WO2015165176A1 - 终端及其测距的方法 - Google Patents
终端及其测距的方法 Download PDFInfo
- Publication number
- WO2015165176A1 WO2015165176A1 PCT/CN2014/084947 CN2014084947W WO2015165176A1 WO 2015165176 A1 WO2015165176 A1 WO 2015165176A1 CN 2014084947 W CN2014084947 W CN 2014084947W WO 2015165176 A1 WO2015165176 A1 WO 2015165176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- ultrasonic signal
- terminal
- output
- control unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
- G01S15/08—Systems for measuring distance only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
- B06B1/0651—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
- B06B1/0662—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
- B06B1/0666—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface used as a diaphragm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/50—Systems of measurement, based on relative movement of the target
- G01S15/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/86—Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/521—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/0207—Driving circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/50—Systems of measurement, based on relative movement of the target
- G01S15/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S15/523—Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
- G01S15/526—Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection by comparing echos in different sonar periods
Definitions
- the present invention relates to the field of terminal communication, and in particular, to a terminal and a method for ranging thereof.
- An electroacoustic converter is generally provided in a terminal, and is configured to convert an electrical signal into a sound signal.
- the electroacoustic transducer in the terminal emits an audible sound, and the highest frequency is 20 kHz, because the frequency of the audible sound is low. Therefore, the audible sound cannot be used to measure the distance.
- the embodiments of the present invention provide a terminal and terminal ranging method, so as to at least solve the problem that the terminal needs an external ultrasonic transceiver in the related art to realize the measurement of the distance by using the ultrasonic wave.
- a terminal provided by an embodiment of the present invention includes an electroacoustic transducer, the electroacoustic transducer comprising: a housing; a vibration portion disposed in the housing and configured to output an ultrasonic signal; a portion connected to the vibrating portion and configured to drive the vibrating portion to output an ultrasonic signal; the ultrasonic receiving portion is disposed in the casing, and is configured to receive an ultrasonic signal returned after colliding with the target object, and output the ultrasonic signal to the control
- the control unit is configured to receive a ranging command, and the control driving unit drives the vibrating unit to output an ultrasonic signal, and receives an ultrasonic signal returned by the collision target output by the ultrasonic receiving unit, and calculates a terminal between the terminal and the target.
- the driving portion includes an ultrasonic voice coil and an ultrasonic magnetic drive
- the ultrasonic voice coil is connected to the vibrating portion, and is configured to drive the vibrating portion to output an ultrasonic signal
- the ultrasonic magnetic driver and the ultrasonic voice coil Cooperating set to drive the ultrasonic voice coil to vibrate.
- the vibrating portion includes an ultrasonic diaphragm, and the ultrasonic diaphragm vibrates to output an ultrasonic signal.
- the electroacoustic transducer comprises an audible acoustic diaphragm, and the audible acoustic diaphragm and the ultrasonic diaphragm are arranged in parallel or the ultrasonic diaphragm is embedded in the audible acoustic diaphragm.
- the ultrasonic diaphragm is concentric with the audible acoustic diaphragm, and the audible acoustic diaphragm is provided with a through hole, and the shape and area of the through hole and the shape of the ultrasonic diaphragm The area is the same.
- the ultrasonic receiving portion includes a metal receiving plate configured to receive the returned ultrasonic signal, and the metal receiving plate is embedded in the housing or the metal receiving plate and the housing are of a unitary structure.
- the method for terminal ranging includes: when the control unit receives the ranging instruction, acquiring state information of the user, and controlling the driving part to drive the vibration part to output the ultrasonic signal by using a preset rule; the ultrasonic receiving part receives the collision The ultrasonic signal returned after the target, and the returned ultrasonic signal is output to the control unit; the control unit calculates the distance value between the terminal and the target, and feeds back the calculated distance value to the user.
- the control unit when the control unit receives the ranging instruction, acquiring the state information of the user, and controlling the driving unit to drive the vibration unit to output the ultrasonic signal by using a preset rule, the control unit includes: when the control unit receives the instruction of the ranging, the control unit controls The control vibration unit periodically outputs an ultrasonic signal, recognizes the movement state of the user, and acquires the moving speed and the moving direction of the user in real time.
- the step of calculating the distance value between the terminal and the target by the control unit includes: when the user is in the moving state, the control unit calculates a first time difference between the time when the ultrasonic signal is output and the time when the returned ultrasonic signal is received The control unit calculates the distance value according to the moving speed, the moving direction, the first time difference value, and the ultrasonic speed of the user.
- the step of calculating, by the control unit, a distance value between the terminal and the target includes: When the user is in the non-moving state, the control unit receives the adjacent two ultrasonic signals returned by the collision target output by the ultrasonic receiving unit, and the two returned ultrasonic signals are the first ultrasonic signal and the second ultrasonic signal, respectively.
- the control unit calculates a time for outputting the first ultrasonic signal and a second time for receiving the returned first ultrasonic signal a time difference, a third time difference between a time at which the second ultrasonic signal is output and a time at which the returned second ultrasonic signal is received; the control unit according to the second time difference value, the third time difference value, the interval time, and The ultrasonic velocity is calculated to obtain the distance value.
- a vibrating portion, an ultrasonic receiving portion, a driving portion, and a control portion are disposed in the electroacoustic transducer of the terminal; the control portion receives the ranging command, and the control driving portion drives the vibrating portion to output an ultrasonic signal, and receives the ultrasonic receiving portion.
- the ultrasonic signal returned after the collision of the target object is output, and the distance value between the terminal and the target is calculated.
- FIG. 1 is a schematic structural view of a first embodiment of a terminal according to the present invention
- FIG. 2 is a schematic structural view of a second embodiment of the terminal of the present invention
- FIG. 3 is a schematic structural view of a vibrating portion of the terminal of the present invention
- FIG. 5 is a schematic diagram of the ultrasonic vibration film embedded in the audible acoustic diaphragm in the terminal of the invention
- FIG. 6 is a schematic flowchart of the first embodiment of the method for measuring the distance of the terminal according to the present invention
- FIG. 7 is a schematic flowchart diagram of a second embodiment of a method for terminal ranging according to the present invention.
- the terminal has installed a customized application for implementing the terminal ranging of the present invention.
- the terminals mentioned in the embodiments of the present invention include, but are not limited to, terminals such as a mobile phone, a game machine, a computer, and a tablet computer. This embodiment does not limit the specific type of the terminal.
- the present invention provides a terminal. Referring to FIG.
- an electroacoustic transducer is included.
- the electroacoustic transducer 01 includes: a housing (not shown) in the housing. An acoustic hole may be further provided, and the ultrasonic signal for outputting is transmitted from the electroacoustic transducer 01 to the outside, and the size and shape of the sound emitting hole are not limited; the vibrating portion 11 is disposed at the In the housing, the ultrasonic signal is output; the vibrating portion 11 may be disposed at a position close to the sound hole of the housing so that the ultrasonic signal output from the vibrating portion 11 can be immediately transmitted from the sound hole to the sound hole Externally, thereby reducing the loss of the ultrasonic signal; the driving portion 12 is connected to the vibrating portion 11, and is arranged to drive the vibrating portion 11 to output an ultrasonic signal; the driving portion 12 converts electrical energy into mechanical energy, and drives the vibrating portion 11 Outputting an ultrasonic signal; the ultrasonic receiving unit 13 is disposed in the casing
- the control portion 14 may be disposed in the outer casing and configured to receive the ranging command, and the control driving portion 12 is driven.
