WO2015163227A1 - Hybrid system, hybrid system vehicle, and egr method for hybrid system - Google Patents

Hybrid system, hybrid system vehicle, and egr method for hybrid system Download PDF

Info

Publication number
WO2015163227A1
WO2015163227A1 PCT/JP2015/061704 JP2015061704W WO2015163227A1 WO 2015163227 A1 WO2015163227 A1 WO 2015163227A1 JP 2015061704 W JP2015061704 W JP 2015061704W WO 2015163227 A1 WO2015163227 A1 WO 2015163227A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
pressure egr
cooling water
pressure
passage
Prior art date
Application number
PCT/JP2015/061704
Other languages
French (fr)
Japanese (ja)
Inventor
将司 早崎
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015163227A1 publication Critical patent/WO2015163227A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention can reduce the amount of NOx contained in the exhaust gas of an internal combustion engine more efficiently, and can improve the durability of the compressor of the supercharging system, the hybrid vehicle, and the hybrid system This relates to the EGR method.
  • the exhaust turbine of the exhaust passage is rotated using the exhaust energy of the engine, and the intake passage of the intake passage connected to the exhaust turbine by this rotational force is used.
  • a supercharging system that operates a compressor to compress intake air and increase the intake air amount into each cylinder of the engine.
  • a multi-stage supercharging system including a plurality of supercharging systems has been put into practical use, and in particular, a two-stage supercharging system including a low-pressure supercharging system and a high-pressure supercharging system is used. .
  • a part of the exhaust gas is recirculated to the intake passage to reduce the oxygen concentration of the intake air, thereby reducing the oxygen concentration in the engine (inside the cylinder).
  • An EGR system that suppresses the combustion temperature and reduces the amount of NOx generated is also provided.
  • the low pressure EGR gas is supercharged by the compressor of the supercharging system and enters the cylinder.
  • the temperature entering the low pressure EGR cooler is higher than the atmospheric temperature (for example, 100 If the mixed gas mixed with the low-pressure EGR gas and the intake air is compressed for supercharging by the compressor, the temperature rises and the high-temperature air-fuel mixture passes through the compressor. For this reason, there is a problem that the amount of EGR is reduced and NOx cannot be sufficiently reduced, and the heat load of the compressor is increased and its durability is lowered.
  • a low pressure EGR cooler is provided in the low pressure EGR passage connecting the exhaust passage and the intake passage, and the low pressure EGR gas is cooled before being supplied to the intake passage.
  • a low-pressure EGR passage that recirculates a part of the exhaust downstream of the turbine of the turbocharger as low-pressure EGR gas to the intake passage upstream of the compressor of the turbocharger;
  • a means for adjusting the flow rate of the low-pressure EGR gas a low-pressure EGR cooler for exchanging heat between the low-pressure EGR gas and the cooling water for the engine, a means for adjusting the flow rate of the cooling water flowing through the low-pressure EGR cooler, and an exhaust passage
  • the internal combustion engine is cold started, the temperature of the exhaust purification catalyst is increased, and the exhaust purification catalyst is at or above the activation temperature.
  • a control device for an internal combustion engine that increases the flow rate of the low-pressure EGR gas and increases the flow rate of the cooling water flowing through the low-pressure EGR cooler. It is.
  • the present inventors need to cool electric equipment such as a motor generator, an inverter, and a battery in a hybrid vehicle equipped with a hybrid system including an internal combustion engine and a motor generator.
  • This cooling water passage is provided with an independent cooling water passage for the motor generator.
  • the temperature of the cooling water for the motor generator used for cooling the electric equipment is about 50 ° C., which is lower than the temperature of about 80 ° C. for the cooling water for the engine.
  • the cooling water for the low-pressure EGR cooler is used by using the cooling water for the electric equipment instead of the cooling water for the engine of the prior art as the cooling medium for the low-pressure EGR cooler. It was found that the performance can be improved and the cooling efficiency of the low-pressure EGR gas can be improved.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid system, a hybrid vehicle, and an EGR method for a hybrid system in which an internal combustion engine of the hybrid system is provided with a supercharging system and a low pressure EGR system.
  • a hybrid system, a hybrid vehicle, and an EGR method for a hybrid system that can secure a sufficient EGR amount, reduce the amount of NOx generated in a cylinder, and reduce the heat load of a compressor to improve durability. That is.
  • a hybrid system is a hybrid system including a motor generator, an internal combustion engine having a supercharging system and a low pressure EGR system, and an exhaust passage downstream of a turbine of the supercharging system.
  • a low pressure EGR cooler is provided in a low pressure EGR passage connecting an intake passage upstream of the compressor of the supercharging system, and the low pressure EGR cooler cools the low pressure EGR gas with cooling water for cooling the motor generator.
  • cooling for a motor generator having a low temperature of about 50 ° C. is used for cooling water for a relatively high temperature of about 80 ° C., which is used as cooling water in a low pressure EGR cooler in the prior art.
  • water as the cooling medium for the low-pressure EGR cooler
  • the cooling efficiency and cooling performance of the low-pressure EGR cooler can be improved, so the volume of the low-pressure EGR gas can be reduced and the amount of low-pressure EGR gas recirculated to the intake passage can be increased.
  • the amount of NOx generated in the cylinder can be reduced, the temperature of the low-pressure EGR gas can be lowered, the thermal load on the downstream compressor can be reduced, and the durability can be improved.
  • the low pressure EGR passage when configured to branch from an exhaust passage downstream of the exhaust gas purification device disposed in the exhaust passage, the low pressure EGR gas is unburned carbonized in the exhaust gas. Since hydrogen (HC, black smoke), etc. is removed by the exhaust gas purification device, it is returned to the intake passage via the low-pressure EGR cooler, so that unburned hydrocarbons accumulate on the low-pressure EGR cooler, compressor, and intake passage The amount can be reduced and the performance of these devices can be maintained in good condition.
  • a cooling water amount adjusting device for adjusting a flow rate of cooling water supplied to the low pressure EGR cooler, an exhaust gas temperature detecting device for detecting a temperature of the low pressure EGR gas flowing into the low pressure EGR cooler,
  • a control device for controlling the cooling water amount adjusting device is provided, and when the low pressure EGR is stopped, or when the detected temperature of the exhaust gas temperature detecting device is equal to or lower than a preset first set temperature.
  • the flow rate of the cooling water flowing into the low pressure EGR cooler is set to a preset minimum flow rate, and when the detected temperature exceeds the first set temperature, the flow rate of the cooling water flowing into the low pressure EGR cooler is
  • the cooling water amount adjusting device is configured to control the preset amount to change in accordance with the detected temperature, it is as follows. It is possible to achieve the effect.
  • the cooling amount of the low-pressure EGR cooler can be optimized according to the operating state of the engine by changing the flow rate of the cooling water to the low-pressure EGR cooler according to the temperature of the exhaust gas.
  • hybrid vehicle of this invention for achieving said objective is comprised including said hybrid system, and there can exist an effect similar to said hybrid system.
  • an EGR method for a hybrid system is an EGR method for a hybrid system including a motor generator and an internal combustion engine having a supercharging system and a low-pressure EGR system.
  • the low pressure EGR cooler provided in the low pressure EGR passage connecting the exhaust passage downstream of the turbine and the intake passage upstream of the compressor of the supercharging system, and the low pressure EGR gas is cooled with cooling water for cooling the motor generator. It is a method characterized by cooling. According to this method, the same effects as those of the hybrid system and the hybrid vehicle can be obtained.
  • electric power having a relatively low temperature of about 50 ° C. is used without using coolant for a relatively high temperature engine of about 80 ° C.
  • the cooling water for the generator as a cooling medium for the low-pressure EGR cooler, the cooling efficiency and cooling performance of the low-pressure EGR gas can be improved, so that the volume of the low-pressure EGR gas can be reduced and the low-pressure EGR gas is returned to the intake passage
  • the amount of NOx generated in the cylinder can be reduced by increasing the amount of EGR gas, and the temperature of the low-pressure EGR gas can be reduced to reduce the thermal load of the compressor and improve the durability.
  • FIG. 1 is a diagram illustrating an example of a configuration of a hybrid system according to an embodiment of the present invention.
  • a hybrid system 1 is configured to include an engine (internal combustion engine) 10 and a motor generator 30, and a hybrid vehicle (not shown) according to an embodiment of the present invention. ) Is a vehicle that travels by transmitting the power of the engine 10 of the hybrid system 1 and the power of the motor generator 30 to wheels (not shown).
  • the engine 10 also includes an engine body 11, an intake passage 12, an exhaust passage 13, a high pressure EGR passage 14, and a low pressure EGR passage 15.
  • the air cleaner 16, the low-pressure stage compressor 17 b of the low-pressure stage turbocharger 17 of the low-pressure stage turbocharging system 4, the inter-turbo cooling device 18, and the high-pressure stage turbocharger of the high-pressure stage supercharging system 3 are arranged in this order from the upstream side.
  • 19 high-pressure compressors 19b, an intercooler 20, an intake throttle valve 21 and the like are provided.
  • the high-pressure turbine 19a of the high-pressure turbocharger 19 of the high-pressure turbocharging system 3 the low-pressure turbine 17a of the low-pressure turbocharger 17 of the low-pressure turbocharging system 4, and the exhaust A gas purification device 22, an exhaust throttle valve 23, and the like are provided.
  • the high-pressure stage supercharging system 3 is a supercharging system including a high-pressure stage turbocharger 19 including a high-pressure stage turbine 19a and a high-pressure stage compressor 19b.
  • the high-pressure stage supercharging system 3 uses the energy of the exhaust gas Ga of the engine body 11 to In this system, the turbine 19a is rotated, and a high-pressure compressor 19b connected to the high-pressure turbine 19a is operated by this rotational force to compress the intake air A + Gel and increase the intake air amount into each cylinder of the engine body 11.
  • the low-pressure stage supercharging system 4 is a supercharging system including a low-pressure stage turbocharger 17 including a low-pressure stage turbine 17a and a low-pressure stage compressor 17b, and uses the energy of the exhaust gas Ga of the engine body 11.
  • This system rotates the low-pressure stage turbine 17a and operates the low-pressure stage compressor 17b connected to the low-pressure stage turbine 17a with this rotational force to compress the intake air A + Gel, thereby increasing the intake air amount into each cylinder of the engine body 11. .
  • a bypass passage 19c is provided, and a high-pressure turbine open / close valve 19e is provided in the high-pressure turbine bypass passage 19c.
  • a high-pressure compressor bypass passage 19d that branches from the intake passage 12 upstream of the high-pressure compressor 19b and joins the intake passage 12 downstream of the high-pressure compressor 19b is provided, and this high-pressure compressor bypass passage 19d. Is provided with an open / close valve 19f for a high-pressure compressor.
  • both the high-pressure stage supercharging system 3 and the low-pressure stage supercharging system 4 are supercharged with intake air A + Gel
  • both the open / close valves 19e and 19f are closed and the exhaust gas is exhausted.
  • the intake air A + Gel is supercharged by the high pressure stage supercharging system 3 so that Ga and the intake air A + Gel pass through the high pressure stage turbine 19a and the high pressure stage compressor 19b.
  • the on-off valve 19e is opened so that the exhaust gas Ga passes through the bypass passage 19c.
  • the high pressure stage supercharging system 3 prevents the supercharging of the intake air A + Gel and opens the on-off valve 19f so that the intake air A + Gel passes through the bypass passage 19d. Do not become the resistance of intake A + Gel.
  • the high pressure EGR system 5 is an EGR system including a high pressure EGR passage 14, a high pressure EGR cooler 24, and a high pressure EGR valve 25.
  • the high pressure EGR passage 14 is connected to the exhaust passage 13 upstream of the high pressure stage turbine 19a.
  • a high-pressure EGR cooler 24 and a high-pressure EGR valve 25 are provided in order from the upstream side. This high pressure EGR valve 25 adjusts the flow rate of the high pressure EGR gas Geh recirculating to the intake passage 12.
  • a part of the high-temperature exhaust gas G passing through the exhaust passage 13 upstream of the high-pressure turbine 19 a is cooled by the high-pressure EGR cooler 24 of the high-pressure EGR passage 14 as the high-pressure EGR gas Geh and then returned to the intake passage 12. Then, by reducing the oxygen concentration of the intake air, the combustion temperature in the cylinder is suppressed, and the amount of NOx generated is reduced.
  • the low pressure EGR system 6 is an EGR system including a low pressure EGR passage 15, a low pressure EGR cooler 26, and a low pressure EGR valve 27.
  • the low pressure EGR passage 15 is an exhaust passage 13 downstream of the low pressure turbine 17a.
  • a low-pressure EGR cooler 26 and a low-pressure EGR valve 27 are provided in this order from the upstream side.
  • This low pressure EGR valve 27 adjusts the flow rate of the low pressure EGR gas Gel recirculating to the intake passage 12.
  • a part of the low-temperature exhaust gas Ga passing through the exhaust passage 13 on the downstream side of the low-pressure turbine 17a is cooled as the low-pressure EGR gas Gel by the low-pressure EGR cooler 26 of the low-pressure EGR passage 15, and then returned to the intake passage 12.
  • an exhaust gas temperature sensor (exhaust gas temperature detection device) 33 is provided in the exhaust passage 13 downstream from the low-pressure turbine 17 a and upstream from the connection point with the low-pressure EGR passage 15. As shown in FIG. 1, the exhaust gas temperature sensor 33 may be provided on the upstream side of the exhaust gas purification device 22, or may be provided on the downstream side of the exhaust gas purification device 22.
  • the intake air A + Gel is converted into the low pressure stage.
  • the compressor 17 b, the inter-turbo cooling device 18, the high-pressure compressor 19 b, the intercooler 20, the intake throttle valve 21, and the intake air A + Gel are further supplied from the high-pressure EGR passage 14 via the high-pressure EGR cooler 24 and the high-pressure EGR valve 25.
  • the intake air A + Gel + Geh is mixed and compressed with fuel injected from a fuel injection device (not shown), and the fuel is ignited and burned.
  • Gc-Gel the remaining exhaust gas Gb
  • the low pressure EGR cooler 26 is configured to cool the low pressure EGR gas Gel with the cooling water that cools the motor generator 30. That is, the cooling water Wb which is a part of the cooling water W is branched from the branch point P1 downstream of the motor generator 30 in the cooling water circulation passage 31 through which the cooling water W for cooling the motor generator 30 circulates, and the low-pressure EGR cooler. 26, a bypass passage 32 that joins the joining point P2 of the cooling water circulation passage 31 is provided. Further, a flow rate adjusting valve (cooling water amount adjusting device) 34 is provided at the branch point P1 so that the flow rate of the cooling water Wb flowing through the bypass passage 32 can be adjusted.
  • the cooling water for the relatively high temperature engine of about 80 ° C. used as the cooling water in the low pressure EGR cooler 26 in the prior art
  • an exhaust gas purification device 22 is arranged in the exhaust passage 13 downstream from the low-pressure turbine 17a and upstream from the connection point with the low-pressure EGR passage 15. That is, the low-pressure EGR passage 15 is configured to be branched from the exhaust passage 13 on the downstream side of the exhaust gas purification device 22 arranged in the exhaust passage 13.
  • the exhaust gas purification device 22 removes components to be purified such as nitrogen oxide (NOx), unburned hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM) contained in the exhaust gas Ga. It is an apparatus, and is composed of an oxidation catalyst device (DOC), a particulate collection device (DPD), a selective catalytic reduction device (SCR), and the like.
  • DOC oxidation catalyst device
  • DPD particulate collection device
  • SCR selective catalytic reduction device
  • the low-pressure EGR gas Gel that is a part of the exhaust gas Ga passes through the low-pressure EGR cooler 26. Since the refrigerant is recirculated to the intake passage 12, the low pressure EGR cooler 26, the low pressure stage compressor 17b, the high pressure stage compressor 19b, and the unburned hydrocarbons on the intake passage 12 can be prevented from adhering and accumulating. The performance can be maintained in a good state.
  • control device 41 for controlling the flow rate adjusting valve 34 is provided.
  • the control device 41 may be incorporated in the overall system control device 40 that performs overall control of the hybrid system 1 based on information from various sensors such as an accelerator opening sensor (not shown), or may be provided independently. Good.
  • the control device 41 inputs a detection value of an exhaust gas temperature sensor (exhaust gas temperature detection device) 33 for detecting the temperature of the low pressure EGR gas Gel flowing into the low pressure EGR cooler 26 and supplies the detected value to the low pressure EGR cooler 26.
  • the flow rate adjusting valve (cooling water amount adjusting device) 34 for adjusting the flow rate Vw of the cooling water Wb to be controlled is controlled.
  • the first set temperature T1 (for example, a temperature within a range of 50 ° C. to 200 ° C.).
  • the flow rate Vw of the cooling water Wb flowing into the low pressure EGR cooler 26 is set to the preset minimum flow rate Vmin, and when the detected temperature Tm exceeds the first set temperature T1, the low pressure EGR cooler 26
  • the flow rate adjustment valve 34 is configured to control the flow rate Vw of the flowing cooling water Wb to a preset set amount V (Tm) that changes according to the detected temperature Tm.
  • the first set temperature T1 and the minimum flow rate Vmin are set in advance by experiments or the like and stored in the control device 41, or can be calculated by the control device 41.
  • the temperature T of the low-pressure EGR gas Gel flowing into the low-pressure EGR cooler 26 is equal to or lower than the first set temperature T1 when the engine 10 is started or in a low load state, the amount of heat of the low-pressure EGR gas Gel is small. Then, the flow rate Vw of the cooling water Wb is set to the minimum flow rate Vmin, and the power consumption of the circulation drive pump (not shown) is suppressed to save energy.
  • the cooling water Wb having the minimum flow rate Vmin is allowed to flow in consideration of the timing of starting cooling when cooling is restarted. Allow cooling.
  • the flow rate Vw of the cooling water Wb is changed, for example, by increasing the flow rate Vw of the cooling water Wb.
  • the power consumption of the driving pump for circulating the cooling water W can be optimized according to the operating state of the engine 10, and energy saving can be achieved.
  • the EGR method of the hybrid system of embodiment which concerns on this invention was provided with the engine 10 which has the motor generator 30, the supercharging system (here two-stage supercharging system) 3, 4 and the low voltage
  • a relatively low temperature of about 50 ° C. is used without using coolant for a relatively high temperature engine of about 80 ° C.
  • the cooling water W (Wb) for the motor generator as a cooling medium for the low pressure EGR cooler 26
  • the cooling efficiency and cooling performance of the low pressure EGR gas Gl can be improved, so the volume of the low pressure EGR gas Gel is reduced.
  • the amount of low-pressure EGR gas that can be reduced and recirculated to the intake passage 12 can be increased to reduce the amount of NOx generated in the cylinder, and the temperature of the low-pressure EGR gas Gel can be reduced to reduce the pressure of the low-pressure stage compressor 17b.
  • Durability can be improved by reducing the thermal load on the stage compressor 19b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

In a low-pressure exhaust gas recirculation (EGR) channel (15) that connects an exhaust channel (13) downstream from a turbine (17a) of supercharging systems (3, 4) and an intake channel (12) upstream from a compressor (17b) of the supercharging systems (3, 4), a low-pressure EGR cooler (26) is provided and is configured such that low-pressure EGR gas (Gel) is cooled by cooling water (W) that cools an electrical generator (30). Due to this configuration, provided is a hybrid system or the like, the system comprising the electrical generator and an internal combustion engine which has supercharging systems and a low-pressure EGR system, wherein the quantity of NOx produced in cylinders is reduced by maintaining a sufficient EGR quantity and durability is increased by reducing the thermal load of a compressor of the supercharging systems.

