL device according to the present invention is a method for producing the above-mentioned organic EL device, wherein the intermediate layer is coated and laminated using a solvent, and then dried at 130 ° C. or less to form a film. It is characterized by comprising the step of: Since the intermediate layer can be formed by a low-temperature treatment at 130 ° C. or lower, a multiphoton emission organic EL element can be efficiently manufactured at a low cost by a coating method.
  • the intermediate layer including the charge generation layer in the multi-photon emission organic EL element can be easily applied and laminated, all the constituent layers can be formed by the application method. Therefore, by applying the intermediate layer in the present invention, it becomes possible to produce a multi-photon emission organic EL element that requires multi-layer stacking efficiently and at low cost, and further increase the efficiency of the element. Be expected.
  • 6 is a graph showing luminance-voltage characteristics of the elements of Example 2-1 and Comparative Examples 2-1 and 2-2. 6 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 2-1 and Comparative Examples 2-1 and 2-2. 6 is a graph showing luminance-voltage characteristics of the elements of Example 3-1 and Comparative Examples 3-1 and 3-2. 6 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 3-1 and Comparative Examples 3-1 and 3-2. 6 is a graph showing EL spectrum characteristics of the elements of Example 4-1 and Comparative Examples 4-1 and 4-2. 6 is a graph showing the external quantum efficiency-current density characteristics of the devices of Example 4-1 and Comparative Examples 4-1 and 4-2.
  • the organic EL device is a multi-photon emission organic EL device in which a plurality of light emitting units each having at least one light emitting layer are stacked via an intermediate layer between a pair of electrodes.
  • the intermediate layer is formed of a coating layer of a charge generation layer on the cathode side and an electron injection layer on the anode side, and has an inverted structure.
  • the inverted structure has a structure in which a plurality of light emitting units stacked on a substrate in the order of a cathode, an intermediate layer, and an anode are stacked in this order.
  • FIG. 1 shows an example of the layer structure of an inverted multi-photon emission organic EL element.
  • FIG. 2 shows an example of a layer structure of a multi-photon emission organic EL element having a standard structure.
  • the ITO transparent electrode on the glass substrate 11 is used as the anode 12, and the first light emitting unit 13, the charge generation layer 15, the electron injection layer 14, and the second light emitting unit are formed thereon. 16 is laminated, and an aluminum reflective electrode is formed thereon as a cathode 17.
  • the inverted structure element uses an ITO transparent electrode as the cathode 2 on the glass substrate 1, and the first light emitting unit 3, the charge generation layer 4, and the electron injection thereon.
  • the layer 5 and the second light emitting unit 6 are laminated, and an aluminum reflective electrode is formed thereon as the anode 7.
  • the intermediate layer including the charge generation layer can be formed by coating with a solvent that does not redissolve the lower layer (first light emitting unit), and the intermediate layer It is required to be insoluble in the solvent used for coating the upper layer (second light emitting unit). Further, in order to stably manufacture the device, the intermediate layer improves the film formability of the upper layer (second light emitting unit), and the solvent to the lower layer (first light emitting unit) of the intermediate layer. It is desirable to prevent penetration.
  • the multi-photon emission organic EL element has an inverted structure as described above, and a charge generation layer is formed on the light emitting unit by coating, and the influence of oxygen and moisture in the atmosphere is applied thereon.
  • An easily injectable electron injection layer can be continuously applied and formed, and an intermediate layer composed of a charge generation layer and an electron injection layer can be applied and laminated.
  • the charge generation layer preferably contains one or more conductive polymers.
  • the conductive polymer constituting the charge generation layer that can be coated and formed on the light emitting unit is any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is doped n-type or p-type.
  • a semiconductor is preferable.
  • PEDOT water-soluble poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • PEDOT PSS
  • PEDOT: PSS has good hole injection characteristics, and when used in the charge generation layer, good hole injection characteristics to the first light emitting unit can be obtained.
  • PEDOT: PSS is an aqueous dispersion and it is difficult to form a coating on an organic film having a hydrophobic surface.
  • PEDOT: PSS exhibits strong acidity (pH 1 to 2), it is difficult to stack an electron injection layer made of a material inferior in acid resistance thereon. In this case, neutralize with an aqueous solution of sodium hydroxide (pH 6-8), and spin coat neutral PEDOT: PSS onto the acidic PEDOT: PSS film, thereby stacking an electron injection layer with insufficient acid resistance. It becomes possible.
  • the electron injection layer applied and laminated on the charge generation layer preferably contains one or more metal oxide fine particles or polar polymers.
  • metal oxide microparticles what consists of zinc oxide, a titanium oxide, a zirconium oxide, and an oxide oxide is used suitably. Since such metal oxide fine particles are insoluble in alcohol, toluene, xylene, tetrahydrofuran, chloroform and chlorobenzene, which are organic solvents generally used for coating film formation, adjacent organic films are coated and laminated using an organic solvent. can do.
  • the polar polymer for example, a polyethyleneimine derivative as shown in the following (Chemical Formula 1) is preferably used.
  • Polar polymers such as polyethyleneimine derivatives are water-soluble and are insoluble in toluene, xylene, tetrahydrofuran, chloroform and chlorobenzene, which are organic solvents generally used for coating film formation. Adjacent organic films can be applied and laminated using an organic solvent.
  • the electron injection layer in the intermediate layer is particularly preferably composed of zinc oxide fine particles / polyethyleneimine derivative.
  • the electron injection layer is particularly preferably composed of zinc oxide fine particles / polyethyleneimine derivative.
  • the intermediate layer composed of the charge generation layer and the electron injection layer as described above has an effect of suppressing the permeation of the solvent used during coating formation of the second light emitting unit to the first light emitting unit, This facilitates formation of a multiphoton structure having a plurality of light emitting units.
  • PEDOT PSS
  • zinc oxide fine particles zinc oxide fine particles
  • polyethyleneimine derivatives and the like can be dried at a relatively low temperature of 100 to 120 ° C. during film formation.
  • a flexible substrate made of resin or the like can be used as the element substrate.
  • the organic EL element according to the present invention may be capable of extracting light from either the cathode or the anode, and it is preferable that at least one of the cathode and the anode is transparent.
  • the constituent material of the cathode and the anode is preferably one of metal, metal oxide, and conductive polymer.
  • the metal include aluminum, silver, and gold
  • examples of the metal oxide include ITO, IZO, zinc oxide, AZO, and GZO.
  • the conductive polymer may be any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and includes a doped n-type or p-type semiconductor.
  • the intermediate layer is coated and laminated using a solvent and then dried at 130 ° C. or less to form a film.
  • the heat treatment temperature can be relatively low. Thereby, the thermal adverse effect on the organic material is suppressed, and the multi-photon emission organic EL element can be efficiently manufactured at a low cost by the coating method. Further, it can also be applied to element fabrication using a flexible substrate, which is difficult to apply to the high-temperature heat treatment process.
  • the layer structure other than the intermediate layer of the organic EL element according to the present invention as described above can be a known structure of the multiphoton emission organic EL element.
  • an electron injection layer may be provided between the cathode / first light emitting unit, and a hole injection layer may be provided between the second light emitting unit / anode.
  • a known laminated structure including a hole transport layer, an electron transport layer, a hole transport light-emitting layer, an electron transport light-emitting layer, and the like may be used. Note that the number of light emitting units including the light emitting layer is not limited to two and may be any number as long as it is plural.
  • the constituent materials of the layers other than the intermediate layer are not particularly limited, and can be appropriately selected from known materials, and may be either low molecular or high molecular. Further, the film thickness of each constituent layer of the organic EL element is appropriately determined according to the situation in consideration of the adaptability between the layers and the required total layer thickness, but usually 0.5 nm to 5 ⁇ m. It is preferable to be within the range.
  • each constituent layer other than the intermediate layer may be a dry process such as a vapor deposition method or a sputtering method, but the present invention has an advantage in that all layers can be formed by a coating method.
  • Wet such as spin coating method, ink jet method, casting method, dip coating method, bar coating method, blade coating method, roll coating method, gravure coating method, flexographic printing method, spray coating method, method using nanoparticle dispersion liquid, etc.
  • the process can be suitably applied. This makes it possible to produce a multiphoton emission organic EL element by a simple and efficient coating method.
  • Example 1-1 Production of coating type multi-photon emission organic EL element A photosensitive resist was coated on a glass substrate with ITO, and mask exposure, development and etching were performed to form a stripe pattern. This patterned glass substrate with ITO was washed with a neutral detergent, then ultrasonically washed with ultrapure water, boiled with 2-propanol, and then subjected to UV ozone treatment for 20 minutes. On the glass substrate with ITO, each layer was formed by a spin coat method in a glove box under the following conditions, and was sequentially laminated.
  • Electron injection layer 1 (film thickness: 10 nm): Spin-coated with a 2-ethoxyethanol dispersion of ZnO fine particles having a particle diameter of 10 nm, and then dried at 100 ° C. for 5 minutes.
  • Electron injection layer 2 (film thickness: 10 nm): A 2-ethoxyethanol solution of polyethyleneimine ethoxylated (PEIE) (Sigma Aldrich Japan) was spin-coated and then dried at 100 ° C. for 5 minutes.
  • PEIE polyethyleneimine ethoxylated
  • Light-emitting layer 1 (film thickness 80 nm): poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -o- (benzo [2,1,3] thiadiazole-4,8- A p-xylene solution of diyl)] (F8BT) (manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated and then dried at 130 ° C. for 10 minutes.
  • Charge generation layer 1 (film thickness 40 nm): PEDOT: PSS (Clevious TM CH8000 manufactured by Heraeus Co., Ltd.) was diluted with methanol and isopropanol at a volume ratio of 1: 1: 4, and this dispersion mixture was spin-coated. And dried at 120 ° C. for 10 minutes.
  • Charge generation layer 2 (film thickness: 10 nm): PEDOT: PSS was mixed with an aqueous sodium hydroxide solution to adjust the pH to 7, then diluted with isopropanol at a volume ratio of 1: 4, and this dispersion mixture was spin coated. Then, it dried for 10 minutes at 120 degreeC.
  • Electron injection layer 3 (film thickness 10 nm): formed in the same manner as the electron injection layer 1.
  • Electron injection layer 4 (film thickness 10 nm): formed in the same manner as the electron injection layer 2.
  • Light-emitting layer 2 (film thickness 80 nm): formed in the same manner as the light-emitting layer 1.
  • Hole injection layer 1 (film thickness 40 nm): PEDOT: PSS was diluted with methanol and isopropanol at a volume ratio of 1: 1: 4, and this dispersion mixture was spin-coated and then dried at 120 ° C. for 10 minutes. did.
  • aluminum was vacuum-deposited to form a cathode having a film thickness of 100 nm, and a coating type multiphoton emission organic EL device having two light emitting units was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
  • Example 1-1 Fabrication of Element with First Light-Emitting Unit Only In Example 1-1, the electron injection layers 3 and 4, the light-emitting layer 2, and the hole injection layer 1 were not provided. In the same manner, an organic EL element having one light emitting unit (only the light emitting layer 1) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / n-PEDOT: PSS / Al.
  • Example 1-1 Fabrication of element having only second light emitting unit
  • the charge generation layer 2, the electron injection layers 3 and 4, the light emitting layer 1 and the hole injection layer 1 were not provided.
  • an organic EL element having only one light emitting unit (only the light emitting layer 2) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
  • FIG. 3 shows luminance-voltage characteristics.
  • the vertical axis represents luminance (cd / m 2 ) and the horizontal axis represents drive voltage (V).
  • FIG. 4 shows the external quantum efficiency-current density characteristics.
  • the vertical axis represents external quantum efficiency (%), and the horizontal axis represents current density (mA / cm 2 ).
  • Table 1 shows the drive voltage and external quantum efficiency at a luminance of 1000 cd / m 2 .
  • Example 1-1 the driving voltage and the external quantum efficiency of Example 1-1 were almost the total values of Comparative Example 1-1 and Comparative Example 1-2, and multiphoton emission characteristics were observed.
  • Example 1-2 Production of a coating type multi-photon emission organic EL device in which light emitting units having different emission colors are laminated
  • a polyfluorene blue fluorescent polymer A p-xylene solution manufactured by Sumitomo Chemical Co., Ltd.
  • a coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / blue fluorescent polymer / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
  • Example 1-3 Fabrication of organic EL element having only first light emitting unit
  • the electron injection layers 3 and 4, the light emitting layer 2, and the hole injection layer 1 were not provided.
  • an organic EL device having one light emitting unit (only the light emitting layer 1) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / blue fluorescent polymer / PEDOT: PSS / n-PEDOT: PSS / Al.
  • Example 1-2 The evaluation results of the device characteristics of Example 1-2 and Comparative Examples 1-3 and 1-2 are shown below.
  • FIG. 5 shows the EL spectral characteristics.
  • the vertical axis represents EL relative intensity (au), and the horizontal axis represents wavelength (nm).
  • the blue light emission of the first light emitting unit and the yellow light emission of the second light emitting unit were obtained.
  • FIG. 6 shows the external quantum efficiency-current density characteristics.
  • Table 2 shows driving voltage and external quantum efficiency at a luminance of 1000 cd / m 2 .
  • Example 1-2 From the above evaluation results, the driving voltage and the external quantum efficiency of Example 1-2 were almost the total values of Comparative Example 1-3 and Comparative Example 1-2, and multiphoton emission characteristics were observed.
  • Example 2-1 Fabrication of coating type multiphoton emission organic EL device using hole transport layer
  • the light emitting layers 4 and 5 were formed in place of the light emitting layers 1 and 2, and the light emission was performed.
  • a coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1 except that the hole transport layer 1 was laminated on the layer 3 and the hole transport layer 2 was laminated on the light emitting layer 4.
  • the light emitting layers 4 and 5 and the hole transport layer 1 were formed as follows.
  • Light-emitting layer 4 (film thickness: 70 nm): A p-xylene solution of polyfluorene-based green fluorescent polymer SGP2 (manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated and then dried at 130 ° C. for 10 minutes.
  • Hole transport layer 1 (film thickness: 10 nm): 1,4-dioxane solution of tetraphenylbenzidine-containing poly (arylene ether sulfone) (TPDPES) was spin-coated and then dried at 120 ° C. for 10 minutes.
  • Light emitting layer 5 (film thickness 70 nm): formed in the same manner as the light emitting layer 4.
  • -Hole transport layer 2 (film thickness 10 nm): formed in the same manner as the hole transport layer 1.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / Al.
  • Example 2-1 Production of organic EL element only with first light emitting unit
  • the electron injection layers 3 and 4, the light emitting layer 5, the hole transport layer 2 and the hole injection layer 1 were not provided. Except for the above, an organic EL device having one light emitting unit (only the light emitting layer 4) was produced in the same manner as in Example 2-1.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / n-PEDOT: PSS / Al.
  • Example 2-2 Production of Organic EL Device with Second Light-Emitting Unit Only In Example 2-1, charge generation layer 2, electron injection layers 3 and 4, light-emitting layer 4, hole transport layer 1 and hole injection layer 1 Otherwise, an organic EL device having one light emitting unit (only the light emitting layer 5) was produced in the same manner as in Example 2-1.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / Al.
  • Example 2-1 and Comparative Examples 2-1 and 2-2 The evaluation results of the device characteristics of Example 2-1 and Comparative Examples 2-1 and 2-2 are shown below.
  • FIG. 7 shows luminance-voltage characteristics.
  • FIG. 8 shows the external quantum efficiency-current density characteristics.
  • Table 3 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
  • Example 2-1 the driving voltage and external quantum efficiency of Example 2-1 were almost the total values of Comparative Example 2-1 and Comparative Example 2-2, and multiphoton emission characteristics were observed.
  • Example 3-1 Production of coating type multiphoton emission organic EL element having phosphorescent light emitting layer
  • the light emitting layers 6 and 7 were formed in place of the light emitting layers 1 and 2, and the others were In the same manner as in Example 1-1, a coating type multiphoton emission organic EL element was produced.
  • the light emitting layers 6 and 7 were formed as follows.
  • Light emitting layer 6 (film thickness 70 nm): poly-N-vinylcarbazole (PVK), 10 wt% 4,4 ′, 4 ′′ -tris (carbazol-9-yl) triphenylamine (TCTA), 10 wt% 2 , 6-Bis [3- (carbazol-9-yl) phenyl] pyridine (26DCzppy), 10 wt% of tris (2-phenylpyridinato) iridium (III) (Ir (ppy) 3 ) in tetrahydrofuran And then dried at 130 ° C. for 10 minutes.
  • Light emitting layer 7 (film thickness 70 nm): formed in the same manner as the light emitting layer 6.
  • the outline of the layer structure of this element is as follows: glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (Ppy) 3 / PEDOT: PSS / Al.
  • Example 3-1 Fabrication of organic EL element having only first light emitting unit
  • the electron injection layers 3 and 4 the light emitting layer 7 and the hole injection layer 1 were not provided.
  • an organic EL device having one light emitting unit (only the light emitting layer 6) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / n-PEDOT: PSS / Al.
  • Example 3-2 Production of Organic EL Device with Second Light-Emitting Unit Only
  • the electron injection layers 3 and 4 the light-emitting layer 6, and the hole injection layer 1 were not provided.
  • an organic EL device having one light emitting unit (only the light emitting layer 7) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / Al.
  • Example 3-1 and Comparative Examples 3-1 and 3-2 The evaluation results of the device characteristics of Example 3-1 and Comparative Examples 3-1 and 3-2 are shown below.
  • FIG. 9 shows luminance-voltage characteristics.
  • FIG. 10 shows the external quantum efficiency-current density characteristics.
  • Table 4 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
  • Example 3-1 the driving voltage and the external quantum efficiency of Example 3-1 are almost the total values of Comparative Example 3-1 and Comparative Example 3-2, and the multiphoton emission characteristics are also obtained in the element using the phosphorescent material. was recognized.
  • Example 4-1 Production of a coating type multiphoton emission organic EL device having phosphorescent light emitting layers having different emission colors
  • the light emitting layers 8 and 9 were formed in place of the light emitting layers 1 and 2.
  • a coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1.
  • the light emitting layers 8 and 9 were formed as follows.
  • Light-emitting layer 8 (film thickness 70 nm): PVK, 10 wt% TCTA, 10 wt% 26 DCzppy, 10 wt% Ir (ppy) 3 ), 1 wt% tris (2-phenylisoquinoline) iridium (III) (Ir (phq) 3 ) After spin coating with a tetrahydrofuran solution, the solution was dried at 130 ° C. for 10 minutes.
  • Light-emitting layer 9 (film thickness 70 nm): PVK, 10 wt% TCTA, 10 wt% 26 DCzppy), 10 wt% of tris (2- (2,4-difluorophenyl) pyridine) iridium (III) (Ir (Fppy) 3 ) After spin-coating the tetrahydrofuran solution, it was dried at 130 ° C. for 10 minutes.
  • the outline of the layer structure of this element is as follows: glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 : Ir (phq) 3 / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / PVK : TCTA: 26DCzppy: Ir (Fppy) 3 / PEDOT: PSS / Al.
  • Example 4-1 Production of Organic EL Element with First Light-Emitting Unit Only
  • the electron injection layers 3 and 4, the light-emitting layer 9, and the hole injection layer 1 were not provided.
  • an organic EL device having one light emitting unit (only the light emitting layer 8) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 : Ir (phq) 3 / PEDOT: PSS / n-PEDOT: PSS / Al.
  • Example 4-2 Production of Organic EL Device with Second Light-Emitting Unit Only
  • the electron injection layers 3 and 4 the light-emitting layer 8, and the hole injection layer 1 were not provided.
  • an organic EL device having one light emitting unit (only the light emitting layer 9) was produced.
  • the outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (Fppy) 3 / PEDOT: PSS / Al.
  • Example 4-1 and Comparative Examples 4-1 and 4-2 The evaluation results of the device characteristics of Example 4-1 and Comparative Examples 4-1 and 4-2 are shown below.
  • FIG. 11 shows the EL spectral characteristics.
  • FIG. 12 shows the external quantum efficiency-current density characteristics.
  • Table 5 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
  • Example 4-1 the driving voltage and the external quantum efficiency of Example 4-1 are almost the total values of Comparative Example 4-1 and Comparative Example 4-2, and even in an element using phosphorescent materials having different emission colors. Multi-photon emission characteristics were observed.

Abstract

Provided is an organic EL element with which the applying and layering of intermediary layers that include a charge-generating layer in a multiphoton-emitting organic electroluminescent element are simplified, making it possible to efficiently and inexpensively form all constituting layers without degrading the properties of the element, and making it possible to form the element using a coating technique. Also provided is a method for manufacturing an organic EL element. A multiphoton-emitting organic electroluminescent element in which a plurality of light-emitting units that have at least one light-emitting layer are layered between a pair of electrodes with an intermediary layer therebetween, wherein the intermediary layer is configured by applying and layering the electric charge-generating layer near a negative electrode and an electron-injecting layer near a positive electrode, and an inverted-structure configuration is obtained.

Description

有機エレクトロルミネッセンス素子及びその製造方法Organic electroluminescence device and method for manufacturing the same
 本発明は、塗布法により作製することができるマルチフォトンエミッション有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)及びその製造方法に関する。 The present invention relates to a multi-photon emission organic electroluminescence element (hereinafter abbreviated as an organic EL element) that can be produced by a coating method and a method for producing the same.
 複数の発光ユニットを電荷発生層(中間層)を介して直列に接続したマルチフォトンエミッション有機EL素子は、同一輝度で通常の有機EL素子と比較した場合、各ユニット当たりの電流量を低減させることで、素子の耐久性を向上させることができる。また、電流値を一定とした場合、各ユニットからそれぞれの輝度が得られるため、効率面においても有効な手段である。 A multiphoton emission organic EL device in which a plurality of light emitting units are connected in series via a charge generation layer (intermediate layer) reduces the amount of current per unit when compared with a normal organic EL device with the same luminance. Thus, the durability of the element can be improved. In addition, when the current value is constant, each unit can obtain the respective luminance, so that it is an effective means in terms of efficiency.
 しかしながら、有機材料の多段積層化や、電荷発生層として金属酸化物又は金属の使用が必要となるため、塗布法を用いた素子作製が困難であり、各構成層の積層工程には、一般に、真空蒸着法が用いられている。 However, since multi-layered organic materials and the use of a metal oxide or metal as a charge generation layer are required, it is difficult to produce an element using a coating method. A vacuum deposition method is used.
 近年、蒸着法と塗布法を組み合わせたマルチフォトンエミッション有機EL素子の製造方法も提案されており、例えば、特許文献1に、電荷発生層(V25)と電子注入層(Li)からなる中間層を真空蒸着にて成膜し、各発光ユニットを塗布法にて成膜することが記載されている。 In recent years, a method for producing a multi-photon emission organic EL element in which a vapor deposition method and a coating method are combined has been proposed. For example, Patent Document 1 includes a charge generation layer (V 2 O 5 ) and an electron injection layer (Li). It is described that the intermediate layer is formed by vacuum deposition, and each light emitting unit is formed by a coating method.
 一方、発光ユニット及び中間層のいずれも塗布成膜した素子も開示されている。例えば、特許文献2には、ジペンタエリシリトールヘキサアクリレートを熱架橋材料として用い、発光層、電荷発生層及び電子注入層を200℃にて加熱焼成することで不溶化することが記載されている。また、特許文献3には、電荷発生材料や電子注入層に光架橋性基を導入し、低圧水銀灯(15mW/cm2)照射下、120℃にて加熱焼成することで塗布法による多段積層化を行うことが記載されている。 On the other hand, an element in which both the light emitting unit and the intermediate layer are coated is disclosed. For example, Patent Document 2 describes that dipentaerythritol hexaacrylate is used as a thermal crosslinking material, and the light emitting layer, the charge generation layer, and the electron injection layer are insolubilized by heating and baking at 200 ° C. . In Patent Document 3, a photocrosslinkable group is introduced into a charge generation material or an electron injection layer, and is heated and fired at 120 ° C. under irradiation of a low-pressure mercury lamp (15 mW / cm 2 ) to form a multi-layered structure by a coating method. It is described to do.
特開2010-192474号公報JP 2010-192474 A 特開2009-152015号公報JP 2009-152015 A 特開2011-86442号公報JP 2011-86442 A
 しかしながら、上記特許文献1に記載されたような方法は、複数の異なる成膜プロセスを繰り返す必要があるため、連続的な素子作製が困難であり、高コスト化の要因となる。また、水分や酸素に対して不安定である電子注入金属材料に対して塗布成膜を行うため、素子特性の低下が懸念される。 However, the method as described in the above-mentioned Patent Document 1 needs to repeat a plurality of different film forming processes, so that it is difficult to produce a continuous element, which causes an increase in cost. In addition, since the coating film is formed on the electron-injecting metal material that is unstable with respect to moisture and oxygen, there is a concern about deterioration of element characteristics.
 また、上記特許文献2に記載されているような方法では、塗布法のみで各構成層を作製することが可能となるが、発光層への架橋材料の添加は、発光効率の低下や素子の高電圧化を引き起こす要因となる。また、加熱温度が200℃と高温であり、使用する材料や基板が耐熱性のあるものに限定される等の課題を有している。
 さらに、上記特許文献3に記載されているような方法では、架橋反応による輸送特性及び注入特性の低下が、素子特性に悪影響を及ぼすおそれがある。
In addition, in the method as described in Patent Document 2, it is possible to produce each constituent layer only by a coating method. However, addition of a crosslinking material to the light-emitting layer reduces the light emission efficiency or reduces the element. It becomes a factor causing high voltage. In addition, the heating temperature is as high as 200 ° C., and there is a problem that the material and the substrate to be used are limited to those having heat resistance.
Furthermore, in the method as described in Patent Document 3, a decrease in transport characteristics and injection characteristics due to a crosslinking reaction may adversely affect device characteristics.
 このように、従来の方法では、素子作製の簡略化と高効率化を両立することは困難であった。また、架橋性材料を使用せずに、電荷発生層及び電子注入層を塗布法にて成膜し、リン光材料を適用したという先行技術は報告されていない。 Thus, with the conventional method, it has been difficult to achieve both simplification of device fabrication and high efficiency. In addition, no prior art has been reported in which a charge generation layer and an electron injection layer are formed by a coating method without using a crosslinkable material and a phosphorescent material is applied.
 したがって、マルチフォトンエミッション有機EL素子を、塗布法で簡便に、かつ、素子特性を低下させることなく形成するための中間層の好適な材料や層構成を見出すことが求められている。 Therefore, it is required to find a suitable material and layer structure of an intermediate layer for forming a multi-photon emission organic EL element easily by a coating method without deteriorating element characteristics.
 本発明は、上記技術課題を解決するためになされたものであり、マルチフォトンエミッション有機EL素子において、電荷発生層を含む中間層の塗布積層を簡略化することにより、すべての構成層を効率的に低コストで、かつ、素子特性を低下させることなく、塗布法で簡便に形成することができる有機EL素子及びその製造方法を提供することを目的とするものである。 The present invention has been made to solve the above technical problem, and in a multi-photon emission organic EL element, by simplifying the coating lamination of the intermediate layer including the charge generation layer, all the constituent layers can be made efficient. Another object of the present invention is to provide an organic EL element that can be easily formed by a coating method at low cost and without deteriorating element characteristics, and a method for producing the same.
 本発明に係る有機EL素子は、1対の電極間に、少なくとも1つの発光層を有する発光ユニットが中間層を介して複数積層されたマルチフォトンエミッション有機EL素子であって、前記中間層が、陰極側の電荷発生層と、陽極側の電子注入層との塗布積層からなり、インバーテッド構造を有することを特徴とする。
 前記インバーテッド構造は、具体的には、基板上に、陰極、中間層を介して複数積層された発光ユニット、陽極の順に積層された構成からなる。
 このようなインバーテッド構造とすることにより、マルチフォトンエミッション有機EL素子の積層構造を塗布法により簡便に構成することが可能となる。
The organic EL device according to the present invention is a multi-photon emission organic EL device in which a plurality of light emitting units each having at least one light emitting layer are stacked via an intermediate layer between a pair of electrodes, and the intermediate layer includes: It consists of a coating layer of a charge generation layer on the cathode side and an electron injection layer on the anode side, and has an inverted structure.
Specifically, the inverted structure has a structure in which a cathode, a plurality of light emitting units stacked via an intermediate layer, and an anode are stacked in this order on a substrate.
By adopting such an inverted structure, it is possible to easily construct a laminated structure of multi-photon emission organic EL elements by a coating method.
 前記有機EL素子においては、電荷発生層が導電性高分子を1層又は複数層含有していることが好ましい。
 このような電荷発生層によれば、塗布成膜が可能となり、かつ、成膜時に高温加熱を要することなく成膜することができる。
In the organic EL element, the charge generation layer preferably contains one or more conductive polymers.
According to such a charge generation layer, coating can be formed, and the film can be formed without requiring high-temperature heating at the time of film formation.
 前記導電性高分子としては、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであり、ドープされたn型又はp型半導体であることが好ましい。
 このような導電性高分子によれば、塗布成膜によりホール注入特性に優れた電荷発生層を構成し得る。
The conductive polymer is any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is preferably a doped n-type or p-type semiconductor.
According to such a conductive polymer, a charge generation layer having excellent hole injection characteristics can be formed by coating film formation.
 また、前記電子注入層が、金属酸化物微粒子又は極性高分子を1層又は複数層含有していることが好ましい。
 このような電子注入層によれば、前記中間層が、隣接する上層の成膜性を向上させ、かつ、隣接する下層への溶媒の浸透を防止する効果を奏するものとなる。
The electron injection layer preferably contains one or more metal oxide fine particles or polar polymers.
According to such an electron injection layer, the intermediate layer has an effect of improving the film forming property of the adjacent upper layer and preventing penetration of the solvent into the adjacent lower layer.
 金属酸化物微粒子の場合は、酸化亜鉛、酸化チタン、酸化ジルコニウム及び酸化ズズのうちのいずれかからなり、また、極性高分子の場合は、ポリエチレンイミン誘導体であることが好ましい。 In the case of metal oxide fine particles, it is composed of any one of zinc oxide, titanium oxide, zirconium oxide and oxide, and in the case of a polar polymer, it is preferably a polyethyleneimine derivative.
 また、前記発光ユニットは、蛍光又はリン光発光するもののいずれでもよい。
 前記電子注入層が、電荷発生層からの良好な電子注入特性を発揮するため、いずれの発光材料でも好適に適用し得る。
The light emitting unit may be any one that emits fluorescence or phosphorescence.
Since the electron injection layer exhibits good electron injection characteristics from the charge generation layer, any light emitting material can be suitably applied.
 さらに、光取り出し面として、前記陰極及び前記陽極の少なくともいずれか一方が透明であることが好ましい。 Furthermore, it is preferable that at least one of the cathode and the anode is transparent as a light extraction surface.
 前記陰極及び前記陽極は、金属、金属酸化物及び導電性高分子のうちのいずれかからなることが好ましい。
 金属の場合は、アルミニウム、銀及び金のうちのいずれかであり、また、金属酸化物の場合は、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、酸化亜鉛、アルミニウム添加酸化亜鉛(AZO)及びガリウム添加酸化亜鉛(GZO)のうちのいずれかであり、また、導電性高分子の場合は、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであり、ドープされたn型又はp型半導体であることが好ましい。
The cathode and the anode are preferably made of any one of metal, metal oxide, and conductive polymer.
In the case of metal, it is one of aluminum, silver, and gold. In the case of metal oxide, indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide, aluminum addition One of zinc oxide (AZO) and gallium-doped zinc oxide (GZO), and in the case of a conductive polymer, one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative; Preferably, the n-type or p-type semiconductor is used.
 また、本発明に係る有機EL素子の製造方法は、上記の有機EL素子を製造する方法であって、前記中間層を、溶媒を用いて塗布積層した後、130℃以下で乾燥させて成膜する工程を備えていることを特徴とする。
 前記中間層は、130℃以下の低温処理で成膜することができるため、マルチフォトンエミッション有機EL素子を塗布法で効率的に低コストで製造することが可能となる。
The method for producing an organic EL device according to the present invention is a method for producing the above-mentioned organic EL device, wherein the intermediate layer is coated and laminated using a solvent, and then dried at 130 ° C. or less to form a film. It is characterized by comprising the step of:
Since the intermediate layer can be formed by a low-temperature treatment at 130 ° C. or lower, a multiphoton emission organic EL element can be efficiently manufactured at a low cost by a coating method.