- the vibrating portion 11 outputs an ultrasonic signal, receives an ultrasonic signal returned after the collision target object output from the ultrasonic receiving portion 13, and calculates a distance value between the terminal and the target; for example, the control unit 14 receives the ranging instruction of the terminal.
- the driving unit 12 drives the vibrating unit 11 to output an ultrasonic signal
- the ultrasonic signal returns after colliding with the target object
- the ultrasonic receiving unit 13 receives the ultrasonic signal returned after colliding with the target object, and outputs the returned ultrasonic signal.
- the control unit 14 receives the collision target object output by the ultrasonic wave receiving unit 13, and returns Acoustic signals, and calculates the distance between the terminal and the target value thereof.
- the vibrating portion 11, the ultrasonic receiving portion 13, the driving portion 12, and the control portion 14 are provided in the electroacoustic transducer 01 of the terminal; the control portion 14 receives the ranging command, and the control driving portion 12 drives the vibrating portion 11 to output an ultrasonic signal. And receiving the ultrasonic signal returned after the collision target object output from the ultrasonic wave receiving unit 13, and calculating the distance value between the terminal and the target.
- the structural characteristics of the electroacoustic transducer 01 in the terminal of the embodiment the hardware structure required for measuring the distance of the terminal is set in the electroacoustic transducer 01, so that the terminal can realize the measurement distance by using the ultrasonic wave without the external ultrasonic transceiver device, and therefore, the use The terminal of the embodiment measures the distance more conveniently.
- the driving portion 12 includes an ultrasonic voice coil 121 and an ultrasonic magnetic actuator 122.
- the ultrasonic voice coil 121 is connected to the vibrating portion 11 and configured to drive the vibrating portion 11 to output an ultrasonic signal; when the ultrasonic voice coil 121 is driven to vibrate, due to the vibrating portion 11 and the ultrasonic sound
- the ring 121 is connected, so that the vibrating portion 11 is subjected to the vibration of the ultrasonic voice coil 121 to output an ultrasonic signal.
- the ultrasonic diaphragm may further include an elastic wave, which is set to limit the The ultrasonic voice coil 121 is in the correct position.
- the ultrasonic magnetic actuator 122 is coupled to the ultrasonic voice coil 121 and configured to drive the ultrasonic voice coil 121 to vibrate; for example, the ultrasonic magnetic actuator 122 includes a ring magnet and a stem, and the ultrasonic voice coil 121 In the magnetic gap between the annular magnetic steel and the stem, when an electric current passes through the ultrasonic voice coil 121, the ultrasonic voice coil 121 reciprocates in the magnetic gap, thereby driving the vibrating portion 11 Perform a reciprocating motion (ie, vibration).
- the driving portion 12 includes an ultrasonic voice coil 121 and an ultrasonic magnetic actuator 122, and an ultrasonic voice coil
- the ultrasonic magnetic actuator 122 and the ultrasonic magnetic actuator 122 can stably generate mechanical energy to drive the vibrating portion 11 to output an ultrasonic signal, and the ultrasonic voice coil 121 and the ultrasonic magnetic actuator 122 can save space of the electroacoustic transducer 01.
- 3 is a schematic view showing the structure of the vibrating portion 11 in the terminal of the present invention.
- the vibrating portion 11 includes an ultrasonic diaphragm 111, for example, a fiber membrane or a titanium alloy film. And the ultrasonic diaphragm 111 vibrates and outputs an ultrasonic signal.
- the vibrating portion 11 may further include a supporting portion configured to support the vibrating portion 11, the ultrasonic diaphragm 111 is connected to the driving portion 12, and the driving portion 12 converts electrical energy into mechanical energy to drive the ultrasonic diaphragm 111 vibrates to generate ultrasonic waves and output. As shown in FIG.
- the difference between this embodiment and the first embodiment is that, based on the first embodiment, the electroacoustic transducer 01 includes an audible acoustic diaphragm 15, The audible acoustic diaphragm 15 and the ultrasonic diaphragm 111 are disposed in parallel or the ultrasonic diaphragm 111 is embedded in the audible acoustic diaphragm 15.
- the electroacoustic transducer 01 in the terminal functions to convert an electrical signal into a sound signal, and therefore the electroacoustic transducer 01 is generally provided with an audible acoustic diaphragm 15 and a driver for driving the audible acoustic diaphragm 15 to vibrate.
- the driver drives the audible acoustic diaphragm 15 to vibrate to output an audible sound. Since the frequency of the audible sound is much lower than the frequency of the ultrasonic waves, the audible acoustic diaphragm 15 is much larger than the ultrasonic diaphragm 111. As shown in FIG. 4 and FIG. 5, FIG.
- FIG. 4 is a schematic diagram of the ultrasonic diaphragm and the audible acoustic diaphragm disposed in parallel in the terminal of the invention
- FIG. 5 is a schematic diagram of the ultrasonic diaphragm embedded in the audible acoustic diaphragm in the terminal of the invention.
- the audible acoustic diaphragm 15 and the ultrasonic diaphragm 111 are disposed in parallel or the ultrasonic diaphragm 111 is embedded in the audible acoustic diaphragm 15 to enable the output of the audible acoustic diaphragm 15
- the sound is aligned with the direction of the ultrasonic wave outputted by the ultrasonic diaphragm 111 to facilitate the setting of the sound hole, and the audible acoustic diaphragm 15 and the ultrasonic diaphragm 111 are arranged in parallel or the ultrasonic wave Embedding the diaphragm 111 in the audible acoustic diaphragm 15 also saves space in the electroacoustic transducer 01.
- the ultrasonic diaphragm 111 is concentric with the audible acoustic diaphragm 15, and the ultrasonic diaphragm 111 is provided with a through hole, and the through hole is provided.
- the shape and area of the hole are the same as the shape and area of the ultrasonic diaphragm 111.
- the audible acoustic diaphragm 15 is located between the sound emitting hole and the ultrasonic diaphragm 111, or the ultrasonic diaphragm 111 is located between the sound emitting hole and the audible acoustic diaphragm 15.
- the audible acoustic diaphragm 15 is located between the sound emitting hole and the ultrasonic diaphragm 111. It should be noted that if the audible acoustic diaphragm 15 is disposed on the ultrasonic diaphragm 111 The audible acoustic diaphragm 15 needs to be provided with a through hole for the ultrasonic signal outputted by the ultrasonic diaphragm 111 to pass through and out of the sound hole, and the through hole
- the shape and area are the same as the shape and area of the ultrasonic diaphragm 111, respectively.
- the ultrasonic diaphragm 111 is embedded in the audible acoustic diaphragm 15, that is, the audible acoustic diaphragm 15 is provided with through holes for the ultrasonic diaphragm 111 to be placed therein and fixed to each other. It should be noted that there is no gap between the ultrasonic diaphragm 111 and the audible acoustic diaphragm 15. Therefore, in this embodiment, the shape and the area of the through hole on the audible acoustic diaphragm 15 are preferably respectively The shape and area of the ultrasonic diaphragm 111 are the same.
- the ultrasonic diaphragm 111 is concentric with the audible acoustic diaphragm 15, so that the space of the electroacoustic transducer 01 can be further saved.
- the ultrasonic receiving portion 13 includes a metal receiving plate configured to receive a returned ultrasonic signal, and the metal receiving plate is embedded in the housing or the metal receiving plate and the case The body is a one-piece structure. Since the ultrasonic signal propagates rapidly in the metal medium and the ultrasonic signal propagates less in the metal medium, it is more efficient and less lossy to receive the returned ultrasonic signal by the metal receiving plate.