Description

ハイブリッドシステム、ハイブリッドシステム車両、及び、ハイブリッドシステムのEGR方法HYBRID SYSTEM, HYBRID SYSTEM VEHICLE, AND EGR METHOD FOR HYBRID SYSTEM
 本発明は、内燃機関の排気ガスに含有されるNOx量をより効率よく低減することができるとともに、過給システムのコンプレッサの耐久性を向上させることができるハイブリッドシステム、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法に関する。 The present invention can reduce the amount of NOx contained in the exhaust gas of an internal combustion engine more efficiently, and can improve the durability of the compressor of the supercharging system, the hybrid vehicle, and the hybrid system This relates to the EGR method.
 一般に、ディーゼルエンジンを搭載した車両では、エンジンの燃焼効率を向上させるために、エンジンの排気エネルギーを利用して排気通路の排気タービンを回転させ、この回転力で排気タービンに接続する吸気通路の吸気コンプレッサを稼動させて吸気を圧縮し、エンジンの各気筒内への吸気量を増量させる過給システムが備えられている。また、近年では、この過給システムを複数備えた多段過給システムも実用化されており、特に、低圧段過給システムと高圧段過給システムを備えた2段過給システムが使用されている。 Generally, in a vehicle equipped with a diesel engine, in order to improve the combustion efficiency of the engine, the exhaust turbine of the exhaust passage is rotated using the exhaust energy of the engine, and the intake passage of the intake passage connected to the exhaust turbine by this rotational force is used. There is a supercharging system that operates a compressor to compress intake air and increase the intake air amount into each cylinder of the engine. In recent years, a multi-stage supercharging system including a plurality of supercharging systems has been put into practical use, and in particular, a two-stage supercharging system including a low-pressure supercharging system and a high-pressure supercharging system is used. .
 また、エンジンより排出される排気ガス中のNOx量を低減するために、排気ガスの一部を吸気通路に還流して吸気の酸素濃度を低下させることで、エンジンの気筒内(シリンダ内)の燃焼温度を抑制し、NOx発生量を低減させるEGRシステムも備えられている。 Further, in order to reduce the amount of NOx in the exhaust gas exhausted from the engine, a part of the exhaust gas is recirculated to the intake passage to reduce the oxygen concentration of the intake air, thereby reducing the oxygen concentration in the engine (inside the cylinder). An EGR system that suppresses the combustion temperature and reduces the amount of NOx generated is also provided.
 近年では、よりNOxを低減させるため,高圧EGRシステムと低圧EGRシステムの2つのEGRシステムを備えている。この高圧EGRシステムでは、高圧EGRガスとして過給システムのタービンより上流側の排気通路を通過する比較的高温の排気ガスの一部を高圧EGR通路の高圧EGRクーラーにより冷却してから吸気通路に還流させている。また、低圧EGRシステムでは、低圧EGRガスとして過給システムのタービンより下流側の排気通路を通過する比較的低温の排気ガスの一部を低圧EGR通路の低圧EGRクーラーにより冷却してから吸気通路に還流させている。 In recent years, two EGR systems, a high pressure EGR system and a low pressure EGR system, are provided to further reduce NOx. In this high-pressure EGR system, a part of the relatively high-temperature exhaust gas that passes through the exhaust passage upstream of the turbocharging system turbine as high-pressure EGR gas is cooled by the high-pressure EGR cooler in the high-pressure EGR passage and then returned to the intake passage. I am letting. In the low-pressure EGR system, a part of the relatively low-temperature exhaust gas passing through the exhaust passage downstream of the turbocharging system turbine as low-pressure EGR gas is cooled by the low-pressure EGR cooler in the low-pressure EGR passage and then the intake passage. Reflux.
 この低圧EGRガスは、過給システムのコンプレッサで過給されてから気筒内に入るが、排気ガスの一部であるため、低圧EGRクーラーに入る温度は大気の温度に比べれば高い温度(例えば100℃~500℃程度)となっており、このまま、低圧EGRガスが吸気と混合した混合ガスをコンプレッサで過給のために圧縮すると温度が高くなり、コンプレッサの中を高い温度の混合気が通過するために、EGR量が減少し十分にNOxを低減できない、また、コンプレッサの熱負荷が大きくなり、その耐久性が低下するという問題がある。 The low pressure EGR gas is supercharged by the compressor of the supercharging system and enters the cylinder. However, since the low pressure EGR gas is a part of the exhaust gas, the temperature entering the low pressure EGR cooler is higher than the atmospheric temperature (for example, 100 If the mixed gas mixed with the low-pressure EGR gas and the intake air is compressed for supercharging by the compressor, the temperature rises and the high-temperature air-fuel mixture passes through the compressor. For this reason, there is a problem that the amount of EGR is reduced and NOx cannot be sufficiently reduced, and the heat load of the compressor is increased and its durability is lowered.
 そのため、この低圧EGRシステムでは、排気通路と吸気通路を連結する低圧EGR通路に低圧EGRクーラーを設けて、低圧EGRガスを冷却してから吸気通路に供給している。例えば、日本出願の特開2011-220171号公報に記載されているように、ターボチャージャのタービン下流の排気の一部を低圧EGRガスとしてターボチャージャのコンプレッサ上流の吸気通路へ還流させる低圧EGR通路と、低圧EGRガスの流量を調節する手段と、低圧EGRガスとエンジン用の冷却水との間で熱交換させる低圧EGRクーラーと、低圧EGRクーラーを流れる冷却水の流量を調節する手段と、排気通路に配置された排気浄化触媒と、排気浄化触媒の温度を上昇させる手段と、を備え、内燃機関の冷間始動時において、排気浄化触媒の温度を上昇させ、排気浄化触媒が活性温度以上の場合に、低圧EGRガスの流量を増大させ且つ低圧EGRクーラーを流れる冷却水の流量を増大させる内燃機関の制御装置が提案されている。 Therefore, in this low pressure EGR system, a low pressure EGR cooler is provided in the low pressure EGR passage connecting the exhaust passage and the intake passage, and the low pressure EGR gas is cooled before being supplied to the intake passage. For example, as described in Japanese Patent Application Laid-Open No. 2011-220171, a low-pressure EGR passage that recirculates a part of the exhaust downstream of the turbine of the turbocharger as low-pressure EGR gas to the intake passage upstream of the compressor of the turbocharger; A means for adjusting the flow rate of the low-pressure EGR gas, a low-pressure EGR cooler for exchanging heat between the low-pressure EGR gas and the cooling water for the engine, a means for adjusting the flow rate of the cooling water flowing through the low-pressure EGR cooler, and an exhaust passage When the internal combustion engine is cold started, the temperature of the exhaust purification catalyst is increased, and the exhaust purification catalyst is at or above the activation temperature. Further, there is provided a control device for an internal combustion engine that increases the flow rate of the low-pressure EGR gas and increases the flow rate of the cooling water flowing through the low-pressure EGR cooler. It is.
 この低圧EGRクーラーでは、冷却媒体として、エンジンを冷却するためのエンジン用の冷却水を用いているが、熱交換で熱を受け取る側のエンジン用の冷却水の温度は約80℃と比較的高い温度であり、一方の熱交換で熱を出して冷却される側の低圧EGRガスも排気浄化装置を通過しているため低い温度になっているので、低圧EGRクーラーにおける低圧EGRガスの冷却効率が悪いという問題がある。 In this low-pressure EGR cooler, engine cooling water for cooling the engine is used as a cooling medium, but the temperature of the engine cooling water on the side receiving heat by heat exchange is relatively high at about 80 ° C. The low-pressure EGR gas on the side that is heated and cooled by heat exchange on one side is also low because it passes through the exhaust purification device, so the cooling efficiency of the low-pressure EGR gas in the low-pressure EGR cooler is low There is a problem of being bad.
日本出願の特開2011-220171号公報Japanese Patent Application No. 2011-220171
 そこで、本発明者等は、内燃機関と電動発電機を備えたハイブリッドシステムを搭載したハイブリッド車両においては、電動発電機、インバーター、バッテリー等の電気機器を冷却する必要があり、エンジン用の冷却水の冷却水通路とは、独立した電動発電機用の冷却水通路を設けている。この電気機器の冷却に用いられる電動発電機用の冷却水の温度は50℃程度と、エンジン用の冷却水の約80℃の温度と比較すると低い温度になっているので、ハイブリッドシステムのエンジンに過給システムと低圧EGRシステムを備えたハイブリッド車両では、低圧EGRクーラーの冷却媒体として、従来技術のエンジン用の冷却水ではなく、電気機器用の冷却水を使用することで、低圧EGRクーラーの冷却性能を向上させ、低圧EGRガスの冷却効率を向上させることができるとの知見を得た。 Therefore, the present inventors need to cool electric equipment such as a motor generator, an inverter, and a battery in a hybrid vehicle equipped with a hybrid system including an internal combustion engine and a motor generator. This cooling water passage is provided with an independent cooling water passage for the motor generator. The temperature of the cooling water for the motor generator used for cooling the electric equipment is about 50 ° C., which is lower than the temperature of about 80 ° C. for the cooling water for the engine. In a hybrid vehicle equipped with a supercharging system and a low-pressure EGR system, the cooling water for the low-pressure EGR cooler is used by using the cooling water for the electric equipment instead of the cooling water for the engine of the prior art as the cooling medium for the low-pressure EGR cooler. It was found that the performance can be improved and the cooling efficiency of the low-pressure EGR gas can be improved.
