WO2015163484A1 - Article coated with antifogging coating having excellent durability - Google Patents

Article coated with antifogging coating having excellent durability Download PDF

Info

Publication number
WO2015163484A1
WO2015163484A1 PCT/JP2015/062705 JP2015062705W WO2015163484A1 WO 2015163484 A1 WO2015163484 A1 WO 2015163484A1 JP 2015062705 W JP2015062705 W JP 2015062705W WO 2015163484 A1 WO2015163484 A1 WO 2015163484A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mol
poly
antifogging
coating film
Prior art date
Application number
PCT/JP2015/062705
Other languages
French (fr)
Japanese (ja)
Inventor
憲秀 榎本
太一 小川
大亮 遠藤
Original Assignee
ミドリ安全株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミドリ安全株式会社 filed Critical ミドリ安全株式会社
Publication of WO2015163484A1 publication Critical patent/WO2015163484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/054Forming anti-misting or drip-proofing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to an antifogging coating-coated article in which an antifogging coating film is formed on a polycyclohexylenedimethylene terephthalate copolyester resin base material.
  • the present invention relates to an antifogging coated article in which an antifogging urethane resin coating film is formed on poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin.
  • Polyester resin (polyester resin manufactured by Eastman Chemical Co., Ltd., called Tritan TX2001) is used as a heat-bonding resin sheet base material for resin base materials such as polycarbonate used for polarizing lens applications. It is disclosed that a cloudy coating film is formed (Patent Document 1). Disclosure of forming a film composed of a polyurethane primer layer and a silicone varnish on the same type of thermoplastic alicyclic copolyester resin substrate (trade name “Tritan” manufactured by Eastman Chemical Co., Ltd.) used for optical applications, etc. (Patent Document 2).
  • the above-mentioned copolyester resins are defined as alicyclic copolyesters obtained by polycondensation of two types of aliphatic alcohols and one type of acid.
  • the coating of a water-soluble resin composition containing a surfactant is hydrophilic, so the initial antifogging property is good, but durability such as water wiping and dry wiping and adhesion to a resin substrate There was a problem that the sex was not enough.
  • isophorone diisocyanate or hexamethylene diisocyanate as a crosslinking agent having an isocyanate group as a crosslinking agent having an isocyanate group which acts as a crosslinking agent in the antifogging vinyl resin composition, vinyl having a hydroxyl group forming a crosslinked structure.
  • An antifogging vinyl resin composition containing, for example, trimethylolamine or the like as a system monomer component and a dialkylsulfosuccinate as a surfactant is disclosed (Patent Document 3).
  • An antifogging resin coating composition containing an N-methylol group or an N-alkoxymethylol group as a crosslinking functional group of a water-soluble vinyl monomer is also disclosed (Patent Documents 4 and 5).
  • the surfactant and the uncrosslinked copolymer are dissolved from the coating film and deposited.
  • the acrylic resin containing surfactant is known as an anti-fogging processing agent for a film use (patent document 6).
  • the above antifogging coating composition has a problem that antifogging durability and adhesion are not sufficient as an antifogging coating film formed on a polycyclohexylenedimethylene terephthalate copolyester resin base material.
  • the urethane resin composition can form a coating film by a polycondensation reaction of an isocyanate and a polyol, but the recommended curing temperature is high, and polycyclohexylenedimethylene is used.
  • polycyclohexylenedimethylene terephthalate copolyester resin is a copolymer containing acid component terephthalic acid (TPA) or dimethyl terephthalate (DMA), alcohol or diol component cyclohexanedimethanol (CHDM), or cyclobutanediol (CBD). It means a polyester resin, and includes the above-mentioned polyester resin (a copolyester resin manufactured by Eastman Chemical Co., called Tritan).
  • JP 2012-215725 A Special table 2013-521157 gazette JP 2010-150351 A Japanese Patent Laid-Open No. 2004-250601 JP 2003-105255 A JP 2001-247632 A International Publication WO / 2012/111860 Japanese Patent Laid-Open No. 2003-026867 JP 2009-256124 A Japanese Patent Laid-Open No. 9-059603
  • the present invention provides a polycyclohexylene dimethylene terephthalate copolyester resin, particularly poly (1,4-cyclohexylene dimethylene terephthalate), which is a transparent resin excellent in chemical resistance.
  • An object of the present invention is to provide an antifogging coated article in which an antifogging coating film having good durability and adhesion is formed on a copolyester resin substrate.
  • poly (1,4-cyclohexylenedimethylene terephthalate) having a weather resistance formulation containing an ultraviolet absorber and a hydrolysis inhibitor disclosed in International Publication WO / 2012/111860 by the present applicant as additives.
  • a copolyester resin is preferred.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin as the base material for forming the antifogging coating film preferably has a terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue. 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15-20 mol%, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue 30-35 mol% Including.
  • TPA terephthalic acid
  • DMA dimethyl terephthalate
  • CHDM 1,4-cyclohexanedimethanol
  • TMCD 2,2-4,4-tetramethyl-1,3-cyclobutanediol
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is more preferably 50 mol% terephthalic acid (TPA) residue, 16 mol% 1,4-cyclohexanedimethanol (CHDM) residue, and It contains 32 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue.
  • TPA terephthalic acid
  • CHDM 1,4-cyclohexanedimethanol
  • TMCD 2,2-4,4-tetramethyl-1,3-cyclobutanediol
  • TPA Terephthalic acid
  • DMA dimethyl terephthalate
  • CHDM 1,4-cyclohexanedimethanol
  • TMCD 1,3-cyclobutanediol
  • a known chain aliphatic polyisocyanate for example, a polyisocyanate compound having a structure in which a urethane group (NCO group) is bonded with a linear or branched alkylene group
  • cyclic chain aliphatic polyisocyanates for example, polyisocyanate compounds in which an alkylene group bonded between urethane groups (NCO groups) has a cyclic structure.
  • chain aliphatic polyisocyanates examples include methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, 1-methylethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, and esterified products. Is done.
  • Cycloaliphatic polyisocyanates include cyclohexane diisocyanate (including isomers), isophorone diisocyanate, dicyclohexylmethane diisocyanate, dicyclohexylmethylmethane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, and aromatic polyisocyanates. Is exemplified (see Patent Document 8).
  • examples of the polyol forming the antifogging film include oxyalkylene-based polyols containing an appropriate amount of water-absorbing components, such as oxyethylene / oxypropylene copolymer polyols and polyethylene glycols.
  • examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and the isomers thereof (see Patent Document 9).
  • R1 is a linear or cyclic substituted or unsubstituted alkyl group and is generally represented by C n H 2n , where n is an integer of 1 or more, preferably an integer of 1 to 10 is there.
  • R3 is a linear substituted or unsubstituted glycol group, generally represented by (CH 2 CH 2 O) n , where n is an integer of 1 or more, preferably an integer of 1 to 10 .
  • the basic structure of the polyurethane resin of (AB) n-type multi-block copolymer is, for example, 1,6-hexamethylene represented by the following chemical formula 2 and chemical formula 3 as the diisocyanate component A:
  • a coating film of the above urethane resin composition composed of 30 to 40 mol% of trimethylolethane and polyethylene glycol as the diol component B is formed, and is 100 ° C. to less than 130 ° C., preferably 110 ° C. to It is formed as a coating film at a curing temperature of 120 ° C.
  • An antifogging coated article in which a coating film of the urethane resin composition is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material has film characteristics such as tensile properties and dynamic viscoelasticity. It is good and the heat resistance (load deflection) temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material is 100 ° C to 110 ° C. (AB) n-type multi-block copolymer is formed in a wide temperature range, and an anti-fogging coating-coated molded article having excellent durability and adhesion can be obtained.
  • l, m, and n are each an integer representing a repeating unit of the structural unit — (CH 2 —CH 2 —O) —, and l + m + n is 10 or more and 21 or less.
  • the urethane resin composition includes 1,6-hexamethylene diisocyanate represented by Chemical Formula 2 and isophorone diisocyanate represented by Chemical Formula 3, which are represented by Chemical Formula 7 in the presence of cyanuric acid which is a trimer of isocyanate. It exists in the form of 1,6-hexamethylene cyanurate shown and isophorone cyanurate shown in Formula 8.
  • Trimethylolethane represented by Chemical Formula 4 forms a urethane bond by dehydration condensation with isocyanate to the cyanurate added to cyanuric acid as a substituent R: by these isocyanate components, and dehydrogenates with polyethylene glycol represented by Chemical Formula 5. It acts as a polyol chain extender by bonding.
  • Polyethylene glycol which is a linear diol component, forms the basic molecular structure of the polyether-based urethane resin schematically shown in FIG. 1, while having a hydroxyl group (not shown) at the end of the molecular chain, exhibits hydrophilicity, and will be described later. It is thought that anti-fogging properties are developed together with the surfactant.
  • any of an anionic surfactant, a cationic surfactant and a nonionic surfactant is known.
  • anionic surfactants include higher alcohol sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, dialkyl sulfosuccinates, and sodium polyoxyethylene alkyl ether sulfates. Examples include polyoxyethylene sulfate salts.
  • Illustrative examples of cationic surfactants include formates and acetates such as ethanolamines and triethanolamine monostearate, lauryltrimethylammonium chloride, dilauryldimethylammonium chloride, and lauryldimethylbenzylammonium chloride. There is a quaternary ammoniaum salt.
  • Nonionic surfactants include polyoxyethylene higher alcohol ethers such as polyoxyethylene lauryl alcohol, and polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenol (see Patent Document 10).
  • the basic structure of the polyurethane resin composition of (AB) n-type multi-block copolymer is, for example, 1, 1 represented by the above-described chemical formula 2 and / or chemical formula 3 as the diisocyanate component A.
  • Polyether urethane resin composition containing 6-hexamethylene diisocyanate and / or isophorone diisocyanate, trimethylolpropane represented by chemical formula 4 as diol component B, and heptaethylene glycol or polyoxyethylene glyceryl ether represented by chemical formula 5 or 6
  • a substrate made of a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin 42-50 mol% of isophorone diisocyanate as the diisocyanate component A in the structural unit, and the diol component B Trimethylolpropane 14 ⁇ 16 mol% Te, and is formed as a coating film composed of heptaethylene glycol 36 ⁇ 42 mol%.
  • Coating film of the urethane resin composition comprising an adduct represented by the following chemical formula 9 of trimethylolpropane and isophorone diisocyanate as a curing agent on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material: And is formed as a coating film at a curing temperature of 80 ° C. to less than 120 ° C., preferably 90 ° C. to less than 110 ° C.
  • An anti-fogging coating-coated article in which a coating film of a urethane resin composition containing the above main agent and an additive is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate has tensile properties and dynamics. Since the coating properties such as viscoelasticity are good and the heat resistance (load deflection) temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate is 90 ° C.
  • the above resin group Forms (AB) n-type multiblock copolymer with heptaethylene glycol and adducts of trimethylolpropane or trimethylolpropanol and isophorone diisocyanate in an appropriate temperature range near the heat-resistant temperature of the material, durability and adhesion
  • AB n-type multiblock copolymer with heptaethylene glycol and adducts of trimethylolpropane or trimethylolpropanol and isophorone diisocyanate in an appropriate temperature range near the heat-resistant temperature of the material, durability and adhesion
  • An anti-fogging coating-coated molded article excellent in the above can be obtained.
  • the proper curing temperature of the urethane resin composition is 100 ° C. to less than 130 ° C., and a processing temperature of 100 ° C. to less than 130 ° C., preferably 100 ° C. to 120 ° C.
  • the coating film formed at the treatment temperature has a cross-linking density of 1.5 ⁇ 10 ⁇ 5 to 2.0 ⁇ 10 ⁇ 4 mol / cc, preferably 5.0 ⁇ 10 ⁇ 5 to 2.0 ⁇ 10 ⁇ 4 mol / cc. It is.
  • the heat distortion temperature (HDT) showing the heat resistance of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is 100 ° C.
  • the proper curing temperature of the urethane resin composition is 80 ° C. to less than 120 ° C., and is a treatment temperature of 80 ° C. to less than 120 ° C., preferably 90 ° C. to less than 110 ° C.
  • the coating film formed at the processing temperature of 1.0 ⁇ 10 ⁇ 4 to 8.0 ⁇ 10 ⁇ 4 mol / cc, preferably about 5.0 ⁇ 10 ⁇ 4 to 7.0 ⁇ 10 ⁇ 4 mol / cc.
  • Crosslink density The heat distortion temperature (HDT) showing the heat resistance of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is about 90 ° C.
  • the present invention is an (AB) n-type multiblock composed of a diisocyanate component A, a diol component B, a branched diol component (hard segment), and / or a linear diol component (soft segment) represented by the following chemical formula 10
  • An anti-fogging coating film of a polyurethane resin composition having a basic copolymer structure is used as a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin with terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues.
  • the additive is preferably a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin that has been subjected to a weather resistance formulation containing an ultraviolet absorber and a hydrolysis inhibitor (see Patent Document 7).
  • the base material constituting the antifogging coating-coated article is made of poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin comprises terephthalic acid (TPA) or dimethyl terephthalate (DMA), 1,4-cyclohexanedimethanol (CHDM), and 2,2- It is composed of 4,4-tetramethyl-1,3-cyclobutanediol (TMCD).
  • the antifogging coating-coated product is an antifogging coating in which a coating film is formed by applying an antifogging urethane resin composition to a heat-resistant poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material. It is a coated article.
  • a heat-resistant poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin preferably has a terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue. 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15-20 mol%, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue 30-35 mol% Including.
  • TPA terephthalic acid
  • DMA dimethyl terephthalate
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin contains 50 mol% of terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues and 1,4-cyclohexanedimethanol (CHDM) residues. And 16 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue. The remainder is an ester derivative produced during the copolymerization of the copolyester resin. It may be a copolyester resin containing other polyester resin components, for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), or the like.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin having the above composition comprises terephthalic acid (TPA) and 2,2-4,4-tetramethyl-1,3-cyclobutanediol compound (TMCD).
  • TPA terephthalic acid
  • TMCD 2,2-4,4-tetramethyl-1,3-cyclobutanediol compound
  • HDT load deflection temperature showing a high esterification rate and heat resistance is 100 ° C. to 110 ° C., for example, 104 ° C. to 109 ° C. at a low load (0.455 MPa).
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin may be a copolyester resin containing a polycarbonate (PC) resin component.
  • the normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin preferably contains 50 mol% terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues, 1,4-cyclohexane. It contains 8-15 mol% of dimethanol (CHDM) residues and 35-42 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residues.
  • a normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin more preferably contains terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues. 50 mol%, 10 mol% of 1,4-cyclohexanedimethanol (CHDM) residue, and 38 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue.
  • TPA terephthalic acid
  • DMA dimethyl terephthalate
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin composition contains 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin with respect to the polycarbonate resin. It is contained in an amount of 10 to 30% by weight, preferably 20 to 30% by weight. When the mixing ratio of polycarbonate resin / copolyester resin is less than 10% by weight, the heat resistance is lowered. When the mixing ratio of polycarbonate resin / copolyester resin is more than 30% by weight, chemical resistance is lowered.
  • Anti-fogging coating coated molded product is formed by coating anti-fogging urethane resin composition on copolyester resin base material containing polycarbonate resin on poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. An anti-fogging coated article.
  • a copolyester resin base material containing a polycarbonate resin in a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin having the above composition has a heat deformation (load deflection) temperature (HDT) exhibiting heat resistance, for example, It is 104 ° C to 109 ° C at a low load (0.455 MPa).
  • HDT heat deformation temperature
  • the mixing ratio of polycarbonate resin / copolyester resin is less than 10% by weight, the heat resistance is lowered.
  • the mixing ratio of polycarbonate resin / copolyester resin is more than 30% by weight, the chemical resistance decreases (for example, see International Publication WO / 2013/065740).
  • the antifogging urethane resin composition in the present embodiment is a polyurethane resin composition that forms the basic structure of the (AB) n-type multi-block copolymer, and the diisocyanate component A and the diol component B are low molecular branched diol components. (Hard segment) and / or polymer linear diol component (soft segment).
  • the diisocyanate component A includes diisocyanate compounds having two or more isocyanate groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof.
  • the low-molecular branched diol component of the diol component B is a diol compound having two or three or more hydroxyl groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof.
  • the polymer linear diol component of the diol component B is a diol compound having two or more hydroxyl groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof.
  • the polyurethane resin composition includes a low molecular diol component b1 represented by the chemical formula 12 and / or a polymer diol represented by the chemical formula 13 as the diisocyanate component A and the diol component B represented by the following chemical formula 11. It is a polyether-based urethane resin composition containing component b2.
  • R1 is a linear or cyclic substituted or unsubstituted group.
  • R1 is preferably a linear or cyclic substituted or unsubstituted alkyl group, generally represented by C n H 2n , where n is an integer of 1 or more, preferably an integer of 1 to 10.
  • R2 is a branched substituted or unsubstituted group.
  • R3 is a linear substituted or unsubstituted group.
  • R3 is preferably a linear substituted or unsubstituted glycol group, generally represented by (CH 2 CH 2 O) n , where n is an integer of 1 or more, preferably an integer of 1 to 10 .
  • the diisocyanate component A represented by the chemical formula 11 is crosslinked as the diol component B with the low molecular branched diol component (hard segment) represented by the chemical formula 12, and the polymer linear diol component (soft segment) represented by the chemical formula 13
  • the basic structure of the (AB) n-type multi-block copolymer represented by Chemical Formula 14 is constructed.
  • the n-type multi-block copolymer has a low molecular branched diol component b1 and a high molecular linear diol component b2 as molecular structural units bonded to the isocyanate group of the diisocyanate component A represented by the chemical formula 11, Specifically, it has a crosslinked structure of the branched monomer polyol shown in FIG.
  • the straight chain diol component (soft segment) represented by Chemical Formula 13 is not limited to a diol component in which an OH group is disposed at the end group of the main chain, but includes, for example, an OH group disposed in a partial alkyl group of the side chain.
  • the urethane resin composition is a polyether urethane resin composition having a basic structure of a polyurethane resin of (AB) n type multi-block copolymer.
  • the diisocyanate component A represented by the chemical formula 11 1,6-hexamethylene diisocyanate of the following chemical formula 15 and / or isophorone diisocyanate of the chemical formula 16
  • the chemical formula 17 A polyether-based urethane resin composition containing trimethylolethane or trimethylolpropane, and / or polyethylene glycol or heptaethylene glycol of formula 18 as the polymer diol component b2 represented by formula 13.
  • the polyether-based urethane resin composition is composed of isophorone diisocyanate represented by the chemical formula 16 as the diisocyanate component A, trimethylolpropane of the low molecular diol component represented by the chemical formula 17 as the diol component B, and / or the chemical formula 18 or the chemical formula 19.
  • a urethane resin composition containing heptaethylene glycol or polyoxyethylene glyceryl ether of the polymer diol component shown is included.
  • l, m, and n are each an integer representing a repeating unit of the structural unit — (CH 2 —CH 2 —O) —, and l + m + n is 10 or more and 21 or less.
  • the structural unit preferably has 1,6-hexamethylene diisocyanate represented by the chemical formula 15 as the diisocyanate component A and the chemical formula 16. It is composed of 60 to 70 mol% of isophorone diisocyanate, a low molecular diol component as the diol component B, and trimethylolethane represented by the chemical formula 17 as the diol component and / or 30 to 40 mol% of the polyethylene glycol represented by the chemical formula 18.
  • heptaethylene glycol represented by Chemical Formula 18 or polyoxyethylene glyceryl ether represented by Chemical Formula 19 can be included.
  • the antifogging urethane resin composition is a one-component thermosetting resin composition, and as the diisocyanate component A, 1,6-hexamethylene diisocyanate 14 mol%, isophorone diisocyanate 52 mol%, the low molecular weight
  • the diol component B and the polymer diol component C are composed of 21 mol% trimethylolethane and 14 mol% polyethylene glycol.
  • the above urethane resin composition is preferably contained as an active ingredient in the following organic solvent in an amount of 20 to 30% by weight.
  • Suitable organic solvents are, for example, 1-methoxy-2-propanol, 2-methoxy-1-methylethyl acetate, diacetone alcohol, and toluene, and these are preferably used in combination.
  • the solvent preferably contains 30 to 60% by weight of 1-methoxy-2-propanol, 1 to 5% by weight of 2-methoxy-1-methylethyl acetate, 10 to 30% by weight of diacetone alcohol, and 1% by weight of toluene. Less than may be included.
  • the above urethane resin composition contains 1,6-hexamethylene diisocyanate and / or isophorone diisocyanate as the isocyanate component represented by Chemical Formula 2 and Chemical Formula 3, and these in the presence of cyanuric acid which is a trimer of isocyanate. It exists in the form of 1,6-hexamethylene cyanurate represented by the chemical formula 20 and isophorone cyanurate represented by the chemical formula 21.
  • Trimethylolethane which is a low molecular branched diol component represented by Chemical Formula 4 forms a urethane bond by dehydration condensation with isocyanate, to the cyanurate added to cyanuric acid as a substituent R: these isocyanate components as a diol component.
  • polyethylene glycol which is a polymer linear diol component represented by Chemical Formula 5.