- the ultrasonic receiving portion 13 and the housing are integrally formed, and when the housing is made of a metal material, the housing can be directly used as a metal receiving plate. Therefore, the metal receiving plate is embedded in the casing or the metal receiving plate and the casing are integrated, which can further save space of the electroacoustic transducer 01.
- the method for the terminal ranging is as follows: Referring to FIG. 6 , which is a first embodiment of the method for measuring the terminal, the method includes: Step S01, when the control unit receives the ranging instruction, acquires the user. Status information, and controlling the driving part to drive the vibrating part to output the ultrasonic signal according to a preset rule; when the user needs to measure the distance, the terminal sends a ranging instruction to the control part, and when the control part receives the ranging instruction, responds to the ranging The command acquires state information of the user, and simultaneously controls the driving unit to drive the vibrating unit to output an ultrasonic signal.
- the state information of the user may be a moving speed, a moving direction, and the like of the user, and the method for the controller to acquire the state information of the user may be an existing device in the terminal (eg, a GPS positioning module, an acceleration sensor, a geomagnetic sensor, etc.)
- the status information of the user is detected and transmitted to the controller, and the status information of the user is acquired by the server and transmitted to the controller.
- the preset rule is preset in the controller, or may be temporarily set by the user during use by the user.
- the preset rule may specify the frequency, the number of times, the direction, and the like of the output ultrasonic waves.
- Step S02 the ultrasonic receiving unit receives the ultrasonic signal returned after colliding with the target object, and outputs the returned ultrasonic signal to the control unit.
- the control unit calculates the distance value between the terminal and the target, and calculates the calculated distance. The distance value is fed back to the user.
- the ultrasonic signal is output from the terminal and is incident on the target. After colliding with the target, it returns to the terminal in the reverse direction. At this time, the ultrasonic receiving unit receives the returned ultrasonic signal and outputs the returned ultrasonic signal to the control unit.
- the control unit starts calculating the distance between the terminal and the target when receiving the returned ultrasonic signal.
- the method for the control unit to calculate the distance between the terminal and the target is related to the state information of the user and the preset rule for outputting the ultrasonic signal.
- the principle of calculating the distance between the terminal and the target is mainly the time for outputting the ultrasonic signal.
- the time difference between the time of receiving the returned ultrasonic signal and the ultrasonic speed is the distance traveled by the ultrasonic signal from the output terminal to the terminal after colliding with the target object, and the terminal and the target can be obtained according to the distance traveled by the ultrasonic signal.
- the distance between objects is related to the state information of the user and the preset rule for outputting the ultrasonic signal.
- the principle of calculating the distance between the terminal and the target is mainly the time for outputting the ultrasonic signal.
- the time difference between the time of receiving the returned ultrasonic signal and the ultrasonic speed is the distance traveled by the ultrasonic signal from the output terminal to the terminal after colliding with the target object, and the terminal and the target can be obtained according to the distance
- the ultrasonic speed is closely related to the ambient temperature, so that the ambient temperature can be obtained from an existing device in the terminal or an external server, and the ultrasonic velocity corresponding to the ambient temperature is used for the calculation of the distance value.
- the control unit calculates the distance value, the distance value is fed back to the user by voice broadcast or by interface display.
- the control unit receives the ranging instruction, the control unit acquires the state information of the user, and controls the driving unit to drive the vibration unit to output the ultrasonic signal according to a preset rule; the ultrasonic receiving unit receives the ultrasonic signal returned after colliding with the target object, and returns the ultrasonic signal.
- the ultrasonic signal is output to the control unit; the control unit calculates a distance value between the terminal and the target, and feeds back the calculated distance value to the user.
- the state information of the user is obtained based on the terminal ranging method proposed by the terminal, and the driving unit drives the vibration unit to output an ultrasonic signal according to a preset rule, and the control unit calculates the state information of the user and the preset rule of the output ultrasonic signal.
- the distance value is compared with the prior art to transmit an ultrasonic signal in a single manner for ranging, and the ranging method of the embodiment is more accurate.
- the control unit records the power of the output ultrasonic signal while controlling the driving unit to drive the vibrating portion to output the ultrasonic signal by a preset rule, and the control unit transmits the power of the output ultrasonic signal to the ultrasonic receiving unit.
- the ultrasonic receiving unit receives only the returned ultrasonic signal that matches the stored ultrasonic signal power.
- the ultrasonic receiving unit compares the power of the output ultrasonic signal with the power of the returned ultrasonic signal to identify whether the returned ultrasonic signal matches the output ultrasonic signal. Therefore, the present embodiment can eliminate environmental interference. Accurate reception of the returned ultrasonic signal also makes the calculation of the distance value more accurate.
- the control unit may further be provided with a reminding function.
- the setting interface is provided in advance for the user to set the reminder value, that is, when the calculated distance value is greater than or equal to the reminder value, the control unit controls to issue a reminder. Tone or remind the light.
- a warning function is provided in the control unit.
- the user does not need to know the specific value of the distance value and only needs to know whether the distance value is greater than or less than a certain value, and needs to issue an alarm in this case.
- the reminding function is more convenient for the user to use, and at the same time, functions as an early warning. Referring to FIG.
- Step S11 When receiving the instruction of the ranging, the control part controls the control part when receiving the instruction of the ranging
- the control vibration unit periodically outputs an ultrasonic signal, recognizes the movement state of the user, and acquires the moving speed and the moving direction of the user in real time.
- the control unit controls the driving unit to drive the vibrating unit to output the ultrasonic signal at a timing, that is, to output an ultrasonic signal every time interval t, and the control unit can calculate the plurality of distances according to the plurality of ultrasonic signals that are output.
- the value is calculated by calculating a plurality of distance values, so that the accurate distance value is continuously verified.
- the control unit recognizes the moving state of the user, that is, whether the user is in the moving state, and the control unit acquires the moving speed VA and the moving direction of the user in real time.
- the control unit controls the acceleration sensor in the open terminal, the acceleration sensor is set to record the moving speed of the user, the acceleration sensor outputs the recorded moving speed of the user to the control unit, and the control unit receives the moving speed of the user greater than zero, and recognizes The user is in a mobile state, otherwise, the user is identified as being in a non-mobile state.
- the controller controls to open the geomagnetic sensor in the terminal, the geomagnetic sensor is set to record the moving direction of the user, the geomagnetic sensor outputs the recorded moving direction of the user to the controller, and the controller acquires the moving speed V in and the moving direction of the user in real time and saves.
- the control unit controls the control unit to control the vibration unit to output the ultrasonic signal at a timing, recognize the movement state of the user, and acquire the moving speed and the moving direction of the user in real time. .
- the control unit controls the driving unit to drive the vibrating unit to output an ultrasonic signal at a timing, calculate a plurality of distance values according to the plurality of ultrasonic signals that are output, and obtain a plurality of distances by calculation, regardless of whether the user or the object moves.
- the value is continuously calibrated to accurately calculate the distance value. Therefore, the distance value calculated in this embodiment is more accurate.
- the step of calculating the distance value between the terminal and the target by the control unit includes: when the user is in the moving state, the control unit calculates the time of outputting the ultrasonic signal and the time of receiving the returned ultrasonic signal.
- the first time difference value; the distance value is calculated according to the user's moving speed, moving direction, first time difference value, and ultrasonic speed.
- the ultrasonic receiving unit receives the ultrasonic signal returned after colliding with the target object, and outputs the returned ultrasonic signal to the control unit, and the control unit receives the output of the ultrasonic receiving unit at this time.
- the controller calculates the ultrasonic signal received by the terminal using the formula l/2 X (AtX V ⁇ AtX V).
