WO2015165414A1 - 提高led光源显色指数的装置 - Google Patents

提高led光源显色指数的装置 Download PDF

Info

Publication number
WO2015165414A1
WO2015165414A1 PCT/CN2015/077891 CN2015077891W WO2015165414A1 WO 2015165414 A1 WO2015165414 A1 WO 2015165414A1 CN 2015077891 W CN2015077891 W CN 2015077891W WO 2015165414 A1 WO2015165414 A1 WO 2015165414A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
color
rendering index
led
Prior art date
Application number
PCT/CN2015/077891
Other languages
English (en)
French (fr)
Inventor
张权
邹思源
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2015165414A1 publication Critical patent/WO2015165414A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the utility model relates to the field of optical technology, in particular to a device capable of improving the color rendering index of an LED light source in a professional stage field.
  • R, G, and B three primary color LED light sources are that, because of the filter color combination, in the white light synthesized by the three primary colors, the spectrum is discontinuous, even if continuous, near the cutoff wavelength of the filter, the spectrum The energy is very low ( Figure 2), so the color rendering index of this light source is very low; in addition, the three primary colors R, G, and B belong to a narrow spectrum, so there are large troughs in the synthesized spectrum, which also causes color rendering of the light source. The reason for the poor. In the three primary color R, G and B light sources, when the white balance is 6500K, the CRI is only about 40, and when it is 3200K, it is only about 15.
  • the advantages of the multi-primary light source are: First, based on the three-channel X-Mirror optical system, maintaining the minimum optical expansion of the light source under the premise of the same luminous flux output; second, using a multi-primary LED light source, the monochromatic color of each primary color LED light source High light saturation (such as saturated amber, cyan, etc.), the color system output has a wider color gamut, which meets the requirements of professional stage performance for bright colors; third, because of the use of multi-primary LED light source, in addition to color temperature adjustable In addition, a variety of colors can be mixed; Fourth, in addition to the narrow-band multi-primary LED light source, a wide-band primary light is also used, combined with the cut-off wavelength of X-Mirror, and the maximum wavelength is combined to make the system The light efficiency is the highest, and the spectrum is the most continuous, which makes the synthesized white light the best.
  • the light source can meet the requirements of the high color temperature and light color effect of the stage performance, and can meet the lighting requirements of low color temperature (3200K & 5600K).
  • the multi-primary LED light source is adopted, the luminous flux and CRI of each corrected color temperature can be dynamically adjusted to meet the application requirements of different occasions.
  • the above light source has many advantages, in the correction color temperature of 3200K, the maximum color rendering index can only be achieved around 90. In more professional applications, such as TV stations, studios, etc., a higher color rendering index is required to meet the professional requirements.
  • the photography requires that the color source of the light source be higher.
  • the peak spectrum of narrow-band primary light (such as red light, orange light, red light, amber, green, cyan, blue, dark blue, and UV light) directly emitted by commercial LEDs on the market is relatively fixed, and the waveform is relatively constant.
  • stage application lighting soft spot effect, the optical expansion of the light source is not high in this case
  • some products use the above 5 primary colors-8 primary colors to produce high white light.
  • each color temperature is corrected by adjusting the current of each primary color light.
  • each corrected white balance color temperature has an infinite group combination, and no matter what combination, for a certain corrected color temperature, the synthesis thereof
  • the spectrum of any single primary light in the light is only a change in amplitude at the peak wavelength (when adjusting the current of each single primary LED), the spectral shape does not change, as shown in Figure 3, by the narrow band R, G , B, Amber LED and blue LED excite the broad-band 5 primary color light source produced by the green phosphor.
  • the color rendering index of spectrum 2 is only 70
  • the same color temperature, and the 5 primary color light sources are composed of different proportions, and the color rendering index is very different.
  • the same color temperature, the 5 primary color light source is composed of different proportions, only the amplitude variation of the single primary color light. There is no change in the waveform. In this way, the white balance is adjusted.
  • the maximum CRI is limited. At 3200K, the CRI should reach 95 or so. It is impossible to adjust in this way. of.
  • the utility model now proposes a device for improving the color rendering index of an LED light source, so as to solve the requirement that the original multi-primary LED light source illumination has a low CRI index and cannot meet the professional photography requirements of some television stations.
  • the problem proposes a device for improving the color rendering index of an LED light source, so as to solve the requirement that the original multi-primary LED light source illumination has a low CRI index and cannot meet the professional photography requirements of some television stations.
  • the device for improving the color rendering index of an LED light source includes a light source, wherein at least one filter is further disposed on the white light path of the light source, wherein the filter pair
  • the primary color light having a wavelength in the range of 500 nm to 540 nm is reflected, and the primary light of the remaining wavelength band is completely transparent.
  • the filter has a reflectance of 5% to 70%.
  • the light source includes: a light-emitting channel, a two-way color separation sheet, a fly-eye lens, a condensing mirror, and a through hole, wherein
  • the illumination channel is provided with at least one group, and each group of illumination channels comprises a plurality of LED lamp arrays;
  • the two-way color separation sheet is provided in two and intersectingly disposed in the light-emitting channel for collecting light rays emitted from the respective light-emitting channels into one light beam;
  • the fly-eye lens is disposed after the light-emitting channel and the two-direction color separation sheet, and the double rows are vertically arranged in parallel for performing uniform light processing on the light beam;
  • the concentrating mirror is disposed after the fly-eye lens to focus the light beam at the through hole, so that the light beam is emitted from the through hole.
  • the filter is disposed behind the through hole or before the through hole and after the condensing mirror.
  • each of the light-emitting channels is synthesized by staggering a single primary color light, or is formed by staggering a certain primary color light with the primary color light of other wavelength bands.
  • the light-emitting channel comprises three sets of LED light arrays, and the LED light array and the two-way color separation sheet form a three-channel X-MIRROR structure, wherein one light-emitting channel light-emitting channel is vertically disposed with the other two light-emitting channel light-emitting channels .
  • the filter is fixed in a rotating seat, and the rotating seat can drive the filter to rotate.