  • Polyethylene glycol which is a polymer linear diol component, forms the basic molecular structure of the polyether-based urethane resin schematically shown in FIG. 1, while having a hydroxyl group that is a hydrophilic group at the end of the molecular chain. It is thought that anti-fogging properties are developed together with the active agent.
  • the urethane resin composition may contain an aromatic hydroxyl group-containing compound such as phenols and pyrazoles as a blocking agent, and preferably contains 3,5-dimethylpyrazole.
  • 3,5-dimethylpyrazole binds to the isocyanate components 1,6-hexamethylene diisocyanate and isophorone diisocyanate, for example, as shown in Chemical Formula 22 and Chemical Formula 23.
  • 3,5-dimethylpyrazole prevents a polycondensation reaction with a polyol component from normal temperature to an appropriate curing temperature, and a one-component curable urethane resin composition that is stable at normal temperature can be obtained.
  • the urethane resin composition may contain a known nonionic surfactant, a cationic surfactant, and an anionic surfactant as a surfactant component in the composition having antifogging properties described above.
  • a surfactant component in the composition having antifogging properties described above.
  • it contains 10 to 20% by weight as a dialkyl sulfonate which is an anionic surfactant.
  • sodium di (2-ethylhexyl) sulfosuccinate represented by the chemical formula 24 is preferably contained in the above organic solvent as an active ingredient in an amount of 5 to 10% by weight.
  • Sodium di (2-ethylhexyl) sulfosuccinate acts as a stabilizer in an organic solvent and exhibits antifogging properties as a hydrophilic compound having a sulfonic acid group and a carboxyl group in a coating film of a urethane resin composition. It is an active ingredient to do.
  • the antifogging urethane resin composition is a two-component thermosetting resin composition, the diisocyanate component A being 42 to 50 mol% of isophorone diisocyanate represented by the chemical formula 16, and the diol component B being the chemical formula 17 Is a thermosetting resin composition composed of 14 to 16 mol% of trimethylolpropane represented by formula (36) and 36 to 42 mol% of heptaethylene glycol represented by the chemical formula (18).
  • the two-component thermosetting resin composition has a chemical formula as a substitute for isophorone diisocyanate represented by chemical formula 16 as the diisocyanate component A, trimethylolpropane represented by chemical formula 17 as the diol component B, and heptaethylene glycol represented by chemical formula 18.
  • the thermosetting resin composition containing the polyoxyethylene glyceryl ether shown by 19 may be sufficient.
  • sodium di (2-ethylhexyl) sulfosuccinate represented by the chemical formula 24 exhibits antifogging properties even in a two-component thermosetting resin composition containing polyoxyethylene glyceryl ether represented by the following chemical formula 25. It is considered to be an active ingredient for In this case, sodium di (2-ethylhexyl) sulfosuccinate represented by the above chemical formula 24 is preferably contained in an organic solvent as an active ingredient at about 4.7% by weight.
  • l, m, and n are each an integer of 1 or more, and l + m + n is 10 or more and 21 or less, and l + m ⁇ n.
  • the urethane resin composition is preferably contained in an amount of 20 to 50% by weight as an active ingredient in the following organic solvent.
  • Suitable organic solvents include, for example, dodecanol, NN-bis (N-decyl) methylamine, diacetone alcohol, and ethyl acetate, and these are preferably used in combination.
  • the solvent for the main agent heptaethylene glycol preferably contains diacetone alcohol, a small amount of dodecanol, NN-bis (N-decyl) methylamine or N-methylundecylnonylamine, and isophorone diisocyanate and trimethylolpropane as curing agents.
  • the adduct solvent may contain ethyl acetate.
  • the solvent preferably contains about 20 wt% of MIBK.
  • ⁇ Anti-fogging coating film> After forming the above urethane-based urethane resin composition on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material by a conventional method such as coating, spraying, dipping, etc., A poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is heat-cured at a temperature not exceeding the heat resistance temperature to form an antifogging coating film.
  • the anti-fogging resin-coated article of Reference Example 1 has a polyether-based urethane resin composition coating film (FSI Coating Technologies, Visgard Premium Plus) described in the above embodiment as a polycarbonate (PC) resin substrate.
  • FSI Coating Technologies, Visgard Premium Plus polyether-based urethane resin composition coating film
  • PC polycarbonate
  • the antifogging resin-coated article of Reference Example 2 is a commercial product (ASWAN, manufactured by forming a polyether-modified silicone resin coating film (SDC Technologies Asia, Crystal Coat C-380) on a polycarbonate (PC) resin substrate. ) And used for eyeglasses.
  • ASWAN commercial product
  • SDC Technologies Asia, Crystal Coat C-380 polyether-modified silicone resin coating film
  • PC polycarbonate
  • the anti-fogging resin-coated article of Reference Example 3 is a commercial product (Uvex, product name Ultravision) in which a cellulose acetate-based resin coating film (4C acetate) is formed on a polycarbonate (PC) resin base material. It is what is used.
  • the anti-fogging resin-coated article of Reference Example 4 is a commercial product (manufactured by Yamamoto Optical Co., Ltd., product name Petroid AF) in which a polyether-modified silicone resin coating film is formed on a polycarbonate (PC) resin substrate, and is used for eyeglass applications. Is.
  • the anti-fogging resin-coated article of Reference Example 5 is a commercial product (manufactured by Riken Optec Co., Ltd.) in which a polyether-based urethane resin coating film (VF coating) is formed on a polycarbonate (PC) resin substrate, and is used for eyeglass applications. Is.
  • Table 1 shows the results of the antifogging performance test, pencil hardness test, adhesion test, film thickness measurement, and contact angle measurement for the antifogging resin coated articles of Reference Examples 1 to 5.
  • Reference Example 5 is an article on which a commercially available polyether-based urethane resin coating film is formed, which has excellent anti-fogging performance and good adhesion by a cross-cut method. It was concluded that there was a gap between the material and the coating, and adhesion was not sufficient.
  • Initial performance A 60 ° C vapor is applied to the sample and the number of seconds until cloudiness is measured. The determination of cloudiness is considered to be cloudy when poor visibility (including water droplets and a nonuniform water film) occurs.
  • Water Wash Test After the above antifogging test, the sample is exposed to running water for 10 seconds. The flow rate is 0.5 dm 3 / sec. After washing, place in a desiccator for 10 minutes or more, dry completely, and perform the anti-fogging test again. This operation is repeated, and the number of repetitions when the antifogging performance deteriorates from the initial performance is taken as the test result. 3.
  • Dry wiping test After the above anti-fogging test, the sample is dried in a desiccator for 10 minutes or more. Wipe dry sample once with Kim towel. At this time, the load applied to the sample is adjusted to be 3.0 ⁇ 0.5 kgf. The anti-fogging test is performed again on the dry-wiped sample, and the number of repetitions when the anti-fogging performance deteriorates from the initial performance is taken as the test result.
  • ⁇ Film thickness measurement> By observation with an optical microscope, the measured value of the film thickness was obtained by converting the magnification from the actual size of the coating film formed on the resin substrate in one or more regions as the target visual field.
  • ⁇ Chemical resistance test> Immerse the chemical in a 1 cm square cloth and place it on the sample and leave it for 24 hours. After removing the waste cloth and wiping with water, wipe off the moisture and observe the appearance change.
  • the heat distortion temperature (HDT) indicating the heat resistance on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is 100 ° C. at a low load (0.455 MPa).
  • a heat-resistant grade copolyester resin product name: Tritan TX2000, TX2001, manufactured by Eastman Chemical Co., Ltd.
  • the urethane resin composition is properly cured.
  • the temperature is 100 ° C. to less than 130 ° C. and is cured at a treatment temperature of 100 ° C. to less than 130 ° C., preferably 110 ° C.
  • the anti-fogging coated article in which the coating film of the urethane resin composition of the first embodiment is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate has tensile properties and dynamics. Coating properties such as viscoelasticity are good, and (AB) n-type multi-block copolymer is formed in an appropriate temperature range near the heat-resistant temperature of the above resin base material, and has excellent durability and adhesion. A cloudy coating-coated molded product is obtained.
  • the heat distortion temperature (HDT) showing the heat resistance on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is about 90 at low load (0.455 MPa).
  • a copolyester resin manufactured by Eastman Chemical Co., for example, product names TX1000 and TX1001 having a temperature of from 110 ° C. to 110 ° C., specifically from 94 ° C. to 104 ° C.
  • an appropriate curing temperature of the urethane resin composition of one embodiment is Curing is carried out at a processing temperature of 80 ° C. to less than 120 ° C., preferably 80 ° C.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is maintained at a curing temperature near the heat deformation temperature and less than the heat deformation temperature, for example, for 30 to 240 minutes, the copolyester resin base material during the curing reaction The adhesion between the coating film and the resin substrate is maintained without distortion.
  • An antifogging coated article in which the coating film of the urethane resin composition of the second embodiment is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material has tensile properties and dynamics. Film properties such as mechanical viscoelasticity are good, and an (AB) n-type multi-block copolymer is formed in an appropriate temperature range near the heat-resistant temperature of the above resin base material, and has excellent durability and adhesion. An antifogging coating-coated molded product is obtained.
  • the urethane resin composition used for the antifogging resin coated article of Example 1 is a one-component thermosetting polyether-based urethane resin composition containing 27.8% by weight of a urethane resin component as an active ingredient in the following solvent. is there.
  • the urethane resin composition of Example 1 contains 30% by weight of 1-methoxy-2-propanol, 5% by weight of 2-methoxy-1-methylethyl acetate, 30% by weight of diacetone alcohol, and less than 1% by weight of toluene.
  • the isocyanate component contains 14 mol% of 1,6-hexamethylene diisocyanate and 52 mol% of isophorone diisocyanate, which are present in the form of cyanurate. It contains 21 mol% trimethylolethane as the low molecular diol component and 14 mol% polyethylene glycol as the high molecular diol component.
  • thermosetting urethane resin composition solution 6.2% by weight of sodium di (2-ethylhexyl) sulfosuccinate as a surfactant component that also acts as an emulsion stabilizer can be uniformly mixed at room temperature to obtain a thermosetting urethane resin composition solution.
  • FIG. 2 shows the result of 1 H-NMR measurement of the resin component precipitated in hexane of the urethane resin composition.
  • FIG. 3 shows the results of 13 C-NMR measurement of resin components precipitated in hexane.
  • Trimethylolethane which is a low molecular diol component, forms a urethane bond by dehydration condensation with isocyanate, and acts as a polyol chain extender by dehydrogenation with polyethylene glycol, which is a high molecular diol component.
  • Polyethylene glycol which is a polymer diol component, forms the basic skeleton of a polyether-based urethane resin, while the hydroxyl group of the diol is a hydrophilic group, so that it is formed on a substrate together with the surfactant sodium di (2-ethylhexyl) sulfosuccinate. It is considered that the formed coating film exhibits antifogging properties.
  • the anti-fogging resin-coated article of Example 1 is obtained by applying the above one-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles.
  • the isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin contains 50 mol% of terephthalic acid (TPA) residues, 16 mol% of 1,4-cyclohexanedimethanol (CHDM) residues, and 2 , 2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue is contained at 32 mol%.
  • TPA terephthalic acid
  • CHDM 1,4-cyclohexanedimethanol
  • TMCD 1,4-cyclohexanedimethanol
  • the remainder is a derivative produced during esterification of the terephthalic acid and the diol compound.
  • the anti-fogging resin-coated article of Example 2 was obtained by similarly applying the above urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles by spin coating.
  • the urethane resin is cured by reacting and curing the isocyanate component and the polyol component in the urethane resin composition by applying and holding at a processing temperature (115 ° C.) that does not substantially exceed the heat resistance temperature of the copolyester resin substrate for about 180 minutes. A coating film was formed.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
  • the anti-fogging resin-coated article of Example 3 is obtained by applying the above two-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles.
  • the isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 60 minutes at a processing temperature (90 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
  • the antifogging resin-coated article of Comparative Example 1 is the same as the one-component thermosetting urethane resin composition described above on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles.
  • a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. was applied by spin coating and kept at 100 ° C. for about 120 minutes, whereby the isocyanate component and the polyol component in the urethane resin composition were reacted and cured to form a urethane resin film.
  • the curing reaction was insufficient, uncured components remained in the coating, and the antifogging property was not sufficiently exhibited, and a phenomenon that the coating became sticky was observed.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
  • the anti-fogging resin-coated article of Comparative Example 2 is a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles, and the two-component thermosetting urethane resin composition described above. It was applied by a spin coating method and kept at 100 ° C. for about 60 minutes to be cured by reaction to form a urethane resin film. Although the adhesion and adhesion of the coating properties were sufficient, the expression of antifogging properties was not sufficient.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
  • the anti-fogging resin-coated article of Example 4 was obtained by applying the above one-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles.
  • the isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film.
  • Example 1 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin used in Example 1 was treated with an ultraviolet absorber (CYASORB UV-3638F) (0.25-1. 0) wt%, and 0.13 to 0.50 wt% of hydrolysis inhibitor (carbodilite LA-1).
  • an ultraviolet absorber CYASORB UV-3638F
  • the anti-fogging resin-coated article of Example 5 is the same as the one-component thermosetting urethane resin composition described above on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles.
  • the isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film.
  • the copolyester resin base material contains 20% by weight of a polycarbonate resin with respect to 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin used in Example 1.
  • the anti-fogging resin-coated article of Example 6 is a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material, the above two-component thermosetting urethane resin composition, A urethane resin composition containing polyoxyethylene glyceryl ether as a substitute and MIBK as a solvent was similarly applied by dipping, and at a processing temperature (90 ° C.) substantially not exceeding the heat resistance temperature of the copolyester resin substrate.
  • the two-component thermosetting urethane resin composition of Example 6 is a normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester having a lower heat resistant temperature than the copolyester resin base material used in Example 1. It can also be applied to resin substrates.
  • the antifogging resin-coated articles of Example 7 and Example 8 are the above-described two-component thermosetting urethane resin composition on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material, A urethane resin composition using polyoxyethylene glyceryl ether as a substitute of heptaethylene glycol was applied by dipping and held at 90 ° C. for about 60 minutes to be cured by reaction to form a urethane resin film. In Examples 7 and 8, the adhesion and adhesion of the coating properties were sufficient under normal conditions, and the antifogging property was also sufficiently exhibited.
  • the adhesiveness was peeled off by several squares at a high tape peeling speed.
  • the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin of Example 7 is a normal grade copolyester resin substrate and the poly (1,4-cyclohexylenedimethylene terephthalate) of Example 8.
  • the copolyester resin is the heat-resistant grade copolyester resin substrate used in Example 1.
  • the antifogging resin coating compositions of Examples 1 and 2 and Examples 3 to 5 and the antifogging resin coating compositions of Comparative Examples 1 and 2 were prepared by being injected into a fluororesin mold coated with a release agent. The coated film was subjected to a tensile test and a dynamic viscoelasticity test. The results are shown in Table 2.
  • Table 2-1 shows the test results for the test pieces obtained under the conditions for forming the antifogging resin coating film of Examples 1 and 2 and Comparative Example 1 as the characteristics of the antifogging resin coating film.
  • the test results of antifogging property, adhesion, tensile test, and dynamic viscoelasticity of these antifogging resin coating films are shown.
  • Table 2-2 shows the test results of the test pieces obtained under the film forming conditions of the antifogging resin coating films of Examples 3 to 5 and Comparative Example 2, and the antifogging properties of these antifogging resin coating films. The test results of haze, adhesion, tensile test, and dynamic viscoelasticity are shown.
  • Table 2-3 shows the antifogging and adhesive properties of these antifogging resin coating films obtained under the coating forming conditions of the antifogging resin coating films of Example 6, Example 7, and Example 8. The test results are shown.
  • FIG. 4 the dynamic viscoelasticity measurement result of the urethane resin coating film hardened
  • FIG. 5 the dynamic viscoelasticity measurement result of the urethane resin coating film hardened
  • FIG. 6 the dynamic viscoelasticity measurement result of the urethane resin coating film hardened
  • ⁇ Storage elastic modulus E '> The measurement mode was tensile, the temperature rising rate was 3 ° C./min, the frequency was 10 Hz, the measurement interval was 1 ° C., and the measurement was performed from ⁇ 50 ° C. to 100 ° C. in a nitrogen atmosphere.
  • the storage elastic modulus E ′ a value at 85 ° C. was adopted as the storage elastic modulus of the flat portion.
  • n Crosslink density (mol / cc)
  • E ′ storage elastic modulus (dyn / cm 2 )
  • R Gas constant (8.31 ⁇ 10 7 dyn ⁇ cm / K ⁇ mol)
  • T Absolute temperature (K)
  • ⁇ Glass transition temperature Tg> The glass transition temperature Tg was determined from the shoulder of the storage elastic modulus E ′ and the peak temperature of the loss tangent (tan ⁇ ).
  • the urethane resin coating film cured at the treatment temperature (100 ° C.) of Comparative Example 1 was not sufficiently cured because the curing temperature was low, and an uncured part remained, and a tensile test piece could not be prepared. . Comparing the tensile properties of the film cured at the treatment temperature (110 ° C.) of Example 1 and the tensile properties of the film cured at the treatment temperature (115 ° C.) of Example 2, the coating cured at the high temperature side is hard and has an elongation. There is a tendency to decrease. Furthermore, the results show that the antifogging property is lowered even if the treatment temperature is too high.
  • the proper curing temperature for the urethane resin coating films of Example 1 and Example 2 is 100 ° C., which does not substantially exceed the heat resistance temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate.
  • the heat distortion temperature (HDT) is the temperature at which a specified amount of deflection is measured under a certain load (load deflection). Temperature) (see, for example, ASTM D648).
  • the optimum crosslink density of the antifogging coating film is (1.5 ⁇ 10 ⁇ 5 to 2.0 ⁇ 10 ⁇ 4 mol / cc), preferably (5.0 ⁇ 10 ⁇ 5 to 2.0 ⁇ 10 ⁇ 4 mol / cc) is estimated.
  • the curing temperature of Comparative Example 2 is as high as 100 ° C.
  • the crosslinking density is 7.91 ⁇ 10 ⁇ 4 mol / cc.
  • the tensile elongation is small, and the expression of antifogging properties is insufficient.
  • the curing temperature of Example 3 is 90 ° C.
  • the crosslinking density of the coating film is 5.15 ⁇ 10 ⁇ 4 mol / cc
  • the optimum crosslinking density of the antifogging coating film is (1. 0 ⁇ 10 ⁇ 4 to 8.0 ⁇ 10 ⁇ 4 mol / cc), preferably (5.0 ⁇ 10 ⁇ 4 to 7.0 ⁇ 10 ⁇ 4 mol / cc).
  • Example 5 One component heat using a resin substrate obtained by blending the poly (1,4-cyclohexylene dimethylene terephthalate) copolyester resin and the polycarbonate resin of Example 4 with the weather resistance formulation added to Example 1 and Example 1
  • the curing temperature was 110 ° C., and sufficient adhesion, adhesion, and antifogging properties were exhibited.
  • the crosslink density of the antifogging coating film was 9 .86 ⁇ 10 ⁇ 5 mol / cc but considered to be within the proper range.
  • Table 3 shows the results of measuring the urethane / polyol infrared absorbance ratio of the antifogging resin coating films of Examples 1 and 2 and the antifogging resin coating film of Comparative Example 1.
  • Table 3 shows the urethane / polyol infrared absorbance ratio of the antifogging urethane resin coating film containing heptaethylene glycol as the main agent and trimethylolpropane and isophorone diisocyanate adduct as the curing agent as Example 3 and Comparative Example 2.
  • Comparative Example 3 the measurement result of the antifogging urethane resin coating film of Reference Example 5 is shown. From these measurement results, it is estimated that the optimum range of the urethane / polyol infrared absorbance ratio of the antifogging coating film is 1.0 to 2.5.
  • FT-IR Fourier transform infrared spectrophotometry
  • ⁇ N content> Intensity correction is performed by elemental analysis of C, N, O, S, and Na based on X-ray excitation energy dispersive spectroscopy (EDX), and the N content (mass concentration) in the coating film is measured.
  • EDX X-ray excitation energy dispersive spectroscopy
  • the absorption peak intensity ratio of urethane and polyol in FT-IR of the antifogging resin coating film of Example 1 is about 1.24, and the N content is about 8.6% by mass.
  • the absorption peak intensity ratio of urethane and polyol is about 1.20, and the curing reaction proceeds sufficiently at a curing temperature of 115 ° C., so that the N content is about the same as in Example 1. Presumed.
  • the FT-IR urethane / polyol ratio of the antifogging resin coating film of Example 3 was about 1.09, and the N content was about 7.4% by mass.
  • the antifogging resin coating film of Examples 1 to 3 is excellent, when compared with the urethane / polyol ratio of Comparative Examples 1 and 2, it is higher than the value of 0.94 of the uncured product of Comparative Example 1,
  • the urethane / polyol ratio which is lower than the value 2.75 of the hard coat film of Comparative Example 2 and is considered to correspond to the above range of crosslink density is within an appropriate range.
  • Anti-fogging coated articles in which an anti-fogging urethane resin coating film is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base with excellent chemical resistance include, for example, protective glasses and face protection surfaces It can be used for such applications.