- the distance value at this moment when the direction of movement of the user acquired by the controller is opposite to the direction in which the ultrasonic signal is output (ie, away from the target), the controller calculates using the formula l/2 X (AtX V ⁇ +AtX VA) Obtaining a distance value of the terminal at the time of receiving the returned ultrasonic signal; wherein the used parameter has a moving speed V ⁇ , a first time difference value At, and an ultrasonic speed.
- the embodiment is based on the controller when the user is in a moving state.
- the step of calculating the distance value between the terminal and the target by the control unit includes: When the user is in the non-moving state, the control unit receives the adjacent two ultrasonic signals returned by the collision target output by the ultrasonic receiving unit, and the two returned ultrasonic signals are the first ultrasonic signal and the second ultrasonic signal, respectively, and The output time of the first ultrasonic signal is earlier than the output time of the second ultrasonic signal; the control unit calculates a second time when the first ultrasonic signal is output and the time when the returned first ultrasonic signal is received a difference, a third time difference between a time at which the second ultrasonic signal is output and a time at which the returned second ultrasonic signal is received; the control unit according to the second time difference
- the ultrasonic receiving unit receives the adjacent two ultrasonic signals returned after colliding with the target object, and outputs the returned two ultrasonic signals to the control unit, and returns
- the two ultrasonic signals are respectively a first ultrasonic signal and a second ultrasonic signal, and
- the output time of the first ultrasonic signal is earlier than the output time of the second ultrasonic signal by an interval t, that is, the first ultrasonic signal and the second ultrasonic signal output time interval t, and the time interval returned to the terminal should also be t
- the control unit records the return time of the ultrasonic signals of the first ultrasonic signal and the second ultrasonic signal, and the control unit calculates and outputs the first ultrasonic wave.
- the control unit calculates the distance value of the time when the user receives the returned ultrasonic signal by using the formula At 2 XV renderX ((t+At 2 -Ati) /(2 ⁇ + ⁇ 2 - ⁇ !), where The parameters have a second time difference A tl , a third time difference value At 2 , an interval time t, and an ultrasonic velocity V ⁇ .
- the terminal and the method for ranging thereof provided by the embodiments of the present invention have the following beneficial effects: Using the structural characteristics of the electroacoustic transducer in the terminal, the hardware structure required for measuring the distance of the terminal is set in the electroacoustic conversion In the device, the terminal can measure the distance by using the ultrasonic wave transceiver without an external ultrasonic transceiver, thereby making it easier for the terminal to measure the distance.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
一种终端及其测距方法,该终端包括电声转换器(1),该电声转换器(1)中设有振动部(11)、超声波接收部(13)、驱动部(12)及控制部(14);该控制部(14)接收测距指令,控制驱动部(12)驱动振动部(11)输出超声波信号,接收超声波接收部(13)输出的碰撞目标物后返回的超声波信号,并计算终端与目标物之间的距离值。
Description
终端及其测距的方法 技术领域 本发明涉及终端通讯领域, 尤其涉及终端及其测距的方法。 背景技术 终端中通常设有电声转换器, 设置为将电信号转换成声音信号, 终端中的电声转 换器发出的是可闻声, 最高频率为 20KHz, 由于可闻声的频率较低, 因此, 不能利用 可闻声测量距离。 终端在测距的时, 通常还需要外接一个超声波收发装置用来发送和 接收超声波才能计算距离, 这就使得用户携带非常不方便, 且在没有携带超声波收发 装置的情况下也无法进行测距。 发明内容 本发明实施例提供了一种终端及终端测距的方法, 以至少解决相关技术中终端需 要外接超声波收发装置才能实现利用超声波测量距离的问题。 为实现上述目的, 本发明实施例提供的终端, 所述终端包括电声转换器, 所述电 声转换器包括: 壳体; 振动部, 设置在所述壳体内, 设置为输出超声波信号; 驱动部, 与所述振动部连接, 设置为驱动所述振动部输出超声波信号; 超声波接收部, 设置在壳体内, 设置为接收碰撞目标物后返回的超声波信号, 并 将所述超声波信号输出至控制部; 控制部, 设置为接收测距指令, 控制驱动部驱动所述振动部输出超声波信号, 并 接收所述超声波接收部输出的碰撞目标物后返回的超声波信号, 计算终端与目标物之 间的距离值。 优选地, 所述驱动部包括超声波音圈和超声波磁性驱动器, 所述超声波音圈与所 述振动部连接, 设置为驱动所述振动部输出超声波信号, 所述超声波磁性驱动器与所 述超声波音圈配合, 设置为驱动所述超声波音圈振动。