  • the rotating base is connected to a control motor whose speed and direction are controlled by a host computer.
  • a surface layer of each of the plurality of LED lamp arrays is coated with a proportion of phosphors capable of being excited by blue light, and the plurality of LEDs are disposed by setting a ratio of the phosphors on the LED lamps.
  • the white light emitted by the array of lamps has a high color rendering index.
  • the utility model provides a device for improving the color rendering index of an LED light source, and in the illumination source composed of a multi-primary LED light source or the like, the filter is selectively filtered by a filter. Modifying the waveform of the spectrum of a single primary color source that has a large influence on CRI, can maximize the color rendering of the multi-primary LED light source, and basically meet the requirements of professional photography of the television station.
  • the filter is fixed in one In a device that can rotate, when a high color rendering index is required, the filter is rotated into the optical channel to obtain the highest color rendering index of the light source; when the light source does not require a high color rendering index or other applications are required, the filter will be filtered. The light sheet is rotated away from the optical channel, which is extremely convenient to use, and also expands the application of the LED light source in a professional place.
  • FIG. 1 is a schematic diagram of a high power trichromatic LED light source device used in the prior art.
  • Figure 2 is a diagram showing the correspondence between wavelength and spectral energy produced by the light source device of Figure 1.
  • 3 is a spectral graph of a prior art narrow-band primary color light source system.
  • FIG. 4 is a schematic view of a device for improving color rendering index of an LED light source according to the present invention.
  • Figure 5 is a graph of relative spectra at 5 base colors of 3200K.
  • FIG. 6 is a graph showing the filter transmittance of a device for improving the color rendering index of an LED light source according to the present invention.
  • the synthesized spectral color satisfies the requirements of color temperature, and there are countless kinds of spectra (metachrome) composed of different primary colors.
  • spectra metalachrome
  • the device for improving the color rendering index of an LED light source includes a light source, wherein at least one filter light emitting channel is further disposed on the white light path of the light source. A selective filtering process is performed on a portion of the spectrum.
  • the filter is designed to be capable of reflecting primary color light having a wavelength in the range of 500 nm to 540 nm and performing full transparency treatment on the primary color light of the remaining wavelength band, and the reflectance is 5% to 70%.
  • the adjustment of the reflectance can be achieved by the thickness of the filter and the coating of the corresponding color.
  • the light source includes an illumination channel, a dichroic separation sheet 15, a fly-eye lens 17, a condensing mirror 18, and a through hole 19.
  • the illuminating channel is provided with at least one group, each group is composed of a plurality of LED lamps arranged in sequence, and the light emitted by each illuminating channel can be composed of a single primary color light, such as a single R primary color light, a G primary color light,
  • the B primary color light is staggered and synthesized, or is synthesized by staggering a certain primary color light with the primary color light of other wavelength bands, such as R primary color light and Amber (amber) LED primary color light synthesis.
  • the illumination channel may be composed of three groups, two groups or a group of LED lamp arrays, preferably three groups of LED lamp arrays, wherein one group of illumination channels is vertically disposed with the other two illumination channels, such that the three groups of LED lamp arrays
  • the two-way color separation sheet forms a three-channel X-MIRROR structure.
  • the two-way color separation sheet 15 is provided in two and intersectingly disposed in the light-emitting channel, and has a specific cut-off wavelength, and is capable of collecting light emitted from each of the channels into a beam of light, that is, white light.
  • the transmittance of the transmission band and the cut-off band of the two-way color separation sheet 15 can be adjusted according to customer requirements or actual needs, and the incident angle is 45 degrees; the compound eye lens 18 is arranged in parallel in the vertical direction.
  • the light beam is subjected to a homogenizing process; the condensing lens 18 is disposed after the fly-eye lens 17 for focusing the light beam at the through hole to make the light beam
  • the through hole 19 is emitted.
  • the compound eye lens is formed by a series of small lens combinations, and the double-row fly-eye lens array can be applied to the illumination system to obtain high light energy utilization rate and large area. Uniform illumination.
  • the key to uniform illumination using a double-row fly-eye lens array is to improve its uniformity and illumination brightness.
  • the optical axes of the two-row fly-eye lenses are parallel to each other. After the second-row fly-eye lens, a concentrating mirror can be placed.
  • the condensing mirror can not only compensate for the lack of light and appropriate The nature of the light from the light source is changed, and the light is focused on the object to be inspected for the best illumination effect.
  • the focal plane of the concentrator is placed on the illumination screen to form a uniform illumination system.
  • the light-emitting channel of the present invention can be applied not only to x-mirror light combining but also to wavelength combining light and other spatial combining light.
  • the filter 20 is fixed in a rotating base 21, and the rotating base 21 can drive the filter 20 to rotate.
  • the filter may be disposed after the through hole, or may be disposed before the through hole and after the condensing mirror.
  • the rotating base 21 is controlled by a control motor to drive the rotation, and the motor is connected to the main control computer, that is, a control command is input in the computer in advance, and when a high color rendering index is required, the motor drives the rotating base 21, automatically Rotating the filter into the optical channel to obtain a higher color rendering index of the light source; when the light source does not require a high color rendering index or other applications are required, the driving filter 20 can be rotated away from the optical channel to achieve intelligent control the goal of.
  • FIG. 4 is an embodiment of an apparatus for improving the color rendering index of an LED light source according to the present invention.
  • a filter to light a certain primary color (somewhere The spectrum of the partial spectrum that has a negative effect on CRI is shaped to achieve a reduction in the color of the overall source, which is capable of reflecting a particular wavelength spectrum and transmitting additional spectra.
  • a 5-primary light source consisting of a narrow band of narrow-band R, G, B, Amber LED and blue LED-excited green phosphors
  • the light pattern light source is synthesized, and the light-emitting channels 11 are arranged vertically with the light-emitting channels 12 and 13, respectively, and the light-emitting channels 12 and 13 are arranged in parallel, the three channels form a square with an opening, and the light is emitted from the opening, and the three-color LED The array is combined with white light.