 本発明は、上記のことを鑑みてなされたものであり、その目的は、ハイブリッドシステムの内燃機関に過給システムと低圧EGRシステムを備えたハイブリッドシステム、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法において、十分なEGR量を確保できて気筒内で発生するNOx量を低減できるとともに、コンプレッサの熱負荷を低減して耐久性を向上できるハイブリッドシステム、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法を提供することである。 The present invention has been made in view of the above, and an object of the present invention is to provide a hybrid system, a hybrid vehicle, and an EGR method for a hybrid system in which an internal combustion engine of the hybrid system is provided with a supercharging system and a low pressure EGR system. Provided are a hybrid system, a hybrid vehicle, and an EGR method for a hybrid system that can secure a sufficient EGR amount, reduce the amount of NOx generated in a cylinder, and reduce the heat load of a compressor to improve durability. That is.
 上記の目的を達成するための本発明のハイブリッドシステムは、電動発電機と、過給システムと低圧EGRシステムを有する内燃機関を備えたハイブリッドシステムにおいて、前記過給システムのタービンより下流側の排気通路と、前記過給システムのコンプレッサより上流側の吸気通路を接続する低圧EGR通路に、低圧EGRクーラーを設けると共に、該低圧EGRクーラーでは、前記電動発電機を冷却する冷却水で低圧EGRガスを冷却するように構成する。 In order to achieve the above object, a hybrid system according to the present invention is a hybrid system including a motor generator, an internal combustion engine having a supercharging system and a low pressure EGR system, and an exhaust passage downstream of a turbine of the supercharging system. In addition, a low pressure EGR cooler is provided in a low pressure EGR passage connecting an intake passage upstream of the compressor of the supercharging system, and the low pressure EGR cooler cools the low pressure EGR gas with cooling water for cooling the motor generator. To be configured.
 この構成によれば、従来技術で低圧EGRクーラーで冷却水として用いていた、約80℃程度の比較的高温のエンジン用の冷却水に対して、50℃程度の低温の電動発電機用の冷却水を低圧EGRクーラーの冷却媒体として用いることで、低圧EGRクーラーの冷却効率及び冷却性能を向上させることができるので、低圧EGRガスの体積を低減でき、吸気通路に還流する低圧EGRガス量を増量させて、気筒で発生するNOx量を低減できると共に、低圧EGRガスの温度を低下させて、下流側のコンプレッサの熱負荷を低減して耐久性を向上させることができる。 According to this configuration, cooling for a motor generator having a low temperature of about 50 ° C. is used for cooling water for a relatively high temperature of about 80 ° C., which is used as cooling water in a low pressure EGR cooler in the prior art. By using water as the cooling medium for the low-pressure EGR cooler, the cooling efficiency and cooling performance of the low-pressure EGR cooler can be improved, so the volume of the low-pressure EGR gas can be reduced and the amount of low-pressure EGR gas recirculated to the intake passage can be increased. As a result, the amount of NOx generated in the cylinder can be reduced, the temperature of the low-pressure EGR gas can be lowered, the thermal load on the downstream compressor can be reduced, and the durability can be improved.
 また、上記のハイブリッドシステムにおいて、前記低圧EGR通路を前記排気通路に配置された排気ガス浄化装置よりも下流側の排気通路から分岐して構成すると、低圧EGRガスは、排気ガス中の未燃炭化水素(HC、黒煙)等が排気ガス浄化装置により除去されてから、低圧EGRクーラーを経由して吸気通路に還流されるので、低圧EGRクーラー、コンプレッサ、吸気通路への未燃炭化水素の堆積量を低減することができ、これらの機器の性能を良好な状態のまま維持することができる。 Further, in the above hybrid system, when the low pressure EGR passage is configured to branch from an exhaust passage downstream of the exhaust gas purification device disposed in the exhaust passage, the low pressure EGR gas is unburned carbonized in the exhaust gas. Since hydrogen (HC, black smoke), etc. is removed by the exhaust gas purification device, it is returned to the intake passage via the low-pressure EGR cooler, so that unburned hydrocarbons accumulate on the low-pressure EGR cooler, compressor, and intake passage The amount can be reduced and the performance of these devices can be maintained in good condition.
 また、上記のハイブリッドシステムにおいて、前記低圧EGRクーラーに供給する冷却水の流量を調整する冷却水量調整装置と、前記低圧EGRクーラーに流入する低圧EGRガスの温度を検出する排気ガス温度検出装置と、前記冷却水量調整装置を制御する制御装置を備え、該制御装置を、低圧EGRを停止しているとき、若しくは、前記排気ガス温度検出装置の検出温度が予め設定した第1設定温度以下であるときは、前記低圧EGRクーラーに流入する冷却水の流量を予め設定した最低流量にすると共に、前記検出温度が前記第1設定温度を超えるときは、前記低圧EGRクーラーに流入する冷却水の流量を前記検出温度に応じて変化する予め設定した設定量にするように前記冷却水量調整装置を制御するように構成すると次のような効果を奏することができる。 In the hybrid system, a cooling water amount adjusting device for adjusting a flow rate of cooling water supplied to the low pressure EGR cooler, an exhaust gas temperature detecting device for detecting a temperature of the low pressure EGR gas flowing into the low pressure EGR cooler, A control device for controlling the cooling water amount adjusting device is provided, and when the low pressure EGR is stopped, or when the detected temperature of the exhaust gas temperature detecting device is equal to or lower than a preset first set temperature. The flow rate of the cooling water flowing into the low pressure EGR cooler is set to a preset minimum flow rate, and when the detected temperature exceeds the first set temperature, the flow rate of the cooling water flowing into the low pressure EGR cooler is When the cooling water amount adjusting device is configured to control the preset amount to change in accordance with the detected temperature, it is as follows. It is possible to achieve the effect.
 この構成によれば、排気ガスの温度に従って、低圧EGRクーラーへの冷却水の流量を変化させていくことで、低圧EGRクーラーの冷却量をエンジンの運転状態に応じて最適化することができる。 According to this configuration, the cooling amount of the low-pressure EGR cooler can be optimized according to the operating state of the engine by changing the flow rate of the cooling water to the low-pressure EGR cooler according to the temperature of the exhaust gas.
 そして、上記の目的を達成するための本発明のハイブリッド車両は、上記のハイブリッドシステムを備えて構成され、上記のハイブリッドシステムと同様の効果を奏することができる。 And the hybrid vehicle of this invention for achieving said objective is comprised including said hybrid system, and there can exist an effect similar to said hybrid system.
 そして、上記の目的を達成するための本発明のハイブリッドシステムのEGR方法は、電動発電機と、過給システムと低圧EGRシステムを有する内燃機関を備えたハイブリッドシステムのEGR方法において、前記過給システムのタービンより下流側の排気通路と、前記過給システムのコンプレッサより上流側の吸気通路を接続する低圧EGR通路に設けた低圧EGRクーラーで、前記電動発電機を冷却する冷却水で低圧EGRガスを冷却することを特徴とする方法である。この方法によれば、上記のハイブリッドシステム及びハイブリッド車両と同様な効果を奏することができる。 In order to achieve the above object, an EGR method for a hybrid system according to the present invention is an EGR method for a hybrid system including a motor generator and an internal combustion engine having a supercharging system and a low-pressure EGR system. The low pressure EGR cooler provided in the low pressure EGR passage connecting the exhaust passage downstream of the turbine and the intake passage upstream of the compressor of the supercharging system, and the low pressure EGR gas is cooled with cooling water for cooling the motor generator. It is a method characterized by cooling. According to this method, the same effects as those of the hybrid system and the hybrid vehicle can be obtained.
 本発明のハイブリッドシステム、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法によれば、約80℃程度の比較的高い温度のエンジン用の冷却水を用いることなく、50℃程度の比較的低い温度の電動発電機用の冷却水を低圧EGRクーラーの冷却媒体として用いることで、低圧EGRガスの冷却効率及び冷却性能を向上させることができるので、低圧EGRガスの体積を低減でき、吸気通路に還流する低圧EGRガス量を増量させて、気筒内で発生するNOx量を低減することができると共に、低圧EGRガスの温度を低下させて、コンプレッサの熱負荷を低減して耐久性を向上させることができる According to the hybrid system, the hybrid vehicle, and the EGR method of the hybrid system of the present invention, electric power having a relatively low temperature of about 50 ° C. is used without using coolant for a relatively high temperature engine of about 80 ° C. By using the cooling water for the generator as a cooling medium for the low-pressure EGR cooler, the cooling efficiency and cooling performance of the low-pressure EGR gas can be improved, so that the volume of the low-pressure EGR gas can be reduced and the low-pressure EGR gas is returned to the intake passage The amount of NOx generated in the cylinder can be reduced by increasing the amount of EGR gas, and the temperature of the low-pressure EGR gas can be reduced to reduce the thermal load of the compressor and improve the durability.
図1は、本発明に係る実施の形態のハイブリッドシステムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a hybrid system according to an embodiment of the present invention.
 以下、本発明に係る実施の形態のハイブリッドシステム、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法について、図面を参照しながら説明する。なお、ここでは、過給システムを二段過給システムの構成で説明するが、本発明では、必ずしも二段過給システムである必要はなく、単段の過給システムでも多段の過給システムでもよく、過給システムを有していればよい。 Hereinafter, a hybrid system, a hybrid vehicle, and an EGR method of the hybrid system according to embodiments of the present invention will be described with reference to the drawings. Here, the supercharging system will be described with the configuration of a two-stage supercharging system. However, in the present invention, it is not always necessary to be a two-stage supercharging system. It only has to have a supercharging system.