Abstract

An article coated with an antifogging coating, having an antifogging coating film for polyurethane resin compositions having an (AB) n-type multi-block copolymer basic structure comprising a diisocyanate component (A) indicated by chemical formula (1) and a branched diol component and/or a straight-chain diol component, as a diol component (B), said antifogging coating film being formed upon, as a polycyclohexylenedimethylene terephthalate copolyester resin, a poly (1, 4-cyclohexylenedimethylene terephthalate) copolyester resin base material including a terephthalic acid (TPA) or dimethyl teraphthlate (DMA) residue, a 1,4-cyclohexane dimethanol (CHDM) residue, and a 2,2-4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) residue.

Description

耐久性に優れた防曇性コーティング被覆物品Anti-fogging coated article with excellent durability
 ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂基材に、防曇性コーティング被膜を形成した防曇性コーティング被覆物品に関する。特に、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂に防曇性のウレタン樹脂コーティング被膜を形成した防曇性コーティング被覆物品に関する。 The present invention relates to an antifogging coating-coated article in which an antifogging coating film is formed on a polycyclohexylenedimethylene terephthalate copolyester resin base material. In particular, the present invention relates to an antifogging coated article in which an antifogging urethane resin coating film is formed on poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin.
 偏光レンズ用途に使用されるポリカーボネート等の樹脂基材に、熱接合性樹脂シート基材として、ポリエステル樹脂(トライタンTX2001と呼称されるイーストマンケミカル社製のポリエステル樹脂)が用いられ、偏光レンズに防曇性コーティング被膜を形成することが開示されている(特許文献1)。光学用途等に使用される同種の熱可塑性脂環式コポリエステル樹脂基材(イーストマンケミカル社製、商品名「Tritan」)にポリウレタンプライマー層及びシリコーンワニスから構成される被膜を形成することが開示されている(特許文献2)。ここで、上記のコポリエステル樹脂は、脂肪族である2種のアルコールと1種の酸との重縮合から得られる脂環式コポリエステル類として定義されるものである。 Polyester resin (polyester resin manufactured by Eastman Chemical Co., Ltd., called Tritan TX2001) is used as a heat-bonding resin sheet base material for resin base materials such as polycarbonate used for polarizing lens applications. It is disclosed that a cloudy coating film is formed (Patent Document 1). Disclosure of forming a film composed of a polyurethane primer layer and a silicone varnish on the same type of thermoplastic alicyclic copolyester resin substrate (trade name “Tritan” manufactured by Eastman Chemical Co., Ltd.) used for optical applications, etc. (Patent Document 2). Here, the above-mentioned copolyester resins are defined as alicyclic copolyesters obtained by polycondensation of two types of aliphatic alcohols and one type of acid.
 一般的に、界面活性剤を含有する水溶性樹脂組成物の被膜は、親水性があるため、初期防曇性は良好であるが、水拭きや乾拭きなどの耐久性や樹脂基材との付着性が十分ではないという問題があった。また、防曇性ビニル樹脂組成物中の架橋剤として作用するイソシアネート基を有するウレタン樹脂に、イソシアネート基を有する架橋剤として、例えば、イソホロンジイソシアネートまたはヘキサメチレンジイソシアネート、架橋構造を形成する水酸基を有するビニル系単量体成分として、例えば、トリメチロールアミン等、及び界面活性剤としてジアルキルスルホコハク酸塩が含まれる防曇性ビニル樹脂組成物が開示されている(特許文献3)。水溶性ビニル系単量体の架橋官能基としてN-メチロール基、N-アルコキシメチロール基を含有した防曇性樹脂コーティング組成物も開示されている(特許文献4、5)。しかし、界面活性剤と未架橋の共重合体が塗膜内から溶け出して析出するという問題があった。また、フィルム用途の防曇処理剤として界面活性剤を含むアクリル樹脂が知られている(特許文献6)。 In general, the coating of a water-soluble resin composition containing a surfactant is hydrophilic, so the initial antifogging property is good, but durability such as water wiping and dry wiping and adhesion to a resin substrate There was a problem that the sex was not enough. In addition, for example, isophorone diisocyanate or hexamethylene diisocyanate as a crosslinking agent having an isocyanate group as a crosslinking agent having an isocyanate group, which acts as a crosslinking agent in the antifogging vinyl resin composition, vinyl having a hydroxyl group forming a crosslinked structure. An antifogging vinyl resin composition containing, for example, trimethylolamine or the like as a system monomer component and a dialkylsulfosuccinate as a surfactant is disclosed (Patent Document 3). An antifogging resin coating composition containing an N-methylol group or an N-alkoxymethylol group as a crosslinking functional group of a water-soluble vinyl monomer is also disclosed (Patent Documents 4 and 5). However, there is a problem that the surfactant and the uncrosslinked copolymer are dissolved from the coating film and deposited. Moreover, the acrylic resin containing surfactant is known as an anti-fogging processing agent for a film use (patent document 6).
 しかしながら、上記の防曇性塗料組成物には、ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂基材上に形成された防曇性コーティング被膜としては、防曇耐久性及び付着性が十分ではないという問題があった。ウレタン樹脂を含む防曇性樹脂コーティング組成物では、ウレタン樹脂組成物は、イソシアネートとポリオールの重縮合反応によりコーティング被膜を形成することができるが、推奨される硬化温度が高く、ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂の耐熱温度近傍で硬化させて当該樹脂基材に形成された防曇性コーティング被膜としては、防曇耐久性及び付着性が十分ではないという問題があった。ここで、ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂とは、酸成分のテレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)、アルコールまたはジオール成分のシクロヘキサンジメタノール(CHDM)、シクロブタンジオール(CBD)を含むコポリエステル樹脂を意味し、上記のポリエステル樹脂(トライタンと呼称されるイーストマンケミカル社製のコポリエステル樹脂)を包含するものである。 However, the above antifogging coating composition has a problem that antifogging durability and adhesion are not sufficient as an antifogging coating film formed on a polycyclohexylenedimethylene terephthalate copolyester resin base material. was there. In the anti-fogging resin coating composition containing a urethane resin, the urethane resin composition can form a coating film by a polycondensation reaction of an isocyanate and a polyol, but the recommended curing temperature is high, and polycyclohexylenedimethylene is used. As an antifogging coating film formed on the resin substrate by curing near the heat-resistant temperature of the terephthalate copolyester resin, there is a problem that antifogging durability and adhesion are not sufficient. Here, polycyclohexylenedimethylene terephthalate copolyester resin is a copolymer containing acid component terephthalic acid (TPA) or dimethyl terephthalate (DMA), alcohol or diol component cyclohexanedimethanol (CHDM), or cyclobutanediol (CBD). It means a polyester resin, and includes the above-mentioned polyester resin (a copolyester resin manufactured by Eastman Chemical Co., called Tritan).
特開2012-215725号公報JP 2012-215725 A 特表2013-521157号公報Special table 2013-521157 gazette 特開2010-150351号公報JP 2010-150351 A 特開2004-250601号公報Japanese Patent Laid-Open No. 2004-250601 特開2003-105255号公報JP 2003-105255 A 特開2001-247632号公報JP 2001-247632 A 国際公開WO/2012/111860号International Publication WO / 2012/111860 特開2003-026867号公報Japanese Patent Laid-Open No. 2003-026867 特開2009-256124号公報JP 2009-256124 A 特開平9-059603号公報Japanese Patent Laid-Open No. 9-059603
 上記の防曇性コーティング被膜に関する課題に鑑みて、本発明は、耐薬品性に優れた透明樹脂である、ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂、特にポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に耐久性及び付着性の良好な防曇性コーティング被膜を形成した防曇性コーティング物品を提供することを目的とする。例えば、本出願人による国際公開WO/2012/111860号に開示された紫外線吸収剤及び加水分解防止剤を添加剤として含有する耐候性処方を施したポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂であることが好ましい。 In view of the above-mentioned problems related to the anti-fogging coating film, the present invention provides a polycyclohexylene dimethylene terephthalate copolyester resin, particularly poly (1,4-cyclohexylene dimethylene terephthalate), which is a transparent resin excellent in chemical resistance. ) An object of the present invention is to provide an antifogging coated article in which an antifogging coating film having good durability and adhesion is formed on a copolyester resin substrate. For example, poly (1,4-cyclohexylenedimethylene terephthalate) having a weather resistance formulation containing an ultraviolet absorber and a hydrolysis inhibitor disclosed in International Publication WO / 2012/111860 by the present applicant as additives. A copolyester resin is preferred.
 本発明において、防曇性コーティング被膜を形成する基材として、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、好ましくは、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含む。ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、より好ましくは、テレフタル酸(TPA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を16mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を32mol%含む。 In the present invention, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin as the base material for forming the antifogging coating film preferably has a terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue. 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15-20 mol%, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue 30-35 mol% Including. The poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is more preferably 50 mol% terephthalic acid (TPA) residue, 16 mol% 1,4-cyclohexanedimethanol (CHDM) residue, and It contains 32 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue.
 本発明は、下記の化学式1で示される、下記の化学式2及び化学式3で示されるジイソシアネート成分A、ジオール成分Bとして、化学式4で示される分岐ジオール成分(ハードセグメント)、及び/又は化学式5で示される直鎖ジオール成分(ソフトセグメント)あるいは化学式6で示される側鎖ジオール成分から構成される(AB)n型マルチブロック共重合体の基本構造を有するポリウレタン樹脂組成物の防曇性コーティング被膜を、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含むポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に形成したことを特徴とする防曇性樹脂コーティング被覆物品である。 In the present invention, the diisocyanate component A and the diol component B represented by the following chemical formulas 2 and 3 represented by the following chemical formula 1, the branched diol component (hard segment) represented by the chemical formula 4, and / or the chemical formula 5 An antifogging coating film of a polyurethane resin composition having a basic structure of an (AB) n-type multi-block copolymer composed of a linear diol component (soft segment) or a side chain diol component represented by Chemical Formula 6 Terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15 to 20 mol%, and 2,2-4,4-tetramethyl-1 Poly (1,1,3-cyclobutanediol (TMCD) residues containing 30-35 mol% - a anti-fogging resin coating coated article characterized by being formed in-cyclohexylene dimethylene terephthalate) copolyester resin substrate.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ここで、防曇剤に用いられるジイソシアネート成分として、公知の鎖状脂肪族ポリイソシアネート類、例えば、ウレタン基(NCO基)間を直鎖もしくは分岐鎖のアルキレン基で結合した構造を有するポリイソシアネート化合物、及び、環状鎖状脂肪族ポリイソシアネート類、例えば、ウレタン基(NCO基)の間に結合するアルキレン基が環状構造を有するポリイソシアネート化合物であってもよい。鎖状脂肪族ポリイソシアネート類としては、メチレンジイソシアネート、エチレンジイソシアネート、トリメチレンジイソシアネート、1-メチルエチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート等のジイソシアネート、及びエステル化物が例示される。環状脂肪族ポリイソシアネート類としては、シクロヘキサンジイソシアネート(異性体を含む)、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジシクロヘキシルメチルメタンジイソシアネート、水素化トリレンジイソシアネート、水素化キシリレンジイソシアネート等、及び、芳香族ポリイソシアネート類が例示される(特許文献8参照)。 Here, as the diisocyanate component used in the antifogging agent, a known chain aliphatic polyisocyanate, for example, a polyisocyanate compound having a structure in which a urethane group (NCO group) is bonded with a linear or branched alkylene group And cyclic chain aliphatic polyisocyanates, for example, polyisocyanate compounds in which an alkylene group bonded between urethane groups (NCO groups) has a cyclic structure. Examples of chain aliphatic polyisocyanates include methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, 1-methylethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, and esterified products. Is done. Cycloaliphatic polyisocyanates include cyclohexane diisocyanate (including isomers), isophorone diisocyanate, dicyclohexylmethane diisocyanate, dicyclohexylmethylmethane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, and aromatic polyisocyanates. Is exemplified (see Patent Document 8).
 ここで、防曇性被膜を形成するポリオールとしては、適当量の吸水成分を含むオキシアルキレン系ポリオール、例えば、オキシエチレン/オキシプロピレン共重合体ポリオール、ポリエチレングリコールが例示され、短鎖ポリオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール等、及びこれらの異性体が例示される(特許文献9参照)。 Here, examples of the polyol forming the antifogging film include oxyalkylene-based polyols containing an appropriate amount of water-absorbing components, such as oxyethylene / oxypropylene copolymer polyols and polyethylene glycols. Examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and the isomers thereof (see Patent Document 9).
 式1において、R1は、直鎖または環状の置換もしくは非置換アルキル基であって、一般にはC2nで表わされ、nは1以上の整数であり、好ましくは1~10の整数である。R2は、分岐した置換もしくは非置換アルコキシ基であって、一般にはCH・(CHO)で表わされ、n、mはn+m=4を満たす整数である。R3は、直鎖状の置換もしくは非置換グリコール基であって、一般には(CHCHO)で表わされ、nは1以上の整数であり、好ましくは1~10の整数である。 In Formula 1, R1 is a linear or cyclic substituted or unsubstituted alkyl group and is generally represented by C n H 2n , where n is an integer of 1 or more, preferably an integer of 1 to 10 is there. R2 is a branched substituted or unsubstituted alkoxy group and is generally represented by CH n · (CH 2 O) m , where n and m are integers satisfying n + m = 4. R3 is a linear substituted or unsubstituted glycol group, generally represented by (CH 2 CH 2 O) n , where n is an integer of 1 or more, preferably an integer of 1 to 10 .
 本発明の一つの態様によれば、(AB)n型マルチブロック共重合体のポリウレタン樹脂の基本構造は、例えば、ジイソシアネート成分Aとして以下の化学式2及び化学式3で示される1,6-ヘキサメチレンジイソシアネート及び/又はイソホロンジイソシアネート、ジオール成分Bとして以下の化学式4で示されるトリメチロールエタンあるいはトリメチロールプロパン、及び/又は化学式5で示されるポリエチレングリコールまたはヘプタエチレングリコールを含むポリエーテル系ウレタン樹脂組成物であって、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる基材上に、構造単位中に前記ジイソシアネート成分Aとして1,6-ヘキサメチレンジイソシアネート及びイソホロンジイソシアネート60~70mol%、前記ジオール成分Bとしてトリメチロールエタン及びポリエチレングリコール30~40mol%から構成される上記ウレタン樹脂組成物の塗膜を形成し、100℃~130℃未満、好ましくは110℃~120℃の硬化温度でコーティング被膜として形成される。 According to one embodiment of the present invention, the basic structure of the polyurethane resin of (AB) n-type multi-block copolymer is, for example, 1,6-hexamethylene represented by the following chemical formula 2 and chemical formula 3 as the diisocyanate component A: A polyether-based urethane resin composition containing diisocyanate and / or isophorone diisocyanate, trimethylolethane or trimethylolpropane represented by the following chemical formula 4 as the diol component B, and / or polyethylene glycol or heptaethylene glycol represented by the chemical formula 5 1,6-hexamethylene diisocyanate and isophorone diisocyanate as a diisocyanate component A in a structural unit on a base material comprising a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. 60 to 70 mol% of the resin composition, and a coating film of the above urethane resin composition composed of 30 to 40 mol% of trimethylolethane and polyethylene glycol as the diol component B is formed, and is 100 ° C. to less than 130 ° C., preferably 110 ° C. to It is formed as a coating film at a curing temperature of 120 ° C.
 ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に上記ウレタン樹脂組成物のコーティング被膜を形成した防曇性コーティング被覆物品は、引張特性や動的粘弾性などの被膜特性が良好であって、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材の耐熱(荷重撓み)温度が100℃~110℃であるため、上記の樹脂基材の耐熱温度近傍の適正な温度範囲で(AB)n型マルチブロック共重合体を形成し、耐久性及び付着性に優れた防曇性コーティング被覆成形品が得られる。 An antifogging coated article in which a coating film of the urethane resin composition is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material has film characteristics such as tensile properties and dynamic viscoelasticity. It is good and the heat resistance (load deflection) temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material is 100 ° C to 110 ° C. (AB) n-type multi-block copolymer is formed in a wide temperature range, and an anti-fogging coating-coated molded article having excellent durability and adhesion can be obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
式中、l、m、nは、それぞれ、構造単位-(CH-CH-O)-の繰返し単位を表す整数であって、l+m+nは10以上かつ21以下である。
Figure JPOXMLDOC01-appb-C000014
In the formula, l, m, and n are each an integer representing a repeating unit of the structural unit — (CH 2 —CH 2 —O) —, and l + m + n is 10 or more and 21 or less.
 上記のウレタン樹脂組成物においては、化学式2で示される1,6-ヘキサメチレンジイソシアネート及び化学式3で示されるイソホロンジイソシアネートを含み、これらはイソシアネートの3量体であるシアヌル酸の存在下に化学式7で示される1,6-ヘキサメチレンシアヌレート及び化学式8で示されるイソホロンシアヌレートの形態で存在する。これらのイソシアネート成分が置換基R:としてシアヌル酸に付加したシアヌレートに、化学式4で示されるトリメチロールエタンは、イソシアネートと脱水縮合によりウレタン結合を形成するとともに、化学式5で示されるポリエチレングリコールと脱水素結合によりポリオール鎖延長剤として作用する。 The urethane resin composition includes 1,6-hexamethylene diisocyanate represented by Chemical Formula 2 and isophorone diisocyanate represented by Chemical Formula 3, which are represented by Chemical Formula 7 in the presence of cyanuric acid which is a trimer of isocyanate. It exists in the form of 1,6-hexamethylene cyanurate shown and isophorone cyanurate shown in Formula 8. Trimethylolethane represented by Chemical Formula 4 forms a urethane bond by dehydration condensation with isocyanate to the cyanurate added to cyanuric acid as a substituent R: by these isocyanate components, and dehydrogenates with polyethylene glycol represented by Chemical Formula 5. It acts as a polyol chain extender by bonding.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 直鎖ジオール成分のポリエチレングリコールは、図1に模式的に示されるポリエーテル系ウレタン樹脂の基本分子構造を形成する一方で、分子鎖末端に水酸基(不図示)を有するため親水性を呈し、後述する界面活性剤とともに防曇性を発現させると考えられる。 Polyethylene glycol, which is a linear diol component, forms the basic molecular structure of the polyether-based urethane resin schematically shown in FIG. 1, while having a hydroxyl group (not shown) at the end of the molecular chain, exhibits hydrophilicity, and will be described later. It is thought that anti-fogging properties are developed together with the surfactant.
 ここで、防曇性組成物に用いられる界面活性剤として、陰イオン系界面活性剤、陽イオン系界面活性剤、非イオン系界面活性剤のいずれも知られている。陰イオン系界面活性剤としては、例示的にはラウリル硫酸ナトリウム等の高級アルコール硫酸エステル類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ジアルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のポリオキシエチレンサルフェート塩等がある。陽イオン系界面活性剤としては、例示的にはエタノールアミン類、トリエタノールアミンモノステアレート等のギ酸塩及び酢酸塩、ラウリルトリメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド等の第4級アンモニアウム塩がある。非イオン系界面活性剤としては、ポリオキシエチレンラウリルアルコール等のポリオキシエチレン高級アルコールエーテル類、ポリオキシエチレンオクチルフェノール等のポリオキシエチレンアルキルアリールエーテル類がある(特許文献10参照)。 Here, as the surfactant used in the antifogging composition, any of an anionic surfactant, a cationic surfactant and a nonionic surfactant is known. Examples of anionic surfactants include higher alcohol sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, dialkyl sulfosuccinates, and sodium polyoxyethylene alkyl ether sulfates. Examples include polyoxyethylene sulfate salts. Illustrative examples of cationic surfactants include formates and acetates such as ethanolamines and triethanolamine monostearate, lauryltrimethylammonium chloride, dilauryldimethylammonium chloride, and lauryldimethylbenzylammonium chloride. There is a quaternary ammoniaum salt. Nonionic surfactants include polyoxyethylene higher alcohol ethers such as polyoxyethylene lauryl alcohol, and polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenol (see Patent Document 10).
 本発明の他の態様によれば、(AB)n型マルチブロック共重合体のポリウレタン樹脂組成物の基本構造は、例えば、ジイソシアネート成分Aとして上記の化学式2及び/又は化学式3で示される1,6-ヘキサメチレンジイソシアネート及び/又はイソホロンジイソシアネート、ジオール成分Bとして化学式4で示されるトリメチロールプロパン、及び化学式5あるいは化学式6で示されるヘプタエチレングリコールあるいはポリオキシエチレングリセリルエーテルを含むポリエーテル系ウレタン樹脂組成物を、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる基材上に、構造単位中に前記ジイソシアネート成分Aとしてイソホロンジイソシアネート42~50mol%、前記ジオール成分Bとしてトリメチロールプロパン14~16mol%、及びヘプタエチレングリコール36~42mol%から構成されるコーティング被膜として形成する。上記のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に硬化剤としてトリメチロールプロパン及びイソホロンジイソシアネートの下記の化学式9で示される付加体を含む上記ウレタン樹脂組成物の塗膜を形成し、80℃~120℃未満、好ましくは90℃~110℃未満の硬化温度でコーティング被膜として形成される。 According to another aspect of the present invention, the basic structure of the polyurethane resin composition of (AB) n-type multi-block copolymer is, for example, 1, 1 represented by the above-described chemical formula 2 and / or chemical formula 3 as the diisocyanate component A. Polyether urethane resin composition containing 6-hexamethylene diisocyanate and / or isophorone diisocyanate, trimethylolpropane represented by chemical formula 4 as diol component B, and heptaethylene glycol or polyoxyethylene glyceryl ether represented by chemical formula 5 or 6 On a substrate made of a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin, 42-50 mol% of isophorone diisocyanate as the diisocyanate component A in the structural unit, and the diol component B Trimethylolpropane 14 ~ 16 mol% Te, and is formed as a coating film composed of heptaethylene glycol 36 ~ 42 mol%. Coating film of the urethane resin composition comprising an adduct represented by the following chemical formula 9 of trimethylolpropane and isophorone diisocyanate as a curing agent on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material: And is formed as a coating film at a curing temperature of 80 ° C. to less than 120 ° C., preferably 90 ° C. to less than 110 ° C.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に上記の主剤及び付加剤を含むウレタン樹脂組成物のコーティング被膜を形成した防曇性コーティング被覆物品は、引張特性や動的粘弾性などの被膜特性が良好であって、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材の耐熱(荷重撓み)温度が90℃~110℃であるため、上記の樹脂基材の耐熱温度近傍の適正な温度範囲で、ヘプタエチレングリコールと、トリメチロールプロパンもしくはトリメチロールプロパノール及びイソホロンジイソシアネートの付加体と(AB)n型マルチブロック共重合体を形成し、耐久性及び付着性に優れた防曇性コーティング被覆成形品が得られる。 An anti-fogging coating-coated article in which a coating film of a urethane resin composition containing the above main agent and an additive is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate has tensile properties and dynamics. Since the coating properties such as viscoelasticity are good and the heat resistance (load deflection) temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate is 90 ° C. to 110 ° C., the above resin group Forms (AB) n-type multiblock copolymer with heptaethylene glycol and adducts of trimethylolpropane or trimethylolpropanol and isophorone diisocyanate in an appropriate temperature range near the heat-resistant temperature of the material, durability and adhesion An anti-fogging coating-coated molded article excellent in the above can be obtained.
 ジオール成分のヘプタエチレングリコールやポリオキシエチレングリセリルエーテルは、イソホロンジイソシアネートとトリメチロールプロパンの付加体とともに、第一の実施態様のポリエチレングリコールと同様に、図1に模式的に示されるポリエーテル系ウレタン樹脂の基本分子構造を形成する一方で、主鎖または側鎖の分子鎖末端に水酸基を有するため親水性を呈し、後述する他の界面活性剤とともに、あるいは界面活性剤成分を添加しなくても防曇性を発現させると考えられる。ポリオキシエチレングリセリルエーテルは、他の界面活性剤を加えて、より優れた防曇性を発現させると考えられる。 A diol component such as heptaethylene glycol and polyoxyethylene glyceryl ether, together with an adduct of isophorone diisocyanate and trimethylolpropane, is a polyether-based urethane resin schematically shown in FIG. 1 in the same manner as the polyethylene glycol of the first embodiment. While forming the basic molecular structure, it has a hydroxyl group at the molecular chain end of the main chain or side chain, so it is hydrophilic and can be prevented with other surfactants described later or without the addition of surfactant components. It is thought that cloudiness is developed. Polyoxyethylene glyceryl ether is considered to exhibit better antifogging properties by adding other surfactants.