  • the R primary light and the Amber LED primary light are arranged by staggering or other means, and are packaged in 12 channels, which adopts spatial combining; the G primary light and the blue LED excite the green fluorescent powder to generate a wide band of primary light. Or arranged in other ways, packaged in 11 channels, which adopts spatial merging; B primary colors are arranged by staggering or other means, packaged in 13 channels, and the three-channel light source passes X-MIRROR dichroic separation of special cutoff wavelength
  • the wavelength of the sheet 15 is combined, the dichroic color separation sheets are arranged in a crisscross manner and are arranged perpendicular to each other, and the two end portions of the dichroic color separation sheet are respectively located on two opposite corners of the square by the dichroic color separation
  • the role of the film to get the band of the desired color, will tee
  • the light source of the track combines a beam of light which is homogenized by the fly-eye lens 17 and then focused by the condensing mirror 18 at the through hole 19.
  • CRI Color Rendition Index
  • the color rendering index has 15 colors, 15 color names: R1, light gray red; R2, dark gray yellow; R3: saturated yellow green; R4, medium yellow green; R5, light blue green; R6, light blue; , pale purple blue; R8, reddish purple; R9, saturated red; R10, saturated yellow; R11, saturated green; R12, saturated blue; R13, Caucasian skin tone; R14, leaf green; R15, yellow color .
  • Ra the average of the color rendering index of the first 8 common colors, denoted as Ra, to characterize the color rendering of this light source.
  • the narrow-band R, G, B, Amber LED and blue LEDs excite the 5-primary light source of the broad band produced by the green phosphor.
  • the following table shows the CRI output parameters of the 5 primary colors at 3200K in the embodiment of the present invention.
  • the maximum CRI data at 3200K is as follows: the maximum CRI is 89.1, R15 can reach 94.3, and R13 is only 84.2, where R15 represents the color rendering index of Asian skin color (yellow skin color), and R13 represents European skin color (white)
  • the color rendering index of the human skin color, its relative spectrum is shown in Figure 5 (relative spectrum after unfiltered), and the spectrum of the reference black body curve is slightly higher in the relative spectral power range from 500nm to 540nm, through specially designed filters.
  • the reflectivity is between 5% and 70%.
  • the specific optimum reflectivity depends on the spectrum of the blackbody curve in Figure 4.
  • the specific thickness and specific refractive index of the filter can be designed. Coating to obtain a coating with a large reflectivity or transmittance for light waves of a specific wavelength. Relative to the black body curve, the peak of the spectrum is increasing, which can increase the CRI at 3200K color temperature.
  • the transmittance curve of the filter 20 is as shown in FIG. 6, partially reflected at 500 nm to 540 nm, and the remaining wavelength bands are completely transparent, and placed in the optical transmission path. This embodiment is placed behind the through hole, of course.
  • the filter 20 may also be disposed in front of the through hole 19, behind the concentrating mirror 18, and is not limited herein.
  • the filter is selectively filtered by the set filter 20
  • the CRI is significantly improved after simulation, such as Ra is increased from 89.1 to 95, R13 is increased from 84.2 to 95.6, and R15 is increased from 94.3 to 97.7. It can meet the requirements of professional photography of TV stations.
  • the filter In professional stage lighting, the filter is fixed in a rotatable device. When a high color rendering index is required, the filter is rotated into the optical channel to obtain the highest color rendering index of the light source; When a high color rendering index is required or other applications are required, the filter 20 is rotated away from the optical channel.
  • a surface layer of each of the plurality of LED lamp arrays is coated with a proportion of phosphors capable of being excited by blue light, and the phosphors may be one or a mixture of
  • the green light phosphor or the yellow light phosphor the white light emitted by the plurality of LED light arrays has a high color rendering index by setting the ratio of the phosphors on the LED lamps, and the three primary color LED lights can also be adjusted.
  • the magnitude of each current can also be obtained from the black body curve spectrum shown in Figure 5, resulting in a higher color rendering index.
  • each atom has its own characteristic line.
  • the spectral waveform after filtering through the filter is used.
  • the broadband spectrum of the broad band generated by the blue LED-excited green phosphor can be translated to the long wavelength band and translated to near 550 nm to 570 nm, and the light source can obtain a relatively high CRI.
  • the disadvantage of this embodiment over the previous embodiment is that when the peak spectrum of the broad band is 550nm-570nm translation, for X-MIRROR based three-channel system, because one of the two-way color separation chips has a cutoff wavelength of around 570nm-600nm, the broad-band primary light will have more energy to be reflected. Wasted, and for systems that are not based on X-MIRROR multi-primary light (through spatial integration), are not affected; in addition, the broad-band light green light produced by blue LEDs is generally excited by blue LEDs. The longer the spectrum moves toward longer waves, the lower the luminous flux.
  • the advantage of this solution is that a high color rendering index can be obtained without the need for a filter and a rotating seat. However, it is better to obtain an optimum CRI value by using it in combination with the above filter.
  • the filter as another alternative embodiment of the present invention, for the 5-primary optical system, we can also use the blue LED to excite the broad-band spectrum generated by the green phosphor.
  • the shape is made into a filtered spectral waveform as shown in FIG.
  • the blue LED to excite the broad-band primary light produced by the green fluorescent powder, through a reasonable combination of various basic color lights, and adjust the current of the LED lamp, and adjust the current. It can be realized by adjusting the resistance value of each LED lamp current limiting resistor, and the wide-band primary color light produced can be divided into two kinds of primary color light having different wavelength ranges, one peak wavelength is between 520 nm and 530 nm, and the other wavelength is It is between 540 nm and 570 nm. In this way, a high color rendering index can also be obtained.
  • the above-mentioned implementation case is not limited to a certain color, and is effective for a multi-color light source of greater than or equal to 3 primary colors.
  • the system is not limited to the x-mirror system, and is applicable to both wavelength combining and other spatial light combining systems. .
  • the device for improving the color rendering index of the LED light source uses a filter to perform a spectrum on a certain primary light (a part of the spectrum has a negative influence on the CRI).
  • the shaping, so that the color of the overall light source is reduced, the filter reflects the special wavelength spectrum, and the other spectral transmission has a significant improvement on the CRI, which can meet the requirements of the radio, the studio and the like for the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种提高LED光源显色指数的装置,包括光源。在光源发出的白光光路通道中还设有至少一块对波长在500nm-540nm范围内的基色光进行反射、对其余波段的基色光进行全透处理的滤光片(20),或者在光源中将蓝色LED灯表层涂覆一定比例的能够被蓝光激发的荧光粉,以获得高显色指数。通过对某部分光谱对CRI产生负的影响的基色光的光谱进行整形,从而提升整体光源的颜色的还原性。滤光片(20)对特殊的波长光谱反射,另外的光谱透射,对CRI有显著的提高,可以满足电台、摄影棚等对光源要求较高的场合要求。

Description

提高LED光源显色指数的装置 技术领域
本实用新型涉及光学技术领域,尤其涉及一种在专业舞台领域中能够提高LED光源显色指数的装置。
背景技术
随着近几年半导体固体光源的飞速发展以及困扰全球的能源紧张,全球气候变暖等问题,半半导体LED光源以其节能,环保,光亮及色温可控等优点,已在各行各业上已广泛应用,大有取代传统光源的优势。相信在不久的将来,随着LED的成本的降低及光效率的提高,半导体LED光源会全面的取代传统光源。
为顺应科技发展的潮流,在2009年,深圳市光锋光电技术有限公司征对舞台灯光电脑摇头图案灯,推出全球首款大功率三基色(R,G和B)LED光源(如图1)。在此光源装置中,所有合成颜色都是通过分别控制R,G,和B三基色LED的驱动电流来实现颜色的配比,因为采用三基色LED直接发光,因而单色光的颜色饱和度是非常高,比较满足舞台演出对颜色比较鲜艳的要求。但采用R,G,和B三基色LED光源的一个缺点是:因为采用滤光合色片,在此三基色合成的白光中,光谱不连续,即使连续,在滤光片截止波长附近,光谱的能量非常低(如图2),因而此光源的显色指数非常低;另外,三基色R,G,和B属于窄光谱,因而合成光谱中有很大的波谷,这也是造成光源显色性比较差的原因。在三基色R,G和B光源中,白平衡在6500K的时候,CRI只有40左右,3200K的时候,只有15左右。
如此之低的CRI限制了LED舞台灯光源在专业场合的应用,特别是电视台及剧院,因为涉及到拍摄及专业级别比价高,在3200K的色温要求照明光源颜色的还原性比较高,也就是照明光源的显色性要达到90左右。为了提高照明光源颜色的显色性,深圳市光锋光电技术有限公司开发了基于三通道X-Mirror的多基色光源(大于四色,如5基色,6基色,7基色等), 该多基色光源的优点是:一,基于三通道X-Mirror光学系统,在同等光通量输出的前提下,维持光源最小的光学扩展量;二,采用多基色LED光源,各基色LED光源的单色光饱和度很高(如饱和的琥珀色,青色等),光源系统输出的色域更广,满足了专业舞台演出对颜色鲜艳的要求;三,因为采用多基色LED光源,除了色温可调之外,可以混出无数种颜色;四,除了采用窄波段的多基色LED光源外,还采用了宽波段的基色光,结合X-Mirror的截止波长,最大限度的通过波长合光,使系统合光效率最高,光谱最连续,使合成的白光还原性最好;五,此光源可以最大限度满足舞台演出高色温光色效果要求,又能满足低色温(3200K&5600K)的照明要求。六,因为采用多基色LED光源,各校正色温的光通量及CRI可以动态可调,满足不同场合的应用需求。
虽然以上光源有诸多优点,但在校正色温3200K,最大显色指数只能做到90左右,在比较专业的应用场合,如电视台、摄影棚等,还需要更高的显色指数,才能满足专业的摄影要求,此种要求光源的显色性更高。
目前,市面上商用LED直接发出的窄带基色光(如红光,橙光,红光,琥珀色,绿色,青色,兰色,深蓝色及UV光)的峰值光谱比较固定,波形也比较恒定,在舞台应用铺光的场合(柔和光斑的效果,此种场合对光源的光学扩展量要求不高),有些产品采用以上5基色-8基色来产生高显的白光。在此光源的系统中,通过调节各基色光的电流来校正各色温,当基色光大于三基色时,各校正白平衡色温有无穷组组合,无论什么组合,对于某一校正的色温,其合成光中任何单基色光的光谱只是在峰值波长的地方幅度的变化(当调整各单基色LED的电流时),光谱形状不会有任何改变,如图3所示,由窄波段的R,G,B,Amber LED和蓝光LED激发绿光荧光粉产生的宽波段组成的5基色光源,图中合成3200K色温有两种光谱,两种光谱的显色性及光通量不同,光谱1的显色指数为82,而光谱2的显色指数只有70,同一色温,5基色光源不同比例组成,其显色指数差异非常大;另外,同一色温,5基色光源不同比例组成,只是单基色光的幅度变化,波形无任何变化,这样的方式调节白平衡,其最大CRI是有限制的,要在3200K,CRI要达到95左右,采用此种方式调节,是不可能实现的。
因此,如何设计一种在由多基色LED光源或其它组成的照明光源中, 能通过修改某些对CRI影响比较大的单基色光源光谱的波形,提高多基色LED光源的显色性的装置便成为了亟待解决的问题。
实用新型内容
基于现有技术中存在的上述不足,本实用新型现提出一种提高LED光源显色指数的装置,以解决原有的多基色LED光源照明中CRI指数不高、无法满足一些电视台专业摄影的要求的问题。
本实用新型所公开的一种提高LED光源显色指数的装置,包括一光源,其中,在所述光源发出的白光光路通道上还设有至少一块滤光片,其中,所述滤光片对波长在500nm—540nm范围内的基色光进行反射、对其余波段的基色光进行全透处理。
优选地,所述滤光片的反射率为5%~70%。
进一步地,所述光源包括:发光通道、二向分色片、复眼透镜、聚光镜以及通孔,其中,
所述发光通道,设有至少一组,每组发光通道包括多个LED灯阵列;
所述二向分色片,设有两个且交叉设置在所述发光通道中,用于将从各个所述发光通道发出的光线进行汇聚合成一束光线;
所述复眼透镜,设于所述发光通道及二向分色片之后,双排竖向平行设置,用于对光束进行匀光处理;
所述聚光镜,设于所述复眼透镜之后,用于将光束聚焦在通孔处,使光束从所述通孔处发出。
优选地,所述滤光片设在所述通孔之后,或者设在所述通孔之前、聚光镜之后。
进一步地,各发光通道发出的光由单个基色光交错排列合成,或者由某基色光与其他波段的基色光交错排列合成。
优选地,所述发光通道包括三组LED灯阵列,所述LED灯阵列与二向分色片形成三通道的X-MIRROR结构,其中一发光通道发光通道与另外两个发光通道发光通道垂直设置。
更优选地,所述滤光片固定在一旋转座中,所述旋转座可带动所述滤光片旋转。
更进一步地,所述旋转座连接于控制电机上,所述电机的转速和方向由主控计算机控制。
优选地,所述多个LED灯阵列中的各LED灯的表层涂覆有一定比例的能够被蓝光激发的荧光粉,通过设置各LED灯上所述荧光粉的配比使所述多个LED灯阵列出射的白光具有高显色指数。
与现有技术相比,本实用新型所提供的一种提高LED光源显色指数的装置,在由多基色LED光源或其它组成的照明光源中,通过滤光片对光谱有选择的滤光后,修改某些对CRI影响比较大的单基色光源光谱的波形,能够最大限度的提高多基色LED光源的显色性,基本上可以满足电视台专业摄影的要求,此外,该滤光片固定在一个可以旋转的装置中,当需要高显色指数时,将滤光片旋转到光学通道中,从而获得最高的光源的显色指数;当光源不需要高显色指数或需要其它应用时,将滤光片旋离光学通道,使用极为方便,也扩展了LED光源在专业场所中的应用。
附图说明
图1是现有技术采用的一种大功率三基色LED光源装置的示意图。
图2是采用图1所述的光源装置产生的波长和光谱能量的对应关系图。
图3是现有技术中采用窄带基色光源系统的光谱曲线图。
图4是本实用新型所述的一种提高LED光源显色指数装置的示意图。
图5是在5基色3200K时的相对光谱曲线图。
图6是采用本实用新型所述的一种提高LED光源显色指数装置的滤光片透过率曲线图。
具体实施方式
以下实施例仅用于更加清楚地说明本实用新型的技术方案,而不能以此来限制本实用新型的保护范围。如在说明书及权利要求当中使用了某些词汇来指称特定部件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个部件。本说明书及权利要求并不以名称的差异来作为区分部件的方式,而是以部件在功能上的差异来作为区分的准则。说明书后续描述为实施本实用新型的较佳实施方式,然所述描述乃以说明本新型 的一般原则为目的,并非用以限定本实用新型的范围。本实用新型的保护范围当视所附权利要求所界定者为准。
下面结合附图和具体实施例对本实用新型做进一步详细说明。
要获得多基色光最大CRI,对于某一目标色温(3200K),除了调节各基色LED的电流,使其合成的光谱色满足色温的要求,不同基色光组成的光谱(同色异谱)有无数种,必然有一种的CRI最高;另外,经过局部或整体修改基色光的波形,配合各基色LED的电流的调节,也可以显著提高光源的CRI。
如图4所示,本实用新型提出的一种提高LED光源显色指数的装置,包括一光源,其中,在所述光源发出的白光光路通道上还设有至少一块滤光片发光通道,用于对部分光谱进行有选择的滤光处理。
具体来说,所述滤光片设计成能够对波长在500nm—540nm范围内的基色光进行反射、对其余波段的基色光进行全透处理的特性,且其反射率为5%~70%,反射率的调整可通过对滤光片的厚度及设置相应颜色的涂层来实现。
所述光源包括:发光通道、二向分色片15、复眼透镜17、聚光镜18以及通孔19。其中,所述发光通道,设有至少一组,每组均由多个依次排列的LED灯组成,各发光通道发出的光可以由单个基色光,如由单一的R基色光、G基色光、B基色光交错排列合成,或者由某基色光与其他波段的基色光交错排列合成,如R基色光和Amber(琥珀色)LED基色光合成等。所述发光通道可以由三组、两组或者一组LED灯阵列组成,优选采用三组LED灯阵列,其中一组发光通道与另外两个发光通道垂直设置,这样,该三组LED灯阵列与二向分色片形成一个三通道的X-MIRROR结构。
所述二向分色片15,设有两个且交叉设置在所述发光通道中,其具有特定的截止波长,能够将从各个所述通道发出的光线进行汇聚合成一束光线,即白光光线,所述二向分色片15的透过带及截止带的透过率可根据客户要求或实际需要调整,其入射角为45度;所述复眼透镜18,双排竖向平行设置于所述发光通道及二向分色片15之后之后,用于对光束进行匀光处理;所述聚光镜18,设于所述复眼透镜17之后,用于将光束进行聚焦在通孔处,使光束从所述通孔19处发出。复眼透镜是由一系列小透镜组合形成,将双排复眼透镜阵列应用于照明系统可以获得高的光能利用率和大面积的 均匀照明。利用双排复眼透镜阵列实现均匀照明的关键在于提高其均匀性和照明亮度,两列复眼透镜的光轴互相平行,在第二列复眼透镜后可以放置聚光镜,聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果,聚光镜的焦平面放照明屏就形成了均匀照明系统。
其中,本实用新型中的该发光通道不仅能够应用于x-mirror合光还能够应用于波长合光以及其他空间合光等类型。
作为本实用新型一个优选的实施方式,所述滤光片20固定在一旋转座21中,所述旋转座21可带动所述滤光片20旋转。其中,所述滤光片可以设在所述通孔之后,也可以设在所述通孔之前、聚光镜之后。所述旋转座21由一控制电机控制,带动其转动,而所述电机连接主控计算机,即事先在该计算机中输入控制命令,当需要高显色指数时,电机带动该旋转座21,自动将滤光片旋转到光学通道中,从而获得较高的光源的显色指数;当光源不需要高显色指数或需要其它应用时,可将带动滤光片20旋离光学通道,达到智能控制的目的。
以图4为例,图4为本实用新型所述的一种提高LED光源显色指数的装置的一个实施例,在多基色光源中,我们采用滤光片,对某一基色光(其某部分光谱对CRI产生负的影响)的光谱进行整形,从而达到对整体光源颜色的还原性,该滤光片能够对特殊的波长光谱反射,另外的光谱透射。
对于由窄波段的R,G,B,Amber LED和蓝光LED激发绿光荧光粉产生的宽波段组成的5基色光源,我们采用如图4所示的三通道X-MIRROR结构,采用五种基色光图案灯光源合成,发光通道11分别与发光通道12、13垂直排列设置,发光通道12、13之间平行排列设置,三个通道形成一类似开口的正方形,光线从开口处射出,三色LED阵列合光出白光。具体来说,R基色光和Amber LED基色光通过交错或其它方式排列,封装在12通道中,其采用空间合光;G基色光和蓝光LED激发绿光荧光粉产生的宽波段基色光通过交错或其它方式排列,封装在11通道中,其采用空间合光;B基色光通过交错或其它方式排列,封装在13通道中,三通道的光源通过特殊截止波长的X-MIRROR的二向分色片15的波长合光,二向色分色片呈十字交叉排列且相互垂直设置,二向色分色片的两个端部分别位于方形的两对角上,通过所述二向色分色片的作用得到所需颜色的波段,将三通 道的光源合成一束光,该光束经过复眼透镜17匀光后再经过聚光镜18聚焦在通孔19处。