 図1に示すように、本発明の実施の形態のハイブリッドシステム1は、エンジン(内燃機関)10と電動発電機30を備えて構成され、また、本発明の実施の形態のハイブリッド車両(図示しない)は、ハイブリッドシステム1のエンジン10の動力と電動発電機30の動力を車輪(図示しない)に伝達することで走行する車両である。 As shown in FIG. 1, a hybrid system 1 according to an embodiment of the present invention is configured to include an engine (internal combustion engine) 10 and a motor generator 30, and a hybrid vehicle (not shown) according to an embodiment of the present invention. ) Is a vehicle that travels by transmitting the power of the engine 10 of the hybrid system 1 and the power of the motor generator 30 to wheels (not shown).
 また、このエンジン10は、エンジン本体11と吸気通路12と排気通路13と高圧EGR通路14と低圧EGR通路15を備えている。この吸気通路12には、上流側より順に、エアクリーナ16、低圧段過給システム4の低圧段ターボチャージャ17の低圧段コンプレッサ17b、ターボ間冷却装置18、高圧段過給システム3の高圧段ターボチャージャ19の高圧段コンプレッサ19b、インタークーラー20、吸気絞り弁21等が設けられる。また、排気通路13には、上流側より順に、高圧段過給システム3の高圧段ターボチャージャ19の高圧段タービン19a、低圧段過給システム4の低圧段ターボチャージャ17の低圧段タービン17a、排気ガス浄化装置22、排気絞り弁23等が設けられる。 The engine 10 also includes an engine body 11, an intake passage 12, an exhaust passage 13, a high pressure EGR passage 14, and a low pressure EGR passage 15. In this intake passage 12, the air cleaner 16, the low-pressure stage compressor 17 b of the low-pressure stage turbocharger 17 of the low-pressure stage turbocharging system 4, the inter-turbo cooling device 18, and the high-pressure stage turbocharger of the high-pressure stage supercharging system 3 are arranged in this order from the upstream side. 19 high-pressure compressors 19b, an intercooler 20, an intake throttle valve 21 and the like are provided. In addition, in the exhaust passage 13, in order from the upstream side, the high-pressure turbine 19a of the high-pressure turbocharger 19 of the high-pressure turbocharging system 3, the low-pressure turbine 17a of the low-pressure turbocharger 17 of the low-pressure turbocharging system 4, and the exhaust A gas purification device 22, an exhaust throttle valve 23, and the like are provided.
 この高圧段過給システム3は、高圧段タービン19aと高圧段コンプレッサ19bを備える高圧段ターボチャージャ19で構成される過給システムであり、エンジン本体11の排気ガスGaのエネルギーを利用して高圧段タービン19aを回転させ、この回転力で高圧段タービン19aに接続する高圧段コンプレッサ19bを稼動させて吸気A+Gelを圧縮し、エンジン本体11の各気筒内への吸気量を増量させるシステムである。 The high-pressure stage supercharging system 3 is a supercharging system including a high-pressure stage turbocharger 19 including a high-pressure stage turbine 19a and a high-pressure stage compressor 19b. The high-pressure stage supercharging system 3 uses the energy of the exhaust gas Ga of the engine body 11 to In this system, the turbine 19a is rotated, and a high-pressure compressor 19b connected to the high-pressure turbine 19a is operated by this rotational force to compress the intake air A + Gel and increase the intake air amount into each cylinder of the engine body 11.
 同様に、低圧段過給システム4は、低圧段タービン17aと低圧段コンプレッサ17bを備える低圧段ターボチャージャ17で構成される過給システムであり、エンジン本体11の排気ガスGaのエネルギーを利用して低圧段タービン17aを回転させ、この回転力で低圧段タービン17aに接続する低圧段コンプレッサ17bを稼動させて吸気A+Gelを圧縮し、エンジン本体11の各気筒内への吸気量を増量させるシステムである。 Similarly, the low-pressure stage supercharging system 4 is a supercharging system including a low-pressure stage turbocharger 17 including a low-pressure stage turbine 17a and a low-pressure stage compressor 17b, and uses the energy of the exhaust gas Ga of the engine body 11. This system rotates the low-pressure stage turbine 17a and operates the low-pressure stage compressor 17b connected to the low-pressure stage turbine 17a with this rotational force to compress the intake air A + Gel, thereby increasing the intake air amount into each cylinder of the engine body 11. .
 なお、図1に示すように、この高圧段過給システム3の高圧段タービン19aの上流側の排気通路13から分岐し、高圧段タービン19aの下流側の排気通路13に合流する高圧段タービン用バイパス通路19cを設け、この高圧段タービン用バイパス通路19cに高圧段タービン用開閉バルブ19eを設ける。同様に、高圧段コンプレッサ19bの上流側の吸気通路12より分岐し、高圧段コンプレッサ19bの下流側の吸気通路12に合流する高圧段コンプレッサ用バイパス通路19dを設け、この高圧段コンプレッサ用バイパス通路19dに高圧段コンプレッサ用開閉バルブ19fを設ける。 As shown in FIG. 1, for the high-pressure turbine that branches from the exhaust passage 13 upstream of the high-pressure turbine 19a of the high-pressure turbocharging system 3 and merges with the exhaust passage 13 downstream of the high-pressure turbine 19a. A bypass passage 19c is provided, and a high-pressure turbine open / close valve 19e is provided in the high-pressure turbine bypass passage 19c. Similarly, a high-pressure compressor bypass passage 19d that branches from the intake passage 12 upstream of the high-pressure compressor 19b and joins the intake passage 12 downstream of the high-pressure compressor 19b is provided, and this high-pressure compressor bypass passage 19d. Is provided with an open / close valve 19f for a high-pressure compressor.
 エンジン10への要求トルクが大きく、高圧段過給システム3及び低圧段過給システム4の両方で吸気A+Gelを過給するときは、この開閉バルブ19e、19fを両方とも閉状態にして、排気ガスGa及び吸気A+Gelが高圧段タービン19a及び高圧段コンプレッサ19bを通過するようにして、高圧段過給システム3による吸気A+Gelの過給を行う。 When the required torque to the engine 10 is large and both the high-pressure stage supercharging system 3 and the low-pressure stage supercharging system 4 are supercharged with intake air A + Gel, both the open / close valves 19e and 19f are closed and the exhaust gas is exhausted. The intake air A + Gel is supercharged by the high pressure stage supercharging system 3 so that Ga and the intake air A + Gel pass through the high pressure stage turbine 19a and the high pressure stage compressor 19b.
 一方、エンジン10への要求トルクが小さく、低圧段過給システム4のみで吸気A+Gelを十分過給できるときは、開閉バルブ19eを開状態にして、排気ガスGaがバイパス通路19cを通過するようにして、高圧段過給システム3による吸気A+Gelの過給が行われないようにするとともに、開閉バルブ19fを開状態にして、吸気A+Gelがバイパス通路19dを通過するようにして、高圧段コンプレッサ19bが吸気A+Gelの抵抗とならないようにする。 On the other hand, when the required torque to the engine 10 is small and the intake air A + Gel can be sufficiently supercharged only by the low pressure stage supercharging system 4, the on-off valve 19e is opened so that the exhaust gas Ga passes through the bypass passage 19c. Thus, the high pressure stage supercharging system 3 prevents the supercharging of the intake air A + Gel and opens the on-off valve 19f so that the intake air A + Gel passes through the bypass passage 19d. Do not become the resistance of intake A + Gel.
 また、高圧EGRシステム5は、高圧EGR通路14と高圧EGRクーラー24と高圧EGRバルブ25で構成されるEGRシステムであり、この高圧EGR通路14は、高圧段タービン19aより上流側の排気通路13と高圧段コンプレッサ19bより下流側の吸気通路12を接続していて、上流側より順に、高圧EGRクーラー24と高圧EGRバルブ25が設けられている。この高圧EGRバルブ25で、吸気通路12に還流する高圧EGRガスGehの流量を調整する。 The high pressure EGR system 5 is an EGR system including a high pressure EGR passage 14, a high pressure EGR cooler 24, and a high pressure EGR valve 25. The high pressure EGR passage 14 is connected to the exhaust passage 13 upstream of the high pressure stage turbine 19a. A high-pressure EGR cooler 24 and a high-pressure EGR valve 25 are provided in order from the upstream side. This high pressure EGR valve 25 adjusts the flow rate of the high pressure EGR gas Geh recirculating to the intake passage 12.
 そして、この高圧段タービン19aより上流側の排気通路13を通過する高温の排気ガスGの一部を高圧EGRガスGehとして高圧EGR通路14の高圧EGRクーラー24により冷却してから吸気通路12に還流して、吸気の酸素濃度を低下させることで、気筒内での燃焼温度を抑制し、NOx発生量を低減する。 A part of the high-temperature exhaust gas G passing through the exhaust passage 13 upstream of the high-pressure turbine 19 a is cooled by the high-pressure EGR cooler 24 of the high-pressure EGR passage 14 as the high-pressure EGR gas Geh and then returned to the intake passage 12. Then, by reducing the oxygen concentration of the intake air, the combustion temperature in the cylinder is suppressed, and the amount of NOx generated is reduced.
 同様に、低圧EGRシステム6は、低圧EGR通路15と低圧EGRクーラー26と低圧EGRバルブ27で構成されるEGRシステムであり、この低圧EGR通路15は、低圧段タービン17aより下流側の排気通路13と低圧段コンプレッサ17bより上流側の吸気通路12を接続していて、上流側より順に、低圧EGRクーラー26と低圧EGRバルブ27が設けられている。この低圧EGRバルブ27で、吸気通路12に還流する低圧EGRガスGelの流量を調整する。 Similarly, the low pressure EGR system 6 is an EGR system including a low pressure EGR passage 15, a low pressure EGR cooler 26, and a low pressure EGR valve 27. The low pressure EGR passage 15 is an exhaust passage 13 downstream of the low pressure turbine 17a. Are connected to the intake passage 12 upstream of the low-pressure compressor 17b, and a low-pressure EGR cooler 26 and a low-pressure EGR valve 27 are provided in this order from the upstream side. This low pressure EGR valve 27 adjusts the flow rate of the low pressure EGR gas Gel recirculating to the intake passage 12.