优选地, 所述振动部包括超声波振膜, 所述超声波振膜振动输出超声波信号。 优选地, 所述电声转换器包括可闻声振膜, 所述可闻声振膜和所述超声波振膜平 行设置或者所述超声波振膜嵌于所述可闻声振膜中。 优选地,所述超声波振膜与所述可闻声振膜同心,且所述可闻声振膜上设有通孔, 且所述通孔的形状和面积与所述超声波振膜的形状和面积相同。 优选地, 所述超声波接收部包括设置为接收返回的超声波信号的金属接收板, 且 所述金属接收板嵌于所述壳体中或所述金属接收板和所述壳体为一体结构。
本发明实施例进一步提供的终端测距的方法, 包括: 控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱动振动部以预 设规则输出超声波信号; 超声波接收部接收碰撞目标物后返回的超声波信号, 并将返回的超声波信号输出 至控制部; 控制部计算终端与目标物之间的距离值,并将计算得到的所述距离值反馈给用户。 优选地, 所述控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱 动振动部以预设规则输出超声波信号的步骤包括: 控制部在接收到测距的指令时, 控制部控制振动部定时输出超声波信号, 识别用 户的移动状态且实时获取用户的移动速度和移动方向。 优选地, 所述控制部计算终端与目标物之间的距离值的步骤包括: 当用户处于移动状态时, 控制部计算输出超声波信号的时间与接收到返回的超声 波信号的时间的第一时间差值; 控制部根据用户的移动速度、 移动方向、 第一时间差值及超声波速度计算得到所 述距离值。 优选地, 所述控制部计算终端与目标物之间的距离值的步骤包括:
当用户处于非移动状态时, 控制部接收超声波接收部输出的碰撞目标物后返回的 相邻的两个超声波信号, 返回的两个所述超声波信号分别为第一超声波信号和第二超 声波信号, 且所述第一超声波信号的输出时间比所述第二超声波信号的输出时间早一 段间隔时间; 控制部计算输出所述第一超声波信号的时间与接收返回的第一超声波信号的时间 的第二时间差值、 输出所述第二超声波信号的时间与接收返回的第二超声波信号的时 间的第三时间差值; 控制部根据所述第二时间差值、 第三时间差值、 间隔时间及超声波速度计算得到 所述距离值。
本发明实施例在终端的电声转换器中设置振动部、 超声波接收部、 驱动部及控制 部; 控制部接收测距指令, 控制驱动部驱动振动部输出超声波信号, 且接收所述超声 波接收部输出的碰撞目标物后返回的超声波信号,并计算终端与目标物之间的距离值。 本发明实施例利用终端中电声转换器的结构特性, 将终端测量距离所需的硬件结构设 置在电声转换器中, 使终端无需外接超声波收发装置就能实现利用超声波测量距离, 因此, 利用本发明实施例的终端测量距离更加方便。 附图说明 图 1为本发明终端第一实施例的结构示意图; 图 2为本发明终端第二实施例的结构示意图; 图 3为图 2本发明终端中振动部的结构示意图; 图 4为本发明终端第三实施例的结构示意图; 图 5为图 4为发明终端中超声波振膜嵌于可闻声振膜中的示意图; 图 6为本发明终端测距的方法第一实施例的流程示意图; 图 7为本发明终端测距的方法第二实施例的流程示意图。
本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
具体实施方式 应当理解,此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。 本领域技术人员可以理解, 本发明终端及终端测距的方法的下述实施例中, 所述 的终端已安装用于实现本发明终端测距对应的定制的应用程序。 本发明实施例提到的终端均包括但不限于手机、 游戏机、 计算机、 平板电脑等终 端, 本实施例不对终端的具体类型进行限定。 本发明提供一种终端, 参照图 1, 在所述终端的第一实施例中, 包括电声转换器, 所述电声转换器 01包括: 壳体(图中未示出), 壳体中还可设有出音孔, 所述出音孔供输出的超声波信号从 所述电声转换器 01传至外界, 所述出音孔的大小和形状不做限定; 振动部 11, 设置在所述壳体内, 设置为输出超声波信号; 所述振动部 11可以设 置在靠近所述壳体的出音孔的位置以便从所述振动部 11 输出的超声波信号能够立即 从所述出音孔传至外界, 从而减少超声波信号的损耗; 驱动部 12, 与所述振动部 11连接, 设置为驱动所述振动部 11输出超声波信号; 所述驱动部 12将电能转换成机械能, 驱动所述振动部 11输出超声波信号; 超声波接收部 13, 设置在壳体内, 设置为接收碰撞目标物后返回的超声波信号, 并将所述超声波信号输出至控制部; 例如,所述超声波接收部 13可以是具有一弧面的 结构,且所述弧面朝向超声波返回的方向,或者,所述超声波接收部 13为喇叭状结构, 且所述喇叭状结构横截面积较大的一端朝向超声波返回的方向, 所述超声波接收部 13 还可以是其他适于接收返回的超声波信号的形状; 控制部 14, 可以设置在所述外壳中, 设置为接收测距指令, 控制驱动部 12驱动 振动部 11输出超声波信号, 且接收所述超声波接收部 13输出的碰撞目标物后返回的 超声波信号, 并计算终端与目标物之间的距离值; 例如, 控制部 14接收到终端的测距 指令时, 控制所述驱动部 12驱动所述振动部 11输出超声波信号, 超声波信号在碰撞 目标物后返回,所述超声波接收部 13接收碰撞目标物后返回的超声波信号, 并将返回 的超声波信号输出至控制部 14, 控制部 14接收所述超声波接收部 13输出的碰撞目标 物后返回的超声波信号, 并计算终端与目标物之间的距离值。
本实施例在终端的电声转换器 01中设置振动部 11、 超声波接收部 13、 驱动部 12 及控制部 14; 控制部 14接收测距指令, 控制驱动部 12驱动振动部 11输出超声波信 号, 且接收所述超声波接收部 13输出的碰撞目标物后返回的超声波信号, 并计算终端 与目标物之间的距离值。本实施例终端中电声转换器 01的结构特性,将终端测量距离 所需的硬件结构设置在电声转换器 01中,使终端无需外接超声波收发装置就能实现利 用超声波测量距离, 因此, 利用本实施例的终端测量距离更加方便。
参照图 2, 为本发明终端的第二实施例, 本实施例与第一实施例的区别是, 基于 第一实施例, 所述驱动部 12包括超声波音圈 121和超声波磁性驱动器 122。 所述超声波音圈 121与所述振动部 11连接,设置为驱动所述振动部 11输出超声 波信号; 当所述超声波音圈 121被驱动而振动时, 由于所述振动部 11与所述超声波音 圈 121相连,因此所述振动部 11受到所述超声波音圈 121振动的作用从而输出超声波 信号; 在本发明一优选实施例中, 所述超声波振膜还可以包括弹波, 设置为限制所述 超声波音圈 121在正确的位置。 所述超声波磁性驱动器 122与所述超声波音圈 121配合, 设置为驱动所述超声波 音圈 121振动; 例如, 所述超声波磁性驱动器 122包括一个环形磁钢和一个芯柱, 所 述超声波音圈 121位于所述环形磁钢和所述芯柱之间的磁隙中, 当电流通过所述超声 波音圈 121时, 所述超声波音圈 121则会在磁隙中往复运动, 从而带动所述振动部 11 进行往复运动 (即振动)。 本实施例中驱动部 12包括超声波音圈 121和超声波磁性驱动器 122, 超声波音圈
121和超声波磁性驱动器 122能稳定的产生机械能驱动振动部 11输出超声波信号, 且 超声波音圈 121和超声波磁性驱动器 122可节省所述电声转换器 01的空间。 如图 3所示, 图 3为图 2本发明终端中振动部 11的结构示意图,在本发明一优选 实施例中, 所述振动部 11包括超声波振膜 111, 例如, 纤维膜、 钛合金膜等, 所述超 声波振膜 111振动输出超声波信号。所述振动部 11还可以包括一个支撑部, 设置为支 撑所述振动部 11, 所述超声波振膜 111与所述驱动部 12相连, 驱动部 12将电能转化 为机械能, 带动所述超声波振膜 111振动, 从而生成超声波并输出。
如图 4所示, 为本发明终端的第三实施例, 本实施例与第一实施例的区别是, 基 于第一实施例, 所述电声转换器 01包括可闻声振膜 15, 所述可闻声振膜 15和所述超 声波振膜 111平行设置或者所述超声波振膜 111嵌于所述可闻声振膜 15中。 终端中的电声转换器 01起到将电信号转换成声音信号的作用,因此所述电声转换 器 01通常都设有可闻声振膜 15及驱动可闻声振膜 15振动的驱动器,所述驱动器驱动 所述可闻声振膜 15振动从而输出可闻声。 由于可闻声的频率远低于超声波的频率, 因 此, 所述可闻声振膜 15比所述超声波振膜 111大很多。 如图 4和图 5所示, 图 4为发明终端中超声波振膜与可闻声振膜平行设置的示意 图, 图 5为图 4为发明终端中超声波振膜嵌于可闻声振膜中的示意图, 所述可闻声振 膜 15和所述超声波振膜 111平行设置或者所述超声波振膜 111嵌于所述可闻声振膜 15中能使所述可闻声振膜 15输出的可闻声和所述超声波振膜 111输出的超声波的方 向一致, 方便所述出音孔的设置, 再者, 将所述可闻声振膜 15和所述超声波振膜 111 平行设置或者所述超声波振膜 111嵌于所述可闻声振膜 15中还可节省所述电声转换器 01的空间。 如图 4和图 5所示, 在本发明一优选实施例中, 所述超声波振膜 111与所述可闻 声振膜 15同心, 且超声波振膜 111上设有通孔, 且所述通孔的形状和面积与所述超声 波振膜 111的形状和面积相同。 所述可闻声振膜 15位于所述出音孔和所述超声波振膜 111之间, 或者, 所述超声 波振膜 111位于所述出音孔和所述可闻声振膜 15之间,本实施例优选所述可闻声振膜 15位于所述出音孔和所述超声波振膜 111之间, 需要注意的是, 若所述可闻声振膜 15 设于所述超声波振膜 111和所述出音孔之间时,所述可闻声振膜 15需要设有通孔供所 述超声波振膜 111输出的超声波信号通过并从所述出音孔传出, 且所述通孔的形状和 面积分别与所述超声波振膜 111的形状和面积相同。 同样, 所述超声波振膜 111嵌于所述可闻声振膜 15中, 即所述可闻声振膜 15上 设有通孔供所述超声波振膜 111放置其中且相互固定。 需要注意的是, 所述超声波振 膜 111与所述可闻声振膜 15之间不能有空隙, 因此本实施例优选所述可闻声振膜 15 上的通孔的形状和面积分别与所述超声波振膜 111的形状和面积相同。 本实施例中所述超声波振膜 111与所述可闻声振膜 15同心,因此能够进一步节省 所述电声转换器 01的空间。