 本発明の第一の実施態様において、上記のウレタン樹脂組成物の適正硬化温度は、100℃~130℃未満であって、100℃~130℃未満の処理温度、好ましくは100℃~120℃の処理温度で形成したコーティング被膜として1.5×10-5~2.0×10-4mol/cc、好ましくは5.0×10-5~2.0×10-4mol/ccの架橋密度である。上記のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材側の耐熱性を示す熱変形温度(HDT)が、低荷重(0.455MPa)において100℃~110℃、詳しくは104℃~109℃である耐熱グレードのコポリエステル樹脂に対して、コポリエステル樹脂の熱変形温度近傍の適正な温度範囲、特に熱変形温度未満の処理温度において、例えば、30~240分間維持されても、硬化反応中にコポリエステル樹脂基材が歪むことなく、コーティング被膜と樹脂基材の密着性が保持され、結果として、コポリエステル樹脂基材とウレタン樹脂コーティング被膜の間に間隙等が発生することによる耐水防曇性や付着性の低下を防止することができる。 In the first embodiment of the present invention, the proper curing temperature of the urethane resin composition is 100 ° C. to less than 130 ° C., and a processing temperature of 100 ° C. to less than 130 ° C., preferably 100 ° C. to 120 ° C. The coating film formed at the treatment temperature has a cross-linking density of 1.5 × 10 −5 to 2.0 × 10 −4 mol / cc, preferably 5.0 × 10 −5 to 2.0 × 10 −4 mol / cc. It is. The heat distortion temperature (HDT) showing the heat resistance of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is 100 ° C. to 110 ° C. at a low load (0.455 MPa). For a heat-resistant grade copolyester resin having a temperature of from ℃ to 109 ℃, even if it is maintained at an appropriate temperature range in the vicinity of the heat distortion temperature of the copolyester resin, particularly at a treatment temperature lower than the heat deformation temperature, for example, for 30 to 240 minutes. The copolyester resin base material is not distorted during the curing reaction, and the adhesion between the coating film and the resin base material is maintained. As a result, a gap or the like is generated between the copolyester resin base material and the urethane resin coating film. It is possible to prevent deterioration of the anti-fogging property and adhesion due to water.
 本発明の第二の実施態様において、上記のウレタン樹脂組成物の適正硬化温度は、80℃~120℃未満であって、80℃~120℃未満の処理温度、好ましくは90℃~110℃未満の処理温度で形成したコーティング被膜として1.0×10-4~8.0×10-4mol/cc、好ましくは5.0×10-4~7.0×10-4mol/cc程度の架橋密度である。上記のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材側の耐熱性を示す熱変形温度(HDT)が、低荷重(0.455MPa)において約90℃~110℃、詳しくは94℃~104℃であるコポリエステル樹脂に対しても、コポリエステル樹脂の熱変形温度近傍の適正な温度範囲、特に熱変形温度未満の硬化温度において、例えば、30~240分間維持されても、硬化反応中にコポリエステル樹脂基材が歪むことなく、コーティング被膜と樹脂基材の密着性が保持され、結果として、コポリエステル樹脂基材とウレタン樹脂コーティング被膜の間に間隙等が発生することによる耐水防曇性や付着性の低下を防止することができる。 In the second embodiment of the present invention, the proper curing temperature of the urethane resin composition is 80 ° C. to less than 120 ° C., and is a treatment temperature of 80 ° C. to less than 120 ° C., preferably 90 ° C. to less than 110 ° C. The coating film formed at the processing temperature of 1.0 × 10 −4 to 8.0 × 10 −4 mol / cc, preferably about 5.0 × 10 −4 to 7.0 × 10 −4 mol / cc. Crosslink density. The heat distortion temperature (HDT) showing the heat resistance of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is about 90 ° C. to 110 ° C. at low load (0.455 MPa). Even when the copolyester resin at 94 ° C. to 104 ° C. is maintained in an appropriate temperature range in the vicinity of the heat distortion temperature of the copolyester resin, particularly at a curing temperature lower than the heat deformation temperature, for example, for 30 to 240 minutes, The copolyester resin base material is not distorted during the curing reaction, and the adhesion between the coating film and the resin base material is maintained. As a result, a gap or the like is generated between the copolyester resin base material and the urethane resin coating film. It is possible to prevent water resistance and anti-fogging properties and deterioration of adhesion.
ポリエーテル系ウレタン樹脂の基本分子構造を模式的に示す図である。It is a figure which shows typically the basic molecular structure of polyether-type urethane resin. 本発明の防曇性ウレタン樹脂組成物の1H-NMRスペクトラムを示す図である。It is a figure which shows the 1H-NMR spectrum of the anti-fogging urethane resin composition of this invention. 本発明の防曇性ウレタン樹脂組成物の13C-NMRスペクトラムを示す図である。It is a figure which shows the 13C-NMR spectrum of the anti-fogging urethane resin composition of this invention. 本発明の防曇性ウレタン樹脂コーティング被膜(120℃硬化)の動的粘弾性測定結果を示す図である。It is a figure which shows the dynamic viscoelasticity measurement result of the anti-fogging urethane resin coating film (120 degreeC hardening) of this invention. 本発明の防曇性ウレタン樹脂コーティング被膜(130℃硬化)の動的粘弾性測定結果を示す図である。It is a figure which shows the dynamic viscoelasticity measurement result of the anti-fogging urethane resin coating film (130 degreeC hardening) of this invention. 本発明の防曇性ウレタン樹脂コーティング被膜(100℃硬化)の動的粘弾性測定結果を示す図である。It is a figure which shows the dynamic viscoelasticity measurement result of the anti-fogging urethane resin coating film (100 degreeC hardening) of this invention.
 本発明は、下記の化学式10で示される、ジイソシアネート成分A、ジオール成分Bとして分岐ジオール成分(ハードセグメント)、及び/又は直鎖ジオール成分(ソフトセグメント)から構成される(AB)n型マルチブロック共重合体の基本構造を有するポリウレタン樹脂組成物の防曇性コーティング被膜を、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂としてテレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含む基材に形成した防曇性コーティング被覆物品である。添加剤として、紫外線吸収剤及び加水分解防止剤を含有する耐候性処方を施したポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂であることが好ましい(特許文献7参照)。 The present invention is an (AB) n-type multiblock composed of a diisocyanate component A, a diol component B, a branched diol component (hard segment), and / or a linear diol component (soft segment) represented by the following chemical formula 10 An anti-fogging coating film of a polyurethane resin composition having a basic copolymer structure is used as a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin with terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues. 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15-20 mol%, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue 30-35 mol% An anti-fogging coating-coated article formed on a substrate containing . The additive is preferably a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin that has been subjected to a weather resistance formulation containing an ultraviolet absorber and a hydrolysis inhibitor (see Patent Document 7).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<基材>
 防曇性コーティング被覆成形品を構成する基材は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる。例示的には、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)、1,4-シクロヘキサンジメタノール(CHDM)及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)から構成される。防曇性コーティング被覆成形品は、耐熱グレードのポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に防曇性ウレタン樹脂組成物を塗布してコーティング被膜を形成した防曇性コーティング被覆物品である。
<Base material>
The base material constituting the antifogging coating-coated article is made of poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. Illustratively, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin comprises terephthalic acid (TPA) or dimethyl terephthalate (DMA), 1,4-cyclohexanedimethanol (CHDM), and 2,2- It is composed of 4,4-tetramethyl-1,3-cyclobutanediol (TMCD). The antifogging coating-coated product is an antifogging coating in which a coating film is formed by applying an antifogging urethane resin composition to a heat-resistant poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material. It is a coated article.
 防曇性コーティング被膜を形成する樹脂基材として、耐熱グレードのポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、好ましくは、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含む。ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、より好ましくは、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を16mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を32mol%含む。残余は、上記のコポリエステル樹脂の共重合時に生成するエステル誘導体である。他のポリエステル系樹脂成分、例えば、ポリブチレンテレフタレート(PBT)やポリエチレンテレフタレート(PET)等を含むコポリエステル樹脂であってもよい。 As a resin base material for forming an anti-fogging coating film, a heat-resistant poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin preferably has a terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue. 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue 15-20 mol%, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue 30-35 mol% Including. More preferably, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin contains 50 mol% of terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues and 1,4-cyclohexanedimethanol (CHDM) residues. And 16 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue. The remainder is an ester derivative produced during the copolymerization of the copolyester resin. It may be a copolyester resin containing other polyester resin components, for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), or the like.
 上記の組成からなるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、テレフタル酸(TPA)と2,2-4,4-テトラメチル-1,3-シクロブタンジオール化合物(TMCD)のエステル化率が高く、耐熱性を示す熱変形(荷重撓み)温度(HDT)が、低荷重(0.455MPa)において100℃~110℃、例えば、104℃~109℃である。 A poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin having the above composition comprises terephthalic acid (TPA) and 2,2-4,4-tetramethyl-1,3-cyclobutanediol compound (TMCD). The heat deformation (load deflection) temperature (HDT) showing a high esterification rate and heat resistance is 100 ° C. to 110 ° C., for example, 104 ° C. to 109 ° C. at a low load (0.455 MPa).
 防曇性コーティング被膜を形成する基材として、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、ポリカーボネート(PC)樹脂成分を含むコポリエステル樹脂であってもよい。例示的には、通常グレードのポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、好ましくは、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を8~15mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を35~42mol%含む。 As a base material for forming an antifogging coating film, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin may be a copolyester resin containing a polycarbonate (PC) resin component. Illustratively, the normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin preferably contains 50 mol% terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues, 1,4-cyclohexane. It contains 8-15 mol% of dimethanol (CHDM) residues and 35-42 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residues.
 防曇性コーティング被膜を形成する基材として、通常グレードのポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、より好ましくは、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を10mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を38mol%含む。 As a base material for forming an antifogging coating film, a normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin more preferably contains terephthalic acid (TPA) or dimethyl terephthalate (DMA) residues. 50 mol%, 10 mol% of 1,4-cyclohexanedimethanol (CHDM) residue, and 38 mol% of 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue.
 一つの実施形態では、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂組成物は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂100重量部に対して、ポリカーボネート樹脂が、10~30重量%、好ましくは、20~30重量%含有される。ポリカーボネート樹脂/コポリエステル樹脂の混合比が、10重量%未満の場合には、耐熱性が低下する。ポリカーボネート樹脂/コポリエステル樹脂の混合比が、30重量%超過の場合には、耐薬品性が低下する。防曇性コーティング被覆成形品は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂にポリカーボネート樹脂を含むコポリエステル樹脂基材に防曇性ウレタン樹脂組成物を塗布してコーティング被膜を形成した防曇性コーティング被覆物品である。 In one embodiment, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin composition contains 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin with respect to the polycarbonate resin. It is contained in an amount of 10 to 30% by weight, preferably 20 to 30% by weight. When the mixing ratio of polycarbonate resin / copolyester resin is less than 10% by weight, the heat resistance is lowered. When the mixing ratio of polycarbonate resin / copolyester resin is more than 30% by weight, chemical resistance is lowered. Anti-fogging coating coated molded product is formed by coating anti-fogging urethane resin composition on copolyester resin base material containing polycarbonate resin on poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. An anti-fogging coated article.
 上記の組成からなるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂にポリカーボネート樹脂を含むコポリエステル樹脂基材は、耐熱性を示す熱変形(荷重撓み)温度(HDT)が、例えば、低荷重(0.455MPa)において104℃~109℃である。ポリカーボネート樹脂/コポリエステル樹脂の混合比が、10重量%未満の場合には、耐熱性が低下する。ポリカーボネート樹脂/コポリエステル樹脂の混合比が、30重量%超過の場合には、耐薬品性が低下する(例えば、国際公開WO/2013/065740号参照)。 A copolyester resin base material containing a polycarbonate resin in a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin having the above composition has a heat deformation (load deflection) temperature (HDT) exhibiting heat resistance, for example, It is 104 ° C to 109 ° C at a low load (0.455 MPa). When the mixing ratio of polycarbonate resin / copolyester resin is less than 10% by weight, the heat resistance is lowered. When the mixing ratio of polycarbonate resin / copolyester resin is more than 30% by weight, the chemical resistance decreases (for example, see International Publication WO / 2013/065740).
<防曇性ウレタン樹脂組成物>
 本実施形態における防曇性ウレタン樹脂組成物は、(AB)n型マルチブロック共重合体の基本構造を形成するポリウレタン樹脂組成物であって、ジイソシアネート成分A、ジオール成分Bとして低分子分岐ジオール成分(ハードセグメント)、及び/又は高分子直鎖ジオール成分(ソフトセグメント)から構成される。
<Anti-fogging urethane resin composition>
The antifogging urethane resin composition in the present embodiment is a polyurethane resin composition that forms the basic structure of the (AB) n-type multi-block copolymer, and the diisocyanate component A and the diol component B are low molecular branched diol components. (Hard segment) and / or polymer linear diol component (soft segment).
 ここで、ジイソシアネート成分Aとは、一分子内に2つもしくは2以上のイソシアネート基を、好ましくは分子鎖の末端に有するジイソシアネート化合物及びそれらの誘導体を包含する。ジオール成分Bの低分子分岐ジオール成分とは、一分子内に2つもしくは3以上の水酸基を、好ましくは分子鎖の末端に有するジオール化合物及びそれらの誘導体である。ジオール成分Bの高分子直鎖ジオール成分とは、一分子内に2つもしくは2以上の水酸基を、好ましくは分子鎖の末端に有するジオール化合物及びそれらの誘導体である。 Here, the diisocyanate component A includes diisocyanate compounds having two or more isocyanate groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof. The low-molecular branched diol component of the diol component B is a diol compound having two or three or more hydroxyl groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof. The polymer linear diol component of the diol component B is a diol compound having two or more hydroxyl groups in one molecule, preferably at the end of the molecular chain, and derivatives thereof.
 本実施形態では、ポリウレタン樹脂組成物は、下記の化学式11で示されるジイソシアネート成分A、ジオール成分Bとして、化学式12で示される低分子ジオール成分b1、及び/又は、化学式13で示される高分子ジオール成分b2を含むポリエーテル系ウレタン樹脂組成物である。 In the present embodiment, the polyurethane resin composition includes a low molecular diol component b1 represented by the chemical formula 12 and / or a polymer diol represented by the chemical formula 13 as the diisocyanate component A and the diol component B represented by the following chemical formula 11. It is a polyether-based urethane resin composition containing component b2.
Figure JPOXMLDOC01-appb-C000019
 式中、R1は、直鎖または環状の置換もしくは非置換基である。R1は、好ましくは、直鎖または環状の置換もしくは非置換アルキル基であり、一般にはC2nで表わされ、nは1以上の整数、好ましくは1~10の整数である。
Figure JPOXMLDOC01-appb-C000019
In the formula, R1 is a linear or cyclic substituted or unsubstituted group. R1 is preferably a linear or cyclic substituted or unsubstituted alkyl group, generally represented by C n H 2n , where n is an integer of 1 or more, preferably an integer of 1 to 10.
Figure JPOXMLDOC01-appb-C000020
 式中、R2は、分岐した置換もしくは非置換基である。R2は、好ましくは、分岐した置換もしくは非置換アルコキシ基であり、一般にはCH・(CHO)で表わされ、n、mはn+m=4を満たす整数である。
Figure JPOXMLDOC01-appb-C000020
In the formula, R2 is a branched substituted or unsubstituted group. R2 is preferably a branched substituted or unsubstituted alkoxy group, generally represented by CH n · (CH 2 O) m , where n and m are integers satisfying n + m = 4.
Figure JPOXMLDOC01-appb-C000021
 式中、R3は、直鎖状の置換もしくは非置換基である。R3は、好ましくは、直鎖状の置換もしくは非置換グリコール基であり、一般には(CHCHO)で表わされ、nは1以上の整数、好ましくは1~10の整数である。
Figure JPOXMLDOC01-appb-C000021
In the formula, R3 is a linear substituted or unsubstituted group. R3 is preferably a linear substituted or unsubstituted glycol group, generally represented by (CH 2 CH 2 O) n , where n is an integer of 1 or more, preferably an integer of 1 to 10 .
 化学式11で示されるジイソシアネート成分Aが、ジオール成分Bとして、化学式12で示される低分子分岐ジオール成分(ハードセグメント)と架橋するとともに、化学式13で示される高分子直鎖ジオール成分(ソフトセグメント)が付加して化学式14で示される(AB)n型マルチブロック共重合体の基本構造が構成される。(AB)n型マルチブロック共重合体は、分子構造単位として、低分子分岐ジオール成分b1、高分子直鎖ジオール成分b2は、化学式11で示されるジイソシアネート成分Aのイソシアネート基と結合して、模式的に図1に示す分岐型単量体ポリオールの架橋構造を有する。化学式13で示される直鎖ジオール成分(ソフトセグメント)は、主鎖の末端基にOH基が配置されたジオール成分だけではなく、例えば、側鎖の一部のアルキル基に配置されたOH基を有するジオール成分、ポリオキシエチレングリセリルエーテルなどを含む。 The diisocyanate component A represented by the chemical formula 11 is crosslinked as the diol component B with the low molecular branched diol component (hard segment) represented by the chemical formula 12, and the polymer linear diol component (soft segment) represented by the chemical formula 13 In addition, the basic structure of the (AB) n-type multi-block copolymer represented by Chemical Formula 14 is constructed. (AB) The n-type multi-block copolymer has a low molecular branched diol component b1 and a high molecular linear diol component b2 as molecular structural units bonded to the isocyanate group of the diisocyanate component A represented by the chemical formula 11, Specifically, it has a crosslinked structure of the branched monomer polyol shown in FIG. The straight chain diol component (soft segment) represented by Chemical Formula 13 is not limited to a diol component in which an OH group is disposed at the end group of the main chain, but includes, for example, an OH group disposed in a partial alkyl group of the side chain. A diol component having polyoxyethylene glyceryl ether and the like.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 好ましい実施態様では、ウレタン樹脂組成物は、(AB)n型マルチブロック共重合体のポリウレタン樹脂の基本構造を有するポリエーテル系ウレタン樹脂組成物である。例えば、化学式11で示されるジイソシアネート成分Aとして以下の化学式15の1,6-ヘキサメチレンジイソシアネート及び/又は化学式16のイソホロンジイソシアネート、化学式12で示されるジオール成分Bの低分子ジオール成分b1として、化学式17のトリメチロールエタンあるいはトリメチロールプロパン、及び/又は、化学式13で示される高分子ジオール成分b2として化学式18のポリエチレングリコールまたはヘプタエチレングリコールを含むポリエーテル系ウレタン樹脂組成物である。前記ポリエーテル系ウレタン樹脂組成物は、ジイソシアネート成分Aとして化学式16で示されるイソホロンジイソシアネート、ジオール成分Bとして化学式17で示される低分子ジオール成分のトリメチロールプロパン、及び/又は、化学式18あるいは化学式19で示される高分子ジオール成分のヘプタエチレングリコールあるいはポリオキシエチレングリセリルエーテルを含むウレタン樹脂組成物を含む。 In a preferred embodiment, the urethane resin composition is a polyether urethane resin composition having a basic structure of a polyurethane resin of (AB) n type multi-block copolymer. For example, as the diisocyanate component A represented by the chemical formula 11, 1,6-hexamethylene diisocyanate of the following chemical formula 15 and / or isophorone diisocyanate of the chemical formula 16, and as the low molecular diol component b1 of the diol component B represented by the chemical formula 12, the chemical formula 17 A polyether-based urethane resin composition containing trimethylolethane or trimethylolpropane, and / or polyethylene glycol or heptaethylene glycol of formula 18 as the polymer diol component b2 represented by formula 13. The polyether-based urethane resin composition is composed of isophorone diisocyanate represented by the chemical formula 16 as the diisocyanate component A, trimethylolpropane of the low molecular diol component represented by the chemical formula 17 as the diol component B, and / or the chemical formula 18 or the chemical formula 19. A urethane resin composition containing heptaethylene glycol or polyoxyethylene glyceryl ether of the polymer diol component shown is included.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 式中、l、m、nは、それぞれ、構造単位-(CH-CH-O)-の繰返し単位を表す整数であって、l+m+nは10以上かつ21以下である。
Figure JPOXMLDOC01-appb-C000027
In the formula, l, m, and n are each an integer representing a repeating unit of the structural unit — (CH 2 —CH 2 —O) —, and l + m + n is 10 or more and 21 or less.
 上記のウレタン樹脂組成物を基材上にコーティングして形成される被膜において、構造単位中に、好ましくは、前記ジイソシアネート成分Aとして化学式15で示される1,6-ヘキサメチレンジイソシアネート及び化学式16で示されるイソホロンジイソシアネート60~70mol%、ジオール成分Bとして低分子ジオール成分及び高分子ジオール成分として化学式17で示されるトリメチロールエタン及び/又は化学式18で示されるポリエチレングリコール30~40mol%から構成される。あるいは化学式18で示されるヘプタエチレングリコールもしくは化学式19で示されるポリオキシエチレングリセリルエーテルを含むことができる。 In the film formed by coating the above urethane resin composition on a substrate, the structural unit preferably has 1,6-hexamethylene diisocyanate represented by the chemical formula 15 as the diisocyanate component A and the chemical formula 16. It is composed of 60 to 70 mol% of isophorone diisocyanate, a low molecular diol component as the diol component B, and trimethylolethane represented by the chemical formula 17 as the diol component and / or 30 to 40 mol% of the polyethylene glycol represented by the chemical formula 18. Alternatively, heptaethylene glycol represented by Chemical Formula 18 or polyoxyethylene glyceryl ether represented by Chemical Formula 19 can be included.
 防曇性ウレタン樹脂組成物は、一つの実施形態では、1液熱硬化型樹脂組成物であり、前記ジイソシアネート成分Aとして1,6-ヘキサメチレンジイソシアネート14mol%、及びイソホロンジイソシアネート52mol%、前記低分子ジオール成分B及び高分子ジオール成分Cとしてトリメチロールエタン21mol%及びポリエチレングリコール14mol%から構成される。 In one embodiment, the antifogging urethane resin composition is a one-component thermosetting resin composition, and as the diisocyanate component A, 1,6-hexamethylene diisocyanate 14 mol%, isophorone diisocyanate 52 mol%, the low molecular weight The diol component B and the polymer diol component C are composed of 21 mol% trimethylolethane and 14 mol% polyethylene glycol.
 上記のウレタン樹脂組成物は、有効成分として、以下の有機溶剤中に、好ましくは20~30重量%含有される。適当な有機溶媒としては、例えば、1-メトキシ-2-プロパノール、2-メトキシ-1-メチルエチルアセテート、ジアセトンアルコール、及びトルエンであり、これらを組み合わせて用いることが好ましい。溶媒として、好ましくは、1-メトキシ-2-プロパノール30~60重量%、2-メトキシ-1-メチルエチルアセテート1~5重量%、ジアセトンアルコール10~30重量%を含み、トルエンが1重量%未満含まれてもよい。 The above urethane resin composition is preferably contained as an active ingredient in the following organic solvent in an amount of 20 to 30% by weight. Suitable organic solvents are, for example, 1-methoxy-2-propanol, 2-methoxy-1-methylethyl acetate, diacetone alcohol, and toluene, and these are preferably used in combination. The solvent preferably contains 30 to 60% by weight of 1-methoxy-2-propanol, 1 to 5% by weight of 2-methoxy-1-methylethyl acetate, 10 to 30% by weight of diacetone alcohol, and 1% by weight of toluene. Less than may be included.
 上記のウレタン樹脂組成物においては、化学式2及び化学式3で示されるイソシアネート成分として1,6-ヘキサメチレンジイソシアネート及び/又はイソホロンジイソシアネートを含み、これらはイソシアネートの3量体であるシアヌル酸の存在下に化学式20で示される1,6-ヘキサメチレンシアヌレート及び化学式21で示されるイソホロンシアヌレートの形態で存在する。これらのイソシアネート成分が置換基R:としてシアヌル酸に付加したシアヌレートに、ジオール成分として、化学式4で示される低分子分岐ジオール成分であるトリメチロールエタンは、イソシアネートと脱水縮合によりウレタン結合を形成するとともに、化学式5で示される高分子直鎖ジオール成分であるポリエチレングリコールと脱水素結合によりポリオール鎖延長剤として作用する。高分子直鎖ジオール成分のポリエチレングリコールは、図1に模式的に示されるポリエーテル系ウレタン樹脂の基本分子構造を形成する一方で、分子鎖末端に親水基である水酸基を有するため、後述する界面活性剤とともに防曇性を発現させると考えられる。 The above urethane resin composition contains 1,6-hexamethylene diisocyanate and / or isophorone diisocyanate as the isocyanate component represented by Chemical Formula 2 and Chemical Formula 3, and these in the presence of cyanuric acid which is a trimer of isocyanate. It exists in the form of 1,6-hexamethylene cyanurate represented by the chemical formula 20 and isophorone cyanurate represented by the chemical formula 21. Trimethylolethane, which is a low molecular branched diol component represented by Chemical Formula 4, forms a urethane bond by dehydration condensation with isocyanate, to the cyanurate added to cyanuric acid as a substituent R: these isocyanate components as a diol component. It acts as a polyol chain extender by dehydrogenation with polyethylene glycol, which is a polymer linear diol component represented by Chemical Formula 5. Polyethylene glycol, which is a polymer linear diol component, forms the basic molecular structure of the polyether-based urethane resin schematically shown in FIG. 1, while having a hydroxyl group that is a hydrophilic group at the end of the molecular chain. It is thought that anti-fogging properties are developed together with the active agent.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<ブロッキング剤>
 上記のウレタン樹脂組成物は、ブロッキング剤としてフェノール類、ピラゾール類などの芳香族水酸基含有化合物を含んでもよく、好ましくは3,5-ジメチルピラゾールを含有する。3,5-ジメチルピラゾールは、例えば、化学式22及び化学式23に表されるように、イソシアネート成分の1,6-ヘキサメチレンジイソシアネート及びイソホロンジイソシアネートに結合する。3,5-ジメチルピラゾールは、常温から適当な硬化温度に至るまでのポリオール成分との重縮合反応を防止して、常温では安定な1液硬化型ウレタン樹脂組成物が得られる。
<Blocking agent>
The urethane resin composition may contain an aromatic hydroxyl group-containing compound such as phenols and pyrazoles as a blocking agent, and preferably contains 3,5-dimethylpyrazole. 3,5-dimethylpyrazole binds to the isocyanate components 1,6-hexamethylene diisocyanate and isophorone diisocyanate, for example, as shown in Chemical Formula 22 and Chemical Formula 23. 3,5-dimethylpyrazole prevents a polycondensation reaction with a polyol component from normal temperature to an appropriate curing temperature, and a one-component curable urethane resin composition that is stable at normal temperature can be obtained.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<界面活性剤>
 上記のウレタン樹脂組成物は、上述した防曇性を有する組成物における界面活性剤成分として公知の非イオン系界面活性剤、陽イオン系界面活性剤、陰イオン系界面活性剤を含んでもよく、例えば、陰イオン界面活性剤であるジアルキルスルホン酸塩として10~20重量%を含有する。好ましくは、化学式24で示されるジ(2-エチルヘキシル)スルホコハク酸ナトリウムは、上記の有機溶媒中に有効成分として好ましくは5~10重量%含有される。ジ(2-エチルヘキシル)スルホコハク酸ナトリウムは、有機溶媒中における安定化剤として作用するとともに、ウレタン樹脂組成物のコーティング被膜において、スルホン酸基とカルボキシル基とを有する親水性化合物として防曇性を発現するための有効成分である。
<Surfactant>
The urethane resin composition may contain a known nonionic surfactant, a cationic surfactant, and an anionic surfactant as a surfactant component in the composition having antifogging properties described above. For example, it contains 10 to 20% by weight as a dialkyl sulfonate which is an anionic surfactant. Preferably, sodium di (2-ethylhexyl) sulfosuccinate represented by the chemical formula 24 is preferably contained in the above organic solvent as an active ingredient in an amount of 5 to 10% by weight. Sodium di (2-ethylhexyl) sulfosuccinate acts as a stabilizer in an organic solvent and exhibits antifogging properties as a hydrophilic compound having a sulfonic acid group and a carboxyl group in a coating film of a urethane resin composition. It is an active ingredient to do.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 防曇性ウレタン樹脂組成物は、他の実施形態では、2液熱硬化型樹脂組成物であり、前記ジイソシアネート成分Aとして化学式16で示されるイソホロンジイソシアネート42~50mol%、前記ジオール成分Bとして化学式17で示されるトリメチロールプロパン14~16mol%及び化学式18で示されるヘプタエチレングリコール36~42mol%から構成される熱硬化型樹脂組成物である。2液熱硬化型樹脂組成物は、前記ジイソシアネート成分Aとして化学式16で示されるイソホロンジイソシアネート、前記ジオール成分Bとして化学式17で示されるトリメチロールプロパン、化学式18で示されるヘプタエチレングリコールの置換物として化学式19で示されるポリオキシエチレングリセリルエーテルを含む熱硬化型樹脂組成物であってもよい。なお、化学式24で示されるジ(2-エチルヘキシル)スルホコハク酸ナトリウムは、下記の化学式25で示されるポリオキシエチレングリセリルエーテルを含む2液熱硬化型樹脂組成物にあっても、防曇性を発現するための有効成分であると考えられる。この場合、上記の化学式24で示されるジ(2-エチルヘキシル)スルホコハク酸ナトリウムは、有機溶媒中に有効成分として好ましくは4.7重量%程度含有される。 In another embodiment, the antifogging urethane resin composition is a two-component thermosetting resin composition, the diisocyanate component A being 42 to 50 mol% of isophorone diisocyanate represented by the chemical formula 16, and the diol component B being the chemical formula 17 Is a thermosetting resin composition composed of 14 to 16 mol% of trimethylolpropane represented by formula (36) and 36 to 42 mol% of heptaethylene glycol represented by the chemical formula (18). The two-component thermosetting resin composition has a chemical formula as a substitute for isophorone diisocyanate represented by chemical formula 16 as the diisocyanate component A, trimethylolpropane represented by chemical formula 17 as the diol component B, and heptaethylene glycol represented by chemical formula 18. The thermosetting resin composition containing the polyoxyethylene glyceryl ether shown by 19 may be sufficient. Note that sodium di (2-ethylhexyl) sulfosuccinate represented by the chemical formula 24 exhibits antifogging properties even in a two-component thermosetting resin composition containing polyoxyethylene glyceryl ether represented by the following chemical formula 25. It is considered to be an active ingredient for In this case, sodium di (2-ethylhexyl) sulfosuccinate represented by the above chemical formula 24 is preferably contained in an organic solvent as an active ingredient at about 4.7% by weight.
Figure JPOXMLDOC01-appb-C000033
 式中、l、m、nは、それぞれ1以上の整数であり、l+m+nは10以上かつ21以下であって、l+m≧nである。
Figure JPOXMLDOC01-appb-C000033
In the formula, l, m, and n are each an integer of 1 or more, and l + m + n is 10 or more and 21 or less, and l + m ≧ n.
 上記のウレタン樹脂組成物は、有効成分として、以下の有機溶剤中に、好ましくは20~50重量%含有される。適当な有機溶媒としては、例えば、ドデカノール、NN-ビス(N-デシル)メチルアミン、ジアセトンアルコール、及び酢酸エチルであり、これらを組み合わせて用いることが好ましい。主剤のヘプタエチレングリコールの溶媒として、好ましくは、ジアセトンアルコール、少量のドデカノール、NN-ビス(N-デシル)メチルアミンもしくはN-メチルウンデシルノニルアミンを含み、硬化剤としてイソホロンジイソシアネートとトリメチロールプロパンの付加体の溶媒には、酢酸エチルが含まれてもよい。高分子ジオール成分としてヘプタエチレングリコールあるいはポリオキシエチレングリセリルエーテルを用いる場合には、上記の溶媒には、MIBKを20wt%程度含むことが望ましい。 The urethane resin composition is preferably contained in an amount of 20 to 50% by weight as an active ingredient in the following organic solvent. Suitable organic solvents include, for example, dodecanol, NN-bis (N-decyl) methylamine, diacetone alcohol, and ethyl acetate, and these are preferably used in combination. The solvent for the main agent heptaethylene glycol preferably contains diacetone alcohol, a small amount of dodecanol, NN-bis (N-decyl) methylamine or N-methylundecylnonylamine, and isophorone diisocyanate and trimethylolpropane as curing agents. The adduct solvent may contain ethyl acetate. When heptaethylene glycol or polyoxyethylene glyceryl ether is used as the polymer diol component, the solvent preferably contains about 20 wt% of MIBK.
<防曇性コーティング被膜>
 上記のポリエーテル系ウレタン樹脂組成物を、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に、塗布、噴霧、浸漬等の常法によりウレタン樹脂塗膜を形成した後、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂の耐熱温度を超えない温度で熱硬化させて、防曇性コーティング被膜として形成される。
<Anti-fogging coating film>
After forming the above urethane-based urethane resin composition on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material by a conventional method such as coating, spraying, dipping, etc., A poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is heat-cured at a temperature not exceeding the heat resistance temperature to form an antifogging coating film.
 参考例1の防曇性樹脂コーティング物品は、上記の実施形態において記載されたポリエーテル系ウレタン樹脂組成物のコーティング被膜(FSI Coating Technologies社製、Visgard Premium Plus)をポリカーボネート(PC)樹脂基材に形成した眼鏡用途に使用される試作物品(ASWAN社製、製品名GEN2)である。 The anti-fogging resin-coated article of Reference Example 1 has a polyether-based urethane resin composition coating film (FSI Coating Technologies, Visgard Premium Plus) described in the above embodiment as a polycarbonate (PC) resin substrate. This is a prototype product (product name GEN2 manufactured by ASWAN) used for the formed spectacles.
 参考例2の防曇性樹脂コーティング物品は、ポリカーボネート(PC)樹脂基材にポリエーテル変性シリコン樹脂コーティング被膜(SDCテクノロジーズ・アジア社製、クリスタルコートC-380)を形成した市販製品(ASWAN社製)であり、眼鏡用途に使用されるものである。 The antifogging resin-coated article of Reference Example 2 is a commercial product (ASWAN, manufactured by forming a polyether-modified silicone resin coating film (SDC Technologies Asia, Crystal Coat C-380) on a polycarbonate (PC) resin substrate. ) And used for eyeglasses.
 参考例3の防曇性樹脂コーティング物品は、ポリカーボネート(PC)樹脂基材に酢酸セルロース系樹脂コーティング被膜(4Cアセテート)を形成した市販製品(Uvex社製、製品名Ultravision)であり、眼鏡用途に使用されるものである。 The anti-fogging resin-coated article of Reference Example 3 is a commercial product (Uvex, product name Ultravision) in which a cellulose acetate-based resin coating film (4C acetate) is formed on a polycarbonate (PC) resin base material. It is what is used.
 参考例4の防曇性樹脂コーティング物品は、ポリカーボネート(PC)樹脂基材にポリエーテル変性シリコン樹脂コーティング被膜を形成した市販製品(山本光学製、製品名ペトロイドAF)であり、眼鏡用途に使用されるものである。 The anti-fogging resin-coated article of Reference Example 4 is a commercial product (manufactured by Yamamoto Optical Co., Ltd., product name Petroid AF) in which a polyether-modified silicone resin coating film is formed on a polycarbonate (PC) resin substrate, and is used for eyeglass applications. Is.
 参考例5の防曇性樹脂コーティング物品は、ポリカーボネート(PC)樹脂基材にポリエーテル系ウレタン樹脂コーティング被膜(VFコーティング)を形成した市販製品(理研オプテック社製)であり、眼鏡用途に使用されるものである。 The anti-fogging resin-coated article of Reference Example 5 is a commercial product (manufactured by Riken Optec Co., Ltd.) in which a polyether-based urethane resin coating film (VF coating) is formed on a polycarbonate (PC) resin substrate, and is used for eyeglass applications. Is.
 参考例1~5の防曇性樹脂コーティング物品について、防曇性能試験、鉛筆硬度試験、密着性試験、膜厚測定、接触角測定を行った結果を表1に示す。 Table 1 shows the results of the antifogging performance test, pencil hardness test, adhesion test, film thickness measurement, and contact angle measurement for the antifogging resin coated articles of Reference Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 ポリエーテル系ウレタン樹脂コーティング被膜を形成した参考例1では防曇性能、密着性ともに良好であり、ポリエーテル変性シリコン樹脂コーティング被膜を形成した参考例2と参考例4は、防曇性能の水洗い耐久性について、非常に少ない繰り返し回数でその効果が失われ、防曇性能が劣っていることが分かった。酢酸セルロース系樹脂コーティング被膜を形成した参考例3については、耐久性能は良かったものの、湯気にかざして20秒程度で曇ってしまったため、初期の防曇性能に問題があった。 In Reference Example 1 in which the polyether-based urethane resin coating film is formed, both the antifogging performance and adhesion are good, and in Reference Example 2 and Reference Example 4 in which the polyether-modified silicone resin coating film is formed, the anti-fogging performance of washing durability As for the property, it was found that the effect was lost and the antifogging performance was inferior with a very small number of repetitions. In Reference Example 3 in which the cellulose acetate-based resin coating film was formed, although the durability performance was good, it was clouded in about 20 seconds over the steam, so there was a problem in the initial antifogging performance.
 参考例5は、市販のポリエーテル系ウレタン樹脂コーティング被膜を形成した物品であって、防曇性能に優れ、クロスカット法による密着性も良好であったが、断面をSEMで観察したところ、基材とコーティングに隙間が見られる箇所があり、密着性が十分でないと結論した。 Reference Example 5 is an article on which a commercially available polyether-based urethane resin coating film is formed, which has excellent anti-fogging performance and good adhesion by a cross-cut method. It was concluded that there was a gap between the material and the coating, and adhesion was not sufficient.
 防曇性能を得るためのコーティング被膜として、参考例2~5と比べて参考例1に用いたポリエーテル系ウレタン樹脂コーティング組成物が最も適していることが分かった。 It was found that the polyether-based urethane resin coating composition used in Reference Example 1 was most suitable as a coating film for obtaining antifogging performance as compared with Reference Examples 2-5.
[防曇性コーティング被膜の評価] [Evaluation of anti-fogging coating film]
<防曇性試験>
1.初期性能
 60℃の蒸気を試料にあて、曇るまでの秒数を測定する。曇りの判定は、視界不良(水滴、不均一な水膜を含む)を生じた場合は曇ったとみなす。
2.水洗い試験
 上記防曇試験後、試料を流水に10秒間さらす。流速は0.5dm/secとする。洗浄後はデシケーター内に10分以上置き、完全に乾燥させ、再度防曇試験を行う。この操作を繰り返し、防曇性能が初期性能より劣化したときの繰り返し回数を、試験結果とする。
3.乾拭き試験
 上記防曇試験後、試料をデシケーター内で10分間以上乾燥させる。乾燥後の試料をキムタオルで1回乾拭きする。このとき、試料にかかる荷重は3.0±0.5kgfになるように調整する。乾拭きした試料で再度防曇試験を行い、防曇性能が初期性能より劣化したときの繰り返し回数を、試験結果とする。
<Anti-fogging test>
1. Initial performance A 60 ° C vapor is applied to the sample and the number of seconds until cloudiness is measured. The determination of cloudiness is considered to be cloudy when poor visibility (including water droplets and a nonuniform water film) occurs.
2. Water Wash Test After the above antifogging test, the sample is exposed to running water for 10 seconds. The flow rate is 0.5 dm 3 / sec. After washing, place in a desiccator for 10 minutes or more, dry completely, and perform the anti-fogging test again. This operation is repeated, and the number of repetitions when the antifogging performance deteriorates from the initial performance is taken as the test result.
3. Dry wiping test After the above anti-fogging test, the sample is dried in a desiccator for 10 minutes or more. Wipe dry sample once with Kim towel. At this time, the load applied to the sample is adjusted to be 3.0 ± 0.5 kgf. The anti-fogging test is performed again on the dry-wiped sample, and the number of repetitions when the anti-fogging performance deteriorates from the initial performance is taken as the test result.
 <鉛筆硬度>「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)(JIS K5600-5-4:1999)」
 鉛筆の芯を、きずのない滑らかな円柱状になるように木部を除き、芯を露出させる。鉛筆を垂直に保ちながら芯を研磨紙にあてて前後に動かし、芯の先端を平らにする。鉛筆の先端を試料板にあて、0.5mm/secの速度で7mmの距離を押し、肉眼で塗膜に圧痕がないか調べる。試験は2回行い、2回ともきず跡を生じなかった最も硬い鉛筆の硬度を試験結果とする。
<Pencil hardness> “General paint test method-Part 5: Mechanical properties of paint film-Section 4: Scratch hardness (pencil method) (JIS K5600-5-4: 1999)”
The wick is removed by removing the xylem so that the pencil core becomes a smooth cylindrical shape without scratches. While holding the pencil vertical, place the lead against the abrasive paper and move it back and forth to flatten the tip of the lead. The tip of the pencil is applied to the sample plate, a distance of 7 mm is pressed at a speed of 0.5 mm / sec, and the coating film is examined for indentation with the naked eye. The test is performed twice, and the test result is the hardness of the hardest pencil that did not cause any scratches.
 <密着性>「塗料一般試験方法-第5部:塗膜の機械的性質-第6節:付着性(クロスカット法)(JIS K5600-5-6:1999)」
1.碁盤目試験
 塗膜表面から素地に貫通するまで切り込みを入れる。切り込みは2mm間隔で6回入れ、次いでそれに対して90°で切り込みを重ね、25マスの格子パターンができるように繰り返す。格子の上から付着テープを置き、塗膜にきちんと付着させる。テープを引きはがし、塗膜の剥がれていないマス目の数を記録する。
<Adhesiveness> “General test methods for paints-Part 5: Mechanical properties of coating films-Section 6: Adhesion (cross-cut method) (JIS K5600-5-6: 1999)”
1. Cross cut test Cut from the coating surface until it penetrates the substrate. The incisions are made 6 times at intervals of 2 mm, and then the incisions are repeated at 90 ° to repeat the process so that a grid pattern of 25 squares is formed. Place the adhesive tape on the lattice and attach it properly to the coating. Peel off the tape and record the number of squares where the coating is not removed.
2.断面観察
 試料を凍結破断し、SEM(走査電子顕微鏡)により倍率×200~1000にて断面を観察する。基材と塗膜の間に空隙が存在しないかどうかで、密着性の良否を判断する。
2. Cross-sectional observation A sample is frozen and fractured, and a cross-section is observed with a SEM (scanning electron microscope) at a magnification of 200 to 1000. Whether the adhesion is good or not is determined based on whether or not there is a gap between the substrate and the coating film.
<接触角測定>「基板ガラス表面のぬれ性試験方法(JIS R3257:1999 基板ガラス表面のぬれ性試験方法 )」
 水平に置かれた試料上に水滴1.0μLを滴下し、試料上に接触した水滴の接触角をθ/2法で求める。
<Contact angle measurement> “Test method for wettability of substrate glass surface (JIS R3257: 1999 Test method for wettability of substrate glass surface)”
A water droplet of 1.0 μL is dropped on a horizontally placed sample, and the contact angle of the water droplet in contact with the sample is obtained by the θ / 2 method.
<膜厚測定>
 光学顕微鏡観察により、対象視野として 1又は2以上の領域で、樹脂基材上に形成されたコーティング被膜の実寸から倍率を換算して膜厚の測定値を求めた。
<Film thickness measurement>
By observation with an optical microscope, the measured value of the film thickness was obtained by converting the magnification from the actual size of the coating film formed on the resin substrate in one or more regions as the target visual field.
<耐薬品試験>
 1cm角のウエスに薬品を浸みこませ、試料上に置いて24時間放置する。ウエスを取り除き水拭きした後、水分を拭き取り外観変化を観察する。
<Chemical resistance test>
Immerse the chemical in a 1 cm square cloth and place it on the sample and leave it for 24 hours. After removing the waste cloth and wiping with water, wipe off the moisture and observe the appearance change.
 本発明の実施例について説明する。しかし、本発明は、以下の実施例に限定されない。 Examples of the present invention will be described. However, the present invention is not limited to the following examples.
 第一の実施態様において、上記のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材側の耐熱性を示す熱変形温度(HDT)が、低荷重(0.455MPa)において100℃~110℃、詳しくは104℃~109℃である耐熱グレードのコポリエステル樹脂(イーストマンケミカル社製、製品名トライタンTX2000、TX2001)に対して、一つの実施形態では、ウレタン樹脂組成物の適正硬化温度は、100℃~130℃未満であって、100℃~130℃未満の処理温度、好ましくは110℃~120℃の処理温度で硬化される。ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂の熱変形温度近傍、特に熱変形温度未満の硬化温度において、例えば、30~240分間維持されても、硬化反応中にコポリエステル樹脂基材が歪むことなく、コーティング被膜と樹脂基材の密着性が保持される。 In the first embodiment, the heat distortion temperature (HDT) indicating the heat resistance on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is 100 ° C. at a low load (0.455 MPa). With respect to a heat-resistant grade copolyester resin (product name: Tritan TX2000, TX2001, manufactured by Eastman Chemical Co., Ltd.) at 110 ° C., specifically 104 ° C. to 109 ° C., in one embodiment, the urethane resin composition is properly cured. The temperature is 100 ° C. to less than 130 ° C. and is cured at a treatment temperature of 100 ° C. to less than 130 ° C., preferably 110 ° C. to 120 ° C. Even if the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is maintained near the heat distortion temperature, particularly at a curing temperature lower than the heat distortion temperature, for example, for 30 to 240 minutes, the copolyester resin group The adhesion between the coating film and the resin substrate is maintained without distortion of the material.
 ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に上記の第一の実施形態のウレタン樹脂組成物のコーティング被膜を形成した防曇性コーティング被覆物品は、引張特性や動的粘弾性などの被膜特性が良好であって、上記の樹脂基材の耐熱温度近傍の適正な温度範囲で(AB)n型マルチブロック共重合体を形成し、耐久性及び付着性に優れた防曇性コーティング被覆成形品が得られる。 The anti-fogging coated article in which the coating film of the urethane resin composition of the first embodiment is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate has tensile properties and dynamics. Coating properties such as viscoelasticity are good, and (AB) n-type multi-block copolymer is formed in an appropriate temperature range near the heat-resistant temperature of the above resin base material, and has excellent durability and adhesion. A cloudy coating-coated molded product is obtained.
 第二の実施態様において、上記のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材側の耐熱性を示す熱変形温度(HDT)が、低荷重(0.455MPa)において約90℃~110℃、詳しくは94℃~104℃であるコポリエステル樹脂(イーストマンケミカル社製、例えば製品名TX1000、TX1001)に対して、一つの実施形態のウレタン樹脂組成物の適正硬化温度は、80℃~120℃未満であって、80℃~120℃未満の処理温度、好ましくは90℃~110℃未満の処理温度で硬化される。ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂の熱変形温度近傍、熱変形温度未満の硬化温度において、例えば、30~240分間維持されても、硬化反応中にコポリエステル樹脂基材が歪むことなく、コーティング被膜と樹脂基材の密着性が保持される。 In the second embodiment, the heat distortion temperature (HDT) showing the heat resistance on the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate side is about 90 at low load (0.455 MPa). With respect to a copolyester resin (manufactured by Eastman Chemical Co., for example, product names TX1000 and TX1001) having a temperature of from 110 ° C. to 110 ° C., specifically from 94 ° C. to 104 ° C., an appropriate curing temperature of the urethane resin composition of one embodiment is Curing is carried out at a processing temperature of 80 ° C. to less than 120 ° C., preferably 80 ° C. to less than 120 ° C., preferably 90 ° C. to less than 110 ° C. Even if the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is maintained at a curing temperature near the heat deformation temperature and less than the heat deformation temperature, for example, for 30 to 240 minutes, the copolyester resin base material during the curing reaction The adhesion between the coating film and the resin substrate is maintained without distortion.
 ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材上に、上記の第二の実施形態のウレタン樹脂組成物のコーティング被膜を形成した防曇性コーティング被覆物品は、引張特性や動的粘弾性などの被膜特性が良好であって、上記の樹脂基材の耐熱温度近傍の適正な温度範囲で(AB)n型マルチブロック共重合体を形成し、耐久性及び付着性に優れた防曇性コーティング被覆成形品が得られる。 An antifogging coated article in which the coating film of the urethane resin composition of the second embodiment is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material has tensile properties and dynamics. Film properties such as mechanical viscoelasticity are good, and an (AB) n-type multi-block copolymer is formed in an appropriate temperature range near the heat-resistant temperature of the above resin base material, and has excellent durability and adhesion. An antifogging coating-coated molded product is obtained.
 実施例1の防曇性樹脂コーティング物品に使用するウレタン樹脂組成物は、下記の溶剤中の有効成分としてウレタン樹脂成分27.8重量%を含む1液熱硬化型ポリエーテル系ウレタン樹脂組成物である。 The urethane resin composition used for the antifogging resin coated article of Example 1 is a one-component thermosetting polyether-based urethane resin composition containing 27.8% by weight of a urethane resin component as an active ingredient in the following solvent. is there.
 実施例1のウレタン樹脂組成物は、1-メトキシ-2-プロパノール30重量%、2-メトキシ-1-メチルエチルアセテート5重量%、ジアセトンアルコール30重量%、及びトルエン1重量%未満を含有する溶剤中に、イソシアネート成分として1,6-ヘキサメチレンジイソシアネート14mol%及びイソホロンジイソシアネート52mol%を含み、これらはシアヌレートの形態で存在する。低分子ジオール成分としてトリメチロールエタン21mol%、及び高分子ジオール成分としてポリエチレングリコール14mol%を含む。さらに乳化安定剤としても作用する界面活性剤成分としてジ(2-エチルヘキシル)スルホコハク酸ナトリウム6.2重量%等を常温で均一に混合して熱硬化型ウレタン樹脂組成物溶液が得られる。 The urethane resin composition of Example 1 contains 30% by weight of 1-methoxy-2-propanol, 5% by weight of 2-methoxy-1-methylethyl acetate, 30% by weight of diacetone alcohol, and less than 1% by weight of toluene. In the solvent, the isocyanate component contains 14 mol% of 1,6-hexamethylene diisocyanate and 52 mol% of isophorone diisocyanate, which are present in the form of cyanurate. It contains 21 mol% trimethylolethane as the low molecular diol component and 14 mol% polyethylene glycol as the high molecular diol component. Further, 6.2% by weight of sodium di (2-ethylhexyl) sulfosuccinate as a surfactant component that also acts as an emulsion stabilizer can be uniformly mixed at room temperature to obtain a thermosetting urethane resin composition solution.
 図2に、ウレタン樹脂組成物のヘキサン中に析出した樹脂成分について、H-NMR測定を行った結果を示す。図3に、同様に、ヘキサン中に析出した樹脂成分について、13C-NMR測定を行った結果を示す。 FIG. 2 shows the result of 1 H-NMR measurement of the resin component precipitated in hexane of the urethane resin composition. Similarly, FIG. 3 shows the results of 13 C-NMR measurement of resin components precipitated in hexane.
 低分子ジオール成分であるトリメチロールエタンは、イソシアネートと脱水縮合によりウレタン結合を形成するとともに、高分子ジオール成分であるポリエチレングリコールと脱水素結合によりポリオール鎖延長剤として作用する。高分子ジオール成分のポリエチレングリコールは、ポリエーテル系ウレタン樹脂の基本骨格を形成する一方で、ジオールの水酸基は親水基であるため、界面活性剤ジ(2-エチルヘキシル)スルホコハク酸ナトリウムとともに基材上に形成されたコーティング被膜に防曇性を発現させると考えられる。 Trimethylolethane, which is a low molecular diol component, forms a urethane bond by dehydration condensation with isocyanate, and acts as a polyol chain extender by dehydrogenation with polyethylene glycol, which is a high molecular diol component. Polyethylene glycol, which is a polymer diol component, forms the basic skeleton of a polyether-based urethane resin, while the hydroxyl group of the diol is a hydrophilic group, so that it is formed on a substrate together with the surfactant sodium di (2-ethylhexyl) sulfosuccinate. It is considered that the formed coating film exhibits antifogging properties.
 実施例1の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の1液熱硬化型ウレタン樹脂組成物を同様にスピンコート法により塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(110℃)において約240分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。ここで、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、テレフタル酸(TPA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を16mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を32mol%含む。残余は、上記のテレフタル酸とジオール化合物とのエステル化の際に生成する誘導体である。 The anti-fogging resin-coated article of Example 1 is obtained by applying the above one-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. The isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin contains 50 mol% of terephthalic acid (TPA) residues, 16 mol% of 1,4-cyclohexanedimethanol (CHDM) residues, and 2 , 2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue is contained at 32 mol%. The remainder is a derivative produced during esterification of the terephthalic acid and the diol compound.
 実施例2の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記のウレタン樹脂組成物を同様にスピンコート法により塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(115℃)において約180分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。ここで、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、実施例1に用いたものと同じ組成である。 The anti-fogging resin-coated article of Example 2 was obtained by similarly applying the above urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles by spin coating. The urethane resin is cured by reacting and curing the isocyanate component and the polyol component in the urethane resin composition by applying and holding at a processing temperature (115 ° C.) that does not substantially exceed the heat resistance temperature of the copolyester resin substrate for about 180 minutes. A coating film was formed. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
 実施例3の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の2液熱硬化型ウレタン樹脂組成物を同様にスピンコート法により塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(90℃)において約60分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。ここで、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、実施例1に用いたものと同じ組成である。 The anti-fogging resin-coated article of Example 3 is obtained by applying the above two-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. The isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 60 minutes at a processing temperature (90 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
 比較例1の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の1液熱硬化型ウレタン樹脂組成物を同様にスピンコート法により塗布し、100℃において約120分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂被膜を形成した。しかし、硬化反応が不十分であったため、未硬化成分が被膜中に残存し、防曇性の発現は十分ではなく、被膜がべとつく現象が見られた。ここで、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、実施例1に用いたものと同じ組成である。 The antifogging resin-coated article of Comparative Example 1 is the same as the one-component thermosetting urethane resin composition described above on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. Was applied by spin coating and kept at 100 ° C. for about 120 minutes, whereby the isocyanate component and the polyol component in the urethane resin composition were reacted and cured to form a urethane resin film. However, since the curing reaction was insufficient, uncured components remained in the coating, and the antifogging property was not sufficiently exhibited, and a phenomenon that the coating became sticky was observed. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
 比較例2の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の2液熱硬化型ウレタン樹脂組成物を、スピンコート法により塗布し、100℃において約60分保持することにより、反応硬化させてウレタン樹脂被膜を形成した。被膜特性の付着性、密着性は十分であったが、防曇性の発現は十分ではなかった。ここで、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、実施例1に用いたものと同じ組成である。 The anti-fogging resin-coated article of Comparative Example 2 is a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles, and the two-component thermosetting urethane resin composition described above. It was applied by a spin coating method and kept at 100 ° C. for about 60 minutes to be cured by reaction to form a urethane resin film. Although the adhesion and adhesion of the coating properties were sufficient, the expression of antifogging properties was not sufficient. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has the same composition as that used in Example 1.
 実施例4の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の1液熱硬化型ウレタン樹脂組成物を同様にスピンコート法により塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(110℃)において約240分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。耐候性処方として、実施例1に用いたポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂100重量部に対して、紫外線吸収剤(CYASORB UV-3638F)を(0.25~1.0)重量%、及び加水分解防止剤(カルボジライト LA-1)を0.13~0.50重量%含む。 The anti-fogging resin-coated article of Example 4 was obtained by applying the above one-component thermosetting urethane resin composition to a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. The isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film. As a weather resistance prescription, 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin used in Example 1 was treated with an ultraviolet absorber (CYASORB UV-3638F) (0.25-1. 0) wt%, and 0.13 to 0.50 wt% of hydrolysis inhibitor (carbodilite LA-1).
 実施例5の防曇性樹脂コーティング物品は、眼鏡用途に使用されるポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の1液熱硬化型ウレタン樹脂組成物を同様にスピンコート法により塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(110℃)において約240分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。コポリエステル樹脂基材として、実施例1に用いたポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂100重量部に対して、ポリカーボネート樹脂を20重量%含む。実施例6の防曇性樹脂コーティング物品は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の2液熱硬化型ウレタン樹脂組成物であって、ヘプタエチレングリコールの置換体としてポリオキシエチレングリセリルエーテルを用いて溶剤としてMIBKを加えたウレタン樹脂組成物を同様にディッピングにより塗布し、コポリエステル樹脂基材の耐熱温度を実質的に超えない処理温度(90℃)において約60分保持することにより、ウレタン樹脂組成物中のイソシアネート成分とポリオール成分を反応硬化させてウレタン樹脂コーティング被膜を形成した。実施例6において、防曇性樹脂コーティング被膜の付着性、密着性は十分であり、防曇性の発現も十分であった。つまり、実施例6の2液熱硬化型ウレタン樹脂組成物は、実施例1で用いたコポリエステル樹脂基材より耐熱温度の低い通常グレードのポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材にも適用可能である。実施例7、実施例8の防曇性樹脂コーティング物品は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に、上記の2液熱硬化型ウレタン樹脂組成物であって、ヘプタエチレングリコールの置換体としてポリオキシエチレングリセリルエーテルを用いたウレタン樹脂組成物を、ディッピングにより塗布し、90℃において約60分保持することにより、反応硬化させてウレタン樹脂被膜を形成した。実施例7、実施例8では、被膜特性の付着性、密着性は通常の条件では十分であり、防曇性の発現も十分であった。ただし、実施例6に比べて、密着性は高速のテープ剥がし速度で数マスの剥がれが認められた。ここで、実施例7のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、通常グレードのコポリエステル樹脂基材、及び、実施例8のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、実施例1に用いた耐熱グレードのコポリエステル樹脂基材である。 The anti-fogging resin-coated article of Example 5 is the same as the one-component thermosetting urethane resin composition described above on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material used for spectacles. The isocyanate component and the polyol component in the urethane resin composition are reacted by being applied by spin coating and holding for about 240 minutes at a processing temperature (110 ° C.) that does not substantially exceed the heat resistant temperature of the copolyester resin substrate. It was cured to form a urethane resin coating film. The copolyester resin base material contains 20% by weight of a polycarbonate resin with respect to 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin used in Example 1. The anti-fogging resin-coated article of Example 6 is a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material, the above two-component thermosetting urethane resin composition, A urethane resin composition containing polyoxyethylene glyceryl ether as a substitute and MIBK as a solvent was similarly applied by dipping, and at a processing temperature (90 ° C.) substantially not exceeding the heat resistance temperature of the copolyester resin substrate. By holding for about 60 minutes, the isocyanate component and the polyol component in the urethane resin composition were reacted and cured to form a urethane resin coating film. In Example 6, the adhesion and adhesion of the antifogging resin coating film were sufficient, and the expression of antifogging properties was also sufficient. That is, the two-component thermosetting urethane resin composition of Example 6 is a normal grade poly (1,4-cyclohexylenedimethylene terephthalate) copolyester having a lower heat resistant temperature than the copolyester resin base material used in Example 1. It can also be applied to resin substrates. The antifogging resin-coated articles of Example 7 and Example 8 are the above-described two-component thermosetting urethane resin composition on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material, A urethane resin composition using polyoxyethylene glyceryl ether as a substitute of heptaethylene glycol was applied by dipping and held at 90 ° C. for about 60 minutes to be cured by reaction to form a urethane resin film. In Examples 7 and 8, the adhesion and adhesion of the coating properties were sufficient under normal conditions, and the antifogging property was also sufficiently exhibited. However, as compared with Example 6, the adhesiveness was peeled off by several squares at a high tape peeling speed. Here, the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin of Example 7 is a normal grade copolyester resin substrate and the poly (1,4-cyclohexylenedimethylene terephthalate) of Example 8. ) The copolyester resin is the heat-resistant grade copolyester resin substrate used in Example 1.
 実施例1、2、及び実施例3~5の防曇性樹脂コーティング組成物、比較例1、2の防曇性樹脂コーティング組成物について、離型剤を塗布したフッ素樹脂型に注入して作成した塗膜の引張試験、動的粘弾性試験を行った。結果を表2に示す。表2-1には、防曇性樹脂コーティング被膜の特性として、実施例1、2、比較例1の防曇性樹脂コーティング被膜の塗膜形成条件で得られた試験片についての試験結果、及びこれらの防曇性樹脂コーティング被膜の防曇性、密着性、引張試験、及び動的粘弾性の試験結果を示す。表2-2には、実施例3~5、比較例2の防曇性樹脂コーティング被膜の塗膜形成条件で得られた試験片についての試験結果、及びこれらの防曇性樹脂コーティング被膜の防曇性、密着性、引張試験、及び動的粘弾性の試験結果を示す。表2-3には、実施例6、実施例7、実施例8の防曇性樹脂コーティング被膜の塗膜形成条件で得られたこれらの防曇性樹脂コーティング被膜の防曇性、密着性の試験結果を示す。 The antifogging resin coating compositions of Examples 1 and 2 and Examples 3 to 5 and the antifogging resin coating compositions of Comparative Examples 1 and 2 were prepared by being injected into a fluororesin mold coated with a release agent. The coated film was subjected to a tensile test and a dynamic viscoelasticity test. The results are shown in Table 2. Table 2-1 shows the test results for the test pieces obtained under the conditions for forming the antifogging resin coating film of Examples 1 and 2 and Comparative Example 1 as the characteristics of the antifogging resin coating film. The test results of antifogging property, adhesion, tensile test, and dynamic viscoelasticity of these antifogging resin coating films are shown. Table 2-2 shows the test results of the test pieces obtained under the film forming conditions of the antifogging resin coating films of Examples 3 to 5 and Comparative Example 2, and the antifogging properties of these antifogging resin coating films. The test results of haze, adhesion, tensile test, and dynamic viscoelasticity are shown. Table 2-3 shows the antifogging and adhesive properties of these antifogging resin coating films obtained under the coating forming conditions of the antifogging resin coating films of Example 6, Example 7, and Example 8. The test results are shown.
<引張試験>「プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験方法(JIS K7127:1999)」
 ダンベル型タイプ5(JISK7127)試料を作成する。ダンベル片を引張試験機のつかみ具に取り付け、引張速度100mm/minで引っ張り、破断時の応力とひずみを記録する。N=5の平均値を測定結果とする。
<Tensile test>"Plastics-Test methods for tensile properties-Part 3: Test methods for films and sheets (JIS K7127: 1999)"
A dumbbell type 5 (JISK7127) sample is prepared. A dumbbell piece is attached to the gripping tool of a tensile tester, pulled at a pulling speed of 100 mm / min, and the stress and strain at break are recorded. The average value of N = 5 is taken as the measurement result.
<動的粘弾性試験>
 図4に、実施例1の硬化温度に相当する処理温度で硬化したウレタン樹脂コーティング被膜の動的粘弾性測定結果を示す。図5に、実施例2の硬化温度に相当する処理温度で硬化したウレタン樹脂コーティング被膜の動的粘弾性測定結果を示す。図6に、比較例1の硬化温度に相当する処理温度で硬化したウレタン樹脂コーティング被膜の動的粘弾性測定結果を示す。
<Dynamic viscoelasticity test>
In FIG. 4, the dynamic viscoelasticity measurement result of the urethane resin coating film hardened | cured at the process temperature corresponding to the hardening temperature of Example 1 is shown. In FIG. 5, the dynamic viscoelasticity measurement result of the urethane resin coating film hardened | cured at the process temperature corresponding to the hardening temperature of Example 2 is shown. In FIG. 6, the dynamic viscoelasticity measurement result of the urethane resin coating film hardened | cured at the process temperature corresponding to the hardening temperature of the comparative example 1 is shown.
<貯蔵弾性率E’>
 測定モードは引張で、昇温速度は3℃/min、周波数は10Hz、測定間隔は1℃ごとで、-50℃から100℃まで、窒素雰囲気下で測定を行った。貯蔵弾性率E’は、平坦部の貯蔵弾性率として85℃における値を採用した。
<Storage elastic modulus E '>
The measurement mode was tensile, the temperature rising rate was 3 ° C./min, the frequency was 10 Hz, the measurement interval was 1 ° C., and the measurement was performed from −50 ° C. to 100 ° C. in a nitrogen atmosphere. As the storage elastic modulus E ′, a value at 85 ° C. was adopted as the storage elastic modulus of the flat portion.
<架橋密度>
 貯蔵弾性率-温度曲線の平坦領域(ゴム状領域)のうち、85℃時の貯蔵弾性率から前記コーティング被膜の架橋密度を求めた。算出式は下式(1)の通りである。
<Crosslink density>
Of the flat region (rubbery region) of the storage elastic modulus-temperature curve, the crosslinking density of the coating film was determined from the storage elastic modulus at 85 ° C. The calculation formula is as the following formula (1).
Figure JPOXMLDOC01-appb-M000035
    n:架橋密度(mol/cc)
    E’:貯蔵弾性率(dyn/cm
    R:気体定数(8.31×10dyn・cm/K・mol)
    T:絶対温度(K)
Figure JPOXMLDOC01-appb-M000035
n: Crosslink density (mol / cc)
E ′: storage elastic modulus (dyn / cm 2 )
R: Gas constant (8.31 × 10 7 dyn · cm / K · mol)
T: Absolute temperature (K)
<ガラス転移温度Tg>
 貯蔵弾性率E’のショルダー及び損失正接(tanδ)のピーク温度からガラス転移温度Tgを求めた。
<Glass transition temperature Tg>
The glass transition temperature Tg was determined from the shoulder of the storage elastic modulus E ′ and the peak temperature of the loss tangent (tan δ).
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 比較例1の処理温度(100℃)で硬化したウレタン樹脂コーティング被膜については、硬化温度が低いために十分に硬化せず、未硬化部が残存し、引張試験片を作成することができなかった。実施例1の処理温度(110℃)で硬化した被膜の引張特性と実施例2の処理温度(115℃)で硬化した被膜の引張特性を比較すると、高温側で硬化した被膜は硬く、伸びが少なくなる傾向がある。さらに、処理温度が高すぎても防曇性が低下してしまうという結果が示された。従って、実施例1及び実施例2のウレタン樹脂コーティング被膜について適正な硬化温度は、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材の耐熱温度を実質的に超えない、100℃から130℃未満、好ましくは、110℃~130℃未満の処理温度、より好ましくは110℃~120℃の温度範囲にあるということが予測される。ただし、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材の耐熱温度として、熱変形温度(HDT)とは、一定の荷重下に規定の撓み量が測定される温度(荷重撓み温度)を意味する(例えば、ASTM D 648参照)。 The urethane resin coating film cured at the treatment temperature (100 ° C.) of Comparative Example 1 was not sufficiently cured because the curing temperature was low, and an uncured part remained, and a tensile test piece could not be prepared. . Comparing the tensile properties of the film cured at the treatment temperature (110 ° C.) of Example 1 and the tensile properties of the film cured at the treatment temperature (115 ° C.) of Example 2, the coating cured at the high temperature side is hard and has an elongation. There is a tendency to decrease. Furthermore, the results show that the antifogging property is lowered even if the treatment temperature is too high. Therefore, the proper curing temperature for the urethane resin coating films of Example 1 and Example 2 is 100 ° C., which does not substantially exceed the heat resistance temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin substrate. To a processing temperature of 110 ° C. to less than 130 ° C., more preferably 110 ° C. to 120 ° C. However, as the heat resistance temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material, the heat distortion temperature (HDT) is the temperature at which a specified amount of deflection is measured under a certain load (load deflection). Temperature) (see, for example, ASTM D648).
 比較例1の処理温度(100℃)で硬化し未硬化部が残る被膜と、実施例1、実施例2の処理温度(110℃~115℃)で十分に硬化した被膜について、架橋密度を比較すると、比較例1の架橋密度が1.23×10-5mol/cc以下では硬化が十分ではなく、実施例2の架橋密度が1.74×10-4mol/cc以上では、1液熱硬化系では硬化反応の進行が過度になり、被膜が硬くなる傾向が認められる。最適な防曇性コーティング被膜の架橋密度は、(1.5×10-5~2.0×10-4mol/cc)、好ましくは(5.0×10-5~2.0×10-4mol/cc)の範囲であることが推定される。一方、2液熱硬化系ウレタン樹脂コーティング被膜については、実施例3と比較例2を比較すると、比較例2の硬化温度が100℃と高く、架橋密度が7.91×10-4mol/ccであり、引張伸度が小さく、防曇性の発現が不十分である。実施例3の硬化温度が90℃であり、コーティング被膜の架橋密度が5.15×10-4mol/ccであることを考慮すると、最適な防曇性コーティング被膜の架橋密度は、(1.0×10-4~8.0×10-4mol/cc)、好ましくは(5.0×10-4~7.0×10-4mol/cc)の範囲であることが推定される。実施例1に耐候性処方を加えた実施例4、及び、実施例1のポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂とポリカーボネート樹脂をブレンドした樹脂基材を用いて1液熱硬化系のウレタン樹脂コーティング被膜を形成した実施例5では、硬化温度が110℃であり、付着性、密着性、及び防曇性の発現も十分であり、防曇性コーティング被膜の架橋密度は9.86×10-5mol/ccであるが適正な範囲内であると考えられる。 Compare the crosslink density of the film cured at the treatment temperature (100 ° C.) of Comparative Example 1 and leaving an uncured part, and the film sufficiently cured at the treatment temperature of Examples 1 and 2 (110 ° C. to 115 ° C.). Then, when the crosslink density of Comparative Example 1 is 1.23 × 10 −5 mol / cc or less, curing is not sufficient, and when the crosslink density of Example 2 is 1.74 × 10 −4 mol / cc or more, the heat of one liquid In the curing system, the curing reaction proceeds excessively, and the coating tends to be hard. The optimum crosslink density of the antifogging coating film is (1.5 × 10 −5 to 2.0 × 10 −4 mol / cc), preferably (5.0 × 10 −5 to 2.0 × 10 − 4 mol / cc) is estimated. On the other hand, regarding the two-component thermosetting urethane resin coating film, when Example 3 and Comparative Example 2 are compared, the curing temperature of Comparative Example 2 is as high as 100 ° C., and the crosslinking density is 7.91 × 10 −4 mol / cc. The tensile elongation is small, and the expression of antifogging properties is insufficient. Considering that the curing temperature of Example 3 is 90 ° C. and the crosslinking density of the coating film is 5.15 × 10 −4 mol / cc, the optimum crosslinking density of the antifogging coating film is (1. 0 × 10 −4 to 8.0 × 10 −4 mol / cc), preferably (5.0 × 10 −4 to 7.0 × 10 −4 mol / cc). One component heat using a resin substrate obtained by blending the poly (1,4-cyclohexylene dimethylene terephthalate) copolyester resin and the polycarbonate resin of Example 4 with the weather resistance formulation added to Example 1 and Example 1 In Example 5 in which a cured urethane resin coating film was formed, the curing temperature was 110 ° C., and sufficient adhesion, adhesion, and antifogging properties were exhibited. The crosslink density of the antifogging coating film was 9 .86 × 10 −5 mol / cc but considered to be within the proper range.
 実施例1、2の防曇性樹脂コーティング被膜、比較例1の防曇性樹脂コーティング被膜について、ウレタン/ポリオール赤外吸光度比を測定した結果を表3に示す。表3には、実施例3、比較例2として、主剤としてヘプタエチレングリコール、硬化剤としてトリメチロールプロパン及びイソホロンジイソシアネート付加体を含む防曇性ウレタン樹脂コーティング被膜のウレタン/ポリオール赤外吸光度比についての測定結果、比較例3として参考例5の防曇性ウレタン樹脂コーティング被膜の測定結果が示されている。これらの測定結果から、防曇性コーティング被膜のウレタン/ポリオール赤外吸光度比は、1.0~2.5が最適範囲であることが推定される。 Table 3 shows the results of measuring the urethane / polyol infrared absorbance ratio of the antifogging resin coating films of Examples 1 and 2 and the antifogging resin coating film of Comparative Example 1. Table 3 shows the urethane / polyol infrared absorbance ratio of the antifogging urethane resin coating film containing heptaethylene glycol as the main agent and trimethylolpropane and isophorone diisocyanate adduct as the curing agent as Example 3 and Comparative Example 2. As a measurement result, as Comparative Example 3, the measurement result of the antifogging urethane resin coating film of Reference Example 5 is shown. From these measurement results, it is estimated that the optimum range of the urethane / polyol infrared absorbance ratio of the antifogging coating film is 1.0 to 2.5.
<ウレタン/ポリオール赤外吸光度比>
 フーリエ変換赤外線吸光度法(FT-IR)により前記コーティング被膜におけるウレタン基のN-C-Hに帰属する吸光度Abs(1530cm-1)並びにC=Oに帰属する吸光度Abs(1700cm-1)、及びポリオール基に帰属する吸光度Abs(1100cm-1)を測定した。ウレタン/ポリオール赤外吸光度比としてウレタン基及びポリオール基に帰属する吸光度比Abs(1700cm-1)/Abs(1100cm-1)を求めた。
<Urethane / polyol infrared absorbance ratio>
Fourier transform infrared spectrophotometry (FT-IR) absorbance attributable to the absorbance Abs (1530 cm -1) and C = O belonging to N-C-H urethane groups in the coating film by Abs (1700cm -1), and a polyol Absorbance Abs (1100 cm −1 ) attributed to the group was measured. It was determined urethane / polyol infrared absorbance absorbance ratio attributed to urethane and polyol groups as ratio Abs (1700cm -1) / Abs ( 1100cm -1).
<N含有量>
 X線励起エネルギー分散型分光法(EDX)に基づくC、N、O、S、Naの元素分析より、強度補正を行って前記コーティング被膜におけるN含有量(質量濃度)を測定する。
<N content>
Intensity correction is performed by elemental analysis of C, N, O, S, and Na based on X-ray excitation energy dispersive spectroscopy (EDX), and the N content (mass concentration) in the coating film is measured.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 実施例1の防曇性樹脂コーティング被膜のFT-IRでのウレタンとポリオールの吸収ピーク強度比が、1.24程度であって、N含有量は8.6質量%程度であり、実施例2については、ウレタンとポリオールの吸収ピーク強度比が、1.20程度であって、硬化温度115℃で硬化反応は十分に進行していることから実施例1と同程度のN含有量を有すると推定される。実施例3の防曇性樹脂コーティング被膜のFT-IRによるウレタン/ポリオール比が1.09程度であって、N含有量は7.4質量%程度であることが分かった。実施例1~実施例3の防曇性樹脂コーティング被膜が優れている点として、比較例1、2のウレタン/ポリオール比と対比すると、比較例1の未硬化品の値0.94より高く、比較例2のハードコート被膜の値2.75より低く、上記の架橋密度の範囲に対応すると考えられるウレタン/ポリオール比として1.0~2.0が適正範囲内である。 The absorption peak intensity ratio of urethane and polyol in FT-IR of the antifogging resin coating film of Example 1 is about 1.24, and the N content is about 8.6% by mass. For, the absorption peak intensity ratio of urethane and polyol is about 1.20, and the curing reaction proceeds sufficiently at a curing temperature of 115 ° C., so that the N content is about the same as in Example 1. Presumed. The FT-IR urethane / polyol ratio of the antifogging resin coating film of Example 3 was about 1.09, and the N content was about 7.4% by mass. As a point that the antifogging resin coating film of Examples 1 to 3 is excellent, when compared with the urethane / polyol ratio of Comparative Examples 1 and 2, it is higher than the value of 0.94 of the uncured product of Comparative Example 1, The urethane / polyol ratio which is lower than the value 2.75 of the hard coat film of Comparative Example 2 and is considered to correspond to the above range of crosslink density is within an appropriate range.
産業上の利用分野Industrial application fields
 耐薬品性に優れたポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に防曇性のウレタン樹脂コーティング被膜を形成した防曇性コーティング被覆物品は、例えば保護眼鏡や顔面保護面などの用途に使用可能である。 Anti-fogging coated articles in which an anti-fogging urethane resin coating film is formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base with excellent chemical resistance include, for example, protective glasses and face protection surfaces It can be used for such applications.

Claims (11)

  1.  下記の化学式1で示される、ジイソシアネート成分A、ジオール成分Bとして分岐ジオール成分、及び/又は直鎖ジオール成分から構成される(AB)n型マルチブロック共重合体の基本構造を有するポリウレタン樹脂組成物の防曇性コーティング被膜を、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含むポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂基材に形成したことを特徴とする防曇性樹脂コーティング被覆物品。
    Figure JPOXMLDOC01-appb-C000001
     式中、R1は、直鎖または環状の置換基もしくは非置換基であり、R2は、分岐した置換基もしくは非置換基であり、R3は、直鎖状の置換基もしくは非置換基である。
    A polyurethane resin composition having the basic structure of an (AB) n-type multi-block copolymer represented by the following chemical formula 1 and comprising a diisocyanate component A, a branched diol component as the diol component B, and / or a linear diol component The anti-fogging coating film is composed of 50 mol% of terephthalic acid (TPA) or dimethyl terephthalate (DMA) residue, 15 to 20 mol% of 1,4-cyclohexanedimethanol (CHDM) residue, and 2,2-4. , 4-Tetramethyl-1,3-cyclobutanediol (TMCD) residues formed on a poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin base material containing 30 to 35 mol% Resin-coated articles.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, R1 is a linear or cyclic substituent or an unsubstituted group, R2 is a branched substituent or an unsubstituted group, and R3 is a linear substituent or an unsubstituted group.
  2.  請求項1に記載の防曇性コーティング被覆物品において、ジイソシアネート成分Aとして以下の化学式2及び化学式3で示される1,6-ヘキサメチレンジイソシアネート及び/又はイソホロンジイソシアネート、ジオール成分Bとして、分岐ジオール成分の化学式4で示されるトリメチロールエタンあるいはトリメチロールプロパン、及び/又は、直鎖ジオール成分の化学式5で示されるポリエチレングリコールまたはヘプタエチレングリコールを含むポリエーテル系ウレタン樹脂組成物を、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる基材上に、構造単位中に前記ジイソシアネート成分Aとして1,6-ヘキサメチレンジイソシアネート及びイソホロンジイソシアネート60~70mol%、前記ジオール成分Bとしてトリメチロールエタン及びポリエチレングリコール30~40mol%から構成されるコーティング被膜として形成したことを特徴とする防曇性樹脂コーティング被覆物品。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    In the antifogging coated article according to claim 1, 1,6-hexamethylene diisocyanate and / or isophorone diisocyanate represented by the following chemical formulas 2 and 3 as the diisocyanate component A, and a branched diol component as the diol component B: A polyether-based urethane resin composition containing trimethylolethane or trimethylolpropane represented by the chemical formula 4 and / or polyethylene glycol or heptaethylene glycol represented by the chemical formula 5 of the linear diol component is converted into poly (1,4- 1,6-hexamethylene diisocyanate and isophorone diisocyanate 60 to 70 mol% as the diisocyanate component A in a structural unit on a base material made of (cyclohexylene dimethylene terephthalate) copolyester resin Anti-fogging resin coating coated article characterized by being formed as a coating film composed of trimethylol ethane and polyethylene glycol 30 ~ 40 mol% as the diol component B.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  3.  ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、テレフタル酸(TPA)もしくはジメチルテレフタレート(DMA)、1,4-シクロヘキサンジメタノール(CHDM)及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)を含むコポリエステル樹脂から構成され、当該ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂の耐熱温度が100℃~110℃であることを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。 Poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resins are terephthalic acid (TPA) or dimethyl terephthalate (DMA), 1,4-cyclohexanedimethanol (CHDM) and 2,2-4,4-tetra It is composed of a copolyester resin containing methyl-1,3-cyclobutanediol (TMCD), and the heat resistance temperature of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin is 100 ° C. to 110 ° C. The antifogging resin-coated article according to claim 2.
  4.  前記ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂は、テレフタル酸(TPA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を15~20mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を30~35mol%含むことを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。 The poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin has a terephthalic acid (TPA) residue of 50 mol%, 1,4-cyclohexanedimethanol (CHDM) residue of 15 to 20 mol%, and 2 The anti-fogging resin-coated article according to claim 2, comprising 30 to 35 mol% of 1,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residue.
  5.  テレフタル酸(TPA)残基を50mol%、1,4-シクロヘキサンジメタノール(CHDM)残基を8~15mol%、及び、2,2-4,4-テトラメチル-1,3-シクロブタンジオール(TMCD)残基を35~42mol%含み、前記ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂100重量部に対してポリカーボネート樹脂を20重量部~30重量部含むポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる基材上に請求項2に記載のポリエーテル系ウレタン樹脂組成物をコーティング被膜として形成したことを特徴とする防曇性樹脂コーティング被覆物品。 50 mol% of terephthalic acid (TPA) residue, 8-15 mol% of 1,4-cyclohexanedimethanol (CHDM) residue, and 2,2-4,4-tetramethyl-1,3-cyclobutanediol (TMCD ) A residue of 35 to 42 mol% of poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin and 20 to 30 parts by weight of a polycarbonate resin with respect to 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. An anti-fogging resin coating-coated article, wherein the polyether urethane resin composition according to claim 2 is formed as a coating film on a base material made of (silylene methylene terephthalate) copolyester resin.
  6.  前記ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂100重量部に対して紫外線吸収剤を0.25~1.0重量%、および加水分解防止剤を0.13~0.50重量%含有することを特徴とする請求項2~請求項5のいずれか1項に記載の防曇性樹脂コーティング被覆物品。 An ultraviolet absorber is 0.25 to 1.0% by weight and a hydrolysis inhibitor is 0.13 to 0.50% by weight based on 100 parts by weight of the poly (1,4-cyclohexylenedimethylene terephthalate) copolyester resin. The anti-fogging resin-coated article according to any one of claims 2 to 5, wherein the anti-fogging resin-coated article is contained.
  7.  動的粘弾性試験に基づく前記コーティング被膜の貯蔵弾性率(85℃)が5.0×10dyn/cm~2.0×10dyn/cmであることを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。 Claim 2, wherein the storage modulus of the coating film based on dynamic viscoelasticity test (85 ° C.) is 5.0 × 10 6 dyn / cm 2 ~ 2.0 × 10 7 dyn / cm 2 An antifogging resin-coated article as described in 1.
  8.  動的粘弾性試験に基づく下式(1)から算出される架橋密度が5.0×10-5mol/cc~2.0×10-4mol/ccであることを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。
    Figure JPOXMLDOC01-appb-M000006
        n:架橋密度(mol/cc)
        E’:貯蔵弾性率(dyn/cm
        R:気体定数(8.31×10dyn・cm/K・mol)
        T:絶対温度(K)
    3. The crosslink density calculated from the following formula (1) based on a dynamic viscoelasticity test is 5.0 × 10 −5 mol / cc to 2.0 × 10 −4 mol / cc. An antifogging resin-coated article as described in 1.
    Figure JPOXMLDOC01-appb-M000006
    n: Crosslink density (mol / cc)
    E ′: storage elastic modulus (dyn / cm 2 )
    R: Gas constant (8.31 × 10 7 dyn · cm / K · mol)
    T: Absolute temperature (K)
  9.  前記ポリエーテル系ウレタン樹脂組成物は、界面活性剤として下記の化学式6で示されるジ(2-エチルヘキシル)スルホコハク酸ナトリウムを5~10重量%含有することを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。
    Figure JPOXMLDOC01-appb-C000007
    The anti-corrosive agent according to claim 2, wherein the polyether-based urethane resin composition contains 5 to 10% by weight of sodium di (2-ethylhexyl) sulfosuccinate represented by the following chemical formula 6 as a surfactant. Fogging resin coating coated article.
    Figure JPOXMLDOC01-appb-C000007
  10.  フーリエ変換赤外線吸光度法(FT-IR)による前記コーティング被膜におけるウレタン基に帰属する吸光度Abs(1700cm-1)とポリオール基に帰属する吸光度Abs(1100cm-1)の吸光度比Abs(1700cm-1)/Abs(1100cm-1)が1.0~2.5であることを特徴とする請求項2に記載の防曇性樹脂コーティング被覆物品。 Absorbance ratio of the Fourier transform infrared spectrophotometry (FT-IR) absorbance attributable to the absorbance Abs (1700 cm -1) and a polyol group attributed to urethane groups in the coating film by Abs (1100cm -1) Abs (1700cm -1) / The antifogging resin-coated article according to claim 2, wherein Abs (1100 cm -1 ) is 1.0 to 2.5.
  11.  請求項1に記載の防曇性コーティング被覆物品において、ジイソシアネート成分Aとして化学式3で示されるイソホロンジイソシアネート、ジオール成分Bとして、分岐ジオール成分の化学式4で示されるトリメチロールエタンあるいはトリメチロールプロパン、及び/又は、直鎖ジオール成分の化学式5で示されるヘプタエチレングリコールあるいは化学式7で示されるポリオキシエチレングリセリルエーテルを含むポリエーテル系ウレタン樹脂組成物を、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)コポリエステル樹脂からなる基材上に、構造単位中に前記ジイソシアネート成分Aとしてイソホロンジイソシアネート、前記ジオール成分Bとしてトリメチロールプロパン、及びヘプタエチレングリコールあるいはポリオキシエチレングリセリルエーテルから構成されるコーティング被膜として形成したことを特徴とする防曇性樹脂コーティング被覆物品。
    Figure JPOXMLDOC01-appb-C000008
    式中、l、m、nは、それぞれ1以上の整数であり、l+m+nは10以上かつ21以下であって、l+m≧nである。
    The antifogging coated article according to claim 1, wherein the diisocyanate component A is isophorone diisocyanate represented by the chemical formula 3, the diol component B is the triglycolethane or trimethylolpropane represented by the chemical formula 4 of the branched diol component, and / or Alternatively, a polyether-based urethane resin composition containing heptaethylene glycol represented by Chemical Formula 5 of the linear diol component or polyoxyethylene glyceryl ether represented by Chemical Formula 7 is converted into poly (1,4-cyclohexylenedimethylene terephthalate) copolymer. On a base material made of a polyester resin, in the structural unit, isophorone diisocyanate as the diisocyanate component A, trimethylolpropane as the diol component B, and heptaethylene glycol or polyol. Anti-fogging resin coating coated article, characterized in that the shea ethylene glyceryl ether was formed as a coating film formed.
    Figure JPOXMLDOC01-appb-C000008
    In the formula, l, m, and n are each an integer of 1 or more, and l + m + n is 10 or more and 21 or less, and l + m ≧ n.
PCT/JP2015/062705 2014-04-25 2015-04-27 Article coated with antifogging coating having excellent durability WO2015163484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014101782 2014-04-25
JP2014-101782 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163484A1 true WO2015163484A1 (en) 2015-10-29

Family

ID=54332640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062705 WO2015163484A1 (en) 2014-04-25 2015-04-27 Article coated with antifogging coating having excellent durability

Country Status (3)

Country Link
JP (1) JP2015214693A (en)
TW (1) TW201601922A (en)
WO (1) WO2015163484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263718A (en) * 2020-02-17 2021-08-17 华为技术有限公司 Protective film, preparation method thereof, laminating method and terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112595A (en) * 2017-12-26 2019-07-11 Dic株式会社 Thermosetting urethane resin composition for cellulose ester film coat, and cellulose ester film coat agent composition using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500590A (en) * 1985-08-20 1988-03-03 スミス アンド ネフユ− アソシエイテツド コンパニ−ズ ピ−エルシ− Coated products and their manufacturing methods
JPH11178596A (en) * 1997-12-24 1999-07-06 Nitto Denko Corp Sheet-like article for detecting microorganism, kit containing the same and used for detecting microorganism and detection of microorganism with the same
JPH11512484A (en) * 1995-09-21 1999-10-26 イーストマン ケミカル カンパニー Improved polyester molding composition
JP2002323770A (en) * 2001-04-24 2002-11-08 Fuji Photo Film Co Ltd Photosensitive lithographic printing plate
JP2004084142A (en) * 2002-08-29 2004-03-18 Kuraray Co Ltd Aqueous solution for applying to surface of leather-like sheet and the leather like sheet on which grain side section is formed by using the aqueous solution
JP2004359707A (en) * 2003-06-02 2004-12-24 Konica Minolta Photo Imaging Inc Polyester support for anti-fogging film and anti-fogging film obtained using the same
JP2006503947A (en) * 2002-10-25 2006-02-02 ビーエーエスエフ アクチェンゲゼルシャフト Use of hyperbranched polymers containing urethane and / or urea groups for surface modification
JP2006175311A (en) * 2004-12-21 2006-07-06 Kansai Paint Co Ltd Carrier for holding microorganism
JP2009518479A (en) * 2005-12-09 2009-05-07 ディーエスエム アイピー アセッツ ビー.ブイ. Hydrophilic coating containing polyelectrolyte
WO2012111860A1 (en) * 2011-02-18 2012-08-23 ミドリ安全株式会社 Transparent resin composition having good chemical resistance, durability and stability under natural environmental conditions, harsher natural environmental conditions, and similar or harsher usage conditions, and product using same
WO2013065740A1 (en) * 2011-11-01 2013-05-10 ミドリ安全株式会社 Resin composition and molded body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500590A (en) * 1985-08-20 1988-03-03 スミス アンド ネフユ− アソシエイテツド コンパニ−ズ ピ−エルシ− Coated products and their manufacturing methods
JPH11512484A (en) * 1995-09-21 1999-10-26 イーストマン ケミカル カンパニー Improved polyester molding composition
JPH11178596A (en) * 1997-12-24 1999-07-06 Nitto Denko Corp Sheet-like article for detecting microorganism, kit containing the same and used for detecting microorganism and detection of microorganism with the same
JP2002323770A (en) * 2001-04-24 2002-11-08 Fuji Photo Film Co Ltd Photosensitive lithographic printing plate
JP2004084142A (en) * 2002-08-29 2004-03-18 Kuraray Co Ltd Aqueous solution for applying to surface of leather-like sheet and the leather like sheet on which grain side section is formed by using the aqueous solution
JP2006503947A (en) * 2002-10-25 2006-02-02 ビーエーエスエフ アクチェンゲゼルシャフト Use of hyperbranched polymers containing urethane and / or urea groups for surface modification
JP2004359707A (en) * 2003-06-02 2004-12-24 Konica Minolta Photo Imaging Inc Polyester support for anti-fogging film and anti-fogging film obtained using the same
JP2006175311A (en) * 2004-12-21 2006-07-06 Kansai Paint Co Ltd Carrier for holding microorganism
JP2009518479A (en) * 2005-12-09 2009-05-07 ディーエスエム アイピー アセッツ ビー.ブイ. Hydrophilic coating containing polyelectrolyte
WO2012111860A1 (en) * 2011-02-18 2012-08-23 ミドリ安全株式会社 Transparent resin composition having good chemical resistance, durability and stability under natural environmental conditions, harsher natural environmental conditions, and similar or harsher usage conditions, and product using same
WO2013065740A1 (en) * 2011-11-01 2013-05-10 ミドリ安全株式会社 Resin composition and molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263718A (en) * 2020-02-17 2021-08-17 华为技术有限公司 Protective film, preparation method thereof, laminating method and terminal

Also Published As

Publication number Publication date
JP2015214693A (en) 2015-12-03
TW201601922A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
US11396574B2 (en) Self-healing, self-cleaning omniphobic composition, related articles and related methods
JP6129681B2 (en) Polycarbonate diol, thermoplastic polyurethane, coating composition and coating film
JP5894741B2 (en) Scratch prevention film
JP6225979B2 (en) Aqueous polyurethane resin dispersion composition and method for producing the same
JP2011207953A (en) Coating composition and coating film
JP2017512670A (en) Dual cure type anti-contamination microsphere article
WO2019176416A1 (en) Membrane-forming resin composition, laminated film, and article having said laminated film attached thereto
JP2006206774A (en) Coating agent composition
WO2012108449A1 (en) Highly adhesive polyester film
JP5773042B2 (en) Easy-adhesive polyester film
JP5880642B2 (en) Optical laminated polyester film
WO2015163484A1 (en) Article coated with antifogging coating having excellent durability
WO2018221405A1 (en) Layered film
WO2019188574A1 (en) Coated body
JP6260685B2 (en) Coating composition, coating film and molded article
KR20170074853A (en) Aqueous dispersion of polyurethane resin and coating agent for plastic film using same
JP7103507B2 (en) Laminated polyester film
KR102405157B1 (en) Aqueous dispersion of polyurethane resin and coating agent for plastic film using same
JP4400364B2 (en) UV curable antifogging composition and molded article
WO2012057072A1 (en) Polyester film for use in molding
JP7360090B2 (en) Antifogging agent composition and antifogging article
JP7403649B2 (en) Fluororesin compositions, cured films, laminated films, and structures
JP2019052221A (en) Resin composition, cured coat, base material with coat, and method for anti-fogging treatment of base material
JP7259559B2 (en) metallized polyester film
TW202409214A (en) laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782929

Country of ref document: EP

Kind code of ref document: A1