 そして、低圧段タービン17aより下流側の排気通路13を通過する低温の排気ガスGaの一部を低圧EGRガスGelとして低圧EGR通路15の低圧EGRクーラー26により冷却してから吸気通路12に還流して、吸気の酸素濃度を低下させることで、エンジン本体11での燃焼濃度を抑制し、NOx発生量を低減する。 A part of the low-temperature exhaust gas Ga passing through the exhaust passage 13 on the downstream side of the low-pressure turbine 17a is cooled as the low-pressure EGR gas Gel by the low-pressure EGR cooler 26 of the low-pressure EGR passage 15, and then returned to the intake passage 12. Thus, by reducing the oxygen concentration of the intake air, the combustion concentration in the engine body 11 is suppressed, and the amount of NOx generated is reduced.
 また、排気ガス温度センサ(排気ガス温度検出装置)33を低圧段タービン17aより下流側でかつ低圧EGR通路15との接続点より上流側の排気通路13に備える。この排気ガス温度センサ33は、図1に示すように排気ガス浄化装置22より上流側に設けてもよいし、排気ガス浄化装置22より下流側に設けてもよい。 Also, an exhaust gas temperature sensor (exhaust gas temperature detection device) 33 is provided in the exhaust passage 13 downstream from the low-pressure turbine 17 a and upstream from the connection point with the low-pressure EGR passage 15. As shown in FIG. 1, the exhaust gas temperature sensor 33 may be provided on the upstream side of the exhaust gas purification device 22, or may be provided on the downstream side of the exhaust gas purification device 22.
 そして、大気から導入されエアクリーナ16を経由した新気Aが低圧EGRクーラー26及び低圧EGRバルブ27を経由して低圧EGR通路15より還流される低圧EGRガスGelと合流後、吸気A+Gelとして、低圧段コンプレッサ17b、ターボ間冷却装置18、高圧段コンプレッサ19b、インタークーラー20、吸気絞り弁21を経由し、さらに、この吸気A+Gelが、高圧EGRクーラー24及び高圧EGRバルブ25を経由して高圧EGR通路14より還流される高圧EGRガスGehと合流後、吸気A+Gel+Gehとして、エンジン本体11の各気筒内に送られる。 Then, after the fresh air A introduced from the atmosphere and passed through the air cleaner 16 merges with the low pressure EGR gas Gel recirculated from the low pressure EGR passage 15 via the low pressure EGR cooler 26 and the low pressure EGR valve 27, the intake air A + Gel is converted into the low pressure stage. The compressor 17 b, the inter-turbo cooling device 18, the high-pressure compressor 19 b, the intercooler 20, the intake throttle valve 21, and the intake air A + Gel are further supplied from the high-pressure EGR passage 14 via the high-pressure EGR cooler 24 and the high-pressure EGR valve 25. After merging with the high-pressure EGR gas Geh to be recirculated, it is sent into each cylinder of the engine body 11 as intake A + Gel + Geh.
 この気筒内では、吸気A+Gel+Gehは、燃料噴射装置(図示しない)より噴射された燃料と混合圧縮されて、燃料が着火及び燃焼する。この燃焼により発生した排気ガスGは、排気通路13に流出し、その一部が高圧EGR通路14に高圧EGRガスGehとして分岐され、残りの排気ガスGa(=G-Geh)は高圧段タービン19a及び低圧段タービン17aを経由して排気ガス浄化装置22により浄化される。この浄化処理された排気ガスGcは、その一部が低圧EGR通路15に低圧EGRガスGelとして分岐され、残りの排気ガスGb(=Gc-Gel)は、排気絞り弁23及びマフラー(図示しない)を経由して大気へ放出される。 In this cylinder, the intake air A + Gel + Geh is mixed and compressed with fuel injected from a fuel injection device (not shown), and the fuel is ignited and burned. The exhaust gas G generated by this combustion flows out into the exhaust passage 13, a part of which is branched into the high-pressure EGR passage 14 as the high-pressure EGR gas Geh, and the remaining exhaust gas Ga (= G-Geh) is supplied to the high-pressure turbine 19a. Then, the exhaust gas is purified by the exhaust gas purification device 22 via the low-pressure turbine 17a. A part of the purified exhaust gas Gc is branched into the low-pressure EGR passage 15 as a low-pressure EGR gas Gel, and the remaining exhaust gas Gb (= Gc-Gel) is exhausted through an exhaust throttle valve 23 and a muffler (not shown). To the atmosphere via
 そして、本発明においては、図1に示すように、低圧EGRクーラー26において、電動発電機30を冷却する冷却水で低圧EGRガスGelを冷却するように構成する。つまり、電動発電機30を冷却する冷却水Wが循環する冷却水循環通路31の電動発電機30より下流側の分岐点P1から冷却水Wの一部である冷却水Wbを分岐し、低圧EGRクーラー26を経由してから、冷却水循環通路31の合流点P2に合流するバイパス通路32を設ける。また、分岐点P1に流量調整弁(冷却水量調整装置)34を設け、バイパス通路32を流れる冷却水Wbの流量を調整できるように構成する。 In the present invention, as shown in FIG. 1, the low pressure EGR cooler 26 is configured to cool the low pressure EGR gas Gel with the cooling water that cools the motor generator 30. That is, the cooling water Wb which is a part of the cooling water W is branched from the branch point P1 downstream of the motor generator 30 in the cooling water circulation passage 31 through which the cooling water W for cooling the motor generator 30 circulates, and the low-pressure EGR cooler. 26, a bypass passage 32 that joins the joining point P2 of the cooling water circulation passage 31 is provided. Further, a flow rate adjusting valve (cooling water amount adjusting device) 34 is provided at the branch point P1 so that the flow rate of the cooling water Wb flowing through the bypass passage 32 can be adjusted.
 これにより、従来技術において、低圧EGRクーラー26で冷却水として用いていた、約80℃程度の比較的高温のエンジン用の冷却水の替りに、50℃程度の低温の電動発電機用の冷却水Wbを低圧EGRクーラー26の冷却媒体として用いることで、低圧EGRクーラー26の冷却効率及び冷却性能を向上させることができる。 Thereby, instead of the cooling water for the relatively high temperature engine of about 80 ° C. used as the cooling water in the low pressure EGR cooler 26 in the prior art, the cooling water for the low temperature motor generator of about 50 ° C. By using Wb as a cooling medium for the low-pressure EGR cooler 26, the cooling efficiency and cooling performance of the low-pressure EGR cooler 26 can be improved.
 また、低圧段タービン17aより下流側でかつ低圧EGR通路15との接続点より上流側の排気通路13に、排気ガス浄化装置22を配設して構成する。つまり、低圧EGR通路15を排気通路13に配置された排気ガス浄化装置22よりも下流側の排気通路13から分岐して構成する。 Further, an exhaust gas purification device 22 is arranged in the exhaust passage 13 downstream from the low-pressure turbine 17a and upstream from the connection point with the low-pressure EGR passage 15. That is, the low-pressure EGR passage 15 is configured to be branched from the exhaust passage 13 on the downstream side of the exhaust gas purification device 22 arranged in the exhaust passage 13.
 この排気ガス浄化装置22は、排気ガスGaに含有される窒素酸化物(NOx)、未燃炭化水素(HC)、一酸化炭素(CO)、微粒子物質(PM)等の浄化対象成分を除去する装置であり、酸化触媒装置(DOC)や微粒子捕集装置(DPD)や選択還元型触媒装置(SCR)等で構成される。 The exhaust gas purification device 22 removes components to be purified such as nitrogen oxide (NOx), unburned hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM) contained in the exhaust gas Ga. It is an apparatus, and is composed of an oxidation catalyst device (DOC), a particulate collection device (DPD), a selective catalytic reduction device (SCR), and the like.
 この構成により、排気ガスGaは、未燃炭化水素(HC、黒煙)等が排気ガス浄化装置22により除去されてから、その一部である低圧EGRガスGelが低圧EGRクーラー26を経由して吸気通路12に還流されるので、低圧EGRクーラー26、低圧段コンプレッサ17b、高圧段コンプレッサ19b、吸気通路12への未燃炭化水素が付着及び堆積することを防止することができ、これらの機器の性能を良好な状態のまま維持することができる。 With this configuration, after the unburned hydrocarbon (HC, black smoke) and the like are removed by the exhaust gas purification device 22, the low-pressure EGR gas Gel that is a part of the exhaust gas Ga passes through the low-pressure EGR cooler 26. Since the refrigerant is recirculated to the intake passage 12, the low pressure EGR cooler 26, the low pressure stage compressor 17b, the high pressure stage compressor 19b, and the unburned hydrocarbons on the intake passage 12 can be prevented from adhering and accumulating. The performance can be maintained in a good state.
 さらに、流量調整弁34を制御する制御装置41を設ける。この制御装置41は、アクセル開度センサ(図示しない)等の各種センサの情報に基づいて、ハイブリッドシステム1の全般の制御を行う全体システム制御装置40に組み込んでもよいし、独立して設けてもよい。 Furthermore, a control device 41 for controlling the flow rate adjusting valve 34 is provided. The control device 41 may be incorporated in the overall system control device 40 that performs overall control of the hybrid system 1 based on information from various sensors such as an accelerator opening sensor (not shown), or may be provided independently. Good.
 そして、この制御装置41で、低圧EGRクーラー26に流入する低圧EGRガスGelの温度を検出する排気ガス温度センサ(排気ガス温度検出装置)33の検出値を入力して、低圧EGRクーラー26に供給する冷却水Wbの流量Vwを調整する流量調整弁(冷却水量調整装置)34を制御するように構成する。 The control device 41 inputs a detection value of an exhaust gas temperature sensor (exhaust gas temperature detection device) 33 for detecting the temperature of the low pressure EGR gas Gel flowing into the low pressure EGR cooler 26 and supplies the detected value to the low pressure EGR cooler 26. The flow rate adjusting valve (cooling water amount adjusting device) 34 for adjusting the flow rate Vw of the cooling water Wb to be controlled is controlled.