本发明一优选实施例中,所述超声波接收部 13包括设置为接收返回的超声波信号 的金属接收板, 且所述金属接收板嵌于所述壳体中或所述金属接收板和所述壳体为一 体结构。 由于所述超声波信号在金属介质中传播快, 且超声波信号在金属介质中传播的损 耗少, 利用所述金属接收板接收返回的超声波信号更高效且损耗少。 再者, 所述超声 波接收部 13与所述壳体为一体结构, 是指当所述壳体为金属材料时,所述壳体可直接 用作金属接收板。 因此, 所述金属接收板嵌于所述壳体中或所述金属接收板和所述壳 体为一体结构能够进一步节省所述电声转换器 01的空间。
本发明实施例进一步提供的终端测距的方法, 参照图 6, 为所述终端测距的方法 的第一实施例, 所述方法包括: 步骤 S01, 控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱动 振动部以预设规则输出超声波信号; 当用户需要测量距离时, 通过终端发送测距指令至控制部, 在控制部接收到测距 指令时, 响应该测距指令, 获取用户的状态信息, 同时控制所述驱动部驱动所述振动 部输出超声波信号。其中, 所述用户的状态信息可以是用户的移动速度、移动方向等, 控制器获取用户的状态信息的方法可以是由终端中已有的装置 (例如 GPS定位模块、 加速度传感器、 地磁传感器等) 检测得到用户的状态信息并传送至所述控制器中, 也 可以是通过服务器获取用户的状态信息并传送至所述控制器中。 所述预设规则是在控 制器中预先设定的, 也可以是用户在使用的过程中由用户临时设定的。 所述预设规则 可以规定输出超声波的频率、 次数、 方向等。 步骤 S02, 超声波接收部接收碰撞目标物后返回的超声波信号, 并将返回的超声 波信号输出至控制部; 步骤 S03, 控制部计算终端与目标物之间的距离值, 并将将计算得到的所述距离 值反馈给用户。 超声波信号从终端输出并射向目标物,其与目标物碰撞后又沿反方向返回至终端, 此时,超声波接收部接收到返回的超声波信号后,将返回的超声波信号输出至控制部。 控制部在接收到该返回的超声波信号时开始计算终端与目标物之间的距离。 控制部计 算终端与目标物之间的距离的方法与用户的状态信息及输出超声波信号的预设规则均 有联系。 而计算终端与目标物之间的距离的原理主要是用输出所述超声波信号的时间
与接收到返回的所述超声波信号时间的时间差值乘以超声波速度即为超声波信号从输 出终端经碰撞目标物后又返回终端所传播的距离, 依据超声波信号传播的距离可求的 终端与目标物之间的距离值。 需要注意的是, 超声波速度与环境温度有密切关系, 因 此可以从终端中已有的装置或者外部的服务器获取环境温度, 并将所述环境温度对应 的超声波速度用于所述距离值的计算。 控制部计算得到所述距离值后, 通过语音播报或者通过界面显示等方式将所述距 离值反馈给用户。 本实施例控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱动振 动部以预设规则输出超声波信号;超声波接收部接收碰撞目标物后返回的超声波信号, 并将返回的超声波信号输出至控制部; 控制部计算终端与目标物之间的距离值, 并将 将计算得到的所述距离值反馈给用户。 本实施例基于上述终端提出的终端测距的方法 获取用户的状态信息, 并控制驱动部驱动振动部以预设规则输出超声波信号, 控制部 参照用户的状态信息及输出超声波信号的预设规则计算距离值, 相较于现有技术以单 一的方式发送一个超声波信号进行测距, 本实施例的测距方法更精准。 在本发明一优选实施例中, 控制部在控制驱动部驱动振动部以预设规则输出超声 波信号的同时记录输出的超声波信号的功率, 控制部将输出的超声波信号的功率发送 给超声波接收部并进行保存, 超声波接收部仅接收与保存的输出的超声波信号功率匹 配的返回的超声波信号。 本实施例超声波接收部通过比对输出的超声波信号的功率与返回的超声波信号的 功率, 从而识别此次返回的超声波信号是否与输出的超声波信号匹配, 因此, 本实施 例能排除环境的干扰更准确的接收返回的超声波信号, 也使得距离值的计算更准确。 在本发明一优选实施例中, 控制部还可以设有提醒功能, 例如, 预先提供设置界 面供用户设置提醒值, 即当计算得到所述距离值大于或者等于提醒值时, 控制部控制 发出提醒音或者提醒灯光。 本实施例在控制部设有提醒功能, 一些情况下用户不需知道所述距离值的具体数 值而只需知道所述距离值是否大于或者小于某个数值,并需要在这种情况下发出警报, 本实施例提供提醒功能更方便了用户的使用, 同时起到预警的功能。
参照图 7, 为本发明终端测距的方法的第二实施例, 本实施例与第一实施例的区 别在于, 本实施例基于第一实施例, 所述控制部接收到测距指令时, 获取用户的状态 信息, 并控制驱动部驱动振动部以预设规则输出超声波信号的步骤包括: 步骤 Sll, 控制部在接收到测距的指令时, 控制部在接收到测距的指令时, 控制 部控制振动部定时输出超声波信号, 识别用户的移动状态且实时获取用户的移动速度 和移动方向。 控制部在接收到测距的指令时, 控制部控制驱动部驱动振动部定时输出超声波信 号, 即每经历一段间隔时间 t输出一个超声波信号, 控制部可根据输出的多个超声波 信号计算多个距离值, 通过计算得到多个距离值, 从而不断的校验出准确的距离值。 与此同时, 控制部识别用户的移动状态, 即识别用户是否处于移动状态, 且控制 部实时获取用户的移动速度 V A和移动方向。 例如, 控制部控制开启终端中加速度传 感器, 所述加速度传感器设置为记录用户的移动速度, 加速度传感器将记录的用户的 移动速度输出至控制部, 控制部接收到用户的移动速度大于零时, 识别用户处于移动 状态, 否则, 识别用户处于非移动状态。 控制器控制开启终端中地磁传感器, 地磁传 感器设置为记录用户的移动方向,地磁传感器将记录的用户的移动方向输出至控制器, 控制器实时获取用户的移动速度 V入和移动方向并进行保存。 本实施例控制部在接收到测距的指令时, 控制部在接收到测距的指令时, 控制部 控制振动部定时输出超声波信号, 识别用户的移动状态且实时获取用户的移动速度和 移动方向。 相较于现有技术, 不论用户或者目标物是否移动, 本实施例控制部控制驱 动部驱动振动部定时输出超声波信号, 根据输出的多个超声波信号计算多个距离值, 通过计算得到多个距离值, 从而不断的校验出准确的距离值, 因此, 本实施例计算得 到的距离值更准确。 本发明一优选实施例中,所述控制部计算终端与目标物之间的距离值的步骤包括: 当用户处于移动状态时, 控制部计算输出超声波信号的时间与接收到返回的超声 波信号的时间的第一时间差值; 根据用户的移动速度、 移动方向、 第一时间差值及超声波速度计算得到所述距离 值。 当用户处于移动状态时, 超声波接收部接收碰撞目标物后返回的超声波信号, 并 将返回的所述超声波信号输出至控制部, 此时控制部在接收到超声波接收部输出的返
回的超声波信号时, 记录返回的超声波信号的返回时间, 并计算输出超声波信号的时 间与接收到返回的超声波信号的时间的第一差值 At。 在控制器获取的用户的移动方向与输出超声波信号的方向相同 (即靠近目标物的 方向) 时, 控制器利用公式 l/2 X (AtX V ^AtX V 计算得到终端在接收到返回的超声 波信号这一时刻的距离值; 在控制器获取的用户的移动方向与输出超声波信号的方向相反 (即远离目标物的 方向) 时, 控制器利用公式 l/2 X (AtX V ^+AtX V A) 计算得到终端在接收到返回的超 声波信号这一时刻的距离值; 其中, 使用到的参数有移动速度 V Λ、 第一时间差值 At 及超声波速度 本实施例在用户处于移动状态时, 基于控制器获取的用户的移动速度 V 入、 移动 方向、 差值 At及超声波速度 V ^能精确的计算出终端在接收到返回的超声波信号这一 时刻的距离值, 相较于现有技术, 本实施例计算的距离值更精确。 本发明一优选实施例中,所述控制部计算终端与目标物之间的距离值的步骤包括: 当用户处于非移动状态时, 控制部接收超声波接收部输出的碰撞目标物后返回的 相邻的两个超声波信号, 返回的两个所述超声波信号分别为第一超声波信号和第二超 声波信号, 且所述第一超声波信号的输出时间比所述第二超声波信号的输出时间早一 段间隔时间; 控制部计算输出所述第一超声波信号的时间与接收返回的第一超声波信号的时间 的第二时间差值、 输出所述第二超声波信号的时间与接收返回的第二超声波信号的时 间的第三时间差值; 控制部根据所述第二时间差值、 第三时间差值、 间隔时间及超声波速度计算得到 所述距离值。 当用户处于非移动状态时, 超声波接收部接收碰撞目标物后返回的相邻的两个超 声波信号, 并将返回的两个所述超声波信号输出至控制部, 返回的两个所述超声波信 号分别为第一超声波信号和第二超声波信号, 且所述第一超声波信号的输出时间比所 述第二超声波信号的输出时间早一段间隔时间 t,即第一超声波信号和第二超声波信号 输出时间间隔 t, 且返回至终端的时间间隔应该也是 t。 此时控制部在接收到超声波接 收部输出的第一超声波信号和第二超声波信号时, 记录第一超声波信号和第二超声波 信号的超声波信号的返回时间, 控制部计算输出所述第一超声波信号的时间与接收返
