WO2015165662A1 - Cmas resistente keramische schicht durch nanoporosität - Google Patents

Cmas resistente keramische schicht durch nanoporosität Download PDF

Info

Publication number
WO2015165662A1
WO2015165662A1 PCT/EP2015/056544 EP2015056544W WO2015165662A1 WO 2015165662 A1 WO2015165662 A1 WO 2015165662A1 EP 2015056544 W EP2015056544 W EP 2015056544W WO 2015165662 A1 WO2015165662 A1 WO 2015165662A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ceramic
outermost
metallic
thermal barrier
Prior art date
Application number
PCT/EP2015/056544
Other languages
English (en)
French (fr)
Inventor
Arturo Flores Renteria
Werner Stamm
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015165662A1 publication Critical patent/WO2015165662A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/177Ni - Si alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/514Porosity

Definitions

  • the invention relates to a ceramic layer system which has a higher resistance to CMAS deposits due to nanoporosity.
  • CMAS calcium-magnesium-aluminum-silicon
  • the object is achieved by a ceramic layer system according to claim 1.
  • Figure 1 2 embodiments of the invention
  • Figure 3 is a list of superalloys.
  • the high surface area of the nanostructured layer provides sufficient time for the ceramic material to react with the precipitate, closing the pores and preventing further infiltration of the deposit.
  • FIG. 1 shows a ceramic layer system 1.
  • the ceramic layer system has a substrate 4, in particular a nickel- or cobalt-based superalloy
  • FIG. 3 on which a diffusion or adhesion promoter layer 7 made of a metal or a metal alloy is applied.
  • An oxide layer (not shown) is formed on the metallic layer during further coating or in use.
  • the metallic layer 7 can be coated with an oxide layer.
  • a ceramic heat-insulating layer 10 is applied.
  • This ceramic, heat-insulating layer 10 is formed in one layer in the exemplary embodiment, d. H. consists of one and the same material and has a certain porosity, wherein the powder used has particle sizes only in the micrometer range and thus also the heat-insulating layer 10th
  • This multi-micron powder was applied by known thermal spray techniques, in particular by APS, HVOF, LPPS or VPS.
  • the pore size can then be in the micrometer range.
  • the porosity of the ceramic insulating layer 10 is preferably greater than or equal to 8%.
  • the material of the ceramic layer 10 preferably consists of partially stabilized zirconium oxide, in particular yttrium partially stabilized zirconium oxide.
  • a highly porous and nanostructured layer is present as the outermost impurity protection layer 13.
  • FIG. 2 shows a further ceramic layer system 1 'which, in contrast to the single-layer ceramic thermal barrier coating 10, has a two-layer ceramic thermal barrier coating 11, 11', the materials for the ceramic coating 11 and the ceramic coating 11 'being different.
  • the lower ceramic layer 11 is preferably one
  • Zirconium oxide layer in particular yttrium partially stabilized zirconium oxide layer, on which a pyrochlore structure for the outer ceramic layer 11 'is applied.
  • the material for the upper ceramic layer 11 ' may preferably have a pyrochlore structure, ie
  • Gadolinium zirconate or hafnate and thus the same material for the nanostructured ceramic layer 13.
  • the porosity of the ceramic, insulating layers 11, 11 ' is preferably greater than or equal to 8% and may also be different.
  • the outermost contamination protection layer 13 is also the outermost layer of the layer system 1, 1 '.
  • the material for the nanostructured contamination protection layer 13 (FIGS. 1, 2) is preferably a pyrochlore such as
  • the outermost contamination protection layer 13 has a
  • the contribution to the thermal insulation due to the layer thickness is significantly lower.
  • the preferred layer thickness is ⁇ to 300 ⁇ .
  • Such nanostructured layers 13 can be applied to the ceramic layer 10, 11, 11 'in various ways.
  • nanopowders particles sizes ⁇ 500 nm
  • nanopowders particles sizes ⁇ 500 nm
  • agglomerated nanopowders can be applied by the standard methods: APS, HVOF, LPPS or VPS.
  • the nanostructured layer 13 has a high proportion, in particular at least 50%, in particular at least 66%, of pores and channels in the nanometer range ( ⁇ 500 nm).
  • the porosity of the outer ceramic layer 13 is preferably at least 10%, in particular at least 15% (FIGS. 1, 2).
  • Such a layer system (FIGS. 1, 2) is preferably used for turbine components, in particular gas turbine components. Porosities are preferably given in vol%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Durch die Verwendung einer nanostrukturierten äußeren Schicht allein zum Schutz gegen CMAS wird die Lebensdauer von keramischen Wärmedämmschichten, die einem CMAS-Einfluss unterliegen, deutlich verbessert. Auf einem bevorzugt metallischen Substrat (4) wird eine metallische Schicht (7), bevorzugt eine MCrAlX- Legierung aufweisend, eine keramische wärmedämmende Schicht (10) und eine äußere, nanostrukturierte Schicht (13), bevorzugt eine keramische Pyrochlorstruktur aufweisend, aufgebracht.

Description

CMAS resistente keramische Schicht durch Nanoporosität
Die Erfindung betrifft ein keramisches Schichtsystem, das durch Nanoporosität eine höhere Resistenz gegenüber CMAS- Ablagerungen aufweist.
Es ist bekannt, dass Calcium-Magnesium-Aluminium-Silizium (CMAS) Abscheidungen auf keramischen Schichten wie keramischen Wärmedämmschichten zum Abplatzen der keramischen
Schicht führen können.
Bisher wurden EP-PVD-strukturierte kolumnare
Zirkonoxidschichten abgeschieden. Das ist doch sehr aufwendig .
Es ist daher Aufgabe der Erfindung, ein keramisches Schichtsystem aufzuzeigen, das einfach herzustellen ist und die gewünschten Eigenschaften aufweist. Die Aufgabe wird gelöst durch ein keramisches Schichtsystem gemäß Anspruch 1.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig weiter miteinander kombiniert wer- den können, um weitere Vorteile zu erzielen.
Es zeigen
Figur 1, 2 Ausführungsbeispiele der Erfindung, Figur 3 eine Liste von Superlegierungen .
Die Figuren und die Beschreibung stellen nur Ausführungsbeispiele der Erfindung dar. Die Aufgabe wird gelöst durch eine poröse und nanostruktu- rierte keramische Schicht, insbesondere eine
Pyrochlorschicht . Durch die hohe Oberfläche der nanostrukturierten Schicht ist genügend Zeit für das keramische Material gegeben, um mit dem Niederschlag zu reagieren, was zur Verschließung der Poren führt und eine weitere Infiltration der Ablagerung ver- hindert .
In Figur 1 ist ein keramisches Schichtsystem 1 dargestellt. Das keramische Schichtsystem weist ein Substrat 4, insbeson- dere aus einer nickel- oder kobaltbasierte Superlegierung
(Fig. 3) auf, auf der eine Diffusions- oder Haftvermittlerschicht 7 aus einem Metall oder einer Metalllegierung aufgebracht ist. Dies ist insbesondere bei nickel- oder kobaltbasierten Super- legierungen eine MCrAlX-Legierung (X = Y, Re, Si, Ta und/oder Fe) .
Auf der metallischen Schicht entsteht eine Oxidschicht (nicht dargestellt) beim weiteren Beschichten oder im Einsatz. Ebenso kann die metallische Schicht 7 mit einer Oxidschicht beschichtet werden.
Auf der metallischen Haftvermittlerschicht 7 oder auf der Oxidschicht ist eine keramische wärmedämmende Schicht 10 aufgebracht .
Diese keramische, wärmedämmende Schicht 10 ist hier in dem Ausführungsbeispiel einlagig ausgebildet, d. h. besteht aus ein und demselben Material und weist eine gewisse Porosität auf, wobei das verwendete Pulver Korngrößen nur im Mikrometerbereich aufweist und damit auch die wärmedämmende Schicht 10.
Dieses mehrere Mikrometer große Pulver wurde durch bekannte thermische Spritzverfahren, insbesondere durch APS, HVOF, LPPS oder VPS aufgetragen.
Die Porengröße kann dann auch im Mikrometerbereich liegen. Die Porosität der keramischen, wärmedämmenden Schicht 10 liegt vorzugweise bei größer gleich 8%.
Vorzugsweise besteht das Material der keramischen Schicht 10 aus teilstabilisiertem Zirkonoxid, insbesondere Yttrium teilstabilisiertem Zirkonoxid.
Erfindungsgemäß ist als äußerste Verunreinigungsschutzschicht 13 eine hochporöse und nanostrukturiere Schicht vorhanden.
In Figur 2 ist ein weiteres keramisches Schichtsystem 1' gezeigt, das im Gegensatz zu der einlagigen keramischen Wärmedämmschicht 10 eine zweilagige keramische Wärmedämmschicht 11, 11' aufweist, wobei die Materialien für die keramische Schicht 11 und keramische Schicht 11' verschieden sind.
Die untere keramische Schicht 11 ist vorzugsweise eine
Zirkonoxidschicht , insbesondere teilstabilisierte
Zirkonoxidschicht, ganz insbesondere Yttrium teilstabilisierte Zirkonoxidschicht, auf der eine Pyrochlorstruktur für die äußere Keramikschicht 11' aufgebracht ist.
Das Material für die obere keramische Schicht 11' kann vor- zugsweise eine Pyrochlorstruktur aufweisen, also
Gadoliniumzirkonat oder -hafnat aufweisen und damit dasselbe Material für die nanostrukturiere keramische Schicht 13.
Die Porosität der keramischen, wärmedämmenden Schichten 11, 11' liegt vorzugweise bei größer gleich 8% und kann auch verschieden sein.
Die äußerste Verunreinigungsschutzschicht 13 ist auch die äu- ßerste Schicht des Schichtsystem 1, 1'. Das Material für die nanostrukturierte Verunreinigungsschutzschicht 13 (Fig 1, 2) ist vorzugweise ein Pyrochlor wie
Gadoliniumzirkonat oder Gadoliniumhafnat . Die äußerste Verunreinigungsschutzschicht 13 weist eine
Schichtdicke von mindestens 50μπι, insbesondere von mindestens ΙΟΟμπι aufweist und insbesondere höchstens 40% Schichtdicke der keramischen wärmedämmenden Schicht 10 auf, d. h. der Beitrag zur Wärmedämmung aufgrund der Schichtdicke ist deutlich geringer.
Daher liegt die bevorzugte Schichtdicke bei ΙΟΟμπι bis 300μπι.
Solche nanostrukturierten Schichten 13 (Fig 1, 2) können auf verschiedene Art und Weise auf die keramische Schicht 10, 11, 11' aufgebracht werden.
Dabei können Nanopulver (Korngrößen < 500nm) verwendet und durch entsprechende Verfahren aufgetragen werden.
Ebenso können agglomerierte Nanopulver mit den Standardverfahren: APS, HVOF, LPPS oder VPS aufgetragen werden.
Andere Verfahren sind ebenfalls denkbar.
Die nanostrukturierte Schicht 13 weist auf jeden Fall einen hohen Anteil, insbesondere zu mindestens 50%, ganz insbesondere zu mindestens 66% an Poren und Kanälen im Nanometerbe- reich (<500nm) auf.
Die Porosität der äußeren keramischen Schicht 13 beträgt vorzugsweise mindestens 10%, insbesondere mindestens 15% (Fig. 1, 2) .
Vorzugsweise wird ein solches Schichtsystem (Fig. 1, 2) für Turbinenbauteile, insbesondere Gasturbinenbauteile, verwendet . Porositäten werden vorzugsweise in vol% angegeben.

Claims

Patentansprüche
1. Keramisches Wärmedämmschichtsystem (1, I
das zumindest aufweist
ein Substrat (4) ,
insbesondere aus einer nickel- oder kobaltbasierten Superle- gierung,
eine metallische Schicht (7) ,
insbesondere direkt auf dem Substrat (4) ,
wobei die metallische Schicht (7) insbesondere eine MCrAlX- Legierung aufweist mit X = Y, Re, Si, Ta und/oder Fe, insbesondere wobei auf der metallischen Schicht (7) eine Oxidschicht aufgebracht ist oder schon aufwachsen gelassen wurde und
wobei auf der Oxidschicht oder auf der metallischen Schicht
(7) eine keramische, wärmedämmende Schicht (10, 11, U aufgebracht ist, dadurch gekennzeichnet, dass eine äußere, nanostrukturierte Schicht als äußerste Verunreinigungsschutzschicht (13) vorhanden ist,
die insbesondere keramisch ausgebildet ist,
ganz insbesondere eine Pyrochlorstruktur aufweist.
2. Schichtsystem nach Anspruch 1,
bei dem die Schichtdicke der äußersten Verunreinigungsschutzschicht (13) höchstens 40%,
insbesondere höchstens 30%,
ganz insbesondere höchstens 20%
der Dicke der keramischen wärmedämmende Schutzschicht (10, 11, UM aufweist.
3. Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
bei dem auf der metallischen Schicht (7) oder der Oxidschicht auf der metallischen Schicht (7) eine zweilagige keramische Wärmedämmschicht (11 M 11) aufgebracht ist,
insbesondere eine untere Zirkonoxidschicht (11) und eine äußere Schicht (U mit Pyrochlorstruktur .
4. Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
bei dem auf der metallischen Schicht (7) oder der Oxidschicht auf der metallischen Schicht (7) eine einlagige keramische Wärmedämmschicht (10) aufgebracht ist,
insbesondere eine Zirkonoxidschicht (10) .
5. Keramisches Wärmedämmschichtsystem nach einem oder mehreren der Ansprüche 1, 2 oder 3,
bei dem das Material für die äußerste Verunreinigungsschutzschicht (13) das gleiche Material aufweist wie die äußere keramische wärmedämmende Schutzschicht (UM.
6. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem Gadoliniumzirkonat und/oder Gadoliniumhafnat für die äußerste Verunreinigungsschutzschicht (13) verwendet wird.
7. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die Porosität der äußersten Verunreinigungsschutzschicht (13) > 10%, insbesondere > 15% beträgt.
8. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die Porosität der keramischen, wärmedämmenden Schichten (10, 11, U größer 8% beträgt.
9. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die Schichtdicke der äußersten Verunreinigungsschutz - Schicht (13) mindestens 50μπι,
insbesondere mindestens ΙΟΟμπι
beträgt .
10. Schichtsystem nach einem oder mehreren der vorherigen An sprüche,
bei dem die Schichtdicke der äußersten Verunreinigungsschutz Schicht (13) ΙΟΟμπι bis 300μπι beträgt.
PCT/EP2015/056544 2014-04-30 2015-03-26 Cmas resistente keramische schicht durch nanoporosität WO2015165662A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208216.1A DE102014208216A1 (de) 2014-04-30 2014-04-30 CMAS resistente keramische Schicht durch Nanoporosität
DE102014208216.1 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015165662A1 true WO2015165662A1 (de) 2015-11-05

Family

ID=53724257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/056544 WO2015165662A1 (de) 2014-04-30 2015-03-26 Cmas resistente keramische schicht durch nanoporosität

Country Status (2)

Country Link
DE (1) DE102014208216A1 (de)
WO (1) WO2015165662A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206321A1 (de) * 2015-04-09 2016-10-13 Siemens Aktiengesellschaft Zweilagige keramische Wärmedämmschicht mit Übergangszone
DE102015223576A1 (de) * 2015-11-27 2017-06-01 Siemens Aktiengesellschaft Lokale zweilagige Wärmedämmschicht

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035688A1 (de) * 2006-07-28 2008-01-31 Domnick, Ralph, Dr. Deckschicht auf einem Substrat aus Metall, Keramik o. dgl. und Verfahren zu deren Herstellung
DE102008007870A1 (de) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung
US20100068507A1 (en) * 2006-09-06 2010-03-18 Honeywell International, Inc. Nanolaminate thermal barrier coatings
US20100227146A1 (en) * 2009-03-06 2010-09-09 Larose Joel Thermal barrier coating with lower thermal conductivity
DE102010044738A1 (de) * 2010-09-08 2012-03-08 Osram Opto Semiconductors Gmbh Dünnschichtverkapselung, optoelektronischer Halbleiterkörper mit einer Dünnschichtverkapselung und Verfahren zur Herstellung einer Dünnschichtverkapselung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117560A (en) * 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
US6365281B1 (en) * 1999-09-24 2002-04-02 Siemens Westinghouse Power Corporation Thermal barrier coatings for turbine components
US7226668B2 (en) * 2002-12-12 2007-06-05 General Electric Company Thermal barrier coating containing reactive protective materials and method for preparing same
EP1707653B1 (de) * 2005-04-01 2010-06-16 Siemens Aktiengesellschaft Schichtsystem
EP1783248A1 (de) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Zweilagiges thermisches Schutzschichtsystem mit Pyrochlor-Phase
US7807231B2 (en) * 2005-11-30 2010-10-05 General Electric Company Process for forming thermal barrier coating resistant to infiltration
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
EP2230329A1 (de) * 2009-03-18 2010-09-22 Siemens Aktiengesellschaft Zweilagiges poröses Schichtsystem mit Pyrochlor-Phase
EP2341166A1 (de) * 2009-12-29 2011-07-06 Siemens Aktiengesellschaft Nano- und mikrometrische keramische Wärmedämmschicht
EP2365106A1 (de) * 2010-03-03 2011-09-14 Siemens Aktiengesellschaft Keramische Wärmedämmschichtsystem mit modifizierter Anbindungsschicht

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035688A1 (de) * 2006-07-28 2008-01-31 Domnick, Ralph, Dr. Deckschicht auf einem Substrat aus Metall, Keramik o. dgl. und Verfahren zu deren Herstellung
US20100068507A1 (en) * 2006-09-06 2010-03-18 Honeywell International, Inc. Nanolaminate thermal barrier coatings
DE102008007870A1 (de) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung
US20100227146A1 (en) * 2009-03-06 2010-09-09 Larose Joel Thermal barrier coating with lower thermal conductivity
DE102010044738A1 (de) * 2010-09-08 2012-03-08 Osram Opto Semiconductors Gmbh Dünnschichtverkapselung, optoelektronischer Halbleiterkörper mit einer Dünnschichtverkapselung und Verfahren zur Herstellung einer Dünnschichtverkapselung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAROONPARVAR MOHAMMADREZA ET AL: "Formation of a dense and continuous Al2O3layer in nano thermal barrier coating systems for the suppression of spinel growth on the Al2O3oxide scale during oxidation", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 571, 29 March 2013 (2013-03-29), pages 205 - 220, XP028538695, ISSN: 0925-8388, DOI: 10.1016/J.JALLCOM.2013.03.168 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808308B2 (en) * 2016-06-08 2020-10-20 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, turbine member, and gas turbine

Also Published As

Publication number Publication date
DE102014208216A1 (de) 2015-11-05

Similar Documents

Publication Publication Date Title
EP2251457B1 (de) NiCoCrAl- oder CoCrAl-Schicht mit Re
WO2015165662A1 (de) Cmas resistente keramische schicht durch nanoporosität
DE102013207457B4 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
DE102008019891A1 (de) Erosionsschutzbeschichtung
EP2904130A1 (de) Wärmedämmschicht, gasturbinenbauteil und verfahren zur beschichtung eines gasturbinenbauteils
DE102007050141A1 (de) Verschleißschutzbeschichtung
EP1913176A1 (de) Wärmedämmschichtsystem
DE102014222686A1 (de) Doppellagige Wärmedämmschicht durch unterschiedliche Beschichtungsverfahren
DE102016224532A1 (de) Hochtemperaturschutzschicht für Titanaluminid-Legierungen
DE10200803A1 (de) Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
DE102007043791A1 (de) Verfahren zur Herstellung einer Wärmedämmschicht und Wärmedämmschicht
EP1370712A1 (de) Hartstoffbeschichtetes bauteil mit zwischenschicht zur verbesserung der haftfestigkeit der beschichtung
DE102014225130A1 (de) Dickes Wärmedämmschichtsystem
WO2015144415A1 (de) Keramisches wärmedämmschichtsystem mit schutzschicht gegen cmas
EP2607515B1 (de) Diffusionsbeschichtungsverfahren und damit hergestellte Chromschicht
EP3728695A1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
EP3242962A1 (de) Verfahren zur herstellung einer korrosionsschutzschicht für wärmedämmschichten aus hohlen aluminiumoxidkugeln und äusserster glasschicht und bauteil
DE102016206968A1 (de) Hitzeschild mit äußerster Yttriumoxidbeschichtung, Verfahren zur Herstellung und Produkt
EP3334851A1 (de) Verfahren zur herstellung einer korrosionsschutzschicht für wärmedämmschichten aus hohlen aluminiumoxidkugeln und äusserster glasschicht und bauteil sowie materialmischung
EP2999807B1 (de) Barriereschicht für turbolader
EP1797214A1 (de) Bauteil mit beschichtung und verfahren zum herstellen einer beschichtung
DE102006044706B4 (de) Schichtstruktur, deren Anwendung und Verfahren zur Herstellung einer Schichtstruktur
WO2017084850A1 (de) Segmentiertes zweilagiges schichtsystem
DE102015206321A1 (de) Zweilagige keramische Wärmedämmschicht mit Übergangszone
WO2016071094A1 (de) Segmentierte wärmedämmschicht aus vollstabilisiertem zirkonoxid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15741844

Country of ref document: EP

Kind code of ref document: A1