 つまり、この制御装置41を、低圧EGRを停止しているとき、若しくは、排気ガス温度センサ33の検出温度Tmが予め設定した第1設定温度T1(例えば、50℃~200℃の範囲内の温度)以下であるときは、低圧EGRクーラー26に流入する冷却水Wbの流量Vwを予め設定した最低流量Vminにすると共に、検出温度Tmが第1設定温度T1を超えるときは、低圧EGRクーラー26に流入する冷却水Wbの流量Vwを検出温度Tmに応じて変化する予め設定した設定量V(Tm)にするように流量調整弁34を制御するように構成する。なお、この第1設定温度T1と最低流量Vminは、実験などにより予め設定し制御装置41に記憶させておいたり、制御装置41で算定できるようにしておいたりする。 That is, when the low pressure EGR is stopped or the detected temperature Tm of the exhaust gas temperature sensor 33 is set in advance to the control device 41, the first set temperature T1 (for example, a temperature within a range of 50 ° C. to 200 ° C.). ) When it is below, the flow rate Vw of the cooling water Wb flowing into the low pressure EGR cooler 26 is set to the preset minimum flow rate Vmin, and when the detected temperature Tm exceeds the first set temperature T1, the low pressure EGR cooler 26 The flow rate adjustment valve 34 is configured to control the flow rate Vw of the flowing cooling water Wb to a preset set amount V (Tm) that changes according to the detected temperature Tm. The first set temperature T1 and the minimum flow rate Vmin are set in advance by experiments or the like and stored in the control device 41, or can be calculated by the control device 41.
 これにより、エンジン10が始動時や低負荷状態などで、低圧EGRクーラー26に流入する低圧EGRガスGelの温度Tが第1設定温度T1以下であるときは、低圧EGRガスGelの熱量も少ないので、冷却水Wbの流量Vwを最低流量Vminにして、循環用駆動ポンプ(図示しない)の消費電力を抑制して省エネルギー化を図る。 Thereby, when the temperature T of the low-pressure EGR gas Gel flowing into the low-pressure EGR cooler 26 is equal to or lower than the first set temperature T1 when the engine 10 is started or in a low load state, the amount of heat of the low-pressure EGR gas Gel is small. Then, the flow rate Vw of the cooling water Wb is set to the minimum flow rate Vmin, and the power consumption of the circulation drive pump (not shown) is suppressed to save energy.
 なお、エンジン10が低負荷運転などで排気ガス温度が低いときには、冷却を再開する場合の冷却の開始のタイミング等を考慮して、最低流量Vminの冷却水Wbを流しておき、冷却開始からある程度の冷却が可能なようにする。 When the exhaust gas temperature is low, such as when the engine 10 is operating at a low load, the cooling water Wb having the minimum flow rate Vmin is allowed to flow in consideration of the timing of starting cooling when cooling is restarted. Allow cooling.
 また、エンジン10が中負荷運転や高負荷運転で、低圧段タービン17aを通過後の排気ガスGaの温度Tが第1設定温度T1を超えるときには、排気ガスGaの温度Tに従って、例えば、第1設定温度T1と検出温度Tmとの差が大きくなると冷却水Wbの流量Vwを多くする等して、冷却水Wbの流量Vwを変化させていく。 When the engine 10 is in a medium load operation or a high load operation and the temperature T of the exhaust gas Ga after passing through the low-pressure turbine 17a exceeds the first set temperature T1, according to the temperature T of the exhaust gas Ga, for example, the first When the difference between the set temperature T1 and the detected temperature Tm increases, the flow rate Vw of the cooling water Wb is changed, for example, by increasing the flow rate Vw of the cooling water Wb.
 これらにより、冷却水Wの循環用駆動ポンプの消費電力を、エンジン10の運転状態に応じて最適化することができ、省エネルギー化を図ることができる。 Thus, the power consumption of the driving pump for circulating the cooling water W can be optimized according to the operating state of the engine 10, and energy saving can be achieved.
 そして、本発明に係る実施の形態のハイブリッドシステムのEGR方法は、電動発電機30と、過給システム(ここでは二段過給システム)3、4と低圧EGRシステム6を有するエンジン10を備えたハイブリッドシステム1のEGR方法であり、過給システム3、4のタービン(ここでは、低圧段過給システム4の低圧段タービン17a)より下流側の排気通路13と、過給システム3、4のコンプレッサ(ここでは、低圧段過給システム4の低圧段コンプレッサ17b)より上流側の吸気通路12を接続する低圧EGR通路15に設けた低圧EGRクーラー26で、電動発電機30を冷却する冷却水Wで低圧EGRガスGelを冷却することを特徴とする方法である。 And the EGR method of the hybrid system of embodiment which concerns on this invention was provided with the engine 10 which has the motor generator 30, the supercharging system (here two-stage supercharging system) 3, 4 and the low voltage | pressure EGR system 6. This is an EGR method for the hybrid system 1, and the exhaust passage 13 on the downstream side of the turbines of the supercharging systems 3 and 4 (here, the low pressure stage turbine 17 a of the low pressure stage supercharging system 4), and the compressors of the supercharging systems 3 and 4 (Here, the low-pressure compressor 17b of the low-pressure turbocharging system 4) is a low-pressure EGR cooler 26 provided in the low-pressure EGR passage 15 that connects the intake passage 12 upstream of the low-pressure stage turbocharging system 4. This is a method characterized by cooling the low-pressure EGR gas Gel.
 上記の構成のハイブリッドシステム1、ハイブリッド車両、及び、ハイブリッドシステムのEGR方法によれば、約80℃程度の比較的高い温度のエンジン用の冷却水を用いることなく、50℃程度の比較的低い温度の電動発電機用の冷却水W(Wb)を低圧EGRクーラー26の冷却媒体として用いることで、低圧EGRガスGlの冷却効率及び冷却性能を向上させることができるので、低圧EGRガスGelの体積を低減でき、吸気通路12に還流する低圧EGRガス量を増量させて、気筒内で発生するNOx量を低減することができると共に、低圧EGRガスGelの温度を低下させて、低圧段コンプレッサ17bと高圧段コンプレッサ19bの熱負荷を低減して耐久性を向上させることができる According to the EGR method of the hybrid system 1, the hybrid vehicle, and the hybrid system configured as described above, a relatively low temperature of about 50 ° C. is used without using coolant for a relatively high temperature engine of about 80 ° C. By using the cooling water W (Wb) for the motor generator as a cooling medium for the low pressure EGR cooler 26, the cooling efficiency and cooling performance of the low pressure EGR gas Gl can be improved, so the volume of the low pressure EGR gas Gel is reduced. The amount of low-pressure EGR gas that can be reduced and recirculated to the intake passage 12 can be increased to reduce the amount of NOx generated in the cylinder, and the temperature of the low-pressure EGR gas Gel can be reduced to reduce the pressure of the low-pressure stage compressor 17b. Durability can be improved by reducing the thermal load on the stage compressor 19b.
1 ハイブリッドシステム
3 高圧段過給システム
4 低圧段過給システム
5 高圧EGRシステム
6 低圧EGRシステム
10 エンジン(内燃機関)
11 エンジン本体
12 吸気通路
13 排気通路
14 高圧EGR通路
15 低圧EGR通路
16 エアクリーナ
17 低圧段ターボチャージャ
17a 低圧段タービン
17b 低圧段コンプレッサ
18 ターボ間冷却装置
19 高圧段ターボチャージャ
19a 高圧段タービン
19b 高圧段コンプレッサ
19c 高圧段タービン用バイパス通路
19d 高圧段コンプレッサ用バイパス通路
19e 高圧段タービン用開閉バルブ
19f 高圧段コンプレッサ用開閉バルブ
20 インタークーラー
21 吸気絞り弁
22 排気ガス浄化装置
23 排気絞り弁
24 高圧EGRクーラー
25 高圧EGRバルブ
26 低圧EGRクーラー
27 低圧EGRバルブ
30 電動発電機
31 冷却水循環通路
32 バイパス通路
33 排気ガス温度センサ(排気ガス温度検出装置)
34 流量調整弁(冷却水量調整装置)
40 全体システム制御装置
41 制御装置
A 新気
G 気筒から出た排気ガス、
Ga 高圧段タービン通過後の排気ガス
Gb 大気中に排出される排気ガス
Gc 浄化処理された排気ガス
Geh 高圧EGRガス
Gel 低圧EGRガス
P1 分岐点
P2 合流点
T 排気ガスの温度
Tm 排気ガス温度センサの検出温度
T1 第1設定温度
Vw 冷却水の流量
Vmin 最低流量
W 冷却水
Wb バイパス通路を通過する冷却水
DESCRIPTION OF SYMBOLS 1 Hybrid system 3 High pressure stage supercharging system 4 Low pressure stage supercharging system 5 High pressure EGR system 6 Low pressure EGR system 10 Engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Engine body 12 Intake passage 13 Exhaust passage 14 High pressure EGR passage 15 Low pressure EGR passage 16 Air cleaner 17 Low pressure stage turbocharger 17a Low pressure stage turbine 17b Low pressure stage compressor 18 Inter-turbo cooling device 19 High pressure stage turbocharger 19a High pressure stage turbine 19b High pressure stage compressor 19c Bypass passage for high-pressure turbine 19d Bypass passage for high-pressure compressor 19e Open / close valve for high-pressure turbine 19f Open / close valve for high-pressure compressor 20 Intercooler 21 Intake throttle valve 22 Exhaust gas purifier 23 Exhaust throttle valve 24 High pressure EGR cooler 25 High pressure EGR Valve 26 Low pressure EGR cooler 27 Low pressure EGR valve 30 Motor generator 31 Cooling water circulation passage 32 Bypass passage 33 Exhaust gas temperature sensor (exhaust gas temperature detection device)
34 Flow rate adjustment valve (cooling water amount adjustment device)
40 Overall system control device 41 Control device A Fresh air G Exhaust gas from cylinder,
Ga Exhaust gas Gb after passing through high-pressure turbine Exhaust gas Gc discharged into the atmosphere Purified exhaust gas Geh High pressure EGR gas Gel Low pressure EGR gas P1 Branch point P2 Junction point T Exhaust gas temperature Tm Exhaust gas temperature sensor Detection temperature T1 First set temperature Vw Cooling water flow rate Vmin Minimum flow rate W Cooling water Wb Cooling water passing through the bypass passage

Claims (5)

  1.  電動発電機と、過給システムと低圧EGRシステムを有する内燃機関を備えたハイブリッドシステムにおいて、
     前記過給システムのタービンより下流側の排気通路と、前記過給システムのコンプレッサより上流側の吸気通路を接続する低圧EGR通路に、低圧EGRクーラーを設けると共に、
     該低圧EGRクーラーでは、前記電動発電機を冷却する冷却水で低圧EGRガスを冷却するように構成したことを特徴とするハイブリッドシステム。
    In a hybrid system comprising a motor generator, an internal combustion engine having a supercharging system and a low pressure EGR system,
    A low pressure EGR cooler is provided in a low pressure EGR passage connecting an exhaust passage downstream from the turbine of the supercharging system and an intake passage upstream of the compressor of the supercharging system;
    The low-pressure EGR cooler is configured to cool the low-pressure EGR gas with cooling water that cools the motor generator.
  2.  前記低圧EGR通路を前記排気通路に配置された排気ガス浄化装置よりも下流側の排気通路から分岐したことを特徴とする請求項1に記載のハイブリッドシステム。 The hybrid system according to claim 1, wherein the low-pressure EGR passage is branched from an exhaust passage downstream of an exhaust gas purification device disposed in the exhaust passage.
  3.  前記低圧EGRクーラーに供給する冷却水の流量を調整する冷却水量調整装置と、前記低圧EGRクーラーに流入する低圧EGRガスの温度を検出する排気ガス温度検出装置と、前記冷却水量調整装置を制御する制御装置を備え、該制御装置を、低圧EGRを停止しているとき、若しくは、前記排気ガス温度検出装置の検出温度が予め設定した第1設定温度以下であるときは、前記低圧EGRクーラーに流入する冷却水の流量を予め設定した最低流量にすると共に、前記検出温度が前記第1設定温度を超えるときは、前記低圧EGRクーラーに流入する冷却水の流量を前記検出温度に応じて変化する予め設定した設定量にするように前記冷却水量調整装置を制御するように構成したことを特徴とする請求項1又は2に記載のハイブリッドシステム。 A cooling water amount adjusting device for adjusting the flow rate of cooling water supplied to the low pressure EGR cooler, an exhaust gas temperature detecting device for detecting the temperature of the low pressure EGR gas flowing into the low pressure EGR cooler, and the cooling water amount adjusting device are controlled. Provided with a control device, which flows into the low-pressure EGR cooler when the low-pressure EGR is stopped or when the detected temperature of the exhaust gas temperature detection device is equal to or lower than a preset first set temperature. The flow rate of the cooling water to be set is set to a preset minimum flow rate, and when the detected temperature exceeds the first set temperature, the flow rate of the cooling water flowing into the low pressure EGR cooler is changed in advance according to the detected temperature. The hybrid system according to claim 1 or 2, wherein the cooling water amount adjusting device is controlled so as to obtain a set amount. Temu.
  4.  請求項1~3のいずれか1項に記載のハイブリッドシステムを備えたことを特徴とするハイブリッド車両。 A hybrid vehicle comprising the hybrid system according to any one of claims 1 to 3.
  5.  電動発電機と、過給システムと低圧EGRシステムを有する内燃機関を備えたハイブリッドシステムのEGR方法において、
     前記過給システムのタービンより下流側の排気通路と、前記過給システムのコンプレッサより上流側の吸気通路を接続する低圧EGR通路に設けた低圧EGRクーラーで、前記電動発電機を冷却する冷却水で低圧EGRガスを冷却することを特徴とするハイブリッドシステムのEGR方法。
    In an EGR method of a hybrid system comprising a motor generator, an internal combustion engine having a supercharging system and a low pressure EGR system,
    A low-pressure EGR cooler provided in a low-pressure EGR passage connecting an exhaust passage downstream from the turbine of the supercharging system and an intake passage upstream of the compressor of the supercharging system, with cooling water for cooling the motor generator A hybrid system EGR method comprising cooling low-pressure EGR gas.
PCT/JP2015/061704 2014-04-25 2015-04-16 Hybrid system, hybrid system vehicle, and egr method for hybrid system WO2015163227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014090800A JP6375680B2 (en) 2014-04-25 2014-04-25 HYBRID SYSTEM, HYBRID SYSTEM VEHICLE, AND EGR METHOD FOR HYBRID SYSTEM
JP2014-090800 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163227A1 true WO2015163227A1 (en) 2015-10-29

Family

ID=54332394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061704 WO2015163227A1 (en) 2014-04-25 2015-04-16 Hybrid system, hybrid system vehicle, and egr method for hybrid system

Country Status (2)

Country Link
JP (1) JP6375680B2 (en)
WO (1) WO2015163227A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943200B2 (en) 2018-02-13 2021-09-29 トヨタ自動車株式会社 Hybrid vehicle
JP7040128B2 (en) * 2018-03-01 2022-03-23 マツダ株式会社 Engine start control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351073A (en) * 1998-06-05 1999-12-21 Nissan Diesel Motor Co Ltd Egr cooler
JP2006207495A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Egr cooling system for vehicle
JP2010018212A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Control device of hybrid system
JP2010174728A (en) * 2009-01-29 2010-08-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010174682A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Intake temperature detector for internal combustion engine
WO2013168520A1 (en) * 2012-05-09 2013-11-14 日産自動車株式会社 Egr gas cooling device for hybrid vehicle and egr gas cooling method for hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351073A (en) * 1998-06-05 1999-12-21 Nissan Diesel Motor Co Ltd Egr cooler
JP2006207495A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Egr cooling system for vehicle
JP2010018212A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Control device of hybrid system
JP2010174682A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Intake temperature detector for internal combustion engine
JP2010174728A (en) * 2009-01-29 2010-08-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2013168520A1 (en) * 2012-05-09 2013-11-14 日産自動車株式会社 Egr gas cooling device for hybrid vehicle and egr gas cooling method for hybrid vehicle

Also Published As

Publication number Publication date
JP2015209793A (en) 2015-11-24
JP6375680B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
KR101846886B1 (en) Engine system and method thereof
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
KR101601088B1 (en) Engine Cooling System
KR102451916B1 (en) Hybrid vehicle and method of controlling the same
US20070220885A1 (en) EGR energy recovery system
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
KR102633863B1 (en) Engine system and method of controlling the same
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
KR101947045B1 (en) Engine system for removing condensed water
US20180230874A1 (en) Dual stage internal combustion engine aftertreatment system using common radiator cooling fluid circuits for exhaust gas intercooling and charger-driven ejector
KR101683495B1 (en) Engine system having turbo charger
JP2013086756A (en) Cooling system for hybrid vehicle
US20090282816A1 (en) Fresh Air Bypass to Cool Down Hot Exhaust in DPF Regeneration Mode at Low Vehicle Speed and Idle
JP6375680B2 (en) HYBRID SYSTEM, HYBRID SYSTEM VEHICLE, AND EGR METHOD FOR HYBRID SYSTEM
JP4882688B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
WO2010123411A1 (en) Method and arrangement for recirculation of exhaust gases of a combustion engine
KR101071873B1 (en) Recirculating exhaust gas system using vortex tube
JP5163517B2 (en) EGR device control device
JP6357902B2 (en) Engine exhaust gas recirculation method and exhaust gas recirculation device
US20220056829A1 (en) Gas engine heat pump
GB2522130A (en) Internal combustion engine for a vehicle
WO2010123409A1 (en) Method and arrangement for recirculation of exhaust gases of a combustion engine
KR102463199B1 (en) Engine system
KR101553301B1 (en) Method for controlling dual type egr system using vortex tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783200

Country of ref document: EP

Kind code of ref document: A1