回的第一超声波信号的时间的第二时间差值 Atl、输出所述第二超声波信号的时间与接 收返回的第二超声波信号的时间的第三时间差值 At2。 控制部利用公式 At2 X V„X ((t+At2-Ati) /(2ΐ+Δΐ2-ΔΪ!)) 计算得到用户在接收到 返回的超声波信号这一时刻的距离值, 其中, 使用到的参数有第二时间差值 Atl、 第三 时间差值 At2、 间隔时间 t及超声波速度 V ^。 需要注意的是, 不论目标物是否移动, 上述公式 12 ¥ ^ (^十^2— 11) /(^十八12 一 AtO)均适用, 当目标物处于静止时, Ati=At2。 本实施例在用户处于非移动状态时, 不论目标物是否移动, 本实施例通过多次计 算终端在接收到返回的超声波信号这一时刻的距离值,能够不断实现对距离值的校验, 相较于现有技术, 本实施例计算的距离值更精确。
以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发 明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他相关 的技术领域, 均同理包括在本发明的专利保护范围内。 工业实用性 如上所述, 本发明实施例提供的终端及其测距的方法具有以下有益效果: 利用终 端中电声转换器的结构特性, 将终端测量距离所需的硬件结构设置在电声转换器中, 使终端无需外接超声波收发装置就能实现利用超声波测量距离, 因此, 更加便于终端 测量距离。
Claims
权 利 要 求 书 、 一种终端, 包括: 电声转换器, 所述电声转换器包括: 壳体;
振动部, 设置在所述壳体内, 设置为输出超声波信号;
驱动部, 与所述振动部连接, 设置为驱动所述振动部输出超声波信号; 超声波接收部, 设置在壳体内, 设置为接收碰撞目标物后返回的超声波信 号, 并将所述超声波信号输出至控制部;
控制部, 设置为接收测距指令, 控制驱动部驱动所述振动部输出超声波信 号, 并接收所述超声波接收部输出的碰撞目标物后返回的超声波信号, 计算终 端与目标物之间的距离值。 、 如权利要求 1所述的终端, 其中, 所述驱动部包括超声波音圈和超声波磁性驱 动器, 所述超声波音圈与所述振动部连接, 设置为驱动所述振动部输出超声波 信号, 所述超声波磁性驱动器与所述超声波音圈配合, 设置为驱动所述超声波 音圈振动。 、 如权利要求 1或 2所述的终端, 其中, 所述振动部包括超声波振膜, 所述超声 波振膜振动输出超声波信号。 、 如权利要求 3所述的终端, 其中, 所述电声转换器包括可闻声振膜, 所述可闻 声振膜和所述超声波振膜平行设置或者所述超声波振膜嵌于所述可闻声振膜 中。 、 如权利要求 4所述的终端, 其中, 所述超声波振膜与所述可闻声振膜同心, 且 所述可闻声振膜上设有通孔, 且所述通孔的形状和面积与所述超声波振膜的形 状和面积相同。 、 如权利要求 1、 2、 4或 5中任一项所述的终端, 其中, 所述超声波接收部包括 设置为接收返回的超声波信号的金属接收板, 且所述金属接收板嵌于所述壳体 中或所述金属接收板和所述壳体为一体结构。 、 一种终端测距的方法, 包括:
控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱动振动 部以预设规则输出超声波信号; 超声波接收部接收碰撞目标物后返回的超声波信号, 并将返回的超声波信 号输出至控制部; 控制部计算终端与目标物之间的距离值, 并将计算得到的所述距离值反馈 给用户。 、 如权利要求 7所述的终端测距的方法, 其中, 所述控制部接收到测距指令时, 获取用户的状态信息, 并控制驱动部驱动振动部以预设规则输出超声波信号的 步骤包括: 控制部在接收到测距的指令时, 控制部控制振动部定时输出超声波信号, 识别用户的移动状态且实时获取用户的移动速度和移动方向。 、 如权利要求 8所述的终端测距的方法, 其中, 所述控制部计算终端与目标物之 间的距离值的步骤包括:
当用户处于移动状态时, 控制部计算输出超声波信号的时间与接收到返回 的超声波信号的时间的第一时间差值; 控制部根据用户的移动速度、 移动方向、 第一时间差值及超声波速度计算 得到所述距离值。 0、 如权利要求 8或 9所述的终端测距的方法, 其中, 所述控制部计算终端与目标 物之间的距离值的步骤包括: 当用户处于非移动状态时, 控制部接收超声波接收部输出的碰撞目标物后 返回的相邻的两个超声波信号, 返回的两个所述超声波信号分别为第一超声波 信号和第二超声波信号, 且所述第一超声波信号的输出时间比所述第二超声波 信号的输出时间早一段间隔时间;
控制部计算输出所述第一超声波信号的时间与接收返回的第一超声波信号 的时间的第二时间差值、 输出所述第二超声波信号的时间与接收返回的第二超 声波信号的时间的第三时间差值; 控制部根据所述第二时间差值、 第三时间差值、 间隔时间及超声波速度计 算得到所述距离值。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14890889.0A EP3139197A4 (en) | 2014-04-30 | 2014-08-21 | Terminal and ranging method therefor |
US15/121,818 US20170038468A1 (en) | 2014-04-30 | 2014-08-21 | Terminal and Method for Ranging Using Terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410182594.2 | 2014-04-30 | ||
CN201410182594.2A CN105022065A (zh) | 2014-04-30 | 2014-04-30 | 终端及其测距的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015165176A1 true WO2015165176A1 (zh) | 2015-11-05 |
Family
ID=54358087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084947 WO2015165176A1 (zh) | 2014-04-30 | 2014-08-21 | 终端及其测距的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170038468A1 (zh) |
EP (1) | EP3139197A4 (zh) |
CN (1) | CN105022065A (zh) |
WO (1) | WO2015165176A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954461B (zh) * | 2016-06-01 | 2018-10-16 | 中国电子科技集团公司第四十一研究所 | 一种检测烟支点火距离的设备 |
CN107765250A (zh) * | 2017-10-25 | 2018-03-06 | 深圳慧源创新科技有限公司 | 超声波测距装置及无人机 |
CN108156729A (zh) * | 2017-12-06 | 2018-06-12 | 北京小米移动软件有限公司 | 照明设备、照明设备的控制方法及装置 |
CN108901108A (zh) * | 2018-07-06 | 2018-11-27 | 北京小米移动软件有限公司 | 照明设备、照明设备的控制方法及装置 |
CN112748436B (zh) * | 2019-10-30 | 2024-03-01 | 北京小米移动软件有限公司 | 电子设备、距离检测方法及装置、存储介质 |
US11395091B2 (en) * | 2020-07-02 | 2022-07-19 | Cisco Technology, Inc. | Motion detection triggered wake-up for collaboration endpoints |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068063A1 (en) * | 2001-10-09 | 2003-04-10 | Sawako Usuki | Electro-acoustic transducer and electronic device |