CRI(Color Rendition Index,显色指数),是指物体用该光源照明和用标准光源(一般以太阳光做标准光源)照明时,其颜色符合程度的量度,也就是颜色逼真的程度。以Ra表示,最大为100。当光源光谱中很少或缺乏物体在基准光源下所反射的主波时,会使颜色产生明显的色差,色差程度越大,光源对该色的显色性越差。显色指数系数仍为目前定义光源显色性评价的普遍方法。显色指数有15种颜色,15种颜色名称:R1,淡灰红色;R2,暗灰黄色;R3:饱和黄绿色;R4,中等黄绿色;R5,淡蓝绿色;R6,淡蓝色;R7,淡紫蓝色;R8,淡红紫色;R9,饱和红色;R10,饱和黄色;R11,饱和绿色;R12,饱和蓝色;R13,白种人肤色;R14,树叶绿;R15,黄种人肤色。取前8种常见颜色的显色指数的平均值,记为Ra,表征此光源显色性。
窄波段的R,G,B,Amber LED和蓝光LED激发绿光荧光粉产生的宽波段组成的5基色光源,下表显示了本发明的实施例中5基色在3200K的CRI输出参数。通过调节电流,在3200K的最大CRI数据如下:最大CRI为89.1,R15虽然可以达到94.3,R13只有84.2,其中R15表示亚洲人肤色(黄种人肤色)的显色指数,R13表示欧洲人肤色(白种人肤色)的显色指数,其相对光谱如图5(未滤光后的相对光谱),其参考黑体曲线的光谱,在500nm-540nm相对光谱功率幅度有点高,通过特殊设计的滤光片,在500nm-540nm部分反射,反射率为5%-70%之间,具体最佳反射率要根据图4中黑体曲线的光谱而定,可以通过对滤光片设计特定厚度和特定折射率的涂层,来得到对特定波长光波有较大反射率或透过率的涂层。相对黑体曲线,光谱的波峰呈上升趋势,这样可以使得在3200K色温下,CRI增大。在本实施例中,其滤光片20透过率曲线如图6,在500nm-540nm部分反射,其余波段全透,其放置在光学传输路径中,本实施例放置在通孔的后面,当然,所述滤光片20也可设置在所述通孔19的前面,聚光镜18的后面,在此不作任何限定。
Figure PCTCN2015077891-appb-000001
通过设置的滤光片20对光谱有选择的滤光后,经过模拟仿真,其CRI有显著的提高,如Ra由89.1提高到95,R13由84.2提高到95.6,R15由94.3提高到97.7,基本上可以满足电视台专业摄影的要求。在专业的舞台灯光中,滤光片固定在一个可以旋转的装置中,当需要高显色指数时,将滤光片旋转到光学通道中,从而获得最高的光源的显色指数;当光源不需要高显色指数或需要其它应用时,将滤光片20旋离光学通道。
基于本实用新型的另一构思,在所述多个LED灯阵列中的各LED灯的表层涂覆有一定比例的能够被蓝光激发的荧光粉,所述荧光粉可以为一种或者几种混合,如绿光荧光粉或者黄光荧光粉,通过设置各LED灯上所述荧光粉的配比使所述多个LED灯阵列出射的白光具有高显色指数,也可以通过调整三基色LED灯的各电流大小,也能够得到与图5所示的黑体曲线光谱,获得较高的显色指数。
由于不同元素的光谱不一样,每种原子都有自己的特征谱线,参照图5所示,借照经过滤光片滤光后的光谱波形,对于5基色光学系统,在光源的设计上,可以将蓝光LED激发绿光荧光粉产生的宽波段的峰值光谱向长波段平移,平移到550nm-570nm附近,此光源可以获得比较高的CRI。此实施案例相对于上个实施例的缺点是当宽波段的峰值光谱向 550nm-570nm平移,对于基于X-MIRROR的三通道系统来说,由于其中的一个二向分色片的截止波长在570nm-600nm的附近,宽波段的基色光将有更多能量的光被反射浪费掉,而对于不基于X-MIRROR的多基色光(通过空间合光)的系统,则不受影响;另外,一般对于蓝光LED激发绿光荧光粉产生的宽波段的浅绿色光,其峰值光谱越向长波移动,产生光通量越低。但此方案的优点是不需要滤光片及旋转座即可获得高显色指数。但通过与上述滤光片的配合使用更能够获得最优的CRI值。
同样地,借照经过滤光片滤光后的光谱波形,作为本实用新型另一个可选的实施例,对于5基色光学系统,我们也可以将蓝光LED激发绿光荧光粉产生的宽波段光谱形状做成如图5所示的经过滤光后的光谱波形。
类似的,对于5基色光学系统,我们也可以将蓝光LED激发绿光荧光粉产生的宽波段基色光,经过各种不同基色光的合理搭配,以及对LED灯电流大小的调整,电流大小的调整可以通过对各LED灯限流电阻的阻值大小调整实现,可以将生产的宽波段基色光分成两种具有不同波长范围的基色光,一种峰值波长在520nm-530nm之间,另一种波长为540nm-570nm之间。这样,也能够获得高显色指数。
当然,上述所说的实施案例不限于某种颜色,对于大于或等于3基色的多色光源都有效,另外,该系统不限于x-mirror系统,对于波长合光及其它空间合光系统都适用。
与现有技术相比,本实用新型所述的一种提高LED光源显色指数的装置,采用了滤光片,对某一基色光(其某部分光谱对CRI产生负的影响)的光谱进行整形,从而整体光源的颜色的还原性,此滤光片对特殊的波长光谱反射,另外的光谱透射,对CRI有着显著的提高,可以满足电台、摄影棚等对光源要求较高的场合。
值得注意的是,以上所述仅为本实用新型的较佳实施例,并非因此限定本实用新型的专利保护范围,本实用新型还可以对上述各种零部件的构造进行材料和结构的改进,或者是采用技术等同物进行替换。故凡运用本实用新型的说明书及图示内容所作的等效结构变化,或直接或间接运用于其他相关技术领域均同理皆包含于本实用新型所涵盖的范围内。

Claims (9)

  1. 一种提高LED光源显色指数的装置,包括一光源,其特征在于,在所述光源发出的白光光路通道上还设有至少一块滤光片,其中,所述滤光片对波长在500nm—540nm范围内的基色光进行反射、对其余波段的基色光进行全透处理。
  2. 如权利要求1所述的一种提高LED光源显色指数的装置,其特征在于,所述滤光片的反射率为5%~70%。
  3. 如权利要求1所述的一种提高LED光源显色指数的装置,其特征在于,所述光源包括:发光通道、二向分色片、复眼透镜、聚光镜以及通孔,其中,
    所述发光通道,设有至少一组,每组发光通道包括多个LED灯阵列;
    所述二向分色片,设有两个且交叉设置在所述发光通道中,用于将从各个所述发光通道发出的光线进行汇聚合成一束光线;
    所述复眼透镜,设于所述发光通道及二向分色片之后,双排竖向平行设置,用于对光束进行匀光处理;
    所述聚光镜,设于所述复眼透镜之后,用于将光束聚焦在通孔处,使光束从所述通孔处发出。
  4. 如权利要求3所述的一种提高LED光源显色指数的装置,其特征在于,所述滤光片设在所述通孔之后,或者设在所述通孔之前、聚光镜之后。
  5. 如权利要求3所述的一种提高LED光源显色指数的装置,其特征在于,各发光通道发出的光由单个基色光交错排列合成,或者由某基色光与其他波段的基色光交错排列合成。
  6. 如权利要求3所述的一种提高LED光源显色指数的装置,其特征在于,所述发光通道包括三组LED灯阵列,所述LED灯阵列与二向分色片形成三通道的X-MIRROR结构,其中一发光通道发光通道与另外两个发光通道发光通道垂直设置。
  7. 如权利要求4所述的一种提高LED光源显色指数的装置,其特征在于,所述滤光片固定在一旋转座中,所述旋转座可带动所述滤光片旋转。
  8. 如权利要求7所述的一种提高LED光源显色指数的装置,其特征在于,所述旋转座连接于控制电机上,所述电机的转速和方向由主控计算机控制。
  9. 如权利要求3所述的一种提高LED光源显色指数的装置,其特征在于,所述多个LED灯阵列中的各LED灯的表层涂覆有一定比例的能够被蓝光激发的荧光粉,通过设置各LED灯上所述荧光粉的配比使所述多个LED灯阵列出射的白光具有高显色指数。
PCT/CN2015/077891 2014-04-30 2015-04-30 提高led光源显色指数的装置 WO2015165414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420221225.5U CN203880619U (zh) 2014-04-30 2014-04-30 提高led光源显色指数的装置
CN201420221225.5 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015165414A1 true WO2015165414A1 (zh) 2015-11-05

Family

ID=51681110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077891 WO2015165414A1 (zh) 2014-04-30 2015-04-30 提高led光源显色指数的装置

Country Status (2)

Country Link
CN (1) CN203880619U (zh)
WO (1) WO2015165414A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203880619U (zh) * 2014-04-30 2014-10-15 深圳市绎立锐光科技开发有限公司 提高led光源显色指数的装置
CN204176387U (zh) * 2014-10-29 2015-02-25 深圳市绎立锐光科技开发有限公司 光源装置
CN205301793U (zh) * 2015-12-01 2016-06-08 深圳市光峰光电技术有限公司 一种照明系统
CN208535741U (zh) * 2018-07-25 2019-02-22 深圳市绎立锐光科技开发有限公司 一种led照明装置
CN114326274A (zh) * 2020-09-27 2022-04-12 成都极米科技股份有限公司 一种合光光源装置及投影系统
CN114484381A (zh) * 2022-01-21 2022-05-13 漳州立达信光电子科技有限公司 一种面向人因照明的发光单元及其组成的灯具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236749A (ja) * 2005-02-24 2006-09-07 Puraruto:Kk 光源装置および表示装置
JP2010186725A (ja) * 2009-01-15 2010-08-26 Mitsubishi Electric Corp 照明装置
JP2011154895A (ja) * 2010-01-27 2011-08-11 Stanley Electric Co Ltd 光源装置および照明装置
JP2011199054A (ja) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp 光源装置
CN102352970A (zh) * 2011-08-09 2012-02-15 中山大学 一种新型led光源及其照明装置
CN103175012A (zh) * 2013-04-02 2013-06-26 四川新力光源股份有限公司 发光二极管照明装置和提高发光二极管照明装置的显色性的方法
TW201335546A (zh) * 2011-12-30 2013-09-01 科銳股份有限公司 利用頻譜陷波的發光二極體照明技術
WO2013147195A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 半導体発光装置、及び照明装置
CN203880619U (zh) * 2014-04-30 2014-10-15 深圳市绎立锐光科技开发有限公司 提高led光源显色指数的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236749A (ja) * 2005-02-24 2006-09-07 Puraruto:Kk 光源装置および表示装置
JP2010186725A (ja) * 2009-01-15 2010-08-26 Mitsubishi Electric Corp 照明装置
JP2011154895A (ja) * 2010-01-27 2011-08-11 Stanley Electric Co Ltd 光源装置および照明装置
JP2011199054A (ja) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp 光源装置
CN102352970A (zh) * 2011-08-09 2012-02-15 中山大学 一种新型led光源及其照明装置
TW201335546A (zh) * 2011-12-30 2013-09-01 科銳股份有限公司 利用頻譜陷波的發光二極體照明技術
WO2013147195A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 半導体発光装置、及び照明装置
CN103175012A (zh) * 2013-04-02 2013-06-26 四川新力光源股份有限公司 发光二极管照明装置和提高发光二极管照明装置的显色性的方法
CN203880619U (zh) * 2014-04-30 2014-10-15 深圳市绎立锐光科技开发有限公司 提高led光源显色指数的装置

Also Published As

Publication number Publication date
CN203880619U (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2015165414A1 (zh) 提高led光源显色指数的装置
WO2016124106A1 (zh) 一种高显色指数的led光源模组及led灯具
US8591040B2 (en) Projection device for architectural and entertainment lighting
US7237929B2 (en) Method and apparatus for a projection system
CN104977790B (zh) 光源系统及投影装置
WO2015027786A1 (zh) 一种led灯具
CN203258507U (zh) 一种发光装置及舞台灯系统
CN201487708U (zh) 改善颜色均匀性的led舞台灯光照明设备
CN101988631A (zh) Led舞台灯光照明设备及其改善颜色均匀性的方法
US20120120647A1 (en) Illumination device for stage lighting with high light-combining efficiency
CN102084179A (zh) 照明装置
CN107765501A (zh) 一种激光光源系统
JP2008546144A (ja) 均一放射照度および光強度のための光パイプ積分器
CN209373341U (zh) 滤光模块以及投影装置
WO2020151630A1 (zh) 发光装置及舞台灯系统
CN204044487U (zh) 波长转换转盘和发光装置
CN104948948B (zh) 应用衍射元件的双蓝光芯片激发色温可调led照明灯具
CN112255863B (zh) 一种激光影视摄影照明灯具光路结构
CN216591107U (zh) Led光源模组和照明装置
CN212647232U (zh) 一种激光影视照明灯具光路结构
WO2021072678A1 (zh) 提高显色指数的灯源及改变色温的方法
WO2021103892A1 (zh) 照明装置及照明系统
CN1624574A (zh) 采用led光源灯的单片液晶投影光学引擎及其投影装置
CN104712924B (zh) Led远距离投光灯
CN207896119U (zh) 一种高色饱和度高保真度白光led

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786313

Country of ref document: EP

Kind code of ref document: A1