 本発明によれば、マルチフォトンエミッション有機EL素子における電荷発生層を含む中間層を簡便に塗布積層することができるため、すべての構成層を塗布法により形成することが可能となる。
 したがって、本発明における中間層を適用することにより、多段積層が必要なマルチフォトンエミッション有機EL素子を、塗布法で効率的に低コストで製造することが可能となり、さらに、素子の高効率化も期待される。
According to the present invention, since the intermediate layer including the charge generation layer in the multi-photon emission organic EL element can be easily applied and laminated, all the constituent layers can be formed by the application method.
Therefore, by applying the intermediate layer in the present invention, it becomes possible to produce a multi-photon emission organic EL element that requires multi-layer stacking efficiently and at low cost, and further increase the efficiency of the element. Be expected.
インバーテット構造のマルチフォトンエミッション有機EL素子の層構造を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically the layer structure of the multiphoton emission organic EL element of an inverted structure. 標準構造のマルチフォトンエミッション有機EL素子の層構造を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically the layer structure of the multiphoton emission organic EL element of a standard structure. 実施例1-1及び比較例1-1,1-2の素子の輝度-電圧特性を示したグラフである。6 is a graph showing luminance-voltage characteristics of the elements of Example 1-1 and Comparative Examples 1-1 and 1-2. 実施例1-1及び比較例1-1,1-2の素子の外部量子効率-電流密度特性を示したグラフである。6 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 1-1 and Comparative Examples 1-1 and 1-2. 実施例1-2及び比較例1-3,1-2の素子のELスペクトル特性を示したグラフである。6 is a graph showing EL spectral characteristics of the elements of Example 1-2 and Comparative Examples 1-3 and 1-2. 実施例1-2及び比較例1-3,1-2の素子の外部量子効率-電流密度特性を示したグラフである。4 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 1-2 and Comparative Examples 1-3 and 1-2. 実施例2-1及び比較例2-1,2-2の素子の輝度-電圧特性を示したグラフである。6 is a graph showing luminance-voltage characteristics of the elements of Example 2-1 and Comparative Examples 2-1 and 2-2. 実施例2-1及び比較例2-1,2-2の素子の外部量子効率-電流密度特性を示したグラフである。6 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 2-1 and Comparative Examples 2-1 and 2-2. 実施例3-1及び比較例3-1,3-2の素子の輝度-電圧特性を示したグラフである。6 is a graph showing luminance-voltage characteristics of the elements of Example 3-1 and Comparative Examples 3-1 and 3-2. 実施例3-1及び比較例3-1,3-2の素子の外部量子効率-電流密度特性を示したグラフである。6 is a graph showing external quantum efficiency-current density characteristics of the devices of Example 3-1 and Comparative Examples 3-1 and 3-2. 実施例4-1及び比較例4-1,4-2の素子のELスペクトル特性を示したグラフである。6 is a graph showing EL spectrum characteristics of the elements of Example 4-1 and Comparative Examples 4-1 and 4-2. 実施例4-1及び比較例4-1,4-2の素子の外部量子効率-電流密度特性を示したグラフである。6 is a graph showing the external quantum efficiency-current density characteristics of the devices of Example 4-1 and Comparative Examples 4-1 and 4-2.
 以下、本発明について、図面を参照して、より詳細に説明する。
 本発明に係る有機EL素子は、1対の電極間に、少なくとも1つの発光層を有する発光ユニットが中間層を介して複数積層されたマルチフォトンエミッション有機EL素子である。そして、前記中間層が、陰極側の電荷発生層と、陽極側の電子注入層との塗布積層からなり、インバーテッド構造を有していることを特徴としている。前記インバーテッド構造は、具体的には、基板上に、陰極、中間層を介して複数積層された発光ユニット、陽極の順に積層された構成である。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
The organic EL device according to the present invention is a multi-photon emission organic EL device in which a plurality of light emitting units each having at least one light emitting layer are stacked via an intermediate layer between a pair of electrodes. The intermediate layer is formed of a coating layer of a charge generation layer on the cathode side and an electron injection layer on the anode side, and has an inverted structure. Specifically, the inverted structure has a structure in which a plurality of light emitting units stacked on a substrate in the order of a cathode, an intermediate layer, and an anode are stacked in this order.
 図1に、インバーテッド構造のマルチフォトンエミッション有機EL素子の層構成の一例を示す。また、図2に、標準構造のマルチフォトンエミッション有機EL素子の層構成の一例を示す。
 図2に示すような標準構造の素子においては、ガラス基板11上のITO透明電極を陽極12とし、その上に、第一発光ユニット13、電荷発生層15、電子注入層14、第二発光ユニット16が積層され、その上に、陰極17としてアルミニウム反射電極が形成されている。
 これに対して、インバーテッド構造の素子は、図1に示すように、ガラス基板1上の陰極2にITO透明電極を用い、その上に、第一発光ユニット3、電荷発生層4、電子注入層5、第二発光ユニット6が積層され、その上に、陽極7としてアルミニウム反射電極が形成されている。
FIG. 1 shows an example of the layer structure of an inverted multi-photon emission organic EL element. FIG. 2 shows an example of a layer structure of a multi-photon emission organic EL element having a standard structure.
In the element having a standard structure as shown in FIG. 2, the ITO transparent electrode on the glass substrate 11 is used as the anode 12, and the first light emitting unit 13, the charge generation layer 15, the electron injection layer 14, and the second light emitting unit are formed thereon. 16 is laminated, and an aluminum reflective electrode is formed thereon as a cathode 17.
On the other hand, as shown in FIG. 1, the inverted structure element uses an ITO transparent electrode as the cathode 2 on the glass substrate 1, and the first light emitting unit 3, the charge generation layer 4, and the electron injection thereon. The layer 5 and the second light emitting unit 6 are laminated, and an aluminum reflective electrode is formed thereon as the anode 7.
 マルチフォトンエミッション有機EL素子を塗布法により作製する場合、電荷発生層を含む中間層が、その下層(第一発光ユニット)を再溶解しない溶媒で塗布成膜可能であり、かつ、該中間層の上層(第二発光ユニット)の塗布に用いられる溶媒に不溶であることが求められる。さらに、安定的に素子を作製するためには、前記中間層がその上層(第二発光ユニット)の成膜性を向上させ、かつ、該中間層の下層(第一発光ユニット)への溶媒の浸透が防止されることが望ましい。 When producing a multi-photon emission organic EL device by a coating method, the intermediate layer including the charge generation layer can be formed by coating with a solvent that does not redissolve the lower layer (first light emitting unit), and the intermediate layer It is required to be insoluble in the solvent used for coating the upper layer (second light emitting unit). Further, in order to stably manufacture the device, the intermediate layer improves the film formability of the upper layer (second light emitting unit), and the solvent to the lower layer (first light emitting unit) of the intermediate layer. It is desirable to prevent penetration.
 本発明は、マルチフォトンエミッション有機EL素子を上記のようなインバーテッド構造とすることにより、発光ユニットの上に電荷発生層を塗布成膜し、その上に、大気中の酸素や水分の影響を受けやすい電子注入層を連続的に塗布成膜することが可能となり、電荷発生層及び電子注入層からなる中間層を塗布積層することを可能とするものである。 In the present invention, the multi-photon emission organic EL element has an inverted structure as described above, and a charge generation layer is formed on the light emitting unit by coating, and the influence of oxygen and moisture in the atmosphere is applied thereon. An easily injectable electron injection layer can be continuously applied and formed, and an intermediate layer composed of a charge generation layer and an electron injection layer can be applied and laminated.
 本発明に係る有機EL素子においては、電荷発生層が導電性高分子を1層又は複数層含有していることが好ましい。
 さらに、発光ユニット上に塗布成膜可能な電荷発生層を構成する導電性高分子としては、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであり、ドープされたn型又はp型半導体であることが好ましい。
In the organic EL device according to the present invention, the charge generation layer preferably contains one or more conductive polymers.
Further, the conductive polymer constituting the charge generation layer that can be coated and formed on the light emitting unit is any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is doped n-type or p-type. A semiconductor is preferable.
 前記導電性高分子のうち、特に、水溶性であるポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)が好適に用いられる。PEDOT:PSSは、塗布成膜に一般に用いられる有機溶媒であるアルコール、トルエン、キシレン、テトラヒドロフラン、クロロホルム及びクロロベンゼンに不溶であることから、その上の有機膜を、有機溶媒を用いて塗布積層することができる。
 また、PEDOT:PSSは、良好なホール注入特性を有するものであり、電荷発生層に用いた場合、第一発光ユニットへの良好なホール注入特性が得られる。
 なお、PEDOT:PSSは、水分散液であり、表面が疎水性である有機膜上への塗布成膜が困難であるため、メタノールやイソプロパノール等のアルコール系溶媒で希釈することにより、有機膜上への濡れ性を改善し、良好な成膜性を得ることができる。さらに、熱や光架橋性材料を用いることなく、容易に多積層化させることが可能となる。
 また、PEDOT:PSSは、強い酸性(pH1~2)を示すため、耐酸性に劣る材料かならなる電子注入層をその上に積層させることは困難である。この場合は、水酸化ナトリウム水溶液で中和(pH6~8)し、酸性のPEDOT:PSS膜上に中性のPEDOT:PSSをスピンコートすることにより、耐酸性が十分でない電子注入層を積層させることが可能となる。
Among the conductive polymers, in particular, water-soluble poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is preferably used. PEDOT: PSS is insoluble in alcohols, toluene, xylene, tetrahydrofuran, chloroform, and chlorobenzene, which are organic solvents generally used for coating film formation. Can do.
PEDOT: PSS has good hole injection characteristics, and when used in the charge generation layer, good hole injection characteristics to the first light emitting unit can be obtained.
PEDOT: PSS is an aqueous dispersion and it is difficult to form a coating on an organic film having a hydrophobic surface. Therefore, by diluting with an alcohol solvent such as methanol or isopropanol, This improves the wettability of the film and provides good film formability. Furthermore, it is possible to easily make multiple layers without using heat or a photocrosslinkable material.
In addition, since PEDOT: PSS exhibits strong acidity (pH 1 to 2), it is difficult to stack an electron injection layer made of a material inferior in acid resistance thereon. In this case, neutralize with an aqueous solution of sodium hydroxide (pH 6-8), and spin coat neutral PEDOT: PSS onto the acidic PEDOT: PSS film, thereby stacking an electron injection layer with insufficient acid resistance. It becomes possible.
 前記電荷発生層に塗布積層される電子注入層は、金属酸化物微粒子又は極性高分子を1層又は複数層含有していることが好ましい。
 前記金属酸化物微粒子としては、酸化亜鉛、酸化チタン、酸化ジルコニウム及び酸化ズズからなるものが好適に用いられる。このような金属酸化物微粒子は、塗布成膜に一般に用いられる有機溶媒であるアルコール、トルエン、キシレン、テトラヒドロフラン、クロロホルム及びクロロベンゼンに不溶であることから、隣接する有機膜を有機溶媒を用いて塗布積層することができる。
 また、前記極性高分子としては、例えば、下記(化1)に示すようなポリエチレンイミン誘導体が好適に用いられる。ポリエチレンイミン誘導体等の極性高分子は、水溶性であり、塗布成膜に一般に用いられる有機溶媒であるトルエン、キシレン、テトラヒドロフラン、クロロホルム及びクロロベンゼンに不溶であることから、前記金属酸化物微粒子と同様に、隣接する有機膜を有機溶媒を用いて塗布積層することができる。
The electron injection layer applied and laminated on the charge generation layer preferably contains one or more metal oxide fine particles or polar polymers.
As said metal oxide microparticles | fine-particles, what consists of zinc oxide, a titanium oxide, a zirconium oxide, and an oxide oxide is used suitably. Since such metal oxide fine particles are insoluble in alcohol, toluene, xylene, tetrahydrofuran, chloroform and chlorobenzene, which are organic solvents generally used for coating film formation, adjacent organic films are coated and laminated using an organic solvent. can do.
As the polar polymer, for example, a polyethyleneimine derivative as shown in the following (Chemical Formula 1) is preferably used. Polar polymers such as polyethyleneimine derivatives are water-soluble and are insoluble in toluene, xylene, tetrahydrofuran, chloroform and chlorobenzene, which are organic solvents generally used for coating film formation. Adjacent organic films can be applied and laminated using an organic solvent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記中間層における電子注入層は、特に、酸化亜鉛微粒子/ポリエチレンイミン誘導体から構成されることが好ましい。電子注入層をこのような複数層の構成とすることにより、電荷発生層から第二発光ユニットへの良好な電子注入特性が得られる。これは、極性高分子であるポリエチレンイミン誘導体が酸化亜鉛微粒子の仕事関数を低エネルギー側へと変化させ、電子の注入障壁がより緩和することによる。
 このように電子注入特性が向上することにより、発光ユニットは、蛍光材料による発光のみならず、リン光材料により発光するものにも好適に適用することができる。
The electron injection layer in the intermediate layer is particularly preferably composed of zinc oxide fine particles / polyethyleneimine derivative. By configuring the electron injection layer to have such a plurality of layers, good electron injection characteristics from the charge generation layer to the second light emitting unit can be obtained. This is because the polyethyleneimine derivative, which is a polar polymer, changes the work function of the zinc oxide fine particles to a lower energy side, thereby further relaxing the electron injection barrier.
Thus, by improving the electron injection characteristics, the light emitting unit can be suitably applied not only to the light emission by the fluorescent material but also to the light emission by the phosphorescent material.
 上記のような電荷発生層及び電子注入層により構成される中間層は、第二発光ユニットの塗布形成時に用いられる溶媒が第一発光ユニットにまで浸透することを抑制する効果を奏するものであり、これにより、複数の発光ユニットを有するマルチフォトン構造の形成が容易となる。 The intermediate layer composed of the charge generation layer and the electron injection layer as described above has an effect of suppressing the permeation of the solvent used during coating formation of the second light emitting unit to the first light emitting unit, This facilitates formation of a multiphoton structure having a plurality of light emitting units.
 また、前記中間層を構成する材料のうち、PEDOT:PSS、酸化亜鉛微粒子、ポリエチレンイミン誘導体等は、成膜時に100~120℃と比較的低温で乾燥させることができるため、有機材料への熱的な悪影響が抑制され、素子基板として樹脂製等のフレキシブル基板の適用も可能となる。 Among the materials constituting the intermediate layer, PEDOT: PSS, zinc oxide fine particles, polyethyleneimine derivatives, and the like can be dried at a relatively low temperature of 100 to 120 ° C. during film formation. Thus, a flexible substrate made of resin or the like can be used as the element substrate.
 なお、本発明に係る有機EL素子は、陰極又は陽極のいずれから光を取り出すことができるものであってもよく、陰極及び陽極の少なくともいずれか一方が透明であることが好ましい。
 前記陰極及び前記陽極の構成材料は、金属、金属酸化物及び導電性高分子のうちのいずれかであることが好ましい。
 具体的には、金属としては、アルミニウム、銀又は金、また、金属酸化物としては、ITO、IZO、酸化亜鉛、AZO又はGZOが挙げられる。また、導電性高分子としては、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであって、ドープされたn型又はp型半導体が挙げられる。
In addition, the organic EL element according to the present invention may be capable of extracting light from either the cathode or the anode, and it is preferable that at least one of the cathode and the anode is transparent.
The constituent material of the cathode and the anode is preferably one of metal, metal oxide, and conductive polymer.
Specifically, examples of the metal include aluminum, silver, and gold, and examples of the metal oxide include ITO, IZO, zinc oxide, AZO, and GZO. The conductive polymer may be any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and includes a doped n-type or p-type semiconductor.
 また、上記のような本発明に係る有機EL素子の製造方法においては、前記中間層を、溶媒を用いて塗布積層した後、130℃以下で乾燥させて成膜する工程を経ることが好ましい。
 上述したように、前記電荷発生層及び電子注入層からなる中間層は、成膜時に130℃以下で乾燥させることができるため、熱処理温度は比較的低温で行うことができる。これにより、有機材料への熱的な悪影響が抑制され、かつ、マルチフォトンエミッション有機EL素子を塗布法で効率的に低コストで製造することが可能となる。また、高温熱処理工程には適用することが困難であるフレキシブル基板を用いた素子作製にも適用することができる。
Moreover, in the manufacturing method of the organic EL element according to the present invention as described above, it is preferable that the intermediate layer is coated and laminated using a solvent and then dried at 130 ° C. or less to form a film.
As described above, since the intermediate layer composed of the charge generation layer and the electron injection layer can be dried at 130 ° C. or lower during film formation, the heat treatment temperature can be relatively low. Thereby, the thermal adverse effect on the organic material is suppressed, and the multi-photon emission organic EL element can be efficiently manufactured at a low cost by the coating method. Further, it can also be applied to element fabrication using a flexible substrate, which is difficult to apply to the high-temperature heat treatment process.
 上記のような本発明に係る有機EL素子の中間層以外の層構造は、マルチフォトンエミッション有機EL素子の公知の構成とすることができる。例えば、陰極/第一発光ユニット間には、電子注入層を設けてもよく、また、第二発光ユニット/陽極間には、ホール注入層を設けてもよい。さらに、ホール輸送層、電子輸送層、ホール輸送発光層、電子輸送発光層等をも含む公知の積層構造であってもよい。
 なお、発光層を含む発光ユニットの数は、2つに限られず、複数であればいくつでもよい。
The layer structure other than the intermediate layer of the organic EL element according to the present invention as described above can be a known structure of the multiphoton emission organic EL element. For example, an electron injection layer may be provided between the cathode / first light emitting unit, and a hole injection layer may be provided between the second light emitting unit / anode. Furthermore, a known laminated structure including a hole transport layer, an electron transport layer, a hole transport light-emitting layer, an electron transport light-emitting layer, and the like may be used.
Note that the number of light emitting units including the light emitting layer is not limited to two and may be any number as long as it is plural.
 前記中間層以外の層の構成材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
 また、前記有機EL素子の各構成層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、0.5nm~5μmの範囲内であることが好ましい。
The constituent materials of the layers other than the intermediate layer are not particularly limited, and can be appropriately selected from known materials, and may be either low molecular or high molecular.
Further, the film thickness of each constituent layer of the organic EL element is appropriately determined according to the situation in consideration of the adaptability between the layers and the required total layer thickness, but usually 0.5 nm to 5 μm. It is preferable to be within the range.
 前記中間層以外の各構成層の形成方法は、蒸着法、スパッタリング法等のドライプロセスでもよいが、本発明は、特に、すべての層を塗布法により形成可能である点に利点を有しており、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ナノパーティクル分散液を用いる方法等のウェットプロセスを好適に適用することができる。
 これにより、簡便で効率的な塗布法によるマルチフォトンエミッション有機EL素子の作製が可能となる。
The formation method of each constituent layer other than the intermediate layer may be a dry process such as a vapor deposition method or a sputtering method, but the present invention has an advantage in that all layers can be formed by a coating method. Wet such as spin coating method, ink jet method, casting method, dip coating method, bar coating method, blade coating method, roll coating method, gravure coating method, flexographic printing method, spray coating method, method using nanoparticle dispersion liquid, etc. The process can be suitably applied.
This makes it possible to produce a multiphoton emission organic EL element by a simple and efficient coating method.
 以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
[実施例1-1]塗布型マルチフォトンエミッション有機EL素子の作製
 ITO付ガラス基板上に、感光性レジストを塗布し、マスク露光、現像、エッチングを行い、ストライプ状のパターンを形成した。このパターン形成したITO付きガラス基板を中性洗剤で洗浄後、超純水で超音波洗浄し、2-プロパノールにて煮沸後、UVオゾン処理を20分間行った。
 このITO付きガラス基板上に、以下に示す条件にて、グローブボックス内にてスピンコート法により各層を成膜し、順に積層させた。
・電子注入層1(膜厚10nm):粒径10nmのZnO微粒子の2-エトキシエタノール分散液をスピンコートした後、100℃で5分間乾燥した。
・電子注入層2(膜厚10nm):ポリエチレンイミンエトキシレイティド(PEIE)(シグマアルドリッチジャパン社製)の2-エトキシエタノール溶液をスピンコートした後、100℃にて5分間乾燥した。
・発光層1(膜厚80nm):ポリ[(9,9-ジ-n-オクチルフルオレニル-2,7-ジイル)-o-(ベンゾ[2,1,3]チアジアゾール-4,8-ジイル)](F8BT)(住友化学株式会社製)のp-キシレン溶液をスピンコートした後、130℃で10分間乾燥した。
・電荷発生層1(膜厚40nm):PEDOT:PSS(ヘレウス株式会社製CleviousTMCH8000)をメタノール及びイソプロパノールを用いて体積比1:1:4で希釈し、この分散混合液をスピンコートした後、120℃にて10分間乾燥した。
・電荷発生層2(膜厚10nm):PEDOT:PSSを水酸化ナトリウム水溶液と混合してpH7に調整した後、イソプロパノールを用いて体積比1:4で希釈し、この分散混合液をスピンコートした後、120℃にて10分間乾燥した。
・電子注入層3(膜厚10nm):電子注入層1と同様にして形成した。
・電子注入層4(膜厚10nm):電子注入層2と同様にして形成した。
・発光層2(膜厚80nm):発光層1と同様にして形成した。
・ホール注入層1(膜厚40nm):PEDOT:PSSを、メタノール及びイソプロパノールを用いて体積比1:1:4で希釈し、この分散混合液をスピンコートした後、120℃にて10分間乾燥した。
 この上に、アルミニウムを真空蒸着し、膜厚100nmの陰極を形成し、2つの発光ユニットを有する塗布型マルチフォトンエミッション有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/F8BT/PEDOT:PSS/n-PEDOT:PSS/ZnO/PEIE/F8BT/PEDOT:PSS/Alである。
[Example 1-1] Production of coating type multi-photon emission organic EL element A photosensitive resist was coated on a glass substrate with ITO, and mask exposure, development and etching were performed to form a stripe pattern. This patterned glass substrate with ITO was washed with a neutral detergent, then ultrasonically washed with ultrapure water, boiled with 2-propanol, and then subjected to UV ozone treatment for 20 minutes.
On the glass substrate with ITO, each layer was formed by a spin coat method in a glove box under the following conditions, and was sequentially laminated.
Electron injection layer 1 (film thickness: 10 nm): Spin-coated with a 2-ethoxyethanol dispersion of ZnO fine particles having a particle diameter of 10 nm, and then dried at 100 ° C. for 5 minutes.
Electron injection layer 2 (film thickness: 10 nm): A 2-ethoxyethanol solution of polyethyleneimine ethoxylated (PEIE) (Sigma Aldrich Japan) was spin-coated and then dried at 100 ° C. for 5 minutes.
Light-emitting layer 1 (film thickness 80 nm): poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -o- (benzo [2,1,3] thiadiazole-4,8- A p-xylene solution of diyl)] (F8BT) (manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated and then dried at 130 ° C. for 10 minutes.
Charge generation layer 1 (film thickness 40 nm): PEDOT: PSS (Clevious TM CH8000 manufactured by Heraeus Co., Ltd.) was diluted with methanol and isopropanol at a volume ratio of 1: 1: 4, and this dispersion mixture was spin-coated. And dried at 120 ° C. for 10 minutes.
Charge generation layer 2 (film thickness: 10 nm): PEDOT: PSS was mixed with an aqueous sodium hydroxide solution to adjust the pH to 7, then diluted with isopropanol at a volume ratio of 1: 4, and this dispersion mixture was spin coated. Then, it dried for 10 minutes at 120 degreeC.
Electron injection layer 3 (film thickness 10 nm): formed in the same manner as the electron injection layer 1.
Electron injection layer 4 (film thickness 10 nm): formed in the same manner as the electron injection layer 2.
Light-emitting layer 2 (film thickness 80 nm): formed in the same manner as the light-emitting layer 1.
Hole injection layer 1 (film thickness 40 nm): PEDOT: PSS was diluted with methanol and isopropanol at a volume ratio of 1: 1: 4, and this dispersion mixture was spin-coated and then dried at 120 ° C. for 10 minutes. did.
On top of this, aluminum was vacuum-deposited to form a cathode having a film thickness of 100 nm, and a coating type multiphoton emission organic EL device having two light emitting units was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
[比較例1-1]第一発光ユニットのみの素子の作製
 実施例1-1において、電子注入層3,4、発光層2及びホール注入層1を設けず、それ以外は実施例1-1と同様にして、発光ユニットが1つ(発光層1のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/F8BT/PEDOT:PSS/n-PEDOT:PSS/Alである。
[Comparative Example 1-1] Fabrication of Element with First Light-Emitting Unit Only In Example 1-1, the electron injection layers 3 and 4, the light-emitting layer 2, and the hole injection layer 1 were not provided. In the same manner, an organic EL element having one light emitting unit (only the light emitting layer 1) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / n-PEDOT: PSS / Al.
[比較例1-2]第二発光ユニットのみの素子の作製
 実施例1-1において、電荷発生層2、電子注入層3,4、発光層1及びホール注入層1を設けず、それ以外は実施例1-1と同様にして、発光ユニットが1つ(発光層2のみ)のみの有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/F8BT/PEDOT:PSS/Alである。
[Comparative Example 1-2] Fabrication of element having only second light emitting unit In Example 1-1, the charge generation layer 2, the electron injection layers 3 and 4, the light emitting layer 1 and the hole injection layer 1 were not provided. In the same manner as in Example 1-1, an organic EL element having only one light emitting unit (only the light emitting layer 2) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
 上記実施例1-1及び比較例1-1,1-2の素子特性の評価結果を下記に示す。
 図3に、輝度-電圧特性を示す。縦軸が輝度(cd/m2)、横軸が駆動電圧(V)を表している。
 図4に、外部量子効率-電流密度特性を示す。縦軸が外部量子効率(%)、横軸が電流密度(mA/cm2)を表している。
 また、表1に、輝度1000cd/m2時における駆動電圧と外部量子効率を示す。
The evaluation results of the device characteristics of Example 1-1 and Comparative Examples 1-1 and 1-2 are shown below.
FIG. 3 shows luminance-voltage characteristics. The vertical axis represents luminance (cd / m 2 ) and the horizontal axis represents drive voltage (V).
FIG. 4 shows the external quantum efficiency-current density characteristics. The vertical axis represents external quantum efficiency (%), and the horizontal axis represents current density (mA / cm 2 ).
Table 1 shows the drive voltage and external quantum efficiency at a luminance of 1000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記評価結果から、実施例1-1の駆動電圧及び外部量子効率は、比較例1-1及び比較例1-2のほぼ合計値であり、マルチフォトンエミッション特性が認められた。 From the above evaluation results, the driving voltage and the external quantum efficiency of Example 1-1 were almost the total values of Comparative Example 1-1 and Comparative Example 1-2, and multiphoton emission characteristics were observed.
[実施例1-2]発光色の異なる発光ユニットを積層した塗布型マルチフォトンエミッション有機EL素子の作製
 実施例1-1において、発光層1で用いたF8BTに代えて、ポリフルオレン系青色蛍光ポリマー(住友化学株式会社社製)のp-キシレン溶液をスピンコートした後、130℃にて10分間乾燥し、第一発光ユニットとして膜厚70nmの発光層3を形成した。それ以外は実施例1-1と同様にして、塗布型マルチフォトンエミッション有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/青色蛍光ポリマー/PEDOT:PSS/n-PEDOT:PSS/ZnO/PEIE/F8BT/PEDOT:PSS/Alである。
[Example 1-2] Production of a coating type multi-photon emission organic EL device in which light emitting units having different emission colors are laminated In place of F8BT used in the light emitting layer 1 in Example 1-1, a polyfluorene blue fluorescent polymer A p-xylene solution (manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated and then dried at 130 ° C. for 10 minutes to form a light-emitting layer 3 having a thickness of 70 nm as a first light-emitting unit. Otherwise, a coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / blue fluorescent polymer / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / F8BT / PEDOT: PSS / Al.
[比較例1-3]第一発光ユニットのみの有機EL素子の作製
 実施例1-2において、電子注入層3,4、発光層2及びホール注入層1を設けず、それ以外は実施例1-2と同様にして、発光ユニットが1つ(発光層1のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/青色蛍光ポリマー/PEDOT:PSS/n-PEDOT:PSS/Alである。
[Comparative Example 1-3] Fabrication of organic EL element having only first light emitting unit In Example 1-2, the electron injection layers 3 and 4, the light emitting layer 2, and the hole injection layer 1 were not provided. In the same manner as -2, an organic EL device having one light emitting unit (only the light emitting layer 1) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / blue fluorescent polymer / PEDOT: PSS / n-PEDOT: PSS / Al.
 上記実施例1-2及び比較例1-3,1-2の素子特性の評価結果を下記に示す。
 図5に、ELスペクトル特性を示す。縦軸がEL相対強度(a.u.)、横軸が波長(nm)を表している。
 実施例1-2において、第一発光ユニットの青色発光と第二発光ユニットの黄色発光がそれぞれ得られることが認められた。
The evaluation results of the device characteristics of Example 1-2 and Comparative Examples 1-3 and 1-2 are shown below.
FIG. 5 shows the EL spectral characteristics. The vertical axis represents EL relative intensity (au), and the horizontal axis represents wavelength (nm).
In Example 1-2, it was confirmed that the blue light emission of the first light emitting unit and the yellow light emission of the second light emitting unit were obtained.
 図6に、外部量子効率-電流密度特性を示す。
 また、表2に、輝度1000cd/m2時における駆動電圧と外部量子効率を示す。
FIG. 6 shows the external quantum efficiency-current density characteristics.
Table 2 shows driving voltage and external quantum efficiency at a luminance of 1000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記評価結果から、実施例1-2の駆動電圧及び外部量子効率は、比較例1-3及び比較例1-2のほぼ合計値であり、マルチフォトンエミッション特性が認められた。 From the above evaluation results, the driving voltage and the external quantum efficiency of Example 1-2 were almost the total values of Comparative Example 1-3 and Comparative Example 1-2, and multiphoton emission characteristics were observed.
[実施例2-1]ホール輸送層を用いた塗布型マルチフォトンエミッション有機EL素子の作製
 実施例1-1において、発光層1,2に代えて発光層4,5を形成し、また、発光層3の上にホール輸送層1を、発光層4の上にホール輸送層2を積層させ、それ以外は実施例1-1と同様にして、塗布型マルチフォトンエミッション有機EL素子を作製した。
 発光層4,5及びホール輸送層1は、以下のようにして形成した。
・発光層4(膜厚70nm):ポリフルオレン系緑色蛍光ポリマーSGP2(住友化学株式会社製)のp-キシレン溶液をスピンコートした後、130℃にて10分間乾燥した。
・ホール輸送層1(膜厚10nm):テトラフェニルベンジジン含有ポリ(アリーレンエーテルスルホン)(TPDPES)の1,4-ジオキサン溶液をスピンコートした後、120℃にて10分間乾燥した。
・発光層5(膜厚70nm):発光層4と同様にして形成した。
・ホール輸送層2(膜厚10nm):ホール輸送層1と同様にして形成した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/SGP2/TPDPES/PEDOT:PSS/n-PEDOT:PSS/ZnO/PEIE/SGP2/TPDPES/PEDOT:PSS/Alである。
[Example 2-1] Fabrication of coating type multiphoton emission organic EL device using hole transport layer In Example 1-1, the light emitting layers 4 and 5 were formed in place of the light emitting layers 1 and 2, and the light emission was performed. A coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1 except that the hole transport layer 1 was laminated on the layer 3 and the hole transport layer 2 was laminated on the light emitting layer 4.
The light emitting layers 4 and 5 and the hole transport layer 1 were formed as follows.
Light-emitting layer 4 (film thickness: 70 nm): A p-xylene solution of polyfluorene-based green fluorescent polymer SGP2 (manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated and then dried at 130 ° C. for 10 minutes.
Hole transport layer 1 (film thickness: 10 nm): 1,4-dioxane solution of tetraphenylbenzidine-containing poly (arylene ether sulfone) (TPDPES) was spin-coated and then dried at 120 ° C. for 10 minutes.
Light emitting layer 5 (film thickness 70 nm): formed in the same manner as the light emitting layer 4.
-Hole transport layer 2 (film thickness 10 nm): formed in the same manner as the hole transport layer 1.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / Al.
[比較例2-1]第一発光ユニットのみの有機EL素子の作製
 実施例2-1において、電子注入層3,4、発光層5、ホール輸送層2及びホール注入層1を設けず、それ以外は実施例2-1と同様にして、発光ユニットが1つ(発光層4のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/SGP2/TPDPES/PEDOT:PSS/n-PEDOT:PSS/Alである。
[Comparative Example 2-1] Production of organic EL element only with first light emitting unit In Example 2-1, the electron injection layers 3 and 4, the light emitting layer 5, the hole transport layer 2 and the hole injection layer 1 were not provided. Except for the above, an organic EL device having one light emitting unit (only the light emitting layer 4) was produced in the same manner as in Example 2-1.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / n-PEDOT: PSS / Al.
[比較例2-2]第二発光ユニットのみの有機EL素子の作製
 実施例2-1において、電荷発生層2、電子注入層3,4、発光層4、ホール輸送層1及びホール注入層1を設けず、それ以外は実施例2-1と同様にして、発光ユニットが1つ(発光層5のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/SGP2/TPDPES/PEDOT:PSS/Alである。
[Comparative Example 2-2] Production of Organic EL Device with Second Light-Emitting Unit Only In Example 2-1, charge generation layer 2, electron injection layers 3 and 4, light-emitting layer 4, hole transport layer 1 and hole injection layer 1 Otherwise, an organic EL device having one light emitting unit (only the light emitting layer 5) was produced in the same manner as in Example 2-1.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / SGP2 / TPDPES / PEDOT: PSS / Al.
 上記実施例2-1及び比較例2-1,2-2の素子特性の評価結果を下記に示す。
 図7に、輝度-電圧特性を示す。
 図8に、外部量子効率-電流密度特性を示す。
 また、表3に、輝度1000cd/m2時及び5000cd/m2時における駆動電圧と外部量子効率を示す。
The evaluation results of the device characteristics of Example 2-1 and Comparative Examples 2-1 and 2-2 are shown below.
FIG. 7 shows luminance-voltage characteristics.
FIG. 8 shows the external quantum efficiency-current density characteristics.
Further, Table 3 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記評価結果から、実施例2-1の駆動電圧及び外部量子効率は、比較例2-1及び比較例2-2のほぼ合計値であり、マルチフォトンエミッション特性が認められた。 From the above evaluation results, the driving voltage and external quantum efficiency of Example 2-1 were almost the total values of Comparative Example 2-1 and Comparative Example 2-2, and multiphoton emission characteristics were observed.
[実施例3-1]リン光発光層を有する塗布型マルチフォトンエミッション有機EL素子の作製
 実施例1-1において、発光層1,2に代えて発光層6,7を形成し、それ以外は実施例1-1と同様にして、塗布型マルチフォトンエミッション有機EL素子を作製した。
 発光層6,7は、以下のようにして形成した。
・発光層6(膜厚70nm):ポリ-N-ビニルカルバゾール(PVK)、10wt%の4,4’,4”-トリス(カルバゾール-9-イル)トリフェニルアミン(TCTA)、10wt%の2,6-ビス[3-(カルバゾール-9-イル)フェニル]ピリジン(26DCzppy)、10wt%のトリス(2-フェニルピリジナト)イリジウム(III)(Ir(ppy)3)のテトラヒドロフラン溶液をスピンコートした後、130℃にて10分間乾燥した。
・発光層7(膜厚70nm):発光層6と同様にして形成した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3/PEDOT:PSS/n-PEDOT:PSS/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3/PEDOT:PSS/Alである。
[Example 3-1] Production of coating type multiphoton emission organic EL element having phosphorescent light emitting layer In Example 1-1, the light emitting layers 6 and 7 were formed in place of the light emitting layers 1 and 2, and the others were In the same manner as in Example 1-1, a coating type multiphoton emission organic EL element was produced.
The light emitting layers 6 and 7 were formed as follows.
Light emitting layer 6 (film thickness 70 nm): poly-N-vinylcarbazole (PVK), 10 wt% 4,4 ′, 4 ″ -tris (carbazol-9-yl) triphenylamine (TCTA), 10 wt% 2 , 6-Bis [3- (carbazol-9-yl) phenyl] pyridine (26DCzppy), 10 wt% of tris (2-phenylpyridinato) iridium (III) (Ir (ppy) 3 ) in tetrahydrofuran And then dried at 130 ° C. for 10 minutes.
Light emitting layer 7 (film thickness 70 nm): formed in the same manner as the light emitting layer 6.
The outline of the layer structure of this element is as follows: glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (Ppy) 3 / PEDOT: PSS / Al.
[比較例3-1]第一発光ユニットのみの有機EL素子の作製
 実施例3-1において、電子注入層3,4、発光層7及びホール注入層1を設けず、それ以外は実施例3-1と同様にして、発光ユニットが1つ(発光層6のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3/PEDOT:PSS/n-PEDOT:PSS/Alである。
[Comparative Example 3-1] Fabrication of organic EL element having only first light emitting unit In Example 3-1, the electron injection layers 3 and 4, the light emitting layer 7 and the hole injection layer 1 were not provided. In the same manner as in Example 1, an organic EL device having one light emitting unit (only the light emitting layer 6) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / n-PEDOT: PSS / Al.
[比較例3-2]第二発光ユニットのみの有機EL素子の作製
 実施例3-1において、電子注入層3,4、発光層6及びホール注入層1を設けず、それ以外は実施例3-1と同様にして、発光ユニットが1つ(発光層7のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3/PEDOT:PSS/Alである。
[Comparative Example 3-2] Production of Organic EL Device with Second Light-Emitting Unit Only In Example 3-1, the electron injection layers 3 and 4, the light-emitting layer 6, and the hole injection layer 1 were not provided. In the same manner as in Example 1, an organic EL device having one light emitting unit (only the light emitting layer 7) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 / PEDOT: PSS / Al.
 上記実施例3-1及び比較例3-1,3-2の素子特性の評価結果を下記に示す。
 図9に、輝度-電圧特性を示す。
 図10に、外部量子効率-電流密度特性を示す。
 また、表4に、輝度1000cd/m2時及び5000cd/m2時における駆動電圧と外部量子効率を示す。
The evaluation results of the device characteristics of Example 3-1 and Comparative Examples 3-1 and 3-2 are shown below.
FIG. 9 shows luminance-voltage characteristics.
FIG. 10 shows the external quantum efficiency-current density characteristics.
Further, Table 4 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記評価結果から、実施例3-1の駆動電圧及び外部量子効率は、比較例3-1及び比較例3-2のほぼ合計値であり、リン光材料を用いた素子においてもマルチフォトンエミッション特性が認められた。 From the above evaluation results, the driving voltage and the external quantum efficiency of Example 3-1 are almost the total values of Comparative Example 3-1 and Comparative Example 3-2, and the multiphoton emission characteristics are also obtained in the element using the phosphorescent material. Was recognized.
[実施例4-1]発光色の異なるリン光発光層を有する塗布型マルチフォトンエミッション有機EL素子の作製
 実施例1-1において、発光層1,2に代えて発光層8,9を形成し、それ以外は実施例1-1と同様にして、塗布型マルチフォトンエミッション有機EL素子を作製した。
 発光層8,9は、以下のようにして形成した。
・発光層8(膜厚70nm):PVK、10wt%TCTA、10wt%26DCzppy、10wt%Ir(ppy)3)、1wt%のトリス(2-フェニルイソキノリン)イリジウム(III)(Ir(phq)3)のテトラヒドロフラン溶液をスピンコートした後、130℃にて10分間乾燥した。
・発光層9(膜厚70nm):PVK、10wt%TCTA、10wt%26DCzppy)、10wt%のトリス(2-(2,4-ジフルオロフェニル)ピリジン)イリジウム(III)(Ir(Fppy)3)のテトラヒドロフラン溶液をスピンコートした後、130℃にて10分間乾燥した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3:Ir(phq)3/PEDOT:PSS/n-PEDOT:PSS/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(Fppy)3/PEDOT:PSS/Alである。
[Example 4-1] Production of a coating type multiphoton emission organic EL device having phosphorescent light emitting layers having different emission colors In Example 1-1, the light emitting layers 8 and 9 were formed in place of the light emitting layers 1 and 2. Other than that, a coating type multiphoton emission organic EL device was produced in the same manner as in Example 1-1.
The light emitting layers 8 and 9 were formed as follows.
Light-emitting layer 8 (film thickness 70 nm): PVK, 10 wt% TCTA, 10 wt% 26 DCzppy, 10 wt% Ir (ppy) 3 ), 1 wt% tris (2-phenylisoquinoline) iridium (III) (Ir (phq) 3 ) After spin coating with a tetrahydrofuran solution, the solution was dried at 130 ° C. for 10 minutes.
Light-emitting layer 9 (film thickness 70 nm): PVK, 10 wt% TCTA, 10 wt% 26 DCzppy), 10 wt% of tris (2- (2,4-difluorophenyl) pyridine) iridium (III) (Ir (Fppy) 3 ) After spin-coating the tetrahydrofuran solution, it was dried at 130 ° C. for 10 minutes.
The outline of the layer structure of this element is as follows: glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 : Ir (phq) 3 / PEDOT: PSS / n-PEDOT: PSS / ZnO / PEIE / PVK : TCTA: 26DCzppy: Ir (Fppy) 3 / PEDOT: PSS / Al.
[比較例4-1]第一発光ユニットのみの有機EL素子の作製
 実施例4-1において、電子注入層3,4、発光層9及びホール注入層1を設けず、それ以外は実施例4-1と同様にして、発光ユニットが1つ(発光層8のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(ppy)3:Ir(phq)3/PEDOT:PSS/n-PEDOT:PSS/Alである。
[Comparative Example 4-1] Production of Organic EL Element with First Light-Emitting Unit Only In Example 4-1, the electron injection layers 3 and 4, the light-emitting layer 9, and the hole injection layer 1 were not provided. In the same manner as in Example 1, an organic EL device having one light emitting unit (only the light emitting layer 8) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (ppy) 3 : Ir (phq) 3 / PEDOT: PSS / n-PEDOT: PSS / Al.
[比較例4-2]第二発光ユニットのみの有機EL素子の作製
 実施例4-1において、電子注入層3,4、発光層8及びホール注入層1を設けず、それ以外は実施例4-1と同様にして、発光ユニットが1つ(発光層9のみ)の有機EL素子を作製した。
 この素子の層構成の概略は、ガラス/ITO/ZnO/PEIE/PVK:TCTA:26DCzppy:Ir(Fppy)3/PEDOT:PSS/Alである。
[Comparative Example 4-2] Production of Organic EL Device with Second Light-Emitting Unit Only In Example 4-1, the electron injection layers 3 and 4, the light-emitting layer 8, and the hole injection layer 1 were not provided. In the same manner as in Example 1, an organic EL device having one light emitting unit (only the light emitting layer 9) was produced.
The outline of the layer structure of this element is glass / ITO / ZnO / PEIE / PVK: TCTA: 26DCzppy: Ir (Fppy) 3 / PEDOT: PSS / Al.
 上記実施例4-1及び比較例4-1,4-2の素子特性の評価結果を下記に示す。
 図11に、ELスペクトル特性を示す。
 図12に、外部量子効率-電流密度特性を示す。
 また、表5に、輝度1000cd/m2時及び5000cd/m2時における駆動電圧と外部量子効率を示す。
The evaluation results of the device characteristics of Example 4-1 and Comparative Examples 4-1 and 4-2 are shown below.
FIG. 11 shows the EL spectral characteristics.
FIG. 12 shows the external quantum efficiency-current density characteristics.
Further, Table 5 shows the driving voltage and external quantum efficiency at times luminance 1000 cd / m 2 and 5000 cd / m 2 o'clock.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記評価結果から、実施例4-1の駆動電圧及び外部量子効率は、比較例4-1及び比較例4-2のほぼ合計値であり、発光色の異なるリン光材料を用いた素子においてもマルチフォトンエミッション特性が認められた。 From the above evaluation results, the driving voltage and the external quantum efficiency of Example 4-1 are almost the total values of Comparative Example 4-1 and Comparative Example 4-2, and even in an element using phosphorescent materials having different emission colors. Multi-photon emission characteristics were observed.
1,11 ガラス基板
2    陰極(ITO)
3,13 第一発光ユニット
4,15 電荷発生層
5,14 電子注入層
6,16 第二発光ユニット
7    陰極(Al)
12   陽極(ITO)
17   陰極(Al)
1,11 Glass substrate 2 Cathode (ITO)
3, 13 First light emitting unit 4, 15 Charge generation layer 5, 14 Electron injection layer 6, 16 Second light emitting unit 7 Cathode (Al)
12 Anode (ITO)
17 Cathode (Al)

Claims (14)

  1.  1対の電極間に、少なくとも1つの発光層を有する発光ユニットが中間層を介して複数積層されたマルチフォトンエミッション有機エレクトロルミネッセンス素子であって、前記中間層が、陰極側の電荷発生層と、陽極側の電子注入層との塗布積層からなり、インバーテッド構造を有することを特徴とする有機エレクトロルミネッセンス素子。 A multi-photon emission organic electroluminescence device in which a plurality of light emitting units each having at least one light emitting layer are laminated via an intermediate layer between a pair of electrodes, the intermediate layer including a charge generation layer on a cathode side; An organic electroluminescence element comprising an inverted structure with an application layer on an anode side electron injection layer.
  2.  前記インバーテッド構造は、基板上に、陰極、中間層を介して複数積層された発光ユニット、陽極の順に積層された構成からなることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the inverted structure has a structure in which a plurality of light emitting units stacked on a substrate via a cathode, an intermediate layer, and an anode are stacked in this order.
  3.  前記電荷発生層が、導電性高分子を1層又は複数層含有していることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1 or 2, wherein the charge generation layer contains one or more conductive polymers.
  4.  前記導電性高分子が、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであり、ドープされたn型又はp型半導体であることを特徴とする請求項3記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to claim 3, wherein the conductive polymer is one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is a doped n-type or p-type semiconductor. .
  5.  前記電子注入層が、金属酸化物微粒子又は極性高分子を1層又は複数層含有していることを特徴とする請求項1~4のうちのいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 4, wherein the electron injection layer contains one or more metal oxide fine particles or polar polymers.
  6.  前記金属酸化物微粒子が、酸化亜鉛、酸化チタン、酸化ジルコニウム及び酸化ズズのうちのいずれかからなることを特徴とする請求項5記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the metal oxide fine particles are made of any one of zinc oxide, titanium oxide, zirconium oxide and oxide oxide.
  7.  前記極性高分子が、ポリエチレンイミン誘導体であることを特徴とする請求項5記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 5, wherein the polar polymer is a polyethyleneimine derivative.
  8.  前記発光ユニットが、蛍光又はリン光発光するものであることを特徴とする請求項1~7のうちのいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the light emitting unit emits fluorescence or phosphorescence.
  9.  前記陰極及び前記陽極の少なくともいずれか一方が透明であることを特徴とする請求項1~8のうちのいずれか1項に記載の有機エレクトロルミネッセンス素子。 9. The organic electroluminescence device according to claim 1, wherein at least one of the cathode and the anode is transparent.
  10.  前記陰極及び前記陽極が、金属、金属酸化物及び導電性高分子のうちのいずれかからなることを特徴とする請求項9記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 9, wherein the cathode and the anode are made of any one of a metal, a metal oxide, and a conductive polymer.
  11.  前記金属が、アルミニウム、銀及び金のうちのいずれかであることを特徴とする請求項10記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence element according to claim 10, wherein the metal is any one of aluminum, silver, and gold.
  12.  前記金属酸化物が、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、酸化亜鉛、アルミニウム添加酸化亜鉛(AZO)及びガリウム添加酸化亜鉛(GZO)のうちのいずれかであることを特徴とする請求項10記載の有機エレクトロルミネッセンス素子。 The metal oxide is any one of indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide, aluminum-added zinc oxide (AZO), and gallium-added zinc oxide (GZO). The organic electroluminescent element according to claim 10.
  13.  前記導電性高分子が、ポリチオフェン誘導体、ポリアニリン誘導体及びポリアリールアミン誘導体のうちのいずれかであり、ドープされたn型又はp型半導体であることを特徴とする請求項10記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 10, wherein the conductive polymer is any one of a polythiophene derivative, a polyaniline derivative, and a polyarylamine derivative, and is a doped n-type or p-type semiconductor. .
  14.  請求項1~13のうちのいずれか1項に記載された有機エレクトロルミネッセンス素子を製造する方法であって、
     前記中間層を、溶媒を用いて塗布積層した後、130℃以下で乾燥させて成膜する工程を備えていることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    A method for producing an organic electroluminescence device according to any one of claims 1 to 13,
    A method for producing an organic electroluminescence device, comprising: forming a film by coating the intermediate layer using a solvent and then drying it at 130 ° C. or less.
PCT/JP2014/062008 2014-04-30 2014-04-30 Organic electroluminescent element and method for manufacturing same WO2015166562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/062008 WO2015166562A1 (en) 2014-04-30 2014-04-30 Organic electroluminescent element and method for manufacturing same
JP2016515805A JP6579471B2 (en) 2014-04-30 2014-04-30 Organic electroluminescence device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062008 WO2015166562A1 (en) 2014-04-30 2014-04-30 Organic electroluminescent element and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015166562A1 true WO2015166562A1 (en) 2015-11-05

Family

ID=54358314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062008 WO2015166562A1 (en) 2014-04-30 2014-04-30 Organic electroluminescent element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6579471B2 (en)
WO (1) WO2015166562A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059178A1 (en) * 2017-09-19 2019-03-28 株式会社日本触媒 Organic electroluminescent element
JP2019140325A (en) * 2018-02-14 2019-08-22 国立大学法人山形大学 Organic EL device
JP2020068240A (en) * 2018-10-22 2020-04-30 日本放送協会 Organic element
CN113544873A (en) * 2019-03-06 2021-10-22 夏普株式会社 Display device and method for manufacturing display device
WO2022024239A1 (en) * 2020-07-29 2022-02-03 シャープ株式会社 Light emitting element and driving method for light emitting element
CN114127203A (en) * 2019-07-19 2022-03-01 爱色乐居 Ink comprising an electron injection layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095546A (en) * 2002-08-09 2004-03-25 Semiconductor Energy Lab Co Ltd Organic electroluminescent element
JP2006019678A (en) * 2004-06-02 2006-01-19 Dainippon Printing Co Ltd Organic electronic device and organic electronic device manufacturing method
JP2012038636A (en) * 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd Organic electroluminescent element and method for manufacturing the same
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548171B (en) * 2011-05-20 2016-08-24 国立大学法人山形大学 Organic electronic device and manufacture method thereof
WO2014068970A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Organic electroluminescence element and illumination device
JP2014137888A (en) * 2013-01-16 2014-07-28 Pioneer Electronic Corp Light-emitting device
JP2015046596A (en) * 2013-08-01 2015-03-12 三菱化学株式会社 Electronic device, and method of manufacturing electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095546A (en) * 2002-08-09 2004-03-25 Semiconductor Energy Lab Co Ltd Organic electroluminescent element
JP2006019678A (en) * 2004-06-02 2006-01-19 Dainippon Printing Co Ltd Organic electronic device and organic electronic device manufacturing method
JP2012038636A (en) * 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd Organic electroluminescent element and method for manufacturing the same
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059178A1 (en) * 2017-09-19 2019-03-28 株式会社日本触媒 Organic electroluminescent element
JPWO2019059178A1 (en) * 2017-09-19 2020-12-03 株式会社日本触媒 Organic electroluminescent device
US11183639B2 (en) 2017-09-19 2021-11-23 Nippon Shokubai Co., Ltd. Organic electroluminescent element
JP2019140325A (en) * 2018-02-14 2019-08-22 国立大学法人山形大学 Organic EL device
JP7112708B2 (en) 2018-02-14 2022-08-04 国立大学法人山形大学 Organic EL element
JP2020068240A (en) * 2018-10-22 2020-04-30 日本放送協会 Organic element
JP7232616B2 (en) 2018-10-22 2023-03-03 日本放送協会 organic element
CN113544873A (en) * 2019-03-06 2021-10-22 夏普株式会社 Display device and method for manufacturing display device
CN114127203A (en) * 2019-07-19 2022-03-01 爱色乐居 Ink comprising an electron injection layer
WO2022024239A1 (en) * 2020-07-29 2022-02-03 シャープ株式会社 Light emitting element and driving method for light emitting element

Also Published As

Publication number Publication date
JPWO2015166562A1 (en) 2017-04-20
JP6579471B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6579471B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5732463B2 (en) Multi-layer organic element
TWI499105B (en) Organic optoelectronic device and method for manufacturing the same
JP5720671B2 (en) Organic electronic device and manufacturing method thereof
Zhang et al. High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer
WO2017010124A1 (en) Organic thin-film laminate and organic electroluminescence element
JP2014511005A (en) Organic electronic devices for lighting
JP2012178268A (en) Organic electroluminescent element, organic electroluminescent module, organic electroluminescent display device, and organic electroluminescent illumination device
TWI559590B (en) Process for controlling the acceptor strength of solution-processed transition metal oxides for oled applications
TW200541385A (en) Printing of organic electronic devices
CN111200076A (en) Organic light emitting device having internal light extraction structure and method of fabricating the same
KR20110004367A (en) Organic electroluminescent device and method for manufacturing the same
JP2015153864A (en) Organic film and organic electronic device
CN111200075B (en) Light extraction structure, organic light emitting device and preparation method thereof
US9502654B2 (en) Method of manufacturing a multilayer semiconductor element, and a semiconductor element manufactured as such
KR20160094525A (en) Organic Light Emitting Device and Method of manufacturing the same and Organic Light Emitting Display Device using the same
CN112510164A (en) Blue light OLED based on solvent vapor phase processing hole injection layer and preparation method thereof
JP6433128B2 (en) Organic electroluminescence device
JP2010073678A (en) Organic electroluminescent element
JP4341304B2 (en) Method for manufacturing organic electroluminescence element
JP2013222615A (en) Method for manufacturing organic electroluminescent element
JP6455126B2 (en) Organic EL device and method for manufacturing the same
JP7112708B2 (en) Organic EL element
KR101039922B1 (en) Method for fabricating white organic light emitting device utilizing porous polymer light emitting layer and white organic light emitting device fabricated thereby
JP5707258B2 (en) Coating liquid for organic light emitting device, organic light emitting device, organic light emitting device light source, and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890520

Country of ref document: EP

Kind code of ref document: A1