CN2733799Y (zh) * | 2004-06-07 | 2005-10-12 | 常州美欧电子有限公司 | 振动发声多功能器件 |
EP1653767A2 (en) * | 2004-11-01 | 2006-05-03 | Sonion Nederland B.V. | Electro-acoustical transducer and transducer assembly |
CN1967612A (zh) * | 2005-11-17 | 2007-05-23 | 海盐天鸿科技有限公司 | 一种水位检测方法及装置 |
CN201134927Y (zh) * | 2007-12-24 | 2008-10-15 | 瑞声声学科技(常州)有限公司 | 电声转换器 |
CN101651732A (zh) * | 2008-08-12 | 2010-02-17 | 索尼株式会社 | 免持通话装置和方法及具有免持通话功能的声学再现装置 |
CN103187999A (zh) * | 2011-12-29 | 2013-07-03 | 国民技术股份有限公司 | 信息传输方法及装置、移动终端 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2751647B2 (ja) * | 1991-03-26 | 1998-05-18 | トヨタ自動車株式会社 | 車間距離検出装置 |
JPH0921869A (ja) * | 1995-07-06 | 1997-01-21 | Matsushita Electric Ind Co Ltd | 超音波距離センサシステム |
CN101261320A (zh) * | 2008-05-05 | 2008-09-10 | 宏碁股份有限公司 | 测距系统及测量距离的方法 |
WO2012001954A1 (ja) * | 2010-06-30 | 2012-01-05 | Necカシオモバイルコミュニケーションズ株式会社 | 発振装置および電子機器 |
US10006996B2 (en) * | 2011-03-14 | 2018-06-26 | Nokia Technologies Oy | Echolocation apparatus |
US10254401B2 (en) * | 2011-04-20 | 2019-04-09 | Nissan Motor Co., Ltd. | Mounting structure for sonar sensor |
US9036454B2 (en) * | 2012-02-27 | 2015-05-19 | Forestech Consultuing, Inc. | Handheld forestry device |
CN103344959B (zh) * | 2013-07-22 | 2016-04-20 | 苏州触达信息技术有限公司 | 一种超声定位系统和具有定位功能的电子装置 |
CN103675824A (zh) * | 2013-12-12 | 2014-03-26 | 苏州市峰之火数码科技有限公司 | 移动测速仪 |
-
2014
- 2014-04-30 CN CN201410182594.2A patent/CN105022065A/zh active Pending
- 2014-08-21 EP EP14890889.0A patent/EP3139197A4/en not_active Withdrawn
- 2014-08-21 US US15/121,818 patent/US20170038468A1/en not_active Abandoned
- 2014-08-21 WO PCT/CN2014/084947 patent/WO2015165176A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068063A1 (en) * | 2001-10-09 | 2003-04-10 | Sawako Usuki | Electro-acoustic transducer and electronic device |
CN2733799Y (zh) * | 2004-06-07 | 2005-10-12 | 常州美欧电子有限公司 | 振动发声多功能器件 |
EP1653767A2 (en) * | 2004-11-01 | 2006-05-03 | Sonion Nederland B.V. | Electro-acoustical transducer and transducer assembly |
CN1967612A (zh) * | 2005-11-17 | 2007-05-23 | 海盐天鸿科技有限公司 | 一种水位检测方法及装置 |
CN201134927Y (zh) * | 2007-12-24 | 2008-10-15 | 瑞声声学科技(常州)有限公司 | 电声转换器 |
CN101651732A (zh) * | 2008-08-12 | 2010-02-17 | 索尼株式会社 | 免持通话装置和方法及具有免持通话功能的声学再现装置 |
CN103187999A (zh) * | 2011-12-29 | 2013-07-03 | 国民技术股份有限公司 | 信息传输方法及装置、移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3139197A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3139197A4 (en) | 2017-09-06 |
EP3139197A1 (en) | 2017-03-08 |
US20170038468A1 (en) | 2017-02-09 |
CN105022065A (zh) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015165176A1 (zh) | 终端及其测距的方法 | |
CN103344959B (zh) | 一种超声定位系统和具有定位功能的电子装置 | |
US9891719B2 (en) | Impact and contactless gesture inputs for electronic devices | |
CN108513241A (zh) | 振动传感器和音频设备 | |
JP6097327B2 (ja) | 携帯端末、音波測距システムおよび音波測距方法 | |
US10944295B2 (en) | Transmitting apparatus for transferring wireless power and controlling method thereof | |
JP6535743B2 (ja) | 圧電受話器と超音波発生器の複合構造 | |
US20230161545A1 (en) | Peripheral device with acoustic resonator | |
CN108810764B (zh) | 发声控制方法、装置以及电子装置 | |
US10606355B1 (en) | Haptic architecture in a portable electronic device | |
JP2012029096A (ja) | 音声出力装置 | |
JP6348365B2 (ja) | 電気−音響変換デバイスの実装構造 | |
KR20230058505A (ko) | 진동센서 | |
JPWO2012086125A1 (ja) | 発振装置および電子機器 | |
JP2012217015A (ja) | スピーカ装置及び電子機器 | |
JP2010271834A (ja) | センサおよびセンサシステム | |
US20160351192A1 (en) | Voice Recognition Device, Voice Control System And Voice Communication System | |
JP2012029093A (ja) | 携帯端末装置 | |
JP6234039B2 (ja) | 測定装置及び測定方法 | |
CN212540713U (zh) | 一种用于测距的mems麦克风系统 | |
WO2017012298A1 (zh) | 音响装置和显示装置 | |
CN208971805U (zh) | 基于薄膜扬声器的物品寻找装置 | |
JP2012217012A (ja) | 電子機器 | |
JP2013183315A (ja) | ハンズフリー通話装置 | |
KR101450095B1 (ko) | 실시간 위치 추적 초음파 장치를 이용한 자동 음량 조절 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14890889 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014890889 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014890889 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15121818 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |